Chapter 6

Randomness and Counting

I owe this almost atrocious variety to an institution which other
republics do not know or which operates in them in an imperfect
and secret manner: the lottery.

Jorge Luis Borges, The Lottery In Babylon

So far, our approach to computing devices was somewhat conservative: we thought
of them as executing a deterministic rule. A more liberal and quite realistic ap-
proach, which is pursued in this chapter, considers computing devices that use a
probabilistic rule. This relaxation has an immediate impact on the notion of effi-
cient computation, which is consequently associated with probabilistic polynomial-
time computations rather than with deterministic (polynomial-time) ones. We
stress that the association of efficient computation with probabilistic polynomial-
time computation makes sense provided that the failure probability of the latter is
negligible (which means that it may be safely ignored).

The quantitative nature of the failure probability of probabilistic algorithm
provides one connection between probabilistic algorithms and counting problems.
The latter are indeed a new type of computational problems, and our focus is on
counting efficiently recognizable objects (e.g., NP-witnesses for a given instance of
set in AP). Randomized procedures turn out to play an important role in the
study of such counting problems.

Summary: Focusing on probabilistic polynomial-time algorithms, we
counsider various types of probabilistic failure of such algorithms (e.g.,
actual error versus failure to produce output). This leads to the formu-
lation of complexity classes such as BPP, RP, and ZPP. The results
presented include the existence of (non-uniform) families of polynomial-
size circuits that emulate probabilistic polynomial-time algorithms (i.e.,
BPP C P/poly) and the fact that BPP resides in the (second level of
the) Polynomial-time Hierarchy (i.e., BPP C X,).

We then turn to counting problems; specifically, counting the number
of solutions for an instance of a search problem in PC (or, equivalently,

203

204 CHAPTER 6. RANDOMNESS AND COUNTING

counting the number of NP-witnesses for an instance of a decision prob-
lem in A"P). We distinguish between exact counting and approximate
counting (in the sense of relative approximation). In particular, while
any problem in PH is reducible to the exact counting class #P, ap-
proximate counting (for #7P) is (probabilisticly) reducible to NP.

In general, counting problems exhibit a “richer structure” than the cor-
responding search (and decision) problems, even when counsidering only
natural problems. For example, some counting problems are hard in the
exact version (e.g., are #P-complete) but easy to approximate, while
others are NP-hard to approximate. In some cases #P-completeness is
due to the very same reduction that establishes the A'P-completeness of
the corresponding decision problem, whereas in other cases new reduc-
tions are required (often because the corresponding decision problem is
not A"P-complete but is rather in P).

We also consider two other types of computational problems that are
related to approximate counting. The first type refers to promise prob-
lems, called unique solution problems, in which the solver is guaran-
teed that the instance has at most one solution. Many NP-complete
problems are randomly reducible to the corresponding unique solution
problems. Lastly, we consider the problem of generating almost uni-
formly distributed solutions, and show that in many cases this problem
is computationally equivalent to approximately counting the number of
solutions.

Prerequisites: We assume basic familiarity with elementary probability theory
(see Appendix D.1). In Section 6.2 we will rely extensively on formulations pre-
sented in Section 2.1 (i.e., the “NP search problem” class PC as well as the sets
R(z) Lef {y : (z,y) € R}, and Sk Lef {z : R(z) # 0} defined for every R € PC).
In Sections 6.2.2—-6.2.4 we shall extensively use various hashing functions and their
properties, as presented in Appendix D.2.

6.1 Probabilistic Polynomial-Time

Considering algorithms that utilize random choices, we extend our notion of ef-
ficient algorithms from deterministic polynomial-time algorithms to probabilistic
polynomial-time algorithms. Two conflicting questions that arise are whether it
is reasonable to allow randomized computational steps and whether adding such
steps buys us anything.

We first note that random events are an important part of our modeling of
the world. We stress that this does not necessarily mean that we assert that the
world per se includes genuine random choices, but rather that it is beneficial to
model the world as including random choices (i.e., some phenomena appear to us
as if they are random in some sense). Furthermore, it seems feasible to generate

6.1. PROBABILISTIC POLYNOMIAL-TIME 205

random-looking events (e.g., the outcome of a toss coin).! Thus, postulating that
seemingly random choices can be generated by a computer is quite natural (and
is in fact common practice). At the very least, this postulate yields an intuitive
model of computation and the study of such a model is of natural concern.

This leads to the question of whether augmenting the computational model with
the ability to make random choices buys us anything. Although randomization is
known to be essential in several computational settings (e.g., cryptography (cf.,
Appendix C) and sampling (cf., Appendix D.3)), the question is whether random-
ization is useful in the context of solving decision (and search) problems. This is
indeed a very good question, which is further discussed in §6.1.2.1. In fact, one of
the main goals of the current section is putting this question forward. To demon-
strate the potential benefit of randomized algorithms, we provide a few examples
(cf., §6.1.2.2, §6.1.3.1 and §6.1.5.2).

6.1.1 Basic modeling issues

Rigorous models of probabilistic (or randomized) algorithms are defined by nat-
ural extensions of the basic machine model. We will exemplify this approach by
describing the model of probabilistic Turing machines, but we stress that (again)
the specific choice of the model is immaterial (as long as it is “reasonable”). A
probabilistic Turing machine is defined exactly as a non-deterministic machine (see
the first item of Definition 2.7), but the definition of its computation is fundamen-
tally different. Specifically, whereas Definition 2.7 refers to the question of whether
or not there exists a computation of the machine that (started on a specific input)
reaches a certain configuration, in the case of probabilistic Turing machines we
refer to the probability that this event occurs, when at each step a choice is selected
uniformly among the relevant possible choices available at this step. That is, if the
transition function of the machine maps the current state-symbol pair to several
possible triples, then in the corresponding probabilistic computation one of these
triples is selected at random (with equal probability) and the next configuration is
determined accordingly. These random choices may be viewed as the internal coin
tosses of the machine. (Indeed, as in the case of non-deterministic machines, we
may assume without loss of generality that the transition function of the machine
maps each state-symbol pair to ezactly two possible triples; see Exercise 2.4.)

We stress the fundamental difference between the fictitious model of a non-
deterministic machine and the realistic model of a probabilistic machine. In the case
of a non-deterministic machine we consider the ezistence of an adequate sequence of
choices (leading to a desired outcome), and ignore the question of how these choices
are actually made. In fact, the selection of such a sequence of choices is merely a
mental experiment. In contrast, in the case of a probabilistic machine, at each step
a real random choice is actually made (uniformly among a set of predetermined

IDifferent perspectives on the question of the feasibility of randomized computation are offered
in Chapter 8 and Appendix D.4. The pivot of Chapter 8 is the distinction between being actually
random and looking random (to computationally restricted observers). In contrast, Appendix D.4
refers to various notions of randomness and to the feasibility of transforming weak forms of
randomness into almost perfect forms.

206 CHAPTER 6. RANDOMNESS AND COUNTING

possibilities), and we consider the probability of reaching a desired outcome.

In view of the foregoing, we consider the output distribution of such a proba-
bilistic machine on fixed inputs; that is, for a probabilistic machine M and string
xz € {0,1}*, we denote by M(x) the output distribution of M when invoked on
input x, where the probability is taken uniformly over the machine’s internal coin
tosses. Needless to say, we will consider the probability that M (z) is a “correct”
answer; that is, in the case of a search problem (resp., decision problem) we will be
interested in the probability that M (z) is a valid solution for the instance x (resp.,
represents the correct decision regarding).

The foregoing description views the internal coin tosses of the machine as taking
place on-the-fly; that is, these coin tosses are performed on-line by the machine
itself. An alternative model is one in which the sequence of coin tosses is provided
by an external device, on a special “random input” tape. In such a case, we view
these coin tosses as performed off-line. Specifically, we denote by M'(xz,r) the
(uniquely defined) output of the residual deterministic machine M’, when given the
(primary) input z and random input r. Indeed, M' is a deterministic machine that

takes two inputs (the first representing the actual input and the second representing

the “random input”), but we consider the random variable M (z) def M'(z,Uga)),

where £(|z|) denotes the number of coin tosses “expected” by M'(z,-).

These two perspectives on probabilistic algorithms are closely related: Clearly,
the aforementioned residual deterministic machine M’ yields the on-line machine
M that on input x selects at random a string r of adequate length, and invokes
M'(xz,r). On the other hand, the computation of any on-line machine M is captured
by the residual machine M’ that emulates the actions of M (z) based on an auxiliary
input r (obtained by M’ and representing a possible outcome of the internal coin
tosses of M). (Indeed, there is no harm in supplying more coin tosses than are
actually used by M, and so the length of the aforementioned auxiliary input may
be set to equal the time complexity of M.) For sake of clarity and future reference,
we summarize the foregoing discussion in the following definition.

Definition 6.1 (on-line and off-line formulations of probabilistic polynomial-time):

e We say that M is a on-line probabilistic polynomial-time machine if there exists
a polynomial p such that when invoked on any input x € {0,1}*, machine M
always halts within at most p(|z|) steps (regardless of the outcome of its
internal coin tosses). In such a case M (x) is a random variable.

o We say that M' is a off-line probabilistic polynomial-time machine if there ex-
ists a polynomial p such that, for every x € {0,1}* and r € {0,1}?UD when
invoked on the primary input x and the random-input sequence v, machine M’
halts within at most p(|z|) steps. In such a case, we will consider the ran-
dom variable M'(x,Uy(|z))), where Up, denotes a random variable uniformly
distributed over {0,1}™.

Clearly, in the context of time-complexity, the on-line and off-line formulations
are equivalent (i.e., given an on-line probabilistic polynomial-time machine we can
derive a functionally equivalent off-line (probabilistic polynomial-time) machine,
and vice versa). Thus, in the sequel, we will freely use whichever is more convenient.

6.1. PROBABILISTIC POLYNOMIAL-TIME 207

Failure probability. A major aspect of randomized algorithms (probabilistic
machines) is that they may fail (see Exercise 6.1). That is, with some specified
(“failure”) probability, these algorithms may fail to produce the desired output.
We discuss two aspects of this failure: its type and its magnitude.

1. The type of failure is a qualitative notion. One aspect of this type is whether,
in case of failure, the algorithm produces a wrong answer or merely an indica-
tion that it failed to find a correct answer. Another aspect is whether failure
may occur on all instances or merely on certain types of instances. Let us
clarify these aspects by considering three natural types of failure, giving rise
to three different types of algorithms.

(a) The most liberal notion of failure is the one of two-sided error. This
term originates from the setting of decision problems, where it means
that (in case of failure) the algorithm may err in both directions (i.e.,
it may rule that a yes-instance is a no-instance, and vice versa). In
the case of search problems two-sided error means that, when failing,
the algorithm may output a wrong answer on any input. That is, the
algorithm may falsely rule that the input has no solution and it may
also output a wrong solution (both in case the input has a solution and
in case it has no solution).

(b) An intermediate notion of failure is the one of one-sided error. Again, the
term originates from the setting of decision problems, where it means
that the algorithm may err only in one direction (i.e., either on yes-
instances or on no-instances). Indeed, there are two natural cases de-
pending on whether the algorithm errs on yes-instances but not on no-
instances, or the other way around. Analogous cases occur also in the
setting of search problems. In one case the algorithm never outputs
a wrong solution but may falsely rule that the input has no solution.
In the other case the indication that an input has no solution is never
wrong, but the algorithm may output a wrong solution.

(¢) The most conservative notion of failure is the one of zero-sided error. In
this case, the algorithm’s failure amounts to indicating its failure to find
an answer (by outputting a special don’t know symbol). We stress that
in this case the algorithm never provides a wrong answer.

Indeed, the forgoing discussion ignores the probability of failure, which is the
subject of the next item.

2. The magnitude of failure is a quantitative notion. It refer to the probability
that the algorithm fails, where the type of failure is fixed (e.g., as in the
forgoing discussion).

When actually using a randomized algorithm we typically wish its failure
probability to be negligible, which intuitively means that the failure event is
so rare that it can be ignored in practice. Formally, we say that a quantity is
negligible if, as a function of the relevant parameter (e.g., the input length),
this quantity vanishes faster than the reciprocal of any positive polynomial.

208 CHAPTER 6. RANDOMNESS AND COUNTING

For ease of presentation, we sometimes consider alternative upper-bounds
on the probability of failure. These bounds are selected in a way that al-
lows (and in fact facilitates) “error reduction” (i.e., converting a probabilistic
polynomial-time algorithm that satisfies such an upper-bound into one in
which the failure probability is negligible). For example, in the case of two-
sided error we need to be able to distinguish the correct answer from wrong
answers by sampling, and in the other types of failure “hitting” a correct
answer suffices.

