Chapter 3

Variations on P and NP

Cast a cold eye On life, on death. Horseman, pass by! W.B. Yeats, Under Ben Bulben

In this chapter we consider variations on the complexity classes P and NP. We refer specifically to the non-uniform version of P, and to the Polynomial-time Hierarchy (which extends NP). These variations are motivated by relatively technical considerations; still, the resulting classes are referred to quite frequently in the literature.

Summary: Non-uniform polynomial-time (P/poly) captures efficient computations that are carried out by devices that can each only handle inputs of a specific length. The basic formalism ignore the complexity of constructing such devices (i.e., a uniformity condition). A finer formalism that allows to quantify the amount of non-uniformity refers to so called "machines that take advice."

The Polynomial-time Hierarchy (PH) generalizes NP by considering statements expressed by quantified Boolean formulae with a fixed number of alternations of existential and universal quantifiers. It is widely believed that each quantifier alternation adds expressive power to the class of such formulae.

The two different classes are related by showing that if NP is contained in P/poly then the Polynomial-time Hierarchy collapses to its second level. This result is commonly interpreted as supporting the common belief that non-uniformity is irrelevant to the P-vs-NP Question; that is, although P/poly extends beyond the class P, is is believed that P/poly does not contain NP.

Except for the latter result, which is presented in Section 3.2.3, the treatments of P/poly (in Section 3.1) and of the Polynomial-time Hierarchy (in Section 3.2) are independent of one another.

3.1 Non-uniform polynomial-time (P/poly)

In this section we consider two formulations of the notion of non-uniform polynomialtime, based on the two models of non-uniform computing devices that were presented in Section 1.2.4. That is, we specialize the treatment of non-uniform computing devices, provided in Section 1.2.4, to the case of polynomially bounded complexities. It turns out that both (polynomially bounded) formulations allow for solving the same class of computational problems, which is a strict superset of the class of problems solvable by polynomial-time algorithms.

The two models of non-uniform computing devices are Boolean circuits and "machines that take advice" (cf. §1.2.4.1 and §1.2.4.2, respectively). We will focus on the restriction of both models to the case of polynomial complexities, considering (non-uniform) polynomial-size circuits and polynomial-time algorithms that take (non-uniform) advice of polynomially bounded length.

The main motivation for considering non-uniform polynomial-size circuits is that their computational limitations imply analogous limitations on polynomialtime algorithms. The hope is that, as is often the case in mathematics and Science, disposing of an auxiliary condition (i.e., uniformity) that seems secondary¹ and is not well-understood may turn out fruitful. In particular, the (non-uniform) circuit model facilitates a low-level analysis of the evolution of a computation, and allow for the application of combinatorial techniques. The benefit of this approach has been demonstrated in the study of restricted classes of circuits (see Sections B.2.2 and B.2.3).

The main motivation for considering polynomial-time algorithms that take polynomially bounded advice is that such devices are useful in modeling auxiliary information that is available to possible efficient strategies that are of interest to us. We mention two such settings. In cryptography (see Appendix C), the advice is used for accounting for auxiliary information that is available to an adversary. In the context of derandomization (see Section 8.3), the advice is used for accounting for the main input to the randomized algorithm. In addition, the model of polynomial-time algorithms that take advice allows for a quantitative study of the amount of non-uniformity, ranging from zero to polynomial.

3.1.1 Boolean Circuits

We refer the reader to $\S1.2.4.1$ for a definition of (families of) Boolean circuits and the functions computed by them. For concreteness and simplicity, we assume throughout this section that all circuits have bounded fan-in. We highlight the following result stated in $\S1.2.4.1$:

Theorem 3.1 (circuit evaluation): There exists a polynomial-time algorithm that, given a circuit $C : \{0,1\}^n \to \{0,1\}^m$ and an n-bit long string x, returns C(x).

¹The common belief is that the issue of non-uniformity is irrelevant to the P-vs-NP Question; that is, that resolving the latter question by proving that $\mathcal{P} \neq \mathcal{NP}$ is not easier than proving that NP does not have polynomial-size circuits. For further discussion see Appendix B.2 and Section 3.2.3.

Recall that the algorithm works by performing the "value-determination" process that underlies the definition of the computation of the circuit on a given input. This process assigns values to each of the circuit vertices based on the values of its children (or the values of the corresponding bit of the input, in the case of an input-terminal vertex).

Circuit size as a complexity measure. We recall the definitions of circuit complexity presented in to §1.2.4.1: The size of a circuit is defined as the number of edges, and the length of its description is almost linear in the latter; that is, a circuit of size s is commonly described by the list of its edges and the labels of its vertices, which means that its description length is $O(s \log s)$. We are interested in families of circuits that solve computational problems, and thus we say that the circuit family $(C_n)_{n \in \mathbb{N}}$ computes the function $f : \{0,1\}^* \to \{0,1\}^*$ if for every $x \in \{0,1\}^*$ it holds that $C_{|x|}(x) = f(x)$. The size complexity of this family is the function $s : \mathbb{N} \to \mathbb{N}$ such that s(n) is the size of C_n . The circuit complexity of a function f, denoted s_f , is the size-complexity of the smallest family of circuits that computes f. An equivalent formulation follows.

Definition 3.2 (circuit complexity): The circuit complexity of $f : \{0,1\}^* \to \{0,1\}^*$ is the function $s_f : \mathbb{N} \to \mathbb{N}$ such that $s_f(n)$ is the size of the smallest circuit that computes the restriction of f to n-bit strings.

We stress that non-uniformity is implicit in this definition, because no conditions are made regarding the relation between the various circuits that are used to compute the function value on different input lengths.

An interesting feature of Definition 3.2 is that, unlike in the case of uniform model of computation, it allows considering the actual complexity of the function rather than an upper-bound on its complexity (cf. $\S1.2.3.5$ and Section 4.2.1). This is a consequence of the fact that the circuit model has no "free parameters" (such as various parameters of the possible algorithm that is use in the uniform model).²

We will be interested in the class of problems that are solvable by families of polynomial-size circuits. That is, a problem is solvable by polynomial-size circuits if it can be solved by a function f that has polynomial circuit complexity (i.e., there exists a polynomial p such that $s_f(n) \leq p(n)$, for every $n \in \mathbb{N}$).

A detour: uniform families. A family of *polynomial-size* circuits $(C_n)_n$ is called uniform if given n one can construct the circuit C_n in poly(n)-time. More generally:

Definition 3.3 (uniformity): A family of circuits $(C_n)_n$ is called uniform if there exists an algorithm that on input n outputs C_n within a number of steps that is polynomial in the size of C_n .

²Advanced comment: The "free parameters" in the uniform model include the length of the description of the finite algorithm and its alphabet size. Note that these "free parameters" underly linear speedup results such as Exercise 4.4, which in turn prevent the specification of the exact (uniform) complexities of functions.

We note that stronger notions of uniformity have been considered. For example, one may require the existence of a polynomial-time algorithm that on input n and v, returns the label of vertex v as well as the list of its children (or an indication that v is not a vertex in C_n). For further discussion see Section 5.2.3. Turning back to Definition 3.3, we note that indeed the computation of a uniform family of circuits can be emulated by a uniform computing device.

Proposition 3.4 If a problem is solvable by a uniform family of polynomial-size circuits then it is solvable by a polynomial-time algorithm.

As was hinted in §1.2.4.1, the converse holds as well. The latter fact follows easily from the proof of Theorem 2.21 (see also the proof of Theorem 3.6).

Proof: On input x, the algorithm operates in two stages. In the first stage, it invokes the algorithm guaranteed by the uniformity condition, on input $n \stackrel{\text{def}}{=} |x|$, and obtains the circuit C_n . Next, it invokes the circuit evaluation algorithm (asserted in Theorem 3.1) on input C_n and x, and obtains $C_n(x)$. Since the size of C_n (as well as its description length) is polynomial in n, it follows that each stage of our algorithm runs in polynomial time (i.e., polynomial in n = |x|). Thus, the algorithm emulates the computation of $C_{|x|}(x)$, and does so in time polynomial in the length of its own input (i.e., x).

3.1.2 Machines that take advice

General (i.e., possibly non-uniform) families of polynomial-size circuits and uniform families of polynomial-size circuits are two extremes with respect to the "amounts of non-uniformity" in the computing device. Intuitively, in the former, non-uniformity is only bounded by the size of the device, whereas in the latter the amounts of nonuniformity is zero. Here we consider a model that allows to decouple the size of the computing device from the amount of non-uniformity, which may indeed range from zero to the device's size. Specifically, we consider algorithms that "take a non-uniform advice" that depends only on the input length. The amount of nonuniformity will be defined to equal the length of the corresponding advice (as a function of the input length). Thus, we specialize Definition 1.12 to the case of polynomial-time algorithms.

Definition 3.5 (non-uniform polynomial-time and \mathcal{P}/poly): We say that a function f is computed in polynomial-time with advice of length $\ell : \mathbb{N} \to \mathbb{N}$ if these exists a polynomial-time algorithm A and an infinite advice sequence $(a_n)_{n \in \mathbb{N}}$ such that

- 1. For every $x \in \{0,1\}^*$, it holds that $A(a_{|x|}, x) = f(x)$.
- 2. For every $n \in \mathbb{N}$, it holds that $|a_n| = \ell(n)$.

We say that a computational problem can be solved in polynomial-time with advice of length ℓ if a function solving this problem can be computed within these resources. We denote by \mathcal{P}/ℓ the class of decision problems that can be solved in polynomial-time with advice of length ℓ , and by $\mathcal{P}/poly$ the union of \mathcal{P}/p taken over all polynomials p. Clearly, $\mathcal{P}/0 = \mathcal{P}$. But allowing some (non-empty) advice increases the power of the class (see Theorem 3.7), and allowing advice of length comparable to the time complexity yields a formulation equivalent to circuit complexity (see Theorem 3.6). We highlight the greater flexibility available by the formalism of machines that take advice, which allows for separate specification of time complexity and advice length. (Indeed, this comes at the expense of a more cumbersome formulation; thus, we shall prefer the circuit formulation whenever we consider the case that both complexity measures are polynomial.)

Relation to families of polynomial-size circuits. As hinted before, the class of problems solvable by polynomial-time algorithms with polynomially bounded advice equals the class of problems solvable by families of polynomial-size circuits. For concreteness, we state this fact for decision problems.

Theorem 3.6 A decision problem is in \mathcal{P} /poly if and only if it can be solved by a family of polynomial-size circuits.

More generally, for any function t, the following proof establishes that equivalence of the power of polynomial-time machines that take advice of length t versus families of circuits of size polynomially related to t.

Proof Sketch: Suppose that a problem can be solved by a polynomial-time algorithm A using the polynomially bounded advice sequence $(a_n)_{n\in\mathbb{N}}$. We obtain a family of polynomial-size circuits that solves the same problem by adapting the proof of Theorem 2.21. Specifically, we observe that the computation of $A(a_{|x|}, x)$ can be emulated by a circuit of poly(|x|)-size, which incorporates $a_{|x|}$ and is given x as input. That is, we construct a circuit C_n such that $C_n(x) = A(a_n, x)$ holds for every $x \in \{0,1\}^n$ (analogously to the way C_x was constructed in the proof of Theorem 2.21, where it holds that $C_x(y) = M_R(x, y)$ for every y of adequate length).³

On the other hand, given a family of polynomial-size circuits, we obtain a polynomial-time advice-taking machine that emulates this family when using advice that provide the description of the relevant circuits. Specifically, we transform the evaluation algorithm asserted in Theorem 3.1 into a machine that, given advice α and input x, treats α as a description of a circuit C and evaluates C(x). Indeed, we use the fact that a circuit of size s can be described by a string of length $O(s \log s)$, where the log factor is due to the fact that a graph with v vertices and e edges can be described by a string of length $2e \log_2 v$.

Another perspective. A set S is called sparse if there exists a polynomial p such that for every n it holds that $|S \cap \{0,1\}^n| \leq p(n)$. We note that $\mathcal{P}/poly$ equals the class of sets that are Cook-reducible to a sparse set (see Exercise 3.2). Thus, SAT is Cook-reducible to a sparse set if and only if $\mathcal{NP} \subset \mathcal{P}/poly$. In contrast, SAT is Karp-reducible to a sparse set if and only if $\mathcal{NP} = \mathcal{P}$ (see Exercise 3.12).

³Advanced comment: Note that a_n is the only "non-uniform" part in the circuit C_n . Thus, if algorithm A takes no advice (i.e., $a_n = \lambda$ for every n) then we obtain a uniform family of circuits.

The power of $\mathcal{P}/\text{poly.}$ In continuation to Theorem 1.13 (which focuses on advice and ignores the time-complexity of the machine that takes this advice), we prove the following (stronger) result.

Theorem 3.7 (the power of advice, revisited): The class $\mathcal{P}/1 \subseteq \mathcal{P}/\text{poly contains}$ \mathcal{P} as well as some undecidable problems.

Actually, $\mathcal{P}/1 \subset \mathcal{P}/\text{poly}$. Furthermore, by using a counting argument, one can show that for any two polynomially bounded functions $\ell_1, \ell_2 : \mathbb{N} \to \mathbb{N}$ such that $\ell_2 - \ell_1 > 0$ is unbounded, it holds that \mathcal{P}/ℓ_1 is strictly contained in \mathcal{P}/ℓ_2 ; see Exercise 3.3.

Proof: Clearly, $\mathcal{P} = \mathcal{P}/0 \subseteq \mathcal{P}/1 \subseteq \mathcal{P}/\text{poly}$. To prove that $\mathcal{P}/1$ contains some undecidable problems, we review the proof of Theorem 1.13. The latter proof established the existence of an uncomputable Boolean function that only depend on its input length. That is, there exists an undecidable set $S \subset \{0, 1\}^*$ such that for every pair (x, y) of equal length strings it holds that $x \in S$ if and only if $y \in S$. In other words, for every $x \in \{0, 1\}^*$ it holds that $x \in S$ if and only if $1^{|x|} \in S$. But such a set is easily decidable in polynomial-time by a machine that takes one bit of advice; that is, consider the algorithm A that satisfies A(a, x) = a (for $a \in \{0, 1\}^*$) and the advice sequence $(a_n)_{n \in \mathbb{N}}$ such that $a_n = 1$ if and only if $1^n \in S$. Note that, indeed, $A(a_{|x|}, x) = 1$ if and only if $x \in S$.

3.2 The Polynomial-time Hierarchy (PH)

We start with an informal motivating discussion, which will be made formal in Section 3.2.1.

Sets in \mathcal{NP} can be viewed as sets of valid assertions that can be expressed as quantified Boolean formulae using only existential quantifiers. That is, a set S is in \mathcal{NP} if there is a Karp-reduction of S to the problem of deciding whether or not an existentially quantified Boolean formula is valid (i.e., an instance x is mapped by this reduction to a formula of the form $\exists y_1 \cdots \exists y_{m(x)} \phi_x(y_1, ..., y_{m(x)})$).

The conjectured intractability of \mathcal{NP} seems due to the long sequence of existential quantifiers. Of course, if somebody else (i.e., a "prover") were to provide us with an adequate assignment (to the y_i 's) whenever such an assignment exists then we would be in good shape. That is, we can efficiently verify proofs of validity of existentially quantified Boolean formulae.

But what if we want to verify the validity of a universally quantified Boolean formulae (i.e., formulae of the form $\forall y_1 \cdots \forall y_m \phi(y_1, \dots, y_m)$). Here we seem to need the help of a totally different entity: we need a "refuter" that is guaranteed to provide us with a refutation whenever such exist, and we need to believe that if we were not presented with such a refutation then it is the case that no refutation exists (and hence the universally quantified formula is valid). Indeed, this new setting (of a "refutation system") is fundamentally different from the setting of a proof system: In a proof system we are only convinced by proofs (to assertions) that we have verified by ourselves, whereas in the "refutation system" we trust the

"refuter" to provide evidence against false assertions.⁴ Furthermore, there seems to be no way of converting one setting (e.g., the proof system) into another (resp., the refutation system).

Taking an additional step, we may consider a more complicated system in which we use two agents: a "supporter" that tries to provide evidence in favor of an assertion and an "objector" that tries to refute it. These two agents conduct a debate (or an argument) in our presence, exchanging messages with the goal of making us (the referee) rule their way. The assertions that can be proven in this system take the form of general quantified formulae with alternating sequences of quantifiers, where the number of alternating sequences equals the number of rounds of interaction in the said system. We stress that the exact length of each sequence of quantifiers of the same type does not matter, what matters is the number of alternating sequences, denoted k.

The aforementioned system of alternations can be viewed as a two-party game, and we may ask ourselves which of the two parties has a k-move winning strategy. In general, we may consider any (0-1 zero-sum) two-party game, in which the game's position can be efficiently updated (by any given move) and efficiently evaluated. For such a fixed game, given an initial position, we may ask whether the first party has a (k-move) winning strategy. It seems that answering this type of question for some fixed k does not necessarily allow answering it for k + 1. We now turn to formalize the foregoing discussion.

3.2.1 Alternation of quantifiers

In the following definition, the aforementioned propositional formula ϕ_x is replaced by the input x itself. (Correspondingly, the combination of the Karp-reduction and a formula-evaluation algorithm is replaced by the verification algorithm V (see Exercise 3.7).) This is done in order to make the comparison to the definition of \mathcal{NP} more transparent (as well as to fit the standard presentations). We also replace a sequence of Boolean quantifiers of the same type by a single corresponding quantifier that quantifies over all strings of the corresponding length.

Definition 3.8 (the class Σ_k): For a natural number k, a decision problem $S \subseteq \{0,1\}^*$ is in Σ_k if there exists a polynomial p and a polynomial-time algorithm V such that $x \in S$ if and only if

$$\exists y_1 \in \{0,1\}^{p(|x|)} \forall y_2 \in \{0,1\}^{p(|x|)} \exists y_3 \in \{0,1\}^{p(|x|)} \cdots Q_k y_k \in \{0,1\}^{p(|x|)}$$
s.t. $V(x, y_1, ..., y_k) = 1$

where Q_k is an existential quantifier if k is odd and is a universal quantifier otherwise.

⁴More formally, in proof systems the soundness condition relies only on the actions of the verifier, whereas completeness also relies on the prover's action (i.e., its using an adequate strategy). In contrast, in "refutation system" the soundness condition relies on the proper actions of the refuter, whereas completeness does not depend on the refuter's actions.

Note that $\Sigma_1 = \mathcal{NP}$ and $\Sigma_0 = \mathcal{P}$. The Polynomial-time Hierarchy, denoted \mathcal{PH} , is the union of all the aforementioned classes (i.e., $\mathcal{PH} = \bigcup_k \Sigma_k$), and Σ_k is often referred to as the k^{th} level of \mathcal{PH} . The levels of the Polynomial-time Hierarchy can also be defined inductively, by defining Σ_{k+1} based on $\Pi_k \stackrel{\text{def}}{=} \operatorname{co}\Sigma_k$, where $\operatorname{co}\Sigma_k \stackrel{\text{def}}{=} \{\{0,1\}^* \setminus S : S \in \Sigma_k\}$ (cf. Eq. (2.4)).

Proposition 3.9 For every $k \ge 0$, a set S is in Σ_{k+1} if and only if there exists a polynomial p and a set $S' \in \Pi_k$ such that $S = \{x : \exists y \in \{0,1\}^{p(|x|)} \text{ s.t. } (x,y) \in S'\}.$

Proof: Suppose that S is in Σ_{k+1} and let p and V be as in Definition 3.8. Then define S' as the set of pairs (x, y) such that |y| = p(|x|) and

 $\forall z_1 \in \{0, 1\}^{p(|x|)} \exists z_2 \in \{0, 1\}^{p(|x|)} \cdots Q_k z_k \in \{0, 1\}^{p(|x|)} \text{ s.t. } V(x, y, z_1, \dots, z_k) = 1.$

Note that $x \in S$ if and only if there exists $y \in \{0, 1\}^{p(|x|)}$ such that $(x, y) \in S'$, and that $S' \in \Pi_k$ (see Exercise 3.6).

On the other hand, suppose that for some polynomial p and a set $S' \in \Pi_k$ it holds that $S = \{x : \exists y \in \{0,1\}^{p(|x|)} \text{ s.t. } (x,y) \in S'\}$. Then, for some p' and V', it holds that $(x,y) \in S'$ if and only if |y| = p(|x|) and

 $\forall z_1 \in \{0,1\}^{p'(|x|)} \exists z_2 \in \{0,1\}^{p'(|x|)} \cdots Q_k z_k \in \{0,1\}^{p'(|x|)} \text{ s.t. } V'((x,y),z_1,...,z_k) = 1$

(see Exercise 3.6 again). By using a suitable encoding of y and the z_i 's (as strings of length $\max(p(|x|), p'(|x|))$) and a trivial modification of V', we conclude that $S \in \Sigma_{k+1}$.

Determining the winner in k-move games. Definition 3.8 can be interpreted as capturing the complexity of determining the winner in certain *efficient two-party* game. Specifically, we refer to two-party games that satisfy the following three conditions:

- 1. The parties alternate in taking moves that effect the game's (global) position, where each move has a description length that is bounded by a polynomial in the length of the current position.
- 2. The current position can be updated in polynomial-time based on the previous position and the current party's move.⁵
- 3. The winner in each position can be determined in polynomial-time.

⁵Note that, since we consider a constant number of moves, the length of all possible final positions is bounded by a polynomial in the length of the initial position, and thus all items have an equivalent form in which one refers to the complexity as a function of the length of the initial position. The latter form allows for a smooth generalization to games with a polynomial number of moves (as in Section 5.4), where it is essential to state all complexities in terms of the length of the initial position.

Note that the set of initial positions for which the first party has a k-move winning strategy with respect to the foregoing game is in Σ_k . Specifically, denoting this set by G, note that an initial position x is in G if there exists a move y_1 for the first party, such that for every response move y_2 of the second party, there exists a move y_3 for the first party, etc, such that after k moves the parties reach a position in which the first party wins, where the final position is determined according to the forgoing Item 2 and the winner in it is determined according to Item 3.⁶ Thus, $G \in \Sigma_k$. On the other hand, note that any set $S \in \Sigma_k$ can be viewed as the set of initial positions (in a suitable game) for which the first party has a k-move winning strategy. Specifically, $x \in S$ if starting at the initial position x, there exists a move y_1 for the first party, such that for every response move y_2 of the second party, there exists a move y_1 for the first party, such that for every response move y_2 of the second party, there exists a move y_1 for the first party, such that for every response move y_2 of the second party, there exists a move y_3 for the first party, etc, such that after k moves the parties reach a position in which the first party wins, where the final position is defined as $(x, y_1, ..., y_k)$ and the winner is determined by the predicate V (as in Definition 3.8).

The collapsing effect of some equalities. Extending the intuition that underlies the $\mathcal{NP} \neq co\mathcal{NP}$ conjecture, it is commonly conjectured that $\Sigma_k \neq \Pi_k$ for every $k \in \mathbb{N}$. The failure of this conjecture causes the collapse of the Polynomial-time Hierarchy to the corresponding level.

Proposition 3.10 For every $k \ge 1$, if $\Sigma_k = \prod_k$ then $\Sigma_{k+1} = \Sigma_k$, which in turn implies $\mathcal{PH} = \Sigma_k$.

The converse also holds (i.e., $\mathcal{PH} = \Sigma_k$ implies $\Sigma_{k+1} = \Sigma_k$ and $\Sigma_k = \Pi_k$). Needless to say, Proposition 3.10 does not seem to hold for k = 0.

Proof: Assuming that $\Sigma_k = \Pi_k$, we first show that $\Sigma_{k+1} = \Sigma_k$. For any set S in Σ_{k+1} , by Proposition 3.9, there exists a polynomial p and a set $S' \in \Pi_k$ such that $S = \{x : \exists y \in \{0,1\}^{p(|x|)} \text{ s.t. } (x,y) \in S'\}$. Using the hypothesis, we infer that $S' \in \Sigma_k$, and so (using Proposition 3.9 and $k \ge 1$) there exists a polynomial p' and a set $S'' \in \Pi_{k-1}$ such that $S' = \{x' : \exists y' \in \{0,1\}^{p'(|x'|)} \text{ s.t. } (x',y') \in S''\}$. It follows that

$$S = \{x : \exists y \in \{0,1\}^{p(|x|)} \exists z \in \{0,1\}^{p'(|(x,y)|)} \text{ s.t. } ((x,y),z) \in S''\}.$$

By collapsing the two adjacent existential quantifiers (and using Proposition 3.9 yet again), we conclude that $S \in \Sigma_k$. This proves the first part of the proposition.

Turning to the second part, we note that $\Sigma_{k+1} = \Sigma_k$ (or, equivalently, $\Pi_{k+1} = \Pi_k$) implies $\Sigma_{k+2} = \Sigma_{k+1}$ (again by using Proposition 3.9), and similarly $\Sigma_{j+2} = \Sigma_{j+1}$ for any $j \ge k$. Thus, $\Sigma_{k+1} = \Sigma_k$ implies $\mathcal{PH} = \Sigma_k$.

⁶Let U be the update algorithm of Item 2 and W be the algorithm that decides the winner as in Item 3. Then the final position is given by computing $x_i \leftarrow U(x_{i-1}, y_i)$, for i = 1, ..., k(where $x_0 = x$), and the winner is $W(x_k)$. Note that, by Item 1, there exists a polynomial p such that $|y_i| \leq p(|x_i|)$, for every $i \in [k]$, and it follows that $|y_i| \leq poly(|x|)$. Using a suitable encoding, we obtain a polynomial-time algorithm V such that $V(x, y_1, ..., y_k) = W(x_k)$, where $x_k = U(\cdots U(U(U(x, y_1), y_2), y_3) \cdots, y_k)$.

Decision problems that are Cook-reductions to NP. The Polynomial-time Hierarchy contains all decision problems that are Cook-reductions to \mathcal{NP} (see Exercise 3.4). As shown next, the latter class contains many natural problems. Recall that in Section 2.2.2 we defined two types of optimization problems and showed that under some natural conditions these two types are computationally equivalent (under Cook reductions). Specifically, one type of problems referred to finding solutions that have a value exceeding some given threshold, whereas the second type called for finding *optimal solutions*. In Section 2.3 we presented several problems of the first type, and proved that they are NP-complete. We note that corresponding versions of the second type are believed not to be in NP. For example, we discussed the problem of deciding whether or not a given graph G has a clique of a given size K, and showed that it is NP-complete. In contract, the problem of deciding whether or not K is the maximum clique size of the graph G is not known (and quite unlikely) to be in \mathcal{NP} , although it is Cook-reducible to \mathcal{NP} . Thus, the class of decision problems that are Cook-reducible to \mathcal{NP} contains many natural problems that are unlikely to be in \mathcal{NP} . The Polynomial-time Hierarchy contains all these problems.

Complete problems and a relation to AC0. We note that quantified Boolean formulae with a bounded number of quantifier alternation provide complete problems for the various levels of the Polynomial-time Hierarchy (see Exercise 3.7). We also note the correspondence between these formulae and (highly uniform) constant-depth circuits of unbounded fan-in that get as input the truth-table of the underlying (quantifier-free) formula (see Exercise 3.8).

3.2.2 Non-deterministic oracle machines

The Polynomial-time Hierarchy is commonly defined in terms of non-deterministic polynomial-time (oracle) machines that are given oracle access to a set in the lower level of the same hierarchy. Such machines are defined by combining the definitions of non-deterministic (polynomial-time) machines (cf. Definition 2.7) and oracle machines (cf. Definition 1.11). Specifically, for an oracle $f : \{0,1\}^* \to \{0,1\}^*$, a non-deterministic oracle machine M, and a string x, one considers the question of whether or not there exists an accepting (non-deterministic) computation of M on input x and access to the oracle f. The class of sets that can be accepted by non-deterministic polynomial-time (oracle) machines with access to f is denoted \mathcal{NP}^f . (We note that this notation makes sense because we can associate the class \mathcal{NP} with a collection of machines that lends itself to be extended to oracle machines.) For any class of decision problems C, we denote by \mathcal{NP}^C the union of \mathcal{NP}^f taken over all decision problems f in C. The following result provides an alternative definition of the Polynomial-time Hierarchy.

Proposition 3.11 For every $k \geq 1$, it holds that $\Sigma_{k+1} = \mathcal{NP}^{\Sigma_k}$.

Proof: Containment in one direction (i.e., $\Sigma_{k+1} \subseteq \mathcal{NP}^{\Sigma_k}$) is almost straightforward: For any $S \in \Sigma_{k+1}$, let $S' \in \Pi_k$ and p be as in Proposition 3.9; that is,

 $S = \{x : \exists y \in \{0,1\}^{p(|x|)} \text{ s.t. } (x, y) \in S'\}$. Consider the non-deterministic oracle machine that, on input x, non-deterministically generates $y \in \{0,1\}^{p(|x|)}$ and accepts if and only if (the oracle indicates that) $(x, y) \in S'$. This machine demonstrates that $S \in \mathcal{NP}^{\Pi_k} = \mathcal{NP}^{\Sigma_k}$, where the equality holds by letting the oracle machine flip each (binary) answer that is provided by the oracle.⁷

For the opposite containment (i.e., $\mathcal{NP}^{\Sigma_k} \subseteq \Sigma_{k+1}$), we generalize the main idea underlying the proof of Theorem 2.35 (which referred to $\mathcal{P}^{\mathcal{NP}\cap co\mathcal{NP}}$). Specifically, consider any $S \in \mathcal{NP}^{\Sigma_k}$, and let M be a non-deterministic polynomial-time oracle machine that accepts S when given oracle access to $S' \in \Sigma_k$. Note that⁸ machine M may issue several queries to S', and these queries may be determined based on previous oracle answers. To simplify the argument, we assume, without loss of generality, that at the very beginning of its execution machine M guesses (nondeterministic) all oracle answers and accepts only if the actual answers match its guesses. Thus, M's queries to the oracle are determined by its input, denoted x, and its non-deterministic choices, denoted y. We denote by $q^{(i)}(x, y)$ the i^{th} query made by M (on input x and non-deterministic choices y), and by $a^{(i)}(x, y)$ the corresponding (a priori) guessed answer (which is a bit in y). Thus, $x \in S$ if and only if there exists $y \in \{0, 1\}^{\text{poly}(|x|)}$ such that the following two conditions hold:

1. Machine M accepts when it is invoked on input x, makes non-deterministic choices y, and is given $a^{(i)}(x, y)$ as the answer to its i^{th} oracle query. We denote the corresponding ("acceptance") predicate, which is polynomial-time computable, by A(x, y).

