
Chapter 3Variations on P and NPCast a cold eyeOn life, on death.Horseman, pass by!W.B. Yeats, Under Ben BulbenIn this chapter we consider variations on the complexity classes P and NP. Werefer speci�cally to the non-uniform version of P, and to the Polynomial-time Hier-archy (which extends NP). These variations are motivated by relatively technicalconsiderations; still, the resulting classes are referred to quite frequently in theliterature.Summary: Non-uniform polynomial-time (P/poly) captures e�cientcomputations that are carried out by devices that can each only handleinputs of a speci�c length. The basic formalism ignore the complexityof constructing such devices (i.e., a uniformity condition). A �ner for-malism that allows to quantify the amount of non-uniformity refers toso called \machines that take advice."The Polynomial-time Hierarchy (PH) generalizes NP by consideringstatements expressed by quanti�ed Boolean formulae with a �xed num-ber of alternations of existential and universal quanti�ers. It is widelybelieved that each quanti�er alternation adds expressive power to theclass of such formulae.The two di�erent classes are related by showing that if NP is containedin P/poly then the Polynomial-time Hierarchy collapses to its secondlevel. This result is commonly interpreted as supporting the commonbelief that non-uniformity is irrelevant to the P-vs-NP Question; that is,although P/poly extends beyond the class P, is is believed that P/polydoes not contain NP.Except for the latter result, which is presented in Section 3.2.3, the treatments ofP/poly (in Section 3.1) and of the Polynomial-time Hierarchy (in Section 3.2) areindependent of one another. 117

118 CHAPTER 3. VARIATIONS ON P AND NP3.1 Non-uniform polynomial-time (P/poly)In this section we consider two formulations of the notion of non-uniform polynomial-time, based on the two models of non-uniform computing devices that were pre-sented in Section 1.2.4. That is, we specialize the treatment of non-uniform com-puting devices, provided in Section 1.2.4, to the case of polynomially boundedcomplexities. It turns out that both (polynomially bounded) formulations allowfor solving the same class of computational problems, which is a strict superset ofthe class of problems solvable by polynomial-time algorithms.The two models of non-uniform computing devices are Boolean circuits and\machines that take advice" (cf. x1.2.4.1 and x1.2.4.2, respectively). We will focuson the restriction of both models to the case of polynomial complexities, considering(non-uniform) polynomial-size circuits and polynomial-time algorithms that take(non-uniform) advice of polynomially bounded length.The main motivation for considering non-uniform polynomial-size circuits isthat their computational limitations imply analogous limitations on polynomial-time algorithms. The hope is that, as is often the case in mathematics and Science,disposing of an auxiliary condition (i.e., uniformity) that seems secondary1 and isnot well-understood may turn out fruitful. In particular, the (non-uniform) circuitmodel facilitates a low-level analysis of the evolution of a computation, and allowfor the application of combinatorial techniques. The bene�t of this approach hasbeen demonstrated in the study of restricted classes of circuits (see Sections B.2.2and B.2.3).The main motivation for considering polynomial-time algorithms that take poly-nomially bounded advice is that such devices are useful in modeling auxiliary in-formation that is available to possible e�cient strategies that are of interest to us.We mention two such settings. In cryptography (see Appendix C), the advice isused for accounting for auxiliary information that is available to an adversary. Inthe context of derandomization (see Section 8.3), the advice is used for account-ing for the main input to the randomized algorithm. In addition, the model ofpolynomial-time algorithms that take advice allows for a quantitative study of theamount of non-uniformity, ranging from zero to polynomial.3.1.1 Boolean CircuitsWe refer the reader to x1.2.4.1 for a de�nition of (families of) Boolean circuitsand the functions computed by them. For concreteness and simplicity, we assumethroughout this section that all circuits have bounded fan-in. We highlight thefollowing result stated in x1.2.4.1:Theorem 3.1 (circuit evaluation): There exists a polynomial-time algorithm that,given a circuit C : f0; 1gn ! f0; 1gm and an n-bit long string x, returns C(x).1The common belief is that the issue of non-uniformity is irrelevant to the P-vs-NP Question;that is, that resolving the latter question by proving that P 6= NP is not easier than provingthat NP does not have polynomial-size circuits. For further discussion see Appendix B.2 andSection 3.2.3.

3.1. NON-UNIFORM POLYNOMIAL-TIME (P/POLY) 119Recall that the algorithm works by performing the \value-determination" processthat underlies the de�nition of the computation of the circuit on a given input.This process assigns values to each of the circuit vertices based on the values ofits children (or the values of the corresponding bit of the input, in the case of aninput-terminal vertex).Circuit size as a complexity measure. We recall the de�nitions of circuitcomplexity presented in to x1.2.4.1: The size of a circuit is de�ned as the numberof edges, and the length of its description is almost linear in the latter; that is, acircuit of size s is commonly described by the list of its edges and the labels of itsvertices, which means that its description length is O(s log s). We are interestedin families of circuits that solve computational problems, and thus we say that thecircuit family (Cn)n2N computes the function f : f0; 1g� ! f0; 1g� if for everyx 2 f0; 1g� it holds that Cjxj(x) = f(x). The size complexity of this family is thefunction s : N ! N such that s(n) is the size of Cn. The circuit complexity of afunction f , denoted sf , is the size-complexity of the smallest family of circuits thatcomputes f . An equivalent formulation follows.De�nition 3.2 (circuit complexity): The circuit complexity of f : f0; 1g� ! f0; 1g�is the function sf : N ! N such that sf (n) is the size of the smallest circuit thatcomputes the restriction of f to n-bit strings.We stress that non-uniformity is implicit in this de�nition, because no conditionsare made regarding the relation between the various circuits that are used to com-pute the function value on di�erent input lengths.An interesting feature of De�nition 3.2 is that, unlike in the case of uniformmodel of computation, it allows considering the actual complexity of the functionrather than an upper-bound on its complexity (cf. x1.2.3.5 and Section 4.2.1). Thisis a consequence of the fact that the circuit model has no \free parameters" (suchas various parameters of the possible algorithm that is use in the uniform model).2We will be interested in the class of problems that are solvable by families ofpolynomial-size circuits. That is, a problem is solvable by polynomial-size circuits ifit can be solved by a function f that has polynomial circuit complexity (i.e., thereexists a polynomial p such that sf (n) � p(n), for every n 2 N).A detour: uniform families. A family of polynomial-size circuits (Cn)n iscalled uniform if given n one can construct the circuit Cn in poly(n)-time. Moregenerally:De�nition 3.3 (uniformity): A family of circuits (Cn)n is called uniform if thereexists an algorithm that on input n outputs Cn within a number of steps that ispolynomial in the size of Cn.2Advanced comment: The \free parameters" in the uniform model include the length ofthe description of the �nite algorithm and its alphabet size. Note that these \free parameters"underly linear speedup results such as Exercise 4.4, which in turn prevent the speci�cation of theexact (uniform) complexities of functions.

120 CHAPTER 3. VARIATIONS ON P AND NPWe note that stronger notions of uniformity have been considered. For example,one may require the existence of a polynomial-time algorithm that on input n andv, returns the label of vertex v as well as the list of its children (or an indicationthat v is not a vertex in Cn). For further discussion see Section 5.2.3. Turningback to De�nition 3.3, we note that indeed the computation of a uniform family ofcircuits can be emulated by a uniform computing device.Proposition 3.4 If a problem is solvable by a uniform family of polynomial-sizecircuits then it is solvable by a polynomial-time algorithm.As was hinted in x1.2.4.1, the converse holds as well. The latter fact follows easilyfrom the proof of Theorem 2.21 (see also the proof of Theorem 3.6).Proof: On input x, the algorithm operates in two stages. In the �rst stage,it invokes the algorithm guaranteed by the uniformity condition, on input n def=jxj, and obtains the circuit Cn. Next, it invokes the circuit evaluation algorithm(asserted in Theorem 3.1) on input Cn and x, and obtains Cn(x). Since the size ofCn (as well as its description length) is polynomial in n, it follows that each stageof our algorithm runs in polynomial time (i.e., polynomial in n = jxj). Thus, thealgorithm emulates the computation of Cjxj(x), and does so in time polynomial inthe length of its own input (i.e., x).3.1.2 Machines that take adviceGeneral (i.e., possibly non-uniform) families of polynomial-size circuits and uniformfamilies of polynomial-size circuits are two extremes with respect to the \amounts ofnon-uniformity" in the computing device. Intuitively, in the former, non-uniformityis only bounded by the size of the device, whereas in the latter the amounts of non-uniformity is zero. Here we consider a model that allows to decouple the size ofthe computing device from the amount of non-uniformity, which may indeed rangefrom zero to the device's size. Speci�cally, we consider algorithms that \take anon-uniform advice" that depends only on the input length. The amount of non-uniformity will be de�ned to equal the length of the corresponding advice (as afunction of the input length). Thus, we specialize De�nition 1.12 to the case ofpolynomial-time algorithms.De�nition 3.5 (non-uniform polynomial-time and P=poly): We say that a func-tion f is computed in polynomial-time with advice of length ` : N ! N if these existsa polynomial-time algorithm A and an in�nite advice sequence (an)n2N such that1. For every x 2 f0; 1g�, it holds that A(ajxj; x) = f(x).2. For every n 2 N , it holds that janj = `(n).We say that a computational problem can be solved in polynomial-time with ad-vice of length ` if a function solving this problem can be computed within theseresources. We denote by P=` the class of decision problems that can be solved inpolynomial-time with advice of length `, and by P=poly the union of P=p takenover all polynomials p.

3.1. NON-UNIFORM POLYNOMIAL-TIME (P/POLY) 121Clearly, P=0 = P . But allowing some (non-empty) advice increases the power ofthe class (see Theorem 3.7), and allowing advice of length comparable to the timecomplexity yields a formulation equivalent to circuit complexity (see Theorem 3.6).We highlight the greater exibility available by the formalism of machines thattake advice, which allows for separate speci�cation of time complexity and advicelength. (Indeed, this comes at the expense of a more cumbersome formulation;thus, we shall prefer the circuit formulation whenever we consider the case thatboth complexity measures are polynomial.)Relation to families of polynomial-size circuits. As hinted before, the classof problems solvable by polynomial-time algorithms with polynomially boundedadvice equals the class of problems solvable by families of polynomial-size circuits.For concreteness, we state this fact for decision problems.Theorem 3.6 A decision problem is in P=poly if and only if it can be solved by afamily of polynomial-size circuits.More generally, for any function t, the following proof establishes that equivalence ofthe power of polynomial-time machines that take advice of length t versus familiesof circuits of size polynomially related to t.Proof Sketch: Suppose that a problem can be solved by a polynomial-time al-gorithm A using the polynomially bounded advice sequence (an)n2N. We obtaina family of polynomial-size circuits that solves the same problem by adapting theproof of Theorem 2.21. Speci�cally, we observe that the computation of A(ajxj; x)can be emulated by a circuit of poly(jxj)-size, which incorporates ajxj and is givenx as input. That is, we construct a circuit Cn such that Cn(x) = A(an; x) holdsfor every x 2 f0; 1gn (analogously to the way Cx was constructed in the proofof Theorem 2.21, where it holds that Cx(y) = MR(x; y) for every y of adequatelength).3On the other hand, given a family of polynomial-size circuits, we obtain apolynomial-time advice-taking machine that emulates this family when using advicethat provide the description of the relevant circuits. Speci�cally, we transform theevaluation algorithm asserted in Theorem 3.1 into a machine that, given advice �and input x, treats � as a description of a circuit C and evaluates C(x). Indeed, weuse the fact that a circuit of size s can be described by a string of length O(s log s),where the log factor is due to the fact that a graph with v vertices and e edges canbe described by a string of length 2e log2 v.Another perspective. A set S is called sparse if there exists a polynomial p suchthat for every n it holds that jS \f0; 1gnj � p(n). We note that P=poly equals theclass of sets that are Cook-reducible to a sparse set (see Exercise 3.2). Thus, SATis Cook-reducible to a sparse set if and only if NP � P=poly. In contrast, SAT isKarp-reducible to a sparse set if and only if NP = P (see Exercise 3.12).3Advanced comment: Note that an is the only \non-uniform" part in the circuit Cn. Thus,if algorithm A takes no advice (i.e., an = � for every n) then we obtain a uniform family ofcircuits.

122 CHAPTER 3. VARIATIONS ON P AND NPThe power of P=poly. In continuation to Theorem 1.13 (which focuses on adviceand ignores the time-complexity of the machine that takes this advice), we provethe following (stronger) result.Theorem 3.7 (the power of advice, revisited): The class P=1 � P=poly containsP as well as some undecidable problems.Actually, P=1 � P=poly. Furthermore, by using a counting argument, one canshow that for any two polynomially bounded functions `1; `2 : N ! N such that`2 � `1 > 0 is unbounded, it holds that P=`1 is strictly contained in P=`2; seeExercise 3.3.Proof: Clearly, P = P=0 � P=1 � P=poly. To prove that P=1 contains someundecidable problems, we review the proof of Theorem 1.13. The latter proofestablished the existence of an uncomputable Boolean function that only dependon its input length. That is, there exists an undecidable set S � f0; 1g� such thatfor every pair (x; y) of equal length strings it holds that x 2 S if and only if y 2 S.In other words, for every x 2 f0; 1g� it holds that x 2 S if and only if 1jxj 2 S. Butsuch a set is easily decidable in polynomial-time by a machine that takes one bit ofadvice; that is, consider the algorithm A that satis�es A(a; x) = a (for a 2 f0; 1gand x 2 f0; 1g�) and the advice sequence (an)n2N such that an = 1 if and only if1n 2 S. Note that, indeed, A(ajxj; x) = 1 if and only if x 2 S.3.2 The Polynomial-time Hierarchy (PH)We start with an informal motivating discussion, which will be made formal inSection 3.2.1.Sets in NP can be viewed as sets of valid assertions that can be expressed asquanti�ed Boolean formulae using only existential quanti�ers. That is, a set S isin NP if there is a Karp-reduction of S to the problem of deciding whether or notan existentially quanti�ed Boolean formula is valid (i.e., an instance x is mappedby this reduction to a formula of the form 9y1 � � � 9ym(x)�x(y1; :::; ym(x))).The conjectured intractability of NP seems due to the long sequence of exis-tential quanti�ers. Of course, if somebody else (i.e., a \prover") were to provideus with an adequate assignment (to the yi's) whenever such an assignment existsthen we would be in good shape. That is, we can e�ciently verify proofs of validityof existentially quanti�ed Boolean formulae.But what if we want to verify the validity of a universally quanti�ed Booleanformulae (i.e., formulae of the form 8y1 � � � 8ym�(y1; :::; ym)). Here we seem toneed the help of a totally di�erent entity: we need a \refuter" that is guaranteedto provide us with a refutation whenever such exist, and we need to believe that ifwe were not presented with such a refutation then it is the case that no refutationexists (and hence the universally quanti�ed formula is valid). Indeed, this newsetting (of a \refutation system") is fundamentally di�erent from the setting of aproof system: In a proof system we are only convinced by proofs (to assertions)that we have veri�ed by ourselves, whereas in the \refutation system" we trust the

3.2. THE POLYNOMIAL-TIME HIERARCHY (PH) 123\refuter" to provide evidence against false assertions.4 Furthermore, there seemsto be no way of converting one setting (e.g., the proof system) into another (resp.,the refutation system).Taking an additional step, we may consider a more complicated system in whichwe use two agents: a \supporter" that tries to provide evidence in favor of anassertion and an \objector" that tries to refute it. These two agents conduct adebate (or an argument) in our presence, exchanging messages with the goal ofmaking us (the referee) rule their way. The assertions that can be proven in thissystem take the form of general quanti�ed formulae with alternating sequences ofquanti�ers, where the number of alternating sequences equals the number of roundsof interaction in the said system. We stress that the exact length of each sequenceof quanti�ers of the same type does not matter, what matters is the number ofalternating sequences, denoted k.The aforementioned system of alternations can be viewed as a two-party game,and we may ask ourselves which of the two parties has a k-move winning strategy.In general, we may consider any (0-1 zero-sum) two-party game, in which the game'sposition can be e�ciently updated (by any given move) and e�ciently evaluated.For such a �xed game, given an initial position, we may ask whether the �rst partyhas a (k-move) winning strategy. It seems that answering this type of question forsome �xed k does not necessarily allow answering it for k + 1. We now turn toformalize the foregoing discussion.3.2.1 Alternation of quanti�ersIn the following de�nition, the aforementioned propositional formula �x is replacedby the input x itself. (Correspondingly, the combination of the Karp-reductionand a formula-evaluation algorithm is replaced by the veri�cation algorithm V (seeExercise 3.7).) This is done in order to make the comparison to the de�nitionof NP more transparent (as well as to �t the standard presentations). We alsoreplace a sequence of Boolean quanti�ers of the same type by a single correspondingquanti�er that quanti�es over all strings of the corresponding length.De�nition 3.8 (the class �k): For a natural number k, a decision problem S �f0; 1g� is in �k if there exists a polynomial p and a polynomial-time algorithm Vsuch that x 2 S if and only if9y12f0; 1gp(jxj)8y22f0; 1gp(jxj)9y32f0; 1gp(jxj) � � �Qkyk2f0; 1gp(jxj)s.t. V (x; y1; :::; yk) = 1where Qk is an existential quanti�er if k is odd and is a universal quanti�er oth-erwise.4More formally, in proof systems the soundness condition relies only on the actions of the ver-i�er, whereas completeness also relies on the prover's action (i.e., its using an adequate strategy).In contrast, in \refutation system" the soundness condition relies on the proper actions of therefuter, whereas completeness does not depend on the refuter's actions.

124 CHAPTER 3. VARIATIONS ON P AND NPNote that �1 = NP and �0 = P . The Polynomial-time Hierarchy, denoted PH,is the union of all the aforementioned classes (i.e., PH = [k�k), and �k is oftenreferred to as the kth level of PH. The levels of the Polynomial-time Hierarchycan also be de�ned inductively, by de�ning �k+1 based on �k def= co�k, whereco�k def= ff0; 1g� n S : S 2 �kg (cf. Eq. (2.4)).Proposition 3.9 For every k � 0, a set S is in �k+1 if and only if there exists apolynomial p and a set S0 2 �k such that S = fx : 9y2f0; 1gp(jxj) s.t. (x; y)2S0g.Proof: Suppose that S is in �k+1 and let p and V be as in De�nition 3.8. Thende�ne S0 as the set of pairs (x; y) such that jyj = p(jxj) and8z12f0; 1gp(jxj)9z22f0; 1gp(jxj) � � �Qkzk2f0; 1gp(jxj) s.t. V (x; y; z1; :::; zk) = 1 :Note that x 2 S if and only if there exists y 2 f0; 1gp(jxj) such that (x; y) 2 S0, andthat S0 2 �k (see Exercise 3.6).On the other hand, suppose that for some polynomial p and a set S0 2 �k itholds that S = fx : 9y2f0; 1gp(jxj) s.t. (x; y)2S0g. Then, for some p0 and V 0, itholds that (x; y) 2 S0 if and only if jyj = p(jxj) and8z12f0; 1gp0(jxj)9z22f0; 1gp0(jxj) � � �Qkzk2f0; 1gp0(jxj) s.t. V 0((x; y); z1; :::; zk) = 1(see Exercise 3.6 again). By using a suitable encoding of y and the zi's (as stringsof length max(p(jxj); p0(jxj))) and a trivial modi�cation of V 0, we conclude thatS 2 �k+1.Determining the winner in k-move games. De�nition 3.8 can be interpretedas capturing the complexity of determining the winner in certain e�cient two-partygame. Speci�cally, we refer to two-party games that satisfy the following threeconditions:1. The parties alternate in taking moves that e�ect the game's (global) position,where each move has a description length that is bounded by a polynomialin the length of the current position.2. The current position can be updated in polynomial-time based on the previ-ous position and the current party's move.53. The winner in each position can be determined in polynomial-time.5Note that, since we consider a constant number of moves, the length of all possible �nalpositions is bounded by a polynomial in the length of the initial position, and thus all items havean equivalent form in which one refers to the complexity as a function of the length of the initialposition. The latter form allows for a smooth generalization to games with a polynomial numberof moves (as in Section 5.4), where it is essential to state all complexities in terms of the lengthof the initial position.

3.2. THE POLYNOMIAL-TIME HIERARCHY (PH) 125Note that the set of initial positions for which the �rst party has a k-move winningstrategy with respect to the foregoing game is in �k. Speci�cally, denoting thisset by G, note that an initial position x is in G if there exists a move y1 for the�rst party, such that for every response move y2 of the second party, there exists amove y3 for the �rst party, etc, such that after k moves the parties reach a positionin which the �rst party wins, where the �nal position is determined according tothe forgoing Item 2 and the winner in it is determined according to Item 3.6 Thus,G 2 �k. On the other hand, note that any set S 2 �k can be viewed as the set ofinitial positions (in a suitable game) for which the �rst party has a k-move winningstrategy. Speci�cally, x2S if starting at the initial position x, there exists a movey1 for the �rst party, such that for every response move y2 of the second party,there exists a move y3 for the �rst party, etc, such that after k moves the partiesreach a position in which the �rst party wins, where the �nal position is de�ned as(x; y1; :::; yk) and the winner is determined by the predicate V (as in De�nition 3.8).The collapsing e�ect of some equalities. Extending the intuition that un-derlies the NP 6= coNP conjecture, it is commonly conjectured that �k 6= �k forevery k 2 N . The failure of this conjecture causes the collapse of the Polynomial-time Hierarchy to the corresponding level.Proposition 3.10 For every k � 1, if �k = �k then �k+1 = �k, which in turnimplies PH = �k.The converse also holds (i.e., PH = �k implies �k+1 = �k and �k = �k). Needlessto say, Proposition 3.10 does not seem to hold for k = 0.Proof: Assuming that �k = �k, we �rst show that �k+1 = �k. For any set Sin �k+1, by Proposition 3.9, there exists a polynomial p and a set S0 2 �k suchthat S = fx : 9y2f0; 1gp(jxj) s.t. (x; y)2S0g. Using the hypothesis, we infer thatS0 2 �k, and so (using Proposition 3.9 and k � 1) there exists a polynomial p0 anda set S00 2 �k�1 such that S0 = fx0 : 9y02f0; 1gp0(jx0j) s.t. (x0; y0)2S00g. It followsthat S = fx : 9y2f0; 1gp(jxj)9z2f0; 1gp0(j(x;y)j) s.t. ((x; y); z)2S00g:By collapsing the two adjacent existential quanti�ers (and using Proposition 3.9yet again), we conclude that S 2 �k. This proves the �rst part of the proposition.Turning to the second part, we note that �k+1 = �k (or, equivalently, �k+1 =�k) implies �k+2 = �k+1 (again by using Proposition 3.9), and similarly �j+2 =�j+1 for any j � k. Thus, �k+1 = �k implies PH = �k.6Let U be the update algorithm of Item 2 and W be the algorithm that decides the winneras in Item 3. Then the �nal position is given by computing xi U(xi�1; yi), for i = 1; :::; k(where x0 = x), and the winner is W (xk). Note that, by Item 1, there exists a polynomial psuch that jyij � p(jxij), for every i 2 [k], and it follows that jyij � poly(jxj). Using a suitableencoding, we obtain a polynomial-time algorithm V such that V (x; y1; :::; yk) = W (xk), wherexk = U(� � �U(U(U(x; y1); y2); y3) � � � ; yk).

126 CHAPTER 3. VARIATIONS ON P AND NPDecision problems that are Cook-reductions to NP. The Polynomial-timeHierarchy contains all decision problems that are Cook-reductions to NP (seeExercise 3.4). As shown next, the latter class contains many natural problems.Recall that in Section 2.2.2 we de�ned two types of optimization problems andshowed that under some natural conditions these two types are computationallyequivalent (under Cook reductions). Speci�cally, one type of problems referredto �nding solutions that have a value exceeding some given threshold, whereas thesecond type called for �nding optimal solutions. In Section 2.3 we presented severalproblems of the �rst type, and proved that they are NP-complete. We note thatcorresponding versions of the second type are believed not to be in NP. For example,we discussed the problem of deciding whether or not a given graph G has a cliqueof a given size K, and showed that it is NP-complete. In contract, the problem ofdeciding whether or not K is the maximum clique size of the graph G is not known(and quite unlikely) to be in NP , although it is Cook-reducible to NP . Thus, theclass of decision problems that are Cook-reducible to NP contains many naturalproblems that are unlikely to be in NP . The Polynomial-time Hierarchy containsall these problems.Complete problems and a relation to AC0. We note that quanti�ed Booleanformulae with a bounded number of quanti�er alternation provide complete prob-lems for the various levels of the Polynomial-time Hierarchy (see Exercise 3.7).We also note the correspondence between these formulae and (highly uniform)constant-depth circuits of unbounded fan-in that get as input the truth-table ofthe underlying (quanti�er-free) formula (see Exercise 3.8).3.2.2 Non-deterministic oracle machinesThe Polynomial-time Hierarchy is commonly de�ned in terms of non-deterministicpolynomial-time (oracle) machines that are given oracle access to a set in the lowerlevel of the same hierarchy. Such machines are de�ned by combining the de�nitionsof non-deterministic (polynomial-time) machines (cf. De�nition 2.7) and oraclemachines (cf. De�nition 1.11). Speci�cally, for an oracle f : f0; 1g� ! f0; 1g�, anon-deterministic oracle machine M , and a string x, one considers the question ofwhether or not there exists an accepting (non-deterministic) computation of M oninput x and access to the oracle f . The class of sets that can be accepted by non-deterministic polynomial-time (oracle) machines with access to f is denoted NPf .(We note that this notation makes sense because we can associate the class NPwith a collection of machines that lends itself to be extended to oracle machines.)For any class of decision problems C, we denote by NPC the union of NPf takenover all decision problems f in C. The following result provides an alternativede�nition of the Polynomial-time Hierarchy.Proposition 3.11 For every k � 1, it holds that �k+1 = NP�k .Proof: Containment in one direction (i.e., �k+1 � NP�k) is almost straight-forward: For any S 2 �k+1, let S0 2 �k and p be as in Proposition 3.9; that is,

3.2. THE POLYNOMIAL-TIME HIERARCHY (PH) 127S = fx : 9y2f0; 1gp(jxj) s.t. (x; y)2S0g. Consider the non-deterministic oracle ma-chine that, on input x, non-deterministically generates y 2 f0; 1gp(jxj) and acceptsif and only if (the oracle indicates that) (x; y) 2 S0. This machine demonstratesthat S 2 NP�k = NP�k , where the equality holds by letting the oracle machineip each (binary) answer that is provided by the oracle.7For the opposite containment (i.e., NP�k � �k+1), we generalize the main ideaunderlying the proof of Theorem 2.35 (which referred to PNP\coNP). Speci�cally,consider any S 2 NP�k , and let M be a non-deterministic polynomial-time oraclemachine that accepts S when given oracle access to S0 2 �k. Note that8 machineM may issue several queries to S0, and these queries may be determined basedon previous oracle answers. To simplify the argument, we assume, without loss ofgenerality, that at the very beginning of its execution machine M guesses (non-deterministic) all oracle answers and accepts only if the actual answers match itsguesses. Thus, M 's queries to the oracle are determined by its input, denoted x,and its non-deterministic choices, denoted y. We denote by q(i)(x; y) the ith querymade by M (on input x and non-deterministic choices y), and by a(i)(x; y) thecorresponding (a priori) guessed answer (which is a bit in y). Thus, x 2 S if andonly if there exists y 2 f0; 1gpoly(jxj) such that the following two conditions hold:1. Machine M accepts when it is invoked on input x, makes non-deterministicchoices y, and is given a(i)(x; y) as the answer to its ith oracle query. Wedenote the corresponding (\acceptance") predicate, which is polynomial-timecomputable, by A(x; y).We stress that we do not assume here that the a(i)(x; y)'s are consistent withanswers that would have been given by the oracle S0; this will be the subjectof the next condition. The current condition only refers to the decision of Mon a speci�c input, when M makes a speci�c sequence of non-deterministicchoices, and is provided with speci�c answers.2. Each bit a(i)(x; y) is consistent with S0; that is, for every i, it holds thata(i)(x; y)=1 if and only if q(i)(x; y)2S0.Denoting the number of queries made by M (on input x and non-deterministicchoices y) by q(x; y) � poly(jxj), it follows that x 2 S if and only if9y0@A(x; y) ^ q(x;y)î=1 �(a(i)(x; y)=1), (q(i)(x; y)2S0)�1A: (3.1)Denoting the veri�cation algorithm of S0 by V 0, Eq. (3.1) equals9y0@A(x; y) ^ q(x;y)î=1 �(a(i)(x; y)=1), 9y(i)1 8y(i)2 � � �Qky(i)k V 0(q(i)(x; y); y(i)1 ; :::; y(i)k)=1�1A:7Do not get confused by the fact that the class of oracles may not be closed under comple-mentation. From the point of view of the oracle machine, the oracle is merely a function, and themachine may do with its answer whatever it pleases (and in particular negate it).8Indeed, this is unlike the speci�c machine used towards proving that �k+1 � NP�k .