In the following three sections (i.e., Sections 6.1.2-6.1.4), we will discuss complexity
classes corresponding to the aforementioned three types of failure. For sake of
simplicity, the failure probability itself will be set to a constant that allows error
reduction.

Randomized reductions. Before turning to the more detailed discussion, we
mention that randomized reductions play an important role in complexity the-
ory. Such reductions can be defined analogously to the standard Cook-Reductions
(resp., Karp-reductions), and again a discussion of the type and magnitude of the
failure probability is in place. For clarity, we spell-out the two-sided error versions.

e In analogy to Definition 2.9, we say that a problem II is probabilistic polynomial-
time reducible to a problem II' if there exists a probabilistic polynomial-time
oracle machine M such that, for every function f that solves I’ and for every
x, with probability at least 1 — u(|z|), the output M/ (z) is a correct solution
to the instance z, where p is a negligible function.

e In analogy to Definition 2.11, we say that a decision problem S is reducible
to a decision problem S’ via a randomized Karp-reduction if there exists a
probabilistic polynomial-time algorithm A such that, for every x, it holds that
Prixs (A(z)) = xs(z)] > 1—u(|z]), where x5 (resp., xs/) is the characteristic
function of S (resp., S') and p is a negligible function.

These reductions preserve efficient solvability and are transitive: see Exercise 6.2.

6.1.2 Two-sided error: The complexity class BPP

In this section we consider the most liberal notion of probabilistic polynomial-time
algorithms that is still meaningful. We allow the algorithm to err on each input,
but require the error probability to be negligible. The latter requirement guarantees
the usefulness of such algorithms, because in reality we may ignore the negligible
error probability.

Before focusing on the decision problem setting, let us say a few words on the
search problem setting (see Definition 1.1). Following the previous paragraph, we
say that a probabilistic (polynomial-time) algorithm A solves the search problem
of the relation R if for every z € Sg (i.e., R(z) = {y : (z,y) € R} # 0) it holds
that Pr[A(z) € R(z)] > 1 — p(]z|) and for every x ¢ Sg it holds that Pr[A(z) =
1] > 1—p(]x|), where p is a negligible function. Note that we did not require that,

6.1. PROBABILISTIC POLYNOMIAL-TIME 209

when invoked on input z that has a solution (i.e., R(x) # (), the algorithm always
outputs the same solution. Indeed, a stronger requirement is that for every such z
there exists y € R(z) such that Pr[A(z)=y] > 1 — u(]z|). The latter version and
quantitative relaxations of it allow for error-reduction (see Exercise 6.3).

Turning to decision problems, we consider probabilistic polynomial-time algo-
rithms that err with negligible probability. That is, we say that a probabilistic
(polynomial-time) algorithm A decides membership in S if for every z it holds
that Prl[A(x) = xs(z)] > 1 — p(|z]), where xs is the characteristic function of S
(i.e., xs(x) =1if x € S and xs(z) = 0 otherwise) and p is a negligible function.
The class of decision problems that are solvable by probabilistic polynomial-time
algorithms is denoted BPP, standing for Bounded-error Probabilistic Polynomial-
time. Actually, the standard definition refers to machines that err with probability
at most 1/3.

Definition 6.2 (the class BPP): A decision problem S is in BPP if there exists
a probabilistic polynomial-time algorithm A such that for every x € S it holds that
Pr[A(z) = 1] > 2/3 and for every x ¢ S it holds that Pr[A(z) = 0] > 2/3.

The choice of the constant 2/3 is immaterial, and any other constant greater than
1/2 will do (and yields the very same class). Similarly, the complementary constant
1/3 can be replaced by various negligible functions (while preserving the class).
Both facts are special cases of the robustness of the class, discussed next, which is
established using the process of error reduction.

Error reduction (or confidence amplification). For e : N — (0,0.5), let
BPP. denote the class of decision problems that can be solved in probabilistic
polynomial-time with error probability upper-bounded by ¢; that is, S € BPP. if
there exists a probabilistic polynomial-time algorithm A such that for every z it
holds that Pr[A(x) # xs(z)] < e(|z|). By definition, BPP = BPP, ;3. However, a
wide range of other classes also equal BPP. In particular, we mention two extreme
cases:

1. For every positive polynomial p and e(n) = (1/2) — (1/p(n)), the class BPP.
equals BPP. That is, any error that is (“noticeably”) bounded away from
1/2 (i.e., error (1/2) — (1/poly(n))) can be reduced to an error of 1/3.

2. For every positive polynomial p and (n) = 27P(") the class BPP. equals
BPP. That is, an error of 1/3 can be further reduced to an exponentially
vanishing error.

Both facts are proved by invoking the weaker algorithm (i.e., the one having a
larger error probability bound) for an adequate number of times, and ruling by
majority. We stress that invoking a randomized machine several times means that
the random choices made in the various invocations are independent of one another.
The success probability of such a process is analyzed by applying an adequate Law
of Large Numbers (see Exercise 6.4).

210 CHAPTER 6. RANDOMNESS AND COUNTING

6.1.2.1 On the power of randomization

Let us turn back to the natural question raised at the beginning of Section 6.1;
that is, was anything gained by extending the definition of efficient computation to
include also probabilistic polynomial-time ones.

This phrasing seems too generic. We certainly gained the ability to toss coins
(and generate various distributions). More concretely, randomized algorithms are
essential in many settings (see, e.g., Chapter 9, Section 10.1.2, Appendix C, and
Appendix D.3) and seem essential in others (see, e.g., Sections 6.2.2-6.2.4). What
we mean to ask here is whether allowing randomization increases the power of
polynomial-time algorithms also in the restricted context of solving decision and
search problems?

The question is whether BPP extends beyond P (where clearly P C BPP).
It is commonly conjectured that the answer is negative. Specifically, under some
reasonable assumptions, it holds that BPP = P (see Part 1 of Theorem 8.19). We
note, however, that a polynomial slow-down occurs in the proof of the latter result;
that is, randomized algorithms that run in time ¢(-) are emulated by determinis-
tic algorithms that run in time poly(¢(-)). This slow-down seems inherent to the
aforementioned approach (see §8.3.3.2). Furthermore, for some concrete problems
(most notably primality testing (cf. §6.1.2.2)), the known probabilistic polynomial-
time algorithm is significantly faster (and conceptually simpler) than the known
deterministic polynomial-time algorithm. Thus, we believe that even in the con-
text of decision problems, the notion of probabilistic polynomial-time algorithms
is advantageous.

We note that the fundamental nature of BPP will remain intact even in the
(rather unlikely) case that it turns out that randomization offers no computa-
tional advantage (i.e., even if every problem that can be decided in probabilistic
polynomial-time can be decided by a deterministic algorithm of essentially the
same complexity). Such a result would address a fundamental question regarding
the power of randomness.? We now turn from the foregoing philosophical (and
partially hypothetical) discussion to a concrete discussion of what is known about
BPP.

BPP is in the Polynomial-Time Hierarchy: While it may be that BPP =P,
it is not known whether or not BPP is contained in A'P. The source of trouble
is the two-sided error probability of BPP, which is incompatible with the absolute
rejection of no-instances required in the definition of AP (see Exercise 6.8). In
view of this ignorance, it is interesting to note that BPP resides in the second
level of the Polynomial-Time Hierarchy (i.e., BPP C X,). This is a corollary of
Theorem 6.9.

Trivial derandomization. A straightforward way of eliminating randomness
from an algorithm is trying all possible outcomes of its internal coin tosses, collect-
ing the relevant statistics and deciding accordingly. This yields BPP C PSPACE C

2By analogy, establishing that TP = PSPACE (cf. Theorem 9.4) does not diminish the

importance of any of these classes, because each class models something fundamentally different.

6.1. PROBABILISTIC POLYNOMIAL-TIME 211

EXP, which is considered the trivial derandomization of BPP. In Section 8.3 we
will consider various non-trivial derandomizations of BPP, which are known under
various intractability assumptions. The interested reader, who may be puzzled by
the connection between derandomization and computational difficulty, is referred
to Chapter 8.

Non-uniform derandomization. In many settings (and specifically in the con-
text of solving search and decision problems), the power of randomization is su-
perseded by the power of non-uniform advice. Intuitively, the non-uniform advice
may specify a sequence of coin tosses that is good for all (primary) inputs of a
specific length. In the context of solving search and decision problems, such an
advice must be good for each of these inputs®, and thus its existence is guaran-
teed only if the error probability is low enough (so as to support a union bound).
The latter condition can be guaranteed by error-reduction, and thus we get the
following result.

Theorem 6.3 BPP is (strictly) contained in P /poly.

Proof: Recall that P /poly contains undecidable problems (Theorem 3.7), which
are certainly not in BPP. Thus, we focus on showing that BPP C P/poly. By
the discussion regarding error-reduction, for every S € BPP there exists a (de-
terministic) polynomial-time algorithm A and a polynomial p such that for every
z it holds that Pr[A(z,Up.|)) # xs(2)] < 271°l. Using a union bound, it follows
that Pr.cro 1000 (32 € {0,1}" s.t. A(z,7) # xs(z)] < 1. Thus, for every n € N,
there exists a string r,, € {0, 1}?(") such that for every = € {0,1}" it holds that
A(x,r,) = xs(z). Using such a sequence of r,’s as advice, we obtain the desired
non-uniform machine (establishing S € P/poly). I

Digest. The proof of Theorem 6.3 combines error-reduction with a simple ap-
plication of the Probabilistic Method (cf. [10]), where the latter refers to proving
the existence of an object by analyzing the probability that a random object is
adequate. In this case, we sought a non-uniform advice, and proved it existence by
analyzing the probability that a random advice is good. The latter event was ana-
lyzed by identifying the space of possible advice with the set of possible sequences
of internal coin tosses of a randomized algorithm.

6.1.2.2 A probabilistic polynomial-time primality test

Teaching note: Although primality has been recently shown to be in P, we believe
that the following example provides a nice illustration to the power of randomized

algorithms.

3In other contexts (see, e.g., Chapters 7 and 8), it suffices to have an advice that is good on
the average, where the average is taken over all relevant (primary) inputs.

212 CHAPTER 6. RANDOMNESS AND COUNTING

We present a simple probabilistic polynomial-time algorithm for deciding whether
or not a given number is a prime. The only Number Theoretic facts that we use
are:

Fact 1: For every prime p > 2, each quadratic residue mod p has exactly two square
roots mod p (and they sum-up to p).?

Fact 2: For every (odd and non-integer-power) composite number N, each quadratic
residue mod N has at least four square roots mod N.

Our algorithm uses as a black-box an algorithm, denoted sqrt, that given a prime
p and a quadratic residue mod p, denoted s, returns the smallest among the two
modular square roots of s. There is no guarantee as to what the output is in the
case that the input is not of the aforementioned form (and in particular in the case
that p is not a prime). Thus, we actually present a probabilistic polynomial-time
reduction of testing primality to extracting square roots modulo a prime (which is
a search problem with a promise; see Section 2.4.1).

Construction 6.4 (the reduction): On input a natural number N > 2 do
1. If N is either even or an integer-power® then reject.
2. Uniformly select v € {1,...,N — 1}, and set s + r*> mod N.

3. Let r' «— sqrt(s,N). If r' = £r (mod N) then accept else reject.

Indeed, in the case that IV is composite, the reduction invokes sqrt on an illegiti-
mate input (i.e., it makes a query that violates the promise of the problem at the
target of the reduction). In such a case, there is not guarantee as to what sqrt an-
swers, but actually a bluntly wrong answer only plays in our favor. In general, we
will show that if NV is composite, then the reduction rejects with probability at least
1/2, regardless of how sqrt answers. We mention that there exists a probabilistic
polynomial-time algorithm for implementing sqrt (see Exercise 6.16).

Proposition 6.5 Construction 6.4 constitutes a probabilistic polynomial-time re-
duction of testing primality to extracting square roots module a prime. Further-
more, if the input is a prime then the reduction always accepts, and otherwise it
rejects with probability at least 1/2.

We stress that Proposition 6.5 refers to the reduction itself; that is, sqrt is viewed
as a (“perfect”) oracle that, for every prime P and quadratic residue s (mod P),
returns 7 < s/2 such that r? = (mod P). Combining Proposition 6.5 with a
probabilistic polynomial-time algorithm that computes sqrt with negligible error
probability, we obtain that testing primality is in BPP.

2 (mod p) has two solutions modulo p

4That is, for every r € {1, ...,p—1}, the equation 22 = r
(ie., rand p—r).