We stress that we do not assume here that the $a^{(i)}(x, y)$'s are consistent with answers that would have been given by the oracle S'; this will be the subject of the next condition. The current condition only refers to the decision of Mon a specific input, when M makes a specific sequence of non-deterministic choices, and is provided with specific answers.

2. Each bit $a^{(i)}(x, y)$ is consistent with S'; that is, for every *i*, it holds that $a^{(i)}(x, y) = 1$ if and only if $q^{(i)}(x, y) \in S'$.

Denoting the number of queries made by M (on input x and non-deterministic choices y) by $q(x, y) \leq poly(|x|)$, it follows that $x \in S$ if and only if

$$\exists y \left(A(x,y) \land \bigwedge_{i=1}^{q(x,y)} \left((a^{(i)}(x,y) = 1) \Leftrightarrow (q^{(i)}(x,y) \in S') \right) \right)$$
(3.1)

Denoting the verification algorithm of S' by V', Eq. (3.1) equals

$$\exists y \left(A(x,y) \land \bigwedge_{i=1}^{q(x,y)} \left((a^{(i)}(x,y) = 1) \Leftrightarrow \exists y_1^{(i)} \forall y_2^{(i)} \cdots Q_k y_k^{(i)} V'(q^{(i)}(x,y), y_1^{(i)}, ..., y_k^{(i)}) = 1 \right) \right)$$

⁷Do not get confused by the fact that the class of oracles may *not* be closed under complementation. From the point of view of the oracle machine, the oracle is merely a function, and the machine may do with its answer whatever it pleases (and in particular negate it).

⁸Indeed, this is unlike the specific machine used towards proving that $\Sigma_{k+1} \subseteq \mathcal{NP}^{\Sigma_k}$.

The proof is completed by observing that the foregoing expression can be rearranged to fit the definition of Σ_{k+1} . Details follow.

Starting with the foregoing expression, we first replace the sub-expression $E_1 \Leftrightarrow E_2$ by $(E_1 \wedge E_2) \vee (\neg E_1 \wedge \neg E_2)$, and then pull all quantifiers outside.⁹ This way we obtain a quantified expression with k + 1 alternating quantifiers, starting with an existential quantifier. (Note that we get k + 1 alternating quantifiers rather than k, because the case of $\neg a^{(i)}(x, y) = 1$ introduces an expression of the form $\neg \exists y_1^{(i)} \forall y_2^{(i)} \cdots Q_k y_k^{(i)} V'(q^{(i)}(x, y), y_1^{(i)}, \dots, y_k^{(i)}) = 1$, which in turn is equivalent to the expression $\forall y_1^{(i)} \exists y_2^{(i)} \cdots \overline{Q}_k y_k^{(i)} \neg V'(q^{(i)}(x, y), y_1^{(i)}, \dots, y_k^{(i)}) = 1$.) Once this is done, we may incorporate the computation of all the $q^{(i)}(x, y)$'s (and $a^{(i)}(x, y)$'s) as well as the polynomial number of invocations of V' (and other logical operations) into the new verification algorithm V. It follows that $S \in \Sigma_{k+1}$.

A general perspective – what does $C_1^{C_2}$ mean? By the foregoing discussion it should be clear that the class $C_1^{C_2}$ can be defined for two complexity classes C_1 and C_2 , provided that C_1 is associated with a class of standard machines that generalizes naturally to a class of oracle machines. Actually, the class $C_1^{C_2}$ is not defined based on the class C_1 but rather by analogy to it. Specifically, suppose that C_1 is the class of sets that are recognizable (or rather accepted) by machines of certain type (e.g., deterministic or non-deterministic) with certain resource bounds (e.g., time and/or space bounds). Then, we consider analogous oracle machines (i.e., of the same type and with the same resource bounds), and say that $S \in C_1^{C_2}$ if there exists an adequate oracle machine M_1 (i.e., of this type and resource bounds) and a set $S_2 \in C_2$ such that $M_1^{S_2}$ accepts the set S.

Decision problems that are Cook-reductions to NP, revisited. Using the foregoing notation, the class of decision problems that are Cook-reductions to \mathcal{NP} is denoted $\mathcal{P}^{\mathcal{NP}}$, and thus is a subset of $\mathcal{NP}^{\mathcal{NP}} = \Sigma_2$ (see Exercise 3.9). In contrast, recall that the class of decision problems that are Karp-reductions to \mathcal{NP} equals \mathcal{NP} .

The world view. Using the foregoing notation and relying on Exercise 3.9, we note that for every $k \ge 1$ it holds that $\Sigma_k \cup \Pi_k \subseteq \mathcal{P}^{\Sigma_k} \subseteq \Sigma_{k+1} \cap \Pi_{k+1}$. See Figure 3.1 that depicts the situation, assuming that all the containments are strict.

3.2.3 The P/poly-versus-NP Question and PH

As stated in Section 3.1, a main motivation for the definition of \mathcal{P}/poly is the hope that it can serve to separate \mathcal{P} from \mathcal{NP} (by showing that \mathcal{NP} is not even

⁹For example, note that for predicates P_1 and P_2 , the expression $\exists y (P_1(y) \Leftrightarrow \exists z P_2(y, z))$ is equivalent to the expression $\exists y ((P_1(y) \land \exists z P_2(y, z)) \lor (\neg P_1(y) \land \neg \exists z P_2(y, z)))$, which in turn is equivalent to the expression $\exists y \exists z' \forall z'' ((P_1(y) \land P_2(y, z')) \lor ((\neg P_1(y) \land \neg P_2(y, z''))))$. Note that pulling the quantifiers outside in $\land_{i=1}^t \exists y^{(i)} \forall z^{(i)} P(y^{(i)}, z^{(i)})$ yields an expression of the type $\exists y^{(1)}, ..., y^{(t)} \forall z^{(1)}, ..., z^{(t)} \land_{i=1}^t P(y^{(i)}, z^{(i)})$.

Figure 3.1: Two levels of the Polynomial-time Hierarchy.

contained in \mathcal{P}/poly , which is a (strict) superset of \mathcal{P}). In light of the fact that \mathcal{P}/poly extends far beyond \mathcal{P} (and in particular contains undecidable problems), one may wonder if this approach does not run the risk of asking too much (because it may be that \mathcal{NP} is in \mathcal{P}/poly even if $\mathcal{P} \neq \mathcal{NP}$). The common feeling is that the added power of non-uniformity is irrelevant with respect to the P-vs-NP Question. Ideally, we would like to know that $\mathcal{NP} \subset \mathcal{P}/\text{poly}$ may occur only if $\mathcal{P} = \mathcal{NP}$, which may be phrased as saying that the Polynomial-time Hierarchy collapses to its zero level. The following result seems to get close to such an implication, showing that $\mathcal{NP} \subset \mathcal{P}/\text{poly}$ may occur only if the Polynomial-time Hierarchy collapses to its second level.

Theorem 3.12 If $\mathcal{NP} \subset \mathcal{P}/\operatorname{poly} then \Sigma_2 = \Pi_2$.

Recall that $\Sigma_2 = \Pi_2$ implies $\mathcal{PH} = \Sigma_2$ (see Proposition 3.10). Thus, an unexpected behavior of the non-uniform complexity class \mathcal{P} /poly implies an unexpected behavior in the world of uniform complexity (which is the habitat of \mathcal{PH}).

Proof: Using the hypothesis (i.e., $\mathcal{NP} \subset \mathcal{P}/\text{poly}$) and starting with an arbitrary set $S \in \Pi_2$, we shall show that $S \in \Sigma_2$. Let us describe, first, our high-level approach.

Loosely speaking, $S \in \Pi_2$ means that $x \in S$ if and only if for all y there exists a z such that some (fixed) polynomial-time verifiable condition regarding (x, y, z) holds. Note that the residual condition regarding (x, y) is of the NP-type, and thus (by the hypothesis) it can be verified by a polynomial-size circuit. This suggests saying that $x \in S$ if and only if there exists an *adequate* circuit C such that for all y it holds that C(x, y) = 1. Thus, we managed to switch the order of the universal and existential quantifiers. Specifically, the resulting assertion is of the desired Σ_2 -type provided that we can either verify the *adequacy condition* in $co\mathcal{NP}$ (or even in Σ_2) or keep out of trouble even in the case that $x \notin S$ and C is inadequate. In the following proof we implement the latter option by observing

that the hypothesis yields small circuits for NP-search problems (and not only for NP-decision problems). Specifically, we obtain (small) circuits that, given (x, y), find an NP-witness for (x, y) (whenever such a witness exists), and rely on the fact that we can efficiently verify the correctness of NP-witnesses. (The alternative approach of providing a coNP-type procedure for verifying the adequacy of the circuit is pursued in Exercise 3.11.)

We now turn to a detailed implementation of the foregoing approach. Let S be an arbitrary set in Π_2 . Then, by Proposition 3.9, there exists a polynomial p and a set $S' \in \mathcal{NP}$ such that $S = \{x : \forall y \in \{0, 1\}^{p(|x|)} (x, y) \in S'\}$. Let $R' \in \mathcal{PC}$ be the witness-relation corresponding to S'; that is, there exists a polynomial p', such that $x' = \langle x, y \rangle \in S'$ if and only if there exists $z \in \{0, 1\}^{p'(|x'|)}$ such that $(x', z) \in R'$. It follows that

$$S = \{x : \forall y \in \{0, 1\}^{p(|x|)} \exists z \in \{0, 1\}^{p'(|\langle x, y \rangle|)} \ (\langle x, y \rangle, z) \in R'\}.$$
(3.2)

Our argument proceeds essentially as follows. By the reduction of \mathcal{PC} to \mathcal{NP} (see Theorem 2.10), the theorem's hypothesis (i.e., $\mathcal{NP} \subseteq \mathcal{P}/\text{poly}$) implies the existence of polynomial-size circuits for solving the search problem of R'. Using the existence of these circuits, it follows that for any $x \in S$ there exists a small circuit C' such that for every y it holds that $C'(x, y) \in R'(x, y)$ (because $\langle x, y \rangle \in S'$ and hence $R'(x, y) \neq \emptyset$). On the other hand, for any $x \notin S$ there exists a y such that $\langle x, y \rangle \notin S'$, and hence for any circuit C' it holds that $C'(x, y) \notin R'(x, y)$ (for the trivial reason that $R'(x, y) = \emptyset$). Thus, $x \in S$ if and only if there exists a poly(|x| + p(|x|))-size circuit C' such that for all $y \in \{0, 1\}^{p(|x|)}$ it holds that $(\langle x, y \rangle, C'(x, y)) \in R'$. Letting V(x, C', y) = 1 if and only if $(\langle x, y \rangle, C'(x, y)) \in R'$, we infer that $S \in \Sigma_2$. Details follow.

Let us first spell-out what we mean by polynomial-size circuits for solving a search problem and further justify their existence for the search problem of R'. In Section 3.1, we have focused on polynomial-size circuits that solve decision problems. However, the definition sketched in Section 3.1.1 also applies to solving search problems, provided that an appropriate convention is used for encoding solutions of possibly varying lengths (for instances of fixed length) as strings of fixed length. Next, observe that combining the Cook-reduction of \mathcal{PC} to \mathcal{NP} with the hypothesis $\mathcal{NP} \subseteq \mathcal{P}/\text{poly}$, implies that \mathcal{PC} is Cook-reducible to \mathcal{P}/poly . In particular, this implies that any search problem in \mathcal{PC} can be solved by a family of polynomial-size circuits. Note that the resulting circuit that solves *n*-bit long instances of such a problem may incorporate polynomially (in *n*) many circuits, each solving a decision problem for *m*-bit long instances, where $m \in [\text{poly}(n)]$. Needless to say, the size of the resulting circuit that solves the search problem of the aforementioned $R' \in \mathcal{PC}$ (for instances of length *n*) is upper-bounded by $\text{poly}(n) \cdot \sum_{m=1}^{\text{poly}(n)} \text{poly}(m)$.

We next (revisit and) establish the claim that $x \in S$ if and only if there exists a poly(|x| + p(|x|))-size circuit C' such that for all $y \in \{0,1\}^{p(|x|)}$ it holds that $(\langle x, y \rangle, C'(x, y)) \in R'$. Recall that $x \in S$ if and only if for every $y \in \{0,1\}^{p(|x|)}$ it holds that $(x, y) \in S'$, which means that there exists $z \in \{0,1\}^{p'(|x|)}$ such that $(\langle x, y \rangle, z)) \in R'$. Also recall that (by the foregoing discussion) there exist polynomial-size circuits for solving the search problem of R'. Thus, in the case that $x \in S$, we just use the corresponding circuit C' that solves the search problem of R' on inputs of length |x| + p(|x|). Indeed, this circuit C' only depends on n' = |x| + p(|x|), which in turn is determined by |x|, and for every $x' \in \{0,1\}^{n'}$ it holds that $(x', C'(x')) \in R'$ if and only if $x' \in S'$. Thus, for $x \in S$, there exists a poly(|x| + p(|x|))-size circuit C' such that for every $y \in \{0,1\}^{p(|x|)}$ it holds that $(\langle x, y \rangle, C'(x, y))) \in R'$. On the other hand, if $x \notin S$ then there exists a y such that for all z it holds that $(\langle x, y \rangle, z)) \notin R'$. It follows that, in this case, for every C'there exists a y such that $(\langle x, y \rangle, C'(x, y))) \notin R'$. We conclude that $x \in S$ if and only if

$$\exists C' \in \{0,1\}^{p \circ ly(|x|+p(|x|))} \forall y \in \{0,1\}^{p(|x|)} (\langle x,y \rangle, C'(x,y)) \in R'.$$
(3.3)

The key observation regarding the condition stated in Eq. (3.3) is that it is of the desired form (of a Σ_2 statement). Specifically, consider the polynomial-time verification procedure V that given x, y and the description of the circuit C', first computes $z \leftarrow C'(x, y)$ and accepts if and only if $(\langle x, y \rangle, z) \in R'$, where the latter condition can be verified in polynomial-time (because $R' \in \mathcal{PC}$). Denoting the description of a potential circuit by $\langle C' \rangle$, the aforementioned (polynomial-time) computation of V is denoted $V(x, \langle C' \rangle, y)$, and indeed $x \in S$ if and only if

$$\exists \langle C' \rangle \in \{0,1\}^{p \operatorname{oly}(|x|+p(|x|))} \forall y \in \{0,1\}^{p(|x|)} V(x, \langle C' \rangle, y) = 1.$$

Having established that $S \in \Sigma_2$ for an arbitrary $S \in \Pi_2$, we conclude that $\Pi_2 \subseteq \Sigma_2$. The theorem follows (by applying Exercise 3.9.4).

Chapter Notes

The class \mathcal{P} /poly was defined by Karp and Lipton [132] as part of a general formulation of "machines which take advice" [132]. They also noted the equivalence to the traditional formulation of polynomial-size circuits as well as the effect of uniformity (Proposition 3.4).

The Polynomial-Time Hierarchy (\mathcal{PH}) was introduced by Stockmeyer [205]. A third equivalent formulation of \mathcal{PH} (via so-called "alternating machines") can be found in [49].

The implication of the failure of the conjecture that \mathcal{NP} is not contained in \mathcal{P} /poly on the Polynomial-time Hierarchy (i.e., Theorem 3.12) was discovered by Karp and Lipton [132]. This interesting connection between non-uniform and uniform complexity provides the main motivation for presenting \mathcal{P} /poly and \mathcal{PH} in the same chapter.

Exercises

Exercise 3.1 (a small variation on the definitions of \mathcal{P}/poly) Using an adequate encoding of strings of length smaller than n as n-bit strings (e.g., $x \in$ $\cup_{i < n} \{0, 1\}^i$ is encoded as $x01^{n-|x|-1}$), define circuits (resp., machines that take advice) as devices that can handle inputs of various lengths up to a given bound (rather than as devices that can handle inputs of a fixed length). Show that the class \mathcal{P} /poly remains invariant under this change (and Theorem 3.6 remains valid).

Exercise 3.2 (sparse sets) A set $S \subset \{0,1\}^*$ is called sparse if there exists a polynomial p such that $|S \cap \{0,1\}^n| \le p(n)$ for every n.

- 1. Prove that any sparse set is in \mathcal{P}/poly . Note that a sparse set may be undecidable.
- 2. Prove that a set is in \mathcal{P} /poly if and only if it is Cook-reducible to some sparse set.

Guideline: For the forward direction of Part 2, encode the advice sequence $(a_n)_{n \in \mathbb{N}}$ as a sparse set $\{(1^n, i, \sigma_{n,i}) : n \in \mathbb{N}, i \leq |a_n|\}$, where $\sigma_{n,i}$ is the *i*th bit of a_n . For the opposite direction, note that the emulation of a Cook-reduction to a set S, on input x, only requires knowledge of $S \cap \bigcup_{i=1}^{\operatorname{poly}(|x|)} \{0, 1\}^i$.

Exercise 3.3 (advice hierarchy) Prove that for any two functions $\ell, \delta : \mathbb{N} \to \mathbb{N}$ such that $\ell(n) < 2^{n-1}$ and δ is unbounded, it holds that \mathcal{P}/ℓ is strictly contained in $\mathcal{P}/(\ell + \delta)$.

Guideline: For every sequence $\overline{a} = (a_n)_{n \in \mathbb{N}}$ such that $|a_n| = \ell(n) + \delta(n) \leq 2^n$, consider the set $S_{\overline{a}}$ that encodes \overline{a} such that $x \in S_{\overline{a}} \cap \{0,1\}^n$ if and only if the $\operatorname{idx}(x)^{\operatorname{th}}$ bit in a_n equals 1 (and $\operatorname{idx}(x) \leq |a_n|$), where $\operatorname{idx}(x)$ denotes the index of x in $\{0,1\}^n$. For more details see Section 4.1.

Exercise 3.4 Prove that Σ_2 contains all sets that are Cook-reducible to \mathcal{NP} .

Guideline: This is quite obvious when using the definition of Σ_2 as presented in Section 3.2.2; see Exercise 3.9. Alternatively, the fact can be proved by using *some* of the ideas that underlie the proof of Theorem 2.35, while noting that a conjunction of NP and coNP assertions forms an assertion of type Σ_2 (see also the second part of the proof of Proposition 3.11).

Exercise 3.5 Let $\Delta = \mathcal{NP} \cap \operatorname{co}\mathcal{NP}$. Prove that Δ equals the class of decision problems that are Cook-reducible to Δ (i.e., $\Delta = \mathcal{P}^{\Delta}$).

Guideline: See proof of Theorem 2.35.

Exercise 3.6 (the class Π_k) Recall that Π_k is defined to equal $co\Sigma_k$, which in turn is defined to equal $\{\{0,1\}^* \setminus S : S \in \Sigma_k\}$. Prove that for any natural number k, a decision problem $S \subseteq \{0,1\}^*$ is in Π_k if there exists a polynomial p and a polynomial-time algorithm V such that $x \in S$ if and only if

$$\forall y_1 \in \{0,1\}^{p(|x|)} \exists y_2 \in \{0,1\}^{p(|x|)} \forall y_3 \in \{0,1\}^{p(|x|)} \cdots Q_k y_k \in \{0,1\}^{p(|x|)}$$
s.t. $V(x, y_1, ..., y_k) = 1$

where Q_k is a universal quantifier if k is odd and is an existential quantifier otherwise.

Exercise 3.7 (complete problems for the various levels of \mathcal{PH}) A k-alternating quantified Boolean formula is a quantified Boolean formula with up to k alternating sequences of existential and universal quantifiers, starting with an existential quantifier. For example, $\exists z_1 \exists z_2 \forall z_3 \phi(z_1, z_2, z_3)$ (where the z_i 's are Boolean variables) is a 2-alternating quantified Boolean formula. Prove that, for every $k \geq 1$, the problem of *deciding whether or not a k-alternating quantified Boolean formula is valid* is Σ_k -complete under Karp-reductions. That is, denoting the aforementioned problem by kQBF, prove that kQBF is in Σ_k and that every problem in Σ_k is Karp-reducible to kQBF.

Guideline: Start with the case of odd k. This allows to incorporate the existential quantification of the auxiliary variables (introduced by the reduction) in the last sequence of quantifiers. For even k > 1, consider first an analogous complete problem for Π_k , and then consider its complement.

Exercise 3.8 (on the relation between \mathcal{PH} and \mathcal{AC}^0) Note that there is an obvious analogy between \mathcal{PH} and constant-depth circuits of unbounded fan-in, where existential (resp., universal) quantifiers are represented by "large" \bigvee (resp., \bigwedge) gates. To articulate this relationship, consider the following definitions.

• A family of circuits $\{C_N\}$ is called highly uniform if there exists a polynomialtime algorithm that answers local queries regarding the structure of the relevant circuit. Specifically, on input (N, u, v), the algorithm determines the type of gates represented by the vertices u and v in C_N as well as whether there exists a directed edge from u to v. If the vertex represents a terminal then the algorithm also indicates the index of the corresponding input-bit (or output-bit). Note that this algorithm operates in time that polylogarithmic in the size of C_N .

We focus on family of polynomial-size circuits, meaning that the size of C_N is polynomial in N, which in turn represents the number of inputs to C_N .

- Fixing a polynomial p, a p-succinctly represented input $Z \in \{0, 1\}^N$ is a circuit c_Z of size at most $p(\log_2 N)$ such that for every $i \in [N]$ it holds that $c_Z(i)$ equals the i^{th} bit of Z.
- For a fixed family of highly uniform circuits $\{C_N\}$ and a fixed polynomial p, the problem of evaluating a succinctly represented input is defined as follows. Given p-succinct representation of an input $Z \in \{0,1\}^N$, determine whether or not $C_N(Z) = 1$.

Prove the following relationship between \mathcal{PH} and the problem of evaluating a succinctly represented input with respect to some families of highly uniform circuits of bounded-depth.

1. For every k and every $S \in \Sigma_k$, show that there exists a family of highly uniform unbounded fan-in circuits of depth k and polynomial-size such that S is Karp-reducible to evaluating a succinctly represented input (with respect to that family of circuits). That is, the reduction should map an instance $x \in \{0,1\}^n$ to a *p*-succinct representation of some $Z \in \{0,1\}^N$ such that $x \in S$ if and only if $C_N(Z) = 1$. (Note that Z is represented by a circuit c_Z such that $\log_2 N \leq |c_Z| \leq \operatorname{poly}(n)$, and thus $N \leq \exp(\operatorname{poly}(n))$.)¹⁰

Guideline: Let $S \in \Sigma_k$ and let V be the corresponding verification algorithm as in Definition 3.8. That is, $x \in S$ if and only if $\exists y_1 \forall y_2 \cdots Q_k y_k$, where each $y_i \in \{0, 1\}^{p \circ ly(|x|)}$ such that $V(x, y_1, \dots, y_k) = 1$. Then, for m = poly(|x|) and $N = 2^{k \cdot m}$, consider the fixed circuit $C_N(Z) = \bigvee_{i_1 \in [2^m]} \bigwedge_{i_2 \in [2^m]} \cdots Q'_{i_k \in [2^m]} Z_{i_1, i_2, \dots, i_k}$, and the problem of evaluating C_N at an input consisting of the truth-table of $V(x, \cdots)$ (i.e., when setting $Z_{i_1, i_2, \dots, i_k} = V(x, i_1, \dots, i_k)$, where $[2^m] \equiv \{0, 1\}^m$, which means that Z is essentially represented by x).¹¹ Note that the size of C_N is O(N).

2. For every k and every fixed family of highly uniform unbounded fan-in circuits of depth k and polynomial-size, show that the corresponding problem of evaluating a succinctly represented input is either in Σ_k or in Π_k .

Guideline: Given a succinct representation of Z, the value of $C_N(Z)$ can be captured by a quantified Boolean formula with k alternating quantifier sequences. This formula quantifies on certain paths from the output of C_N to its input-terminals; for example, an \vee -gate (resp., \wedge -gate) evaluates to 1 if and only if one (resp., all) of its children evaluates to 1. The children of a vertex as well as the corresponding input-bits can be efficiently recognized based on the uniformity condition regarding C_N . The value of the input-bit itself can be efficiently computed from the succinct representation of Z.

Exercise 3.9 Verify the following facts:

1. For every $k \geq 1$, it holds that $\Sigma_k \subseteq \mathcal{P}^{\Sigma_k} \subseteq \Sigma_{k+1}$.

(Recall that, for any complexity class C, the class \mathcal{P}^{C} denotes the class of sets that are Cook-reducible to some set in C. In particular, $\mathcal{P}^{\mathcal{P}} = \mathcal{P}$.)

2. For every $k \ge 1$, $\Pi_k \subseteq \mathcal{P}^{\Pi_k} \subseteq \Pi_{k+1}$.

(Hint: For any complexity class C, it holds that $\mathcal{P}^{\mathcal{C}} = \mathcal{P}^{co\mathcal{C}}$ and $\mathcal{P}^{\mathcal{C}} = co\mathcal{P}^{\mathcal{C}}$.)

- 3. For every $k \geq 1$, it holds that $\Sigma_k \subseteq \Pi_{k+1}$ and $\Pi_k \subseteq \Sigma_{k+1}$. Thus, $\mathcal{PH} = \bigcup_k \Pi_k$.
- 4. For every $k \ge 1$, if $\Sigma_k \subseteq \Pi_k$ (resp., $\Pi_k \subseteq \Sigma_k$) then $\Sigma_k = \Pi_k$. (Hint: See Exercise 2.37.)

Exercise 3.10 In continuation to Exercise 3.7, prove that following claims:

¹⁰Assuming $\mathcal{P} \neq \mathcal{NP}$, it cannot be that $N \leq \text{poly}(n)$ (because circuit evaluation can be performed in time polynomial in the size of the circuit).

¹¹Advanced comment: Note that the computational limitations of \mathcal{AC}^0 circuits (see, e.g., [79, 111]) imply limitations on the functions of a generic input Z that the aforementioned circuits C_N can compute. More importantly, these limitations apply also to Z = h(Z'), where $Z' \in \{0, 1\}^{N^{\Omega(1)}}$ is generic and each bit of Z equals either some fixed bit in Z' or its negation. Unfortunately, these computational limitations do not seem to provide useful information on the limitations of functions of inputs Z that have succinct representation (as obtained by setting $Z_{i_1,i_2,...,i_k} = V(x, i_1,...,i_k)$, where V is a fixed polynomial-time algorithm and only $x \in \{0, 1\}^{\text{poly}(\log N)}$ varies). This fundamental problem is "resolved" in the context of "relativization" by providing V with oracle access to an arbitrary input of length $N^{\Omega(1)}$ (or so); cf. [79].

- 1. SAT is computationally equivalent (under Karp-reductions) to 1QBF.
- 2. For every $k \geq 1$, it holds that $\mathcal{P}^{\Sigma_k} = \mathcal{P}^{kQBF}$ and $\Sigma_{k+1} = \mathcal{N}\mathcal{P}^{kQBF}$.

Guideline: Prove that if S is C-complete then $\mathcal{P}^{\mathcal{C}} = \mathcal{P}^{S}$. Note that $\mathcal{P}^{\mathcal{C}} \subseteq \mathcal{P}^{S}$ uses the polynomial-time reductions of C to S, whereas $\mathcal{P}^{S} \subseteq \mathcal{P}^{\mathcal{C}}$ uses $S \in \mathcal{C}$.

Exercise 3.11 (an alternative proof of Theorem 3.12) In continuation to the discussion in the proof of Theorem 3.12, use the following guidelines to provide an alternative proof of Theorem 3.12.

1. First, prove that if T is downwards self-reducible (as defined in Exercise 2.13) then the correctness of circuits deciding T can be decided in coNP. Specifically, denoting by χ the characteristic function of T, show that the set

$$\operatorname{ckt}_{\chi} \stackrel{\text{def}}{=} \{ (1^n, \langle C \rangle) : \forall w \in \{0, 1\}^n \ C(w) = \chi(w) \}$$

is in $co\mathcal{NP}$. Note that you may assume nothing about T, except for the hypothesis that T is downwards self-reducible.

Guideline: Using the more flexible formulation suggested in Exercise 3.1, it suffices to verify that, for every i < n and every *i*-bit string w, the value C(w) equals the output of the downwards self-reduction on input w when obtaining answers according to C. Thus, for every i < n, the correctness of C on inputs of length *i* follows from its correctness on inputs of length less than *i*. Needless to say, the correctness of C on the empty string (or on all inputs of some constant length) can be verified by comparison to the fixed value of χ on the empty string (resp., the values of χ on a constant number of strings).

2. Recalling that SAT is downwards self-reducible and that \mathcal{NP} is Karp-reducible to SAT, derive Theorem 3.12 as a corollary of Part 1.

Guideline: Let $S \in \Pi_2$ and $S' \in \mathcal{NP}$ be as in the proof of Theorem 3.12. Letting f denote a Karp-reduction of S' to SAT, note that $S = \{x : \forall y \in \{0, 1\}^{p(|x|)} f(x, y) \in SAT\}$. Using the hypothesis that SAT has polynomial-size circuits, note that $x \in S$ if and only if there exists a poly(|x|)-size circuit C such that (1) C decides SAT correctly on every inputs of length at most poly(|x|), and (2) for every $y \in \{0, 1\}^{p(|x|)}$ it holds that C(f(x, y)) = 1. Infer that $S \in \Sigma_2$.

Exercise 3.12 In continuation to Part 2 of Exercise 3.2, we consider the class of sets that are Karp-reducible to a sparse set. It can be proved that this class contains SAT if and only if $\mathcal{P} = \mathcal{NP}$ (see [77]). Here, we only consider the special case in which the sparse set is contained in a polynomial-time decidable set that is itself sparse (e.g., the latter set may be $\{1\}^*$, in which case the former set may be an arbitrary unary set). Actually, prove the following seemingly stronger claim:

If SAT is Karp-reducible to a set $S \subseteq G$ such that $G \in \mathcal{P}$ and $G \setminus S$ is sparse then SAT $\in \mathcal{P}$.