128 CHAPTER 3. VARIATIONS ON P AND NPThe proof is completed by observing that the foregoing expression can be rear-ranged to �t the de�nition of �k+1. Details follow.Starting with the foregoing expression, we �rst replace the sub-expression E1 ,E2 by (E1 ^ E2) _ (:E1 ^ :E2), and then pull all quanti�ers outside.9 This waywe obtain a quanti�ed expression with k + 1 alternating quanti�ers, starting withan existential quanti�er. (Note that we get k + 1 alternating quanti�ers ratherthan k, because the case of :a(i)(x; y) = 1 introduces an expression of the form:9y(i)1 8y(i)2 � � �Qky(i)k V 0(q(i)(x; y); y(i)1 ; :::; y(i)k) = 1, which in turn is equivalent tothe expression 8y(i)1 9y(i)2 � � �Qky(i)k :V 0(q(i)(x; y); y(i)1 ; :::; y(i)k) = 1.) Once this isdone, we may incorporate the computation of all the q(i)(x; y)'s (and a(i)(x; y)'s)as well as the polynomial number of invocations of V 0 (and other logical operations)into the new veri�cation algorithm V . It follows that S 2 �k+1.A general perspective { what does CC21 mean? By the foregoing discussion itshould be clear that the class CC21 can be de�ned for two complexity classes C1 andC2, provided that C1 is associated with a class of standard machines that generalizesnaturally to a class of oracle machines. Actually, the class CC21 is not de�ned basedon the class C1 but rather by analogy to it. Speci�cally, suppose that C1 is theclass of sets that are recognizable (or rather accepted) by machines of certain type(e.g., deterministic or non-deterministic) with certain resource bounds (e.g., timeand/or space bounds). Then, we consider analogous oracle machines (i.e., of thesame type and with the same resource bounds), and say that S 2 CC21 if there existsan adequate oracle machine M1 (i.e., of this type and resource bounds) and a setS2 2 C2 such that MS21 accepts the set S.Decision problems that are Cook-reductions to NP, revisited. Using theforegoing notation, the class of decision problems that are Cook-reductions to NPis denoted PNP , and thus is a subset of NPNP = �2 (see Exercise 3.9). Incontrast, recall that the class of decision problems that are Karp-reductions to NPequals NP .The world view. Using the foregoing notation and relying on Exercise 3.9, wenote that for every k � 1 it holds that �k [�k � P�k � �k+1 \ �k+1. SeeFigure 3.1 that depicts the situation, assuming that all the containments are strict.3.2.3 The P/poly-versus-NP Question and PHAs stated in Section 3.1, a main motivation for the de�nition of P=poly is thehope that it can serve to separate P from NP (by showing that NP is not even9For example, note that for predicates P1 and P2, the expression 9y (P1(y) , 9z P2(y; z)) isequivalent to the expression 9y ((P1(y) ^ 9z P2(y; z)) _ (:P1(y) ^ :9z P2(y; z))), which in turnis equivalent to the expression 9y9z08z00 ((P1(y) ^ P2(y; z0)) _ ((:P1(y) ^ :P2(y; z00))). Notethat pulling the quanti�ers outside in ^ti=19y(i)8z(i)P (y(i); z(i)) yields an expression of the type9y(1); :::; y(t)8z(1); :::; z(t) ^ti=1 P (y(i); z(i)).

3.2. THE POLYNOMIAL-TIME HIERARCHY (PH) 129
Σk

Σk

Σk+1

Π

Π

k
P

k+1

Figure 3.1: Two levels of the Polynomial-time Hierarchy.contained in P=poly, which is a (strict) superset of P). In light of the fact thatP=poly extends far beyond P (and in particular contains undecidable problems),one may wonder if this approach does not run the risk of asking too much (becauseit may be that NP is in P=poly even if P 6= NP). The common feeling is that theadded power of non-uniformity is irrelevant with respect to the P-vs-NP Question.Ideally, we would like to know that NP � P=poly may occur only if P = NP ,which may be phrased as saying that the Polynomial-time Hierarchy collapses to itszero level. The following result seems to get close to such an implication, showingthat NP � P=poly may occur only if the Polynomial-time Hierarchy collapses toits second level.Theorem 3.12 If NP � P=poly then �2 = �2.Recall that �2 = �2 implies PH = �2 (see Proposition 3.10). Thus, an unexpectedbehavior of the non-uniform complexity class P=poly implies an unexpected behav-ior in the world of uniform complexity (which is the habitat of PH).Proof: Using the hypothesis (i.e., NP � P=poly) and starting with an arbitraryset S 2 �2, we shall show that S 2 �2. Let us describe, �rst, our high-levelapproach.Loosely speaking, S 2 �2 means that x 2 S if and only if for all y thereexists a z such that some (�xed) polynomial-time veri�able condition regarding(x; y; z) holds. Note that the residual condition regarding (x; y) is of the NP-type,and thus (by the hypothesis) it can be veri�ed by a polynomial-size circuit. Thissuggests saying that x 2 S if and only if there exists an adequate circuit C suchthat for all y it holds that C(x; y) = 1. Thus, we managed to switch the order ofthe universal and existential quanti�ers. Speci�cally, the resulting assertion is ofthe desired �2-type provided that we can either verify the adequacy condition incoNP (or even in �2) or keep out of trouble even in the case that x 62 S and Cis inadequate. In the following proof we implement the latter option by observing

130 CHAPTER 3. VARIATIONS ON P AND NPthat the hypothesis yields small circuits for NP-search problems (and not only forNP-decision problems). Speci�cally, we obtain (small) circuits that, given (x; y),�nd an NP-witness for (x; y) (whenever such a witness exists), and rely on thefact that we can e�ciently verify the correctness of NP-witnesses. (The alternativeapproach of providing a coNP-type procedure for verifying the adequacy of thecircuit is pursued in Exercise 3.11.)We now turn to a detailed implementation of the foregoing approach. Let S bean arbitrary set in �2. Then, by Proposition 3.9, there exists a polynomial p anda set S0 2 NP such that S = fx : 8y2f0; 1gp(jxj) (x; y)2S0g. Let R0 2 PC be thewitness-relation corresponding to S0; that is, there exists a polynomial p0, such thatx0 = hx; yi 2 S0 if and only if there exists z2f0; 1gp0(jx0j) such that (x0; z) 2 R0. Itfollows thatS = fx : 8y2f0; 1gp(jxj)9z2f0; 1gp0(jhx;yij) (hx; yi; z) 2 R0g: (3.2)Our argument proceeds essentially as follows. By the reduction of PC to NP(see Theorem 2.10), the theorem's hypothesis (i.e., NP � P=poly) implies theexistence of polynomial-size circuits for solving the search problem of R0. Usingthe existence of these circuits, it follows that for any x 2 S there exists a smallcircuit C 0 such that for every y it holds that C 0(x; y) 2 R0(x; y) (because hx; yi 2 S0and hence R0(x; y) 6= ;). On the other hand, for any x 62 S there exists a y suchthat hx; yi 62 S0, and hence for any circuit C 0 it holds that C 0(x; y) 62 R0(x; y)(for the trivial reason that R0(x; y) = ;). Thus, x 2 S if and only if there existsa poly(jxj + p(jxj))-size circuit C 0 such that for all y 2 f0; 1gp(jxj) it holds that(hx; yi; C 0(x; y)) 2 R0. Letting V (x;C 0; y) = 1 if and only if (hx; yi; C 0(x; y)) 2 R0,we infer that S 2 �2. Details follow.Let us �rst spell-out what we mean by polynomial-size circuits for solving asearch problem and further justify their existence for the search problem of R0.In Section 3.1, we have focused on polynomial-size circuits that solve decisionproblems. However, the de�nition sketched in Section 3.1.1 also applies to solvingsearch problems, provided that an appropriate convention is used for encodingsolutions of possibly varying lengths (for instances of �xed length) as strings of�xed length. Next, observe that combining the Cook-reduction of PC to NP withthe hypothesis NP � P=poly, implies that PC is Cook-reducible to P=poly. Inparticular, this implies that any search problem in PC can be solved by a familyof polynomial-size circuits. Note that the resulting circuit that solves n-bit longinstances of such a problem may incorporate polynomially (in n) many circuits,each solving a decision problem for m-bit long instances, where m 2 [poly(n)].Needless to say, the size of the resulting circuit that solves the search problemof the aforementioned R0 2 PC (for instances of length n) is upper-bounded bypoly(n) �Ppoly(n)m=1 poly(m).We next (revisit and) establish the claim that x 2 S if and only if there existsa poly(jxj + p(jxj))-size circuit C 0 such that for all y 2 f0; 1gp(jxj) it holds that(hx; yi; C 0(x; y)) 2 R0. Recall that x 2 S if and only if for every y 2 f0; 1gp(jxj)it holds that (x; y) 2 S0, which means that there exists z 2 f0; 1gp0(jxj) suchthat (hx; yi; z)) 2 R0. Also recall that (by the foregoing discussion) there exist

3.2. THE POLYNOMIAL-TIME HIERARCHY (PH) 131polynomial-size circuits for solving the search problem of R0. Thus, in the casethat x 2 S, we just use the corresponding circuit C 0 that solves the search prob-lem of R0 on inputs of length jxj+ p(jxj). Indeed, this circuit C 0 only depends onn0 = jxj + p(jxj), which in turn is determined by jxj, and for every x0 2 f0; 1gn0it holds that (x0; C 0(x0)) 2 R0 if and only if x0 2 S0. Thus, for x 2 S, there existsa poly(jxj + p(jxj))-size circuit C 0 such that for every y 2 f0; 1gp(jxj) it holds that(hx; yi; C 0(x; y))) 2 R0. On the other hand, if x 62 S then there exists a y such thatfor all z it holds that (hx; yi; z)) 62 R0. It follows that, in this case, for every C 0there exists a y such that (hx; yi; C 0(x; y))) 62 R0. We conclude that x 2 S if andonly if 9C 02f0; 1gpoly(jxj+p(jxj))8y2f0; 1gp(jxj) (hx; yi; C 0(x; y)) 2 R0: (3.3)The key observation regarding the condition stated in Eq. (3.3) is that it is ofthe desired form (of a �2 statement). Speci�cally, consider the polynomial-timeveri�cation procedure V that given x; y and the description of the circuit C 0, �rstcomputes z C 0(x; y) and accepts if and only if (hx; yi; z) 2 R0, where the lattercondition can be veri�ed in polynomial-time (because R0 2 PC). Denoting thedescription of a potential circuit by hC 0i, the aforementioned (polynomial-time)computation of V is denoted V (x; hC 0i; y), and indeed x 2 S if and only if9hC 0i2f0; 1gpoly(jxj+p(jxj))8y2f0; 1gp(jxj) V (x; hC 0i; y) = 1:Having established that S 2 �2 for an arbitrary S 2 �2, we conclude that �2 � �2.The theorem follows (by applying Exercise 3.9.4).Chapter NotesThe class P=poly was de�ned by Karp and Lipton [132] as part of a general for-mulation of \machines which take advice" [132]. They also noted the equivalenceto the traditional formulation of polynomial-size circuits as well as the e�ect ofuniformity (Proposition 3.4).The Polynomial-Time Hierarchy (PH) was introduced by Stockmeyer [205]. Athird equivalent formulation of PH (via so-called \alternating machines") can befound in [49].The implication of the failure of the conjecture that NP is not contained inP=poly on the Polynomial-time Hierarchy (i.e., Theorem 3.12) was discovered byKarp and Lipton [132]. This interesting connection between non-uniform and uni-form complexity provides the main motivation for presenting P=poly and PH inthe same chapter.ExercisesExercise 3.1 (a small variation on the de�nitions of P=poly) Using an ad-equate encoding of strings of length smaller than n as n-bit strings (e.g., x 2

132 CHAPTER 3. VARIATIONS ON P AND NP[i<nf0; 1gi is encoded as x01n�jxj�1), de�ne circuits (resp., machines that takeadvice) as devices that can handle inputs of various lengths up to a given bound(rather than as devices that can handle inputs of a �xed length). Show that theclass P=poly remains invariant under this change (and Theorem 3.6 remains valid).Exercise 3.2 (sparse sets) A set S � f0; 1g� is called sparse if there exists apolynomial p such that jS \ f0; 1gnj � p(n) for every n.1. Prove that any sparse set is in P=poly. Note that a sparse set may beundecidable.2. Prove that a set is in P=poly if and only if it is Cook-reducible to some sparseset.Guideline: For the forward direction of Part 2, encode the advice sequence (an)n2Nas a sparse set f(1n; i; �n;i) : n 2N ; i � janjg, where �n;i is the ith bit of an. For theopposite direction, note that the emulation of a Cook-reduction to a set S, on input x,only requires knowledge of S \ [poly(jxj)i=1 f0; 1gi.Exercise 3.3 (advice hierarchy) Prove that for any two functions `; � : N ! Nsuch that `(n) < 2n�1 and � is unbounded, it holds that P=` is strictly containedin P=(`+ �).Guideline: For every sequence a = (an)n2N such that janj = `(n) + �(n) � 2n, considerthe set Sa that encodes a such that x 2 Sa \ f0; 1gn if and only if the idx(x)th bit in anequals 1 (and idx(x) � janj), where idx(x) denotes the index of x in f0; 1gn. For moredetails see Section 4.1.Exercise 3.4 Prove that �2 contains all sets that are Cook-reducible to NP .Guideline: This is quite obvious when using the de�nition of �2 as presented in Sec-tion 3.2.2; see Exercise 3.9. Alternatively, the fact can be proved by using some of theideas that underlie the proof of Theorem 2.35, while noting that a conjunction of NP andcoNP assertions forms an assertion of type �2 (see also the second part of the proof ofProposition 3.11).Exercise 3.5 Let � = NP \ coNP . Prove that � equals the class of decisionproblems that are Cook-reducible to � (i.e., � = P�).Guideline: See proof of Theorem 2.35.Exercise 3.6 (the class �k) Recall that �k is de�ned to equal co�k, which inturn is de�ned to equal ff0; 1g� n S : S 2 �kg. Prove that for any natural numberk, a decision problem S � f0; 1g� is in �k if there exists a polynomial p and apolynomial-time algorithm V such that x 2 S if and only if8y12f0; 1gp(jxj)9y22f0; 1gp(jxj)8y32f0; 1gp(jxj) � � �Qkyk2f0; 1gp(jxj)s.t. V (x; y1; :::; yk) = 1where Qk is a universal quanti�er if k is odd and is an existential quanti�er other-wise.

3.2. THE POLYNOMIAL-TIME HIERARCHY (PH) 133Exercise 3.7 (complete problems for the various levels of PH) A k-alternatingquanti�ed Boolean formula is a quanti�ed Boolean formula with up to k alternat-ing sequences of existential and universal quanti�ers, starting with an existentialquanti�er. For example, 9z19z28z3�(z1; z2; z3) (where the zi's are Boolean vari-ables) is a 2-alternating quanti�ed Boolean formula. Prove that, for every k � 1,the problem of deciding whether or not a k-alternating quanti�ed Boolean formulais valid is �k-complete under Karp-reductions. That is, denoting the aforemen-tioned problem by kQBF, prove that kQBF is in �k and that every problem in �k isKarp-reducible to kQBF.Guideline: Start with the case of odd k. This allows to incorporate the existentialquanti�cation of the auxiliary variables (introduced by the reduction) in the last sequenceof quanti�ers. For even k > 1, consider �rst an analogous complete problem for �k, andthen consider its complement.Exercise 3.8 (on the relation between PH and AC0) Note that there is anobvious analogy between PH and constant-depth circuits of unbounded fan-in,where existential (resp., universal) quanti�ers are represented by \large" W (resp.,V) gates. To articulate this relationship, consider the following de�nitions.� A family of circuits fCNg is called highly uniform if there exists a polynomial-time algorithm that answers local queries regarding the structure of the rel-evant circuit. Speci�cally, on input (N; u; v), the algorithm determines thetype of gates represented by the vertices u and v in CN as well as whetherthere exists a directed edge from u to v. If the vertex represents a terminalthen the algorithm also indicates the index of the corresponding input-bit (oroutput-bit). Note that this algorithm operates in time that polylogarithmicin the size of CN .We focus on family of polynomial-size circuits, meaning that the size of CNis polynomial in N , which in turn represents the number of inputs to CN .� Fixing a polynomial p, a p-succinctly represented input Z 2 f0; 1gN is a circuitcZ of size at most p(log2N) such that for every i 2 [N] it holds that cZ(i)equals the ith bit of Z.� For a �xed family of highly uniform circuits fCNg and a �xed polynomial p,the problem of evaluating a succinctly represented input is de�ned as follows.Given p-succinct representation of an input Z 2 f0; 1gN , determine whetheror not CN (Z) = 1.Prove the following relationship between PH and the problem of evaluating asuccinctly represented input with respect to some families of highly uniform circuitsof bounded-depth.1. For every k and every S 2 �k, show that there exists a family of highlyuniform unbounded fan-in circuits of depth k and polynomial-size such thatS is Karp-reducible to evaluating a succinctly represented input (with respectto that family of circuits). That is, the reduction should map an instance

134 CHAPTER 3. VARIATIONS ON P AND NPx 2 f0; 1gn to a p-succinct representation of some Z 2 f0; 1gN such thatx 2 S if and only if CN (Z) = 1. (Note that Z is represented by a circuit cZsuch that log2N � jcZ j � poly(n), and thus N � exp(poly(n)).)10Guideline: Let S 2 �k and let V be the corresponding veri�cation algorithm asin De�nition 3.8. That is, x 2 S if and only if 9y18y2 � � �Qkyk, where each yi 2f0; 1gpoly(jxj) such that V (x; y1; :::; yk)=1. Then, for m = poly(jxj) and N = 2k�m,consider the �xed circuit CN (Z) = Wi12[2m]Vi22[2m] � � �Q0ik2[2m]Zi1;i2;:::;ik , andthe problem of evaluating CN at an input consisting of the truth-table of V (x; � � �)(i.e., when setting Zi1;i2;:::;ik = V (x; i1; :::; ik), where [2m] � f0; 1gm, which meansthat Z is essentially represented by x).11 Note that the size of CN is O(N).2. For every k and every �xed family of highly uniform unbounded fan-in cir-cuits of depth k and polynomial-size, show that the corresponding problemof evaluating a succinctly represented input is either in �k or in �k .Guideline: Given a succinct representation of Z, the value of CN (Z) can be cap-tured by a quanti�ed Boolean formula with k alternating quanti�er sequences. Thisformula quanti�es on certain paths from the output of CN to its input-terminals;for example, an _-gate (resp., ^-gate) evaluates to 1 if and only if one (resp., all)of its children evaluates to 1. The children of a vertex as well as the correspondinginput-bits can be e�ciently recognized based on the uniformity condition regardingCN . The value of the input-bit itself can be e�ciently computed from the succinctrepresentation of Z.Exercise 3.9 Verify the following facts:1. For every k � 1, it holds that �k � P�k � �k+1.(Recall that, for any complexity class C, the class PC denotes the class of setsthat are Cook-reducible to some set in C. In particular, PP = P .)2. For every k � 1, �k � P�k � �k+1.(Hint: For any complexity class C, it holds that PC = PcoC and PC = coPC.)3. For every k � 1, it holds that �k � �k+1 and �k � �k+1. Thus, PH = [k�k.4. For every k � 1, if �k � �k (resp., �k � �k) then �k = �k.(Hint: See Exercise 2.37.)Exercise 3.10 In continuation to Exercise 3.7, prove that following claims:10Assuming P 6= NP , it cannot be that N � poly(n) (because circuit evaluation can beperformed in time polynomial in the size of the circuit).11Advanced comment: Note that the computational limitations of AC0 circuits (see,e.g., [79, 111]) imply limitations on the functions of a generic input Z that the aforementionedcircuits CN can compute. More importantly, these limitations apply also to Z = h(Z0), whereZ0 2 f0; 1gN
(1) is generic and each bit of Z equals either some �xed bit in Z0 or its nega-tion. Unfortunately, these computational limitations do not seem to provide useful informationon the limitations of functions of inputs Z that have succinct representation (as obtained bysetting Zi1;i2;:::;ik = V (x; i1; :::; ik), where V is a �xed polynomial-time algorithm and onlyx 2 f0; 1gpoly(logN) varies). This fundamental problem is \resolved" in the context of \rel-ativization" by providing V with oracle access to an arbitrary input of length N
(1) (or so);cf. [79].

3.2. THE POLYNOMIAL-TIME HIERARCHY (PH) 1351. SAT is computationally equivalent (under Karp-reductions) to 1QBF.2. For every k � 1, it holds that P�k = PkQBF and �k+1 = NPkQBF.Guideline: Prove that if S is C-complete then PC = PS. Note that PC � PSuses the polynomial-time reductions of C to S, whereas PS � PC uses S 2 C.Exercise 3.11 (an alternative proof of Theorem 3.12) In continuation to thediscussion in the proof of Theorem 3.12, use the following guidelines to provide analternative proof of Theorem 3.12.1. First, prove that if T is downwards self-reducible (as de�ned in Exercise 2.13)then the correctness of circuits deciding T can be decided in coNP . Speci�-cally, denoting by � the characteristic function of T , show that the setckt� def= f(1n; hCi) : 8w 2 f0; 1gn C(w) = �(w)gis in coNP . Note that you may assume nothing about T , except for thehypothesis that T is downwards self-reducible.Guideline: Using the more exible formulation suggested in Exercise 3.1, it suf-�ces to verify that, for every i < n and every i-bit string w, the value C(w) equalsthe output of the downwards self-reduction on input w when obtaining answersaccording to C. Thus, for every i < n, the correctness of C on inputs of lengthi follows from its correctness on inputs of length less than i. Needless to say, thecorrectness of C on the empty string (or on all inputs of some constant length) canbe veri�ed by comparison to the �xed value of � on the empty string (resp., thevalues of � on a constant number of strings).2. Recalling that SAT is downwards self-reducible and thatNP is Karp-reducibleto SAT, derive Theorem 3.12 as a corollary of Part 1.Guideline: Let S 2 �2 and S0 2 NP be as in the proof of Theorem 3.12. Lettingf denote a Karp-reduction of S0 to SAT, note that S = fx : 8y2f0; 1gp(jxj) f(x; y)2SATg. Using the hypothesis that SAT has polynomial-size circuits, note that x 2 Sif and only if there exists a poly(jxj)-size circuit C such that (1) C decides SATcorrectly on every inputs of length at most poly(jxj), and (2) for every y2f0; 1gp(jxj)it holds that C(f(x; y)) = 1. Infer that S 2 �2.Exercise 3.12 In continuation to Part 2 of Exercise 3.2, we consider the classof sets that are Karp-reducible to a sparse set. It can be proved that this classcontains SAT if and only if P = NP (see [77]). Here, we only consider the specialcase in which the sparse set is contained in a polynomial-time decidable set that isitself sparse (e.g., the latter set may be f1g�, in which case the former set may bean arbitrary unary set). Actually, prove the following seemingly stronger claim:If SAT is Karp-reducible to a set S � G such that G 2 P and G n S issparse then SAT 2 P .

136 CHAPTER 3. VARIATIONS ON P AND NPUsing the hypothesis, we outline a polynomial-time procedure for solving the searchproblem of SAT, and leave the task of providing the details as an exercise. Theprocedure conducts a DFS on the tree of all possible partial truth assignment to theinput formula,12 while truncating the search at nodes that correspond to partialtruth assignments that were already demonstrated to be useless.Guideline: The key observation is that each internal node (which yields a formula derivedfrom the initial formulae by instantiating the corresponding partial truth assignment) ismapped by the Karp-reduction either to a string not in G (in which case we concludethat the sub-tree contains no satisfying assignments and backtrack from this node) orto a string in G. In the latter case, unless we already know that this string is not inS, we start a scan of the sub-tree rooted at this node. However, once we backtrack fromthis internal node, we know that the corresponding element of G is not in S, and we willnever scan again a sub-tree rooted at a node that is mapped to this element. Also notethat once we reach a leaf, we can check by ourselves whether or not it corresponds to asatisfying assignment to the initial formula.(Hint: When analyzing the forgoing procedure, note that on input an n-variable formulae � thenumber of times we start to scan a sub-tree is at most n � j [poly(j�j)i=1 f0; 1gi \ (G n S)j.)

12For an n-variable formulae, the leaves of the tree correspond to all possible n-bit long strings,and an internal node corresponding to � is the parent of the nodes corresponding to �0 and �1.