5This can be checked by scanning all possible powers e € {2, ...,logy N}, and (approximately)
solving the equation ¢ = N for each value of e (i.e., finding the smallest integer 7 such that

i¢® > N). Such a solution can be found by binary search.

6.1. PROBABILISTIC POLYNOMIAL-TIME 213

Proof: By Fact 1, on input a prime number N, Construction 6.4 always accepts
(because in this case, for every r € {1, ..., N—1}, it holds that sqrt(r? mod N, N) €
{r, N —r}). On the other hand, suppose that N is an odd composite that is not
an integer-power. Then, by Fact 2, each quadratic residue s has at least four
square roots, and each of these square roots is equally likely to be chosen at Step 2
(in other words, s yields no information regarding which of its modular square
roots was selected in Step 2). Thus, for every such s, the probability that either
sqrt(s,N) or N — sqrt(s, N) equal the root chosen in Step 2 is at most 2/4. It
follows that, on input a composite number, the reduction rejects with probability
at least 1/2. W

Reflection: Construction 6.4 illustrates an interesting aspect of randomized algo-
rithms (or rather reductions); that is, their ability to take advantage of information
that is unknown to the invoked subroutine. Specifically, Construction 6.4 generates
a problem instance (N, s), which hides crucial information (regarding how s was
generated). Any subroutine that answers correctly in the case that N is prime pro-
vides probabilistic evidence that IV is a prime, where the probability space refers
to the missing information (regarding how s was generated in the case that N is
composite).

Comment. Testing primality is actually in P. However, the deterministic al-
gorithm demonstrating this fact is more complex than Construction 6.4 (and its
analysis is even more complicated).

6.1.3 One-sided error: The complexity classes RP and coRP

In this section we consider notions of probabilistic polynomial-time algorithms
having one-sided error. The notion of one-sided error refers to a natural partition of
the set of instances; that is, yes-instances versus no-instances in the case of decision
problems, and instances having solution versus instances having no solution in the
case of search problems. We focus on decision problems, and comment that an
analogous treatment can be provided for search problems (see Exercise 6.3).

Definition 6.6 (the class RP)%: A decision problem S is in RP if there exists a
probabilistic polynomial-time algorithm A such that for every x € S it holds that
Pr[A(z)=1] > 1/2 and for every x € S it holds that Pr[A(z)=0] = 1.

The choice of the constant 1/2 is immaterial, and any other constant greater than
zero will do (and yields the very same class). Similarly, this constant can be
replaced by 1 — pu(]z|) for various negligible functions p (while preserving the class).
Both facts are special cases of the robustness of the class (see Exercise 6.5).
Observe that RP C NP (see Exercise 6.8) and that RP C BPP (by the
aforementioned error-reduction). Defining coRP = {{0,1}*\ S : S € RP}, note

6The initials RP stands for Random Polynomial-time, which fails to convey the restricted type
of error allowed in this class. The only nice feature of this notation is that it is reminiscent of NP,
thus reflecting the fact that RP is a randomized polynomial-time class that is contained in N'P.

214 CHAPTER 6. RANDOMNESS AND COUNTING

that coRP corresponds to the opposite direction of one-sided error probability.
That is, a decision problem S is in coRP if there exists a probabilistic polynomial-
time algorithm A such that for every x € S it holds that Pr[A(z)=1] = 1 and for
every x ¢ S it holds that Pr[A(x)=0] > 1/2.

6.1.3.1 Testing polynomial identity

An appealing example of a one-sided error randomized algorithm refers to the
problem of determining whether two polynomials are identical. For simplicity, we
assume that we are given an oracle for the evaluation of each of the two polynomials.
An alternative presentation that refers to polynomials that are represented by
arithmetic circuits (cf. Appendix B.3) yields a standard decision problem in coRP
(see Exercise 6.17). Either way, we refer to multi-variant polynomials and to the
question of whether they are identical over any field (or, equivalently, whether they
are identical over a sufficiently large finite field). Note that it suffices to consider
finite fields that are larger than the degree of the two polynomials.

Construction 6.7 (Polynomial-Identity Test): Let n be an integer and F be a
finite field. Given black-box access to p,q : F™* — F, uniformly select ry,...,m, € F,
and accept if and only if p(r1,....,Tn) = q(r1, ..., Th).

Clearly, if p = g then Construction 6.7 always accepts. The following lemma implies
that if p and ¢ are different polynomials, each of total degree at most d over the
finite field F, then Construction 6.7 accepts with probability at most d/|F|.

Lemma 6.8 Let p : F* — F be a non-zero polynomial of total degree d over the
finite field F. Then

4
IFl.

Proof: The lemma is proven by induction on n. The base case of n = 1 follows
immediately by the Fundamental Theorem of Algebra (i.e., any non-zero univariate
polynomial of degree d has at most d distinct roots). In the induction step, we write
p as a polynomial in its first variable with coefficients that are polynomials in the
other variables. That is,

Pt rer[p(r1,...,mn) =0] <

d
p(T1, T, .y Ty) = Zpi(azz, ey Tp) - XY
=0
where p; is a polynomial of total degree at most d—i. Let 7 be the largest integer for
which p; is not identically zero. Dismissing the case « = 0 and using the induction
hypothesis, we have

Pt oy [P(T1, 72, -y Tn) = 0]
< Proy, e pi(ra,.yrn) = 0]
+Prry g [P(T1, 725 00 0) = 0] Di(12, 00y 70) # 0]
- [Fl O F

6.1. PROBABILISTIC POLYNOMIAL-TIME 215

where the second term is bounded by fixing any sequence ra,...,r, for which
pi(r2, ...,) # 0 and considering the univariate polynomial p’(x) def p(T, T2,y Th)
(which by hypothesis is a non-zero polynomial of degree 7). [l

Reflection: Lemma 6.8 may be viewed as asserting that for every non-zero poly-
nomial of degree d over F at least a 1 — (d/|F|) fraction of its domain does not
evaluate to zero. Thus, if d < |F| then most of the evaluation points constitute a
witness for the fact that the polynomial is non-zero. We know of no efficient deter-
ministic algorithm that, given a representation of the polynomial via an arithmetic
circuit, finds such a witness. Indeed, Construction 6.7 attempts to find a witness
by merely selecting it at random.

6.1.3.2 Relating BPP to RP

A natural question regarding probabilistic polynomial-time algorithms refers to the
relation between two-sided and one-sided error probability. For example, is BPP
contained in RP? Loosely speaking, we show that BPP is reducible to coRP
by one-sided error randomized Karp-reductions, where the actual statement refers
to the promise problem versions of both classes (briefly defined in the following
paragraph). Note that BPP is trivially reducible to coRP by two-sided error
randomized Karp-reductions, whereas a deterministic Karp-reduction of BPP to
coRP would imply BPP = coRP = RP (see Exercise 6.9).

First, we refer the reader to the general discussion of promise problems in
Section 2.4.1. Analogously to Definition 2.31, we say that the promise problem
IT = (Syes, Sno) is in (the promise problem extension of) BPP if there exists a
probabilistic polynomial-time algorithm A such that for every x € Syes it holds that
Pr[A(z)=1] > 2/3 and for every x € Sy, it holds that Pr[A(x)=0] > 2/3. Similarly,
IT is in coRP if for every € Syes it holds that Pr[A(x) =1] = 1 and for every
x € Sy, it holds that Pr[A(x)=0] > 1/2. Probabilistic reductions among promise
problems are defined by adapting the conventions of Section 2.4.1; specifically,
queries that violate the promise at the target of the reduction may be answered
arbitrarily.

Theorem 6.9 Any problem in BPP is reducible by a one-sided error randomized
Karp-reduction to coRP, where coRP (and possibly also BPP) denotes the cor-
responding class of promise problems. Specifically, the reduction always maps a
no-imstance to a no-instance.

It follows that BPP is reducible by a one-sided error randomized Cook-reduction to
RP. Thus, using the conventions of Section 3.2.2 and referring to classes of promise
problems, we may write BPP C RPR”. In fact, since RPRY C BPPEP? = BPP,
we have BPP = RP®”. Theorem 6.9 may be paraphrased as saying that the
combination of the one-sided error probability of the reduction and the one-sided
error probability of coRP can account for the two-sided error probability of BPP.
We warn that this statement is not a triviality like 1 + 1 = 2, and in particular

216 CHAPTER 6. RANDOMNESS AND COUNTING

we do not know whether it holds for classes of standard decision problems (rather
than for the classes of promise problems considered in Theorem 6.9).

Proof: Recall that we can easily reduce the error probability of BPP-algorithms,
and derive probabilistic polynomial-time algorithms of exponentially vanishing er-
ror probability. But this does not eliminate the error altogether (not even on “one
side”). In general, there seems to be no hope to eliminate the error, unless we
(either do something earth-shaking or) change the setting as done when allowing a
one-sided error randomized reduction to a problem in coR'P. The latter setting can
be viewed as a two-move randomized game (i.e., a random move by the reduction
followed by a random move by the decision procedure of coRP), and it enables
applying different quantifiers to the two moves (i.e., allowing error in one direction
in the first quantifier and error in the other direction in the second quantifier).
In the next paragraph, which is inessential to the actual proof, we illustrate the
potential power of this setting.

Teaching note: The following illustration represents an alternative way of proving
Theorem 6.9. This way seems conceptual simpler but it requires a starting point (or
rather an assumption) that is much harder to establish, where both comparisons are

with respect to the actual proof of Theorem 6.9 (which follows the illustration).

An illustration. Suppose that for some set S € BPP there exists a polynomial p’ and
an off-line BPP-algorithm A’ such that for every x it holds that Pr,c(o,1320 1 [A(z,7)#

xs(z)] < 2=@ 1#D+1); that is, the algorithm uses 2p/(|z|) bits of randomness and
has error probability smaller than 2’7”(“"‘)/2. Note that such an algorithm cannot
be obtained by standard error-reduction (see Exercise 6.10). Anyhow, such a small
error probability allows a partition of the string r such that one part accounts
for the entire error probability on yes-instances while the other part accounts for
the error probability on no-instances. Specifically, for every x € S, it holds that
Pl eqo,1praan (VT € {0,137 Dy A"(,7'r"") = 1] > 1/2, whereas for every ¢ S
and every r/ € {0,1}#'(I#) it holds that Proeqonyeraen [A' (@, r'r") = 1] < 1/2.
Thus, the error on yes-instances is “pushed” to the selection of 7', whereas the
error on no-instances is pushed to the selection of r'/. This yields a one-sided error
randomized Karp-reduction that maps x to (z,7'), where 7’ is uniformly selected
in {0,1}?'(2D) such that deciding S is reduced to the coRP problem (regarding
pairs (z,r')) that is decided by the (on-line) randomized algorithm A" defined

def

by A"(x,r") = A'(x,r'Up(jp))- For details, see Exercise 6.11. The actual proof,
which avoids the aforementioned hypothesis, follows.

The actual starting point. Consider any BPP-problem with a characteristic function
X (which, in case of a promise problem, is a partial function, defined only over the
promise). By standard error-reduction, there exists a probabilistic polynomial-time
algorithm A such that for every = on which y is defined it holds that Pr[A(z) #
x(x)] < wp(]z|), where p is a negligible function. Looking at the corresponding
off-line algorithm A’ and denoting by p the polynomial that bounds the running

6.1. PROBABILISTIC POLYNOMIAL-TIME 217

time of A, we have

1
2p(Jz|)

for all sufficiently long x’s on which x is defined. We show a randomized one-sided
error Karp-reduction of x to a promise problem in coRP.

Prcio,peian [A' (@, r) #x(@)] < nu(le]) < (6.1)

Teaching note: Some readers may prefer skipping the following two paragraphs and
proceeding directly to the formal description of the randomized mapping (which fol-
lows). To such readers, we recommend returning to the two skipped paragraphs after
reading the formal analysis.

The main idea. As in the illustrating paragraph, the basic idea is “pushing” the
error probability on yes-instances (of x) to the reduction, while pushing the er-
ror probability on no-instances to the coRP-problem. Focusing on the case that
Xx(z) = 1, this is achieved by augmenting the input = with a random sequence of
“modifiers” that act on the random-input of algorithm A’ such that for a good
choice of modifiers it holds that for every r € {0,1}?{#] there exists a modifier in
this sequence that when applied to r yields r' that satisfies A'(z,7') = 1. Indeed,
not all sequences of modifiers are good, but a random sequence will be good with
high probability and bad sequences will be accounted for in the error probability
of the reduction. On the other hand, using only modifiers that are permutations
guarantees that the error probability on no-instances only increase by a factor
that equals the number of modifiers that we use, and this error probability will be
accounted for by the error probability of the coRP-problem. Details follow.