Using the hypothesis, we outline a polynomial-time procedure for solving the search problem of SAT, and leave the task of providing the details as an exercise. The procedure conducts a DFS on the tree of all possible partial truth assignment to the input formula,¹² while truncating the search at nodes that correspond to partial truth assignments that were already demonstrated to be useless.

Guideline: The key observation is that each internal node (which yields a formula derived from the initial formulae by instantiating the corresponding partial truth assignment) is mapped by the Karp-reduction either to a string not in G (in which case we conclude that the sub-tree contains no satisfying assignments and backtrack from this node) or to a string in G. In the latter case, unless we already know that this string is not in S, we start a scan of the sub-tree rooted at this node. However, once we backtrack from this internal node, we know that the corresponding element of G is not in S, and we will never scan again a sub-tree rooted at a node that is mapped to this element. Also note that once we reach a leaf, we can check by ourselves whether or not it corresponds to a satisfying assignment to the initial formula.

(Hint: When analyzing the forgoing procedure, note that on input an n-variable formulae ϕ the number of times we start to scan a sub-tree is at most $n \cdot |\bigcup_{i=1}^{\operatorname{poly}(|\phi|)} \{0,1\}^i \cap (G \setminus S)|$.)

 $^{^{12}}$ For an *n*-variable formulae, the leaves of the tree correspond to all possible *n*-bit long strings, and an internal node corresponding to τ is the parent of the nodes corresponding to τ 0 and τ 1.

Chapter 4

More Resources, More Power?

More electricity, less toil.

The Israeli Electricity Company, 1960s

Is it indeed the case that the more resources one has, the more one can achieve? The answer may seem obvious, but the obvious answer (of yes) actually presumes that the worker knows how much resources are at his/her disposal. In this case, when allocated more resources, the worker (or computation) can indeed achieve more. But otherwise, nothing may be gained by adding resources.

In the context of computational complexity, an algorithm knows the amount of resources that it is allocated if it can determine this amount without exceeding the corresponding resources. This condition is satisfies in all "reasonable" cases, but it may not hold in general. The latter fact should not be that surprising: we already know that some functions are not computable and if these functions are used to determine resources then the algorithm may be in trouble. Needless to say, this discussion requires some formalization, which is provided in the current chapter.

Summary: When using "nice" functions to determine the algorithm's resources, it is indeed the case that more resources allow for more tasks to be performed. However, when "ugly" functions are used for the same purpose, increasing the resources may have no effect. By nice functions we mean functions that can be computed without exceeding the amount of resources that they specify (e.g., $t(n) = n^2$ or $t(n) = 2^n$). Naturally, "ugly" functions do not allow to present themselves in such nice forms.

The forgoing discussion refers to uniform models of computation and to (natural) resources such as time and space complexities. Thus, we get results asserting, for example, that there are problems that are solvable in cubic-time but not in quadratic-time. In case of non-uniform models of computation, the issue of "nicety" does not arise, and it is easy to establish separations between levels of circuit complexity that differ by any unbounded amount.

Results that *separate* the class of problems solvable within one resource bound from the class of problems solvable within a larger resource bound are called hierarchy theorems. Results that indicate the nonexistence of such separations, hence indicating a "gap" in the growth of computing power (or a "gap" in the existence of algorithms that utilize the added resources), are called gap theorems. A somewhat related phenomenon, called speed-up theorems, refers to the inability to define the complexity of some problems.

Caveat: Uniform complexity classes based on specific resource bounds (e.g., cubic-time) are model dependent. Furthermore, the tightness of separation results (i.e., how much "more time" is required for solving some additional computational problems) is also model dependent. Still the existence of such separations is a phenomenon common to all reasonable and general models of computation (as referred to in the Cobham-Edmonds Thesis). In the following presentation, we will explicitly differentiate model-specific effects from generic ones.

Organization: We will first demonstrate the "more resources yield more power" phenomenon in the context of non-uniform complexity. In this case the issue of "knowing" the amount of resources allocated to the computing device does not arise, because each device is tailored to the amount of resources allowed for the input length that it handles (see Section 4.1). We then turn to the time-complexity of uniform algorithms; indeed, hierarchy and gap theorems for time-complexity, presented in Section 4.2, constitute the main part of the current chapter. We end by mentioning analogous results for space-complexity (see Section 4.3, which may also be read after Section 5.1).

4.1 Non-uniform complexity hierarchies

The model of machines that use advice (cf. §1.2.4.2 and Section 3.1.2) offers a very convenient setting for separation results. We refer specifically, to classes of the form \mathcal{P}/ℓ , where $\ell : \mathbb{N} \to \mathbb{N}$ is an arbitrary function (see Definition 3.5). Recall that every Boolean function is in $\mathcal{P}/2^n$, by virtue of a trivial algorithm that is given as advice the truth-table of the function restricted to the relevant input length. An analogous algorithm underlies the following separation result.

Theorem 4.1 For any two functions $\ell', \delta : \mathbb{N} \to \mathbb{N}$ such that $\ell'(n) + \delta(n) \leq 2^n$ and δ is unbounded, it holds that \mathcal{P}/ℓ' is strictly contained in $\mathcal{P}/(\ell' + \delta)$.

Proof: Let $\ell \stackrel{\text{def}}{=} \ell' + \delta$, and consider the following advice-taking algorithm A: Given advice $a_n \in \{0,1\}^{\ell(n)}$ and input $i \in \{1, ..., 2^n\}$ (viewed as an *n*-bit long string), algorithm A outputs the i^{th} bit of a_n if $i \leq |a_n|$ and zero otherwise. Clearly, for any

 $\overline{a} = (a_n)_{n \in \mathbb{N}}$ such that $|a_n| = \ell(n)$, it holds that the function $f_{\overline{a}}(x) \stackrel{\text{def}}{=} A(a_{|x|}, x)$ is in \mathcal{P}/ℓ . Furthermore, different sequences \overline{a} yield different functions $f_{\overline{a}}$. We claim that some of these functions $f_{\overline{a}}$ are not in \mathcal{P}/ℓ' , thus obtaining a separation.

The claim is proved by considering all possible (polynomial-time) algorithms A' and all possible sequences $\overline{a}' = (a'_n)_{n \in \mathbb{N}}$ such that $|a'_n| = \ell'(n)$. Fixing any algorithm A', we consider the number of *n*-bit long functions that are correctly computed by $A'(a'_n, \cdot)$. Clearly, the number of these functions is at most $2^{\ell'(n)}$, and thus A' may account for at most $2^{-\delta(n)}$ fraction of the functions $f_{\overline{a}}$ (even when restricted to *n*-bit strings). Essentially, this consideration holds for every n and every possible A', and thus the measure of the set of functions that are computable by algorithms that take advice of length ℓ' is zero.

Formally, for every n, we consider all advice-taking algorithms that have a description of length shorter than $\delta(n) - 2$. (This guarantees that every advice-taking algorithm will be considered.) Coupled with all possible advice sequences of length ℓ' , these algorithms can compute at most $2^{(\delta(n)-2)+\ell'(n)}$ different functions of n-bit long inputs. The latter number falls short of the $2^{\ell(n)}$ corresponding functions (of n-bit long inputs) that are computable by A with advice of length $\ell(n)$.

A somewhat less tight bound can be obtained by using the model of Boolean circuits. In this case, some slackness is needed in order to account for the gap between the upper and lower bounds regarding the number of Boolean functions over $\{0,1\}^n$ that are computed by Boolean circuits of size $s < 2^n$. Specifically (see Exercise 4.1), an obvious lower-bound on this number is $2^{s/O(\log s)}$ whereas an obvious upper-bound is $s^{2s} = 2^{2s \log_2 s}$. Compare these bounds to the lower-bound $2^{\ell'(n)}$ and the upper-bound $2^{\ell'(n)+(\delta(n)/2)}$ (on the number of functions computable with advice of length $\ell'(n)$), which were used in the proof of Theorem 4.1.

4.2 Time Hierarchies and Gaps

In this section we show that in "reasonable cases" increasing the time-complexity allows for more problems to be solved, whereas in "pathological cases" it may happen that even a dramatic increase in the time-complexity provides no additional computing power. As hinted in the introductory comments to the current chapter, the "reasonable cases" correspond to time bounds that can be determined by the algorithm itself within the specified time-complexity.

We stress that also in the aforementioned "reasonable cases", the added power does not necessarily refer to natural computational problems. That is, like in the case of non-uniform complexity (i.e., Theorem 4.1), the hierarchy theorems are proved by introducing artificial computational problems. Needless to say, we do not know of natural problems in \mathcal{P} that are unsolvable in cubic (or some other fixed polynomial) time (on, say, a two-tape Turing machine). Thus, although \mathcal{P} contains an infinite hierarchy of computational problems, with each level requiring significantly more time than the previous level, we know of no such hierarchy of natural computational problems. In contrast, so far it has been the case that any natural problem that was shown to be solvable in polynomial-time was eventually followed by algorithms having running-time that is bounded by a moderate polynomial.

4.2.1 Time Hierarchies

Note that the non-uniform computing devices, considered in Section 4.1, were explicitly given the relevant resource bounds (e.g., the length of advice). Actually, they were given the resources themselves (e.g., the advice itself) and did not need to monitor their usage of these resources. In contrast, when designing algorithms of arbitrary time-complexity $t : \mathbb{N} \to \mathbb{N}$, we need to make sure that the algorithm does not exceed the time-bound. Furthermore, when invoked on input x, the algorithm is not given the time bound t(|x|) explicitly, and a reasonable design methodology is to have the algorithm compute this bound (i.e., t(|x|)) before doing anything else. This, in turn, requires the algorithm to read the entire input (see Exercise 4.3) as well as to compute t(n) in O(t(n)) steps (as otherwise this preliminary stage already consumes too much time). The latter requirement motivates the following definition (which is related to the standard definition of "fully time constructibility" (cf. [119, Sec. 12.3])).

Definition 4.2 (time constructible functions): A function $t : \mathbb{N} \to \mathbb{N}$ is called time constructible if there exists an algorithm that on input n outputs t(n) using at most t(n) steps.

Equivalently, we may require that the mapping $1^n \mapsto t(n)$ be computable within time complexity t. We warn that the foregoing definition is model dependent; however, typically nice functions are computable even faster (e.g., in poly(log t(n)) steps), in which case the model-dependency is irrelevant (for reasonable and general models of computation, as referred to in the Cobham-Edmonds Thesis). For example, in any reasonable and general model, functions like $t_1(n) = n^2$, $t_2(n) = 2^n$, and $t_3(n) = 2^{2^n}$ are computable in poly(log $t_i(n)$) steps.

Likewise, for a fixed model of computation (to be understood from the context) and for any function $t : \mathbb{N} \to \mathbb{N}$, we denote by DTIME(t) the class of decision problems that are solvable in time complexity t. We call the reader's attention to Exercise 4.4 that asserts that in many cases DTIME(t) = DTIME(t/2).

4.2.1.1 The Time Hierarchy Theorem

In the following theorem (which separates $DTIME(t_1)$ from $DTIME(t_2)$), we refer to the model of two-tape Turing machines. In this case we obtain quite a tight hierarchy in terms of the relation between t_1 and t_2 . We stress that, using the Cobham-Edmonds Thesis, this results yields (possibly less tight) hierarchy theorems for any reasonable and general model of computation.

Teaching note: The standard statement of Theorem 4.3 asserts that for any time constructible function t_2 and every function t_1 such that $t_2 = \omega(t_1 \log t_1)$ and $t_1(n) > n$ it holds that $DTIME(t_1)$ is strictly contained in $DTIME(t_2)$. The current version is only slightly weaker, but it allows a somewhat simpler and more intuitive proof. We comment on the proof of the standard version of Theorem 4.3 in a teaching note following the proof of the current version.

Theorem 4.3 (time hierarchy for two-tape Turing machines): For any time constructible function t_1 and every function t_2 such that $t_2(n) \ge (\log t_1(n))^2 \cdot t_1(n)$ and $t_1(n) > n$ it holds that DTIME (t_1) is strictly contained in DTIME (t_2) .

As will become clear from the proof, an analogous result holds for any model in which a universal machine can emulate t steps of another machine in $O(t \log t)$ time, where the constant in the O-notation depends on the emulated machine. Before proving Theorem 4.3, we derive the following corollary.

Corollary 4.4 (time hierarchy for any reasonable and general model): For any reasonable and general model of computation there exists a positive polynomial p such that for any time-computable function t_1 and every function t_2 such that $t_2 > p(t_1)$ and $t_1(n) > n$ it holds that DTIME (t_1) is strictly contained in DTIME (t_2) .

It follows that, for every such model and every polynomial t (such that t(n) > n), there exist problems in \mathcal{P} that are not in DTIME(t). It also follows that \mathcal{P} is a strict subset of \mathcal{E} and even of "quasi-polynomial time" (i.e., DTIME(q), where $q(n) = \exp(\text{poly}(\log n))$); moreover, \mathcal{P} is a strict subset of DTIME(q), for any super-polynomial function q (i.e., $q(n) = n^{\omega(1)}$).

Proof of Corollary 4.4: The underlying fact is that separation results regarding any reasonable and general model of computation can be "translated" to analogous results regarding any other such model. Such a translation may effect the time-bounds as demonstrated next. Letting DTIME₂ denote the classes that correspond to two-tape Turing machines (and recalling that DTIME denotes the classes that correspond to the alternative model), we note that DTIME $(t_1) \subseteq \text{DTIME}_2(t'_1)$ and DTIME₂ $(t'_2) \subseteq \text{DTIME}(t_2)$, where $t'_1 = \text{poly}(t_1)$ and t'_2 is defined such that $t_2(n) = \text{poly}(t'_2(n))$. The latter unspecified polynomials, hereafter denoted p_1 and p_2 respectively, are the ones guaranteed by the Cobham-Edmonds Thesis. Also, the hypothesis that t_1 is time-constructible implies that $t'_1 = p_1(t_1)$ is timeconstructible with respect to the two-tape Turing machine model. Thus, for a suitable choice of the polynomial p (i.e., $p(p_1^{-1}(m)) \ge p_2(m^2)$), it holds that

$$t_2'(n) = p_2^{-1}(t_2(n)) > p_2^{-1}(p(t_1(n))) = p_2^{-1}(p(p_1^{-1}(t_1'(n)))) \ge t_1'(n)^2,$$

where the first inequality holds by the corollary's hypothesis (i.e., $t_2 > p(t_1)$) and the last inequality holds by the choice of p. Invoking Theorem 4.3 (while noting that $t'_2(n) > t'_1(n)^2$), we obtain the strict inclusion $\text{DTIME}_2(t'_1) \subset \text{DTIME}_2(t'_2)$. Combining the latter with $\text{DTIME}(t_1) \subseteq \text{DTIME}_2(t'_1)$ and $\text{DTIME}_2(t'_2) \subseteq \text{DTIME}(t_2)$, the corollary follows.

Proof of Theorem 4.3: The idea is constructing a Boolean function f such that all machines having time complexity t_1 fail to compute f. This is done by associating with each possible machine M a different input x_M (e.g., $x_M = \langle M \rangle$) and making sure that $f(x_M) \neq M'(x_M)$, where M'(x) denotes an emulation of M(x) that is suspended after $t_1(|x|)$ steps. For example, we may define $f(x_M) = 1 - M'(x_M)$. We note that M' is used instead of M in order to allow computing f in time that is related to t_1 . The point is that M may be an arbitrary machine

that is associated to the input x_M , and so M does not necessarily run in time t_1 (but, by construction, the corresponding M' does run in time t_1).

Implementing the foregoing idea calls for an efficient association of machines to inputs as well as for a relatively efficient emulation of t_1 steps of an arbitrary machine. As shown next, both requirements can be met easily. Actually, we are going to use a mapping μ of inputs to machines (i.e., μ will map the aforementioned x_M to M) such that each machine is in the range of μ and μ is very easy to compute (e.g., indeed, for starters, assume that μ is the identity mapping). Thus, by construction, $f \notin \text{DTIME}(t_1)$. The issue is presenting a relatively efficient algorithm for computing f; that is, showing that $f \in \text{DTIME}(t_2)$.

The algorithm for computing f as well as the definition of f (sketched in the first paragraph) are straightforward: On input x, the algorithm computes $t = t_1(|x|)$, determines the machine $M = \mu(x)$ that corresponds to x (outputting a default value if no such machine exists), emulates M(x) for t steps, and returns the value 1 - M'(x). Recall that M'(x) denotes the time-truncated emulation of M(x) (i.e., the emulation of M(x) suspended after t steps); that is, if M(x) halts within t steps then M'(x) = M(x), and otherwise M'(x) may be defined arbitrarily. Thus, f(x) = 1 - M'(x) if $M = \mu(x)$ and (say) f(x) = 0 otherwise.

In order to show that $f \notin DTIME(t_1)$, we show that each machine of timecomplexity t_1 fails to compute f. Fixing any such machine, M, we consider an input x_M such that $M = \mu(x_M)$, where such an input exists because μ is onto. Now, on one hand, $M'(x_M) = M(x_M)$ (because M has time-complexity t_1), while on the other hand $f(x_M) = 1 - M'(x_M)$ (by the definition of f). It follows that $M(x) \neq f(x)$.

We now turn to upper-bounding the time-complexity of f by analyzing the time-complexity of the foregoing algorithm that computes f. Using the time-constructibility of t_1 and ignoring the easy computation of μ , we focus on the question of how much time is required for emulating t steps of machine M (on input x). We should bear in mind that the time-complexity of our algorithm needs to be analyzed in the two-tape Turing-machine model, whereas M itself is a two-tape Turing-machine. We start by implementing our algorithm on a three-tape Turing-machine, and next emulate this machine on a two-tape Turing-machine.

The obvious implementation of our algorithm on a three-tape Turing-machine uses two tapes for the emulation itself and designates the third tape for the actions of the emulation procedure (e.g., storing the code of the emulated machine and maintaining a step-counter). Thus, each step of the two-tape machine M is emulated using $O(|\langle M \rangle|)$ steps on the three-tape machine.¹ This includes also the amortized complexity of maintaining a step-counter for the emulation (see Exercise 4.5).

Next, we need to emulate the foregoing three-tape machine on a two-tape machine. This is done by using the fact (cf., e.g., [119, Thm. 12.6]) that t' steps of a three-tape machine can be emulated on a two-tape machine in $O(t' \log t')$ steps. Thus, the complexity of computing f on input x is upper-bounded by

¹This overhead accounts both for searching the code of M for the adequate action and for the effecting of this action (which may refer to a larger alphabet than the one used by the emulator).

 $O(T_{\mu(x)}(|x|) \log T_{\mu(x)}(|x|))$, where $T_M(n) = O(|\langle M \rangle| \cdot t_1(n))$ represents the cost of emulating $t_1(n)$ steps of the two-tape machine M on a three-tape machine (as in the foregoing discussion).

It turns out that the quality of the separation result that we obtain depends on the choice of the mapping μ (of inputs to machines). Using the naive (identity) mapping (i.e., $\mu(x) = x$) we can only establish the theorem for $t_2(n) = \tilde{O}(n \cdot t_1(n))$ rather than $t_2(n) = \tilde{O}(t_1(n))$, because in this case $T_{\mu(x)}(|x|) = O(|x| \cdot t_1(|x|))$. (Note that, in this case, $x_M = \langle M \rangle$ is a description of $\mu(x_M) = M$.) The theorem follows by associating the machine M with the input $x_M = \langle M \rangle 01^m$, where $m = 2^{|\langle M \rangle|}$; that is, we may use the mapping μ such that $\mu(x) = M$ if $x = \langle M \rangle 01^{2^{|\langle M \rangle|}}$ and $\mu(x)$ equals some fixed machine otherwise. In this case $|\mu(x)| < \log_2 |x| < \log t_1(|x|)$ and so $T_{\mu(x)}(|x|) = O((\log t_1(|x|)) \cdot t_1(|x|))$. The theorem follows.

Teaching note: Proving the standard version of Theorem 4.3 cannot be done by associating a sufficiently long input x_M with each machine M, because this does not allow to get rid from an additional unbounded factor in $T_{\mu(x)}(|x|)$ (i.e., the $|\mu(x)|$ factor that multiplies $t_1(|x|)$). Note that the latter factor needs to be computable (at the very least) and thus cannot be accounted for by the generic ω -notation that appears in the standard version (cf. [119, Thm. 12.9]). Instead, a different approach is taken (see Footnote 2).

Technical Comments. The proof of Theorem 4.3 associates with each potential machine M some input x_M and defines the computational problem such that machine M err on input x_M . The association of machines with inputs is rather flexible: we can use any onto mapping of inputs to machines that is efficiently computable and sufficiently shrinking. Specifically, in the proof, we used the mapping μ such that $\mu(x) = M$ if $x = \langle M \rangle 01^{2^{|\langle M \rangle|}}$ and $\mu(x)$ equals some fixed machine otherwise. We comment that each machine can be made to err on infinitely many inputs by redefining μ such that $\mu(x) = M$ if $\langle M \rangle 01^{2^{|\langle M \rangle|}}$ is a suffix of x (and $\mu(x)$ equals some fixed machine otherwise). We also comment that, in contrast to the proof of Theorem 4.3, the proof of Theorem 1.5 utilizes a rigid mapping of inputs to machines (i.e., there $\mu(x) = M$ if $x = \langle M \rangle$).

Digest: Diagonalization. The last comment highlights the fact that the proof of Theorem 4.3 is merely a sophisticated version of the proof of Theorem 1.5. Both proofs refer to versions of the universal function, which in the case of the proof of

²In the standard proof the function f is not defined with reference to $t_1(|x_M|)$ steps of $M(x_M)$, but rather with reference to the result of emulating $M(x_M)$ while using a total of $t_2(|x_M|)$ steps in the emulation process (i.e., in the algorithm used to compute f). This guarantees that f is in DTIME (t_2) , and "pushes the problem" to showing that f is not in DTIME (t_1) . It also explains why t_2 (rather than t_1) is assumed to be time-constructible. As for the foregoing problem, it is resolved by observing that for each relevant machine (i.e., having time complexity t_1) the executions on any sufficiently long input will be fully emulated. Thus, we merely need to associate with each M a disjoint set of infinitely many inputs and make sure that M errs on each of these inputs.

Theorem 4.3 is (implicitly) defined such that its value at $(\langle M \rangle, x)$ equals M'(x), where M'(x) denotes an emulation of M(x) that is suspended after $t_1(|x|)$ steps.³ Actually, both proofs refers to the "diagonal" of the aforementioned function, which in the case of the proof of Theorem 4.3 is only defined implicitly. That is, the value of the diagonal function at x, denoted d(x), equals the value of the universal function at $(\langle \mu(x) \rangle, x)$. This is actually a definitional schema, as the choice of the function μ remains unspecified. Indeed, setting $\mu(x) = x$ corresponds to a "real" diagonal in the matrix depicting the universal function, but any other choice of a 1-1 mappings μ also yields a "kind of diagonal" of the universal function. Either way, the function f is defined such that for every x it holds that $f(x) \neq d(x)$. This guarantees that no machine of time-complexity t_1 can compute f, and the focus is on presenting an algorithm that computes f (which, needless to say, has time-complexity greater than t_1). Part of the proof of Theorem 4.3 is devoted to selecting μ in a way that minimizes the time-complexity of computing f, whereas in the proof of Theorem 1.5 we merely need to guarantee that f is computable.

4.2.1.2 Impossibility of speed-up for universal computation

The Time Hierarchy Theorem (Theorem 4.3) implies that the computation of a universal machine cannot be significantly sped-up. That is, consider the function $\mathbf{u}'(\langle M \rangle, x, t) \stackrel{\text{def}}{=} y$ if on input x machine M halts within t steps and outputs the string y, and $\mathbf{u}'(\langle M \rangle, x, t) \stackrel{\text{def}}{=} \bot$ if on input x machine M makes more than t steps. Recall that the value of $\mathbf{u}'(\langle M \rangle, x, t)$ can be computed in $\widetilde{O}(|x| + |\langle M \rangle| \cdot t)$ steps. As shown next, Theorem 4.3 implies that this value (i.e., $\mathbf{u}'(\langle M \rangle, x, t)$) cannot be computed within significantly less steps.

Theorem 4.5 There exists no two-tape Turing machine that, on input $\langle M \rangle$, x and t, computes $\mathbf{u}'(\langle M \rangle, x, t)$ in $o((t + |x|) \cdot f(M) / \log^2(t + |x|))$ steps, where f is an arbitrary function.

A similar result holds for any reasonable and general model of computation (cf., Corollary 4.4). In particular, it follows that \mathbf{u}' is not computable in polynomial time (because the input *t* is presented in binary). In fact, one can show that there exists no polynomial-time algorithm for *deciding whether or not* M halts on input x in *t* steps (i.e., the set $\{(\langle M \rangle, x, t) : \mathbf{u}'(\langle M \rangle, x, t) \neq \bot\}$ is not in \mathcal{P}); see Exercise 4.6.

Proof: Suppose (towards the contradiction) that, for every fixed M, given x and t > |x|, the value of $u'(\langle M \rangle, x, t)$ can be computed in $o(t/\log^2 t)$ steps, where the o-notation hides a constant that may depend on M. We shall show that this hypothesis implies that for any time-constructible t_1 and $t_2(n) = t_1(n) \cdot \log^2 t_1(n)$ it holds that $DTIME(t_2) = DTIME(t_1)$, which (strongly) contradicts Theorem 4.3.

Consider an arbitrary time-constructible t_1 (s.t. $t_1(n) > n$) and an arbitrary set $S \in \text{DTIME}(t_2)$, where $t_2(n) = t_1(n) \cdot \log^2 t_1(n)$. Let M be a machine of

³Needless to say, in the proof of Theorem 1.5, M' = M.

time-complexity t_2 that decides membership in S, and consider the following algorithm: On input x, the algorithm first computes $t = t_1(|x|)$, and then computes (and outputs) the value $u'(\langle M \rangle, x, t \log^2 t)$. By the time-constructibility of t_1 , the first computation can be implemented in t steps, and by the contradiction hypothesis the same holds for the second computation. Thus, S can be decided in $DTIME(2t_1) = DTIME(t_1)$, implying that $DTIME(t_2) = DTIME(t_1)$, which in turn contradicts Theorem 4.3. We conclude that the contradiction hypothesis is wrong, and the theorem follows.

4.2.1.3 Hierarchy theorem for non-deterministic time

Analogously to DTIME, for a fixed model of computation (to be understood from the context) and for any function $t : \mathbb{N} \to \mathbb{N}$, we denote by NTIME(t) the class of sets that are accepted by some non-deterministic machine of time complexity t. Indeed, this definition extends the traditional formulation of \mathcal{NP} (as presented in Definition 2.7). Alternatively, analogously to our preferred definition of \mathcal{NP} (i.e., Definition 2.5), a set $S \subseteq \{0, 1\}^*$ is in NTIME(t) if there exists a linear-time algorithm V such that the two conditions hold:

- 1. For every $x \in S$ there exists $y \in \{0,1\}^{t(|x|)}$ such that V(x,y) = 1.
- 2. For every $x \notin S$ and every $y \in \{0,1\}^*$ it holds that V(x,y) = 0.

We warn that the two formulations are not identical, but in sufficiently strong models (e.g., two-tape Turing machines) they are related up to logarithmic factors (see Exercise 4.8). The hierarchy theorem itself is similar to the one for deterministic time, except that here we require that $t_2(n) \ge (\log t_1(n+1))^2 \cdot t_1(n+1)$ (rather than $t_2(n) \ge (\log t_1(n))^2 \cdot t_1(n)$). That is:

Theorem 4.6 (non-deterministic time hierarchy for two-tape Turing machines): For any time-constructible and monotonicly non-decreasing function t_1 and every function t_2 such that $t_2(n) \ge (\log t_1(n+1))^2 \cdot t_1(n+1)$ and $t_1(n) > n$ it holds that NTIME (t_1) is strictly contained in NTIME (t_2) .

Proof: We cannot just apply the proof of Theorem 4.3, because the Boolean function f defined there requires the ability to determine whether there exists a computation of M that accepts the input x_M in $t_1(|x_M|)$ steps. In the current context, M is a non-deterministic machine and so the only way we know how to determine this question (both for a "yes" and "no" answers) is to try all the $(2^{t_1(|x_M|)})$ relevant executions.⁴ But this would put f in DTIME (2^{t_1}) , rather than in NTIME $(\tilde{O}(t_1))$, and so a different approach is needed.

We associate with each (non-deterministic) machine M, a large interval of strings (viewed as integers), denoted $I_M = [\alpha_M, \beta_M]$, such that the various intervals do not intersect and such that it is easy to determine for each string x in which interval it resides. For each $x \in [\alpha_M, \beta_M - 1]$, we define f(x) = 1 if and only if there

⁴Indeed, we can non-deterministically recognize "yes" answers in $\widetilde{O}(t_1(|x_M|))$ steps, but we cannot do so for "no" answers.

exists a non-deterministic computation of M that accepts the input $x' \stackrel{\text{def}}{=} x + 1$ in $t_1(|x'|) \leq t_1(|x|+1)$ steps. Thus, if M has time-complexity t_1 and (nondeterministically) accepts $\{x : f(x) = 1\}$, then either M (non-deterministically) accepts each string in the interval I_M or M (non-deterministically) accepts no string in I_M , because M must non-deterministically accept x if and only if it nondeterministically accepts x' = x + 1. So, it is left to deal with the case that M is invariant on I_M , which is where the definition of the value of $f(\beta_M)$ comes into play: We define $f(\beta_M)$ to equal zero if and only if there exists a non-deterministic computation of M that accepts the input α_M in $t_1(|\alpha_M|)$ steps. We shall select β_M to be large enough relative to α_M such that we can afford to try all possible computations of M on input α_M . Details follow.