Chapter 4More Resources, MorePower? More electricity, less toil.The Israeli Electricity Company, 1960sIs it indeed the case that the more resources one has, the more one can achieve?The answer may seem obvious, but the obvious answer (of yes) actually presumesthat the worker knows how much resources are at his/her disposal. In this case,when allocated more resources, the worker (or computation) can indeed achievemore. But otherwise, nothing may be gained by adding resources.In the context of computational complexity, an algorithm knows the amount ofresources that it is allocated if it can determine this amount without exceeding thecorresponding resources. This condition is satis�es in all \reasonable" cases, but itmay not hold in general. The latter fact should not be that surprising: we alreadyknow that some functions are not computable and if these functions are used todetermine resources then the algorithm may be in trouble. Needless to say, thisdiscussion requires some formalization, which is provided in the current chapter.Summary: When using \nice" functions to determine the algorithm'sresources, it is indeed the case that more resources allow for more tasksto be performed. However, when \ugly" functions are used for the samepurpose, increasing the resources may have no e�ect. By nice functionswe mean functions that can be computed without exceeding the amountof resources that they specify (e.g., t(n) = n2 or t(n) = 2n). Naturally,\ugly" functions do not allow to present themselves in such nice forms.The forgoing discussion refers to uniform models of computation and to(natural) resources such as time and space complexities. Thus, we getresults asserting, for example, that there are problems that are solvablein cubic-time but not in quadratic-time. In case of non-uniform models137

138 CHAPTER 4. MORE RESOURCES, MORE POWER?of computation, the issue of \nicety" does not arise, and it is easy toestablish separations between levels of circuit complexity that di�er byany unbounded amount.Results that separate the class of problems solvable within one resourcebound from the class of problems solvable within a larger resourcebound are called hierarchy theorems. Results that indicate the non-existence of such separations, hence indicating a \gap" in the growthof computing power (or a \gap" in the existence of algorithms that uti-lize the added resources), are called gap theorems. A somewhat relatedphenomenon, called speed-up theorems, refers to the inability to de�nethe complexity of some problems.Caveat: Uniform complexity classes based on speci�c resource bounds (e.g.,cubic-time) are model dependent. Furthermore, the tightness of separation results(i.e., how much \more time" is required for solving some additional computationalproblems) is also model dependent. Still the existence of such separations is aphenomenon common to all reasonable and general models of computation (as re-ferred to in the Cobham-Edmonds Thesis). In the following presentation, we willexplicitly di�erentiate model-speci�c e�ects from generic ones.Organization: We will �rst demonstrate the \more resources yield more power"phenomenon in the context of non-uniform complexity. In this case the issue of\knowing" the amount of resources allocated to the computing device does notarise, because each device is tailored to the amount of resources allowed for theinput length that it handles (see Section 4.1). We then turn to the time-complexityof uniform algorithms; indeed, hierarchy and gap theorems for time-complexity,presented in Section 4.2, constitute the main part of the current chapter. We endby mentioning analogous results for space-complexity (see Section 4.3, which mayalso be read after Section 5.1).4.1 Non-uniform complexity hierarchiesThe model of machines that use advice (cf. x1.2.4.2 and Section 3.1.2) o�ers a veryconvenient setting for separation results. We refer speci�cally, to classes of the formP=`, where ` : N ! N is an arbitrary function (see De�nition 3.5). Recall thatevery Boolean function is in P=2n, by virtue of a trivial algorithm that is given asadvice the truth-table of the function restricted to the relevant input length. Ananalogous algorithm underlies the following separation result.Theorem 4.1 For any two functions `0; � : N ! N such that `0(n) + �(n) � 2nand � is unbounded, it holds that P=`0 is strictly contained in P=(`0 + �).Proof: Let ` def= `0+�, and consider the following advice-taking algorithm A: Givenadvice an 2 f0; 1g`(n) and input i 2 f1; :::; 2ng (viewed as an n-bit long string),algorithm A outputs the ith bit of an if i � janj and zero otherwise. Clearly, for any

4.2. TIME HIERARCHIES AND GAPS 139a = (an)n2N such that janj = `(n), it holds that the function fa(x) def= A(ajxj; x) isin P=`. Furthermore, di�erent sequences a yield di�erent functions fa. We claimthat some of these functions fa are not in P=`0, thus obtaining a separation.The claim is proved by considering all possible (polynomial-time) algorithmsA0 and all possible sequences a0 = (a0n)n2N such that ja0nj = `0(n). Fixing anyalgorithm A0, we consider the number of n-bit long functions that are correctlycomputed by A0(a0n; �). Clearly, the number of these functions is at most 2`0(n),and thus A0 may account for at most 2��(n) fraction of the functions fa (evenwhen restricted to n-bit strings). Essentially, this consideration holds for everyn and every possible A0, and thus the measure of the set of functions that arecomputable by algorithms that take advice of length `0 is zero.Formally, for every n, we consider all advice-taking algorithms that have adescription of length shorter than �(n) � 2. (This guarantees that every advice-taking algorithm will be considered.) Coupled with all possible advice sequences oflength `0, these algorithms can compute at most 2(�(n)�2)+`0(n) di�erent functions ofn-bit long inputs. The latter number falls short of the 2`(n) corresponding functions(of n-bit long inputs) that are computable by A with advice of length `(n).A somewhat less tight bound can be obtained by using the model of Booleancircuits. In this case, some slackness is needed in order to account for the gapbetween the upper and lower bounds regarding the number of Boolean functionsover f0; 1gn that are computed by Boolean circuits of size s < 2n. Speci�cally(see Exercise 4.1), an obvious lower-bound on this number is 2s=O(log s) whereas anobvious upper-bound is s2s = 22s log2 s. Compare these bounds to the lower-bound2`0(n) and the upper-bound 2`0(n)+(�(n)=2) (on the number of functions computablewith advice of length `0(n)), which were used in the proof of Theorem 4.1.4.2 Time Hierarchies and GapsIn this section we show that in \reasonable cases" increasing the time-complexityallows for more problems to be solved, whereas in \pathological cases" it mayhappen that even a dramatic increase in the time-complexity provides no additionalcomputing power. As hinted in the introductory comments to the current chapter,the \reasonable cases" correspond to time bounds that can be determined by thealgorithm itself within the speci�ed time-complexity.We stress that also in the aforementioned \reasonable cases", the added powerdoes not necessarily refer to natural computational problems. That is, like in thecase of non-uniform complexity (i.e., Theorem 4.1), the hierarchy theorems areproved by introducing arti�cial computational problems. Needless to say, we donot know of natural problems in P that are unsolvable in cubic (or some other �xedpolynomial) time (on, say, a two-tape Turing machine). Thus, although P containsan in�nite hierarchy of computational problems, with each level requiring signi�-cantly more time than the previous level, we know of no such hierarchy of naturalcomputational problems. In contrast, so far it has been the case that any naturalproblem that was shown to be solvable in polynomial-time was eventually followed

140 CHAPTER 4. MORE RESOURCES, MORE POWER?by algorithms having running-time that is bounded by a moderate polynomial.4.2.1 Time HierarchiesNote that the non-uniform computing devices, considered in Section 4.1, were ex-plicitly given the relevant resource bounds (e.g., the length of advice). Actually,they were given the resources themselves (e.g., the advice itself) and did not needto monitor their usage of these resources. In contrast, when designing algorithmsof arbitrary time-complexity t : N ! N , we need to make sure that the algo-rithm does not exceed the time-bound. Furthermore, when invoked on input x,the algorithm is not given the time bound t(jxj) explicitly, and a reasonable designmethodology is to have the algorithm compute this bound (i.e., t(jxj)) before doinganything else. This, in turn, requires the algorithm to read the entire input (seeExercise 4.3) as well as to compute t(n) in O(t(n)) steps (as otherwise this prelim-inary stage already consumes too much time). The latter requirement motivatesthe following de�nition (which is related to the standard de�nition of \fully timeconstructibility" (cf. [119, Sec. 12.3])).De�nition 4.2 (time constructible functions): A function t : N ! N is calledtime constructible if there exists an algorithm that on input n outputs t(n) using atmost t(n) steps.Equivalently, we may require that the mapping 1n 7! t(n) be computable withintime complexity t. We warn that the foregoing de�nition is model dependent;however, typically nice functions are computable even faster (e.g., in poly(log t(n))steps), in which case the model-dependency is irrelevant (for reasonable and generalmodels of computation, as referred to in the Cobham-Edmonds Thesis). For ex-ample, in any reasonable and general model, functions like t1(n) = n2, t2(n) = 2n,and t3(n) = 22n are computable in poly(log ti(n)) steps.Likewise, for a �xed model of computation (to be understood from the context)and for any function t : N ! N , we denote by Dtime(t) the class of decisionproblems that are solvable in time complexity t. We call the reader's attention toExercise 4.4 that asserts that in many cases Dtime(t) = Dtime(t=2).4.2.1.1 The Time Hierarchy TheoremIn the following theorem (which separates Dtime(t1) from Dtime(t2)), we referto the model of two-tape Turing machines. In this case we obtain quite a tighthierarchy in terms of the relation between t1 and t2. We stress that, using theCobham-Edmonds Thesis, this results yields (possibly less tight) hierarchy theo-rems for any reasonable and general model of computation.Teaching note: The standard statement of Theorem 4.3 asserts that for any timeconstructible function t2 and every function t1 such that t2 = !(t1 log t1) and t1(n) > nit holds that Dtime(t1) is strictly contained in Dtime(t2). The current version is onlyslightly weaker, but it allows a somewhat simpler and more intuitive proof. We commenton the proof of the standard version of Theorem 4.3 in a teaching note following theproof of the current version.

4.2. TIME HIERARCHIES AND GAPS 141Theorem 4.3 (time hierarchy for two-tape Turing machines): For any time con-structible function t1 and every function t2 such that t2(n) � (log t1(n))2 � t1(n)and t1(n) > n it holds that Dtime(t1) is strictly contained in Dtime(t2).As will become clear from the proof, an analogous result holds for any model inwhich a universal machine can emulate t steps of another machine in O(t log t) time,where the constant in the O-notation depends on the emulated machine. Beforeproving Theorem 4.3, we derive the following corollary.Corollary 4.4 (time hierarchy for any reasonable and general model): For anyreasonable and general model of computation there exists a positive polynomial psuch that for any time-computable function t1 and every function t2 such thatt2 > p(t1) and t1(n) > n it holds that Dtime(t1) is strictly contained in Dtime(t2).It follows that, for every such model and every polynomial t (such that t(n) > n),there exist problems in P that are not in Dtime(t). It also follows that P isa strict subset of E and even of \quasi-polynomial time" (i.e., Dtime(q), whereq(n) = exp(poly(logn))); moreover, P is a strict subset of Dtime(q), for anysuper-polynomial function q (i.e., q(n) = n!(1)).Proof of Corollary 4.4: The underlying fact is that separation results regardingany reasonable and general model of computation can be \translated" to analo-gous results regarding any other such model. Such a translation may e�ect thetime-bounds as demonstrated next. Letting Dtime2 denote the classes that corre-spond to two-tape Turing machines (and recalling that Dtime denotes the classesthat correspond to the alternative model), we note that Dtime(t1) � Dtime2(t01)and Dtime2(t02) � Dtime(t2), where t01 = poly(t1) and t02 is de�ned such thatt2(n) = poly(t02(n)). The latter unspeci�ed polynomials, hereafter denoted p1and p2 respectively, are the ones guaranteed by the Cobham-Edmonds Thesis.Also, the hypothesis that t1 is time-constructible implies that t01 = p1(t1) is time-constructible with respect to the two-tape Turing machine model. Thus, for asuitable choice of the polynomial p (i.e., p(p�11 (m)) � p2(m2)), it holds thatt02(n) = p�12 (t2(n)) > p�12 (p(t1(n))) = p�12 (p(p�11 (t01(n)))) � t01(n)2 ;where the �rst inequality holds by the corollary's hypothesis (i.e., t2 > p(t1)) andthe last inequality holds by the choice of p. Invoking Theorem 4.3 (while notingthat t02(n) > t01(n)2), we obtain the strict inclusion Dtime2(t01) � Dtime2(t02).Combining the latter with Dtime(t1) � Dtime2(t01) andDtime2(t02) � Dtime(t2),the corollary follows.Proof of Theorem 4.3: The idea is constructing a Boolean function f suchthat all machines having time complexity t1 fail to compute f . This is done byassociating with each possible machine M a di�erent input xM (e.g., xM = hMi)and making sure that f(xM) 6= M 0(xM), where M 0(x) denotes an emulation ofM(x) that is suspended after t1(jxj) steps. For example, we may de�ne f(xM) =1 �M 0(xM). We note that M 0 is used instead of M in order to allow computingf in time that is related to t1. The point is that M may be an arbitrary machine

142 CHAPTER 4. MORE RESOURCES, MORE POWER?that is associated to the input xM , and so M does not necessarily run in time t1(but, by construction, the corresponding M 0 does run in time t1).Implementing the foregoing idea calls for an e�cient association of machines toinputs as well as for a relatively e�cient emulation of t1 steps of an arbitrary ma-chine. As shown next, both requirements can be met easily. Actually, we are goingto use a mapping � of inputs to machines (i.e., � will map the aforementioned xMto M) such that each machine is in the range of � and � is very easy to compute(e.g., indeed, for starters, assume that � is the identity mapping). Thus, by con-struction, f 62 Dtime(t1). The issue is presenting a relatively e�cient algorithmfor computing f ; that is, showing that f 2 Dtime(t2).The algorithm for computing f as well as the de�nition of f (sketched in the �rstparagraph) are straightforward: On input x, the algorithm computes t = t1(jxj),determines the machine M = �(x) that corresponds to x (outputting a defaultvalue if no such machine exists), emulates M(x) for t steps, and returns the value1�M 0(x). Recall that M 0(x) denotes the time-truncated emulation of M(x) (i.e.,the emulation of M(x) suspended after t steps); that is, if M(x) halts within tsteps then M 0(x) =M(x), and otherwise M 0(x) may be de�ned arbitrarily. Thus,f(x) = 1�M 0(x) if M = �(x) and (say) f(x) = 0 otherwise.In order to show that f 62 Dtime(t1), we show that each machine of time-complexity t1 fails to compute f . Fixing any such machine, M , we consider aninput xM such that M = �(xM), where such an input exists because � is onto.Now, on one hand, M 0(xM) =M(xM) (because M has time-complexity t1), whileon the other hand f(xM) = 1 �M 0(xM) (by the de�nition of f). It follows thatM(x) 6= f(x).We now turn to upper-bounding the time-complexity of f by analyzing thetime-complexity of the foregoing algorithm that computes f . Using the time-constructibility of t1 and ignoring the easy computation of �, we focus on thequestion of how much time is required for emulating t steps of machine M (oninput x). We should bear in mind that the time-complexity of our algorithm needsto be analyzed in the two-tape Turing-machine model, whereas M itself is a two-tape Turing-machine. We start by implementing our algorithm on a three-tapeTuring-machine, and next emulate this machine on a two-tape Turing-machine.The obvious implementation of our algorithm on a three-tape Turing-machineuses two tapes for the emulation itself and designates the third tape for the ac-tions of the emulation procedure (e.g., storing the code of the emulated machineand maintaining a step-counter). Thus, each step of the two-tape machine M isemulated using O(jhMij) steps on the three-tape machine.1 This includes also theamortized complexity of maintaining a step-counter for the emulation (see Exer-cise 4.5).Next, we need to emulate the foregoing three-tape machine on a two-tape ma-chine. This is done by using the fact (cf., e.g., [119, Thm. 12.6]) that t0 stepsof a three-tape machine can be emulated on a two-tape machine in O(t0 log t0)steps. Thus, the complexity of computing f on input x is upper-bounded by1This overhead accounts both for searching the code of M for the adequate action and for thee�ecting of this action (which may refer to a larger alphabet than the one used by the emulator).

4.2. TIME HIERARCHIES AND GAPS 143O(T�(x)(jxj) log T�(x)(jxj)), where TM (n) = O(jhMij � t1(n)) represents the cost ofemulating t1(n) steps of the two-tape machine M on a three-tape machine (as inthe foregoing discussion).It turns out that the quality of the separation result that we obtain dependson the choice of the mapping � (of inputs to machines). Using the naive (identity)mapping (i.e., �(x) = x) we can only establish the theorem for t2(n) = eO(n � t1(n))rather than t2(n) = eO(t1(n)), because in this case T�(x)(jxj) = O(jxj�t1(jxj)). (Notethat, in this case, xM = hMi is a description of �(xM) =M .) The theorem followsby associating the machine M with the input xM = hMi01m, where m = 2jhMij;that is, we may use the mapping � such that �(x) =M if x = hMi012jhMij and �(x)equals some �xed machine otherwise. In this case j�(x)j < log2 jxj < log t1(jxj) andso T�(x)(jxj) = O((log t1(jxj)) � t1(jxj)). The theorem follows.Teaching note: Proving the standard version of Theorem 4.3 cannot be done byassociating a su�ciently long input xM with each machine M , because this does notallow to get rid from an additional unbounded factor in T�(x)(jxj) (i.e., the j�(x)j factorthat multiplies t1(jxj)). Note that the latter factor needs to be computable (at thevery least) and thus cannot be accounted for by the generic !-notation that appears inthe standard version (cf. [119, Thm. 12.9]). Instead, a di�erent approach is taken (seeFootnote 2).Technical Comments. The proof of Theorem 4.3 associates with each poten-tial machine M some input xM and de�nes the computational problem such thatmachine M err on input xM . The association of machines with inputs is ratherexible: we can use any onto mapping of inputs to machines that is e�ciently com-putable and su�ciently shrinking. Speci�cally, in the proof, we used the mapping� such that �(x) = M if x = hMi012jhMij and �(x) equals some �xed machineotherwise. We comment that each machine can be made to err on in�nitely manyinputs by rede�ning � such that �(x) =M if hMi012jhMij is a su�x of x (and �(x)equals some �xed machine otherwise). We also comment that, in contrast to theproof of Theorem 4.3, the proof of Theorem 1.5 utilizes a rigid mapping of inputsto machines (i.e., there �(x) =M if x = hMi).Digest: Diagonalization. The last comment highlights the fact that the proofof Theorem 4.3 is merely a sophisticated version of the proof of Theorem 1.5. Bothproofs refer to versions of the universal function, which in the case of the proof of2In the standard proof the function f is not de�ned with reference to t1(jxM j) steps ofM(xM),but rather with reference to the result of emulating M(xM) while using a total of t2(jxM j) stepsin the emulation process (i.e., in the algorithm used to compute f). This guarantees that f is inDtime(t2), and \pushes the problem" to showing that f is not in Dtime(t1). It also explains whyt2 (rather than t1) is assumed to be time-constructible. As for the foregoing problem, it is resolvedby observing that for each relevant machine (i.e., having time complexity t1) the executions onany su�ciently long input will be fully emulated. Thus, we merely need to associate with eachM a disjoint set of in�nitely many inputs and make sure that M errs on each of these inputs.

144 CHAPTER 4. MORE RESOURCES, MORE POWER?Theorem 4.3 is (implicitly) de�ned such that its value at (hMi; x) equals M 0(x),where M 0(x) denotes an emulation of M(x) that is suspended after t1(jxj) steps.3Actually, both proofs refers to the \diagonal" of the aforementioned function, whichin the case of the proof of Theorem 4.3 is only de�ned implicitly. That is, thevalue of the diagonal function at x, denoted d(x), equals the value of the universalfunction at (h�(x)i; x). This is actually a de�nitional schema, as the choice of thefunction � remains unspeci�ed. Indeed, setting �(x) = x corresponds to a \real"diagonal in the matrix depicting the universal function, but any other choice of a1-1 mappings � also yields a \kind of diagonal" of the universal function. Eitherway, the function f is de�ned such that for every x it holds that f(x) 6= d(x).This guarantees that no machine of time-complexity t1 can compute f , and thefocus is on presenting an algorithm that computes f (which, needless to say, hastime-complexity greater than t1). Part of the proof of Theorem 4.3 is devoted toselecting � in a way that minimizes the time-complexity of computing f , whereasin the proof of Theorem 1.5 we merely need to guarantee that f is computable.4.2.1.2 Impossibility of speed-up for universal computationThe Time Hierarchy Theorem (Theorem 4.3) implies that the computation of auniversal machine cannot be signi�cantly sped-up. That is, consider the functionu0(hMi; x; t) def= y if on input x machine M halts within t steps and outputs thestring y, and u0(hMi; x; t) def= ? if on input x machine M makes more than t steps.Recall that the value of u0(hMi; x; t) can be computed in eO(jxj + jhMij � t) steps.As shown next, Theorem 4.3 implies that this value (i.e., u0(hMi; x; t)) cannot becomputed within signi�cantly less steps.Theorem 4.5 There exists no two-tape Turing machine that, on input hMi; x andt, computes u0(hMi; x; t) in o((t + jxj) � f(M)= log2(t + jxj)) steps, where f is anarbitrary function.A similar result holds for any reasonable and general model of computation (cf.,Corollary 4.4). In particular, it follows that u0 is not computable in polynomialtime (because the input t is presented in binary). In fact, one can show that thereexists no polynomial-time algorithm for deciding whether or not M halts on input xin t steps (i.e., the set f(hMi; x; t) : u0(hMi; x; t) 6= ?g is not in P); see Exercise 4.6.Proof: Suppose (towards the contradiction) that, for every �xed M , given xand t > jxj, the value of u0(hMi; x; t) can be computed in o(t= log2 t) steps, wherethe o-notation hides a constant that may depend on M . We shall show that thishypothesis implies that for any time-constructible t1 and t2(n) = t1(n) � log2 t1(n)it holds that Dtime(t2) = Dtime(t1), which (strongly) contradicts Theorem 4.3.Consider an arbitrary time-constructible t1 (s.t. t1(n) > n) and an arbitraryset S 2 Dtime(t2), where t2(n) = t1(n) � log2 t1(n). Let M be a machine of3Needless to say, in the proof of Theorem 1.5, M 0 =M .

4.2. TIME HIERARCHIES AND GAPS 145time-complexity t2 that decides membership in S, and consider the following algo-rithm: On input x, the algorithm �rst computes t = t1(jxj), and then computes(and outputs) the value u0(hMi; x; t log2 t). By the time-constructibility of t1, the�rst computation can be implemented in t steps, and by the contradiction hy-pothesis the same holds for the second computation. Thus, S can be decided inDtime(2t1) = Dtime(t1), implying that Dtime(t2) = Dtime(t1), which in turncontradicts Theorem 4.3. We conclude that the contradiction hypothesis is wrong,and the theorem follows.4.2.1.3 Hierarchy theorem for non-deterministic timeAnalogously to Dtime, for a �xed model of computation (to be understood fromthe context) and for any function t : N ! N , we denote by Ntime(t) the classof sets that are accepted by some non-deterministic machine of time complexityt. Indeed, this de�nition extends the traditional formulation of NP (as presentedin De�nition 2.7). Alternatively, analogously to our preferred de�nition of NP(i.e., De�nition 2.5), a set S � f0; 1g� is in Ntime(t) if there exists a linear-timealgorithm V such that the two conditions hold:1. For every x 2 S there exists y 2 f0; 1gt(jxj) such that V (x; y) = 1.2. For every x 62 S and every y 2 f0; 1g� it holds that V (x; y) = 0.We warn that the two formulations are not identical, but in su�ciently strong mod-els (e.g., two-tape Turing machines) they are related up to logarithmic factors (seeExercise 4.8). The hierarchy theorem itself is similar to the one for deterministictime, except that here we require that t2(n) � (log t1(n + 1))2 � t1(n + 1) (ratherthan t2(n) � (log t1(n))2 � t1(n)). That is:Theorem 4.6 (non-deterministic time hierarchy for two-tape Turing machines):For any time-constructible and monotonicly non-decreasing function t1 and everyfunction t2 such that t2(n) � (log t1(n+1))2 � t1(n+1) and t1(n) > n it holds thatNtime(t1) is strictly contained in Ntime(t2).Proof: We cannot just apply the proof of Theorem 4.3, because the Booleanfunction f de�ned there requires the ability to determine whether there exists acomputation of M that accepts the input xM in t1(jxM j) steps. In the currentcontext, M is a non-deterministic machine and so the only way we know howto determine this question (both for a \yes" and \no" answers) is to try all the(2t1(jxM j)) relevant executions.4 But this would put f in Dtime(2t1), rather thanin Ntime(eO(t1)), and so a di�erent approach is needed.We associate with each (non-deterministic) machine M , a large interval ofstrings (viewed as integers), denoted IM = [�M ; �M], such that the various inter-vals do not intersect and such that it is easy to determine for each string x in whichinterval it resides. For each x 2 [�M ; �M�1], we de�ne f(x) = 1 if and only if there4Indeed, we can non-deterministically recognize \yes" answers in eO(t1(jxM j)) steps, but wecannot do so for \no" answers.

146 CHAPTER 4. MORE RESOURCES, MORE POWER?exists a non-deterministic computation of M that accepts the input x0 def= x + 1in t1(jx0j) � t1(jxj + 1) steps. Thus, if M has time-complexity t1 and (non-deterministically) accepts fx : f(x) = 1g, then either M (non-deterministically)accepts each string in the interval IM or M (non-deterministically) accepts nostring in IM , because M must non-deterministically accept x if and only if it non-deterministically accepts x0 = x + 1. So, it is left to deal with the case that M isinvariant on IM , which is where the de�nition of the value of f(�M) comes intoplay: We de�ne f(�M) to equal zero if and only if there exists a non-deterministiccomputation of M that accepts the input �M in t1(j�M j) steps. We shall select�M to be large enough relative to �M such that we can a�ord to try all possiblecomputations of M on input �M . Details follow.Let us �rst recapitulate the de�nition of f : f0; 1g�!f0; 1g, focusing on thecase that the input is in some interval IM . We de�ne a Boolean function AM suchthat AM (z) = 1 if and only if there exists a non-deterministic computation of Mthat accepts the input z in t1(jzj) steps. Then, for x 2 IM we havef(x) = � AM (x+ 1) if x 2 [�M ; �M � 1]1�AM (�M) if x = �MNext, we present the following non-deterministic machine for accepting the setfx : f(x) = 1g. We assume that, on input x, it is easy to determine the machineM that corresponds to the interval [�M ; �M] in which x reside.5 We distinguishtwo cases:1. On input x 2 [�M ; �M � 1], our non-deterministic machine emulates t1(jx0j)steps of a (single) non-deterministic computation of M on input x0 = x+ 1,and decides accordingly (i.e., our machine accepts if and only if the said emu-lation has accepted). Indeed (as in the proof of Theorem 4.3), this emulationcan be performed in time (log t1(jx + 1j))2 � t1(jx + 1j) � t2(jxj).2. On input x = �M , our machine just tries all 2t1(j�M j) executions of M oninput �M and decides in a suitable manner; that is, our machine emulatest1(j�M j) steps in each of the 2t1(j�M j) possible executions of M(�M) andaccepts �M if and only if none of the emulated executions ended accepting�M . Note that this part of our machine is deterministic, and it amountsto emulating TM def= 2t1(j�M j) � t1(j�M j) steps of M . By a suitable choice ofthe interval [�M ; �M] (e.g., j�M j > TM), this number of steps (i.e., TM) issmaller than j�M j � t1(j�M j), and it follows that these TM steps of M canbe emulated in time (log2 t1(j�M j))2 � t1(j�M j) � t2(j�M j).Thus, our non-deterministic machine has time-complexity t2, and it follows that fis in Ntime(t2). It remains to show that f is not in Ntime(t1).Suppose on the contrary, that some non-deterministic machine M of time-complexity t1 accepts the set fx : f(x) = 1g; that is, for every x it holds that5For example, we may partition the strings to consecutive intervals such that the ith interval,denoted [�i; �i], corresponds to the ith machine and for T1(m) = 22t1(m) it holds that �i =1T1(j�ij) and �i+1 = 0T1(j�ij)+1. Note that j�ij = T1(j�ij), and thus t1(j�ij) > t1(j�ij) �2t1(j�ij).