The aforementioned modifiers are implemented by shifts (of the set of all strings
by fixed offsets). Thus, we augment the input = with a random sequence of shifts,
denoted sy, ..., s, € {0,1}7U=D) | such that for a good choice of (s, ..., 5,,) it holds
that for every r € {0, 1}#{I%) there exists an i € [m] such that A'(z,r@®s;) = 1. We
will show that, for any yes-instance x and a suitable choice of m, with very high
probability, a random sequence of shifts is good. Thus, for A" ((z, 81, .., Sm),T) def

m A(z,r @ s;), it holds that, with very high probability over the choice of
S1y .-y Sm, @& yes-instance = is mapped to an augmented input (z, sy, ..., S;,) that
is accepted by A" with probability 1. On the other hand, the acceptance probabil-
ity of augmented no-instances (for any choice of shifts) only increases by a factor of
m. In further detailing the foregoing idea, we start by explicitly stating the simple
randomized mapping (to be used as a randomized Karp-reduction), and next define
the target promise problem.

The randomized mapping. On input z € {0,1}", we set m = p(|z|), uniformly select
S1y .y Sm € {0,1}™, and output the pair (z,3), where 5§ = (s1,..., 5,). Note that
this mapping, denoted M, is easily computable by a probabilistic polynomial-time
algorithm.

The promise problem. We define the following promise problem, denoted II =
(Iyes, I1,0), having instances of the form (z,3) such that [3| = p(|z|)?.

218 CHAPTER 6. RANDOMNESS AND COUNTING

e The yes-instances are pairs (z,3), where 5 = (s1, ..., $;,) and m = p(|z]|), such
that for every r € {0,1}™ there exists an ¢ satisfying A'(z,r ® s;) = 1.

e The no-instances are pairs (z,5), where again 5 = (s1, ..., ;) and m = p(|z|),
such that for at least half of the possible r € {0, 1}™, for every i it holds that
Al(z,r®s;)=0.

To see that I is indeed a coR’P promise problem, we consider the following random-
ized algorithm. On input (z, (51, ..., Sm)), where m = p(|z|) = |s1| = - - - = |sm], the
algorithm uniformly selects r € {0,1}™, and accepts if and only if A'(z,r®s;) =1
for some i € {1,...,m}. Indeed, yes-instances of II are accepted with probability 1,
whereas no-instances of IT are rejected with probability at least 1/2.

Analyzing the reduction: We claim that the randomized mapping M reduces x to
IT with one-sided error. Specifically, we will prove two claims.

Claim 1: If z is a yes-instance (i.e., x(z) = 1) then Pr[M(z) € ILye] > 1/2.
Claim 2: If z is a no-instance (i.e., x(z) = 0) then Pr[M(z) € II,,,] = 1.

We start with Claim 2, which is easier to establish. Recall that M (z) = (z, (s1, -, $m)),
where sy, ..., 8, are uniformly and independently distributed in {0,1}™. We note
that (by Eq. (6.1) and x(z) = 0), for every possible choice of sy, ...,s, € {0,1}™
and every ¢ € {1,...,m}, the fraction of r’s that satisfy A'(z,r @ s;) =1 is at most
ﬁ. Thus, for every possible choice of s, ..., s, € {0,1}™, for at most half of the
possible r € {0,1}™ there exists an ¢ such that A'(z,r @ s;) = 1 holds. Hence, the
reduction M always maps the no-instance x (i.e., x(z) = 0) to a no-instance of II
(i.e., an element of II,,).

Turning to Claim 1 (which refers to x(z) = 1), we will show shortly that in
this case, with very high probability, the reduction M maps z to a yes-instance of
II. We upper-bound the probability that the reduction fails (in case x(z) = 1) as
follows:

PriM(z) € llyes] = Prs,,..s,.[3r€{0,1}™s.t. (Vi) A'(z,r ®s;) = 0]
<> Pra (V) Az @si) = 0]
re{0,1}m
— Y Hraeros =g
re{0,1}m i=1

1 m
om [_—_
< ()
where the last inequality is due to Eq. (6.1). It follows that if x(x) = 1 then
PrM(x) € Iyes] > 1/2.
Combining both claims, it follows that the randomized mapping M reduces x

to II, with one-sided error on yes-instances. Recalling that II € coRP, the theorem
follows.

6.1. PROBABILISTIC POLYNOMIAL-TIME 219

BPP is in PH. The traditional presentation of the ideas underlying the proof of
Theorem 6.9 uses them for showing that BPP is in the Polynomial-time Hierarchy
(where both classes refer to standard decision problems). Specifically, to prove that

BPP C X, (see Definition 3.8), define the polynomial-time computable predicate
_ def

o(z,5,r) = Vit (A'(z,s; ®r) = 1), and observe that
1 = 3IsVYr p(x,s,r) (6.2)
x(x)=0 = Vsar -p(z,s5,r) (6.3)

(where Eq. (6.3) is equivalent to =35Vr ¢(xz,3,7)). Note that Claim 1 (in the proof
of Theorem 6.9) establishes that most sequences s satisfy Vr¢(z,3,r), whereas
Eq. (6.2) only requires the existence of at least one such S. Similarly, Claim 2
establishes that for every 5 most choices of r violate ¢(z,3,r), whereas Eq. (6.3)
only requires that for every s there exists at least one such r. We comment that
the same proof idea yields a variety of similar statements (e.g., BPP C MA, where
MA is a randomized version of NP defined in Section 9.1).”

6.1.4 Zero-sided error: The complexity class ZPP

We now consider probabilistic polynomial-time algorithms that never err, but may
fail to provide an answer. Focusing on decision problems, the corresponding class is
denoted ZPP (standing for Zero-error Probabilistic Polynomial-time). The stan-
dard definition of ZPP is in terms of machines that output L (indicating fail-
ure) with probability at most 1/2. That is, S € ZPP if there exists a proba-
bilistic polynomial-time algorithm A such that for every x € {0,1}* it holds that
Pr[A(z) € {xs(z), L}] =1 and Pr[A(z) = xs(z)] > 1/2, where xs(z) =1 ifx € S
and xs(z) = 0 otherwise. Again, the choice of the constant (i.e., 1/2) is immate-
rial, and “error-reduction” can be performed showing that algorithms that yield a
meaningful answer with noticeable probability can be amplified to algorithms that
fail with negligible probability (see Exercise 6.6).

Theorem 6.10 ZPP =RP NcoRP.

Proof Sketch: The fact that ZPP C RP (as well as ZPP C coRP) follows by a
trivial transformation of the ZPP-algorithm; that is, replacing the failure indicator
1 by a “no” verdict (resp., “yes” verdict). Note that the choice of what to say in
case the ZPP-algorithm fails is determined by the type of error that we are allowed.

In order to prove that RP N coRP C ZPP we combine the two algorithm
guaranteed for a set in RP N coRP. The point is that we can trust the RP-
algorithm (resp., coNP-algorithm) in the case that it says “yes” (resp., “no”), but
not in the case that it says “no” (resp., “yes”). Thus, we invoke both algorithms,

"Specifically, the class M.A is defined by allowing the verification algorithm V in Definition 2.5
to be probabilistic and err on no-instances; that is, for every « € S there exists y € {0, 1}p°1y(‘”‘)
such that Pr[V(z,y) =1] = 1, whereas for every @ ¢ S and every y it holds that Pr[V(z,y) =
0] > 1/2. We note that M.A can be viewed as a hybrid of the two aforementioned pairs of
conditions; specifically, each problem in M.A satisfy the conjunction of Eq. (6.2) and Claim 2.
Other randomized versions of NP (i.e., variants of M.A) are considered in Exercise 6.12.

220 CHAPTER 6. RANDOMNESS AND COUNTING

and output a definite answer only if we obtain an answer that we can trust (which
happen with high probability). Otherwise, we output L. O

Expected polynomial-time. In some sources ZPP is defined in terms of ran-
domized algorithms that run in expected polynomial-time and always output the
correct answer. This definition is equivalent to the one we used (see Exercise 6.7).

6.1.5 Randomized Log-Space

In this section we discuss probabilistic polynomial-time algorithms that are further
restricted such that they are allowed to use only a logarithmic amount of space.

6.1.5.1 Definitional issues

When defining space-bounded randomized algorithms, we face a problem analogous
to the one discussed in the context of non-deterministic space-bounded computation
(see Section 5.3). Specifically, the on-line and the off-line versions (formulated in
Definition 6.1) are no longer equivalent, unless we restrict the off-line machine to
access its random-input tape in a uni-directional manner. The issue is that, in the
context of space-bounded computation (and unlike in the case that we only care
about time-bounds), the outcome of the internal coin tosses (in the on-line model)
cannot be recorded for free. Bearing in mind that, in the current context, we wish
to model real algorithms (rather than present a fictitious model that captures a
fundamental phenomena as in Section 5.3), it is clear that using the on-line version
s the natural choice.

An additional issue that arises is the need to explicitly bound the running-time
of space-bounded randomized algorithms. Recall that, without loss of generality,
the number of steps taken by a space-bounded non-deterministic machine is at most
exponential in its space complexity, because the shortest path between two config-
urations in the (directed) graph of possible configurations is upper-bounded by its
size (which in turn is exponential in the space-bound). This reasoning fails in the
case of randomized algorithms, because the shortest path between two configura-
tions does not bound the expected number of random steps required for going from
the first configuration to the second one. In fact, as we shall shortly see, failing to
upper-bound the running time of log-space randomized algorithms seems to allow
them too much power; that is, such (unrestricted) log-space randomized algorithms
can emulate non-deterministic log-space computations (in exponential time). The
emulation consists of repeatedly invoking the NL-machine, while using random
choices in the role of the non-deterministic moves. If the input is a yes-instance
then, in each attempt, with probability at least 27¢, we “hit” an accepting t-step
(non-deterministic) computation, where ¢ is polynomial in the input length. Thus,
the randomized machine accepts such a yes-instance after an expected number of
2¢ trials. To allow for the rejection of no-instances (rather than looping infinitely in
vain), we wish to implement a counter that counts till 2 (or so) and reject the input

6.1. PROBABILISTIC POLYNOMIAL-TIME 221

if 2! trials were made and have all failed (to hit an accepting computation of the
NL-machine). We need to implement such a counter within space O(logt) rather
than ¢ (which is easy). In fact, it suffices to have a “randomized counter” that,
with high probability, counts to approximately 2¢. The implementation of such a
counter is left to Exercise 6.18, and using it we may obtain a randomized algorithm
that halts with high probability (on every input), always rejects a no-instance, and
accepts each yes-instance with probability at least 1/2.

In light of the foregoing discussion, when defining randomized log-space algo-
rithms we explicitly require that the algorithms halt in polynomial-time. Modulo
this convention, the relation between classes RL (resp., BPL) and A L is analogous
to the relation between RP (resp., BPP) and N'P. Specifically, the probabilistic
acceptance condition of RL (resp., BPL) is as in the case of RP (resp., BPP).

Definition 6.11 (the classes RL and BPL): We say that a randomized log-space
algorithm is admissible if it always halts in a polynomial number of steps.

o A decision problem S is in RL if there exists an admissible (on-line) random-
ized log-space algorithm A such that for every x € S it holds that Pr[A(z) =
1] > 1/2 and for every « ¢ S it holds that Pr[A(x) = 0] = 1.

o A decision problem S is in BPL if there exists an admissible (on-line) random-
ized log-space algorithm A such that for every x € S it holds that Pr[A(z) =
1] > 2/3 and for every x ¢ S it holds that Pr[A(z) = 0] > 2/3.

Clearly, RL C NL C P and BPL C P. Note that the classes RL and BPL remain
unchanged even if we allow the algorithms to run for ezpected polynomial-time and
have non-halting computations. Such algorithms can be easily transformed into
admissible algorithms by truncating long computations, while using a (standard)
counter (which can be implemented in logarithmic-space). Also note that error-
reduction is applicable in the current setting (while essentially preserving both the
time and space bounds).

6.1.5.2 The accidental tourist sees it all

An appealing example of a randomized log-space algorithm is presented next. It
refers to the problem of deciding undirected connectivity, and demonstrates that
this problem is in RL. (Recall that in Section 5.2.4 we proved that this problem
is actually in £, but the algorithm and its analysis were more complicated.) In
contrast, recall that Directed Connectivity is complete for N'L (under log-space
reductions).