Let us first recapitulate the definition of $f : \{0,1\}^* \to \{0,1\}$, focusing on the case that the input is in some interval I_M . We define a Boolean function A_M such that $A_M(z) = 1$ if and only if there exists a non-deterministic computation of M that accepts the input z in $t_1(|z|)$ steps. Then, for $x \in I_M$ we have

$$f(x) = \begin{cases} A_M(x+1) & \text{if } x \in [\alpha_M, \beta_M - 1] \\ 1 - A_M(\alpha_M) & \text{if } x = \beta_M \end{cases}$$

Next, we present the following non-deterministic machine for accepting the set $\{x : f(x) = 1\}$. We assume that, on input x, it is easy to determine the machine M that corresponds to the interval $[\alpha_M, \beta_M]$ in which x reside.⁵ We distinguish two cases:

- 1. On input $x \in [\alpha_M, \beta_M 1]$, our non-deterministic machine emulates $t_1(|x'|)$ steps of a (single) non-deterministic computation of M on input x' = x + 1, and decides accordingly (i.e., our machine accepts if and only if the said emulation has accepted). Indeed (as in the proof of Theorem 4.3), this emulation can be performed in time $(\log t_1(|x + 1|))^2 \cdot t_1(|x + 1|) \le t_2(|x|)$.
- 2. On input $x = \beta_M$, our machine just tries all $2^{t_1(|\alpha_M|)}$ executions of M on input α_M and decides in a suitable manner; that is, our machine emulates $t_1(|\alpha_M|)$ steps in each of the $2^{t_1(|\alpha_M|)}$ possible executions of $M(\alpha_M)$ and accepts β_M if and only if none of the emulated executions ended accepting α_M . Note that this part of our machine is deterministic, and it amounts to emulating $T_M \stackrel{\text{def}}{=} 2^{t_1(|\alpha_M|)} \cdot t_1(|\alpha_M|)$ steps of M. By a suitable choice of the interval $[\alpha_M, \beta_M]$ (e.g., $|\beta_M| > T_M$), this number of steps (i.e., T_M) is smaller than $|\beta_M| \leq t_1(|\beta_M|)$, and it follows that these T_M steps of M can be emulated in time $(\log_2 t_1(|\beta_M|))^2 \cdot t_1(|\beta_M|) \leq t_2(|\beta_M|)$.

Thus, our non-deterministic machine has time-complexity t_2 , and it follows that f is in NTIME (t_2) . It remains to show that f is not in NTIME (t_1) .

Suppose on the contrary, that some non-deterministic machine M of timecomplexity t_1 accepts the set $\{x : f(x) = 1\}$; that is, for every x it holds that

⁵For example, we may partition the strings to consecutive intervals such that the *i*th interval, denoted $[\alpha_i, \beta_i]$, corresponds to the *i*th machine and for $T_1(m) = 2^{2t_1(m)}$ it holds that $\beta_i = 1^{T_1(|\alpha_i|)}$ and $\alpha_{i+1} = 0^{T_1(|\alpha_i|)+1}$. Note that $|\beta_i| = T_1(|\alpha_i|)$, and thus $t_1(|\beta_i|) > t_1(|\alpha_i|) \cdot 2^{t_1(|\alpha_i|)}$.

 $A_M(x) = f(x)$, where A_M is as defined in the foregoing (i.e., $A_M(x) = 1$ if and only if there exists a non-deterministic computation of M that accepts the input x in $t_1(|x|)$ steps). Focusing on the interval $[\alpha_M, \beta_M]$, we have $A_M(x) = f(x)$ for every $x \in [\alpha_M, \beta_M]$, which (combined with the definition of f) implies that $A_M(x) = f(x) = A_M(x+1)$ for every $x \in [\alpha_M, \beta_M - 1]$ and $A_M(\beta_M) = f(\beta_M) =$ $1 - A_M(\alpha_M)$. Thus, we reached a contraction (because we got $A_M(\alpha_M) = \cdots =$ $A_M(\beta_M) = 1 - A_M(\alpha_M)$).

4.2.2 Time Gaps and Speed-Up

In contrast to Theorem 4.3, there exists functions $t : \mathbb{N} \to \mathbb{N}$ such that $\text{DTIME}(t) = \text{DTIME}(t^2)$ (or even $\text{DTIME}(t) = \text{DTIME}(2^t)$). Needless to say, these functions are not time-constructible (and thus the aforementioned fact does not contradict Theorem 4.3). The reason for this phenomenon is that, for such functions t, there exist not algorithms that have time-complexity above t but below t^2 (resp., 2^t).

Theorem 4.7 (the time gap theorem): For every non-decreasing computable function $g: \mathbb{N} \to \mathbb{N}$ there exists a non-decreasing computable function $t: \mathbb{N} \to \mathbb{N}$ such that $D_{\text{TIME}}(t) = D_{\text{TIME}}(g(t))$.

The forgoing examples referred to $g(m) = m^2$ and $g(m) = 2^m$. Since we are mainly interested in dramatic gaps (i.e., super-polynomial functions g), the model of computation does not matter here (as long as it is reasonable and general).

Proof: Consider an enumeration of all possible algorithms (or machines), which also includes machines that do not halt on some inputs. (Recall that we cannot enumerate the set of all machines that halt on every input.) Let t_i denote the time complexity of the i^{th} algorithm; that is, $t_i(n) = \infty$ if the i^{th} machine does not halt on some *n*-bit long input and otherwise $t_i(n) = \max_{x \in \{0,1\}^n} \{T_i(x)\}$, where $T_i(x)$ denotes the number of steps taken by the i^{th} machine on input x.

The basic idea is to define t such that no t_i is "sandwiched" between t and g(t), and thus no algorithm will have time-complexity between t and g(t). Intuitively, if $t_i(n)$ is finite, then we may define t such that $t(n) > t_i(n)$ and thus guarantee that $t_i(n) \notin [t(n), g(t(n))]$, whereas if $t_i(n) = \infty$ then any finite value of t(n) will do (because then $t_i(n) > g(t(n))$). Thus, for every m and n, we can define t(n) such that $t_i(n) \notin [t(n), g(t(n))]$ for every $i \in [m]$ (e.g., $t(n) = \max_{i \in [m]: t_i(n) \neq \infty} \{t_i(n)\} +$ 1).⁶ This yields a weaker version of the theorem in which the function t is neither computable nor non-decreasing. It is easy to modify t such that it is non-decreasing (e.g., $t(n) = \max(t(n-1), \max_{i \in [m]: t_i(n) \neq \infty} \{t_i(n)\}) + 1)$ and so the real challenge is to make t computable.

The problem is that we want t to be computable, whereas given n we cannot tell whether or not $t_i(n)$ is finite. However, we do not really need to make the latter decision: for each candidate value v of t(n), we should just determine whether or not $t_i(n) \in [v, g(v)]$, which can be decided by running the i^{th} machine for at most

⁶We may assume, without loss of generality, that $t_1(n) = 1$ for every n; e.g., by letting the machine that always halts after a single step be the first machine in our enumeration.

g(v) + 1 steps (on each *n*-bit long string). That is, as far as the *i*th machine is concerned, we should just find a value v such that either $v > t_i(n)$ or $g(v) < t_i(n)$ (which includes the case $t_i(n) = \infty$). This can be done by starting with $v = v_0$ (where, say, $v_0 = t(n-1)+1$), and increasing v until either $v > t_i(n)$ or $g(v) < t_i(n)$. The point is that if $t_i(n)$ is infinite then we may output $v = v_0$ after emulating $2^n \cdot (g(v_0)+1)$ steps, and otherwise we reach a safe value $v > t_i(n)$ after performing at most $\sum_{j=v_0}^{t_i(n)} 2^n \cdot j$ emulation steps. Bearing in mind that we should deal with all possible machines, we obtain the following procedure for setting t(n).

Figure 4.1: The Gap Theorem – determining the value of t(n).

Let $\mu : \mathbb{N} \to \mathbb{N}$ be any unbounded and computable function (e.g., $\mu(n) = n$ will do). Starting with v = t(n-1)+1, we keep incrementing v until v satisfies, for every $i \in \{1, ..., \mu(n)\}$, either $t_i(n) < v$ or $t_i(n) > g(v)$. This condition can be verified by computing $\mu(n)$ and g(v), and emulating the execution of each of the first $\mu(n)$ machines on each of the *n*-bit long strings for g(v) + 1 steps. The procedure sets t(n) to equal the first value v satisfying the aforementioned condition, and halts. (Figure 4.1 depicts the search for a good value v for t(n).)

To show that the foregoing procedure halts on every n, consider the set $H_n \subseteq \{1, ..., \mu(n)\}$ of the indices of the (relevant) machines that halt on all inputs of length n. Then, the procedure definitely halts before reaching the value $v = \max(T_n, t(n-1))+2$, where $T_n = \max_{i \in H_n} \{t_i(n)\}$. (Indeed, the procedure may halt with a value $v \leq T_n$, but this will happen only if $g(v) < T_n$.)

Finally, for the foregoing function t, we prove that DTIME(t) = DTIME(g(t))holds. Indeed, consider an arbitrary $S \in DTIME(g(t))$, and suppose that the i^{th} algorithm decides S in time at most g(t); that is, for every n, it holds that $t_i(n) \leq g(t(n))$. Then (by the construction of t), for every n satisfying $\mu(n) \geq i$, it holds that $t_i(n) < t(n)$. It follows that the *i*th algorithm decides S in time at most t on all but finitely many inputs. Combining this algorithm with a "look-up table" machine that handles the exceptional inputs, we conclude that $S \in \text{DTIME}(t)$. The theorem follows.

Comment: The function t defined by the foregoing proof is computable in time that exceeds g(t). Specifically, the presented procedure computes t(n) (as well as g(f(n))) in time $\widetilde{O}(2^n \cdot g(t(n)) + T_g(t(n)))$, where $T_g(m)$ denotes the number of steps required to compute g(m) on input m.

Speed-up Theorems. Theorem 4.7 can be viewed as asserting that some time complexity classes (i.e., DTIME(g(t))) in the theorem) collapse to lower classes (i.e., to DTIME(t)). A conceptually related phenomenon is of problems that have no optimal algorithm (not even in a very mild sense); that is, every algorithm for these ("pathological") problems can be drastically sped-up. It follows that the complexity of these problems can not be defined (i.e., as the complexity of the best algorithm solving this problem). The following drastic speed-up theorem should not be confused with the linear speed-up that is an artifact of the definition of a Turing machine (see Exercise 4.4).⁷

Theorem 4.8 (the time speed-up theorem): For every computable (and superlinear) function g there exists a decidable set S such that if $S \in \text{DTIME}(t)$ then $S \in \text{DTIME}(t')$ for t' satisfying g(t'(n)) < t(n).

Taking $g(n) = n^2$ (or $g(n) = 2^n$), the theorem asserts that, for every t, if $S \in DTIME(t)$ then $S \in DTIME(\sqrt{t})$ (resp., $S \in DTIME(\log t)$). Note that Theorem 4.8 can be applied any (constant) number of times, which means that we cannot give a reasonable estimate to the complexity of deciding membership in S. In contrast, recall that in some important cases, optimal algorithms for solving computational problems do exist. Specifically, algorithms solving (candid) search problems in NP cannot be speed-up (see Theorem 2.33), nor can the computation of a universal machine (see Theorem 4.5).

We refrain from presenting a proof of Theorem 4.8, but comment on the complexity of the sets involved in this proof. The proof (presented in [119, Sec. 12.6]) provides a construction of a set S in DTIME(t') \DTIME(t'') for t'(n) = h(n - O(1))and $t''(n) = h(n - \omega(1))$, where h(n) denoted g iterated n times on 2 (i.e., $h(n) = g^{(n)}(2)$, where $g^{(i+1)}(m) = g(g^{(i)}(m))$ and $g^{(1)} = g$). The set S is constructed such that for every i > 0 there exists a j > i and an algorithm that decides S in time t_i but not in time t_j , where $t_k(n) = h(n - k)$.

⁷Advanced comment: We note that the linear speed-up phenomenon was implicitly addressed in the proof of Theorem 4.3, by allowing an emulation overhead that depends on the length of the description of the emulated machine.

4.3 Space Hierarchies and Gaps

Hierarchy and Gap Theorems analogous to Theorem 4.3 and Theorem 4.7, respectively, are known for space complexity. In fact, since space-efficient emulation of space-bounded machines is simpler than time-efficient emulations of time-bounded machines, the results tend to be sharper (and their proofs tend to be simpler). This is most conspicuous in the case of the separation result (stated next), which is optimal (in light of the corresponding linear speed-up result; see Exercise 4.10).

Before stating the separation result, we need a few preliminaries. We refer the reader to §1.2.3.5 for a definition of space-complexity (and to Chapter 5 for further discussion). As in the case of time-complexity, we consider a specific model of computation, but the results hold for any other reasonable and general model. Specifically, we consider three-tape Turing machines, because we designate two special tapes for input and output. For any function $s : \mathbb{N} \to \mathbb{N}$, we denote by DSPACE(s) the class of decision problems that are solvable in space-complexity s. Analogously to Definition 4.2, we call a function $s : \mathbb{N} \to \mathbb{N}$ space constructible if there exists an algorithm that on input n outputs s(n) while using at most s(n)cells of the work-tape. Actually, functions like $s_1(n) = \log n, s_2(n) = (\log n)^2$, and $s_3(n) = 2^n$ are computable using $O(\log s_i(n))$ space.

Theorem 4.9 (space hierarchy for three-tape Turing machines): For any space constructible function s_2 and every function s_1 such that $s_2 = \omega(s_1)$ and $s_1(n) > \log n$ it holds that $\text{DSPACE}(s_1)$ is strictly contained in $\text{DSPACE}(s_2)$.

Theorem 4.9 is analogous to the traditional version of Theorem 4.3 (rather to the one we presented), and is proven using the alternative approach sketched in Footnote 2. The details are left as an exercise (see Exercise 4.11).

Chapter Notes

The material presented in this chapter predates the theory of NP-completeness and the dominant stature of the P-vs-NP Question. At these early days, the field (to be known as complexity theory) did not yet develop an independent identity and its perspectives were dominated by two classical theories: the theory of computability (and recursive function) and the theory of formal languages. Nevertheless, we believe that the results presented in this chapter are interesting for two reasons. Firstly, as stated up-front, these results address the natural question of under what conditions is it the case that more computational resources help. Secondly, these results demonstrate the type of results that one can get with respect to "generic" questions regarding computational complexity; that is, questions that refer to arbitrary resource bounds (e.g., the relation between $DTIME(t_1)$ and $DTIME(t_2)$ for arbitrary t_1 and t_2).

We note that, in contrast to the "generic" questions considered in this chapter, the P-vs-NP Question as well as the related questions that will be addressed in the rest of this book are not "generic" since they refer to specific classes (which capture natural computational issues). Furthermore, whereas time- and space-complexity behave in similar manner with respect to hierarchies and gaps, they behave quite differently with respect to other questions. The interested reader is referred to Sections 5.1 and 5.3.

Getting back to the concrete contents of the current chapter, let us briefly mentioned the most relevant credits. The hierarchy theorems (e.g., Theorem 4.3) were proved by Hartmanis and Stearns [110]. Gap theorems (e.g., Theorem 4.7) were proven by Borodin [44] (and are often referred to as Borodin's Gap Theorem). An axiomatic treatment of complexity measures was developed by Blum [36], who also proved corresponding speed-up theorems (e.g., Theorem 4.8, which is often referred to as Blum's Speed-up Theorem). A traditional presentation of all the aforementioned topics is provided in [119, Chap. 12], which also presents related techniques (e.g., "translation lemmas").

Exercises

Exercise 4.1 Let $F_n(s)$ denote the number of different Boolean functions over $\{0,1\}^n$ that are computed by Boolean circuits of size s. Prove that, for any $s < 2^n$, it holds that $F_n(s) \ge 2^{s/O(\log s)}$ and $F_n(s) \le s^{2s}$.

Guideline: Any Boolean function $f: \{0,1\}^{\ell} \to \{0,1\}$ can be computed by a circuit of size $s_{\ell} = O(\ell \cdot 2^{\ell})$. Thus, for every $\ell \leq n$, it holds that $F_n(s_{\ell}) \geq 2^{2^{\ell}} > 2^{s_{\ell}/O(\log s_{\ell})}$. On the other hand, the number of circuits of size s is less than $2^s \cdot {s^2 \choose s}$, where the second factor represents the number of possible choices of pair of gates that feed any gate in the circuit.

Exercise 4.2 (advice can speed-up computation) For every time-constructible function t, show that there exists a set S in $DTIME(t^2) \setminus DTIME(t)$ that can be decided in linear-time using an advice of linear length (i.e., $S \in DTIME(\ell)/\ell$ where $\ell(n) = O(n)$).

Guideline: Starting with a set $S' \in \text{DTIME}(T^2) \setminus \text{DTIME}(T)$, where $T(m) = t(2^m)$, consider the set $S = \{x0^{2^{|x|} - |x|} : x \in S'\}$.

Exercise 4.3 Referring to any reasonable model of computation (and assuming that the input length is not given explicitly (unlike as in, e.g., Definition 10.10)), prove that any algorithm that has sub-linear time-complexity actually has constant time-complexity.

Guideline: Consider the question of whether or not there exists an infinite set of strings S such that when invoked on any input $x \in S$ the algorithm reads all of x. Note that if S is infinite then the algorithm cannot have sub-linear time-complexity, and prove that if S is finite then the algorithm has constant time-complexity.

Exercise 4.4 (linear speed-up of Turing machine) Prove that any problem that can be solved by a two-tape Turing machine that has time-complexity t can be solved by another two-tape Turing machine having time-complexity t', where t'(n) = O(n) + (t(n)/2).

Guideline: Consider a machine that uses a larger alphabet, capable of encoding a constant (denoted c) number of symbols of the original machine, and thus capable of emulating c steps of the original machine in O(1) steps, where the constant in the O-notation is a universal constant (independent of c). Note that the O(n) term accounts to a preprocessing that converts the binary input to work-alphabet of the new machine (which encoding c input bits in one alphabet symbol). Thus, a similar result for one-tape Turing machine seems to require an additive $O(n^2)$ term.

Exercise 4.5 (constant amortized-time step-counter) A step-counter is an algorithm that runs for a number of steps that is specified in its input. Actually, such an algorithm may run for a somewhat larger number of steps but halt after issuing a number of "signals" as specified in its input, where these signals are defined as entering (and leaving) a designated state (of the algorithm). A step-counter may be run in parallel to another procedure in order to suspend the execution after a predetermined number of steps (of the other procedure) has elapsed. Show that there exists a simple deterministic machine that, on input n, halts after issuing n signals while making O(n) steps.

Guideline: A slightly careful implementation of the straightforward algorithm will do, when coupled with an "amortized" time-complexity analysis.

Exercise 4.6 (a natural set in $\mathcal{E} \setminus \mathcal{P}$) In continuation to the proof of Theorem 4.5, prove that the set $\{(\langle M \rangle, x, t) : \mathbf{u}'(\langle M \rangle, x, t) \neq \bot\}$ is in $\mathcal{E} \setminus \mathcal{P}$, where $\mathcal{E} \stackrel{\text{def}}{=} \bigcup_c \text{DTIME}(e_c)$ and $e_c(n) = 2^{cn}$.

Exercise 4.7 (EXP-completeness) In continuation to Exercise 4.6, prove that every set in \mathcal{EXP} is Karp-reducible to the set $\{(\langle M \rangle, x, t) : \mathbf{u}'(\langle M \rangle, x, t) \neq \bot\}$.

Exercise 4.8 Prove that the two definitions of NTIME, presented in $\S4.2.1.3$, are related up to logarithmic factors. Note the importance of condition that V has linear (rather than polynomial) time-complexity.

Guideline: When emulating a non-deterministic machine by the verification procedure V, encode the non-deterministic choices in a "witness" string y such that |y| is slightly larger than the number of steps taken by the original machine. Specifically, having $|y| = O(t \log t)$, where t denotes the number of steps taken by the original machine, allows to emulate the latter computation in linear time (i.e., linear in |y|).

Exercise 4.9 In continuation to Theorem 4.7, prove that for every computable function $t' : \mathbb{N} \to \mathbb{N}$ and every non-decreasing computable function $g : \mathbb{N} \to \mathbb{N}$ there exists a non-decreasing computable function $t : \mathbb{N} \to \mathbb{N}$ such that t > t' and $D_{\text{TIME}}(t) = D_{\text{TIME}}(g(t))$.

Exercise 4.10 In continuation to Exercise 4.4, state and prove a linear speed-up result for space complexity, when using the standard definition of space as recalled in Section 4.3. (Note that this result does not hold with respect to "binary space complexity" as defined in Section 5.1.1.)
Exercise 4.11 Prove Theorem 4.9. As a warm-up, prove first a space-complexity version of Theorem 4.3.

Guideline: Note that providing a space-efficient emulation of one machine by another machine is easier than providing an analogous time-efficient emulation.

Exercise 4.12 (space gap theorem) In continuation to Theorem 4.7, state and prove a gap theorem for space complexity.

Chapter 5

Space Complexity

Open are the double doors of the horizon; unlocked are its bolts.

Philip Glass, Akhnaten, Prelude

Whereas the number of steps taken during a computation is the primary measure of its efficiency, the amount of temporary storage used by the computation is also a major concern. Furthermore, in some settings, space is even more scarce than time.

In addition to the intrinsic interest in space-complexity, its study provides an interesting perspective on the study of time-complexity. For example, in contrast to the common conjecture by which $\mathcal{NP} \neq co\mathcal{NP}$, we shall see that analogous space complexity classes (e.g., \mathcal{NL}) are closed under complementation (e.g., $\mathcal{NL} = co\mathcal{NL}$).

Summary: This chapter is devoted to the study of the space complexity of computations, while focusing on two rather extreme cases. The first case is that of algorithms having logarithmic space complexity. We view such algorithms as utilizing the naturally minimal amount of temporary storage, where the term "minimal" is used here in an intuitive (but somewhat inaccurate) sense, and note that logarithmic space complexity seems a more stringent requirement than polynomial time. The second case is that of algorithms having polynomial space complexity, which seems a strictly more liberal restriction than polynomial time complexity. Indeed, algorithms utilizing polynomial space can perform almost all the computational tasks considered in this book (e.g., the class \mathcal{PSPACE} contains almost all complexity classes considered in this book).

We first consider algorithms of logarithmic space complexity. Such algorithms may be used for solving various natural search and decision problems, for providing reductions among such problems, and for yielding a strong notion of uniformity for Boolean circuits. The climax of this part is a log-space algorithm for exploring (undirected) graphs.

We then turn to non-deterministic computations, focusing on the complexity class \mathcal{NL} that is captured by the problem of deciding directed connectivity of (directed) graphs. The climax of this part is a proof that $\mathcal{NL} = co\mathcal{NL}$, which may be paraphrased as a log-space reduction of directed unconnectivity to directed connectivity.

We conclude with a short discussion of the class \mathcal{PSPACE} , proving that the set of satisfiable quantified Boolean formulae is \mathcal{PSPACE} -complete (under polynomial-time reductions). We mention the similarity between this proof and the proof that $NSPACE(s) \subseteq DSPACE(O(s^2))$.

We stress that, as in the case of time complexity, the main results presented in this chapter hold for any reasonable model of computation.¹ In fact, when properly defined, space complexity is even more robust than time complexity. Still, for sake of clarity, we often refer to the specific model of Turing machines.

Organization. Space complexity seems to behave quite differently from time complexity, and seems to require a different mind-set as well as auxiliary conventions. Some of the relevant issues are discussed in Section 5.1. We then turn to the study of logarithmic space complexity (see Section 5.2) and the corresponding non-deterministic version (see Section 5.3). Finally, we consider polynomial space complexity (see Section 5.4).

5.1 General preliminaries and issues

We start by discussing several very important conventions regarding space complexity (see Section 5.1.1). Needless to say, reading Section 5.1.1 is essential for the understanding of the rest of this chapter. (In contrast, the rather parenthetical Section 5.1.2 can be skipped with no significant loss.) We then discuss a variety of issues, highlighting the differences between space-complexity and time-complexity (see Section 5.1.3). In particular, we call the reader's attention to the composition lemmas (§5.1.3.1) and related reductions (§5.1.3.3) as well as to the obvious simulation result presented in §5.1.3.2 (i.e., DSPACE(s) \subseteq DTIME(2^{O(s)})). Lastly, in Section 5.1.4 we relate circuit size to space complexity by considering the spacecomplexity of circuit evaluation.

 $^{^{1}}$ The only exceptions appear in Exercises 5.4 and 5.18, which refer to the notion of a *crossing* sequence. The use of this notion in these proofs presumes that the machine scans its storage devices in a serial manner. In contrast, we stress that the various notions of an instantaneous configuration do not assume such a machine model.

5.1.1 Important conventions

Space complexity is meant to measure the amount of *temporary storage* (i.e., computer's memory) used when performing a computational task. Since much of our focus will be on using an amount of memory that is sub-linear in the input length, it is important to use a model in which one can differentiate memory used for computation from memory used for storing the initial input and/or the final output. That is, we do not want to count the input and output themselves within the space of computation, and thus formulate that they are delivered on special devices that are not considered memory. On the other hand, we have to make sure that the input and output devices cannot be abused for providing work space (which is uncounted for). This leads to the convention by which the input device (e.g., a designated input-tape of a multi-tape Turing machine) is read-only, whereas the output device (e.g., a designated output-tape of a such machine) is write-only. With this convention in place, we define space-complexity as accounting only for the use of space on the other (storage) devices (e.g., the work-tapes of a multi-tape Turing machine).

Fixing a concrete model of computation (e.g., multi-tape Turing machines), we denote by DSPACE(s) the class of decision problems that are solvable in space complexity s. The space complexity of search problems is defined analogously. Specifically, the standard definition of space complexity (see §1.2.3.5) refers to the number of cells of the work-tape scanned by the machine on each input. We prefer, however, an alternative definition, which provides a more accurate account of the actual storage. Specifically, the binary space complexity of a computation refers to the number of bits that can be stored in these cells, thus multiplying the number of cells by the logarithm of the finite set of work-symbols of the machine.²

The difference between the two aforementioned definitions is mostly immaterial, because it amounts to a constant factor and we will usually discard such factors. Nevertheless, aside from being conceptually right, using the definition of *binary space complexity* facilitates some technical details (because the number of possible "instantaneous configurations" is explicitly upper-bounded in terms of binary space complexity whereas its relation to the standard definition depends on the machine in question). Towards such applications, we also count the finite state of the machine in its space complexity. Furthermore, for sake of simplicity, we also assume that the machine does not scan the input-tape beyond the boundaries of the input, which are indicated by special symbols.³

We stress that individual locations of the (read-only) input-tape (or device) may be read several times. This is essential for many algorithms that use a sub-linear amount of space (because such algorithms may need to scan their input more than once while they cannot afford copying their input to their storage device). In contrast, rewriting on (the same location of) the write-only output-tape is inessential,

²We note that, unlike in the context of time-complexity, linear speed-up (as in Exercise 4.10) does not seem to represent an actual saving in space resources. Indeed, time can be sped-up by using stronger hardware (i.e., a Turing machine with a bigger work alphabet), but the actual space is not really affected by partitioning it into bigger chunks (i.e., using bigger cells). This fact is demonstrated when considering the *binary* space complexity of the two machines.

³As indicated by Exercise 5.1, little is lost by this natural assumption.

and in fact can be eliminated at a relatively small cost (see Exercise 5.2).

Summary. Let us compile a list of the foregoing conventions. As stated, the first two items on the list are of crucial importance, while the rest are of technical nature (but do facilitate our exposition).

- 1. Space complexity discards the use of the input and output devices.
- 2. The input device is read-only and the output device is write-only.
- 3. We will usually refer to the binary space complexity of algorithms, where the binary space complexity of a machine M that uses the alphabet Σ , finite state set Q, and has standard space complexity S_M is defined as $(\log_2 |Q|) + (\log_2 |\Sigma|) \cdot S_M$. (Recall that S_M measures the number of cells of the temporary storage device that are used by M during the computation.)
- 4. We will assume that the machine does not scan the input-device beyond the boundaries of the input.
- 5. We will assume that the machine does not rewrite to locations of its outputdevice (i.e., it write to each cell of the output-device at most once).

5.1.2 On the minimal amount of useful computation space

Bearing in mind that one of our main objectives is identifying natural sub-classes of \mathcal{P} , we consider the question of what is the minimal amount of space that allows for meaningful computations. We note that regular sets [119, Chap. 2] are decidable by constant-space Turing machines and that this is all that the latter can decide (see, e.g., [119, Sec. 2.6]). It is tempting to say that sub-logarithmic space machines are not more useful than constant-space machines, because it *seems* impossible to allocate a sub-logarithmic amount of space. This wrong intuition is based on the presumption that the allocation of a non-constant amount of space requires explicitly computing the length of the input, which in turn requires logarithmic space. However, this presumption is wrong: the input itself (in case it is of a proper form) can be used to determine its length (and/or the allowed amount of space).⁴ In fact, for $\ell(n) = \log \log n$, the class DSPACE($O(\ell)$) is a proper superset of DSPACE(O(1)); see Exercise 5.3. On the other hand, it turns out that double-logarithmic space is indeed the smallest amount of space that is more useful than constant space (see Exercise 5.4); that is, for $\ell(n) = \log \log n$, it holds that $DSPACE(o(\ell)) = DSPACE(O(1)).$

In spite of the fact that some non-trivial things can be done in sub-logarithmic space-complexity, the lowest space-complexity class that we shall study in depth is logarithmic space (see Section 5.2). As we shall see, this class is the natural habitat of several fundamental computational phenomena.

 $^{^{4}}$ Indeed, for this approach to work, we should be able to detect the case that the input is not of the proper form (and do so within sub-logarithmic space).

A parenthetical comment (or a side lesson). Before proceeding, let us highlight the fact that a naive presumption about arbitrary algorithms (i.e., that the use of a non-constant amount of space requires explicitly computing the length of the input) could have led us to a wrong conclusion. This demonstrates the danger in making "reasonably looking" (but unjustified) presumptions about *arbitrary* algorithms. We need to be fully aware of this danger whenever we seek impossibility results and/or complexity lower-bounds.