4.2. TIME HIERARCHIES AND GAPS 147AM (x) = f(x), where AM is as de�ned in the foregoing (i.e., AM (x) = 1 if andonly if there exists a non-deterministic computation of M that accepts the inputx in t1(jxj) steps). Focusing on the interval [�M ; �M], we have AM (x) = f(x)for every x 2 [�M ; �M], which (combined with the de�nition of f) implies thatAM (x) = f(x) = AM (x + 1) for every x 2 [�M ; �M � 1] and AM (�M) = f(�M) =1 � AM (�M). Thus, we reached a contraction (because we got AM (�M) = � � � =AM (�M) = 1�AM (�M)).4.2.2 Time Gaps and Speed-UpIn contrast to Theorem 4.3, there exists functions t : N ! N such that Dtime(t) =Dtime(t2) (or even Dtime(t) = Dtime(2t)). Needless to say, these functionsare not time-constructible (and thus the aforementioned fact does not contradictTheorem 4.3). The reason for this phenomenon is that, for such functions t, thereexist not algorithms that have time-complexity above t but below t2 (resp., 2t).Theorem 4.7 (the time gap theorem): For every non-decreasing computable func-tion g : N ! N there exists a non-decreasing computable function t : N ! N suchthat Dtime(t) = Dtime(g(t)).The forgoing examples referred to g(m) = m2 and g(m) = 2m. Since we aremainly interested in dramatic gaps (i.e., super-polynomial functions g), the modelof computation does not matter here (as long as it is reasonable and general).Proof: Consider an enumeration of all possible algorithms (or machines), whichalso includes machines that do not halt on some inputs. (Recall that we cannotenumerate the set of all machines that halt on every input.) Let ti denote the timecomplexity of the ith algorithm; that is, ti(n) =1 if the ith machine does not halton some n-bit long input and otherwise ti(n) = maxx2f0;1gnfTi(x)g, where Ti(x)denotes the number of steps taken by the ith machine on input x.The basic idea is to de�ne t such that no ti is \sandwiched" between t and g(t),and thus no algorithm will have time-complexity between t and g(t). Intuitively, ifti(n) is �nite, then we may de�ne t such that t(n) > ti(n) and thus guarantee thatti(n) 62 [t(n); g(t(n))], whereas if ti(n) = 1 then any �nite value of t(n) will do(because then ti(n) > g(t(n))). Thus, for every m and n, we can de�ne t(n) suchthat ti(n) 62 [t(n); g(t(n))] for every i 2 [m] (e.g., t(n) = maxi2[m]:ti(n)6=1fti(n)g+1).6 This yields a weaker version of the theorem in which the function t is neithercomputable nor non-decreasing. It is easy to modify t such that it is non-decreasing(e.g., t(n) = max(t(n � 1);maxi2[m]:ti(n)6=1fti(n)g) + 1) and so the real challengeis to make t computable.The problem is that we want t to be computable, whereas given n we cannottell whether or not ti(n) is �nite. However, we do not really need to make the latterdecision: for each candidate value v of t(n), we should just determine whether ornot ti(n) 2 [v; g(v)], which can be decided by running the ith machine for at most6We may assume, without loss of generality, that t1(n) = 1 for every n; e.g., by letting themachine that always halts after a single step be the �rst machine in our enumeration.

148 CHAPTER 4. MORE RESOURCES, MORE POWER?g(v) + 1 steps (on each n-bit long string). That is, as far as the ith machine isconcerned, we should just �nd a value v such that either v > ti(n) or g(v) < ti(n)(which includes the case ti(n) = 1). This can be done by starting with v = v0(where, say, v0 = t(n�1)+1), and increasing v until either v > ti(n) or g(v) < ti(n).The point is that if ti(n) is in�nite then we may output v = v0 after emulating2n �(g(v0)+1) steps, and otherwise we reach a safe value v > ti(n) after performingat most Pti(n)j=v0 2n � j emulation steps. Bearing in mind that we should deal withall possible machines, we obtain the following procedure for setting t(n).

v
t (n)i

t (n)j

t(n-1)

v
current v

g(v)

t (n)k

0Figure 4.1: The Gap Theorem { determining the value of t(n).Let � : N ! N be any unbounded and computable function (e.g., �(n) = n willdo). Starting with v = t(n�1)+1, we keep incrementing v until v satis�es, for everyi 2 f1; :::; �(n)g, either ti(n) < v or ti(n) > g(v). This condition can be veri�edby computing �(n) and g(v), and emulating the execution of each of the �rst �(n)machines on each of the n-bit long strings for g(v) + 1 steps. The procedure setst(n) to equal the �rst value v satisfying the aforementioned condition, and halts.(Figure 4.1 depicts the search for a good value v for t(n).)To show that the foregoing procedure halts on every n, consider the set Hn �f1; :::; �(n)g of the indices of the (relevant) machines that halt on all inputs of lengthn. Then, the procedure de�nitely halts before reaching the value v = max(Tn; t(n�1))+2, where Tn = maxi2Hnfti(n)g. (Indeed, the procedure may halt with a valuev � Tn, but this will happen only if g(v) < Tn.)Finally, for the foregoing function t, we prove that Dtime(t) = Dtime(g(t))holds. Indeed, consider an arbitrary S 2 Dtime(g(t)), and suppose that the ithalgorithm decides S in time at most g(t); that is, for every n, it holds that ti(n) �g(t(n)). Then (by the construction of t), for every n satisfying �(n) � i, it holds

4.2. TIME HIERARCHIES AND GAPS 149that ti(n) < t(n). It follows that the ith algorithm decides S in time at most ton all but �nitely many inputs. Combining this algorithm with a \look-up table"machine that handles the exceptional inputs, we conclude that S 2 Dtime(t). Thetheorem follows.Comment: The function t de�ned by the foregoing proof is computable in timethat exceeds g(t). Speci�cally, the presented procedure computes t(n) (as well asg(f(n))) in time eO(2n � g(t(n)) + Tg(t(n))), where Tg(m) denotes the number ofsteps required to compute g(m) on input m.Speed-up Theorems. Theorem 4.7 can be viewed as asserting that some timecomplexity classes (i.e., Dtime(g(t)) in the theorem) collapse to lower classes (i.e.,to Dtime(t)). A conceptually related phenomenon is of problems that have nooptimal algorithm (not even in a very mild sense); that is, every algorithm forthese (\pathological") problems can be drastically sped-up. It follows that thecomplexity of these problems can not be de�ned (i.e., as the complexity of the bestalgorithm solving this problem). The following drastic speed-up theorem shouldnot be confused with the linear speed-up that is an artifact of the de�nition of aTuring machine (see Exercise 4.4).7Theorem 4.8 (the time speed-up theorem): For every computable (and super-linear) function g there exists a decidable set S such that if S 2 Dtime(t) thenS 2 Dtime(t0) for t0 satisfying g(t0(n)) < t(n).Taking g(n) = n2 (or g(n) = 2n), the theorem asserts that, for every t, if S 2Dtime(t) then S 2 Dtime(pt) (resp., S 2 Dtime(log t)). Note that Theorem 4.8can be applied any (constant) number of times, which means that we cannot givea reasonable estimate to the complexity of deciding membership in S. In contrast,recall that in some important cases, optimal algorithms for solving computationalproblems do exist. Speci�cally, algorithms solving (candid) search problems in NPcannot be speed-up (see Theorem 2.33), nor can the computation of a universalmachine (see Theorem 4.5).We refrain from presenting a proof of Theorem 4.8, but comment on the com-plexity of the sets involved in this proof. The proof (presented in [119, Sec. 12.6])provides a construction of a set S in Dtime(t0)nDtime(t00) for t0(n) = h(n�O(1))and t00(n) = h(n � !(1)), where h(n) denoted g iterated n times on 2 (i.e.,h(n) = g(n)(2), where g(i+1)(m) = g(g(i)(m)) and g(1) = g). The set S is con-structed such that for every i > 0 there exists a j > i and an algorithm thatdecides S in time ti but not in time tj , where tk(n) = h(n� k).7Advanced comment: We note that the linear speed-up phenomenon was implicitly ad-dressed in the proof of Theorem 4.3, by allowing an emulation overhead that depends on thelength of the description of the emulated machine.

150 CHAPTER 4. MORE RESOURCES, MORE POWER?4.3 Space Hierarchies and GapsHierarchy and Gap Theorems analogous to Theorem 4.3 and Theorem 4.7, respec-tively, are known for space complexity. In fact, since space-e�cient emulation ofspace-bounded machines is simpler than time-e�cient emulations of time-boundedmachines, the results tend to be sharper (and their proofs tend to be simpler).This is most conspicuous in the case of the separation result (stated next), whichis optimal (in light of the corresponding linear speed-up result; see Exercise 4.10).Before stating the separation result, we need a few preliminaries. We referthe reader to x1.2.3.5 for a de�nition of space-complexity (and to Chapter 5 forfurther discussion). As in the case of time-complexity, we consider a speci�c modelof computation, but the results hold for any other reasonable and general model.Speci�cally, we consider three-tape Turing machines, because we designate twospecial tapes for input and output. For any function s : N ! N , we denote byDspace(s) the class of decision problems that are solvable in space-complexity s.Analogously to De�nition 4.2, we call a function s : N ! N space constructible ifthere exists an algorithm that on input n outputs s(n) while using at most s(n)cells of the work-tape. Actually, functions like s1(n) = logn, s2(n) = (logn)2, ands3(n) = 2n are computable using O(log si(n)) space.Theorem 4.9 (space hierarchy for three-tape Turing machines): For any spaceconstructible function s2 and every function s1 such that s2 = !(s1) and s1(n) >logn it holds that Dspace(s1) is strictly contained in Dspace(s2).Theorem 4.9 is analogous to the traditional version of Theorem 4.3 (rather tothe one we presented), and is proven using the alternative approach sketched inFootnote 2. The details are left as an exercise (see Exercise 4.11).Chapter NotesThe material presented in this chapter predates the theory of NP-completeness andthe dominant stature of the P-vs-NP Question. At these early days, the �eld (to beknown as complexity theory) did not yet develop an independent identity and itsperspectives were dominated by two classical theories: the theory of computabil-ity (and recursive function) and the theory of formal languages. Nevertheless, webelieve that the results presented in this chapter are interesting for two reasons.Firstly, as stated up-front, these results address the natural question of under whatconditions is it the case that more computational resources help. Secondly, theseresults demonstrate the type of results that one can get with respect to \generic"questions regarding computational complexity; that is, questions that refer to ar-bitrary resource bounds (e.g., the relation between Dtime(t1) and Dtime(t2) forarbitrary t1 and t2).We note that, in contrast to the \generic" questions considered in this chapter,the P-vs-NP Question as well as the related questions that will be addressed in therest of this book are not \generic" since they refer to speci�c classes (which capturenatural computational issues). Furthermore, whereas time- and space-complexity

4.3. SPACE HIERARCHIES AND GAPS 151behave in similar manner with respect to hierarchies and gaps, they behave quitedi�erently with respect to other questions. The interested reader is referred toSections 5.1 and 5.3.Getting back to the concrete contents of the current chapter, let us brieymentioned the most relevant credits. The hierarchy theorems (e.g., Theorem 4.3)were proved by Hartmanis and Stearns [110]. Gap theorems (e.g., Theorem 4.7)were proven by Borodin [44] (and are often referred to as Borodin's Gap Theorem).An axiomatic treatment of complexity measures was developed by Blum [36], whoalso proved corresponding speed-up theorems (e.g., Theorem 4.8, which is oftenreferred to as Blum's Speed-up Theorem). A traditional presentation of all theaforementioned topics is provided in [119, Chap. 12], which also presents relatedtechniques (e.g., \translation lemmas").ExercisesExercise 4.1 Let Fn(s) denote the number of di�erent Boolean functions overf0; 1gn that are computed by Boolean circuits of size s. Prove that, for any s < 2n,it holds that Fn(s) � 2s=O(log s) and Fn(s) � s2s.Guideline: Any Boolean function f : f0; 1g` ! f0; 1g can be computed by a circuit ofsize s` = O(` � 2`). Thus, for every ` � n, it holds that Fn(s`) � 22` > 2s`=O(log s`). Onthe other hand, the number of circuits of size s is less than 2s � �s2s �, where the secondfactor represents the number of possible choices of pair of gates that feed any gate in thecircuit.Exercise 4.2 (advice can speed-up computation) For every time-constructiblefunction t, show that there exists a set S in Dtime(t2) nDtime(t) that can be de-cided in linear-time using an advice of linear length (i.e., S 2 Dtime(`)=` where`(n) = O(n)).Guideline: Starting with a set S0 2 Dtime(T 2) n Dtime(T), where T (m) = t(2m),consider the set S = fx02jxj�jxj : x2S0g.Exercise 4.3 Referring to any reasonable model of computation (and assumingthat the input length is not given explicitly (unlike as in, e.g., De�nition 10.10)),prove that any algorithm that has sub-linear time-complexity actually has constanttime-complexity.Guideline: Consider the question of whether or not there exists an in�nite set of stringsS such that when invoked on any input x 2 S the algorithm reads all of x. Note that ifS is in�nite then the algorithm cannot have sub-linear time-complexity, and prove that ifS is �nite then the algorithm has constant time-complexity.Exercise 4.4 (linear speed-up of Turing machine) Prove that any problemthat can be solved by a two-tape Turing machine that has time-complexity t canbe solved by another two-tape Turing machine having time-complexity t0, wheret0(n) = O(n) + (t(n)=2).

152 CHAPTER 4. MORE RESOURCES, MORE POWER?Guideline: Consider a machine that uses a larger alphabet, capable of encoding a con-stant (denoted c) number of symbols of the original machine, and thus capable of emu-lating c steps of the original machine in O(1) steps, where the constant in the O-notationis a universal constant (independent of c). Note that the O(n) term accounts to a pre-processing that converts the binary input to work-alphabet of the new machine (whichencoding c input bits in one alphabet symbol). Thus, a similar result for one-tape Turingmachine seems to require an additive O(n2) term.Exercise 4.5 (constant amortized-time step-counter) A step-counter is analgorithm that runs for a number of steps that is speci�ed in its input. Actually,such an algorithm may run for a somewhat larger number of steps but halt after is-suing a number of \signals" as speci�ed in its input, where these signals are de�nedas entering (and leaving) a designated state (of the algorithm). A step-counter maybe run in parallel to another procedure in order to suspend the execution after apredetermined number of steps (of the other procedure) has elapsed. Show thatthere exists a simple deterministic machine that, on input n, halts after issuing nsignals while making O(n) steps.Guideline: A slightly careful implementation of the straightforward algorithm will do,when coupled with an \amortized" time-complexity analysis.Exercise 4.6 (a natural set in E n P) In continuation to the proof of Theorem 4.5,prove that the set f(hMi; x; t) : u0(hMi; x; t) 6= ?g is in E n P , where E def=[cDtime(ec) and ec(n) = 2cn.Exercise 4.7 (EXP-completeness) In continuation to Exercise 4.6, prove thatevery set in EXP is Karp-reducible to the set f(hMi; x; t) : u0(hMi; x; t) 6= ?g.Exercise 4.8 Prove that the two de�nitions of Ntime, presented in x4.2.1.3, arerelated up to logarithmic factors. Note the importance of condition that V haslinear (rather than polynomial) time-complexity.Guideline: When emulating a non-deterministic machine by the veri�cation procedureV , encode the non-deterministic choices in a \witness" string y such that jyj is slightlylarger than the number of steps taken by the original machine. Speci�cally, having jyj =O(t log t), where t denotes the number of steps taken by the original machine, allows toemulate the latter computation in linear time (i.e., linear in jyj).Exercise 4.9 In continuation to Theorem 4.7, prove that for every computablefunction t0 : N ! N and every non-decreasing computable function g : N ! Nthere exists a non-decreasing computable function t : N ! N such that t > t0 andDtime(t) = Dtime(g(t)).Exercise 4.10 In continuation to Exercise 4.4, state and prove a linear speed-upresult for space complexity, when using the standard de�nition of space as recalledin Section 4.3. (Note that this result does not hold with respect to \binary spacecomplexity" as de�ned in Section 5.1.1.)

4.3. SPACE HIERARCHIES AND GAPS 153Exercise 4.11 Prove Theorem 4.9. As a warm-up, prove �rst a space-complexityversion of Theorem 4.3.Guideline: Note that providing a space-e�cient emulation of one machine by anothermachine is easier than providing an analogous time-e�cient emulation.Exercise 4.12 (space gap theorem) In continuation to Theorem 4.7, state andprove a gap theorem for space complexity.

154 CHAPTER 4. MORE RESOURCES, MORE POWER?

Chapter 5Space ComplexityOpen are the double doors of the horizon; unlockedare its bolts. Philip Glass, Akhnaten, PreludeWhereas the number of steps taken during a computation is the primary measureof its e�ciency, the amount of temporary storage used by the computation is alsoa major concern. Furthermore, in some settings, space is even more scarce thantime.In addition to the intrinsic interest in space-complexity, its study provides aninteresting perspective on the study of time-complexity. For example, in contrastto the common conjecture by which NP 6= coNP , we shall see that analogousspace complexity classes (e.g., NL) are closed under complementation (e.g., NL =coNL).Summary: This chapter is devoted to the study of the space complex-ity of computations, while focusing on two rather extreme cases. The�rst case is that of algorithms having logarithmic space complexity.We view such algorithms as utilizing the naturally minimal amount oftemporary storage, where the term \minimal" is used here in an intu-itive (but somewhat inaccurate) sense, and note that logarithmic spacecomplexity seems a more stringent requirement than polynomial time.The second case is that of algorithms having polynomial space com-plexity, which seems a strictly more liberal restriction than polynomialtime complexity. Indeed, algorithms utilizing polynomial space can per-form almost all the computational tasks considered in this book (e.g.,the class PSPACE contains almost all complexity classes considered inthis book).We �rst consider algorithms of logarithmic space complexity. Such al-gorithms may be used for solving various natural search and decision155

156 CHAPTER 5. SPACE COMPLEXITYproblems, for providing reductions among such problems, and for yield-ing a strong notion of uniformity for Boolean circuits. The climax ofthis part is a log-space algorithm for exploring (undirected) graphs.We then turn to non-deterministic computations, focusing on the com-plexity class NL that is captured by the problem of deciding directedconnectivity of (directed) graphs. The climax of this part is a proofthat NL = coNL, which may be paraphrased as a log-space reductionof directed unconnectivity to directed connectivity.We conclude with a short discussion of the class PSPACE, proving thatthe set of satis�able quanti�ed Boolean formulae is PSPACE-complete(under polynomial-time reductions). We mention the similarity be-tween this proof and the proof that Nspace(s) � Dspace(O(s2)).We stress that, as in the case of time complexity, the main results presented in thischapter hold for any reasonable model of computation.1 In fact, when properlyde�ned, space complexity is even more robust than time complexity. Still, for sakeof clarity, we often refer to the speci�c model of Turing machines.Organization. Space complexity seems to behave quite di�erently from timecomplexity, and seems to require a di�erent mind-set as well as auxiliary conven-tions. Some of the relevant issues are discussed in Section 5.1. We then turn tothe study of logarithmic space complexity (see Section 5.2) and the correspondingnon-deterministic version (see Section 5.3). Finally, we consider polynomial spacecomplexity (see Section 5.4).5.1 General preliminaries and issuesWe start by discussing several very important conventions regarding space com-plexity (see Section 5.1.1). Needless to say, reading Section 5.1.1 is essential forthe understanding of the rest of this chapter. (In contrast, the rather parentheticalSection 5.1.2 can be skipped with no signi�cant loss.) We then discuss a variety ofissues, highlighting the di�erences between space-complexity and time-complexity(see Section 5.1.3). In particular, we call the reader's attention to the compositionlemmas (x5.1.3.1) and related reductions (x5.1.3.3) as well as to the obvious sim-ulation result presented in x5.1.3.2 (i.e., Dspace(s) � Dtime(2O(s))). Lastly, inSection 5.1.4 we relate circuit size to space complexity by considering the space-complexity of circuit evaluation.1The only exceptions appear in Exercises 5.4 and 5.18, which refer to the notion of a crossingsequence. The use of this notion in these proofs presumes that the machine scans its storagedevices in a serial manner. In contrast, we stress that the various notions of an instantaneouscon�guration do not assume such a machine model.

5.1. GENERAL PRELIMINARIES AND ISSUES 1575.1.1 Important conventionsSpace complexity is meant to measure the amount of temporary storage (i.e., com-puter's memory) used when performing a computational task. Since much of ourfocus will be on using an amount of memory that is sub-linear in the input length,it is important to use a model in which one can di�erentiate memory used forcomputation from memory used for storing the initial input and/or the �nal out-put. That is, we do not want to count the input and output themselves withinthe space of computation, and thus formulate that they are delivered on specialdevices that are not considered memory. On the other hand, we have to makesure that the input and output devices cannot be abused for providing work space(which is uncounted for). This leads to the convention by which the input device(e.g., a designated input-tape of a multi-tape Turing machine) is read-only, whereasthe output device (e.g., a designated output-tape of a such machine) is write-only.With this convention in place, we de�ne space-complexity as accounting only forthe use of space on the other (storage) devices (e.g., the work-tapes of a multi-tapeTuring machine).Fixing a concrete model of computation (e.g., multi-tape Turing machines),we denote by Dspace(s) the class of decision problems that are solvable in spacecomplexity s. The space complexity of search problems is de�ned analogously.Speci�cally, the standard de�nition of space complexity (see x1.2.3.5) refers to thenumber of cells of the work-tape scanned by the machine on each input. We prefer,however, an alternative de�nition, which provides a more accurate account of theactual storage. Speci�cally, the binary space complexity of a computation refers tothe number of bits that can be stored in these cells, thus multiplying the number ofcells by the logarithm of the �nite set of work-symbols of the machine.2The di�erence between the two aforementioned de�nitions is mostly immaterial,because it amounts to a constant factor and we will usually discard such factors.Nevertheless, aside from being conceptually right, using the de�nition of binaryspace complexity facilitates some technical details (because the number of possi-ble \instantaneous con�gurations" is explicitly upper-bounded in terms of binaryspace complexity whereas its relation to the standard de�nition depends on themachine in question). Towards such applications, we also count the �nite state ofthe machine in its space complexity. Furthermore, for sake of simplicity, we alsoassume that the machine does not scan the input-tape beyond the boundaries ofthe input, which are indicated by special symbols.3We stress that individual locations of the (read-only) input-tape (or device) maybe read several times. This is essential for many algorithms that use a sub-linearamount of space (because such algorithms may need to scan their input more thanonce while they cannot a�ord copying their input to their storage device). In con-trast, rewriting on (the same location of) the write-only output-tape is inessential,2We note that, unlike in the context of time-complexity, linear speed-up (as in Exercise 4.10)does not seem to represent an actual saving in space resources. Indeed, time can be sped-up byusing stronger hardware (i.e., a Turing machine with a bigger work alphabet), but the actualspace is not really a�ected by partitioning it into bigger chunks (i.e., using bigger cells). This factis demonstrated when considering the binary space complexity of the two machines.3As indicated by Exercise 5.1, little is lost by this natural assumption.

158 CHAPTER 5. SPACE COMPLEXITYand in fact can be eliminated at a relatively small cost (see Exercise 5.2).Summary. Let us compile a list of the foregoing conventions. As stated, the�rst two items on the list are of crucial importance, while the rest are of technicalnature (but do facilitate our exposition).1. Space complexity discards the use of the input and output devices.2. The input device is read-only and the output device is write-only.3. We will usually refer to the binary space complexity of algorithms, wherethe binary space complexity of a machine M that uses the alphabet �, �nitestate set Q, and has standard space complexity SM is de�ned as (log2 jQj) +(log2 j�j)�SM . (Recall that SM measures the number of cells of the temporarystorage device that are used by M during the computation.)4. We will assume that the machine does not scan the input-device beyond theboundaries of the input.5. We will assume that the machine does not rewrite to locations of its output-device (i.e., it write to each cell of the output-device at most once).5.1.2 On the minimal amount of useful computation spaceBearing in mind that one of our main objectives is identifying natural sub-classesof P , we consider the question of what is the minimal amount of space that al-lows for meaningful computations. We note that regular sets [119, Chap. 2] aredecidable by constant-space Turing machines and that this is all that the lattercan decide (see, e.g., [119, Sec. 2.6]). It is tempting to say that sub-logarithmicspace machines are not more useful than constant-space machines, because it seemsimpossible to allocate a sub-logarithmic amount of space. This wrong intuition isbased on the presumption that the allocation of a non-constant amount of spacerequires explicitly computing the length of the input, which in turn requires loga-rithmic space. However, this presumption is wrong: the input itself (in case it isof a proper form) can be used to determine its length (and/or the allowed amountof space).4 In fact, for `(n) = log logn, the class Dspace(O(`)) is a proper su-perset of Dspace(O(1)); see Exercise 5.3. On the other hand, it turns out thatdouble-logarithmic space is indeed the smallest amount of space that is more usefulthan constant space (see Exercise 5.4); that is, for `(n) = log logn, it holds thatDspace(o(`)) = Dspace(O(1)).In spite of the fact that some non-trivial things can be done in sub-logarithmicspace-complexity, the lowest space-complexity class that we shall study in depth islogarithmic space (see Section 5.2). As we shall see, this class is the natural habitatof several fundamental computational phenomena.4Indeed, for this approach to work, we should be able to detect the case that the input is notof the proper form (and do so within sub-logarithmic space).

5.1. GENERAL PRELIMINARIES AND ISSUES 159A parenthetical comment (or a side lesson). Before proceeding, let us high-light the fact that a naive presumption about arbitrary algorithms (i.e., that theuse of a non-constant amount of space requires explicitly computing the length ofthe input) could have led us to a wrong conclusion. This demonstrates the dangerin making \reasonably looking" (but unjusti�ed) presumptions about arbitrary al-gorithms. We need to be fully aware of this danger whenever we seek impossibilityresults and/or complexity lower-bounds.5.1.3 Time versus SpaceSpace-complexity behaves very di�erent from time-complexity and indeed di�erentparadigms are used in studying it. One notable example is provided by the contextof algorithmic composition, discussed next.5.1.3.1 Two composition lemmasUnlike time, space can be re-used; but, on the other hand, intermediate resultsof a computation cannot be recorded for free. These two conicting aspects arecaptured in the following composition lemma.Lemma 5.1 (naive composition): Let f1 : f0; 1g� ! f0; 1g� and f2 : f0; 1g� �f0; 1g� ! f0; 1g� be computable in space s1 and s2, respectively.5 Then f de�nedby f(x) def= f2(x; f1(x)) is computable in space s such thats(n) = max(s1(n); s2(n+ `(n))) + `(n) + �(n) ;where `(n) = maxx2f0;1gnfjf1(x)jg and �(n) = O(log(`(n) + s2(n + `(n)))) =o(s(n)).Lemma 5.1 is useful when ` is relatively small, but in many cases `� max(s1; s2).In these cases, the following composition lemma is more useful.Proof: Indeed, f(x) is computed by �rst computing and storing f1(x), and then re-using the space (used in the �rst computation) when computing f2(x; f1(x)). Thisexplains the dominant terms in s(n); that is, the term max(s1(n); s2(n + `(n)))accounts for the computations themselves (which re-use the same space), whereasthe term `(n) accounts for storing the intermediate result (i.e., f1(x)). The extraterm is due to implementation details. Speci�cally, the same storage device is usedboth for storing f1(x) and for providing work-space for the computation of f2,which means that we need to maintain our location each of these two parts (i.e.,5Here (and throughout the chapter) we assume, for simplicity, that all complexity boundsare monotonically non-decreasing. Another minor inaccuracy (in the text) is that we stated thecomplexity of the algorithm that computes f2 in a somewhat non-standard way. Recall thatby the standard convention, the complexity of an algorithm should be stated in terms of thelength of its input, which in this case is a pair (x; y) that may be encoded as a string of lengthjxj+ jyj+ 2 log2 jxj (but not as a string of length jxj+ jyj). An alternative convention is to statethe complexity of such computations in terms of the length of both parts of the input (i.e., haves : N � N ! N rather than s : N ! N), but we did not do this either.