For sake of simplicity, we consider the following computational problem: given
an undirected graph G and a pair of vertices (s,t), determine whether or not s
and t are connected in G. Note that deciding undirected connectivity (of a given
undirected graph) is log-space reducible to the foregoing problem (e.g., just check
the connectivity of all pairs of vertices).

Counstruction 6.12 On input (G, s,t), the randomized algorithm starts a poly(|G|)-
long random walk at vertex s, and accepts the triplet if and only if the walk passed

222 CHAPTER 6. RANDOMNESS AND COUNTING

through the vertexr t. By a random walk we mean that at each step the algorithm
selects uniformly one of the neighbors of the current vertex and moves to it.

Observe that the algorithm can be implemented in logarithmic space (because
we only need to store the current vertex as well as the number of steps taken
so far). Obviously, if s and ¢ are not connected in G then the algorithm always
rejects (G, s,t). Proposition 6.13 implies that if s and ¢ are connected (in G) then
the algorithm accepts with probability at least 1/2. It follows that undirected
connectivity is in RL.

Proposition 6.13 With probability at least 1/2, a random walk of length O(|V| -
|E|) starting at any vertex of the graph G = (V, E) passes through all the vertices
that reside in the same connected component as the start vertex.

Thus, such a random walk may be used to explore the relevant connected compo-
nent (in any graph). Following this walk one is likely to see all that there is to see
in that component.

Proof Sketch: We will actually show that if G is connected then, with probability
at least 1/2, a random walk starting at s visits all the vertices of G. For any pair of
vertices (u, v), let X, , be a random variable representing the number of steps taken
in a random walk starting at w until v is first encountered. The reader may verify
that for every edge {u,v} € E it holds that E[X,, ,] < 2|E|; see Exercise 6.19. Next,
we let cover(G) denote the expected number of steps in a random walk starting at s
and ending when the last of the vertices of V' is encountered. Our goal is to upper-
bound cover(G). Towards this end, we consider an arbitrary directed cyclic-tour
C that visits all vertices in G, and note that

cover(G) < > E[X,.] < [C]-2|E].
(u,v)eC

In particular, selecting C' as a traversal of some spanning tree of G, we conclude
that cover(G) < 4-|V|-|E|. Thus, with probability at least 1/2, a random walk
of length 8 - |[V| - | E| starting at s visits all vertices of G. O

6.2 Counting

We now turn to a new type of computational problems, which vastly generalize
decision problems of the NP-type. We refer to counting problems, and more specif-
ically to counting objects that can be efficiently recognized. The search and decision
versions of NP provide suitable definitions of efficiently recognized objects, which
in turn yield corresponding counting problems:

1. For each search problem having efficiently checkable solutions (i.e., a relation
R C{0,1}* x {0,1}* in PC (see Definition 2.3)), we consider the problem of
counting the number of solutions for a given instance. That is, on input x,
we are required to output |[{y : (z,y) € R}|.

6.2. COUNTING 223

2. For each decision problem S in NP, and each corresponding verification
procedure V' (as in Definition 2.5), we consider the problem of counting the
number of NP-witnesses for a given instance. That is, on input z, we are
required to output |{y : V(z,y)=1}|.

We shall consider these types of counting problems as well as relaxations (of
these counting problems) that refer to approximating the said quantities (see Sec-
tions 6.2.1 and 6.2.2, respectively). Other related topics include “problems with
unique solutions” (see Section 6.2.3) and “uniform generation of solutions” (see
Section 6.2.4). Interestingly, randomized procedures will play an important role in
many of the results regarding the aforementioned types of problems.

6.2.1 Exact Counting

In continuation to the foregoing discussion, we define the class of problems con-
cerned with counting efficiently recognized objects. (Recall that PC denotes the
class of search problems having polynomially long solutions that are efficiently
checkable; see Definition 2.3.)

Definition 6.14 (counting efficiently recognized objects — #P): The class #P
consists of all functions that count solutions to a search problem in PC. That is,
f:{0,1}* — N is in #P if there ewists R € PC such that, for every x, it holds
that f(z) = |R(z)|, where R(z) = {y : (z,y) € R}. In this case we say that f is the
counting problem associated with R, and denote the latter by #R (i.e., #R = f).

Every decision problem in AP is Cook-reducible to #P, because every such prob-
lem can be cast as deciding membership in Sg = {z : |R(x)| > 0} for some R € PC
(see Section 2.1.2). It also holds that BPP is Cook-reducible to #P (see Exer-
cise 6.20). The class #P is sometimes defined in terms of decision problems, as is
implicit in the following proposition.

Proposition 6.15 (a decisional version of #P): For any f € #P, deciding mem-
bership in Sy def {(z,N): f(z) >N} is computationally equivalent to computing f.

Actually, the claim holds for any function f : {0,1}* — N for which there exists a
polynomial p such that for every z € {0,1}* it holds that f(z) < 2P(D,

Proof: Since the relation R vouching for f € #P (i.e., f(z) = |R(x)|) is poly-
nomially bounded, there exists a polynomial p such that for every x it holds that
f(z) < 2¢(*D Deciding membership in Sy is easily reduced to computing f (i.e.,
we accept the input (z, N) if and only if f(z) > N). Computing f is reducible to
deciding Sy by using a binary search (see Exercise 2.9). This relies on the fact that,
on input x and oracle access to Sy, we can determine whether or not f(z) > N by
making the query (z, N). Note that we know a priori that f(z) € [0,27(=D].

The counting class #P is also related to the problem of enumerating all possible
solutions to a given instance (see Exercise 6.21).

224 CHAPTER 6. RANDOMNESS AND COUNTING

6.2.1.1 On the power of #P

As indicated, NP U BPP is (easily) reducible to #P. Furthermore, as stated in
Theorem 6.16, the entire Polynomial-Time Hierarchy (as defined in Section 3.2) is
Cook-reducible to #P (i.e., PH C P#7). On the other hand, any problem in #7P
is solvable in polynomial space, and so P#7 C PSPACE.

Theorem 6.16 Every set in PH is Cook-reducible to #7P.

We do not present a proof of Theorem 6.16 here, because the known proofs are
rather technical. Furthermore, one main idea underlying these proofs appears in
a more clear form in the proof of Theorem 6.29. Nevertheless, in Section F.1 we
present a proof of a related result, which implies that PH is reducible to #P via
randomized Karp-reductions.

6.2.1.2 Completeness in #P

The definition of #P-completeness is analogous to the definition of A”P-completeness.
That is, a counting problem f is #P-complete if f € #P and every problem in #P
is Cook-reducible to f.

We claim that the counting problems associated with the NP-complete problems
presented in Section 2.3.3 are all #P-complete. We warn that this fact is not
due to the mere NP-completeness of these problems, but rather to an additional
property of the reductions establishing their NP-completeness. Specifically, the
Karp-reductions that were used (or variants of them) have the extra property of
preserving the number of NP-witnesses (as captured by the following definition).

Definition 6.17 (parsimonious reductions): Let R, R' € PC and let g be a Karp-
reduction of Sg = {z : R(z) #0} to Spr = {x : R'(z) # 0}, where R(z) = {y :
(x,y) € R} and R'(x) = {y : (z,y) € R'}. We say that g is parsimonious (with
respect to R and R') if for every x it holds that |R(z)| = |R'(g(x))|. In such a case
we say that g is a parsimonious reduction of R to R'.

We stress that the condition of being parsimonious refers to the two underlying
relations R and R’ (and not merely to the sets Sg and Sg/). The requirement
that ¢ is a Karp-reduction is partially redundant, because if g is polynomial-time
computable and for every z it holds that |R(x)| = |R'(g(x))|, then g constitutes a
Karp-reduction of Sg to Sgr. Specifically, |R(z)| = |R'(g(z))| implies that |R(z)| >
0 (i.e., z € Sg) if and ounly if |R'(g(x))| > 0 (i.e., g(x) € Sr). The reader may
easily verify that the Karp-reduction underlying the proof of Theorem 2.19 as well
as many of the reductions used in Section 2.3.3 are parsimonious (see Exercise 2.29).

Theorem 6.18 Let R € PC and suppose that every search problem in PC is par-
simoniously reducible to R. Then the counting problem associated with R is #P-
complete.

Proof: Clearly, the counting problem associated with R, denoted #R, is in #P.
To show that every f' € #P is reducible to f, we consider the relation R’ € PC

6.2. COUNTING 225

that is counted by f’; that is, #R' = f'. Then, by the hypothesis, there exists
a parsimonious reduction g of R’ to R. This reduction also reduces #R' to #R;
specifically, #R'(z) = #R(g(z)) for every z. W

Corollaries. As an immediate corollary of Theorem 6.18, we get that counting
the number of satisfying assignments to a given CNF formula is #7P-complete
(because RgpT is PC-complete via parsimonious reductions). Similar statements
hold for all the other NP-complete problems mentioned in Section 2.3.3 and in
fact for all NP-complete problems listed in [82]. These corollaries follow from the
fact that all known reductions among natural NP-complete problems are either
parsimonious or can be easily modified to be so.

We conclude that many counting problems associated with NP-complete search
problems are #P-complete. It turns out that also counting problems associated
with efficiently solvable search problems may be #P-complete.

Theorem 6.19 There exist #P-complete counting problems that are associated
with efficiently solvable search problems. That is, there exists R € PF (see Defini-
tion 2.2) such that #R is #P-complete.

Theorem 6.19 can be established by presenting artificial #P-complete problems
(see Exercise 6.22). The following proof uses a natural counting problem.

Proof: Consider the relation Ryp¢ consisting of pairs (¢, 7) such that ¢ is a DNF
formula and 7 is an assignment satisfying it. Note that the search problem of Ry,
is easy to solve (e.g., by picking an arbitrary truth assignment that satisfies the
first term in the input formula). To see that #Rgpnf is #P-complete consider the
following reduction from #Rgpr (which is #P-complete by Theorem 6.18). Given
a CNF formula ¢, transform —¢ into a DNF formula ¢’ by applying de-Morgan’s
Law, query #Rgns on ¢, and return 2" —#Rgn£(¢'), where n denotes the number
of variables in ¢ (resp., ¢'). I

Reflections: We note that Theorem 6.19 is not established by a parsimonious
reduction. This fact should not come as a surprise because a parsimonious reduc-
tion of #R' to #R implies that S = {z : Jy s.t. (x,y) € R'} is reducible to
Sr ={z: 3y s.t. (z,y) € R}, where in our case Sr' is NP-Complete while Sp € P
(since R € PF). Nevertheless, the proof of Theorem 6.19 is related to the hard-
ness of some underlying decision problem (i.e., the problem of deciding whether a
given DNF formula is a tautology (i.e., whether #Rgpnf(¢') = 2™)). But does there
exist a #P-complete problem that is “not based on some underlying NP-complete
decision problem”? Amazingly enough, the answer is positive.

Theorem 6.20 Counting the number of perfect matchings in a bipartite graph is
#P-complete.’

8See Appendix G.1 for basic terminology regarding graphs.

226 CHAPTER 6. RANDOMNESS AND COUNTING

Equivalently (see Exercise 6.23), the problem of computing the permanent of ma-
trices with 0/1-entries is #P-complete. Recall that the permanent of an n-by-n
matrix M = (m,;), denoted perm(M), equals the sum over all permutations m
of [n] of the products [];—, m; ;). Theorem 6.20 is proven by composing the
following two (many-to-one) reductions (asserted in Propositions 6.21 and 6.22,
respectively) and using the fact that #RggpT is #P-complete (see Theorem 6.18
and Exercise 2.29). Needless to say, the resulting reduction is not parsimonious.

Proposition 6.21 The counting problem of 3SAT (i.e., #RggaT) s reducible to
computing the permanent of integer matrices. Furthermore, there exists an even
integer ¢ > 0 and a finite set of integers I such that, on input a 3CNF formula ¢, the
reduction produces an integer matrizc My with entries in I such that perm(My) =
™ - #RagaT(¢) where m denotes the number of clauses in ¢.

The original proof of Proposition 6.21 uses ¢ = 2% and I = {-1,0,1,2,3}. It
can be shown (see Exercise 6.24 (which relies on Theorem 6.29)) that, for every
integer n > 1 that is relatively prime to ¢, computing the permanent modulo n
is NP-hard (under randomized reductions). Thus, using the case of ¢ = 210 this
means that computing the permanent modulo n is NP-hard for any odd n > 1. In
contrast, computing the permanent modulo 2 (which is equivalent to computing
the determinant modulo 2) is easy (i.e., can be done in polynomial-time and even
in A'C). Thus, assuming NP € BPP, Proposition 6.21 cannot hold for an odd ¢
(because by Exercise 6.24 it would follow that computing the permanent modulo 2
is NP-Hard). We also note that, assuming P # AP, Proposition 6.21 cannot
possibly hold for a set I containing only non-negative integers (see Exercise 6.25).