5.1.3 Time versus Space

Space-complexity behaves very different from time-complexity and indeed different paradigms are used in studying it. One notable example is provided by the context of algorithmic composition, discussed next.

5.1.3.1 Two composition lemmas

Unlike time, space can be re-used; but, on the other hand, intermediate results of a computation cannot be recorded for free. These two conflicting aspects are captured in the following composition lemma.

Lemma 5.1 (naive composition): Let $f_1 : \{0,1\}^* \to \{0,1\}^*$ and $f_2 : \{0,1\}^* \times \{0,1\}^* \to \{0,1\}^*$ be computable in space s_1 and s_2 , respectively.⁵ Then f defined by $f(x) \stackrel{\text{def}}{=} f_2(x, f_1(x))$ is computable in space s such that

$$s(n) = \max(s_1(n), s_2(n + \ell(n))) + \ell(n) + \delta(n),$$

where $\ell(n) = \max_{x \in \{0,1\}^n} \{ |f_1(x)| \}$ and $\delta(n) = O(\log(\ell(n) + s_2(n + \ell(n)))) = o(s(n)).$

Lemma 5.1 is useful when ℓ is relatively small, but in many cases $\ell \gg \max(s_1, s_2)$. In these cases, the following composition lemma is more useful.

Proof: Indeed, f(x) is computed by first computing and storing $f_1(x)$, and then reusing the space (used in the first computation) when computing $f_2(x, f_1(x))$. This explains the dominant terms in s(n); that is, the term $\max(s_1(n), s_2(n + \ell(n)))$ accounts for the computations themselves (which re-use the same space), whereas the term $\ell(n)$ accounts for storing the intermediate result (i.e., $f_1(x)$). The extra term is due to implementation details. Specifically, the same storage device is used both for storing $f_1(x)$ and for providing work-space for the computation of f_2 , which means that we need to maintain our location each of these two parts (i.e.,

⁵Here (and throughout the chapter) we assume, for simplicity, that all complexity bounds are monotonically non-decreasing. Another minor inaccuracy (in the text) is that we stated the complexity of the algorithm that computes f_2 in a somewhat non-standard way. Recall that by the standard convention, the complexity of an algorithm should be stated in terms of the length of its input, which in this case is a pair (x, y) that may be encoded as a string of length $|x| + |y| + 2 \log_2 |x|$ (but not as a string of length |x| + |y|). An alternative convention is to state the complexity of such computations in terms of the length of both parts of the input (i.e., have $s : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ rather than $s : \mathbb{N} \to \mathbb{N}$), but we did not do this either.

the location of the algorithm (that computes f_2) on $f_1(x)$ and its location on its own work-space). (See further discussion at end of the proof of Lemma 5.2.) The extra O(1) term accounts for the overhead involved in emulating two algorithms.

The leftmost figure shows the trivial composition (which just invokes A_1 and A_2 without attempt to economize storage), the middle figure shows the naive composition (of Lemma 5.1), and the rightmost figure shows the emulative composition (of Lemma 5.2). In all figures the filled rectangles represent designated storage spaces. The dotted rectangle represents a virtual storage device.

Figure 5.1: Algorithmic composition for space-bounded computation

Lemma 5.2 (emulative composition): Let f_1, f_2, s_1, s_2, ℓ and f be as in Lemma 5.1. Then f is computable in space s such that

$$s(n) = s_1(n) + s_2(n + \ell(n)) + O(\log(n + \ell(n))) + \delta(n),$$

where $\delta(n) = O(\log(s_1(n) + s_2(n + \ell(n)))) = o(s(n)).$

The alternative compositions are depicted in Figure 5.1 (which also shows the most straightforward composition that makes no attempt to economize space).

Proof: The idea is avoiding the storage of the temporary value of $f_1(x)$ by computing each of its bits ("on the fly") whenever this bit is needed for the computation of f_2 . That is, we do not start by computing $f_1(x)$, but rather start by computing $f_2(x, f_1(x))$ although we do not have some of the bits of the relevant input (i.e., the bits of $f_1(x)$). The missing bits will be computed (and re-computed) whenever we need them in the computation of $f_2(x, f_1(x))$. Details follow.

Let A_1 and A_2 be the algorithms (for computing f_1 and f_2 , respectively) guaranteed in the hypothesis.⁶ Then, on input $x \in \{0, 1\}^n$, we invoke algorithm A_2 (for computing f_2). Algorithm A_2 is invoked on a virtual input, and so when emulating each of its steps we should provide it with the relevant bit. Thus, we should also keep track of the location of A_2 on the imaginary (virtual) input tape. Whenever A_2 seeks to read the i^{th} bit of its input, where $i \in [n + \ell(n)]$, we provide A_2 with this bit by reading it from x if $i \leq n$ and invoke $A_1(x)$ otherwise. When invoking $A_1(x)$ we provide it with a virtual output tape, which means that we get the bits of its output one-by-one and do not record them anywhere. Instead, we count until reaching the $(i - n)^{\text{th}}$ output bit, which we then pass to A_2 (as the i^{th} bit of $\langle x, f_1(x) \rangle$).

Note that while invoking $A_1(x)$, we suspend the execution of A_2 but keep its current configuration such that we can resume the execution (of A_2) once we get the desired bit. Thus, we need to allocate separate space for the computation of A_2 and for the computation of A_1 . In addition, we need to allocate separate storage for maintaining the aforementioned counters (i.e., we use $\log_2(n+\ell(n))$ bits to hold the location of the input-bit currently read by A_2 , and $\log_2 \ell(n)$ bits to hold the index of the output-bit currently produced in the current invocation of A_1).

A final (and tedious) issue is that our description of the composed algorithm refers to two storage devices, one for emulating the computation of A_1 and the other for emulating the computation of A_2 . The issue is not the fact that the storage (of the composed algorithm) is partitioned between two devices, but rather that our algorithm uses two pointers (one per each of the two storage devices). In contrast, a ("fair") composition result should yield an algorithm (like A_1 and A_2) that uses a single storage device with a single pointer to locations on this device. Indeed, such an algorithm can be obtained by holding the two original pointers in memory; the additional $\delta(n)$ term accounts for this additional storage.

Reflection: The algorithm presented in the proof of Lemma 5.2 is wasteful in terms of time: it re-computes $f_1(x)$ again and again (i.e., once per each access of A_2 to the second part of its input). Indeed, our aim was economizing on space and not on time (and the two goals may be conflicting (see, e.g., [56, Sec. 4.3])).

5.1.3.2 An obvious bound

The time complexity of an algorithm is essentially upper-bounded by an exponential function in its space complexity. This is due to an upper-bound on the number of possible instantaneous "configurations" of the algorithm (as formulated in the proof of Theorem 5.3), and to the fact that if the computation passes through the same configuration twice then it must loop forever.

⁶We assume, for simplicity, that algorithm A_1 never rewrites on (the same location of) its write-only output-tape. As shown in Exercise 5.2, this assumption can be justified at an additive cost of $O(\log \ell(n))$. Alternatively, the idea presented in Exercise 5.2 can be incorporated directly in the current proof.

Theorem 5.3 If an algorithm A has binary space complexity s and halts on every input then it has time complexity t such that $t(n) \leq n \cdot 2^{s(n) + \log_2 s(n)}$.

Note that for $s(n) = \Omega(\log n)$, the factor of n can be absorbed by $2^{O(s(n))}$, and so we may just write $t(n) = 2^{O(s(n))}$. Indeed, throughout this chapter (as in most of this book), we will consider only algorithms that halt on every input (see Exercise 5.5 for further discussion).

Proof: The proof refers to the notion of an *instantaneous configuration* (in a computation). Before starting, we warn the reader that this notion may be given different definitions, each tailored to the application at hand. All these definitions share the desire to specify *variable information* that together with some *fixed information* determines the next step of the computation being analyzed. In the current proof, we fix an algorithm A and an input x, and consider as variable the contents of the storage device (e.g., work-tape of a Turing machine as well as its finite state) and the machine's location on the input device and on the storage device. Thus, an instantaneous configuration of A(x) consists of the latter three objects (i.e., the contents of the storage device and a pair of locations), and can be encoded by a binary string of length $\ell(|x|) = s(|x|) + \log_2 |x| + \log_2 s(|x|)$.⁷

The key observation is that the computation A(x) cannot pass through the same instantaneous configuration twice, because otherwise the computation A(x) passes through this configuration infinitely many times, which means that this computation does not halt. This observation is justified by noting that the instantaneous configuration, together with the fixed information (i.e., A and x), determines the next step of the computation. Thus, whatever happens (*i* steps) after the first time that the computation A(x) passes through configuration γ , will also happen (*i* steps) after the second time that the computation A(x) passes through γ .

By the forgoing observation, we infer that the number of steps taken by A on input x is at most $2^{\ell(|x|)}$, because otherwise the same configuration will appear twice in the computation (which contradicts the halting hypothesis). The theorem follows.

5.1.3.3 Subtleties regarding space-bounded reductions

Lemmas 5.1 and 5.2 suffice for the analysis of the effect of many-to-one reductions in the context of space-bounded computations. (By a many-to-one reduction of the function f to the function g, we mean a mapping π such that for every x it holds that $f(x) = g(\pi(x))$.)⁸

1. (In spirit of Lemma 5.1:) If f is reducible to g via a many-to-one reduction that can be computed in space s_1 , and g is computable in space s_2 , then f is computable in space s such that $s(n) = \max(s_1(n), s_2(\ell(n))) + \ell(n) + \delta(n)$,

⁷Here we rely on the fact that s is the binary space complexity (and not the standard space complexity); see summary item Nr. 3 in Section 5.1.1.

⁸This is indeed a special case of the setting of Lemmas 5.1 and 5.2 (obtained by letting $f_1 = \pi$ and $f_2(x, y) = g(y)$). However, the results claimed for this special case are better than those obtained by invoking the corresponding lemma (i.e., s_2 is applied to $\ell(n)$ rather than to $n + \ell(n)$).

where $\ell(n)$ denotes the maximum length of the image of the reduction when applied to some *n*-bit string and $\delta(n) = O(\log(\ell(n) + s_2(\ell(n)))) = o(s(n))$.

2. (In spirit of Lemma 5.2:) For f and g as in Item 1, it follows that f is computable in space s such that $s(n) = s_1(n) + s_2(\ell(n)) + O(\log \ell(n)) + \delta(n)$, where $\delta(n) = O(\log(s_1(n) + s_2(\ell(n)))) = o(s(n))$.

Note that by Theorem 5.3, it holds that $\ell(n) \leq 2^{s_1(n) + \log_2 s_1(n)} \cdot n$. We stress the fact that ℓ is not upper-bounded by s_1 itself (as in the analogous case of time-bounded computation), but rather by $\exp(s_1)$.

Things get much more complicated when we turn to general (space-bounded) reductions, especially when referring to general reductions that make a non-constant number of queries. A preliminary issue is defining the space-complexity of general reductions (i.e., of oracle machines). In the standard definition, the length of the queries and answers is not counted in the space-complexity, but the queries of the reduction (resp., answers given to it) are written on (resp., read from) a special device that is write-only (resp., read-only) for the reduction (and read-only (resp., write-only) for the invoked oracle). Note that these convention are analogous to the conventions regarding input and output (as well as fit the definitions of space-bounded many-to-one reductions that were outlined in the foregoing items).

The foregoing conventions suffice for defining general space-bounded reductions. They also suffice for obtaining appealing composition results in some cases (e.g., for reductions that make a single query or, more generally, for the case of non-adaptive queries). But more difficulties arise when seeking composition results for general reductions, which may make several adaptive queries (i.e., queries that depend on the answers to prior queries). As we shall show next, in this case it is essential to upper-bound the length of every query and/or every answer in terms of the length of the initial input.

Teaching note: The rest of the discussion is quite advanced and laconic (but is inessential to the rest of the chapter).

Recall that the complexity of the algorithm resulting from the composition of an oracle machine and an actual algorithm (which implements the oracle) depends on the length of the queries made by the oracle machine. For example, the spacecomplexity of the foregoing compositions, which referred to single-query reductions, had an $s_2(\ell(n))$ term (where $\ell(n)$ represents the length of the query). In general, the length of the first query is upper-bounded by an exponential function in the space complexity of the oracle machine, but the same does not necessarily hold for subsequent queries, unless some conventions are added to enforce it. For example, consider a reduction that, on input x and access to an oracle f such that |f(z)| =2|z|, invokes the oracle |x| times, where each time it uses as a query the answer obtained to the previous query. This reduction uses constant space, but produces queries that are exponentially longer than the input, whereas the first query of any constant-space reduction has length that is linear in its input. This problem can be resolved by placing explicit bounds on the length of the queries that space-bounded reductions are allowed to make; for example, we may bound the length of all queries by the obvious bound that holds for the length of the first query (i.e., a reduction of space complexity s is allowed to make queries of length at most $2^{s(n)+\log_2 s(n)} \cdot n$).

With the aforementioned convention (or restriction) in place, let us consider the composition of general space-bounded reductions with a space-bounded implementation of the oracle. Specifically, we say that a reduction is (ℓ, ℓ') -restricted if, on input x, all oracle queries are of length at most $\ell(|x|)$ and the corresponding oracle answers are of length at most $\ell'(|x|)$. It turns out that naive composition (in the spirit of Lemma 5.1) remains useful, whereas the emulative composition of Lemma 5.2 breaks down (in the sense that it yield very weak results).

1. Following Lemma 5.1, we claim that if Π can be solved in space s_1 when given (ℓ, ℓ') -restricted oracle access to Π' and Π' is solvable is space s_2 , then Π is solvable in space s such that $s(n) = s_1(n) + s_2(\ell(n)) + \ell(n) + \ell'(n) + \delta(n)$, where $\delta(n) = O(\log(\ell(n) + \ell'(n) + s_1(n) + s_2(\ell(n)))) = o(s(n))$. This claim is proved by using a naive emulation that allocates separate space for the reduction (i.e., oracle machine) itself, for the emulation of its query and answer devices, and for the algorithm solving Π' . Note, however, that here we cannot re-use the space of the reduction when running the algorithm that solves Π' , because the reduction's computation continues after the oracle answer is obtained. The additional $\delta(n)$ term accounts for the various pointers of the oracle machine, which need to be stored when algorithm that solves Π' is invoked (cf. last paragraph in the proof of Lemma 5.2).

A related composition result is presented in Exercise 5.7. This composition refrains from storing the current oracle query (but does store the corresponding answer). It yields $s(n) = O(s_1(n) + s_2(\ell(n)) + \ell'(n) + \log \ell(n))$, which for $\ell(n) < 2^{O(s_1(n))}$ means $s(n) = O(s_1(n) + s_2(\ell(n)) + \ell'(n))$.

2. Turning to the approach underlying the proof of Lemma 5.2, we get into more serious trouble. Specifically, note that recomputing the answer to the i^{th} query requires recomputing the query itself, which unlike in Lemma 5.2 is not the input to the reduction but rather depends on the answers to prior queries, which need to be recomputed as well. Thus, the space required for such an emulation is at least linear in the number of queries.

We note that one should not expect a general composition result (i.e., in the spirit of the foregoing Item 1) in which $s(n) = F(s_1(n), s_2(\ell(n))) + o(\min(\ell(n), \ell'(n)))$, where F is any function. One demonstration of this fact is implied by the observation that any computation of space-complexity s can be emulated by a constant-space (2s, 2s)-restricted reduction to a problem that is solvable in constant-space (see Exercise 5.9).

Non-adaptive reductions. Composition is much easier in the special case of non-adaptive reductions. Loosely speaking, the queries made by such reductions do not depend on the answers obtained to previous queries. Formulating this notion is not straightforward in the context of space-bounded computation. In the context of time-bounded computations, non-adaptive reductions are viewed

as consisting of two algorithms: a query generating algorithm, which generates a sequence of queries, and an evaluation algorithm, which given the input and a sequence of answers (obtained from the oracle) produces the actual output. The reduction is then viewed as invoking the query generating algorithm (and recording the sequence of generated queries), making the designated queries (and recording the answers obtained), and finally invoking the evaluation algorithm on the sequence of answers. Using such a formulation raises the question of how to describe non-adaptive reductions of small space-complexity. This question is revolved by designated special storage devices for the aforementioned sequences (of queries and answers) and postulating that these devices can be used only as described. For details, see Exercise 5.8. Note that non-adaptivity resolves most of the difficulties discussed in the foregoing. In particular, the length of each query made by a nonadaptive reduction is upper-bounded by an exponential in the space-complexity of the reduction (just as in the case of single-query reductions). Furthermore, composing such reductions with an algorithm that implements the oracle is not more involved than doing the same for single-query reductions. Thus, as shown in Exercise 5.8, if Π is reducible to Π' via a non-adaptive reduction of space-complexity s_1 that makes queries of length at most ℓ and Π' is solvable is space s_2 , then Π is solvable in space s such that $s(n) = O(s_1(n) + s_2(\ell(n)))$. (Indeed $\ell(n) < 2^{O(s_1(n))} \cdot n$ always hold.)

Reductions to decision problems. Composition in the case of reductions to decision problems is also easier, because also in this case the length of each query made by the reduction is upper-bounded by an exponential in the space-complexity of the reduction (see Exercise 5.10). Thus, applying the semi-naive composition result of Exercise 5.7 (mentioned in the foregoing Item 1) is very appealing. It follows that if Π can be solved in space s_1 when given oracle access to a decision problem that is solvable is space s_2 , then Π is solvable in space s such that $s(n) = O(s_1(n) + s_2(2^{s_1(n)+\log(n\cdot s_1(n))}))$. Indeed, if the length of each query in such a reduction is upper-bounded by ℓ , then we may use $s(n) = O(s_1(n) + s_2(\ell(n)))$. These results, however, are of limited interest, because it seems difficult to construct small-space reductions of search problems to decision problems (see §5.1.3.4).

We mention that an alternative notion of space-bounded reductions is discussed in §5.2.4.2. This notion is more cumbersome and more restricted, but in some cases it allows recursive composition with a smaller overhead than offered by the aforementioned composition results.

5.1.3.4 Search versus decision

Recall that in the setting of time-complexity we allowed ourselves to focus on decision problems, since search problems could be efficiently reduced to decision problems. Unfortunately, these reductions (e.g., the ones underlying Theorem 2.10 and Proposition 2.15) are not adequate for the study of (small) space-complexity. Recall that these reduction extend the currently *stored prefix of a solution* by making a query to an adequate decision problem. Thus, these reductions have

space-complexity that is lower-bounded by the length of the solution, which makes them irrelevant for the study of small space-complexity.

In light of the foregoing, the study of the space-complexity of search problems cannot be "reduced" to the study of the space-complexity of decision problems. Thus, while much of our exposition will focus on decision problems, we will keep an eye on the corresponding search problems. Indeed, in many cases, the ideas developed in the study of the decision problems can be adapted to the study of the corresponding search problems (see, e.g., Exercise 5.17).

5.1.3.5 Complexity hierarchies and gaps

Recall that more space allows for more computation (see Theorem 4.9), provided that the space-bounding function is "nice" in an adequate sense. Actually, the proofs of space-complexity hierarchies and gaps are simpler than the analogous proofs for time-complexity, because emulations are easier in the context of space-bounded algorithms (cf. Section 4.3).

5.1.3.6 Simultaneous time-space complexity

Recall that, for space complexity that is at least logarithmic, the time of a computation is always upper-bounded by an exponential function in the space complexity (see Theorem 5.3). Thus, polylogarithmic space complexity may extend beyond polynomial-time, and it make sense to define a class that consists of all decision problems that may be solved by a polynomial-time algorithm of polylogarithmic space complexity. This class, denoted SC, is indeed a natural sub-class of \mathcal{P} (and contains the class \mathcal{L} , which is defined in Section 5.2.1).⁹

In general, one may define DTiSP(t, s) as the class of decision problems solvable by an algorithm that has time complexity t and space complexity s. Note that $DTiSP(t, s) \subseteq DTIME(t) \cap DSPACE(s)$ and that a strict containment may hold. We mention that $DTiSP(\cdot, \cdot)$ provides the arena for the only known absolute (and highly non-trivial) lower-bound regarding \mathcal{NP} ; see [75]. We also note that lower bounds on time-space trade-offs (see, e.g., [56, Sec. 4.3]) may be stated as referring to the classes $DTiSP(\cdot, \cdot)$.

5.1.4 Circuit Evaluation

Recall that Theorem 3.1 asserts the existence of a polynomial-time algorithm that, given a circuit $C : \{0, 1\}^n \to \{0, 1\}^m$ and an *n*-bit long string *x*, returns C(x). For circuits of bounded fan-in, the space complexity of such an algorithm can be made linear in the depth of the circuit (which may be logarithmic in its size). This is obtained by the following DFS-type algorithm.

The algorithm (recursively) determines the value of a gate in the circuit by first determining the value of its first in-coming edge and next determining the value of the second in-coming edge. Thus, the recursive procedure, started at each

⁹We also mention that $\mathcal{BPL} \subseteq \mathcal{SC}$, where \mathcal{BPL} is defined in §6.1.4.1 and the result is proved in Section 8.4 (see Theorem 8.23).

output terminal of the circuit, needs only store the path that leads to the currently processed vertex as well as the temporary values computed for each ancestor. Note that this path is determined by indicating, for each vertex on the path, whether we currently process its first or second in-coming edge. In the case that we currently process the vertex's second in-coming edge, we need also store the value computed for its first in-coming edge.

The temporary storage used by the foregoing algorithm, on input (C, x), is thus $2d_C + O(\log |x| + \log |C(x)|)$, where d_C denotes the depth of C. The first term in the space-bound accounts for the core activity of the algorithm (i.e., the recursion), whereas the other terms account for the overhead involved in manipulating the initial input and final output (i.e., assigning the bits of x to the corresponding input terminals of C and scanning all output terminals of C).

Note: Further connections between circuit-complexity and space-complexity are mentioned in Section 5.2.3 and §5.3.2.2.

5.2 Logarithmic Space

Although Exercise 5.3 asserts that "there is life below log-space," logarithmic space seems to be the smallest amount of space that supports interesting computational phenomena. In particular, logarithmic space is required for merely maintaining an auxiliary counter that holds a position in the input, which seems required in many computations. On the other hand, logarithmic space suffices for solving many natural computational problems, for establishing reductions among many natural computational problems, and for a stringent notion of uniformity (of families of Boolean circuits). Indeed, an important feature of logarithmic-space computations is that they are a natural subclass of the polynomial-time computations (see Theorem 5.3).

5.2.1 The class L

Focusing on decision problems, we denote by \mathcal{L} the class of decision problems that are solvable by algorithms of logarithmic space complexity; that is, $\mathcal{L} = \bigcup_c \text{DSPACE}(\ell_c)$, where $\ell_c(n) \stackrel{\text{def}}{=} c \log_2 n$. Note that, by Theorem 5.3, $\mathcal{L} \subseteq \mathcal{P}$. As hinted, many natural computational problems are in \mathcal{L} (see Exercises 5.6 and 5.12 as well as Section 5.2.4). On the other hand, it is widely believed that $\mathcal{L} \neq \mathcal{P}$.

5.2.2 Log-Space Reductions

Another class of important log-space computations is the class of *logarithmic space* reductions. In light of the subtleties discussed in §5.1.3.3, we focus on the case of many-to-one reductions. Analogously to the definition of Karp-reductions (Definition 2.11), we say that f is a log-space (many-to-one) reduction of S to S' if f is log-space computable and, for every x, it holds that $x \in S$ if and only if $f(x) \in S'$. By Lemma 5.2 (and Theorem 5.3), if S is log-space reducible to some set in \mathcal{L} then $S \in \mathcal{L}$. Similarly, one can define a log-space variant of Levin-reductions (Definition 2.12). Both types of reductions are transitive (see Exercise 5.11). Note that Theorem 5.3 applies in this context and implies that these reductions run in polynomial-time. Thus, the notion of a log-space many-to-one reduction is a special case of a Karp-reduction.

We observe that all known Karp-reductions establishing NP-completeness results are actually log-space reductions. This is easily verifiable in the case of the reductions presented in Section 2.3.3 (as well as in Section 2.3.2). For example, consider the generic reduction to CSAT presented in the proof of Theorem 2.21: The constructed circuit is "highly uniform" and can be easily constructed in logarithmicspace (see also Section 5.2.3). A degeneration of this reduction suffices for proving that every problem in \mathcal{P} is log-space reducible to the problem of evaluating a given circuit on a given input. Recall that the latter problem is in \mathcal{P} , and thus we may say that it is *P*-complete under log-space reductions.

Theorem 5.4 (The complexity of Circuit Evaluation): Let CEVL denote the set of pairs (C, α) such that C is a Boolean circuit and $C(\alpha) = 1$. Then CEVL is in \mathcal{P} and every problem in \mathcal{P} is log-space Karp-reducible to CEVL.

Proof Sketch: Recall that the observation underlying the proof of Theorem 2.21 (as well as the proof of Theorem 3.6) is that the computation of a Turing machine can be emulated by a ("highly uniform") family of circuits. In the proof of Theorem 2.21, we hardwired the input to the reduction (denoted x) into the circuit (denoted C_x) and introduced input terminals corresponding to the bits of the NP-witness (denoted y). In the current context we leave x as an input to the circuit, while noting that the auxiliary NP-witness does not exists (or has length zero). Thus, the reduction from $S \in \mathcal{P}$ to CEVL maps the instance x (for S) to the pair $(C_{|x|}, x)$, where $C_{|x|}$ is a circuit that emulates the computation of the machine that decides membership in S (on any |x|-bit long input). For the sake of future use (in Section 5.2.3), we highlight the fact that $C_{|x|}$ can be constructed by a log-space machine that is given the input $1^{|x|}$.

The impact of P-completeness under log-space reductions. Indeed, Theorem 5.4 implies that $\mathcal{L} \neq \mathcal{P}$ if any only if CEVL $\notin \mathcal{L}$. Other natural problems were proved to have the same property (i.e., being P-complete under log-space reductions; cf. [57]).

Log-space reductions are used to define completeness with respect to other classes that are assumed to extend beyond \mathcal{L} . This restriction of the power of the reduction is definitely needed when the class of interest is contained in \mathcal{P} (e.g., \mathcal{NL} , see Section 5.3.2). In general, we say that a problem Π is \mathcal{C} -complete under log-space reductions if Π is in \mathcal{C} and every problem in \mathcal{C} is log-space (many-to-one) reducible to Π . In such a case, if $\Pi \in \mathcal{L}$ then $\mathcal{C} \subseteq \mathcal{L}$.

As in the case of polynomial-time reductions, we wish to stress that the relevance of log-space reductions extends beyond being a tool for defining complete problems.

5.2.3 Log-Space uniformity and stronger notions

Recall that a basic notion of uniformity of a family of circuits $(C_n)_n$, introduced in Definition 3.3, requires the existence of an algorithm that on input *n* outputs the description of C_n , while using time that is polynomial in the size of C_n . Strengthening Definition 3.3, we say that a family of circuits $(C_n)_n$ is log-space uniform if there exists an algorithm that on input *n* outputs C_n while using space that is logarithmic in the size of C_n . As implied by the following Theorem 5.5 (and implicitly proved in the foregoing Theorem 5.4), the computation of any polynomial-time algorithm can be emulated by a log-space uniform family of (bounded fan-in) polynomial-size circuits. On the other hand, in continuation to Section 5.1.4, we note that logspace uniform circuits of bounded fan-in and logarithmic depth can be emulated by an algorithm of logarithmic space complexity (i.e., "log-space uniform \mathcal{NC}^{1*} is in \mathcal{L} ; see Exercise 5.12).

As mentioned in Section 3.1.1, stronger notions of uniformity have also been considered. Specifically, in analogy to the discussion in §E.2.1.2, we say that $(C_n)_n$ has a strongly explicit construction if there exists an algorithm that runs in polynomialtime and linear-space such that, on input n and v, the algorithm returns the label of vertex v in C_n as well as the list of its children (or an indication that v is not a vertex in C_n). Note that if $(C_n)_n$ has a strongly explicit construction then it is log-space uniform, because the length of the description of a vertex in C_n is logarithmic in the size of C_n . The proof of Theorem 5.4 actually establishes the following.

Theorem 5.5 (strongly uniform circuits emulating \mathcal{P}): For every polynomialtime algorithm A there exists a strongly explicit construction of a family of polynomialsize circuits $(C_n)_n$ such that for every x it holds that $C_{|x|}(x) = A(x)$.

Proof Sketch: As noted already, the circuits $(C_{|x|})_{|x|}$ (considered in the proof of Theorem 5.4) are highly uniform. In particular, the underlying (directed) graph consists of constant-size gadgets that are arranged in an array and are only connected to adjacent gadgets (see the proof of Theorem 2.21).

5.2.4 Undirected Connectivity

Exploring a graph (e.g., towards determining its connectivity) is one of the most basic and ubiquitous computational tasks regarding graphs. The standard graph exploration algorithms (e.g., BFS and DFS) require temporary storage that is linear in the number of vertices. In contrast, the algorithm presented in this section uses temporary storage that is only logarithmic in the number of vertices. In addition to demonstrating the power of log-space computation, this algorithm (or rather its actual implementation) provides a taste of the type of issues arising in the design of sophisticated log-space algorithms.

The intuitive task of "exploring a graph" is captured by the task of *deciding* whether a given graph is connected.¹⁰ In addition to the intrinsic interest in this

¹⁰See Appendix G.1 for basic terminology.

natural computational problem, we mention that it is computationally equivalent (under log-space reductions) to numerous other computational problems (see, e.g., Exercise 5.16). We note that some related computational problems seem actually harder; for example, determining directed connectivity (in directed graphs) captures the essence of the class \mathcal{NL} (see Section 5.3.2). In view of this state of affairs, we emphasize the fact that the computational problem considered here refers to undirected graphs by calling it undirected connectivity.