160 CHAPTER 5. SPACE COMPLEXITYthe location of the algorithm (that computes f2) on f1(x) and its location on itsown work-space). (See further discussion at end of the proof of Lemma 5.2.) Theextra O(1) term accounts for the overhead involved in emulating two algorithms.
x

A2

f(x)

A1

x

A2

f(x)

A1

x

A2

f(x)

A1

f (x)1 f (x)1 f (x)1

counters

The leftmost �gure shows the trivial composition (which just invokesA1 and A2 without attempt to economize storage), the middle �gureshows the naive composition (of Lemma 5.1), and the rightmost �g-ure shows the emulative composition (of Lemma 5.2). In all �guresthe �lled rectangles represent designated storage spaces. The dottedrectangle represents a virtual storage device.Figure 5.1: Algorithmic composition for space-bounded computationLemma 5.2 (emulative composition): Let f1; f2; s1; s2; ` and f be as in Lemma 5.1.Then f is computable in space s such thats(n) = s1(n) + s2(n+ `(n)) +O(log(n+ `(n))) + �(n) ;where �(n) = O(log(s1(n) + s2(n+ `(n)))) = o(s(n)).The alternative compositions are depicted in Figure 5.1 (which also shows the moststraightforward composition that makes no attempt to economize space).Proof: The idea is avoiding the storage of the temporary value of f1(x) by com-puting each of its bits (\on the y") whenever this bit is needed for the computationof f2. That is, we do not start by computing f1(x), but rather start by computingf2(x; f1(x)) although we do not have some of the bits of the relevant input (i.e.,the bits of f1(x)). The missing bits will be computed (and re-computed) wheneverwe need them in the computation of f2(x; f1(x)). Details follow.

5.1. GENERAL PRELIMINARIES AND ISSUES 161Let A1 and A2 be the algorithms (for computing f1 and f2, respectively) guar-anteed in the hypothesis.6 Then, on input x 2 f0; 1gn, we invoke algorithm A2 (forcomputing f2). Algorithm A2 is invoked on a virtual input, and so when emulatingeach of its steps we should provide it with the relevant bit. Thus, we should alsokeep track of the location of A2 on the imaginary (virtual) input tape. WheneverA2 seeks to read the ith bit of its input, where i 2 [n+ `(n)], we provide A2 withthis bit by reading it from x if i � n and invoke A1(x) otherwise. When invokingA1(x) we provide it with a virtual output tape, which means that we get the bitsof its output one-by-one and do not record them anywhere. Instead, we countuntil reaching the (i� n)th output bit, which we then pass to A2 (as the ith bit ofhx; f1(x)i).Note that while invoking A1(x), we suspend the execution of A2 but keep itscurrent con�guration such that we can resume the execution (of A2) once we getthe desired bit. Thus, we need to allocate separate space for the computation of A2and for the computation of A1. In addition, we need to allocate separate storagefor maintaining the aforementioned counters (i.e., we use log2(n+`(n)) bits to holdthe location of the input-bit currently read by A2, and log2 `(n) bits to hold theindex of the output-bit currently produced in the current invocation of A1).A �nal (and tedious) issue is that our description of the composed algorithmrefers to two storage devices, one for emulating the computation of A1 and theother for emulating the computation of A2. The issue is not the fact that thestorage (of the composed algorithm) is partitioned between two devices, but ratherthat our algorithm uses two pointers (one per each of the two storage devices). Incontrast, a (\fair") composition result should yield an algorithm (like A1 and A2)that uses a single storage device with a single pointer to locations on this device.Indeed, such an algorithm can be obtained by holding the two original pointers inmemory; the additional �(n) term accounts for this additional storage.Reection: The algorithm presented in the proof of Lemma 5.2 is wasteful interms of time: it re-computes f1(x) again and again (i.e., once per each access ofA2 to the second part of its input). Indeed, our aim was economizing on space andnot on time (and the two goals may be conicting (see, e.g., [56, Sec. 4.3])).5.1.3.2 An obvious boundThe time complexity of an algorithm is essentially upper-bounded by an exponentialfunction in its space complexity. This is due to an upper-bound on the numberof possible instantaneous \con�gurations" of the algorithm (as formulated in theproof of Theorem 5.3), and to the fact that if the computation passes through thesame con�guration twice then it must loop forever.6We assume, for simplicity, that algorithm A1 never rewrites on (the same location of) itswrite-only output-tape. As shown in Exercise 5.2, this assumption can be justi�ed at an additivecost of O(log `(n)). Alternatively, the idea presented in Exercise 5.2 can be incorporated directlyin the current proof.

162 CHAPTER 5. SPACE COMPLEXITYTheorem 5.3 If an algorithm A has binary space complexity s and halts on everyinput then it has time complexity t such that t(n) � n � 2s(n)+log2 s(n).Note that for s(n) =
(logn), the factor of n can be absorbed by 2O(s(n)), and so wemay just write t(n) = 2O(s(n)). Indeed, throughout this chapter (as in most of thisbook), we will consider only algorithms that halt on every input (see Exercise 5.5for further discussion).Proof: The proof refers to the notion of an instantaneous con�guration (in acomputation). Before starting, we warn the reader that this notion may be givendi�erent de�nitions, each tailored to the application at hand. All these de�nitionsshare the desire to specify variable information that together with some �xed infor-mation determines the next step of the computation being analyzed. In the currentproof, we �x an algorithm A and an input x, and consider as variable the contentsof the storage device (e.g., work-tape of a Turing machine as well as its �nite state)and the machine's location on the input device and on the storage device. Thus,an instantaneous con�guration of A(x) consists of the latter three objects (i.e., thecontents of the storage device and a pair of locations), and can be encoded by abinary string of length `(jxj) = s(jxj) + log2 jxj+ log2 s(jxj).7The key observation is that the computation A(x) cannot pass through the sameinstantaneous con�guration twice, because otherwise the computation A(x) passesthrough this con�guration in�nitely many times, which means that this computa-tion does not halt. This observation is justi�ed by noting that the instantaneouscon�guration, together with the �xed information (i.e., A and x), determines thenext step of the computation. Thus, whatever happens (i steps) after the �rsttime that the computation A(x) passes through con�guration , will also happen(i steps) after the second time that the computation A(x) passes through .By the forgoing observation, we infer that the number of steps taken by A oninput x is at most 2`(jxj), because otherwise the same con�guration will appeartwice in the computation (which contradicts the halting hypothesis). The theoremfollows.5.1.3.3 Subtleties regarding space-bounded reductionsLemmas 5.1 and 5.2 su�ce for the analysis of the e�ect of many-to-one reductionsin the context of space-bounded computations. (By a many-to-one reduction ofthe function f to the function g, we mean a mapping � such that for every x itholds that f(x) = g(�(x)).)81. (In spirit of Lemma 5.1:) If f is reducible to g via a many-to-one reductionthat can be computed in space s1, and g is computable in space s2, then f iscomputable in space s such that s(n) = max(s1(n); s2(`(n))) + `(n) + �(n),7Here we rely on the fact that s is the binary space complexity (and not the standard spacecomplexity); see summary item Nr. 3 in Section 5.1.1.8This is indeed a special case of the setting of Lemmas 5.1 and 5.2 (obtained by letting f1 = �and f2(x; y) = g(y)). However, the results claimed for this special case are better than thoseobtained by invoking the corresponding lemma (i.e., s2 is applied to `(n) rather than to n+ `(n)).

5.1. GENERAL PRELIMINARIES AND ISSUES 163where `(n) denotes the maximum length of the image of the reduction whenapplied to some n-bit string and �(n) = O(log(`(n) + s2(`(n)))) = o(s(n)).2. (In spirit of Lemma 5.2:) For f and g as in Item 1, it follows that f iscomputable in space s such that s(n) = s1(n)+ s2(`(n))+O(log `(n))+ �(n),where �(n) = O(log(s1(n) + s2(`(n)))) = o(s(n)).Note that by Theorem 5.3, it holds that `(n) � 2s1(n)+log2 s1(n)�n. We stress the factthat ` is not upper-bounded by s1 itself (as in the analogous case of time-boundedcomputation), but rather by exp(s1).Things get much more complicated when we turn to general (space-bounded) re-ductions, especially when referring to general reductions that make a non-constantnumber of queries. A preliminary issue is de�ning the space-complexity of gen-eral reductions (i.e., of oracle machines). In the standard de�nition, the length ofthe queries and answers is not counted in the space-complexity, but the queriesof the reduction (resp., answers given to it) are written on (resp., read from) aspecial device that is write-only (resp., read-only) for the reduction (and read-only(resp., write-only) for the invoked oracle). Note that these convention are analo-gous to the conventions regarding input and output (as well as �t the de�nitions ofspace-bounded many-to-one reductions that were outlined in the foregoing items).The foregoing conventions su�ce for de�ning general space-bounded reductions.They also su�ce for obtaining appealing composition results in some cases (e.g., forreductions that make a single query or, more generally, for the case of non-adaptivequeries). But more di�culties arise when seeking composition results for generalreductions, which may make several adaptive queries (i.e., queries that depend onthe answers to prior queries). As we shall show next, in this case it is essential toupper-bound the length of every query and/or every answer in terms of the lengthof the initial input.Teaching note: The rest of the discussion is quite advanced and laconic (but is inessen-tial to the rest of the chapter).Recall that the complexity of the algorithm resulting from the composition ofan oracle machine and an actual algorithm (which implements the oracle) dependson the length of the queries made by the oracle machine. For example, the space-complexity of the foregoing compositions, which referred to single-query reductions,had an s2(`(n)) term (where `(n) represents the length of the query). In general,the length of the �rst query is upper-bounded by an exponential function in thespace complexity of the oracle machine, but the same does not necessarily hold forsubsequent queries, unless some conventions are added to enforce it. For example,consider a reduction that, on input x and access to an oracle f such that jf(z)j =2jzj, invokes the oracle jxj times, where each time it uses as a query the answerobtained to the previous query. This reduction uses constant space, but producesqueries that are exponentially longer than the input, whereas the �rst query of anyconstant-space reduction has length that is linear in its input. This problem can beresolved by placing explicit bounds on the length of the queries that space-boundedreductions are allowed to make; for example, we may bound the length of all queries

164 CHAPTER 5. SPACE COMPLEXITYby the obvious bound that holds for the length of the �rst query (i.e., a reductionof space complexity s is allowed to make queries of length at most 2s(n)+log2 s(n) �n).With the aforementioned convention (or restriction) in place, let us considerthe composition of general space-bounded reductions with a space-bounded imple-mentation of the oracle. Speci�cally, we say that a reduction is (`; `0)-restricted if,on input x, all oracle queries are of length at most `(jxj) and the correspondingoracle answers are of length at most `0(jxj). It turns out that naive composition(in the spirit of Lemma 5.1) remains useful, whereas the emulative composition ofLemma 5.2 breaks down (in the sense that it yield very weak results).1. Following Lemma 5.1, we claim that if � can be solved in space s1 when given(`; `0)-restricted oracle access to �0 and �0 is solvable is space s2, then � issolvable in space s such that s(n) = s1(n)+s2(`(n))+`(n)+`0(n)+�(n), where�(n) = O(log(`(n)+`0(n)+s1(n)+s2(`(n)))) = o(s(n)). This claim is provedby using a naive emulation that allocates separate space for the reduction (i.e.,oracle machine) itself, for the emulation of its query and answer devices, andfor the algorithm solving �0. Note, however, that here we cannot re-use thespace of the reduction when running the algorithm that solves �0, because thereduction's computation continues after the oracle answer is obtained. Theadditional �(n) term accounts for the various pointers of the oracle machine,which need to be stored when algorithm that solves �0 is invoked (cf. lastparagraph in the proof of Lemma 5.2).A related composition result is presented in Exercise 5.7. This compositionrefrains from storing the current oracle query (but does store the correspond-ing answer). It yields s(n) = O(s1(n)+ s2(`(n))+ `0(n)+ log `(n)), which for`(n) < 2O(s1(n)) means s(n) = O(s1(n) + s2(`(n)) + `0(n)).2. Turning to the approach underlying the proof of Lemma 5.2, we get intomore serious trouble. Speci�cally, note that recomputing the answer to theith query requires recomputing the query itself, which unlike in Lemma 5.2is not the input to the reduction but rather depends on the answers to priorqueries, which need to be recomputed as well. Thus, the space required forsuch an emulation is at least linear in the number of queries.We note that one should not expect a general composition result (i.e., in the spirit ofthe foregoing Item 1) in which s(n) = F (s1(n); s2(`(n)))+o(min(`(n); `0(n))), whereF is any function. One demonstration of this fact is implied by the observationthat any computation of space-complexity s can be emulated by a constant-space(2s; 2s)-restricted reduction to a problem that is solvable in constant-space (seeExercise 5.9).Non-adaptive reductions. Composition is much easier in the special case ofnon-adaptive reductions. Loosely speaking, the queries made by such reductionsdo not depend on the answers obtained to previous queries. Formulating thisnotion is not straightforward in the context of space-bounded computation. Inthe context of time-bounded computations, non-adaptive reductions are viewed

5.1. GENERAL PRELIMINARIES AND ISSUES 165as consisting of two algorithms: a query generating algorithm, which generatesa sequence of queries, and an evaluation algorithm, which given the input and asequence of answers (obtained from the oracle) produces the actual output. Thereduction is then viewed as invoking the query generating algorithm (and recordingthe sequence of generated queries), making the designated queries (and recordingthe answers obtained), and �nally invoking the evaluation algorithm on the se-quence of answers. Using such a formulation raises the question of how to describenon-adaptive reductions of small space-complexity. This question is revolved bydesignated special storage devices for the aforementioned sequences (of queries andanswers) and postulating that these devices can be used only as described. Fordetails, see Exercise 5.8. Note that non-adaptivity resolves most of the di�cultiesdiscussed in the foregoing. In particular, the length of each query made by a non-adaptive reduction is upper-bounded by an exponential in the space-complexity ofthe reduction (just as in the case of single-query reductions). Furthermore, com-posing such reductions with an algorithm that implements the oracle is not moreinvolved than doing the same for single-query reductions. Thus, as shown in Ex-ercise 5.8, if � is reducible to �0 via a non-adaptive reduction of space-complexitys1 that makes queries of length at most ` and �0 is solvable is space s2, then � issolvable in space s such that s(n) = O(s1(n)+s2(`(n))). (Indeed `(n) < 2O(s1(n)) �nalways hold.)Reductions to decision problems. Composition in the case of reductions todecision problems is also easier, because also in this case the length of each querymade by the reduction is upper-bounded by an exponential in the space-complexityof the reduction (see Exercise 5.10). Thus, applying the semi-naive compositionresult of Exercise 5.7 (mentioned in the foregoing Item 1) is very appealing. Itfollows that if � can be solved in space s1 when given oracle access to a decisionproblem that is solvable is space s2, then � is solvable in space s such that s(n) =O(s1(n) + s2(2s1(n)+log(n�s1(n)))). Indeed, if the length of each query in such areduction is upper-bounded by `, then we may use s(n) = O(s1(n) + s2(`(n))).These results, however, are of limited interest, because it seems di�cult to constructsmall-space reductions of search problems to decision problems (see x5.1.3.4).We mention that an alternative notion of space-bounded reductions is discussedin x5.2.4.2. This notion is more cumbersome and more restricted, but in somecases it allows recursive composition with a smaller overhead than o�ered by theaforementioned composition results.5.1.3.4 Search versus decisionRecall that in the setting of time-complexity we allowed ourselves to focus ondecision problems, since search problems could be e�ciently reduced to decisionproblems. Unfortunately, these reductions (e.g., the ones underlying Theorem 2.10and Proposition 2.15) are not adequate for the study of (small) space-complexity.Recall that these reduction extend the currently stored pre�x of a solution bymaking a query to an adequate decision problem. Thus, these reductions have

166 CHAPTER 5. SPACE COMPLEXITYspace-complexity that is lower-bounded by the length of the solution, which makesthem irrelevant for the study of small space-complexity.In light of the foregoing, the study of the space-complexity of search problemscannot be \reduced" to the study of the space-complexity of decision problems.Thus, while much of our exposition will focus on decision problems, we will keepan eye on the corresponding search problems. Indeed, in many cases, the ideasdeveloped in the study of the decision problems can be adapted to the study of thecorresponding search problems (see, e.g., Exercise 5.17).5.1.3.5 Complexity hierarchies and gapsRecall that more space allows for more computation (see Theorem 4.9), providedthat the space-bounding function is \nice" in an adequate sense. Actually, theproofs of space-complexity hierarchies and gaps are simpler than the analogousproofs for time-complexity, because emulations are easier in the context of space-bounded algorithms (cf. Section 4.3).5.1.3.6 Simultaneous time-space complexityRecall that, for space complexity that is at least logarithmic, the time of a compu-tation is always upper-bounded by an exponential function in the space complexity(see Theorem 5.3). Thus, polylogarithmic space complexity may extend beyondpolynomial-time, and it make sense to de�ne a class that consists of all decisionproblems that may be solved by a polynomial-time algorithm of polylogarithmicspace complexity. This class, denoted SC, is indeed a natural sub-class of P (andcontains the class L, which is de�ned in Section 5.2.1).9In general, one may de�ne DTiSp(t; s) as the class of decision problems solvableby an algorithm that has time complexity t and space complexity s. Note thatDTiSp(t; s) � Dtime(t) \ Dspace(s) and that a strict containment may hold.We mention that DTiSp(�; �) provides the arena for the only known absolute (andhighly non-trivial) lower-bound regarding NP ; see [75]. We also note that lowerbounds on time-space trade-o�s (see, e.g., [56, Sec. 4.3]) may be stated as referringto the classes DTiSp(�; �).5.1.4 Circuit EvaluationRecall that Theorem 3.1 asserts the existence of a polynomial-time algorithm that,given a circuit C : f0; 1gn ! f0; 1gm and an n-bit long string x, returns C(x). Forcircuits of bounded fan-in, the space complexity of such an algorithm can be madelinear in the depth of the circuit (which may be logarithmic in its size). This isobtained by the following DFS-type algorithm.The algorithm (recursively) determines the value of a gate in the circuit by�rst determining the value of its �rst in-coming edge and next determining thevalue of the second in-coming edge. Thus, the recursive procedure, started at each9We also mention that BPL � SC, where BPL is de�ned in x6.1.4.1 and the result is provedin Section 8.4 (see Theorem 8.23).

5.2. LOGARITHMIC SPACE 167output terminal of the circuit, needs only store the path that leads to the currentlyprocessed vertex as well as the temporary values computed for each ancestor. Notethat this path is determined by indicating, for each vertex on the path, whether wecurrently process its �rst or second in-coming edge. In the case that we currentlyprocess the vertex's second in-coming edge, we need also store the value computedfor its �rst in-coming edge.The temporary storage used by the foregoing algorithm, on input (C; x), is thus2dC + O(log jxj+ log jC(x)j), where dC denotes the depth of C. The �rst term inthe space-bound accounts for the core activity of the algorithm (i.e., the recursion),whereas the other terms account for the overhead involved in manipulating theinitial input and �nal output (i.e., assigning the bits of x to the correspondinginput terminals of C and scanning all output terminals of C).Note: Further connections between circuit-complexity and space-complexity arementioned in Section 5.2.3 and x5.3.2.2.5.2 Logarithmic SpaceAlthough Exercise 5.3 asserts that \there is life below log-space," logarithmic spaceseems to be the smallest amount of space that supports interesting computationalphenomena. In particular, logarithmic space is required for merely maintainingan auxiliary counter that holds a position in the input, which seems required inmany computations. On the other hand, logarithmic space su�ces for solving manynatural computational problems, for establishing reductions among many naturalcomputational problems, and for a stringent notion of uniformity (of families ofBoolean circuits). Indeed, an important feature of logarithmic-space computationsis that they are a natural subclass of the polynomial-time computations (see The-orem 5.3).5.2.1 The class LFocusing on decision problems, we denote by L the class of decision problemsthat are solvable by algorithms of logarithmic space complexity; that is, L =[cDspace(`c), where `c(n) def= c log2 n. Note that, by Theorem 5.3, L � P . Ashinted, many natural computational problems are in L (see Exercises 5.6 and 5.12as well as Section 5.2.4). On the other hand, it is widely believed that L 6= P .5.2.2 Log-Space ReductionsAnother class of important log-space computations is the class of logarithmic spacereductions. In light of the subtleties discussed in x5.1.3.3, we focus on the case ofmany-to-one reductions. Analogously to the de�nition of Karp-reductions (De�ni-tion 2.11), we say that f is a log-space (many-to-one) reduction of S to S0 if f islog-space computable and, for every x, it holds that x 2 S if and only if f(x) 2 S0.By Lemma 5.2 (and Theorem 5.3), if S is log-space reducible to some set in L

168 CHAPTER 5. SPACE COMPLEXITYthen S 2 L. Similarly, one can de�ne a log-space variant of Levin-reductions (Def-inition 2.12). Both types of reductions are transitive (see Exercise 5.11). Notethat Theorem 5.3 applies in this context and implies that these reductions runin polynomial-time. Thus, the notion of a log-space many-to-one reduction is aspecial case of a Karp-reduction.We observe that all known Karp-reductions establishing NP-completeness re-sults are actually log-space reductions. This is easily veri�able in the case of thereductions presented in Section 2.3.3 (as well as in Section 2.3.2). For example,consider the generic reduction to CSAT presented in the proof of Theorem 2.21: Theconstructed circuit is \highly uniform" and can be easily constructed in logarithmic-space (see also Section 5.2.3). A degeneration of this reduction su�ces for provingthat every problem in P is log-space reducible to the problem of evaluating a givencircuit on a given input. Recall that the latter problem is in P , and thus we maysay that it is P-complete under log-space reductions.Theorem 5.4 (The complexity of Circuit Evaluation): Let CEVL denote the set ofpairs (C;�) such that C is a Boolean circuit and C(�) = 1. Then CEVL is in Pand every problem in P is log-space Karp-reducible to CEVL.Proof Sketch: Recall that the observation underlying the proof of Theorem 2.21(as well as the proof of Theorem 3.6) is that the computation of a Turing machinecan be emulated by a (\highly uniform") family of circuits. In the proof of The-orem 2.21, we hardwired the input to the reduction (denoted x) into the circuit(denoted Cx) and introduced input terminals corresponding to the bits of the NP-witness (denoted y). In the current context we leave x as an input to the circuit,while noting that the auxiliary NP-witness does not exists (or has length zero).Thus, the reduction from S 2 P to CEVL maps the instance x (for S) to the pair(Cjxj; x), where Cjxj is a circuit that emulates the computation of the machine thatdecides membership in S (on any jxj-bit long input). For the sake of future use (inSection 5.2.3), we highlight the fact that Cjxj can be constructed by a log-spacemachine that is given the input 1jxj.The impact of P-completeness under log-space reductions. Indeed, The-orem 5.4 implies that L 6= P if any only if CEVL 62 L. Other natural problemswere proved to have the same property (i.e., being P-complete under log-spacereductions; cf. [57]).Log-space reductions are used to de�ne completeness with respect to otherclasses that are assumed to extend beyond L. This restriction of the power of thereduction is de�nitely needed when the class of interest is contained in P (e.g.,NL, see Section 5.3.2). In general, we say that a problem � is C-complete underlog-space reductions if � is in C and every problem in C is log-space (many-to-one)reducible to �. In such a case, if � 2 L then C � L.As in the case of polynomial-time reductions, we wish to stress that the relevanceof log-space reductions extends beyond being a tool for de�ning complete problems.

5.2. LOGARITHMIC SPACE 1695.2.3 Log-Space uniformity and stronger notionsRecall that a basic notion of uniformity of a family of circuits (Cn)n, introduced inDe�nition 3.3, requires the existence of an algorithm that on input n outputs thedescription of Cn, while using time that is polynomial in the size of Cn. Strengthen-ing De�nition 3.3, we say that a family of circuits (Cn)n is log-space uniform if thereexists an algorithm that on input n outputs Cn while using space that is logarithmicin the size of Cn. As implied by the following Theorem 5.5 (and implicitly provedin the foregoing Theorem 5.4), the computation of any polynomial-time algorithmcan be emulated by a log-space uniform family of (bounded fan-in) polynomial-sizecircuits. On the other hand, in continuation to Section 5.1.4, we note that log-space uniform circuits of bounded fan-in and logarithmic depth can be emulated byan algorithm of logarithmic space complexity (i.e., \log-space uniform NC1" is inL; see Exercise 5.12).As mentioned in Section 3.1.1, stronger notions of uniformity have also been con-sidered. Speci�cally, in analogy to the discussion in xE.2.1.2, we say that (Cn)n hasa strongly explicit construction if there exists an algorithm that runs in polynomial-time and linear-space such that, on input n and v, the algorithm returns the labelof vertex v in Cn as well as the list of its children (or an indication that v is nota vertex in Cn). Note that if (Cn)n has a strongly explicit construction then itis log-space uniform, because the length of the description of a vertex in Cn islogarithmic in the size of Cn. The proof of Theorem 5.4 actually establishes thefollowing.Theorem 5.5 (strongly uniform circuits emulating P): For every polynomial-time algorithm A there exists a strongly explicit construction of a family of polynomial-size circuits (Cn)n such that for every x it holds that Cjxj(x) = A(x).Proof Sketch: As noted already, the circuits (Cjxj)jxj (considered in the proof ofTheorem 5.4) are highly uniform. In particular, the underlying (directed) graphconsists of constant-size gadgets that are arranged in an array and are only con-nected to adjacent gadgets (see the proof of Theorem 2.21).5.2.4 Undirected ConnectivityExploring a graph (e.g., towards determining its connectivity) is one of the mostbasic and ubiquitous computational tasks regarding graphs. The standard graphexploration algorithms (e.g., BFS and DFS) require temporary storage that is linearin the number of vertices. In contrast, the algorithm presented in this section usestemporary storage that is only logarithmic in the number of vertices. In additionto demonstrating the power of log-space computation, this algorithm (or rather itsactual implementation) provides a taste of the type of issues arising in the designof sophisticated log-space algorithms.The intuitive task of \exploring a graph" is captured by the task of decidingwhether a given graph is connected.10 In addition to the intrinsic interest in this10See Appendix G.1 for basic terminology.

170 CHAPTER 5. SPACE COMPLEXITYnatural computational problem, we mention that it is computationally equivalent(under log-space reductions) to numerous other computational problems (see, e.g.,Exercise 5.16). We note that some related computational problems seem actuallyharder; for example, determining directed connectivity (in directed graphs) cap-tures the essence of the class NL (see Section 5.3.2). In view of this state of a�airs,we emphasize the fact that the computational problem considered here refers toundirected graphs by calling it undirected connectivity.Theorem 5.6 Deciding undirected connectivity (UCONN) is in LThe algorithm is based on the fact that UCONN is easy in the special case that thegraph consists of a collection of constant degree expanders.11 In particular, if thegraph has constant degree and logarithmic diameter then it can be explored usinga logarithmic amount of space (which is used for determining a generic path froma �xed starting vertex).12Needless to say, the input graph does not necessarily consist of a collection ofconstant degree expanders. The main idea is then to transform the input graph intoone that does satisfy the aforementioned condition, while preserving the numberof connected components of the graph. Furthermore, the key point is performingsuch a transformation in logarithmic space. The rest of this section is devoted tothe description of such a transformation. We �rst present the basic approach andnext turn to the highly non-trivial implementation details.Teaching note: We recommend leaving the actual proof of Theorem 5.6 (i.e., therest of this section) for advanced reading. The main reason is its heavy dependence ontechnical material that is beyond the scope of a course in complexity theory.Getting started. We �rst note that it is easy to transform the input graph G0 =(V0; E0) into a constant-degree graph G1 that preserves the number of connectedcomponents in G0. Speci�cally, each vertex v 2 V having degree d(v) (in G0) isrepresented by a cycle Cv of d(v) vertices (in G1), and each edge fu; vg 2 E0 isreplaced by an edge having one end-point on the cycle Cv and the other end-pointon the cycle Cu such that each vertex in G1 has degree three (i.e., has two cycleedges and a single intra-cycle edge). This transformation can be performed usinglogarithmic space, and thus (relying on Lemma 5.2) we assume that the inputgraph has degree three.Our goal is to transform this graph into a collection of expanders, while main-taining the number of connected components. In fact, we shall describe the trans-formation while pretending that the graph is connected, while noting that otherwisethe transformation acts separately on each connected component.11At this point, the reader may think that expanders are merely graphs of logarithmic diameter.At a later stage, we will rely on a basic familiarity with a speci�c de�nition of expanders aswell as with a speci�c technique for constructing them. The relevant material is contained inAppendix E.2.12Indeed, this is analogous to the circuit evaluation algorithm of Section 5.1.4, where the circuitdepth corresponds to the diameter and the bounded fan-in corresponds to the constant degree.For further details, see Exercise 5.13.