Proposition 6.22 Computing the permanent of integer matrices is reducible to
computing the permanent of 0/1-matrices. Furthermore, the reduction maps any
integer matriz A into o 0/1-matriz A" such that the permanent of A can be easily
computed from A and the permanent of A".

Teaching note: We do not recommend presenting the proofs of Propositions 6.21
and 6.22 in class. The high-level structure of the proof of Proposition 6.21 has the
flavor of some sophisticated reductions among NP-problems, but the crucial point is the
existence of adequate gadgets. We do not know of a high-level argument establishing
the existence of such gadgets nor of any intuition as to why such gadgets exist.® Instead,
the existence of such gadgets is proved by a design that is both highly non-trivial and ad
hoc in nature. Thus, the proof of Proposition 6.21 boils down to a complicated design
problem that is solved in a way that has little pedagogical value. In contrast, the proof
of Proposition 6.22 uses two simple ideas that can be useful in other settings. With

suitable hints, this proof can be used as a good exercise.

Proof of Proposition 6.21: We will use the correspondence between the
permanent of a matrix A and the sum of the weights of the cycle covers of the
weighted directed graph represented by the matrix A. A cycle cover of a graph is

9Indeed, the conjecture that such gadgets exist can only be attributed to ingenuity.

6.2. COUNTING 227

a collection of simple!® wvertez-disjoint directed cycles that covers all the graph’s
vertices, and its weight is the product of the weights of the corresponding edges.
The SWCC of a weighted directed graph is the sum of the weights of all its cycle
COVers.

Given a 3CNF formula ¢, we construct a directed weighted graph G4 such that
the SWCC of G4 equals equals ¢™ - #R3gpT(¢), where c is a universal constant and
m denotes the number of clauses in ¢. We may assume, without loss of generality,
that each clause of ¢ has exactly three literals (which are not necessarily distinct).

X

Figure 6.1: Tracks connecting gadgets in the reduction to cycle cover.

We start with a high-level description (of the construction) that refers to (clause)
gadgets, each containing some internal vertices and internal (weighted) edges, which
are unspecified at this point. In addition, each gadget has three pairs of designated
vertices, one pair per each literal appearing in the clause, where one vertex in the
pair is designated as an entry vertex and the other as an exit vertex. The graph
G consists of m such gadgets, one per each clause (of ¢), and n auxiliary vertices,
one per each variable (of ¢), as well as some additional directed edges, each having
weight 1. Specifically, for each variable, we introduce two tracks, one per each of
the possible literals of this variable. The track associated with a literal consists of
directed edges (each having weight 1) that form a simple “cycle” passing through
the corresponding (auxiliary) vertex as well as through the designated vertices that
correspond to the occurrences of this literal in the various clauses. Specifically, for
each such occurrence, the track enters the corresponding clause gadget at the entry-
vertex corresponding to this literal and exits at the corresponding exit-vertex. (If
a literal does not appear in ¢ then the corresponding track is a self-loop on the
corresponding variable.) See Figure 6.1 showing the two tracks of a variable z that
occurs positively in three clauses and negatively in one clause. The entry-vertices
(resp., exit-vertices) are drawn on the top (resp., bottom) part of each gadget.

10Here a simple cycle is a strongly connected directed graph in which each vertex has a single
incoming (resp., outgoing) edge. In particular, self-loops are allowed.

228 CHAPTER 6. RANDOMNESS AND COUNTING

28

On the left is a gadget with the track edges adjacent to it (as in the
real construction). On the right is a gadget and four out of the nine
external edges (two of which are nice) used in the analysis.

Figure 6.2: External edges for the analysis of the clause gadget

For the purpose of stating the desired properties of the clause gadget, we aug-
ment the gadget by nine external edges (of weight 1), one per each pair of (not
necessarily matching) entry and exit vertices such that the edge goes from the
exit-vertex to the entry-vertex (see Figure 6.2). (We stress that this is an auxiliary
construction that differs from and yet is related to the use of gadgets in the forego-
ing construction of G4.) The three edges that link the designated pairs of vertices
that correspond to the three literals are called nice. We say that a collection of
edges C (e.g., a collection of cycles in the augmented gadget) uses the external edges
S if the intersection of C' with the set of the (nine) external edges equals S. We
postulate the following three properties of the clause gadget.

1. The sum of the weights of all cycle covers (of the gadget) that do not use any
external edge (i.e., use the empty set of external edges) equals zero.

2. Let V(S) denote the set of vertices incident to S, and say that S is nice if it
is non-empty and the vertices in V(S) can be perfectly matched using nice
edges.!! Then, there exists a constant ¢ (indeed the one postulated in the
proposition’s claim) such that, for any nice set S, the sum of the weights of
all cycle covers that use the external edges S equals c.

3. For any non-nice set S # () of external edges, the sum of the weights of all
cycle covers that use the external edges S equals zero.

1 Clearly, any non-empty set of nice edges is a nice set. Thus, a singleton set is nice if and only
if the corresponding edge is nice. On the other hand, any set S of three (vertex-disjoint) external
edges is nice, because V(S) has a perfect matching using all three nice edges. Thus, the notion
of nice sets is “non-trivial” only for sets of two edges. Such a set S is nice if and only if V(.5)
consists of two pairs of corresponding designated vertices.

6.2. COUNTING 229

Note that the foregoing three cases exhaust all the possible ones. Also note that
the set of external edges used by a cycle cover (of the augmented gadget) must be
a matching (i.e., these edges must be vertex disjoint).

Intuitively, there is a correspondence between nice sets of external edges (of
an augmented gadget) and the pairs of edges on tracks that pass through the
(unaugmented) gadget. Indeed, we now turn back to G4, which uses unaugmented
gadgets. Using the foregoing properties of the (augmented) gadgets, it can be
shown that each satisfying assignment of ¢ contributes exactly ¢ to the SWCC
of G4 (see Exercise 6.26). It follows that the SWCC of G4 equals ¢™ - #R3gpT(®).

Having established the validity of the abstract reduction, we turn to the imple-
mentation of the clause gadget. The first implementation is a Deus ex Machina,
with a corresponding adjacency matrix depicted in Figure 6.3. Its validity (for the
value ¢ = 12) can be verified by computing the permanent of the corresponding
sub-matrices (see analogous analysis in Exercise 6.28).

The gadget uses eight vertices, where the first six are the designated
(entry and exit) vertices. The entry-vertex (resp., exit-vertex) associ-
ated with the 7*! literal is numbered i (resp., i+3). The corresponding
adjacency matrix follows.

= RO O N
|
= = =N = O WO

== === OO

[=NeNeleNoeNeNel S
=N eNeoleNeNell =
[
== O kM OO
O o oo O+ OO
ON =M, OOO

Note that the edge 3 — 6 can be contracted, but the resulting 7-
vertex graph will not be consistent with our (inessentially stringent)
definition of a gadget by which the six designated vertices should be
distinct.

Figure 6.3: A Deus ex Machina clause gadget for the reduction to cycle cover.

A more structured implementation of the clause gadget is depicted in Figure 6.4,
which refers to a (hexagon) box to be implemented later. The box contains several
vertices and weighted edges, but only two of these vertices, called terminals, are
connected to the outside (and are shown in Figure 6.4). The clause gadget consists
of five copies of this box, where three copies are designated for the three literals
of the clause (and are marked LB1, LB2, and LB3), as well as additional vertices
and edges shown in Figure 6.4. In particular, the clause gadget contains the six
aforementioned designated vertices (i.e., a pair of entry and exit vertices per each
literal), two additional vertices (shown at the two extremes of the figure), and some

230 CHAPTER 6. RANDOMNESS AND COUNTING

edges (all having weight 1). Each designated vertex has a self-loop, and is incident
to a single additional edge that is outgoing (resp., incoming) in case the vertex
is an entry-vertex (resp., exit-vertex) of the gadget. The two terminals of each
box that is associated with some literal are connected to the corresponding pair
of designated vertices (e.g., the outgoing edge of entryl is incident at the right
terminal of the box LB1). Note that the five boxes reside on a directed path (going
from left to right), and the only edges going in the opposite direction are those
drawn below this path.

entryl entry2 entry3

exitl exit2 exit3

Figure 6.4: A structured clause gadget for the reduction to cycle cover.

h—1

On the left is a box with potential edges adjacent to it (as in the
gadget construction). On the right is a box and the four external
edges used in the analysis.

Figure 6.5: External edges for the analysis of the box

In continuation to the foregoing, we wish to state the desired properties of the
box. Again, we do so by considering the augmentation of the box by external edges
(of weight 1) incident at the specified vertices. In this case (see Figure 6.5), we
have a pair of anti-parallel edges connecting the two terminals of the box as well as

6.2. COUNTING 231

two self-loops (one on each terminal). We postulate the following three properties
of the box.

1. The sum of the weights of all cycle covers (of the box) that do not use any
external edge equals zero.

2. There exists a constant b (in our case b = 4) such that, for each of the two
anti-parallel edges, the sum of the weights of all cycle covers that use this
edge equals b.

3. For any (non-empty) set S of the self-loops, the sum of the weights of all
cycle covers (of the box) that use S equals zero.

Note that the foregoing three cases exhaust all the possible ones. It can be shown
that the conditions regarding the box imply that the construction presented in
Figure 6.4 satisfies the conditions that were postulated for the clause gadget (see
Exercise 6.27). Specifically, we have ¢ = b°. As for box itself, a smaller Deus ex
Machina is provided by the following 4-by-4 adjacency matrix

(6.4)

where the two terminals correspond to the first and the fourth vertices. Its va-
lidity (for the value b = 4) can be verified by computing the permanent of the
corresponding sub-matrices (see Exercise 6.28). W

Proof of Proposition 6.22: The proof proceeds in two steps. In the first
step we show that computing the permanent of integer matrices is reducible to
computing the permanent of non-negative matrices. This reduction proceeds as
follows. For an n-by-n integer matrix A = (ai ;)i jec[n), let [|Allcc = max; ;(la; ;)
and Q4 = 2(n!)-||A||% + 1. We note that, given A, the value Q4 can be computed
in polynomial-time, and in particular log, @4 < n?log||A||-- Given the matrix A,
the reduction constructs the non-negative matrix A" = (a;; mod Qa); je[n (i-e.,
the entries of A" are in {0,1,...,Q4 — 1}), queries the oracle for the permanent of
A’, and outputs v def perm(A’) mod Q4 if v < Qa/2 and —(Qa — v) otherwise.
The key observation is that

perm(A) = perm(A’) (mod Q4), while [perm(4)| < (n!) - ||A|Z < Qa/2.

Thus, perm(A’) mod @4 (which is in {0,1,...,Q4 — 1}) determines perm(A). We
note that perm(A’) is likely to be much larger than Q4 > |perm(A)l; it is merely
that perm(A’) and perm(A) are equivalent modulo Q 4.

In the second step we show that computing the permanent of non-negative
matrices is reducible to computing the permanent of 0/1-matrices. In this reduc-
tion, we view the computation of the permanent as the computation of the sum
of the weights of all the cycle covers (SWCC) of the corresponding weighted di-
rected graph (see proof of Proposition 6.21). Thus, we reduce the computation of

232 CHAPTER 6. RANDOMNESS AND COUNTING

the SWCC of directed graphs with non-negative weights to the computation of the
SWCC of unweighted directed graphs with no parallel edges (which correspond to
0/1-matrices). The reduction is via local replacements that preserve the value of
the SWCC. These local replacements combine the following two local replacements
(which preserve the SWCC):

1. Replacing an edge of weight w = Hle w; by a path of length ¢ (i.e., t — 1
internal nodes) with the corresponding weights wy, ..., w¢, and self-loops (with
weight 1) on all internal nodes.

Note that a cycle-cover that uses the original edge corresponds to a cycle-
cover that uses the entire path, whereas a cycle-cover that does not use the
original edge corresponds to a cycle-cover that uses all the self-loops.

2. Replacing an edge of weight w = Zle w; by t parallel 2-edge paths such that
the first edge on the i*" path has weight w;, the second edge has weight 1,
and the intermediate node has a self-loop (with weight 1). (Paths of length
two are used because parallel edges are not allowed.)

Note that a cycle-cover that uses the original edge corresponds to a collection
of cycle-covers that use one out of the ¢ paths (and the self-loops of all other
intermediate nodes), whereas a cycle-cover that does not use the original edge
corresponds to a cycle-cover that uses all the self-loops.