Theorem 5.6 Deciding undirected connectivity (UCONN) is in \mathcal{L}

The algorithm is based on the fact that UCONN is easy in the special case that the graph consists of a collection of constant degree expanders.¹¹ In particular, if the graph has constant degree and logarithmic diameter then it can be explored using a logarithmic amount of space (which is used for determining a generic path from a fixed starting vertex).¹²

Needless to say, the input graph does not necessarily consist of a collection of constant degree expanders. The main idea is then to transform the input graph into one that does satisfy the aforementioned condition, while preserving the number of connected components of the graph. Furthermore, the key point is performing such a transformation in logarithmic space. The rest of this section is devoted to the description of such a transformation. We first present the basic approach and next turn to the highly non-trivial implementation details.

Teaching note: We recommend leaving the actual proof of Theorem 5.6 (i.e., the rest of this section) for advanced reading. The main reason is its heavy dependence on technical material that is beyond the scope of a course in complexity theory.

Getting started. We first note that it is easy to transform the input graph $G_0 = (V_0, E_0)$ into a constant-degree graph G_1 that preserves the number of connected components in G_0 . Specifically, each vertex $v \in V$ having degree d(v) (in G_0) is represented by a cycle C_v of d(v) vertices (in G_1), and each edge $\{u, v\} \in E_0$ is replaced by an edge having one end-point on the cycle C_v and the other end-point on the cycle C_u such that each vertex in G_1 has degree three (i.e., has two cycle edges and a single intra-cycle edge). This transformation can be performed using logarithmic space, and thus (relying on Lemma 5.2) we assume that the input graph has degree three.

Our goal is to transform this graph into a collection of expanders, while maintaining the number of connected components. In fact, we shall describe the transformation while pretending that the graph is connected, while noting that otherwise the transformation acts separately on each connected component.

 $^{^{11}}$ At this point, the reader may think that expanders are merely graphs of logarithmic diameter. At a later stage, we will rely on a basic familiarity with a specific definition of expanders as well as with a specific technique for constructing them. The relevant material is contained in Appendix E.2.

 $^{^{12}}$ Indeed, this is analogous to the circuit evaluation algorithm of Section 5.1.4, where the circuit depth corresponds to the diameter and the bounded fan-in corresponds to the constant degree. For further details, see Exercise 5.13.

A couple of technicalities. For a constant integer d > 2 determined so as to satisfy some additional condition, we may assume that the input graph is actually d^2 -regular (albeit is not necessarily simple). Furthermore, we shall assume that this graph is not bipartite. Both assumptions can be justified by augmenting the aforementioned construction of a 3-regular graph by adding $d^2 - 3$ self-loops to each vertex.

Prerequisites: Evidently, the notion of an expander graph plays a key role in the aforementioned transformation. For a brief review of this notion, the reader is referred to Appendix E.2. In particular, we assume familiarity with the algebraic definition of expanders (as presented in §E.2.1.1). Furthermore, the transformation relies heavily on the *zig-zag product*, defined in §E.2.2.2, and the following exposition assume familiarity with this definition.

5.2.4.1 The basic approach

Recall that our goal is to transform G_1 into an expander. The transformation is gradual and consists of logarithmically many iterations, where in each iteration an adequate expansion parameter doubles while the graph becomes a constant factor larger and maintains the degree bound. The (expansion) parameter of interest is the gap between the relative second eigenvalue of the graph and 1 (see §E.2.1.1). A constant value of this parameter indicates that the graph is an expander. Initially, this parameter is lower-bounded by $\Omega(n^{-2})$, where *n* is the size of the graph. Since this parameter doubles in each iteration, after logarithmically many iterations this parameter is lower-bounded by a constant (and hence the current graph is an expander).

The crux of the aforementioned gradual transformation is the transformation that takes place in each single iteration. This transformation is supposed to double the expansion parameter while maintaining the graph's degree and increasing the number of vertices by a constant factor. The transformation combines the (standard) graph powering operation and the *zig-zag product* presented in §E.2.2.2. Specifically, for adequate positive integers d and c, we start with the d^2 -regular graph $G_1 = (V_1, E_1)$, and go through a logarithmic number of iterations letting $G_{i+1} = G_i^c \supseteq G$ for i = 1, ..., t - 1, where G is a fixed d-regular graph with d^{2c} vertices. That is, in each iteration, we raise the current graph (i.e., G_i) to the power c and combine the resulting graph (d^{2c} -regular) with the fixed (d^{2c} -vertex) graph G using the zig-zag product. Thus, G_{i+1} is a d^2 -regular graph with $d^{i\cdot 2c} \cdot |V_1|$ vertices, where this invariant is preserved by definition of the zig-zag product (i.e., the zig-zag product of a d^{2c} -regular graph G' = (V', E') with the d-regular graph G (which has d^{2c} vertices) yields a d^2 -regular graph with $d^{2c} \cdot |V'|$ vertices).

The analysis of the improvement in the expansion parameter, denoted $\delta_2(\cdot) \stackrel{\text{def}}{=} 1 - \bar{\lambda}_2(\cdot)$, relies on Eq. (E.10). Recall that Eq. (E.10) implies that if $\bar{\lambda}_2(G) < 1/2$ then $1 - \bar{\lambda}_2(G' \otimes G) > (1 - \bar{\lambda}_2(G'))/3$. Thus, the fixed graph G is selected such

that $\bar{\lambda}_2(G) < 1/2$, which requires a sufficiently large constant d. Thus, we have

$$\delta_2(G_{i+1}) = 1 - \bar{\lambda}_2(G_i^c \boxtimes G) > \frac{1 - \bar{\lambda}_2(G_i^c)}{3} = \frac{1 - \bar{\lambda}_2(G_i)^c}{3}$$

whereas, for a sufficiently large constant integer c > 0, it holds that $1 - \bar{\lambda}_2(G_i)^c > \min(6 \cdot (1 - \bar{\lambda}_2(G_i)), 1/2).^{13}$ It follows that that $\delta_2(G_{i+1}) > \min(2\delta_2(G_i), 1/6)$. Thus, setting $t = O(\log |V_1|)$ and using $\delta_2(G_1) = 1 - \bar{\lambda}_2(G_1) = \Omega(|V_1|^{-2})$, we obtain $\delta_2(G_t) > 1/6$ as desired.

Needless to say, a "detail" of crucial importance is the ability to transform G_1 into G_t via a log-space computation. Indeed, the transformation of G_i to G_{i+1} can be performed in logarithmic space (see Exercise 5.14), but we need to compose a logarithmic number of such transformations. Unfortunately, the standard composition lemmas for space-bounded algorithms involve overhead that we cannot afford.¹⁴ Still, taking a closer look at the transformation of G_i to G_{i+1} , one may note that it is highly structured and in some sense it can be implemented in constant space and supports a stronger composition result that incurs only a constant amount of storage per iteration. The resulting implementation (of the iterative transformation of G_1 to G_1) and the underlying formalism will be the subject of §5.2.4.2. (An alternative implementation, provided in [183], can be obtained by unraveling the composition.)

5.2.4.2 The actual implementation

The space-efficient implementation of the iterative transformation outlined in §5.2.4.1 is based on the observation that we do not need to explicitly construct the various graphs but merely provide "oracle access" to them. This observation is crucial when applied to the intermediate graphs; that is, rather than constructing G_{i+1} , when given G_i as input, we show how to provide oracle access to G_{i+1} (i.e., answer "neighborhood queries" regarding G_{i+1}) when given oracle access to G_i (i.e., an oracle that answers neighborhood queries regarding G_i). This means that we view G_i and G_{i+1} (or rather their incidence lists) as functions (to be evaluated) rather than as strings (to be printed), and show how to reduce the task of finding neighbors in G_{i+1} (i.e., evaluating the "incidence function" at a given vertex) to the task of finding neighbors in G_i .

A clarifying discussion. Note that here we are referring to oracle machines that access a finite oracle, which represents a *finite variable object* (which, in turn, is an instance of some computational problem). Such a machine provides access to a complex object by using its access to a more basic object, which is represented by the oracle. Specifically, such a machine get an input, which is a "query" regarding

¹³Consider the following two cases: In the case that $\lambda_2(G_i) < (1 - (1/c))$, show that $1 - \lambda_2(G_i)^c > 1/2$. Otherwise, let $\varepsilon \stackrel{\text{def}}{=} 1 - \lambda_2(G_i)$, and using $\varepsilon \leq 1/c$ show that $1 - \lambda_2(G_i)^c > c\varepsilon/2$.

¹⁴We cannot afford the naive composition (of Lemma 5.1), because it causes an overhead linear in the size of the intermediate result. As for the emulative composition (of Lemma 5.2), it sums up the space complexities of the composed algorithms (not to mention adding another logarithmic term), which would result in a log-squared bound on the space complexity.

the complex object (i.e, the object that the machine tries to emulate), and produce an output (which is the answer to the query). Analogously, these machines make queries, which are queries regarding another object (i.e., the one represented in the oracle), and obtain corresponding answers.¹⁵

Like in §5.1.3.3, queries are made via a special write-only device and the answers are read from a corresponding read-only device, where the use of these devices is not charged in the space complexity. With these conventions in place, we claim that neighborhoods in the d^2 -regular graph G_{i+1} can be computed by a constantspace oracle machine that is given oracle access to the d^2 -regular graph G_i . That is, letting $g_i: V_i \times [d^2] \to V_i \times [d^2]$ (resp., $g_{i+1}: V_{i+1} \times [d^2] \to V_{i+1} \times [d^2]$) denote the edge-rotation function¹⁶ of G_i (resp., G_{i+1}), we have:

Claim 5.7 There exists a constant-space oracle machine that evaluates g_{i+1} when given oracle access to g_i , where the state of the machine is counted in the space complexity.

Proof Sketch: We first show that the two basic operation that underly the definition of G_{i+1} (i.e., powering and zig-zag product with a constant graph) can be performed in constant-space.

The edge-rotation function of G_i^2 (i.e., the square of the graph G_i) can be evaluated at any desired pair, by evaluating the edge-rotation function of G_i twice, and using a constant amount of space. Specifically, given $v \in V_i$ and $j_1, j_2 \in [d^2]$, we compute $g_i(g_i(v, j_1), j_2)$, which is the edge-rotation of $(v, \langle j_1, j_2 \rangle)$ in G_i^2 , as follows. First, making the query (v, j_1) , we obtain the edge-rotation of (v, j_1) , denoted (u, k_1) . Next, making the query (u, j_2) , we obtain (w, k_2) , and finally we output $(w, \langle k_2, k_1 \rangle)$. We stress that we only use the temporary storage to record k_1 , whereas u is directly copied from the oracle answer device to the oracle query device. Accounting also for a constant number of states needed for the various stages of the foregoing activity, we conclude that graph squaring can be performed in constant-space. The argument extends to the task of raising the graph to any constant power.

Turning to the zig-zag product (of an arbitrary regular graph G' with a fixed graph G), we note that the corresponding edge-rotation function can be evaluated in constant-space (given oracle access to the edge-rotation function of G'). This follows directly from Eq. (E.8), noting that the latter calls for a single evaluation of the edge-rotation function of G' and two simple modifications that only depend on the constant-size graph G (and affect a constant number of bits of the relevant

¹⁵Indeed, the current setting (in which the oracle represents a *finite variable object*, which in turn is an instance of some computational problem) is different from the standard setting, where the oracle represents a *fixed computational problem*. Still the mechanism (and/or operations) of these two types of oracle machines is the same: They both get an input (which here is a "query" regarding a variable object rather than an instance of a fixed computational problem), and produce an output (which here is the answer to the query rather than a "solution" for the given instance). Analogously, these machines make queries (which here are queries regarding another variable object rather than queries regarding another fixed computational problem), and obtain corresponding answers.

¹⁶Recall that the edge-rotation function of a graph maps the pair (v, j) to the pair (u, k) if vertex u is the j^{th} neighbor of vertex v and v is the k^{th} neighbor of u (see §E.2.2.2).

strings). Again, using the fact that it suffices to copy vertex names from the input to the oracle query device (or from the oracle answer device to the output), we conclude that the aforementioned activity can be performed using constant space.

The argument extends to a sequential composition of a constant number of operations of the aforementioned type (i.e., graph squaring and zig-zag product with a constant graph). \Box

Recursive composition. Using Claim 5.7, we wish to obtain a O(t)-space oracle machine that evaluates g_t by making oracle calls to g_1 , where $t = O(\log |V_1|)$. Such an oracle machine will yield a log-space transformation of G_1 to G_t (by evaluating g_t at all possible values). It is tempting to hope that an adequate composition lemma, when applied to Claim 5.7, will yield the desired O(t)-space oracle machine (reducing the evaluation of g_t to g_1). This is indeed the case, except that the adequate composition lemma is still to be developed (as we do next).

We first note that applying a naive composition (as in Lemma 5.1) amounts to an additive overhead of $O(\log |V_1|)$ per each composition. But we cannot afford more than an amortized constant additive overhead per composition. Applying the emulative composition (as in Lemma 5.2) causes a multiplicative overhead per each composition, which is certainly unaffordable. The composition developed next is a variant of the naive composition, which is beneficial in the context of recursive calls. The basic idea is deviating from the paradigm that allocates *separate* input/output and query devices to *each level in the recursion*, and combining all these devices in a single ("global") device which will be used by all levels of the recursion. That is, rather than following the "structured programming" methodology of using locally designated space for passing information to the subroutine, we use the "bad programming" methodology of passing information through global variables. (As usual, this notion is formulated by referring to the model of multi-tape Turing machine, but it can be formulated in any other reasonable model of computation.)

Definition 5.8 (global-tape oracle machines): A global-tape oracle machine is defined as an oracle machine (cf. Definition 1.11), except that the input, output and oracle tapes are replaced by a single global-tape. In addition, the machine has a constant number of work tapes, called the local-tapes. The machine obtains its input from the global-tape, writes each query on this very tape, obtains the corresponding answer from this tape, and writes its final output on this tape. (We stress that, as a result of invoking the oracle f, the contents of the global-tape changes from q to f(q).)¹⁷ The space complexity of such a machine is stated when referring separately to its use of the global-tape and to its use of the local-tapes.

Clearly, any ordinary oracle machine can be converted into an equivalent globaltape oracle machine. The resulting machine uses a global-tape of length at most $n + \ell + m$, where n denotes the length of the input, ℓ denote the length of the

¹⁷This means that the prior contents of the global-tape (i.e., the query q) is lost (i.e., it is replaced by the answer f(q)). Thus, if we wish to keep such prior contents then we need to copy it to a local-tape. We also stress that, according to the standard oracle invocation conventions, the head location after the oracle responds is at the left-most cell of the global-tape.

5.2. LOGARITHMIC SPACE

longest query or oracle answer, and m denotes the length of the output. However, combining these three different tapes into one global-tape seems to require holding separate pointers for each of the original tapes, which means that the local-tape has to store three corresponding counters (in addition to storing the original work-tape). Thus, the resulting machine uses a local-tape of length $w + \log_2 n + \log_2 \ell + \log_2 m$, where w denotes the space complexity of the original machine and the additional logarithmic terms (which are logarithmic in the length of the global-tape) account for the aforementioned counters.

Fortunately, the aforementioned counters can be avoided in the case that the original oracle machine can be described as an iterative sequence of transformations (i.e., the input is transformed to the first query, and the i^{th} answer is transformed to the $i+1^{\text{st}}$ query or to the output, all while maintaining auxiliary information on the work-tape). Indeed, the machine presented in the proof of Claim 5.7 has this form, and thus it can be implemented by a global-tape oracle machine that uses a global-tape not longer than its input and a local-tape of constant length (rather than a local-tape of length that is logarithmic in the length of the global-tape).

Claim 5.9 (Claim 5.7, revisited): There exists a global-tape oracle machine that evaluates g_{i+1} when given oracle access to g_i , while using global-tape of length $\log_2(d^2 \cdot |V_{i+1}|)$ and a local-tape of constant length.

Proof Sketch: Following the proof of Claim 5.7, we merely indicate the exact use of the two tapes. For example, recall that the edge-rotation function of the square of G_i is evaluated at $(v, \langle j_1, j_2 \rangle)$ by evaluating the edge-rotation function of the original graph first at (v, j_1) and then at (u, j_2) , where $(u, k_1) = g_i(v, j_1)$. This means the global-tape machine first reads $(v, \langle j_1, j_2 \rangle)$ from the global-tape and replaces it by the query (v, j_1) , while storing j_2 on the local-tape. Thus, the machine merely deletes a constant number of bits from the global-tape (and leaves its prefix intact). After invoking the oracle, the machine copies k_1 from the global-tape to the global-tape (such that it contains (u, j_2)). After invoking the oracle for the second time, the global-tape contains $(w, k_2) = g_i(u, j_2)$, and the machine merely modifies it to $(w, \langle k_2, k_1 \rangle)$, which is the desired output.

Similarly, note that the edge-rotation function of the zig-zag product of the variable graph G' with the fixed graph G is evaluated at $(\langle u, i \rangle, \langle \alpha, \beta \rangle)$ by querying G' at $(u, E_{\alpha}(i))$ and outputting $(\langle v, E_{\beta}(j') \rangle, \langle \beta, \alpha \rangle)$, where (v, j') denotes the oracle answer (see Eq. (E.8)). This means that the global-tape oracle machine first copies α, β from the global-tape to the local-tape, transforms the contents of the global-tape from $(\langle u, i \rangle, \langle \alpha, \beta \rangle)$ to $(u, E_{\alpha}(i))$, and makes an analogous transformation after the oracle is invoked.

Composing global-tape oracle machines. In the proof of Claim 5.9, we implicitly used sequential composition of computations conducted by global-tape oracle machines.¹⁸ In general, when sequentially composing such computations the

 $^{^{18}}$ A similar composition took place in the proof of Claim 5.7, but in Claim 5.9 we asserted a stronger feature of this specific computation.

length of the global-tape (resp., local-tape) is the maximum among all composed computations; that is, the current formalism offers a tight bound on naive *sequential composition* (as opposed to Lemma 5.1). Furthermore, global-tape oracle machines are beneficial in the context of *recursive composition*, as indicated by Lemma 5.10 (which relies on this model in a crucial way). The key observation is that all levels in the recursive composition may re-use the same global storage, and only the local storage gets added. Consequently, we have the following composition lemma.

Lemma 5.10 (recursive composition in the global-tape model): Suppose that there exists a global-tape oracle machine that, for every i = 1, ..., t-1, computes f_{i+1} by making oracle calls to f_i while using a global-tape of length L and a local-tape of length l_i , which also accounts for the machine's state. Then f_t can be computed by a standard oracle machine that makes calls to f_1 and uses space $L + \sum_{i=1}^{t-1} (l_i + \log_2 l_i)$.

We shall apply this lemma with $f_i = g_i$ and $t = O(\log |V_1|) = O(\log |V_t|)$, using the bounds $L = \log_2(d^2 \cdot |V_t|)$ and $l_i = O(1)$ (as guaranteed by Claim 5.9). Indeed, in this application L equals the length of the input to $f_t = g_t$.

Proof Sketch: We compute f_t by allocating space for the emulation of the globaltape and the local-tapes of each level in the recursion. We emulate the recursive computation by capitalizing on the fact that all recursive levels use the same globaltape (for making queries and receiving answers). Recall that in the actual recursion, each level may use the global-tape arbitrarily as long as when it returns control to the invoking machine the global-tape contains the right answer. Thus, the emulation may do the same, and emulate each recursive call by using the space allocated for the global-tape as well as the space designated for the local-tape of this level. The emulation should also store the locations of the other levels of the recursion on the corresponding local-tapes, but the space needed for this (i.e., $\sum_{i=1}^{t-1} \log_2 l_i$) is clearly smaller than the length of the various local-tapes (i.e., $\sum_{i=1}^{t-1} l_i$). \square

Conclusion. Combining Claim 5.9 and Lemma 5.10, we conclude that the evaluation of $g_{O(\log |V_1|)}$ can be reduced to the evaluation of g_1 in space $O(\log |V_1|)$; that is, $g_{O(\log |V_1|)}$ can be computed by a standard oracle machine that makes calls to g_1 and uses space $O(\log |V_1|)$. Recalling that G_1 can be constructed in log-space (based on the input graph G_0), we infer that $G' = G_{O(\log |V_1|)}$ can be constructed in log-space. Theorem 5.6 follows by recalling that G' (which has constant degree and logarithmic diameter) can be tested for connectivity in log-space (see Exercise 5.13). Using a similar argument, we can test whether a given pair of vertices are connected in the input graph (see Exercise 5.15). Furthermore, a corresponding path can be found within the same complexity (see Exercise 5.17).

5.3 Non-Deterministic Space Complexity

The difference between space-complexity and time-complexity is quite striking in the context of non-deterministic computations. One phenomenon is the huge gap between the power of two formulation of non-deterministic space-complexity (see Section 5.3.1), which stands in contrast to the fact that the analogous formulations are equivalent in the context of time-complexity. We also highlight the contrast between various results regarding (the standard model of) non-deterministic space-bounded computation (see Section 5.3.2) and the analogous questions in the context of time-complexity; one good example is the "question of complementation" (cf. $\S 5.3.2.3$).

5.3.1 Two models

Recall that non-deterministic time-bounded computations were defined via two equivalent models. In the off-line model (underlying the definition of NP as a proof system (see Definition 2.5)) non-determinism is captured by reference to the existential choice of an *auxiliary* ("non-deterministic") *input*. In contrast, in the on-line model (underlying the traditional definition of NP (see Definition 2.7)) non-determinism is captured by reference to the non-determinism is captured by reference to the non-deterministic *choices of the machine itself*. In the context of time-complexity, these models are equivalent because the latter on-line choices can be recorded (almost) for free (see the proof of Theorem 2.8). However, such a recording is not free of charge in the context of space-complexity.

Let us take a closer look at the relation between the off-line and on-line models. The fact that the off-line model can emulate the on-line model is almost generic; that is, it holds for any reasonable notion of complexity, because it is based on the fact that the off-line machine can emulate on-line choices by using its non-deterministic input (and without significantly effecting the complexity measure). In contrast, the emulation of the off-line model by the on-line model is enabled by the fact that *in the context of time-complexity* an on-line machine may store (and re-use) a sequence of non-deterministic (on-line) choices without significantly effecting the running-time (i.e., almost "free of charge"). This naive emulation (of the off-line model) is not free of charge in the context of space-bounded computation. Furthermore, typically the number of non-deterministic choices is much larger than the space-bound, and thus the naive emulation is not possible *in the context of space-complexity* (because it is prohibitively expensive in terms of space-complexity). Let us recapitulate the two models and consider the relation between them in the context of space-complexity.

In the standard model, called the on-line model, the machine makes non-deterministic choices "on the fly" (as in Definition 2.7).¹⁹ Thus, if the machine may need to refer to such a non-deterministic choice at a latter stage in its computation, then it must store this choice on its storage device (and be charged for it). In contrast, in the so-called off-line model the non-deterministic choices are provided from the outside as the bits of a special non-deterministic input. This non-deterministic

¹⁹An alternative but equivalent definition is obtained by considering machines that read a nondeterministic input from a special read-only tape that can be read only in one direction. This stands in contrast to the off-line model, where the non-deterministic input is presented on a read-only tape that can be scanned freely.

input is presented on a special read-only device (or tape) that can be scanned in both directions like the main input.

We denote by NSPACE_{on-line}(s) (resp., NSPACE_{off-line}(s)) the class of sets that are acceptable by an on-line (resp., off-line) non-deterministic machine having space complexity s. We stress that, as in Definition 2.7, the set accepted by a nondeterministic machine M is the set of strings x such that there exists a computation of M on input x that is accepting. (In the case of an on-line machine this existential statement refers to possible non-deterministic choices of the machine itself, whereas in the case of an off-line machine we refer to a possible choice of a corresponding non-deterministic input.)

The relationship between these two types of classes is not obvious. Indeed, NSPACE_{on-line}(s) \subseteq NSPACE_{off-line}(s), but (in general) containment does not hold in the opposite direction. In fact, for s that is at least logarithmic, not only that NSPACE_{on-line}(s) \neq NSPACE_{off-line}(s) but rather NSPACE_{on-line}(s) \subseteq NSPACE_{off-line}(s'), where $s'(n) = O(\log s(n)) = o(s(n))$. Furthermore, for s that is at least linear, it holds that NSPACE_{on-line}(s) = NSPACE_{off-line}($\Theta(\log s)$); see Exercise 5.18.

Before proceeding any further, let us justify the focus on the on-line model in the rest of this section. Indeed, the off-line model fits better the motivations to \mathcal{NP} (as presented in Section 2.1.2), but the on-line model seems more adequate for the study of non-deterministic in the context of space complexity. One reason is that an off-line non-deterministic input can be used to code computations (see Exercise 5.18), and in a sense allows to "cheat" with respect to the "actual" space complexity of the computation. This is reflected in the fact that the off-line model can emulate the on-line model while using space that is logarithmic in the space used by the on-line model. A related phenomenon is that NSPACE_{off-line}(s) is only known to be contained in DTIME(2^{2^s}), whereas NSPACE_{on-line}(s) \subseteq DTIME(2^s). This fact motivates the study of $\mathcal{NL} = \text{NSPACE}_{\text{on-line}}(\log)$, as a study of a (natural) sub-class of \mathcal{P} . Indeed, the various results regarding \mathcal{NL} justify its study in retrospect.

In light of the foregoing, we adopt the standard conventions and let NSPACE(s) = NSPACE_{on-line}(s). Our main focus will be the study of $\mathcal{NL} = \text{NSPACE(log)}$. After studying this class in Section 5.3.2, we shall return to the "question of modeling" in Section 5.3.3.

5.3.2 NL and directed connectivity

This section is devoted to the study of \mathcal{NL} , which we view as the non-deterministic analogue of \mathcal{L} . Specifically, $\mathcal{NL} = \bigcup_c \operatorname{NSPACE}(\ell_c)$, where $\ell_c(n) = c \log_2 n$. (We refer the reader to the definitional issues pertaining $\operatorname{NSPACE} = \operatorname{NSPACE}_{on-line}$, which are discussed in Section 5.3.1.)

We first note that the proof of Theorem 5.3 can be easily extended to the (on-line) non-deterministic context. The reason being that moving from the deterministic model to the current model does not affect the number of instantaneous configurations (as defined in the proof of Theorem 5.3), whereas this number bounds the time complexity. Thus, $\mathcal{NL} \subseteq \mathcal{P}$.

The following problem, called directed connectivity (st-CONN), captures the essence of non-deterministic log-space computations (and, in particular, is complete for \mathcal{NL} under log-space reductions). The input to st-CONN consists of a directed graph G = (V, E) and a pair of vertices (s, t), and the task is to determine whether there exists a directed path from s to t (in G).²⁰ Indeed, the study of \mathcal{NL} is often conducted via st-CONN. For example, note that $\mathcal{NL} \subseteq \mathcal{P}$ follows easily from the fact that st-CONN is in \mathcal{P} (and the fact that \mathcal{NL} is log-space reducible to st-CONN).

5.3.2.1 Completeness and beyond

Clearly, st-CONN is in \mathcal{NL} (see Exercise 5.19). As shown next, the \mathcal{NL} -completeness of st-CONN under log-space reductions follows by noting that the computation of any non-deterministic space-bounded machine yields a directed graph in which vertices correspond to possible configurations and edges represent the "successive" relation of the computation. In particular, for log-space computations the graph has polynomial size, but in general the relevant graph is strongly explicit (in a natural sense; see Exercise 5.21).

Theorem 5.11 Every problem in \mathcal{NL} is log-space reducible to st-CONN (via a many-to-one reduction).

Proof Sketch: Fixing a non-deterministic (on-line) machine M and an input x, we consider the following directed graph $G_x = (V_x, E_x)$. The vertices of V_x are possible instantaneous configurations of M(x), where each configuration consists of the contents of the work-tape (and the machine's finite state), the machine's location on it, and the machine's location on the input. The directed edges represent single possible moves in such a computation. We stress that such a move depends on the machine M as well as on the (single) bit of x that resides in the location specified by the first configuration (i.e., the configuration corresponding to the start-point of the potential edge).²¹ Note that (for a fixed machine M), given x, the graph G_x can be constructed in log-space (by scanning all pairs of vertices and outputting only the pairs that are valid edges (which, in turn, can be tested in constant-space)).

By definition, the graph G_x represents the possible computations of M on input x. In particular, there exists an accepting computation of M on input x if and only if there exists a directed path, in G_x , starting at the vertex s that corresponds to the initial configuration and ending at the vertex t that corresponds to a canonical accepting configuration. Thus, $x \in S$ if and only if (G_x, s, t) is a yes-instance of st-CONN.

²⁰See Appendix G.1 for basic graph theoretic terminology. We note that, here (and in the sequel), s stands for start and t stands for terminate. ²¹Thus, the actual input x only affects the set of edges of G_x (whereas the set of vertices is only

²¹Thus, the actual input x only affects the set of edges of G_x (whereas the set of vertices is only affected by |x|). A related construction is obtained by incorporating in the configuration also the (single) bit of x that resides in the machine's location on the input. In the latter case, x itself affects V_x (but not E_x , except for $E_x \subseteq V_x \times V_x$).

Reflection: We believe that the proof of Theorem 5.11 (see also Exercise 5.21) justifies saying that st-CONN captures the essence of non-deterministic space-bounded computations. Note that this (intuitive and informal) statement goes beyond saying that st-CONN is \mathcal{NL} -complete under log-space reductions.

We note the discrepancy between the space-complexity of undirected connectivity (see Theorem 5.6 and Exercise 5.15) and directed connectivity (see Theorem 5.11 and Exercise 5.23). In this context it is worthwhile to note that determining the existence of relatively short paths (rather than arbitrary paths) in undirected (or directed) graphs is also \mathcal{NL} -complete under log-space reductions; see Exercise 5.24.

On the search version of stCONN: We mention that the search problem corresponding to st-CONN is log-space reducible to \mathcal{NL} (by a Cook-reduction); see Exercise 5.20. Also note that accepting computations of any log-space non-deterministic machine can be found by finding directed paths in directed graphs; indeed, this is a simple demonstration of the thesis that st-CONN captures non-deterministic log-space computations.