5.2. LOGARITHMIC SPACE 171A couple of technicalities. For a constant integer d > 2 determined so as tosatisfy some additional condition, we may assume that the input graph is actuallyd2-regular (albeit is not necessarily simple). Furthermore, we shall assume thatthis graph is not bipartite. Both assumptions can be justi�ed by augmenting theaforementioned construction of a 3-regular graph by adding d2 � 3 self-loops toeach vertex.Prerequisites: Evidently, the notion of an expander graph plays a key role inthe aforementioned transformation. For a brief review of this notion, the reader isreferred to Appendix E.2. In particular, we assume familiarity with the algebraicde�nition of expanders (as presented in xE.2.1.1). Furthermore, the transforma-tion relies heavily on the zig-zag product, de�ned in xE.2.2.2, and the followingexposition assume familiarity with this de�nition.5.2.4.1 The basic approachRecall that our goal is to transform G1 into an expander. The transformation isgradual and consists of logarithmically many iterations, where in each iteration anadequate expansion parameter doubles while the graph becomes a constant factorlarger and maintains the degree bound. The (expansion) parameter of interest isthe gap between the relative second eigenvalue of the graph and 1 (see xE.2.1.1). Aconstant value of this parameter indicates that the graph is an expander. Initially,this parameter is lower-bounded by
(n�2), where n is the size of the graph. Sincethis parameter doubles in each iteration, after logarithmically many iterations thisparameter is lower-bounded by a constant (and hence the current graph is anexpander).The crux of the aforementioned gradual transformation is the transformationthat takes place in each single iteration. This transformation is supposed to doublethe expansion parameter while maintaining the graph's degree and increasing thenumber of vertices by a constant factor. The transformation combines the (stan-dard) graph powering operation and the zig-zag product presented in xE.2.2.2.Speci�cally, for adequate positive integers d and c, we start with the d2-regulargraph G1 = (V1; E1), and go through a logarithmic number of iterations lettingGi+1 = Gciz G for i = 1; :::; t � 1, where G is a �xed d-regular graph with d2cvertices. That is, in each iteration, we raise the current graph (i.e., Gi) to thepower c and combine the resulting graph (d2c-regular) with the �xed (d2c-vertex)graph G using the zig-zag product. Thus, Gi+1 is a d2-regular graph with di�2c � jV1jvertices, where this invariant is preserved by de�nition of the zig-zag product (i.e.,the zig-zag product of a d2c-regular graph G0 = (V 0; E0) with the d-regular graphG (which has d2c vertices) yields a d2-regular graph with d2c � jV 0j vertices).The analysis of the improvement in the expansion parameter, denoted �2(�) def=1� ��2(�), relies on Eq. (E.10). Recall that Eq. (E.10) implies that if ��2(G) < 1=2then 1 � ��2(G0z G) > (1 � ��2(G0))=3. Thus, the �xed graph G is selected such

172 CHAPTER 5. SPACE COMPLEXITYthat ��2(G) < 1=2, which requires a su�ciently large constant d. Thus, we have�2(Gi+1) = 1� ��2(Gciz G) > 1� ��2(Gci)3 = 1� ��2(Gi)c3whereas, for a su�ciently large constant integer c > 0, it holds that 1� ��2(Gi)c >min(6 � (1 � ��2(Gi)); 1=2).13 It follows that that �2(Gi+1) > min(2�2(Gi); 1=6).Thus, setting t = O(log jV1j) and using �2(G1) = 1 � ��2(G1) =
(jV1j�2), weobtain �2(Gt) > 1=6 as desired.Needless to say, a \detail" of crucial importance is the ability to transform G1into Gt via a log-space computation. Indeed, the transformation of Gi to Gi+1can be performed in logarithmic space (see Exercise 5.14), but we need to composea logarithmic number of such transformations. Unfortunately, the standard com-position lemmas for space-bounded algorithms involve overhead that we cannota�ord.14 Still, taking a closer look at the transformation of Gi to Gi+1, one maynote that it is highly structured and in some sense it can be implemented in con-stant space and supports a stronger composition result that incurs only a constantamount of storage per iteration. The resulting implementation (of the iterativetransformation of G1 to Gt) and the underlying formalism will be the subject ofx5.2.4.2. (An alternative implementation, provided in [183], can be obtained byunraveling the composition.)5.2.4.2 The actual implementationThe space-e�cient implementation of the iterative transformation outlined in x5.2.4.1is based on the observation that we do not need to explicitly construct the variousgraphs but merely provide \oracle access" to them. This observation is crucialwhen applied to the intermediate graphs; that is, rather than constructing Gi+1,when given Gi as input, we show how to provide oracle access to Gi+1 (i.e., an-swer \neighborhood queries" regarding Gi+1) when given oracle access to Gi (i.e.,an oracle that answers neighborhood queries regarding Gi). This means that weview Gi and Gi+1 (or rather their incidence lists) as functions (to be evaluated)rather than as strings (to be printed), and show how to reduce the task of �ndingneighbors in Gi+1 (i.e., evaluating the \incidence function" at a given vertex) tothe task of �nding neighbors in Gi.A clarifying discussion. Note that here we are referring to oracle machinesthat access a �nite oracle, which represents a �nite variable object (which, in turn,is an instance of some computational problem). Such a machine provides access toa complex object by using its access to a more basic object, which is represented bythe oracle. Speci�cally, such a machine get an input, which is a \query" regarding13Consider the following two cases: In the case that �2(Gi) < (1 � (1=c)), show that 1 ��2(Gi)c > 1=2. Otherwise, let " def= 1� �2(Gi), and using " � 1=c show that 1� �2(Gi)c > c"=2.14We cannot a�ord the naive composition (of Lemma 5.1), because it causes an overhead linearin the size of the intermediate result. As for the emulative composition (of Lemma 5.2), it sumsup the space complexities of the composed algorithms (not to mention adding another logarithmicterm), which would result in a log-squared bound on the space complexity.

5.2. LOGARITHMIC SPACE 173the complex object (i.e, the object that the machine tries to emulate), and producean output (which is the answer to the query). Analogously, these machines makequeries, which are queries regarding another object (i.e., the one represented in theoracle), and obtain corresponding answers.15Like in x5.1.3.3, queries are made via a special write-only device and the answersare read from a corresponding read-only device, where the use of these devices isnot charged in the space complexity. With these conventions in place, we claimthat neighborhoods in the d2-regular graph Gi+1 can be computed by a constant-space oracle machine that is given oracle access to the d2-regular graph Gi. Thatis, letting gi : Vi � [d2] ! Vi � [d2] (resp., gi+1 : Vi+1 � [d2] ! Vi+1 � [d2]) denotethe edge-rotation function16 of Gi (resp., Gi+1), we have:Claim 5.7 There exists a constant-space oracle machine that evaluates gi+1 whengiven oracle access to gi, where the state of the machine is counted in the spacecomplexity.Proof Sketch: We �rst show that the two basic operation that underly the def-inition of Gi+1 (i.e., powering and zig-zag product with a constant graph) can beperformed in constant-space.The edge-rotation function of G2i (i.e., the square of the graph Gi) can beevaluated at any desired pair, by evaluating the edge-rotation function of Gi twice,and using a constant amount of space. Speci�cally, given v 2 Vi and j1; j2 2 [d2],we compute gi(gi(v; j1); j2), which is the edge-rotation of (v; hj1; j2i) in G2i , asfollows. First, making the query (v; j1), we obtain the edge-rotation of (v; j1),denoted (u; k1). Next, making the query (u; j2), we obtain (w; k2), and �nally weoutput (w; hk2; k1i). We stress that we only use the temporary storage to recordk1, whereas u is directly copied from the oracle answer device to the oracle querydevice. Accounting also for a constant number of states needed for the variousstages of the foregoing activity, we conclude that graph squaring can be performedin constant-space. The argument extends to the task of raising the graph to anyconstant power.Turning to the zig-zag product (of an arbitrary regular graph G0 with a �xedgraph G), we note that the corresponding edge-rotation function can be evaluatedin constant-space (given oracle access to the edge-rotation function of G0). Thisfollows directly from Eq. (E.8), noting that the latter calls for a single evaluationof the edge-rotation function of G0 and two simple modi�cations that only dependon the constant-size graph G (and a�ect a constant number of bits of the relevant15Indeed, the current setting (in which the oracle represents a �nite variable object, which inturn is an instance of some computational problem) is di�erent from the standard setting, wherethe oracle represents a �xed computational problem. Still the mechanism (and/or operations)of these two types of oracle machines is the same: They both get an input (which here is a\query" regarding a variable object rather than an instance of a �xed computational problem),and produce an output (which here is the answer to the query rather than a \solution" for thegiven instance). Analogously, these machines make queries (which here are queries regardinganother variable object rather than queries regarding another �xed computational problem), andobtain corresponding answers.16Recall that the edge-rotation function of a graph maps the pair (v; j) to the pair (u; k) ifvertex u is the jth neighbor of vertex v and v is the kth neighbor of u (see xE.2.2.2).

174 CHAPTER 5. SPACE COMPLEXITYstrings). Again, using the fact that it su�ces to copy vertex names from the inputto the oracle query device (or from the oracle answer device to the output), weconclude that the aforementioned activity can be performed using constant space.The argument extends to a sequential composition of a constant number ofoperations of the aforementioned type (i.e., graph squaring and zig-zag productwith a constant graph).Recursive composition. Using Claim 5.7, we wish to obtain a O(t)-space oraclemachine that evaluates gt by making oracle calls to g1, where t = O(log jV1j). Suchan oracle machine will yield a log-space transformation of G1 to Gt (by evaluatinggt at all possible values). It is tempting to hope that an adequate compositionlemma, when applied to Claim 5.7, will yield the desired O(t)-space oracle machine(reducing the evaluation of gt to g1). This is indeed the case, except that theadequate composition lemma is still to be developed (as we do next).We �rst note that applying a naive composition (as in Lemma 5.1) amountsto an additive overhead of O(log jV1j) per each composition. But we cannot a�ordmore than an amortized constant additive overhead per composition. Applying theemulative composition (as in Lemma 5.2) causes a multiplicative overhead per eachcomposition, which is certainly una�ordable. The composition developed next is avariant of the naive composition, which is bene�cial in the context of recursive calls.The basic idea is deviating from the paradigm that allocates separate input/outputand query devices to each level in the recursion, and combining all these devicesin a single (\global") device which will be used by all levels of the recursion. Thatis, rather than following the \structured programming" methodology of using lo-cally designated space for passing information to the subroutine, we use the \badprogramming" methodology of passing information through global variables. (Asusual, this notion is formulated by referring to the model of multi-tape Turingmachine, but it can be formulated in any other reasonable model of computation.)De�nition 5.8 (global-tape oracle machines): A global-tape oracle machine is de-�ned as an oracle machine (cf. De�nition 1.11), except that the input, output andoracle tapes are replaced by a single global-tape. In addition, the machine has aconstant number of work tapes, called the local-tapes. The machine obtains its inputfrom the global-tape, writes each query on this very tape, obtains the correspondinganswer from this tape, and writes its �nal output on this tape. (We stress that, asa result of invoking the oracle f , the contents of the global-tape changes from q tof(q).)17 The space complexity of such a machine is stated when referring separatelyto its use of the global-tape and to its use of the local-tapes.Clearly, any ordinary oracle machine can be converted into an equivalent global-tape oracle machine. The resulting machine uses a global-tape of length at mostn + ` + m, where n denotes the length of the input, ` denote the length of the17This means that the prior contents of the global-tape (i.e., the query q) is lost (i.e., it isreplaced by the answer f(q)). Thus, if we wish to keep such prior contents then we need to copyit to a local-tape. We also stress that, according to the standard oracle invocation conventions,the head location after the oracle responds is at the left-most cell of the global-tape.

5.2. LOGARITHMIC SPACE 175longest query or oracle answer, and m denotes the length of the output. However,combining these three di�erent tapes into one global-tape seems to require holdingseparate pointers for each of the original tapes, which means that the local-tape hasto store three corresponding counters (in addition to storing the original work-tape).Thus, the resulting machine uses a local-tape of length w+log2 n+log2 `+log2m,where w denotes the space complexity of the original machine and the additionallogarithmic terms (which are logarithmic in the length of the global-tape) accountfor the aforementioned counters.Fortunately, the aforementioned counters can be avoided in the case that theoriginal oracle machine can be described as an iterative sequence of transformations(i.e., the input is transformed to the �rst query, and the ith answer is transformedto the i+1st query or to the output, all while maintaining auxiliary information onthe work-tape). Indeed, the machine presented in the proof of Claim 5.7 has thisform, and thus it can be implemented by a global-tape oracle machine that usesa global-tape not longer than its input and a local-tape of constant length (ratherthan a local-tape of length that is logarithmic in the length of the global-tape).Claim 5.9 (Claim 5.7, revisited): There exists a global-tape oracle machine thatevaluates gi+1 when given oracle access to gi, while using global-tape of lengthlog2(d2 � jVi+1j) and a local-tape of constant length.Proof Sketch: Following the proof of Claim 5.7, we merely indicate the exactuse of the two tapes. For example, recall that the edge-rotation function of thesquare of Gi is evaluated at (v; hj1; j2i) by evaluating the edge-rotation functionof the original graph �rst at (v; j1) and then at (u; j2), where (u; k1) = gi(v; j1).This means the global-tape machine �rst reads (v; hj1; j2i) from the global-tapeand replaces it by the query (v; j1), while storing j2 on the local-tape. Thus,the machine merely deletes a constant number of bits from the global-tape (andleaves its pre�x intact). After invoking the oracle, the machine copies k1 fromthe global-tape (which currently holds (u; k1)) to its local-tape, and copies j2 fromits local-tape to the global-tape (such that it contains (u; j2)). After invoking theoracle for the second time, the global-tape contains (w; k2) = gi(u; j2), and themachine merely modi�es it to (w; hk2; k1i), which is the desired output.Similarly, note that the edge-rotation function of the zig-zag product of thevariable graph G0 with the �xed graph G is evaluated at (hu; ii; h�; �i) by queryingG0 at (u;E�(i)) and outputting (hv; E�(j0)i; h�; �i), where (v; j0) denotes the oracleanswer (see Eq. (E.8)). This means that the global-tape oracle machine �rst copies�; � from the global-tape to the local-tape, transforms the contents of the global-tape from (hu; ii; h�; �i) to (u;E�(i)), and makes an analogous transformation afterthe oracle is invoked.Composing global-tape oracle machines. In the proof of Claim 5.9, we im-plicitly used sequential composition of computations conducted by global-tape or-acle machines.18 In general, when sequentially composing such computations the18A similar composition took place in the proof of Claim 5.7, but in Claim 5.9 we asserted astronger feature of this speci�c computation.

176 CHAPTER 5. SPACE COMPLEXITYlength of the global-tape (resp., local-tape) is the maximum among all composedcomputations; that is, the current formalism o�ers a tight bound on naive sequentialcomposition (as opposed to Lemma 5.1). Furthermore, global-tape oracle machinesare bene�cial in the context of recursive composition, as indicated by Lemma 5.10(which relies on this model in a crucial way). The key observation is that all levelsin the recursive composition may re-use the same global storage, and only the localstorage gets added. Consequently, we have the following composition lemma.Lemma 5.10 (recursive composition in the global-tape model): Suppose that thereexists a global-tape oracle machine that, for every i = 1; :::; t�1, computes fi+1 bymaking oracle calls to fi while using a global-tape of length L and a local-tape oflength li, which also accounts for the machine's state. Then ft can be computed by astandard oracle machine that makes calls to f1 and uses space L+Pt�1i=1(li+log2 li).We shall apply this lemma with fi = gi and t = O(log jV1j) = O(log jVtj), using thebounds L = log2(d2 � jVtj) and li = O(1) (as guaranteed by Claim 5.9). Indeed, inthis application L equals the length of the input to ft = gt.Proof Sketch: We compute ft by allocating space for the emulation of the global-tape and the local-tapes of each level in the recursion. We emulate the recursivecomputation by capitalizing on the fact that all recursive levels use the same global-tape (for making queries and receiving answers). Recall that in the actual recursion,each level may use the global-tape arbitrarily as long as when it returns controlto the invoking machine the global-tape contains the right answer. Thus, theemulation may do the same, and emulate each recursive call by using the spaceallocated for the global-tape as well as the space designated for the local-tapeof this level. The emulation should also store the locations of the other levelsof the recursion on the corresponding local-tapes, but the space needed for this(i.e.,Pt�1i=1 log2 li) is clearly smaller than the length of the various local-tapes (i.e.,Pt�1i=1 li).Conclusion. Combining Claim 5.9 and Lemma 5.10, we conclude that the evalu-ation of gO(log jV1j) can be reduced to the evaluation of g1 in space O(log jV1j); thatis, gO(log jV1j) can be computed by a standard oracle machine that makes calls tog1 and uses space O(log jV1j). Recalling that G1 can be constructed in log-space(based on the input graph G0), we infer that G0 = GO(log jV1j) can be constructedin log-space. Theorem 5.6 follows by recalling that G0 (which has constant degreeand logarithmic diameter) can be tested for connectivity in log-space (see Exer-cise 5.13). Using a similar argument, we can test whether a given pair of verticesare connected in the input graph (see Exercise 5.15). Furthermore, a correspondingpath can be found within the same complexity (see Exercise 5.17).5.3 Non-Deterministic Space ComplexityThe di�erence between space-complexity and time-complexity is quite striking inthe context of non-deterministic computations. One phenomenon is the huge gap

5.3. NON-DETERMINISTIC SPACE COMPLEXITY 177between the power of two formulation of non-deterministic space-complexity (seeSection 5.3.1), which stands in contrast to the fact that the analogous formulationsare equivalent in the context of time-complexity. We also highlight the contrastbetween various results regarding (the standard model of) non-deterministic space-bounded computation (see Section 5.3.2) and the analogous questions in the con-text of time-complexity; one good example is the \question of complementation"(cf. x5.3.2.3).5.3.1 Two modelsRecall that non-deterministic time-bounded computations were de�ned via twoequivalent models. In the o�-line model (underlying the de�nition of NP as aproof system (see De�nition 2.5)) non-determinism is captured by reference to theexistential choice of an auxiliary (\non-deterministic") input. In contrast, in theon-line model (underlying the traditional de�nition of NP (see De�nition 2.7))non-determinism is captured by reference to the non-deterministic choices of themachine itself. In the context of time-complexity, these models are equivalentbecause the latter on-line choices can be recorded (almost) for free (see the proofof Theorem 2.8). However, such a recording is not free of charge in the context ofspace-complexity.Let us take a closer look at the relation between the o�-line and on-line models.The fact that the o�-line model can emulate the on-line model is almost generic;that is, it holds for any reasonable notion of complexity, because it is based onthe fact that the o�-line machine can emulate on-line choices by using its non-deterministic input (and without signi�cantly e�ecting the complexity measure).In contrast, the emulation of the o�-line model by the on-line model is enabledby the fact that in the context of time-complexity an on-line machine may store(and re-use) a sequence of non-deterministic (on-line) choices without signi�cantlye�ecting the running-time (i.e., almost \free of charge"). This naive emulation (ofthe o�-line model on the on-line model) is not free of charge in the context of space-bounded computation. Furthermore, typically the number of non-deterministicchoices is much larger than the space-bound, and thus the naive emulation is notpossible in the context of space-complexity (because it is prohibitively expensive interms of space-complexity). Let us recapitulate the two models and consider therelation between them in the context of space-complexity.In the standard model, called the on-line model, the machine makes non-deterministicchoices \on the y" (as in De�nition 2.7).19 Thus, if the machine may need to re-fer to such a non-deterministic choice at a latter stage in its computation, then itmust store this choice on its storage device (and be charged for it). In contrast,in the so-called o�-line model the non-deterministic choices are provided from theoutside as the bits of a special non-deterministic input. This non-deterministic19An alternative but equivalent de�nition is obtained by considering machines that read a non-deterministic input from a special read-only tape that can be read only in one direction. Thisstands in contrast to the o�-line model, where the non-deterministic input is presented on aread-only tape that can be scanned freely.

178 CHAPTER 5. SPACE COMPLEXITYinput is presented on a special read-only device (or tape) that can be scanned inboth directions like the main input.We denote by Nspaceon-line(s) (resp., Nspaceo�-line(s)) the class of sets thatare acceptable by an on-line (resp., o�-line) non-deterministic machine having spacecomplexity s. We stress that, as in De�nition 2.7, the set accepted by a non-deterministic machineM is the set of strings x such that there exists a computationofM on input x that is accepting. (In the case of an on-line machine this existentialstatement refers to possible non-deterministic choices of the machine itself, whereasin the case of an o�-line machine we refer to a possible choice of a correspondingnon-deterministic input.)The relationship between these two types of classes is not obvious. Indeed,Nspaceon-line(s) � Nspaceo�-line(s), but (in general) containment does not holdin the opposite direction. In fact, for s that is at least logarithmic, not only thatNspaceon-line(s) 6= Nspaceo�-line(s) but ratherNspaceon-line(s) � Nspaceo�-line(s0),where s0(n) = O(log s(n)) = o(s(n)). Furthermore, for s that is at least linear, itholds that Nspaceon-line(s) = Nspaceo�-line(�(log s)); see Exercise 5.18.Before proceeding any further, let us justify the focus on the on-line model inthe rest of this section. Indeed, the o�-line model �ts better the motivations toNP (as presented in Section 2.1.2), but the on-line model seems more adequatefor the study of non-deterministic in the context of space complexity. One reasonis that an o�-line non-deterministic input can be used to code computations (seeExercise 5.18), and in a sense allows to \cheat" with respect to the \actual" spacecomplexity of the computation. This is reected in the fact that the o�-line modelcan emulate the on-line model while using space that is logarithmic in the spaceused by the on-line model. A related phenomenon is that Nspaceo�-line(s) is onlyknown to be contained in Dtime(22s), whereas Nspaceon-line(s) � Dtime(2s).This fact motivates the study of NL = Nspaceon-line(log), as a study of a (nat-ural) sub-class of P . Indeed, the various results regarding NL justify its study inretrospect.In light of the foregoing, we adopt the standard conventions and letNspace(s) =Nspaceon-line(s). Our main focus will be the study of NL = Nspace(log). Afterstudying this class in Section 5.3.2, we shall return to the \question of modeling"in Section 5.3.3.5.3.2 NL and directed connectivityThis section is devoted to the study of NL, which we view as the non-deterministicanalogue of L. Speci�cally, NL = [cNspace(`c), where `c(n) = c log2 n. (We referthe reader to the de�nitional issues pertaining Nspace = Nspaceon-line, which arediscussed in Section 5.3.1.)We �rst note that the proof of Theorem 5.3 can be easily extended to the(on-line) non-deterministic context. The reason being that moving from the de-terministic model to the current model does not a�ect the number of instanta-neous con�gurations (as de�ned in the proof of Theorem 5.3), whereas this numberbounds the time complexity. Thus, NL � P .

5.3. NON-DETERMINISTIC SPACE COMPLEXITY 179The following problem, called directed connectivity (st-CONN), captures theessence of non-deterministic log-space computations (and, in particular, is com-plete for NL under log-space reductions). The input to st-CONN consists of adirected graph G = (V;E) and a pair of vertices (s; t), and the task is to determinewhether there exists a directed path from s to t (in G).20 Indeed, the study ofNL is often conducted via st-CONN. For example, note that NL � P follows easilyfrom the fact that st-CONN is in P (and the fact that NL is log-space reducible tost-CONN).5.3.2.1 Completeness and beyondClearly, st-CONN is inNL (see Exercise 5.19). As shown next, theNL-completenessof st-CONN under log-space reductions follows by noting that the computation ofany non-deterministic space-bounded machine yields a directed graph in whichvertices correspond to possible con�gurations and edges represent the \successive"relation of the computation. In particular, for log-space computations the graphhas polynomial size, but in general the relevant graph is strongly explicit (in anatural sense; see Exercise 5.21).Theorem 5.11 Every problem in NL is log-space reducible to st-CONN (via amany-to-one reduction).Proof Sketch: Fixing a non-deterministic (on-line) machineM and an input x, weconsider the following directed graphGx = (Vx; Ex). The vertices of Vx are possibleinstantaneous con�gurations of M(x), where each con�guration consists of thecontents of the work-tape (and the machine's �nite state), the machine's locationon it, and the machine's location on the input. The directed edges represent singlepossible moves in such a computation. We stress that such a move depends on themachine M as well as on the (single) bit of x that resides in the location speci�edby the �rst con�guration (i.e., the con�guration corresponding to the start-point ofthe potential edge).21 Note that (for a �xed machineM), given x, the graphGx canbe constructed in log-space (by scanning all pairs of vertices and outputting onlythe pairs that are valid edges (which, in turn, can be tested in constant-space)).By de�nition, the graph Gx represents the possible computations ofM on inputx. In particular, there exists an accepting computation ofM on input x if and onlyif there exists a directed path, in Gx, starting at the vertex s that corresponds tothe initial con�guration and ending at the vertex t that corresponds to a canonicalaccepting con�guration. Thus, x 2 S if and only if (Gx; s; t) is a yes-instance ofst-CONN.20See Appendix G.1 for basic graph theoretic terminology. We note that, here (and in thesequel), s stands for start and t stands for terminate.21Thus, the actual input x only a�ects the set of edges of Gx (whereas the set of vertices is onlya�ected by jxj). A related construction is obtained by incorporating in the con�guration also the(single) bit of x that resides in the machine's location on the input. In the latter case, x itselfa�ects Vx (but not Ex, except for Ex � Vx�Vx).