In particular, we may write each positive edge-weight w, having binary expansion
Olw|-1°" 700, a8 D ;0 (1 + 1)}, and apply the adequate replacements (i.e., first
apply the additive replacement to the outer sum (over {i : o;=1}), next apply the
product replacement to each power 2¢, and finally apply the additive replacement
to each 1+1). Applying this process to the matrix A’ obtained in the first step, we
efficiently obtain a matrix A" with 0/1-entries such that perm(A') = perm(A"”). (In
particular, the dimension of A” is polynomial in the length of the binary represen-
tation of A’, which in turn is polynomial in the length of the binary representation
of A.) Combining the two reductions (steps), the proposition follows. [l

6.2.2 Approximate Counting

Having seen that exact counting (for relations in PC) seems even harder than
solving the corresponding search problems, we turn to relaxations of the counting
problem. Before focusing on relative approximation, we briefly consider approxi-
mation with (large) additive deviation.

Let us consider the counting problem associated with an arbitrary R € PC.
Without loss of generality, we assume that all solutions to n-bit instances have the
same length ¢(n), where indeed ¢ is a polynomial. We first note that, while it may
be hard to compute #R, given z it is easy to approximate #R(z) up to an additive
error of 0.01 - 2¢(D (by randomly sampling potential solutions for z). Indeed, such
an approximation is very rough, but it is not trivial (and in fact we do not know how
to obtain it deterministically). In general, we can efficiently produce at random
an estimate of #R(x) that, with high probability, deviates from the correct value

6.2. COUNTING 233

by at most an additive term that is related to the absolute upper-bound on the
number of solutions (i.e., 2¢(1)).

Proposition 6.23 (approximation with large additive deviation): Let R € PC
and € be a polynomial such that R C U,cn{0,1}" x {0,1}4"). Then, for every
polynomial p, there exists a probabilistic polynomial-time algorithm A such that for
every € {0,1}* and 6 € (0,1) it holds that

Prl|A(z, 8) — #R(2)| > (1/p(|z])) - 2°0V] < &. (6.5)

As usual, 6 is presented to A in binary, and hence the running time of A(x,0) is
upper-bounded by poly(|x| - log(1/6)).

Proof Sketch: On input z and §, algorithm A sets t = O(p(|z|)?-log(1/6)), selects
uniformly yi, ..., y; and outputs 2°0=D . |{i : (z,9;) € R}|/t. O

Discussion. Proposition 6.23 is meaningful in the case that #R(z) > (1/p(|z]))-
2t0=1) holds for some z’s. But otherwise, a trivial approximation (i.e., outputting
the constant value zero) meets the bound of Eq. (6.5). In contrast to this no-
tion of additive approrimation, a relative factor approximation is typically more
meaningful. Specifically, we will be interested in approximating #R(z) up-to a
constant factor (or some other reasonable factor). In §6.2.2.1, we consider a natu-
ral #P-complete problem for which such a relative approximation can be obtained
in probabilistic polynomial-time. We do not expect this to happen for every count-
ing problem in #P, because a relative approximation allows for distinguishing
instances having no solution from instances that do have solutions (i.e.,, deciding
membership in Sg is reducible to a relative approximation of #R). Thus, rela-
tive approximation for all #7P is at least as hard as deciding all problems in NP.
However, in §6.2.2.2 we show that the former is not harder than the latter; that is,
relative approximation for any problem in #P can be obtained by a randomized
Cook-reduction to N'P. Before turning to these results, let us state the underlying
definition (and actually strengthen it by requiring approximation to within a factor
of 1+ ¢, for e € (0,1)).12

Definition 6.24 (approximation with relative deviation): Let f : {0,1}* — N
and £,6 : N — [0,1]. A randomized process 11 is called an (e,8)-approximator of f
if for every x it holds that

Prlli(z) - f(2)| > e(|e]) - f(2)] < 6(|])- (6.6)

We say that f is efficiently (1 — ¢)-approximable (or just (1 —)-approximable) if
there exists a probabilistic polynomial-time algorithm A that constitute an (¢,1/3)-
approzimator of f.

12We refrain from formally defining an F-factor approximation, for an arbitrary F', although
we shall refer to this notion in several informal discussions. There are several ways of defining the
aforementioned term (and they are all equivalent when applied to our informal discussions). For
example, an F-factor approximation of # R may mean that, with high probability, the output A(z)
satisfies #R(z)/F(|z|) < A(z) < F(|z|) - #R(z). Alternatively, we may require that #R(x) <
A(z) < F(|z|) - #R(z) (or, alternatively, that #R(z)/F(|z|) < A(z) < #R(x).

234 CHAPTER 6. RANDOMNESS AND COUNTING

The error probability of the latter algorithm A (which has error probability 1/3)
can be reduced to ¢ by O(log(1/6)) repetitions (see Exercise 6.29). Typically, the
running time of A will be polynomial in 1/e, and ¢ is called the deviation parameter.

6.2.2.1 Relative approximation for #Rgp

In this subsection we present a natural #7P-complete problem for which constant
factor approximation can be found in probabilistic polynomial-time. Stronger re-
sults regarding unnatural #P-complete problems appear in Exercise 6.30.

Consider the relation Rgp¢ consisting of pairs (¢, 7) such that ¢ is a DNF
formula and 7 is an assignment satisfying it. Recall that the search problem of
Rgns is easy to solve and that the proof of Theorem 6.19 establishes that # Rgp
is #P-complete (via a non-parsimonious reduction). Still, as we shall see, there
exists a probabilistic polynomial-time algorithm that provides a constant factor
approximation of #Rgne. We warn that the fact that #Rgns is #P-complete
via a non-parsimonious reduction means that the constant factor approximation
for #Rqns does not seem to imply a similar approximation for all problems in
#P. In fact, we should not expect each problem in #P to have a (probabilistic)
polynomial-time constant-factor approximation algorithm because this would imply
NP C BPP (since a constant factor approximation allows for distinguishing the
case in which the instance has no solution from the case in which the instance has
a solution).

The approximation algorithm for #Rgps is obtained by a deterministic re-
duction of the task of (e,1/3)-approximating #Rgn to an (additive deviation)
approximation of the type provided in Proposition 6.23. Consider a DNF formula
¢ = V-, C;, where each C; : {0,1}" — {0,1} is a conjunction. Our task is to ap-
proximate the number of assignments that satisfy at least one of the conjunctions.
Actually, we will deal with the more general problem in which we are (implicitly)
given m subsets Si, ..., S, C {0,1}" and wish to approximate | J; S;|. In our case,
each S; is the set of assignments that satisfy the conjunction C;. In general, we
make two computational assumptions regarding these sets (while letting “efficient”
mean implementable in time polynomial in n - m):

1. Given ¢ € [m], one can efficiently determine |S;].

2. Giveni € [m] and J C [m], one can efficiently approximate Prseg, [s € Ujes S’j]
up to an additive deviation of 1/poly(n 4+ m).

These assumptions are satisfied in our setting (where S; = C; '(1), see Exer-
cise 6.31). Now, the key observation towards approximating | |J;", S;| is that

m

Us:

=1

m

= Si \ U Sj = Z PrSGSi s g U Sj : |SZ| (67)
=1

i=1 j<i j<i

6.2. COUNTING 235

and that the probabilities in Eq. (6.7) can be approximated by the second assump-
tion. This leads to the following algorithm, where £ denotes the desired deviation
parameter (i.e., we wish to obtain (1 +e¢) - |[UJi~, Si|)-

Counstruction 6.25 Let ¢’ =¢/m. Fori=1 to m do:
1. Using the first assumption, compute |S;|.

2. Using the second assumption, obtain an approrimation p; = p; + &', where

def def ~
Di = PrSGSi [S ¢ Uj<i SJ] Set @i = pi- |SZ|

Output the sum of the a;’s.

Let N; = p;-|S;|, and note that by Eq. (6.7) it holds that |{J, S;| = >_; N;. We are
interested in the quality of the approximation to), N; provided by). a;. Using
a; = (p;£e')-|S;| = Ny £&'-|S;| (for each ¢), we have Y. a; =), Ny £e'-> . |S;].
Using >, |Si| < m- |, Sil =m-)_, Ni (and e = me'), weget). a; = (1£¢)->, N;.
Thus, we obtain the following result (see Exercise 6.31).

Proposition 6.26 For every positive polynomial p, the counting problem of Ran¢
is efficiently (1 — (1/p))-approzimable.

Using the reduction presented in the proof of Theorem 6.19, we conclude that the
number of unsatisfying assignments to a given CNF formula is efficiently (1—(1/p))-
approximable. We warn, however, that the number of satisfying assignments to
such a formula is not efficiently approximable. This concurs with the general
phenomenon by which relative approzimation may be possible for one quantity, but
not for the complementary quantity. Needless to say, such a phenomenon does not
occur in the context of additive-deviation approximation.

6.2.2.2 Relative approximation for #7P

Recall that we cannot expect to efficiently approximate every #P problem, where
throughout the rest of this section “approximation” is used as a shorthand for “rel-
ative approximation” (as in Definition 6.24). Specifically, efficiently approximating
#R yields an efficient algorithm for deciding membership in Sg = {x : R(x)#0}.
Thus, at best we can hope that approximating #R is not harder than deciding Sg
(i.e., that approximating # R is reducible in polynomial-time to Sg). This is indeed
the case for every NP-complete problem (i.e., if Sg is NP-complete). More gener-
ally, we show that approximating any problem in #7P is reducible in probabilistic
polynomial-time to A/P.

Theorem 6.27 For every R € PC and every positive polynomial p, there exists a
probabilistic polynomial-time oracle machine that when given oracle access to NP
constitutes a (1/p, p)-approzimator of #R, where p is a negligible function (e.g.,

pn) =27").

236 CHAPTER 6. RANDOMNESS AND COUNTING

Recall that it suffices to provide a (1/p, d)-approximator of #R, for any constant
6 < 0.5, because error reduction is applicable in this context (see Exercise 6.29).
Furthermore, it suffices to provide a (1/2,6)-approximator for every problem in
#P (see Exercise 6.32).

Teaching note: The following proof relies on the notion of hashing functions, presented
in Appendix D.2. Specifically, we shall assume familiarity with the basic definition (see
Appendix D.2.1), at least one construction (see Appendix D.2.2), and Lemma D.4
(of Appendix D.2.3). The more advanced material of Appendix D.2.3 (which follows
Lemma D.4) will not be used in the current section (but part of it will be used in

§6.2.4.2).

Proof: Given z, we show how to approximate |R(z)| to within some constant
factor. The desired (1 — (1/p))-approximation can be obtained as in Exercise 6.32.
We may also assume that R(z) # 0, by starting with the query “is in Sg”
and halting (with output 0) if the answer is negative. Without loss of generality,
we assume that R(z) C {0,1}*, where ¢ = poly(|z|). We focus on finding some
i € {1,...,£} such that 2'=* < |R(z)| < 2'F*.

We proceed in iterations. For ¢ = 1,...,£ + 1, we find out whether or not
|R(z)| < 2°. If the answer is positive then we halt with output 2!, and otherwise
we proceed to the next iteration. (Indeed, if we were able to obtain correct answers
to all these queries then the output 2* would satisfy 2'=! < |R(7)| < 2°.)

Needless to say, the key issue is how to check whether |R(z)| < 2°. The main
idea is to use a “random sieve” on the set R(z) such that each element passes the
sieve with probability 27¢. Thus, we expect |R(x)|/2° elements of R(z) to pass
the sieve. Assuming that the number of elements in R(z) that pass the random
sieve is indeed ||R(z)|/2%], it holds that |R(z)| > 2' if and only if some element of
R(z) passes the sieve. Assuming that the sieve can be implemented efficiently, the
question of whether or not some element in R(z) passed the sieve is of an “NP-
type” (and thus can be referred to our NP-oracle). Combining both assumptions,
we may implement the foregoing process by proceeding to the next iteration as
long as some element of R(z) passes the sieve. Furthermore, this implementation
will provide a reasonably good approximation even if the number of elements in
R(z) that pass the random sieve is only approximately equal to |R(x)|/2'. In fact,
the level of approximation that this implementation provides is closely related to
the level of approximation that is provided by the random sieve. Details follow.