5.3.2.2 Relating NSPACE to DSPACE

Recall that in the context of time-complexity, the only known conversion of nondeterministic computation to deterministic computation comes at the cost of an exponential blow-up in the complexity. In contrast, space-complexity allows such a conversion at the cost of a polynomial blow-up in the complexity.

Theorem 5.12 (Non-deterministic versus deterministic space): For any spaceconstructible $s : \mathbb{N} \to \mathbb{N}$ that is at least logarithmic, it holds that $\text{NSPACE}(s) \subseteq \text{DSPACE}(O(s^2))$.

In particular, non-deterministic polynomial-space is contained in deterministic polynomialspace (and non-deterministic poly-logarithmic space is contained in deterministic poly-logarithmic space).

Proof Sketch: We focus on the special case of \mathcal{NL} and the argument extends easily to the general case. Alternatively, the general statement can be derived from the special case by using a suitable upwards-translation lemma (see, e.g., [119, Sec. 12.5]). The special case boils down to presenting an algorithm for deciding directed connectivity that has log-square space-complexity.

The basic idea is that checking whether or not there is a path of length at most 2ℓ from u to v in G, reduces (in log-space) to checking whether there is an intermediate vertex w such that there is a path of length at most ℓ from u to w and a path of length at most ℓ from w to v. That is, let $\phi_G(u, v, \ell) \stackrel{\text{def}}{=} 1$ if there is a path of length at most ℓ from u to v in G, and $\phi_G(u, v, \ell) \stackrel{\text{def}}{=} 0$ otherwise. Then $\phi_G(u, v, 2\ell)$ can be computed by scanning all vertices w in G, and checking for each w whether both $\phi_G(u, w, \ell) = 1$ and $\phi_G(w, v, \ell) = 1$ hold.²² Hence, we can compute

²²Similarly, $\phi_G(u, v, 2\ell + 1)$ can be computed by scanning all vertices w in G, and checking for each w whether both $\phi_G(u, w, \ell + 1) = 1$ and $\phi_G(w, v, \ell) = 1$ hold.

 $\phi_G(u, v, 2\ell)$ by a log-space algorithm that makes oracle calls to $\phi_G(\cdot, \cdot, \ell)$, which in turn can be computed recursively in the same manner. Note that the original computational problem (i.e., st-CONN) can be cast as computing $\phi_G(s, t, |V|)$ (or $\phi_G(s, t, 2^{\lceil \log_2 |V| \rceil})$) for a given directed graph G = (V, E) and a given pair of vertices (s, t). Thus, the foregoing recursive procedure yields the theorem's claim, provided that we use adequate composition results. We take a technically different approach by directly analyzing the recursive procedure at hand.

Recall that given a directed graph G = (V, E) and a pair of vertices (s, t), we should merely compute $\phi_G(s, t, 2^{\lceil \log_2 |V| \rceil})$. This is done by invoking a recursive procedure that computes $\phi_G(u, v, 2\ell)$ by scanning all vertices in G, and computing for each vertex w the values of $\phi_G(u, w, \ell)$ and $\phi_G(w, v, \ell)$. The punch-line is that all these computations may re-use the same space, while we need only store one additional bit representing the results of all prior computations. We return the value 1 if and only if for some w it holds that $\phi_G(u, w, \ell) = \phi_G(w, v, \ell) = 1$ (see Figure 5.2). Needless to say, $\phi_G(u, v, 1)$ can be decided easily in logarithmic space.

Recursive computation of $\phi_G(u, v, 2\ell)$, for $\ell \ge 1$.	
For $w = 1,, V $ do begin	(storing the vertex name)
Compute $\sigma \leftarrow \phi_G(u, w, \ell)$	(by a recursive call)
Compute $\sigma \leftarrow \sigma \land \phi_G(w, v, \ell)$	(by a second recursive call)
If $\sigma = 1$ then return 1.	(success: an intermediate vertex was found)
End	$(of \ scan).$
return 0. (reached of	only if the scan was completed without success).

Figure 5.2: The recursive procedure in $\mathcal{NL} \subseteq \text{DSPACE}(O(\log^2))$.

We consider an implementation of the foregoing procedure (of Figure 5.2) in which each level of the recursion uses a designated portion of the entire storage for maintaining the local variables (i.e., w and σ). The amount of space taken by each level of the recursion is essentially $\log_2 |V|$ (for storing the current value of w), and the number of levels is $\log_2 |V|$. We stress that when computing $\phi_G(u, v, 2\ell)$, we make many recursive calls, but all these calls re-use the same work space (i.e., the portion that is designated to that level). That is, when we compute $\phi_G(u, w, \ell)$ we re-use the same space when we compute $\phi_G(w, v, \ell)$ for the previous w', and we re-use the same space when we compute $\phi_G(w, v, \ell)$. Thus, the space-complexity of our algorithm is merely the sum of the amount of space used by all recursion levels. It follows that st-CONN has log-square (deterministic) space-complexity, and the same follows for all of \mathcal{NL} (either by noting that st-CONN actually represents any \mathcal{NL} computation or by using the log-space reductions of \mathcal{NL} to st-CONN).

Digest. The proof of Theorem 5.12 relies on two main observations. The first observation is that a conjunction (resp., disjunction) of two Boolean conditions

can be verified using space s + O(1), where s is the space complexity of verifying a single condition. This follows by applying naive composition (i.e., Lemma 5.1). Actually, the second observation is merely a generalization of the first observation: It asserts that an existential claim (resp., a universally quantified claim) can be verifying by scanning all possible values in the relevant domain (and testing the claim for each value), which in terms of space-complexity has an additive cost that is logarithmic in the size of the domain.

The proof of Theorem 5.12 is facilitated by the fact that we may consider a concrete and simple computational problem such as st-CONN. Nevertheless, the same ideas can be applied directly to \mathcal{NL} (or any NSPACE class).

Placing NL in NC2. The simple formulation of st-CONN facilitates placing \mathcal{NL} in complexity classes such as \mathcal{NC}^2 (i.e., decidability by uniform families of circuits of log-square depth and bounded fan-in). All that is needed is observing that st-CONN can be solved by raising the adequate matrix (i.e., the adjacency matrix of the graph augmented with 1-entries on the diagonal) to the adequate power (i.e., its dimension). Squaring a matrix can be done by a uniform family circuits of logarithmic depth and bounded fan-in (i.e., in NC1), and by repeated squaring the n^{th} power of an *n*-by-*n* matrix can be computed by a uniform family of bounded fan-in circuits of polynomial size and depth $O(\log^2 n)$; thus, st-CONN $\in \mathcal{NC}^2$. Indeed, $\mathcal{NL} \subseteq \mathcal{NC}^2$ follows by noting that st-CONN actually represents any \mathcal{NL} computation (or by noting that any log-space reduction can be computed by a uniform family of logarithmic depth and bounded fan-in circuits).

5.3.2.3 Complementation or NL=coNL

Recall that (reasonable) non-deterministic time-complexity classes are not known to be closed under complementation. Furthermore, it is widely believed that $\mathcal{NP} \neq co\mathcal{NP}$. In contrast, (reasonable) non-deterministic space-complexity classes are closed under complementation, as captured by the result $\mathcal{NL} = co\mathcal{NL}$, where $co\mathcal{NL} \stackrel{\text{def}}{=} \{\{0,1\}^* \setminus S : S \in \mathcal{NL}\}.$

Before proving that $\mathcal{NL} = \mathrm{co}\mathcal{NL}$, we note that proving this result is equivalent to presenting a log-space Karp-reduction of st-CONN to its complement (or, equivalently, a reduction in the opposite direction, see Exercise 5.26). Our proof utilizes a different perspective on the NL-vs-coNL question, by rephrasing this question as referring to the relation between \mathcal{NL} and $\mathcal{NL} \cap \mathrm{co}\mathcal{NL}$ (see Exercise 2.37), and by offering an "operational interpretation" of the class $\mathcal{NL} \cap \mathrm{co}\mathcal{NL}$.

Recall that a set S is in \mathcal{NL} if there exists a non-deterministic log-space machine M that accepts S, and that the acceptance condition of non-deterministic machines is asymmetric in nature. That is, $x \in S$ implies the *existence* of an accepting computation of M on input x, whereas $x \notin S$ implies that all computations of M on input x are non-accepting. Thus, the existence of a accepting computation of M on input x is an absolute indication for $x \in S$, but the existence of a rejecting computation of M on input x is not an absolute indication for $x \notin S$. In contrast, for $S \in \mathcal{NL} \cap co\mathcal{NL}$, there exist absolute indications both for $x \in S$ and for $x \notin S$

(or, equivalently for $x \in \overline{S} \stackrel{\text{def}}{=} \{0, 1\}^* \setminus S$), where each of the two types of indication is provided by a different non-deterministic machine (i.e., either the one accepting S or the one accepting \overline{S}). Combining both machines, we obtain a single nondeterministic machine that, for every input, sometimes outputs the correct answer and always outputs either the correct answer or a special ("don't know") symbol. This yields the following definition, which refers to Boolean functions as a special case.

Definition 5.13 (non-deterministic computation of functions): We say that a non-deterministic machine M computes the function $f : \{0,1\}^* \to \{0,1\}^*$ if for every $x \in \{0,1\}^*$ the following two conditions hold.

- 1. Every computation of M on input x yields an output in $\{f(x), \bot\}$, where $\bot \notin \{0, 1\}^*$ is a special symbol (indicating "don't know").
- 2. There exists a computation of M on input x that yields the output f(x).

Note that $S \in \mathcal{NL} \cap \operatorname{co}\mathcal{NL}$ if and only if there exists a non-deterministic log-space machine that computes the characteristic function of S (see Exercise 5.25). Recall that the characteristic function of S, denoted χ_S , is the Boolean function satisfying $\chi_S(x) = 1$ if $x \in S$ and $\chi_S(x) = 0$ otherwise. It follows that $\mathcal{NL} = \operatorname{co}\mathcal{NL}$ if and only if for every $S \in \mathcal{NL}$ there exists a non-deterministic log-space machine that computes χ_S .

Theorem 5.14 ($\mathcal{NL} = \operatorname{co}\mathcal{NL}$): For every $S \in \mathcal{NL}$ there exists a non-deterministic log-space machine that computes χ_S .

As in the case of Theorem 5.12, the result extends to any space-constructible $s : \mathbb{N} \to \mathbb{N}$ that is at least logarithmic; that is, for such s and every $S \in \text{NSPACE}(s)$, it holds that $\{0,1\}^* \setminus S \in \text{NSPACE}(O(s))$. This extension can be proved either by generalizing the following proof or by using an adequate upwards-translation lemma.

Proof Sketch: As in the proof of Theorem 5.12, it suffices to present a nondeterministic (on-line) log-space machine that computes the characteristic function of st-CONN, denoted χ (i.e., $\chi(G, s, t) = 1$ if there is a directed path from s to t in G and $\chi(G, s, t) = 0$ otherwise).

We first show that the computation of χ is log-space reducible to determining the number of vertices that are reachable (via a directed path) from a given vertex in a given graph. On input (G, s, t), the reduction computes the number of vertices that are reachable from s in the graph G and compares this number to the number of vertices reachable from s in the graph G' obtained by omitting t from G. Clearly, these two numbers are different if and only if vertex t is reachable from vertex v (in the graph G). An alternative reduction that uses a single query is presented in Exercise 5.28. Combining either of these reductions with a non-deterministic logspace machine that computes the number of reachable vertices, we obtain a nondeterministic log-space machine that computes χ . This can be shown by relying either on the non-adaptivity of these reductions or on the fact that the solutions for the target problem have logarithmic length; see Exercise 5.29. Thus, we focus on providing a non-deterministic log-space machine for computing the number of vertices that are reachable from a given vertex in a given graph.

Fixing an *n*-vertex graph G = (V, E) and a vertex v, we consider the set of vertices that are reachable from v by a path of length at most i. We denote this set by R_i , and observe that $R_0 = \{v\}$ and that for every i = 1, 2, ..., it holds that

$$R_{i} = R_{i-1} \cup \{ u : \exists w \in R_{i-1} \text{ s.t. } (w, u) \in E \}$$
(5.1)

Our aim is to (non-deterministically) compute $|R_n|$ in log-space. This will be done in *n* iterations such that at the *i*th iteration we compute $|R_i|$. When computing $|R_i|$ we rely on the fact that $|R_{i-1}|$ is known to us, which means that we shall store $|R_{i-1}|$ in memory. We stress that we discard $|R_{i-1}|$ from memory as soon as we complete the computation of $|R_i|$, which we store instead. Thus, at each iteration *i*, our record of past iterations only contains $|R_{i-1}|$.

Computing $|R_i|$. Given $|R_{i-1}|$, we non-deterministically compute $|R_i|$ by making a guess (for $|R_i|$), denoted g, and verifying its correctness as follows:

1. We verify that $|R_i| \ge g$ in a straightforward manner. That is, scanning V in some canonical order, we verify for g vertices that they are each in R_i . That is, during the scan, we select non-deterministically g vertices, and for each selected vertex w we verify that w is reachable from v by a path of length at most i, where this verification is performed by just guessing and verifying an adequate path (see Exercise 5.19).

We use $\log_2 n$ bits to store the number of vertices that were already verified to be in R_i , another $\log_2 n$ bits to store the currently scanned vertex (i.e., w), and another $O(\log n)$ bits for implementing the verification of the existence of a path of length at most *i* from *v* to *w*.

2. The verification of the condition $|R_i| \leq g$ (equivalently, $|V \setminus R_i| \geq n-g$) is the interesting part of the procedure. Indeed, as we saw, demonstrating membership in R_i is easy, but here we wish to demonstrate non-membership in R_i . We do so by relying on the fact that we know $|R_{i-1}|$, which allows for a non-deterministic enumeration of R_{i-1} itself, which in turn allows for proofs of non-membership in R_i (via the use of Eq. (5.1)). Details follows (and an even more structured description is provided in Figure 5.3).

Scanning V (again), we verify for n-g (guessed) vertices that they are *not* in R_i (i.e., are *not* reachable from v by paths of length at most i). By Eq. (5.1), verifying that $u \notin R_i$ amounts to proving that for every $w \in R_{i-1}$, it holds that $u \neq w$ and $(w, u) \notin E$. As hinted, the knowledge of $|R_{i-1}|$ allows for the enumeration of R_{i-1} , and thus we merely check the aforementioned condition on each vertex in R_{i-1} . Thus, verifying that $u \notin R_i$ is done as follows.

(a) We scan V guessing $|R_{i-1}|$ vertices that are in R_{i-1} , and verify each such guess in the straightforward manner (i.e., as in Step 1).²³

 $^{^{23}}$ Note that implicit in Step 2a is a non-deterministic procedure that computes the mapping

(b) For each $w \in R_{i-1}$ that was guessed and verified in Step 2a, we verify that both $u \neq w$ and $(w, u) \notin E$.

By Eq. (5.1), if u passes the foregoing verification then indeed $u \notin R_i$.

We use $\log_2 n$ bits to store the number of vertices that were already verified to be in $V \setminus R_i$, another $\log_2 n$ bits to store the current vertex u, another $\log_2 n$ bits to count the number of vertices that are currently verified to be in R_{i-1} , another $\log_2 n$ bits to store such a vertex w, and another $O(\log n)$ bits for verifying that $w \in R_{i-1}$ (as in Step 1).

If any of the foregoing verifications fails, then the procedure halts outputting the "don't know" symbol \perp . Otherwise, it outputs g.

Given $ R_{i-1} $ and a guess g , the claim	$g \ge R_i $ is verified as follows.
Set $c \leftarrow 0$.	(initializing the main counter)
For $u = 1,, n$ do begin	(the main scan)
Guess whether or not $u \in R_i$.	
For a negative guess (i.e., $u \notin R_i$), do begin	
(Verify that $u \notin R_i$ via Eq. (5.1).)	
Set $c' \leftarrow 0$.	(initializing a secondary counter)
For $w = 1,, n$ do begin	(the secondary scan)
Guess whether or not $w \in$	R_{i-1} .
For a positive guess (i.e., u	$v \in R_{i-1}$), do begin
Verify that $w \in R_{i-1}$ (a	as in Step 1).
Verify that $u \neq w$ and	$(w,u) \not\in E.$
If some verification faile	ed
then halt with $output$ _	\bot otherwise increment c' .
End (of handling a positive	$e guess for w \in R_{i-1}$).
End (of secondary scan).	$(c' vertices in R_{i-1} were checked)$
If $c' < R_{i-1} $ then halt with our	ıtput ⊥.
Otherwise $(c' = R_{i-1})$, increm	nent c. (u verified to be outside of R_i)
End (of handling a negative guess	for $u \notin R_i$).
End (of main scan).	(c vertices were shown outside of R_i)
If $c < n - g$ then halt with output \perp .	
Otherwise $g \ge R_i $ is verified (since n	$- R_i \ge c \ge n-g).$

Figure 5.3: The main step in proving $\mathcal{NL} = co\mathcal{NL}$.

Clearly, the foregoing non-deterministic procedure uses a logarithmic amount of space. It can be verified that, when given the correct value of $|R_{i-1}|$, this procedure non-deterministically computes the value of $|R_i|$. That is, if all verifications are

 $⁽G, v, i, |R_{i-1}|) \rightarrow R_{i-1}$, where R_{i-1} denotes the set of vertices that are reachable in G by a path of length at most i from v.

satisfied then it must hold that $g = |R_i|$, and if $g = |R_i|$ then there exist adequate non-deterministic choices that satisfy all verifications.

Recall that R_n is computed iteratively, starting with $|R_0| = 1$, and computing $|R_i|$ based on $|R_{i-1}|$. Each iteration i = 1, ..., n is non-deterministic, and is either completed with the correct value of $|R_i|$ (at which point $|R_{i-1}|$ is discarded) or halts in failure (in which case we halt the entire process and output \perp). This yields a non-deterministic log-space machine for computing $|R_n|$, and the theorem follows. \square

Digest. Step 2 is the heart of the proof (of Theorem 5.14). In this step a non-deterministic procedure is used to verify non-membership in an NL-type set. Indeed, verifying membership in NL-type sets is the archetypical task of non-deterministic procedures (i.e., they are defined so to fit these tasks), and thus Step 1 is straightforward. In contrast, non-deterministic verification of non-membership is not a common phenomenon, and thus Step 2 is not straightforward at all. Nevertheless, in the current context (of Step 2), the verification of non-membership is performed by an iterative (non-deterministic) process that consumes an admissible amount of resources (i.e., a logarithmic amount of space).

5.3.3 A retrospective discussion

The current section may be viewed as a study of the "power of non-determinism in computation" (which is a somewhat contradictory term). Recall that we view non-deterministic processes as fictitious abstractions aimed at capturing fundamental phenomena such as the verification of proofs (cf., Section 2.1.4). Since these fictitious abstractions are fundamental in the context of time-complexity, we may hope to gain some understanding by a comparative study; specifically, a study of non-deterministic in the context of space-complexity. Furthermore, we may discover that non-deterministic space-bounded machines give rise to interesting computational phenomena.

The aforementioned hopes seems to come true in the current section. For example, the fact that $\mathcal{NL} = co\mathcal{NL}$, while the common conjecture is that $\mathcal{NP} \neq co\mathcal{NP}$, indicates that the latter conjecture is *less generic than sometimes stated*. It is not that an existential quantifier cannot be "feasibly replaced" by a universal quantifier, but it is rather the case that the feasibility of such a replacement depends very much on the specific notion of feasibility used. Turning to the other type of benefits, we learned that st-CONN can be Karp-reduced in log-space to st-unCONN (i.e., the set of graphs in which there is no directed path between the two designated vertices; see Exercise 5.26).

Still, one may ask what does the class \mathcal{NL} actually represent (beyond st-CONN, which seems actually more than merely a complete problem for this class; see §5.3.2.1). Turning back to Section 5.3.1, we recall that the class NSPACE_{off-line} captures the straightforward notion of space-bounded verification. In this model (called the off-line model), the alleged proof is written on a special device (similarly to the assertion being established by it), and this device is being read freely. In

contrast, underlying the alternative class $NSPACE_{on-line}$ is a notion of proofs that are verified by reading them sequentially (rather than scanning them back and forth). In this case, if the verification procedure may need to re-examine the currently read part of the proof (in the future), then it must store the relevant part (and be charged for this storage). Thus, the on-line model underlying $NSPACE_{on-line}$ refers to the standard process of reading proofs in a sequential manner and taking notes for future verification, rather than repeatedly scanning the proof back and forth. The on-line model reflects the true space-complexity of taking such notes and hence of sequential verification of proofs. Indeed (as stated in Section 5.3.1), our feeling is that the off-line model allows for an unfair accounting of temporary space as well as for unintendedly long proofs.

5.4 **PSPACE** and Games

As stated in Section 5.2, we rarely encounter computational problems that require less than logarithmic space. On the other hand, we will rarely treat computational problems that require more than polynomial space. The class of decision problems that are solvable in polynomial-space is denoted $\mathcal{PSPACE} \stackrel{\text{def}}{=} \cup_c \text{DSPACE}(p_c)$, where $p_c(n) = n^c$.

To get a sense of the power of \mathcal{PSPACE} , we observe that $\mathcal{PH} \subseteq \mathcal{PSPACE}$; for example, a polynomial-space algorithm can easily verify the quantified condition underlying Definition 3.8. In fact, such an algorithm can handle an unbounded number of alternating quantifiers (see the following Theorem 5.15). On the other hand, by Theorem 5.3, $\mathcal{PSPACE} \subseteq \mathcal{EXP}$, where $\mathcal{EXP} = \bigcup_c \text{DTIME}(2^{p_c})$ for $p_c(n) = n^c$.

The class \mathcal{PSPACE} can be interpreted as capturing the complexity of determining the winner in certain *efficient two-party game*; specifically, the very games considered in Section 3.2.1 (modulo Footnote 5 there). Recall that we refer to two-party games that satisfy the following three conditions:

- 1. The parties alternate in taking moves that effect the game's (global) position, where each move has a description length that is bounded by a polynomial in the length of the *initial* position.
- 2. The current position is updated based on the previous position and the current party's move. This updating can be performed in time that is polynomial in the length of the *initial* position. (Equivalently, we may require a polynomial-time updating procedure and postulate that the length of the current position be bounded by a polynomial in the length of the *initial* position.)
- 3. The winner in each position can be determined in polynomial-time.

Recall that, for every fixed k, we showed (in Section 3.2.1) a correspondence between Σ_k and the problem of determining the existence of a k-move winning strategy (for the first party) in games of the foregoing type. The same correspondence exists between \mathcal{PSPACE} and the problem of determining the existence of a winning strategy with polynomially many moves (in games of the foregoing type). That is, on the one hand, the set of initial positions x for which the first party has a poly(x|)-move winning strategy with respect to the foregoing game is in \mathcal{PSPACE} . On the other hand, by the following Theorem 5.15, every set in \mathcal{PSPACE} can be viewed as the set of initial positions (in a suitable game) for which the first party has a winning strategy consisting of a polynomial number of moves. Actually, the correspondence is between determining the existence of such winning strategies and deciding the satisfiability of quantified Boolean formulae (QBF); see Exercise 5.30.

QBF and **PSPACE.** A quantified Boolean formula is a Boolean formula (as in SAT) augmented with quantifiers that refer to each variable appearing in the formula. (Note that, unlike in Exercise 3.7, we make no restrictions regarding the number of alternations between existential and universal quantifiers. For further discussion, see Appendix G.2.) As noted before, deciding the satisfiability of quantified Boolean formulae (QBF) in in \mathcal{PSPACE} . We next show that every problem in \mathcal{PSPACE} is Karp-reducible to QBF.

Theorem 5.15 QBF is complete for PSPACE under polynomial-time many-to-one reductions.

Proof: As note before, QBF is solvable by a polynomial-space algorithm that just evaluates the quantified formula. Specifically, consider a recursive procedure that eliminates a Boolean quantifier by evaluating the value of the two residual formulae, and note that the space used in the first (recursive) evaluation can be re-used in the second evaluation. (Alternatively, consider a DFS-type procedure as in Section 5.1.4.) Note that the space used is linear in the depth of the recursion, which in turn is linear in the length of the input formula.

We now turn to show that any set $S \in \mathcal{PSPACE}$ is many-to-one reducible to QBF. The proof is similar to the proof of Theorem 5.12 (which establishes $\mathcal{NL} \subseteq$ DSPACE(log²)), except that here we work with an implicit graph (see Exercise 5.21, rather than with an explicitly given graph). Specifically, we refer to the directed graph of instantaneous configurations (of the algorithm A deciding membership in S), where here we use a different notion of a configuration that *includes also* the entire input. That is, in the rest of this proof, a configuration consists of the contents of all storage devices of the algorithm (including the input device) as well as the location of the algorithm on each device. Thus, on input x (to the reduction), we shall consider the directed graph $G = G_{x,A} = (V_x, E_A)$, where V_x represents all possible configurations with input x and E_A represents the transition function of algorithm A (i.e., the effect of a single computation step of A).

As in the proof of Theorem 5.12, for a graph G, we defined $\phi_G(u, v, \ell) = 1$ if there is a path of length at most ℓ from u to v in G (and $\phi_G(u, v, \ell) = 0$ otherwise). We need to determine $\phi_G(s, t, 2^m)$ for s that encodes the initial configuration of A(x) and t that encodes the canonical accepting configuration, where G depends on the algorithm A and m = poly(|x|) is such that A(x) uses at most m space and runs for at most 2^m steps. By the specific definition of a configuration (which
5.4. PSPACE AND GAMES

contains all relevant information including the input x), the value of $\phi_G(u, v, 1)$ can be determined easily based solely on the fixed algorithm A (i.e., either u = v or v is a configuration following u). Recall that $\phi_G(u, v, 2\ell) = 1$ if and only if there exists a configuration w such that both $\phi_G(u, w, \ell) = 1$ and $\phi_G(w, v, \ell) = 1$ hold. Thus, we obtain the recursion

$$\phi_G(u, v, 2\ell) = \exists w \in \{0, 1\}^m \phi_G(u, w, \ell) \land \phi_G(w, v, \ell),$$
(5.2)

where the bottom of the recursion (i.e., $\phi_G(u, v, 1)$) is a simple propositional formula (see the foregoing comment). The problem with Eq. (5.2) is that the expression for $\phi_G(\cdot, \cdot, 2\ell)$ involves two occurrences of $\phi_G(\cdot, \cdot, \ell)$, which doubles the length of the recursively constructed formula (yielding an exponential blow-up).

Our aim is to express $\phi_G(\cdot, \cdot, 2\ell)$ while using $\phi_G(\cdot, \cdot, \ell)$ only once. This extra restriction, which prevents an exponential blow-up, corresponds to the *re-using* of space in the two evaluations of $\phi_G(\cdot, \cdot, \ell)$ that take place in the computation of $\phi_G(u, v, 2\ell)$. The main idea is replacing the condition $\phi_G(u, w, \ell) \wedge \phi_G(w, v, \ell)$ by the condition " $\forall (u'v') \in \{(u, w), (w, v)\} \phi_G(u', v', \ell)$ " (where we quantify over a two-element set that is not the Boolean set $\{0, 1\}$). Next, we reformulate the nonstandard quantifier (which ranges over a specific pair of strings) by using additional quantifiers as well as some simple Boolean conditions. That is, the non-standard quantifier $\forall (u'v') \in \{(u, w), (w, v)\}$ is replaced by the standard quantifiers $\forall \sigma \in$ $\{0, 1\} \exists u', v' \in \{0, 1\}^m$ and the auxiliary condition

$$[(\sigma = 0) \Rightarrow (u' = u \land v' = w)] \land [(\sigma = 1) \Rightarrow (u' = w \land v' = v)].$$
(5.3)

Thus, $\phi_G(u, v, 2\ell)$ holds if and only if there exist w such that for every σ there exists (u', v') such that both Eq. (5.3) and $\phi_G(u', v', \ell)$ hold. Note that the length of this expression for $\phi_G(\cdot, \cdot, 2\ell)$ equals the length of $\phi_G(\cdot, \cdot, \ell)$ plus an additive overhead term of O(m). Thus, using a recursive construction, the length of the formula grows only linearly in the number of recursion steps.

The reduction itself maps an instance x (of S) to the quantified Boolean formula $\Phi(s_x, t, 2^m)$, where s_x denotes the initial configuration of A(x), (t and m = poly(|x|) are as in the foregoing discussion), and Φ is recursively defined as follows

$$\Phi(u, v, 2\ell) \stackrel{\text{def}}{=} \begin{array}{c} \exists w \in \{0, 1\}^m \, \forall \sigma \in \{0, 1\} \exists u', v' \in \{0, 1\}^m \\ [(\sigma = 0) \Rightarrow (u' = u \wedge v' = w)] \\ \wedge [(\sigma = 1) \Rightarrow (u' = w \wedge v' = v)] \\ \wedge \Phi(u', v', \ell) \end{array}$$
(5.4)

with $\Phi(u, v, 1) = 1$ if and only if either u = v or there is an edge from u to v. Note that $\Phi(u, v, 1)$ is a (fixed) propositional formula with Boolean variables representing the bits of the variables u and v such that $\Phi(u, v, 1)$ is satisfies if and only if either u = v or v is a configuration that follows the configuration u in a computation of A. On the other hand, note that $\Phi(s_x, t, 2^m)$ is a quantified formula in which s_x, t and m are fixed and the quantified variables are not shown in the notation.

We stress that the mapping of x to $\Phi(s_x, t, 2^m)$ can be computed in polynomialtime. Firstly, note that the propositional formula $\Phi(u, v, 1)$, having Boolean variables representing the bits of u and v, expresses extremely simple conditions and can certainly be constructed in polynomial-time (i.e., polynomial in the number of Boolean variables, which in turn equals 2m). Next note that, given $\Phi(u, v, \ell)$, which (for $\ell > 1$) contains quantified variables that are not shown in the notation, we can construct $\Phi(u, v, 2\ell)$ by merely replacing variables names and adding quantifiers and Boolean conditions as in the recursive definition of Eq. (5.4). This is certainly doable in polynomial-time. Lastly, note that the construction of $\Phi(s_x, t, 2^m)$ depends mainly on the length of x, where x itself only affects s_x (and does so in a trivial manner). Recalling that m = poly(|x|), it follows that everything is computable in time polynomial in |x|. Thus, given x, the formula $\Phi(s_x, t, 2^m)$ can be constructed in polynomial-time.