180 CHAPTER 5. SPACE COMPLEXITYReection: We believe that the proof of Theorem 5.11 (see also Exercise 5.21)justi�es saying that st-CONN captures the essence of non-deterministic space-boundedcomputations. Note that this (intuitive and informal) statement goes beyond say-ing that st-CONN is NL-complete under log-space reductions.We note the discrepancy between the space-complexity of undirected connectiv-ity (see Theorem 5.6 and Exercise 5.15) and directed connectivity (see Theorem 5.11and Exercise 5.23). In this context it is worthwhile to note that determining theexistence of relatively short paths (rather than arbitrary paths) in undirected (ordirected) graphs is also NL-complete under log-space reductions; see Exercise 5.24.On the search version of stCONN: We mention that the search problemcorresponding to st-CONN is log-space reducible to NL (by a Cook-reduction);see Exercise 5.20. Also note that accepting computations of any log-space non-deterministic machine can be found by �nding directed paths in directed graphs;indeed, this is a simple demonstration of the thesis that st-CONN captures non-deterministic log-space computations.5.3.2.2 Relating NSPACE to DSPACERecall that in the context of time-complexity, the only known conversion of non-deterministic computation to deterministic computation comes at the cost of anexponential blow-up in the complexity. In contrast, space-complexity allows sucha conversion at the cost of a polynomial blow-up in the complexity.Theorem 5.12 (Non-deterministic versus deterministic space): For any space-constructible s : N ! N that is at least logarithmic, it holds that Nspace(s) �Dspace(O(s2)).In particular, non-deterministic polynomial-space is contained in deterministic polynomial-space (and non-deterministic poly-logarithmic space is contained in deterministicpoly-logarithmic space).Proof Sketch: We focus on the special case of NL and the argument extendseasily to the general case. Alternatively, the general statement can be derived fromthe special case by using a suitable upwards-translation lemma (see, e.g., [119,Sec. 12.5]). The special case boils down to presenting an algorithm for decidingdirected connectivity that has log-square space-complexity.The basic idea is that checking whether or not there is a path of length atmost 2` from u to v in G, reduces (in log-space) to checking whether there is anintermediate vertex w such that there is a path of length at most ` from u to wand a path of length at most ` from w to v. That is, let �G(u; v; `) def= 1 if there isa path of length at most ` from u to v in G, and �G(u; v; `) def= 0 otherwise. Then�G(u; v; 2`) can be computed by scanning all vertices w in G, and checking for eachw whether both �G(u;w; `) = 1 and �G(w; v; `) = 1 hold.22 Hence, we can compute22Similarly, �G(u; v; 2`+ 1) can be computed by scanning all vertices w in G, and checking foreach w whether both �G(u;w; `+ 1) = 1 and �G(w; v; `) = 1 hold.

5.3. NON-DETERMINISTIC SPACE COMPLEXITY 181�G(u; v; 2`) by a log-space algorithm that makes oracle calls to �G(�; �; `), which inturn can be computed recursively in the same manner. Note that the originalcomputational problem (i.e., st-CONN) can be cast as computing �G(s; t; jV j) (or�G(s; t; 2dlog2 jV je)) for a given directed graph G = (V;E) and a given pair of vertices(s; t). Thus, the foregoing recursive procedure yields the theorem's claim, providedthat we use adequate composition results. We take a technically di�erent approachby directly analyzing the recursive procedure at hand.Recall that given a directed graph G = (V;E) and a pair of vertices (s; t), weshould merely compute �G(s; t; 2dlog2 jV je). This is done by invoking a recursiveprocedure that computes �G(u; v; 2`) by scanning all vertices in G, and computingfor each vertex w the values of �G(u;w; `) and �G(w; v; `). The punch-line is thatall these computations may re-use the same space, while we need only store oneadditional bit representing the results of all prior computations. We return thevalue 1 if and only if for some w it holds that �G(u;w; `) = �G(w; v; `) = 1 (seeFigure 5.2). Needless to say, �G(u; v; 1) can be decided easily in logarithmic space.Recursive computation of �G(u; v; 2`), for ` � 1.For w = 1; :::; jV j do begin (storing the vertex name)Compute � �G(u;w; `) (by a recursive call)Compute � � ^ �G(w; v; `) (by a second recursive call)If � = 1 then return 1. (success: an intermediate vertex was found)End (of scan).return 0. (reached only if the scan was completed without success).Figure 5.2: The recursive procedure in NL � Dspace(O(log2)).We consider an implementation of the foregoing procedure (of Figure 5.2) inwhich each level of the recursion uses a designated portion of the entire storage formaintaining the local variables (i.e., w and �). The amount of space taken by eachlevel of the recursion is essentially log2 jV j (for storing the current value of w), andthe number of levels is log2 jV j. We stress that when computing �G(u; v; 2`), wemake many recursive calls, but all these calls re-use the same work space (i.e., theportion that is designated to that level). That is, when we compute �G(u;w; `) were-use the space that was used for computing �G(u;w0; `) for the previous w0, andwe re-use the same space when we compute �G(w; v; `). Thus, the space-complexityof our algorithm is merely the sum of the amount of space used by all recursionlevels. It follows that st-CONN has log-square (deterministic) space-complexity, andthe same follows for all of NL (either by noting that st-CONN actually representsany NL computation or by using the log-space reductions of NL to st-CONN).Digest. The proof of Theorem 5.12 relies on two main observations. The �rstobservation is that a conjunction (resp., disjunction) of two Boolean conditions

182 CHAPTER 5. SPACE COMPLEXITYcan be veri�ed using space s + O(1), where s is the space complexity of verifyinga single condition. This follows by applying naive composition (i.e., Lemma 5.1).Actually, the second observation is merely a generalization of the �rst observation:It asserts that an existential claim (resp., a universally quanti�ed claim) can beverifying by scanning all possible values in the relevant domain (and testing theclaim for each value), which in terms of space-complexity has an additive cost thatis logarithmic in the size of the domain.The proof of Theorem 5.12 is facilitated by the fact that we may consider aconcrete and simple computational problem such as st-CONN. Nevertheless, thesame ideas can be applied directly to NL (or any Nspace class).Placing NL in NC2. The simple formulation of st-CONN facilitates placing NLin complexity classes such as NC2 (i.e., decidability by uniform families of circuitsof log-square depth and bounded fan-in). All that is needed is observing thatst-CONN can be solved by raising the adequate matrix (i.e., the adjacency matrixof the graph augmented with 1-entries on the diagonal) to the adequate power(i.e., its dimension). Squaring a matrix can be done by a uniform family circuits oflogarithmic depth and bounded fan-in (i.e., in NC1), and by repeated squaring thenth power of an n-by-n matrix can be computed by a uniform family of boundedfan-in circuits of polynomial size and depth O(log2 n); thus, st-CONN 2 NC2.Indeed, NL � NC2 follows by noting that st-CONN actually represents any NLcomputation (or by noting that any log-space reduction can be computed by auniform family of logarithmic depth and bounded fan-in circuits).5.3.2.3 Complementation or NL=coNLRecall that (reasonable) non-deterministic time-complexity classes are not knownto be closed under complementation. Furthermore, it is widely believed that NP 6=coNP . In contrast, (reasonable) non-deterministic space-complexity classes areclosed under complementation, as captured by the result NL = coNL, wherecoNL def= ff0; 1g� n S : S 2 NLg.Before proving that NL = coNL, we note that proving this result is equivalentto presenting a log-space Karp-reduction of st-CONN to its complement (or, equiv-alently, a reduction in the opposite direction, see Exercise 5.26). Our proof utilizesa di�erent perspective on the NL-vs-coNL question, by rephrasing this question asreferring to the relation between NL and NL \ coNL (see Exercise 2.37), and byo�ering an \operational interpretation" of the class NL \ coNL.Recall that a set S is inNL if there exists a non-deterministic log-space machineM that accepts S, and that the acceptance condition of non-deterministic machinesis asymmetric in nature. That is, x 2 S implies the existence of an acceptingcomputation of M on input x, whereas x 62 S implies that all computations of Mon input x are non-accepting. Thus, the existence of a accepting computation ofM on input x is an absolute indication for x 2 S, but the existence of a rejectingcomputation of M on input x is not an absolute indication for x 62 S. In contrast,for S 2 NL\ coNL, there exist absolute indications both for x 2 S and for x 62 S

5.3. NON-DETERMINISTIC SPACE COMPLEXITY 183(or, equivalently for x 2 S def= f0; 1g�nS), where each of the two types of indicationis provided by a di�erent non-deterministic machine (i.e., either the one acceptingS or the one accepting S). Combining both machines, we obtain a single non-deterministic machine that, for every input, sometimes outputs the correct answerand always outputs either the correct answer or a special (\don't know") symbol.This yields the following de�nition, which refers to Boolean functions as a specialcase.De�nition 5.13 (non-deterministic computation of functions): We say that anon-deterministic machine M computes the function f : f0; 1g� ! f0; 1g� if forevery x 2 f0; 1g� the following two conditions hold.1. Every computation of M on input x yields an output in ff(x);?g, where? 62 f0; 1g� is a special symbol (indicating \don't know").2. There exists a computation of M on input x that yields the output f(x).Note that S 2 NL\ coNL if and only if there exists a non-deterministic log-spacemachine that computes the characteristic function of S (see Exercise 5.25). Recallthat the characteristic function of S, denoted �S , is the Boolean function satisfying�S(x) = 1 if x 2 S and �S(x) = 0 otherwise. It follows that NL = coNL if andonly if for every S 2 NL there exists a non-deterministic log-space machine thatcomputes �S .Theorem 5.14 (NL = coNL): For every S 2 NL there exists a non-deterministiclog-space machine that computes �S.As in the case of Theorem 5.12, the result extends to any space-constructible s :N ! N that is at least logarithmic; that is, for such s and every S 2 Nspace(s),it holds that f0; 1g� n S 2 Nspace(O(s)). This extension can be proved eitherby generalizing the following proof or by using an adequate upwards-translationlemma.Proof Sketch: As in the proof of Theorem 5.12, it su�ces to present a non-deterministic (on-line) log-space machine that computes the characteristic functionof st-CONN, denoted � (i.e., �(G; s; t) = 1 if there is a directed path from s to t inG and �(G; s; t) = 0 otherwise).We �rst show that the computation of � is log-space reducible to determiningthe number of vertices that are reachable (via a directed path) from a given vertexin a given graph. On input (G; s; t), the reduction computes the number of verticesthat are reachable from s in the graph G and compares this number to the numberof vertices reachable from s in the graph G0 obtained by omitting t from G. Clearly,these two numbers are di�erent if and only if vertex t is reachable from vertex v(in the graph G). An alternative reduction that uses a single query is presented inExercise 5.28. Combining either of these reductions with a non-deterministic log-space machine that computes the number of reachable vertices, we obtain a non-deterministic log-space machine that computes �. This can be shown by relyingeither on the non-adaptivity of these reductions or on the fact that the solutions

184 CHAPTER 5. SPACE COMPLEXITYfor the target problem have logarithmic length; see Exercise 5.29. Thus, we focuson providing a non-deterministic log-space machine for computing the number ofvertices that are reachable from a given vertex in a given graph.Fixing an n-vertex graph G = (V;E) and a vertex v, we consider the set ofvertices that are reachable from v by a path of length at most i. We denote thisset by Ri, and observe that R0 = fvg and that for every i = 1; 2; :::, it holds thatRi = Ri�1 [fu : 9w 2 Ri�1 s.t. (w; u) 2 Eg (5.1)Our aim is to (non-deterministically) compute jRnj in log-space. This will be donein n iterations such that at the ith iteration we compute jRij. When computingjRij we rely on the fact that jRi�1j is known to us, which means that we shall storejRi�1j in memory. We stress that we discard jRi�1j from memory as soon as wecomplete the computation of jRij, which we store instead. Thus, at each iterationi, our record of past iterations only contains jRi�1j.Computing jRij. Given jRi�1j, we non-deterministically compute jRij by making aguess (for jRij), denoted g, and verifying its correctness as follows:1. We verify that jRij � g in a straightforward manner. That is, scanning V insome canonical order, we verify for g vertices that they are each in Ri. Thatis, during the scan, we select non-deterministically g vertices, and for eachselected vertex w we verify that w is reachable from v by a path of length atmost i, where this veri�cation is performed by just guessing and verifying anadequate path (see Exercise 5.19).We use log2 n bits to store the number of vertices that were already veri�edto be in Ri, another log2 n bits to store the currently scanned vertex (i.e., w),and another O(log n) bits for implementing the veri�cation of the existenceof a path of length at most i from v to w.2. The veri�cation of the condition jRij � g (equivalently, jV n Rij � n � g)is the interesting part of the procedure. Indeed, as we saw, demonstratingmembership in Ri is easy, but here we wish to demonstrate non-membershipin Ri. We do so by relying on the fact that we know jRi�1j, which allowsfor a non-deterministic enumeration of Ri�1 itself, which in turn allows forproofs of non-membership in Ri (via the use of Eq. (5.1)). Details follows(and an even more structured description is provided in Figure 5.3).Scanning V (again), we verify for n�g (guessed) vertices that they are not inRi (i.e., are not reachable from v by paths of length at most i). By Eq. (5.1),verifying that u 62 Ri amounts to proving that for every w 2 Ri�1, it holdsthat u 6= w and (w; u) 62 E. As hinted, the knowledge of jRi�1j allows for theenumeration of Ri�1, and thus we merely check the aforementioned conditionon each vertex in Ri�1. Thus, verifying that u 62 Ri is done as follows.(a) We scan V guessing jRi�1j vertices that are in Ri�1, and verify eachsuch guess in the straightforward manner (i.e., as in Step 1).2323Note that implicit in Step 2a is a non-deterministic procedure that computes the mapping

5.3. NON-DETERMINISTIC SPACE COMPLEXITY 185(b) For each w 2 Ri�1 that was guessed and veri�ed in Step 2a, we verifythat both u 6= w and (w; u) 62 E.By Eq. (5.1), if u passes the foregoing veri�cation then indeed u 62 Ri.We use log2 n bits to store the number of vertices that were already veri�edto be in V n Ri, another log2 n bits to store the current vertex u, anotherlog2 n bits to count the number of vertices that are currently veri�ed to bein Ri�1, another log2 n bits to store such a vertex w, and another O(log n)bits for verifying that w 2 Ri�1 (as in Step 1).If any of the foregoing veri�cations fails, then the procedure halts outputting the\don't know" symbol ?. Otherwise, it outputs g.Given jRi�1j and a guess g, the claim g � jRij is veri�ed as follows.Set c 0. (initializing the main counter)For u = 1; :::; n do begin (the main scan)Guess whether or not u 2 Ri.For a negative guess (i.e., u 62 Ri), do begin(Verify that u 62 Ri via Eq. (5.1).)Set c0 0. (initializing a secondary counter)For w = 1; :::; n do begin (the secondary scan)Guess whether or not w 2 Ri�1.For a positive guess (i.e., w 2 Ri�1), do beginVerify that w 2 Ri�1 (as in Step 1).Verify that u 6= w and (w; u) 62 E.If some veri�cation failedthen halt with output ? otherwise increment c0.End (of handling a positive guess for w 2 Ri�1).End (of secondary scan). (c0 vertices in Ri�1 were checked)If c0 < jRi�1j then halt with output ?.Otherwise (c0 = jRi�1j), increment c. (u veri�ed to be outside of Ri)End (of handling a negative guess for u 62 Ri).End (of main scan). (c vertices were shown outside of Ri)If c < n� g then halt with output ?.Otherwise g � jRij is veri�ed (since n� jRij � c � n� g).Figure 5.3: The main step in proving NL = coNL.Clearly, the foregoing non-deterministic procedure uses a logarithmic amount ofspace. It can be veri�ed that, when given the correct value of jRi�1j, this procedurenon-deterministically computes the value of jRij. That is, if all veri�cations are(G; v; i; jRi�1j)! Ri�1, where Ri�1 denotes the set of vertices that are reachable in G by a pathof length at most i from v.

186 CHAPTER 5. SPACE COMPLEXITYsatis�ed then it must hold that g = jRij, and if g = jRij then there exist adequatenon-deterministic choices that satisfy all veri�cations.Recall that Rn is computed iteratively, starting with jR0j = 1, and computingjRij based on jRi�1j. Each iteration i = 1; :::; n is non-deterministic, and is eithercompleted with the correct value of jRij (at which point jRi�1j is discarded) orhalts in failure (in which case we halt the entire process and output ?). Thisyields a non-deterministic log-space machine for computing jRnj, and the theoremfollows.Digest. Step 2 is the heart of the proof (of Theorem 5.14). In this step anon-deterministic procedure is used to verify non-membership in an NL-type set.Indeed, verifying membership in NL-type sets is the archetypical task of non-deterministic procedures (i.e., they are de�ned so to �t these tasks), and thus Step 1is straightforward. In contrast, non-deterministic veri�cation of non-membershipis not a common phenomenon, and thus Step 2 is not straightforward at all. Nev-ertheless, in the current context (of Step 2), the veri�cation of non-membership isperformed by an iterative (non-deterministic) process that consumes an admissibleamount of resources (i.e., a logarithmic amount of space).5.3.3 A retrospective discussionThe current section may be viewed as a study of the \power of non-determinism incomputation" (which is a somewhat contradictory term). Recall that we view non-deterministic processes as �ctitious abstractions aimed at capturing fundamentalphenomena such as the veri�cation of proofs (cf., Section 2.1.4). Since these �cti-tious abstractions are fundamental in the context of time-complexity, we may hopeto gain some understanding by a comparative study; speci�cally, a study of non-deterministic in the context of space-complexity. Furthermore, we may discoverthat non-deterministic space-bounded machines give rise to interesting computa-tional phenomena.The aforementioned hopes seems to come true in the current section. For exam-ple, the fact that NL = coNL, while the common conjecture is that NP 6= coNP ,indicates that the latter conjecture is less generic than sometimes stated. It is notthat an existential quanti�er cannot be \feasibly replaced" by a universal quanti-�er, but it is rather the case that the feasibility of such a replacement depends verymuch on the speci�c notion of feasibility used. Turning to the other type of bene-�ts, we learned that st-CONN can be Karp-reduced in log-space to st-unCONN (i.e.,the set of graphs in which there is no directed path between the two designatedvertices; see Exercise 5.26).Still, one may ask what does the class NL actually represent (beyond st-CONN,which seems actually more than merely a complete problem for this class; seex5.3.2.1). Turning back to Section 5.3.1, we recall that the class Nspaceo�-linecaptures the straightforward notion of space-bounded veri�cation. In this model(called the o�-line model), the alleged proof is written on a special device (similarlyto the assertion being established by it), and this device is being read freely. In

5.4. PSPACE AND GAMES 187contrast, underlying the alternative class Nspaceon-line is a notion of proofs thatare veri�ed by reading them sequentially (rather than scanning them back andforth). In this case, if the veri�cation procedure may need to re-examine thecurrently read part of the proof (in the future), then it must store the relevant part(and be charged for this storage). Thus, the on-line model underlyingNspaceon-linerefers to the standard process of reading proofs in a sequential manner and takingnotes for future veri�cation, rather than repeatedly scanning the proof back andforth. The on-line model reects the true space-complexity of taking such notesand hence of sequential veri�cation of proofs. Indeed (as stated in Section 5.3.1),our feeling is that the o�-line model allows for an unfair accounting of temporaryspace as well as for unintendedly long proofs.5.4 PSPACE and GamesAs stated in Section 5.2, we rarely encounter computational problems that requireless than logarithmic space. On the other hand, we will rarely treat computationalproblems that require more than polynomial space. The class of decision prob-lems that are solvable in polynomial-space is denoted PSPACE def= [cDspace(pc),where pc(n) = nc.To get a sense of the power of PSPACE , we observe that PH � PSPACE ; forexample, a polynomial-space algorithm can easily verify the quanti�ed conditionunderlying De�nition 3.8. In fact, such an algorithm can handle an unboundednumber of alternating quanti�ers (see the following Theorem 5.15). On the otherhand, by Theorem 5.3, PSPACE � EXP , where EXP = [cDtime(2pc) for pc(n) =nc. The class PSPACE can be interpreted as capturing the complexity of deter-mining the winner in certain e�cient two-party game; speci�cally, the very gamesconsidered in Section 3.2.1 (modulo Footnote 5 there). Recall that we refer totwo-party games that satisfy the following three conditions:1. The parties alternate in taking moves that e�ect the game's (global) position,where each move has a description length that is bounded by a polynomialin the length of the initial position.2. The current position is updated based on the previous position and the cur-rent party's move. This updating can be performed in time that is poly-nomial in the length of the initial position. (Equivalently, we may requirea polynomial-time updating procedure and postulate that the length of thecurrent position be bounded by a polynomial in the length of the initial po-sition.)3. The winner in each position can be determined in polynomial-time.Recall that, for every �xed k, we showed (in Section 3.2.1) a correspondence be-tween �k and the problem of determining the existence of a k-move winning strat-egy (for the �rst party) in games of the foregoing type. The same correspondence

188 CHAPTER 5. SPACE COMPLEXITYexists between PSPACE and the problem of determining the existence of a win-ning strategy with polynomially many moves (in games of the foregoing type). Thatis, on the one hand, the set of initial positions x for which the �rst party has apoly(xj)-move winning strategy with respect to the foregoing game is in PSPACE.On the other hand, by the following Theorem 5.15, every set in PSPACE can beviewed as the set of initial positions (in a suitable game) for which the �rst partyhas a winning strategy consisting of a polynomial number of moves. Actually, thecorrespondence is between determining the existence of such winning strategies anddeciding the satis�ability of quanti�ed Boolean formulae (QBF); see Exercise 5.30.QBF and PSPACE. A quanti�ed Boolean formula is a Boolean formula (as inSAT) augmented with quanti�ers that refer to each variable appearing in the for-mula. (Note that, unlike in Exercise 3.7, we make no restrictions regarding thenumber of alternations between existential and universal quanti�ers. For furtherdiscussion, see Appendix G.2.) As noted before, deciding the satis�ability of quan-ti�ed Boolean formulae (QBF) in in PSPACE . We next show that every problemin PSPACE is Karp-reducible to QBF.Theorem 5.15 QBF is complete for PSPACE under polynomial-time many-to-onereductions.Proof: As note before, QBF is solvable by a polynomial-space algorithm thatjust evaluates the quanti�ed formula. Speci�cally, consider a recursive procedurethat eliminates a Boolean quanti�er by evaluating the value of the two residualformulae, and note that the space used in the �rst (recursive) evaluation can bere-used in the second evaluation. (Alternatively, consider a DFS-type procedure asin Section 5.1.4.) Note that the space used is linear in the depth of the recursion,which in turn is linear in the length of the input formula.We now turn to show that any set S 2 PSPACE is many-to-one reducible toQBF. The proof is similar to the proof of Theorem 5.12 (which establishes NL �Dspace(log2)), except that here we work with an implicit graph (see Exercise 5.21,rather than with an explicitly given graph). Speci�cally, we refer to the directedgraph of instantaneous con�gurations (of the algorithm A deciding membershipin S), where here we use a di�erent notion of a con�guration that includes alsothe entire input. That is, in the rest of this proof, a con�guration consists of thecontents of all storage devices of the algorithm (including the input device) as wellas the location of the algorithm on each device. Thus, on input x (to the reduction),we shall consider the directed graph G = Gx;A = (Vx; EA), where Vx represents allpossible con�gurations with input x and EA represents the transition function ofalgorithm A (i.e., the e�ect of a single computation step of A).As in the proof of Theorem 5.12, for a graph G, we de�ned �G(u; v; `) = 1 ifthere is a path of length at most ` from u to v in G (and �G(u; v; `) = 0 otherwise).We need to determine �G(s; t; 2m) for s that encodes the initial con�guration ofA(x) and t that encodes the canonical accepting con�guration, where G dependson the algorithm A and m = poly(jxj) is such that A(x) uses at most m spaceand runs for at most 2m steps. By the speci�c de�nition of a con�guration (which

5.4. PSPACE AND GAMES 189contains all relevant information including the input x), the value of �G(u; v; 1)can be determined easily based solely on the �xed algorithm A (i.e., either u = vor v is a con�guration following u). Recall that �G(u; v; 2`) = 1 if and only if thereexists a con�guration w such that both �G(u;w; `) = 1 and �G(w; v; `) = 1 hold.Thus, we obtain the recursion�G(u; v; 2`) = 9w 2 f0; 1gm�G(u;w; `) ^ �G(w; v; `); (5.2)where the bottom of the recursion (i.e., �G(u; v; 1)) is a simple propositional formula(see the foregoing comment). The problem with Eq. (5.2) is that the expression for�G(�; �; 2`) involves two occurrences of �G(�; �; `), which doubles the length of therecursively constructed formula (yielding an exponential blow-up).Our aim is to express �G(�; �; 2`) while using �G(�; �; `) only once. This extrarestriction, which prevents an exponential blow-up, corresponds to the re-usingof space in the two evaluations of �G(�; �; `) that take place in the computationof �G(u; v; 2`). The main idea is replacing the condition �G(u;w; `) ^ �G(w; v; `)by the condition \8(u0v0)2f(u;w); (w; v)g�G(u0; v0; `)" (where we quantify over atwo-element set that is not the Boolean set f0; 1g). Next, we reformulate the non-standard quanti�er (which ranges over a speci�c pair of strings) by using additionalquanti�ers as well as some simple Boolean conditions. That is, the non-standardquanti�er 8(u0v0) 2 f(u;w); (w; v)g is replaced by the standard quanti�ers 8� 2f0; 1g9u0; v0 2 f0; 1gm and the auxiliary condition[(�=0)) (u0=u ^ v0=w)] ^ [(�=1)) (u0=w ^ v0=v)]: (5.3)Thus, �G(u; v; 2`) holds if and only if there exist w such that for every � thereexists (u0; v0) such that both Eq. (5.3) and �G(u0; v0; `) hold. Note that the lengthof this expression for �G(�; �; 2`) equals the length of �G(�; �; `) plus an additiveoverhead term of O(m). Thus, using a recursive construction, the length of theformula grows only linearly in the number of recursion steps.The reduction itself maps an instance x (of S) to the quanti�ed Boolean formula�(sx; t; 2m), where sx denotes the initial con�guration of A(x), (t andm = poly(jxj)are as in the foregoing discussion), and � is recursively de�ned as follows�(u; v; 2`) def= 9w2f0; 1gm 8�2f0; 1g9u0; v02f0; 1gm[(�=0)) (u0=u ^ v0=w)]^ [(�=1)) (u0=w ^ v0=v)]^ �(u0; v0; `) (5.4)with �(u; v; 1) = 1 if and only if either u = v or there is an edge from u to v. Notethat �(u; v; 1) is a (�xed) propositional formula with Boolean variables representingthe bits of the variables u and v such that �(u; v; 1) is satis�es if and only if eitheru = v or v is a con�guration that follows the con�guration u in a computation ofA. On the other hand, note that �(sx; t; 2m) is a quanti�ed formula in which sx; tand m are �xed and the quanti�ed variables are not shown in the notation.We stress that the mapping of x to �(sx; t; 2m) can be computed in polynomial-time. Firstly, note that the propositional formula �(u; v; 1), having Boolean vari-ables representing the bits of u and v, expresses extremely simple conditions and