Finally, note that $x \in S$ if and only if the formula $\Phi(s_x, t, 2^m)$ is satisfiable. The theorem follows.

Other \mathcal{PSPACE} -complete problems. As stated in the beginning of this section, there is a close relationship between \mathcal{PSPACE} and determining winning strategies in various games. This relationship was established by considering the generic game that corresponds to the satisfiability of general QBF (see Exercise 5.30). The connection between \mathcal{PSPACE} and determining winning strategies is games is closer than indicated by this generic game: Determining winning strategies in several (generalizations of) natural games is also \mathcal{PSPACE} -complete (see [200, Sec. 8.3]). This further justifies the title of the current section.

Chapter Notes

The material presented in the current chapter is based on a mix of "classical" results (proven in the 1970's if not earlier) and "modern" results (proven in the late 1980's and even later). We wish to emphasize the time gap between the formulation of some questions and their resolution. Details follow.

We first mention the "classical" results. These include the \mathcal{NL} -completeness of st-CONN, the emulation of non-deterministic space-bounded machines by deterministic space-bounded machines (i.e., Theorem 5.12 due to Savitch [190]), the \mathcal{PSPACE} -completeness of QBF, and the connections between circuit depth and space complexity (see Section 5.1.4 and Exercise 5.12 due to Borodin [45]).

Before turning to the "modern" results, we mention that some researchers tend to be discouraged by the impression that "decades of research have failed to answer any of the famous open problems of complexity theory." In our opinion this impression is fundamentally mistaken. Specifically, in addition to the fact that substantial progress towards the understanding of many fundamental issues has been achieved, these researchers tend to forget that some famous open problems were actually resolved. Two such examples were presented in this chapter.

The question of whether $\mathcal{NL} = co\mathcal{NL}$ was a famous open problem for almost two decades. Furthermore, this question is related to an even older open problem dating to the early days of research in the area of formal languages (i.e., to

the 1950's).²⁴ This open problem was resolved in 1988 by Immerman [121] and Szelepcsenyi [211], who (independently) proved Theorem 5.14 (i.e., $\mathcal{NL} = co\mathcal{NL}$).

For more than two decades, undirected connectivity (UCONN) was one of the most appealing examples of the computational power of randomness. Recall that the classical linear-time (deterministic) algorithms (e.g., BFS and DFS) require an extensive use of temporary storage (i.e., linear in the size of the graph). On the other hand, it was known (since 1979, see $\S6.1.4.2$) that, with high probability, a random walk of polynomial length visits all vertices (in the corresponding connected component). Thus, the resulting randomized algorithm for UCONN uses a minimal amount of temporary storage (i.e., logarithmic in the size of the graph). In the early 1990's, this algorithm (as well as the entire class \mathcal{BPL} (see Definition 6.11)) was derandomized in polynomial-time and poly-logarithmic space (see Theorem 8.23), but despite more than a decade of research attempts, a significant gap remained between the space complexity of randomized and deterministic polynomial-time algorithms for this natural and ubiquitous problem. This gap was closed by Reingold [183], who established Theorem 5.6 in 2004.²⁵ Our presentation (in Section 5.2.4) follows Reingold's ideas, but the specific formulation in §5.2.4.2 does not appear in [183].

Exercises

Exercise 5.1 (scanning the input-tape beyond the input) Let A be an arbitrary algorithm of space-complexity s. Show that there exists a functionally equivalent algorithm A' that has space-complexity $s'(n) = O(s(n) + \log n)$ and does not scan the input-tape beyond the boundaries of the input.

Guideline: Prove that on input x, algorithm A does not scan the input-tape beyond distance $2^{O(s(|x|))}$ from the input. (Extra hint: Consider instantaneous configurations of A(x) that refer to the case that A reads a generic location on the input-tape that is not part of the input.)

Exercise 5.2 (rewriting on the write-only output-tape) Let A be an arbitrary algorithm of space complexity s. Show that there exists a functionally equivalent algorithm A' that never rewrites on (the same location of) its output-device and has space complexity s' such that $s'(n) = s(n) + O(\log \ell(n))$, where $\ell(n) = \max_{x \in \{0,1\}^n} |A(x)|$.

Guideline: Algorithm A' proceeds in iterations, where in the i^{th} iteration it outputs the i^{th} bit of A(x) by emulating the computation of A on input x. The i^{th} emulation of A avoids printing A(x), but rather keeps a records of the i^{th} location of A(x)'s output-tape (and terminates by outputting the final value of this bit). Indeed, this emulation requires

 $^{^{24}}$ Specifically, the class of sets recognized by linear-space non-deterministic machines equals the class of context-sensitive languages (see, e.g., [119, Sec. 9.3]), and thus Theorem 5.14 resolves the question of whether the latter class is closed under complementation.

 $^{^{25}}$ We mention that an almost-logarithmic space algorithm was discovered independently and concurrently by Trifonov [215], using a very different approach.

maintaining the current value of i as well as the current location of the emulated machine (i.e., A) on its output-tape.

Exercise 5.3 (on the power of double-logarithmic space) For any $k \in \mathbb{N}$, let w_k denote the concatenation of all k-bit long strings (in lexicographic order) separated by *'s (i.e., $w_k = 0^{k-2}00 * 0^{k-2}01 * 0^{k-2}10 * 0^{k-2}11 * \cdots * 1^k$). Show that the set $S \stackrel{\text{def}}{=} \{w_k : k \in \mathbb{N}\} \subset \{0, 1, *\}$ is not regular and yet is decidable in double-logarithmic space.

Guideline: The non-regularity of S can be shown using standard techniques. Towards developing an algorithm, note that $|w_k| > 2^k$, and thus $O(\log k) = O(\log \log |w_k|)$. Membership of x in S is determined by iteratively checking whether $x = w_i$, for i = 1, 2, ..., while stopping when detecting an obvious case (i.e., either verifying that $x = w_i$ or detecting evidence that $x \neq w_k$ for every $k \ge i$). By taking advantage of the *'s (in w_i), the i^{th} iteration can be implemented in space $O(\log i)$. Furthermore, on input $x \notin S$, we halt and reject after at most $\log |x|$ iterations. Actually, it is slightly simpler to handle the related set $\{w_1 * *w_2 * * \cdots * *w_k : k \in \mathbb{N}\}$; moreover, in this case the *'s can be omitted from the w_i 's (as well as from between them).

Exercise 5.4 (on the weakness of less than double-logarithmic space) Prove that for $\ell(n) = \log \log n$, it holds that $\text{DSPACE}(o(\ell)) = \text{DSPACE}(O(1))$.

Guideline: Let s denote the machine's (binary) space complexity. Show that if s is unbounded then it must hold that $s(n) = \Omega(\log \log n)$ infinitely often. Specifically, for every integer m, consider a shortest string x such that on input x the machine uses space at least m. Consider, for each location on the input, the sequence of the residual configurations of the machine (i.e., the contents of its temporary storage)²⁶ such that the i^{th} element in the sequence represents the residual configuration of the machine at the i^{th} time that the machine crosses (or rather passes through) this input location. For starters, note that the length of this "crossing sequence" is upper-bounded by the number of possible residual configurations, which is at most $t \stackrel{\text{def}}{=} 2^{s(|x|)} \cdot s(|x|)$. Thus, the number of such crossing sequences is upper-bounded by t^t . Now, if $t^t < |x|/2$ then there exist three input locations that have the same crossing sequence, and two of them hold the same bit value. Contracting the string at these two locations, we get a shorter input on which the machine behaves in exactly the same manner, contradicting the hypothesis that x is the shortest input on which the machine uses space at least m. We conclude that $t^t \geq |x|/2$ must hold, and $s(|x|) = \Omega(\log \log |x|)$ holds for infinitely many x's.

Exercise 5.5 (space-complexity and halting) In continuation to Theorem 5.3, prove that for every algorithm A of (binary) space-complexity s there exists an algorithm A' of space-complexity $s'(n) = O(s(n) + \log n)$ that halts on every input such that for every x on which A halts it holds that A'(x) = A(x).

Guideline: On input x, algorithm A' emulates the execution of A(x) for at most t(|x|)+1 steps, where $t(n) = n \cdot 2^{s(n)+\log_2 s(n)}$.

²⁶Note that, unlike in the proof of Theorem 5.3, the machine's location on the input is not part of the notion of a configuration used here. On the other hand, although not stated explicitly, the configuration also encodes the machine's location on the storage tape.

Exercise 5.6 (some log-space algorithms) Present log-space algorithms for the following computational problems.

1. Addition and multiplication of a given pair of integers.

Guideline: Relying on Lemma 5.2, first transform the input to a more convenient format, then perform the operation, and finally transform the result to the adequate format. For example, when adding $x = \sum_{i=0}^{n-1} x_i 2^i$ and $y = \sum_{i=0}^{n-1} y_i 2^i$, a convenient format is $((x_0, y_0), ..., (x_{n-1}, y_{n-1}))$.

- 2. Deciding whether two given strings are identical.
- 3. Finding occurrences of a given pattern $p \in \{0, 1\}^*$ in a given string $s \in \{0, 1\}^*$.
- 4. Transforming the adjacency matrix representation of a graph to its incidence list representation, and vice versa.
- 5. Deciding whether the input graph is acyclic (i.e., has no simple cycles).

Guideline: Consider a scanning of the graph that proceeds as follows. Upon entering a vertex v via the i^{th} edge incident at it, we exit this vertex using its $i+1^{\text{st}}$ edge if v has degree at least i+1 and exit via the first edge otherwise. Note that when started at any vertex of any tree, this scanning performs a DFS. On the other hand, for every cyclic graph there exists a vertex v and an edge e incident to v such that if this scanning is started by traversing the edge e from v then it returns to v via an edge different from e.

6. Deciding whether the input graph is a tree.

Guideline: Use the fact that a graph G = (V, E) is a tree if and only if it is acyclic and |E| = |V| - 1.

Exercise 5.7 (another composition result) In continuation to the discussion in §5.1.3.3, prove that if Π can be solved in space s_1 when given an (ℓ, ℓ') -restricted oracle access to Π' and Π' is solvable is space s_2 , then Π is solvable in space s such that $s(n) = 2s_1(n) + s_2(\ell(n)) + 2\ell'(n) + \delta(n)$, where $\delta(n) = O(\log(\ell(n) + \ell'(n) + s_1(n) + s_2(\ell(n))))$. In particular, if s_1, s_2 and ℓ' are at most logarithmic, then $s(n) = O(\log n)$, because (by Exercise 5.10) in this case ℓ is at most polynomial.

Guideline: View the oracle-aided computation of Π as consisting of iterations such that in the i^{th} iteration the i^{th} query (denoted q_i) is determined based on the initial input (denoted x), the $i - 1^{\text{st}}$ oracle answer (denoted a_{i-1}), and the contents of the work tape at the time that the $i - 1^{\text{st}}$ answer was given (denoted w_{i-1}). Note that the mapping $(x, a_{i-1}, w_{i-1}) \rightarrow (q_i, w_i)$ can be computed using $s_1(|x|) + \delta(|x|)$ bits of temporary storage, because the oracle machine effects this mapping (when x, a_{i-1} and w_{i-1} reside on different devices). Composing each iteration with the computation of Π' (using a variant of Lemma 5.2), we conclude that the mapping $(x, a_{i-1}, w_{i-1}) \rightarrow (a_i, w_i)$ can be computed (without storing the intermediate q_i) in space $s_1(n) + s_2(\ell(n)) + O(\log(\ell(n) + s_1(n) + s_2(\ell(n))))$). Thus, we can emulate the entire computation using space s(n), where the extra space of $s_1(n) + 2\ell'(n)$ bits is used for storing the work-tape of the oracle machine and the $i - 1^{\text{st}}$ and i^{th} oracle answers.

Exercise 5.8 (non-adaptive reductions) In continuation to the discussion in §5.1.3.3, we define non-adaptive space-bounded reductions as follows. First, for any problem Π' , we define the ("direct product") problem $\overline{\Pi}'$ such that the instances of $\overline{\Pi}'$ are sequences of instances of Π' . The sequence $\overline{y} = (y_1, ..., y_t)$ is a valid solution (with respect to the problem $\overline{\Pi}'$) to the instance $\overline{x} = (x_1, ..., x_t)$ if and only if for every $i \in [t]$ it holds that y_i is a valid solution to x_i (with respect to the problem Π'). Now, a non-adaptive reduction of Π to Π' is defined as a single-query reduction of Π to $\overline{\Pi}'$.

1. Note that this definition allows the oracle machine to freely scan the sequence of answers (i.e., it can move freely between the blocks that correspond to different answers). Still, prove that this does not add much power to the machine (in comparison to a machine that reads the oracle-answer device in a "semi-unidirectional" manner (i.e., it never reads bits of some answer after reading any bit of any later answer)). That is, prove that a general nonadaptive reduction of space-complexity s can be emulated by a non-adaptive reduction of space-complexity O(s) that when obtaining the oracle answer $(y_1, ..., y_t)$ may read bits of y_i only before reading any bit of $y_{i+1}, ..., y_t$.

Guideline: Replace the query sequence $\overline{x} = (x_1, ..., x_t)$ by the query sequence $(\overline{x}, \overline{x}, ..., \overline{x})$ where the number of repetitions is $2^{O(s)}$.

2. Prove that if Π is reducible to Π' via a non-adaptive reduction of spacecomplexity s_1 that makes queries of length at most ℓ and Π' is solvable is space s_2 , then Π is solvable in space s such that $s(n) = O(s_1(n) + s_2(\ell(n)))$. As a warm-up, consider first the case of a general single-query reduction (of Π to Π').

Guideline: The composed computation, on input x, can be written as $E(x, \overline{A}(G(x)))$, where G represents the query generation phase, \overline{A} represents the application of the Π' -solver to each string in the sequence of queries, and E represents the evaluation phase. Analyze the space-complexity of this computation by using (variants of) Lemma 5.2.

Exercise 5.9 Referring to the discussion in $\S5.1.3.3$, prove that, for any *s*, any problem having space-complexity *s* can be solved by a *constant-space* (2s, 2s)-restricted reduction to a problem that is solvable in *constant-space*.

Guideline: The reduction is to the "next configuration function" associated with the said algorithm (of space complexity s), where here the configuration contains also the single bit of the input that the machine currently examines (i.e., the value of bit at the machine's location on the input device). To facilitate the computation of this function, choose a suitable representation of such configurations. Note that the bulk of the operation of the oracle machine consists of iteratively copying (with minor modification) the contents of the oracle-answer tape to the oracle-query tape.

Exercise 5.10 In continuation to §5.1.3.3, we say that a reduction is (\cdot, ℓ') -restricted if there exists some function ℓ such that the reduction is (ℓ, ℓ') -restricted; that is,

in this definition only the length of the oracle answers is restricted. Prove that any reduction of space-complexity s that is (\cdot, ℓ') -restricted is (ℓ, ℓ') -restricted for $\ell(n) = 2^{O(s(n)+\ell'(n)+\log n)}$. Actually, prove that this reduction has time-complexity ℓ .

Guideline: Consider an adequate notion of instantaneous configuration; specifically, such a configuration consists of the contents of both the work-tape and the oracle-answer tape as well as the machine's location on these tapes (and on the input tape).

Exercise 5.11 (transitivity of log-space reductions) Prove that log-space Karp-reductions are transitive. Define log-space Levin-reductions and prove that they are transitive.

Guideline: Use Lemma 5.2, noting that such reductions are merely log-space computable functions.

Exercise 5.12 (log-space uniform \mathcal{NC}^1 is in \mathcal{L}) Suppose that a problem Π is solvable by a family of log-space uniform circuits of bounded fan-in and depth d such that $d(n) \geq \log n$. Prove that Π is solvable by an algorithm having space complexity O(d).

Guideline: Combine the algorithm outlined in Section 5.1.4 with the definition of log-space uniformity (using Lemma 5.2).

Exercise 5.13 (UCONN in constant degree graphs of logarithmic diameter) Present a log-space algorithm for deciding the following promise problem, which is parameterized by constants c and d. The input graph satisfies the promise if each vertex has degree at most d and every pair of vertices that reside in the same connected component is connected by a path of length at most $c \log_2 n$, where n denotes the number of vertices in the input graph. The task is to decide whether the input graph is connected.

Guideline: For every pair of vertices in the graph, we check whether these vertices are connected in the graph. (Alternatively, we may just check whether each vertex is connected to the first vertex.) Relying on the promise, it suffices to inspect all paths of length at most $\ell \stackrel{\text{def}}{=} c \log_2 n$, and these paths can be enumerated using $\ell \cdot \lceil \log_2 d \rceil$ bits of storage.

Exercise 5.14 (warm-up towards §5.2.4.2) In continuation to §5.2.4.1, present a log-space transformation of G_i to G_{i+1} .

Guideline: Given the graph G_i as input, we may construct G_{i+1} by first constructing $G' = G_i^c$ and then constructing $G' \oslash G$. To construct G', we scan all vertices of G_i (holding the current vertex in temporary storage), and, for each such vertex, construct its "distance c neighborhood" in G' (by using O(c) space for enumerating all possible "distance c neighbors"). Similarly, we can construct the vertex neighborhoods in $G' \oslash G$ (by storing the current vertex name and using a constant amount of space for indicating incident edges in G).

Exercise 5.15 (st-UCONN) In continuation to Section 5.2.4, prove that the following computational problem is in \mathcal{L} : Given an undirected graph G = (V, E) and two designated vertices, s and t, determine whether there is a path from s to t in G.

Guideline: Note that the transformation described in Section 5.2.4 can be easily extended such that it maps vertices in G_0 to vertices in $G_{\mathcal{O}(\log|V|)}$ while preserving the connectivity relation (i.e., u and v are connected in G_0 if and only if their images under the map are connected in $G_{\mathcal{O}(\log|V|)}$).

Exercise 5.16 (Bipartiteness) Prove that the problem of determining whether or not the input graph is bipartite (i.e., 2-colorable) is computationally equivalent under log-space reductions to st-UCONN (as defined in Exercise 5.15).

Guideline: Both reductions use the mapping of a graph G = (V, E) to a bipartite graph G' = (V', E') such that $V' = \{v^{(1)}, v^{(2)} : v \in V\}$ and $E' = \{\{u^{(1)}, v^{(2)}\}, \{u^{(2)}, v^{(1)}\} : \{u, v\} \in E\}$. When reducing to st-UCONN note that a vertex v resides on an odd cycle in G if and only if $v^{(1)}$ and $v^{(2)}$ are connected in G'. When reducing from st-UCONN note that s and t are connected in G by a path of even (resp., odd) length if and only if the graph G' ceases to be bipartite when augmented with the edge $\{s^{(1)}, t^{(1)}\}$ (resp., with the edges $\{s^{(1)}, x\}$ and $\{x, t^{(2)}\}$, where $x \notin V'$ is an auxiliary vertex).

Exercise 5.17 (finding paths in undirected graphs) In continuation to Exercise 5.15, present a log-space algorithm that given an undirected graph G = (V, E) and two designated vertices, s and t, finds a path from s to t in G (in case such a path exists).

Guideline: In continuation to Exercise 5.15, we may find and (implicitly) store a logarithmically long path in $G_{O(\log |V|)}$ that connects a representative of s and a representative of t. Focusing on the task of finding a path in G_0 that corresponds to an edge in $G_{O(\log |V|)}$, we note that such a path can be found by using the reduction underlying the combination of Claim 5.9 and Lemma 5.10. (An alternative description appears in [183].)

Exercise 5.18 (relating the two models of NSPACE) Referring to the definitions in Section 5.3.1, prove that for every function s such that $\log s$ is spaceconstructible and at least logarithmic, it holds that $\operatorname{NSPACE}_{\operatorname{on-line}}(s) = \operatorname{NSPACE}_{\operatorname{off-line}}(\Theta(\log s))$. Note that $\operatorname{NSPACE}_{\operatorname{on-line}}(s) \subseteq \operatorname{NSPACE}_{\operatorname{off-line}}(O(\log s))$ holds also for s that is at least logarithmic.

Guideline (for NSPACE_{on-line}(s) \subseteq NSPACE_{off-line}($O(\log s)$)): Use the non-deterministic input of the off-line machine for encoding an accepting computation of the on-line machine; that is, this input should contain a sequence of consecutive configurations leading from the initial configuration to an accepting configuration, where each configuration contains the contents of the work-tape as well as the machine's state and its locations on the work-tape and on the input-tape. The emulating off-line machine (which verifies the correctness of the sequence of configurations recorded on its non-deterministic input tape) needs only store its *location within the current pair of consecutive configurations* that it examines, which requires space logarithmic in the length of a single configuration (which in turn equals $s(n) + \log_2 s(n) + \log_2 n + O(1)$. (Note that this verification relies on a twodirectional access to the non-deterministic input.)

Guideline (for NSPACE_{off-line}(s') \subseteq NSPACE_{on-line}($\exp(s')$)): Here we refer to the notion of a crossing-sequence. Specifically, for each location on the off-line non-deterministic input, consider the sequence of the residual configurations of the machine, where such a residual configuration consists of the bit residing in this non-deterministic tape location, the contents of the machine's temporary storage and the machine's locations on the input and storage tapes (but not its location on the non-deterministic tape). Show that the length of such a crossing-sequence is exponential in the space complexity of the off-line machine, and that the time complexity of the off-line machine is at most double-exponential in its space complexity (see Exercise 5.4). The on-line machine merely generates a sequence of crossing-sequences ("on the fly") and checks that each consecutive pair of crossing-sequences is consistent. This requires holding two crossing-sequences in storage, which require space linear in the length of such sequences (which, in turn, is exponential in the space complexity of the off-line machine).

Exercise 5.19 (st-CONN and variants of it are in NL) Prove that the following computational problem is in \mathcal{NL} . The instances have the form (G, v, w, ℓ) , where G = (V, E) is a directed graph, $v, w \in V$, and ℓ is an integer, and the question is whether G contains a path of length at most ℓ from v to w.

Guideline: Consider a non-deterministic machine that generates and verifiers an adequate path on the fly. That is, starting at $v_0 = v$, the machine proceeds in iterations, such that in the i^{th} iteration it non-deterministically generates v_i , verifiers that $(v_{i-1}, v_i) \in E$, and checks whether $i \leq \ell$ and $v_i = w$. Note that this machine need only store the last two vertices on the path (i.e., v_{i-1} and v_i) as well as the number of edges traversed so far (i.e., i). (Actually, using a careful implementation, it suffices to store only one of these two vertices (as well as the current i).)

Exercise 5.20 (finding directed paths in directed graphs) Present a log-space oracle machine that finds (shortest) directed paths in directed graphs by using an oracle to \mathcal{NL} . Conclude that $\mathcal{NL} = \mathcal{L}$ if and only if such paths can be found by a (standard) log-space algorithm.

Guideline: Use a reduction to the decision problem presented in Exercise 5.19, and derive a standard algorithm by using the composition result of Exercise 5.7.

Exercise 5.21 (NSPACE and directed connectivity) Our aim is to establish a relation between general non-deterministic space-bounded computation and directed connectivity in "strongly constructible" graphs that have size exponential in the space bound. Let s be space constructible and at least logarithmic. For every $S \in \text{NSPACE}(s)$, present a linear-time oracle machine (somewhat as in §5.2.4.2) that given oracle access to x provides oracle access to a directed graph G_x of size $\exp(s(|x|))$ such that $x \in S$ if and only if there is a directed path between the first and last vertices of G_x . That is, on input a pair (u, v) and oracle access to x, the oracle machine decides whether or not (u, v) is a directed edge in G_x .

Guideline: Follow the proof of Theorem 5.11.

Exercise 5.22 (an alternative presentation of the proof of Theorem 5.12) We refer to directed graphs in which each vertex has a self-loop.

- 1. Viewing the adjacency matrices of directed graphs as oracles (cf. Exercise 5.21), present a linear-space oracle machine that determines whether a given pair of vertices is connected by a directed path of length two in the input graph. Note that this oracle machine computes the adjacency relation of the square of the graph represented in the oracle.
- 2. Using naive composition (as in Lemma 5.1), present a quadratic-space oracle machine that determines whether a given pair of vertices is connected by a directed path in the graph represented in the oracle.

Note that the machine in Item 2 implies that st-CONN can be decided in log-square space. In particular, justify the self-loop assumption made up-front.

Exercise 5.23 (deciding strong connectivity) A directed graph is called strongly connected if there exists a directed path between every ordered pair of vertices in the graph (or, equivalently, a directed cycle passing through every two vertices). Prove that the problem of deciding whether a directed graph is strongly connected is \mathcal{NL} -complete under (many-to-one) log-space reductions.

Guideline (for \mathcal{NL} -hardness): Reduce from st-CONN. Note that, for any graph G = (V, E), it holds that (G, s, t) is a yes-instance of st-CONN if and only if the graph $G' = (V, E \cup \{(v, s) : v \in V\} \cup \{(t, v) : v \in V\})$ is strongly connected.

Exercise 5.24 (determining distances in undirected graphs) Prove that the following computational problem is \mathcal{NL} -complete under (many-to-one) log-space reductions: Given an undirected graph G = (V, E), two designated vertices, s and t, and an integer K, determine whether there is a path of length at most (resp., exactly) K from s to t in G.

Guideline (for \mathcal{NL} -hardness): Reduce from st-CONN. Specifically, given a directed graph G = (V, E) and vertices s, t, consider a ("layered") graph G' = (V', E') such that $V' = \bigcup_{i=0}^{|V|-1} \{\langle i, v \rangle : v \in V\}$ and $E' = \bigcup_{i=0}^{|V|-2} \{\{\langle i, u \rangle, \langle i+1, v \rangle\} : (u, v) \in E \lor u = v\}$. Note that there exists a directed path from s to t in G if and only if there exists a path of length at most (resp., exactly) |V| - 1 between $\langle 0, s \rangle$ and $\langle |V| - 1, t \rangle$ in G'.

Guideline (for the exact version being in \mathcal{NL}): Use $\mathcal{NL} = co\mathcal{NL}$.

Exercise 5.25 (an operational interpretation of $\mathcal{NL} \cap \operatorname{co}\mathcal{NL}$, $\mathcal{NP} \cap \operatorname{co}\mathcal{NP}$, etc) Referring to Definition 5.13, prove that $S \in \mathcal{NL} \cap \operatorname{co}\mathcal{NL}$ if and only if there exists a non-deterministic log-space machine that computes χ_S , where $\chi_S(x) = 1$ if $x \in S$ and $\chi_S(x) = 0$ otherwise. State and prove an analogous result for $\mathcal{NP} \cap \operatorname{co}\mathcal{NP}$.

Guideline: A non-deterministic machine computing any function f yields, for each value v, a non-deterministic machine of similar complexity that accept $\{x : f(x) = v\}$. (Extra hint: Invoke the machine M that computes f and accept if and only if M outputs v.) On the other hand, for any function f of finite range, combining non-deterministic machines that

accept the various sets $S_v \stackrel{\text{def}}{=} \{x : f(x) = v\}$, we obtain a non-deterministic machine of similar complexity that computes f. (Extra hint: On input x, the combined machine invokes each of the aforementioned machines on input x and outputs the value v if and only if the machine accepting S_v has accepted. In the case that none of the machines accepts, the combined machine outputs \perp .)

Exercise 5.26 (a graph algorithmic interpretation of $\mathcal{NL} = \operatorname{co}\mathcal{NL}$) Show that there exists a log-space computable function f such that for every (G, s, t) it holds that (G, s, t) is a yes-instance of st-CONN if and only if (G', s', t') = f(G, s, t) is a no-instance of st-CONN.

Exercise 5.27 Referring to Definition 5.13, prove that there exists a non-deterministic log-space machine that computes the distance between two given vertices in a given undirected graph.

Guideline: Relate this computational problem to the (exact version of the) decision problem considered in Exercise 5.24.

Exercise 5.28 As an alternative to the two-query reduction presented in the proof of Theorem 5.14, show that (computing the characteristic function of) st-CONN is log-space reducible via a single query to the problem of determining the number of vertices that are reachable from a given vertex in a given graph.

(Hint: On input (G, s, t), where G = ([N], E), consider the number of vertices reachable from s in the graph $G' = ([2N], E \cup \{(t, N + i) : i = 1, ..., N\})$.)

Exercise 5.29 (reductions and non-deterministic computations) Suppose that computing f is log-space reducible to computing some function g and that it is either the case that the reduction is non-adaptive or that for every x it holds that $|g(x)| = O(\log |x|)$. Referring to non-deterministic computations as in Definition 5.13, prove that if there exists a non-deterministic log-space machine that computes g then there exists a non-deterministic log-space machine that computes f.

Guideline: The point is adapting a composition result that refers to deterministic algorithms (for computing g) into one that applies to non-deterministic computations. Specifically, in the first case we adapt the result of Exercise 5.8, whereas in the second case we adapt the result Exercise 5.7. The idea is running the same procedure as in the deterministic case, and handling the possible failure of the non-deterministic machine that computes g in the natural manner; that is, if any such computation returns the value \perp then we just halt outputting \perp , and otherwise we proceed as in the deterministic case (using the non- \perp values obtained).

Exercise 5.30 (the QBF game) Consider the following two-party game that is initiated with a quantified Boolean formula. The game features an existential player (which tries to prove that the formula is valid) versus a universal player (which tries to invalidate it). The game consists of the parties scanning the formula from left to right such that when a quantifier is encountered, the corresponding party takes a move that consists of instantiating the corresponding Boolean variable. At the

final position, when all variables were instantiated, the existential party is declared the winner if and only if the corresponding Boolean expression evaluates to **true**.

- 1. Show that, modulo some technical conventions, the foregoing QBF game fits the framework of efficient two-party games (described at the beginning of Section 5.4).
- 2. Prove that any efficient two-party game can be cast as a QBF game.

Guideline: For Part 1 define the universal player as winning in any non-final position (i.e., a position in which not all variables are instantiated). For part 2, see Footnote 6 in Chapter 3.