190 CHAPTER 5. SPACE COMPLEXITYcan certainly be constructed in polynomial-time (i.e., polynomial in the number ofBoolean variables, which in turn equals 2m). Next note that, given �(u; v; `), which(for ` > 1) contains quanti�ed variables that are not shown in the notation, we canconstruct �(u; v; 2`) by merely replacing variables names and adding quanti�ersand Boolean conditions as in the recursive de�nition of Eq. (5.4). This is certainlydoable in polynomial-time. Lastly, note that the construction of �(sx; t; 2m) de-pends mainly on the length of x, where x itself only a�ects sx (and does so in atrivial manner). Recalling that m = poly(jxj), it follows that everything is com-putable in time polynomial in jxj. Thus, given x, the formula �(sx; t; 2m) can beconstructed in polynomial-time.Finally, note that x 2 S if and only if the formula �(sx; t; 2m) is satis�able.The theorem follows.Other PSPACE-complete problems. As stated in the beginning of this sec-tion, there is a close relationship between PSPACE and determining winningstrategies in various games. This relationship was established by considering thegeneric game that corresponds to the satis�ability of general QBF (see Exer-cise 5.30). The connection between PSPACE and determining winning strate-gies is games is closer than indicated by this generic game: Determining winningstrategies in several (generalizations of) natural games is also PSPACE-complete(see [200, Sec. 8.3]). This further justi�es the title of the current section.Chapter NotesThe material presented in the current chapter is based on a mix of \classical" results(proven in the 1970's if not earlier) and \modern" results (proven in the late 1980'sand even later). We wish to emphasize the time gap between the formulation ofsome questions and their resolution. Details follow.We �rst mention the \classical" results. These include the NL-completenessof st-CONN, the emulation of non-deterministic space-bounded machines by deter-ministic space-bounded machines (i.e., Theorem 5.12 due to Savitch [190]), thePSPACE-completeness of QBF, and the connections between circuit depth andspace complexity (see Section 5.1.4 and Exercise 5.12 due to Borodin [45]).Before turning to the \modern" results, we mention that some researchers tendto be discouraged by the impression that \decades of research have failed to an-swer any of the famous open problems of complexity theory." In our opinion thisimpression is fundamentally mistaken. Speci�cally, in addition to the fact thatsubstantial progress towards the understanding of many fundamental issues hasbeen achieved, these researchers tend to forget that some famous open problemswere actually resolved. Two such examples were presented in this chapter.The question of whether NL = coNL was a famous open problem for almosttwo decades. Furthermore, this question is related to an even older open prob-lem dating to the early days of research in the area of formal languages (i.e., to

5.4. PSPACE AND GAMES 191the 1950's).24 This open problem was resolved in 1988 by Immerman [121] andSzelepcsenyi [211], who (independently) proved Theorem 5.14 (i.e., NL = coNL).For more than two decades, undirected connectivity (UCONN) was one of themost appealing examples of the computational power of randomness. Recall thatthe classical linear-time (deterministic) algorithms (e.g., BFS and DFS) require anextensive use of temporary storage (i.e., linear in the size of the graph). On theother hand, it was known (since 1979, see x6.1.4.2) that, with high probability,a random walk of polynomial length visits all vertices (in the corresponding con-nected component). Thus, the resulting randomized algorithm for UCONN uses aminimal amount of temporary storage (i.e., logarithmic in the size of the graph).In the early 1990's, this algorithm (as well as the entire class BPL (see De�ni-tion 6.11)) was derandomized in polynomial-time and poly-logarithmic space (seeTheorem 8.23), but despite more than a decade of research attempts, a signi�-cant gap remained between the space complexity of randomized and deterministicpolynomial-time algorithms for this natural and ubiquitous problem. This gap wasclosed by Reingold [183], who established Theorem 5.6 in 2004.25 Our presentation(in Section 5.2.4) follows Reingold's ideas, but the speci�c formulation in x5.2.4.2does not appear in [183].ExercisesExercise 5.1 (scanning the input-tape beyond the input) Let A be an ar-bitrary algorithm of space-complexity s. Show that there exists a functionallyequivalent algorithm A0 that has space-complexity s0(n) = O(s(n) + logn) anddoes not scan the input-tape beyond the boundaries of the input.Guideline: Prove that on input x, algorithm A does not scan the input-tape beyonddistance 2O(s(jxj)) from the input. (Extra hint: Consider instantaneous con�gurations ofA(x) that refer to the case that A reads a generic location on the input-tape that is not part ofthe input.)Exercise 5.2 (rewriting on the write-only output-tape) Let A be an arbi-trary algorithm of space complexity s. Show that there exists a functionallyequivalent algorithm A0 that never rewrites on (the same location of) its output-device and has space complexity s0 such that s0(n) = s(n) + O(log `(n)), where`(n) = maxx2f0;1gn jA(x)j.Guideline: Algorithm A0 proceeds in iterations, where in the ith iteration it outputs theith bit of A(x) by emulating the computation of A on input x. The ith emulation of Aavoids printing A(x), but rather keeps a records of the ith location of A(x)'s output-tape(and terminates by outputting the �nal value of this bit). Indeed, this emulation requires24Speci�cally, the class of sets recognized by linear-space non-deterministic machines equals theclass of context-sensitive languages (see, e.g., [119, Sec. 9.3]), and thus Theorem 5.14 resolves thequestion of whether the latter class is closed under complementation.25We mention that an almost-logarithmic space algorithm was discovered independently andconcurrently by Trifonov [215], using a very di�erent approach.

192 CHAPTER 5. SPACE COMPLEXITYmaintaining the current value of i as well as the current location of the emulated machine(i.e., A) on its output-tape.Exercise 5.3 (on the power of double-logarithmic space) For any k 2 N ,let wk denote the concatenation of all k-bit long strings (in lexicographic order)separated by �'s (i.e., wk = 0k�200 � 0k�201 � 0k�210 � 0k�211 � � � � � 1k). Showthat the set S def= fwk : k 2 Ng � f0; 1; �g is not regular and yet is decidable indouble-logarithmic space.Guideline: The non-regularity of S can be shown using standard techniques. Towardsdeveloping an algorithm, note that jwkj > 2k, and thus O(log k) = O(log log jwkj). Mem-bership of x in S is determined by iteratively checking whether x = wi, for i = 1; 2; :::,while stopping when detecting an obvious case (i.e., either verifying that x = wi or de-tecting evidence that x 6= wk for every k � i). By taking advantage of the �'s (in wi), theith iteration can be implemented in space O(log i). Furthermore, on input x 62 S, we haltand reject after at most log jxj iterations. Actually, it is slightly simpler to handle therelated set fw1 � �w2 � � � � � � �wk : k 2 Ng; moreover, in this case the �'s can be omittedfrom the wi's (as well as from between them).Exercise 5.4 (on the weakness of less than double-logarithmic space) Provethat for `(n) = log logn, it holds that Dspace(o(`)) = Dspace(O(1)).Guideline: Let s denote the machine's (binary) space complexity. Show that if s isunbounded then it must hold that s(n) =
(log log n) in�nitely often. Speci�cally, forevery integer m, consider a shortest string x such that on input x the machine usesspace at least m. Consider, for each location on the input, the sequence of the residualcon�gurations of the machine (i.e., the contents of its temporary storage)26 such thatthe ith element in the sequence represents the residual con�guration of the machine atthe ith time that the machine crosses (or rather passes through) this input location. Forstarters, note that the length of this \crossing sequence" is upper-bounded by the numberof possible residual con�gurations, which is at most t def= 2s(jxj) � s(jxj). Thus, the numberof such crossing sequences is upper-bounded by tt. Now, if tt < jxj=2 then there existthree input locations that have the same crossing sequence, and two of them hold thesame bit value. Contracting the string at these two locations, we get a shorter input onwhich the machine behaves in exactly the same manner, contradicting the hypothesis thatx is the shortest input on which the machine uses space at least m. We conclude thattt � jxj=2 must hold, and s(jxj) =
(log log jxj) holds for in�nitely many x's.Exercise 5.5 (space-complexity and halting) In continuation to Theorem 5.3,prove that for every algorithm A of (binary) space-complexity s there exists an al-gorithm A0 of space-complexity s0(n) = O(s(n) + logn) that halts on every inputsuch that for every x on which A halts it holds that A0(x) = A(x).Guideline: On input x, algorithm A0 emulates the execution of A(x) for at most t(jxj)+1steps, where t(n) = n � 2s(n)+log2 s(n).26Note that, unlike in the proof of Theorem 5.3, the machine's location on the input is not partof the notion of a con�guration used here. On the other hand, although not stated explicitly, thecon�guration also encodes the machine's location on the storage tape.

5.4. PSPACE AND GAMES 193Exercise 5.6 (some log-space algorithms) Present log-space algorithms for thefollowing computational problems.1. Addition and multiplication of a given pair of integers.Guideline: Relying on Lemma 5.2, �rst transform the input to a more convenientformat, then perform the operation, and �nally transform the result to the adequateformat. For example, when adding x =Pn�1i=0 xi2i and y =Pn�1i=0 yi2i, a convenientformat is ((x0; y0); :::; (xn�1; yn�1)).2. Deciding whether two given strings are identical.3. Finding occurrences of a given pattern p 2 f0; 1g� in a given string s 2 f0; 1g�.4. Transforming the adjacency matrix representation of a graph to its incidencelist representation, and vice versa.5. Deciding whether the input graph is acyclic (i.e., has no simple cycles).Guideline: Consider a scanning of the graph that proceeds as follows. Uponentering a vertex v via the ith edge incident at it, we exit this vertex using its i+1stedge if v has degree at least i + 1 and exit via the �rst edge otherwise. Note thatwhen started at any vertex of any tree, this scanning performs a DFS. On the otherhand, for every cyclic graph there exists a vertex v and an edge e incident to v suchthat if this scanning is started by traversing the edge e from v then it returns to vvia an edge di�erent from e.6. Deciding whether the input graph is a tree.Guideline: Use the fact that a graph G = (V;E) is a tree if and only if it isacyclic and jEj = jV j � 1.Exercise 5.7 (another composition result) In continuation to the discussionin x5.1.3.3, prove that if � can be solved in space s1 when given an (`; `0)-restrictedoracle access to �0 and �0 is solvable is space s2, then � is solvable in space s suchthat s(n) = 2s1(n) + s2(`(n)) + 2`0(n) + �(n), where �(n) = O(log(`(n) + `0(n) +s1(n) + s2(`(n)))). In particular, if s1; s2 and `0 are at most logarithmic, thens(n) = O(log n), because (by Exercise 5.10) in this case ` is at most polynomial.Guideline: View the oracle-aided computation of � as consisting of iterations suchthat in the ith iteration the ith query (denoted qi) is determined based on the initialinput (denoted x), the i � 1st oracle answer (denoted ai�1), and the contents of thework tape at the time that the i � 1st answer was given (denoted wi�1). Note that themapping (x; ai�1; wi�1)! (qi; wi) can be computed using s1(jxj)+�(jxj) bits of temporarystorage, because the oracle machine e�ects this mapping (when x; ai�1 and wi�1 reside ondi�erent devices). Composing each iteration with the computation of �0 (using a variantof Lemma 5.2), we conclude that the mapping (x; ai�1; wi�1)! (ai; wi) can be computed(without storing the intermediate qi) in space s1(n) + s2(`(n)) + O(log(`(n) + s1(n) +s2(`(n)))). Thus, we can emulate the entire computation using space s(n), where theextra space of s1(n) + 2`0(n) bits is used for storing the work-tape of the oracle machineand the i� 1st and ith oracle answers.

194 CHAPTER 5. SPACE COMPLEXITYExercise 5.8 (non-adaptive reductions) In continuation to the discussion inx5.1.3.3, we de�ne non-adaptive space-bounded reductions as follows. First, for anyproblem �0, we de�ne the (\direct product") problem �0 such that the instances of�0 are sequences of instances of �0. The sequence y = (y1; :::; yt) is a valid solution(with respect to the problem �0) to the instance x = (x1; :::; xt) if and only if forevery i 2 [t] it holds that yi is a valid solution to xi (with respect to the problem�0). Now, a non-adaptive reduction of � to �0 is de�ned as a single-query reductionof � to �0.1. Note that this de�nition allows the oracle machine to freely scan the sequenceof answers (i.e., it can move freely between the blocks that correspond todi�erent answers). Still, prove that this does not add much power to themachine (in comparison to a machine that reads the oracle-answer device ina \semi-unidirectional" manner (i.e., it never reads bits of some answer afterreading any bit of any later answer)). That is, prove that a general non-adaptive reduction of space-complexity s can be emulated by a non-adaptivereduction of space-complexity O(s) that when obtaining the oracle answer(y1; :::; yt) may read bits of yi only before reading any bit of yi+1; :::; yt.Guideline: Replace the query sequence x = (x1; :::; xt) by the query sequence(x; x; :::; x) where the number of repetitions is 2O(s).2. Prove that if � is reducible to �0 via a non-adaptive reduction of space-complexity s1 that makes queries of length at most ` and �0 is solvable isspace s2, then � is solvable in space s such that s(n) = O(s1(n) + s2(`(n))).As a warm-up, consider �rst the case of a general single-query reduction (of� to �0).Guideline: The composed computation, on input x, can be written as E(x;A(G(x))),where G represents the query generation phase, A represents the application of the�0-solver to each string in the sequence of queries, and E represents the evaluationphase. Analyze the space-complexity of this computation by using (variants of)Lemma 5.2.Exercise 5.9 Referring to the discussion in x5.1.3.3, prove that, for any s, anyproblem having space-complexity s can be solved by a constant-space (2s; 2s)-restricted reduction to a problem that is solvable in constant-space.Guideline: The reduction is to the \next con�guration function" associated with the saidalgorithm (of space complexity s), where here the con�guration contains also the singlebit of the input that the machine currently examines (i.e., the value of bit at the machine'slocation on the input device). To facilitate the computation of this function, choose asuitable representation of such con�gurations. Note that the bulk of the operation of theoracle machine consists of iteratively copying (with minor modi�cation) the contents ofthe oracle-answer tape to the oracle-query tape.Exercise 5.10 In continuation to x5.1.3.3, we say that a reduction is (�; `0)-restrictedif there exists some function ` such that the reduction is (`; `0)-restricted; that is,

5.4. PSPACE AND GAMES 195in this de�nition only the length of the oracle answers is restricted. Prove thatany reduction of space-complexity s that is (�; `0)-restricted is (`; `0)-restricted for`(n) = 2O(s(n)+`0(n)+logn). Actually, prove that this reduction has time-complexity`.Guideline: Consider an adequate notion of instantaneous con�guration; speci�cally, sucha con�guration consists of the contents of both the work-tape and the oracle-answer tapeas well as the machine's location on these tapes (and on the input tape).Exercise 5.11 (transitivity of log-space reductions) Prove that log-space Karp-reductions are transitive. De�ne log-space Levin-reductions and prove that theyare transitive.Guideline: Use Lemma 5.2, noting that such reductions are merely log-space computablefunctions.Exercise 5.12 (log-space uniform NC1 is in L) Suppose that a problem � issolvable by a family of log-space uniform circuits of bounded fan-in and depth dsuch that d(n) � logn. Prove that � is solvable by an algorithm having spacecomplexity O(d).Guideline: Combine the algorithm outlined in Section 5.1.4 with the de�nition of log-space uniformity (using Lemma 5.2).Exercise 5.13 (UCONN in constant degree graphs of logarithmic diameter)Present a log-space algorithm for deciding the following promise problem, whichis parameterized by constants c and d. The input graph satis�es the promise ifeach vertex has degree at most d and every pair of vertices that reside in the sameconnected component is connected by a path of length at most c log2 n, where ndenotes the number of vertices in the input graph. The task is to decide whetherthe input graph is connected.Guideline: For every pair of vertices in the graph, we check whether these verticesare connected in the graph. (Alternatively, we may just check whether each vertex isconnected to the �rst vertex.) Relying on the promise, it su�ces to inspect all paths oflength at most ` def= c log2 n, and these paths can be enumerated using ` � dlog2 de bits ofstorage.Exercise 5.14 (warm-up towards x5.2.4.2) In continuation to x5.2.4.1, presenta log-space transformation of Gi to Gi+1.Guideline: Given the graph Gi as input, we may construct Gi+1 by �rst constructingG0 = Gci and then constructing G0z G. To construct G0, we scan all vertices of Gi(holding the current vertex in temporary storage), and, for each such vertex, constructits \distance c neighborhood" in G0 (by using O(c) space for enumerating all possible\distance c neighbors"). Similarly, we can construct the vertex neighborhoods in G0z G(by storing the current vertex name and using a constant amount of space for indicatingincident edges in G).

196 CHAPTER 5. SPACE COMPLEXITYExercise 5.15 (st-UCONN) In continuation to Section 5.2.4, prove that thefollowing computational problem is in L: Given an undirected graph G = (V;E)and two designated vertices, s and t, determine whether there is a path from s tot in G.Guideline: Note that the transformation described in Section 5.2.4 can be easily ex-tended such that it maps vertices in G0 to vertices in GO(log jV j) while preserving theconnectivity relation (i.e., u and v are connected in G0 if and only if their images underthe map are connected in GO(log jV j)).Exercise 5.16 (Bipartiteness) Prove that the problem of determining whetheror not the input graph is bipartite (i.e., 2-colorable) is computationally equivalentunder log-space reductions to st-UCONN (as de�ned in Exercise 5.15).Guideline: Both reductions use the mapping of a graph G=(V;E) to a bipartite graphG0 = (V 0; E0) such that V 0 = fv(1); v(2) : v 2 V g and E0 = ffu(1); v(2)g; fu(2); v(1)g :fu; vg2Eg. When reducing to st-UCONN note that a vertex v resides on an odd cycle inG if and only if v(1) and v(2) are connected in G0. When reducing from st-UCONN notethat s and t are connected in G by a path of even (resp., odd) length if and only if thegraph G0 ceases to be bipartite when augmented with the edge fs(1); t(1)g (resp., with theedges fs(1); xg and fx; t(2)g, where x 62 V 0 is an auxiliary vertex).Exercise 5.17 (�nding paths in undirected graphs) In continuation to Ex-ercise 5.15, present a log-space algorithm that given an undirected graphG = (V;E)and two designated vertices, s and t, �nds a path from s to t in G (in case such apath exists).Guideline: In continuation to Exercise 5.15, we may �nd and (implicitly) store a loga-rithmically long path in GO(log jV j) that connects a representative of s and a representativeof t. Focusing on the task of �nding a path inG0 that corresponds to an edge in GO(log jV j),we note that such a path can be found by using the reduction underlying the combinationof Claim 5.9 and Lemma 5.10. (An alternative description appears in [183].)Exercise 5.18 (relating the two models of NSPACE) Referring to the de�-nitions in Section 5.3.1, prove that for every function s such that log s is space-constructible and at least logarithmic, it holds thatNspaceon-line(s) = Nspaceo�-line(�(log s)).Note that Nspaceon-line(s) � Nspaceo�-line(O(log s)) holds also for s that is atleast logarithmic.Guideline (for Nspaceon-line(s) � Nspaceo�-line(O(log s))): Use the non-deterministicinput of the o�-line machine for encoding an accepting computation of the on-line machine;that is, this input should contain a sequence of consecutive con�gurations leading from theinitial con�guration to an accepting con�guration, where each con�guration contains thecontents of the work-tape as well as the machine's state and its locations on the work-tapeand on the input-tape. The emulating o�-line machine (which veri�es the correctness ofthe sequence of con�gurations recorded on its non-deterministic input tape) needs onlystore its location within the current pair of consecutive con�gurations that it examines,which requires space logarithmic in the length of a single con�guration (which in turn

5.4. PSPACE AND GAMES 197equals s(n) + log2 s(n) + log2 n + O(1)). (Note that this veri�cation relies on a two-directional access to the non-deterministic input.)Guideline (for Nspaceo�-line(s0) � Nspaceon-line(exp(s0))): Here we refer to the no-tion of a crossing-sequence. Speci�cally, for each location on the o�-line non-deterministicinput, consider the sequence of the residual con�gurations of the machine, where such aresidual con�guration consists of the bit residing in this non-deterministic tape location,the contents of the machine's temporary storage and the machine's locations on the inputand storage tapes (but not its location on the non-deterministic tape). Show that thelength of such a crossing-sequence is exponential in the space complexity of the o�-line ma-chine, and that the time complexity of the o�-line machine is at most double-exponential inits space complexity (see Exercise 5.4). The on-line machine merely generates a sequenceof crossing-sequences (\on the y") and checks that each consecutive pair of crossing-sequences is consistent. This requires holding two crossing-sequences in storage, whichrequire space linear in the length of such sequences (which, in turn, is exponential in thespace complexity of the o�-line machine).Exercise 5.19 (st-CONN and variants of it are in NL) Prove that the fol-lowing computational problem is in NL. The instances have the form (G; v; w; `),where G=(V;E) is a directed graph, v; w 2 V , and ` is an integer, and the questionis whether G contains a path of length at most ` from v to w.Guideline: Consider a non-deterministic machine that generates and veri�ers an ade-quate path on the y. That is, starting at v0 = v, the machine proceeds in iterations, suchthat in the ith iteration it non-deterministically generates vi, veri�ers that (vi�1; vi) 2 E,and checks whether i � ` and vi = w. Note that this machine need only store the lasttwo vertices on the path (i.e., vi�1 and vi) as well as the number of edges traversed so far(i.e., i). (Actually, using a careful implementation, it su�ces to store only one of thesetwo vertices (as well as the current i).)Exercise 5.20 (�nding directed paths in directed graphs) Present a log-spaceoracle machine that �nds (shortest) directed paths in directed graphs by using anoracle to NL. Conclude that NL = L if and only if such paths can be found by a(standard) log-space algorithm.Guideline: Use a reduction to the decision problem presented in Exercise 5.19, andderive a standard algorithm by using the composition result of Exercise 5.7.Exercise 5.21 (NSPACE and directed connectivity) Our aim is to establisha relation between general non-deterministic space-bounded computation and di-rected connectivity in \strongly constructible" graphs that have size exponential inthe space bound. Let s be space constructible and at least logarithmic. For everyS 2 Nspace(s), present a linear-time oracle machine (somewhat as in x5.2.4.2)that given oracle access to x provides oracle access to a directed graph Gx of sizeexp(s(jxj)) such that x 2 S if and only if there is a directed path between the �rstand last vertices of Gx. That is, on input a pair (u; v) and oracle access to x, theoracle machine decides whether or not (u; v) is a directed edge in Gx.Guideline: Follow the proof of Theorem 5.11.

198 CHAPTER 5. SPACE COMPLEXITYExercise 5.22 (an alternative presentation of the proof of Theorem 5.12)We refer to directed graphs in which each vertex has a self-loop.1. Viewing the adjacency matrices of directed graphs as oracles (cf. Exer-cise 5.21), present a linear-space oracle machine that determines whethera given pair of vertices is connected by a directed path of length two in theinput graph. Note that this oracle machine computes the adjacency relationof the square of the graph represented in the oracle.2. Using naive composition (as in Lemma 5.1), present a quadratic-space oraclemachine that determines whether a given pair of vertices is connected by adirected path in the graph represented in the oracle.Note that the machine in Item 2 implies that st-CONN can be decided in log-squarespace. In particular, justify the self-loop assumption made up-front.Exercise 5.23 (deciding strong connectivity) A directed graph is called stronglyconnected if there exists a directed path between every ordered pair of vertices inthe graph (or, equivalently, a directed cycle passing through every two vertices).Prove that the problem of deciding whether a directed graph is strongly connectedis NL-complete under (many-to-one) log-space reductions.Guideline (for NL-hardness): Reduce from st-CONN. Note that, for any graph G=(V;E), it holds that (G; s; t) is a yes-instance of st-CONN if and only if the graph G0 =(V;E [f(v; s) : v2V g [f(t; v) : v2V g) is strongly connected.Exercise 5.24 (determining distances in undirected graphs) Prove that thefollowing computational problem is NL-complete under (many-to-one) log-spacereductions: Given an undirected graph G = (V;E), two designated vertices, s andt, and an integer K, determine whether there is a path of length at most (resp.,exactly) K from s to t in G.Guideline (for NL-hardness): Reduce from st-CONN. Speci�cally, given a directedgraph G = (V;E) and vertices s; t, consider a (\layered") graph G0 = (V 0; E0) such thatV 0 = [jV j�1i=0 fhi; vi : v2V g and E0 = [jV j�2i=0 ffhi; ui; hi + 1; vig : (u; v)2E _ u=vg. Notethat there exists a directed path from s to t in G if and only if there exists a path oflength at most (resp., exactly) jV j � 1 between h0; si and hjV j � 1; ti in G0.Guideline (for the exact version being in NL): Use NL = coNL.Exercise 5.25 (an operational interpretation of NL \ coNL, NP \ coNP, etc)Referring to De�nition 5.13, prove that S 2 NL\ coNL if and only if there existsa non-deterministic log-space machine that computes �S , where �S(x) = 1 if x 2 Sand �S(x) = 0 otherwise. State and prove an analogous result for NP \ coNP .Guideline: A non-deterministic machine computing any function f yields, for each valuev, a non-deterministic machine of similar complexity that accept fx : f(x) = vg. (Extrahint: Invoke the machine M that computes f and accept if and only if M outputs v.) On theother hand, for any function f of �nite range, combining non-deterministic machines that

5.4. PSPACE AND GAMES 199accept the various sets Sv def= fx : f(x) = vg, we obtain a non-deterministic machine ofsimilar complexity that computes f . (Extra hint: On input x, the combined machine invokeseach of the aforementioned machines on input x and outputs the value v if and only if the machineaccepting Sv has accepted. In the case that none of the machines accepts, the combined machineoutputs ?.)Exercise 5.26 (a graph algorithmic interpretation of NL = coNL) Show thatthere exists a log-space computable function f such that for every (G; s; t) it holdsthat (G; s; t) is a yes-instance of st-CONN if and only if (G0; s0; t0) = f(G; s; t) is ano-instance of st-CONN.Exercise 5.27 Referring to De�nition 5.13, prove that there exists a non-deterministiclog-space machine that computes the distance between two given vertices in a givenundirected graph.Guideline: Relate this computational problem to the (exact version of the) decisionproblem considered in Exercise 5.24.Exercise 5.28 As an alternative to the two-query reduction presented in the proofof Theorem 5.14, show that (computing the characteristic function of) st-CONN islog-space reducible via a single query to the problem of determining the number ofvertices that are reachable from a given vertex in a given graph.(Hint: On input (G; s; t), where G = ([N]; E), consider the number of vertices reachable from sin the graph G0 = ([2N]; E [f(t; N + i) : i = 1; :::;Ng).)Exercise 5.29 (reductions and non-deterministic computations) Suppose thatcomputing f is log-space reducible to computing some function g and that it iseither the case that the reduction is non-adaptive or that for every x it holdsthat jg(x)j = O(log jxj). Referring to non-deterministic computations as in De�-nition 5.13, prove that if there exists a non-deterministic log-space machine thatcomputes g then there exists a non-deterministic log-space machine that computesf .Guideline: The point is adapting a composition result that refers to deterministic algo-rithms (for computing g) into one that applies to non-deterministic computations. Specif-ically, in the �rst case we adapt the result of Exercise 5.8, whereas in the second case weadapt the result Exercise 5.7. The idea is running the same procedure as in the deter-ministic case, and handling the possible failure of the non-deterministic machine thatcomputes g in the natural manner; that is, if any such computation returns the value ?then we just halt outputting ?, and otherwise we proceed as in the deterministic case(using the non-? values obtained).Exercise 5.30 (the QBF game) Consider the following two-party game that isinitiated with a quanti�ed Boolean formula. The game features an existential player(which tries to prove that the formula is valid) versus a universal player (which triesto invalidate it). The game consists of the parties scanning the formula from leftto right such that when a quanti�er is encountered, the corresponding party takesa move that consists of instantiating the corresponding Boolean variable. At the

200 CHAPTER 5. SPACE COMPLEXITY�nal position, when all variables were instantiated, the existential party is declaredthe winner if and only if the corresponding Boolean expression evaluates to true.1. Show that, modulo some technical conventions, the foregoing QBF game �tsthe framework of e�cient two-party games (described at the beginning ofSection 5.4).2. Prove that any e�cient two-party game can be cast as a QBF game.Guideline: For Part 1 de�ne the universal player as winning in any non-�nal position(i.e., a position in which not all variables are instantiated). For part 2, see Footnote 6 inChapter 3.