Implementing a random sieve. The random sieve is implemented by using a family
of hashing functions (see Appendix D.2). Specifically, in the i*" iteration we use a
family H; such that each h € H} has a poly(¢)-bit long description and maps £-bit
long strings to i-bit long strings. Furthermore, the family is accompanied with
an efficient evaluation algorithm (i.e., mapping adequate pairs (h,z) to h(z)) and
satisfies (for every S C {0,1}")

i

Prrc [y € 5 1) =0) € (1= 1+)- 2715 < 57 (69)

6.2. COUNTING 237

(see Lemma D.4). The random sieve will let y pass if and only if h(y) = 0'. Indeed,
this random sieve is not as perfect as we assumed in the foregoing discussion, but
Eq. (6.8) suggests that in some sense this sieve is good enough. In particular,
Eq. (6.8) implies that if ¢ < log, |S| — O(1) then some string in S is likely to pass
the sieve, whereas if i > log, |S| + O(1) then no string in S is likely to pass the
sieve.

Implementing the queries. Recall that for some z, i and h € H}, we need to de-
termine whether {y € R(z) : h(y)=0"} = 0. This type of question can be cast as
membership in the set

Spu < {(z,i,h) : Jy st. (x,y) ER A h(y)=0'}. (6.9)

Using the hypotheses that R € PC and that the family of hashing functions has an
efficient evaluation algorithm, it follows that Sg g is in N'P.

The actual procedure. On input z € Sg and oracle access to Sg g, we proceed in
iterations, starting with ¢ = 1 and halting at ¢ = £ (if not before), where ¢ denotes
the length of the potential solutions for z. In the i iteration (where i < £), we
uniformly select h € H} and query the oracle on whether or not (z,i,h) € Sg u.
If the answer is negative then we halt with output 2¢, and otherwise we proceed to
the next iteration (using i « 7 + 1). Needless to say, if we reach the last iteration
(i.e., i = £) then we just halt with output 2°.

Indeed, we have ignored the case that © ¢ Sg, which can be easily handled by
a minor modification of the foregoing procedure. Specifically, on input x, we first
query Sr on z and halt with output O if the answer is negative. Otherwise we
proceed as in the foregoing procedure.

The analysis. We upper-bound separately the probability that the procedure out-
puts a value that is too small and the probability that it outputs a value that is
too big. In light of the foregoing discussion, we may assume that |R(z)| > 0, and
let i, = |log, |[R(z)|] > 0. Intuitively, at any iteration ¢ < i,, we expect (at least)
2%:~% elements of R(z) to pass the sieve and thus we are unlikely to halt before
iteration ¢, — O(1). Similarly, we are unlikely to reach iteration i, + O(1) because
at this stage we expect no elements of R(z) to pass the sieve (since the actual
expectation is 279(). A more rigorous analysis (of both cases) follows.

1. The probability that the procedure halts in a specific iteration ¢ < i, equals
Priemi[{y € R(z) : h(y) = 0'}| = 0], which in turn is upper-bounded by
2¢/|R(z)| (using Eq. (6.8) with ¢ = 1).}* Thus, the probability that the
procedure halts before iteration i, — 3 is upper-bounded by 22164 2¢/|R(z)|,
which in turn is less than 1/8 (because i, < log, |R(z)|). It follows that, with
probability at least 7/8, the output is at least 2*=3 > |R(x)|/16 (because
ix > (logy [R(z)]) — 1).

2. The probability that the procedure does not halt in iteration i > i, equals
Pricmill{y € R(z) : h(y) = 0'}| > 1], which in turn is upper-bounded by

I3Note that 0 does not reside in the open interval (0, 2p), where p = |R(x)|/2% > 0.

238 CHAPTER 6. RANDOMNESS AND COUNTING

a/(a —1)?, where o = 2'/|R(x)| > 1 (using Eq. (6.8) with ¢ = o — 1).14
Thus, the probability that the procedure does not halt by iteration i, + 4 is
upper-bounded by 8/49 < 1/6 (because i, > (log, |R(x)|) —1). Thus, with
probability at least 5/6, the output is at most 2= < 16 - |R(z)| (because
i < logy |R(x)]).

Thus, with probability at least (7/8)—(1/6) > 2/3, the foregoing procedure outputs
a value v such that v/16 < |R(z)| < 16v. Reducing the deviation by using the ideas
presented in Exercise 6.32 (and reducing the error probability as in Exercise 6.29),
the theorem follows. |

Digest. The key observation underlying the proof Theorem 6.27 is that, while
(even with the help of an NP-oracle) we cannot directly test whether the number
of solutions is greater than a given number, we can test (with the help of an NP-
oracle) whether the number of solutions that “survive a random sieve” is greater
than zero. Since the number of solutions that survive a random sieve reflects the
total number of solutions (normalized by the sieve’s density), this offers a way of
approximating the total number of solutions.

We mention that one can also test whether the number of solutions that “sur-
vive a random sieve” is greater than a small number, where small means polynomial
in the length of the input (see Exercise 6.34). Specifically, the complexity of this
test is linear in the size of the threshold, and not in the length of its binary de-
scription. Indeed, in many settings it is more advantageous to use a threshold that
is polynomial in some efficiency parameter (rather than using the threshold zero);
examples appear in §6.2.4.2 and in [103].

6.2.3 Searching for unique solutions

A natural computational problem (regarding search problems), which arises when
discussing the number of solutions, is the problem of distinguishing instances having
a single solution from instances having no solution (or finding the unique solution
whenever such exists). We mention that instances having a single solution facilitate
numerous arguments (see, for example, Exercise 6.24 and §10.2.2.1). Formally,
searching for and deciding the existence of unique solutions are defined within the
framework of promise problems (see Section 2.4.1).

Definition 6.28 (search and decision problems for unique solution instances):
The set of instances having unique solutions with respect to the binary relation R

is defined as USp ' {z : |R(z)| = 1}, where R(x) = {y: (z,y)€R}. As usual, we

denote Sp = {z : |R(z)] > 1}, and Sp = {0,1}*\ Sk = {z : |R(z)| = 0}.

M Here we use the fact that 1 & (2a~! —1,1). A better bound can be obtained by using the
hypothesis that, for every y, when h is uniformly selected in Hj, the value of h(y) is uniformly

distributed in {0,1}*. In this case, Pr,.,i[{y € R(z) : h(y) = 0°}| > 1] is upper-bounded by
. £
Ernemil{y € R(z) : hy) = 0°}[] = [R(x)|/2".

6.2. COUNTING 239

e The problem of finding unique solutions for R is defined as the search problem
R with promise USg U Sg (see Definition 2.29).

In continuation to Definition 2.30, candid searching for unique solutions for R
is defined as the search problem R with promise USg.

e The problem of deciding unique solution for R is defined as the promise problem
(USk, Sr) (see Definition 2.31).

Interestingly, in many natural cases, the promise does not make any of these prob-
lems any easier than the original problem. That is, for all known NP-complete
problems, the original problem is reducible in probabilistic polynomial-time to the
corresponding unique instances problem.

Theorem 6.29 Let R € PC and suppose that every search problem in PC is par-
stmoniously reducible to R. Then solving the search problem of R (resp., deciding
membership in Sg) is reducible in probabilistic polynomial-time to finding unique
solutions for R (resp., to the promise problem (USg,Sg)). Furthermore, there
exists a probabilistic polynomial-time computable mapping M such that for every
x € Sg it holds that Pr[M(x) € Sg] = 1, whereas for every x € Sg it holds that
Pr[M (x)€USg] > 1/poly(|z]).

We highlight the fact that the hypothesis asserts that R is PC-complete via parsi-
monious reductions; this hypothesis is crucial to Theorem 6.29 (see Exercise 6.35).
The large (but bounded-away from 1) error probability of the randomized Karp-
reduction M can be reduced by repetitions, yielding a randomized Cook-reduction
with exponentially vanishing error probability. Note that the resulting reduction
may make many queries that violate the promise, and still yields the correct answer
(with high probability) by relying on queries that satisfy the promise. (Specifically,
in the case of search problems, we avoid wrong solutions by checking each solution
obtained, while in the case of decision problems we rely on the fact that for every
x € Sg it always holds that M(z) € Sg.)

Proof: We focus on establishing the furthermore clause (and the main claim
follows). The proof uses many of the ideas of the proof of Theorem 6.27, and we
refer to the latter for motivation. We shall again make essential use of hashing
functions, and rely on the material presented in Appendix D.2.1-D.2.2.

As in the proof of Theorem 6.27, the idea is to apply a “random sieve” on R(x),
this time with the hope that a single element survives. Specifically, if we let each
element pass the sieve with probability approximately 1/|R(x)| then with constant
probability a single element survives. In such a case, we shall obtain an instance
with a unique solution (i.e., an instance of Sg z having a single NP-witness), which
will (essentially) fulfill our quest. Sieving will be performed by a random function
selected in an adequate hashing family (see Appendix D.2). A couple of questions
arise:

1. How do we get an approzimation to |R(x)|? Note that we need such an ap-
proximation in order to determine the adequate hashing family. Note that

240 CHAPTER 6. RANDOMNESS AND COUNTING

invoking Theorem 6.27 will not do, because the said oracle machine uses an
oracle to NP (which puts us back to square one, let alone that the said reduc-
tion makes many queries).!® Instead, we just select m € {0, ..., poly(]z|)} uni-
formly and note that (if |R(z)| > 0 then) Pr[m = [log, |R(z)|]] = 1/poly(|z]).
Next, we randomly map x to (x,m,h), where h is uniformly selected in an
adequate hashing family.

2. How does the question of whether a single element of R(x) pass the random
sieve translate to an instance of the unique-solution problem for R? Recall
that in the proof of Theorem 6.27 the non-emptiness of the set of element of
R(z) that pass the sieve (defined by h) was determined by checking mem-
bership (of (z,m,h)) in Sg.g € N'P (defined in Eq. (6.9)). Furthermore, the
number of NP-witnesses for (z,m,h) € Sg g equals the number of elements
of R(z) that pass the sieve. Thus, a single element of R(x) passes the sieve
(defined by h) if and only if (x,m,h) € Sg g has a single NP-witness. Us-
ing the parsimonious reduction of Sg g to Sg (which is guaranteed by the
theorem’s hypothesis), we obtained the desired instance.

Note that in case R(z) =) the aforementioned mapping always generates a no-
instance (of Sg, g and thus of Sg). Details follow.

Implementation (i.e., the mapping M). As in the proof of Theorem 6.27, we as-
sume, without loss of gemerality, that R(z) C {0,1}¢, where ¢ = poly(|z|). We
start by uniformly selecting m € {1,...,¢+ 1} and h € H;*, where H;" is a
family of efficiently computable and pairwise-independent hashing functions (see
Definition D.1) mapping ¢-bit long strings to m-bit long strings. Thus, we ob-
tain an instance (x,m,h) of Sg gy € NP such that the set of valid solutions for
(x,m,h) equals {y € R(x) : h(y) =0™}. Using the parsimonious reduction g of
the NP-witness relation of Sg r to R (i.e., the NP-witness relation of Sg), we
map (x,m,h) to g(z,m,h), and it holds that |{y € R(z) : h(y) = 0™}| equals

|R(g(xz,m,h))|. To summarize, on input z the randomized mapping M outputs

the instance M (x) def g(xz,m,h), where m € {1,...,0+ 1} and h € H;* are uni-

formly selected.

The analysis. Note that for any z € S it holds that Pr[M(z) € Sg] = 1. Assuming

that © € Sk, with probability exactly 1/(£ + 1) it holds that m = m,, where

me = [log, |R(x)|] + 1. Focusing on the case that m = m,, for a uniformly

selected h € H;*, we shall lower-bound the probability that the set R (z) def {ye
R(z) : h(y)=0™} is a singleton. First, using the Inclusion-Exclusion Principle, we
lower-bound Pry,e gy [|[R ()| > 0] by

> Praeups) =0"] = 37 Procyy[h(y)=h(y2) =0""].
vER(2) y1<y2€R(x)

I5Needless to say, both problems can be resolved by using a reduction to unique-solution in-
stances, but we still do not have such a reduction — we are currently designing it.

6.2. COUNTING 241

Next, we upper-bound Prj¢ = [|Ri(z)| > 1] by
S Prac [bly) =hly:) =0"].
y1<y2E€R(x)
Combining these two bounds, we get
Priemy=[|Rn()| = 1]
= Pricuy«[|Ru(2)] > 0] = Prpegyy [[Ra()] > 1]
> Y Preupe[h(y)=0"] — 20 Y Praepre [h(y) =h(y2) =0"]

yER(x) y1<y2ER(zx)

R()| -2~ ™ —2- ('R(f””) g2

2

where the last equality is due to the pairwise independence property. Using
2m==2 < |R(z)| < 2™=~1 it follows that

1
P =1] > i — 2 -
hemr [|Ru(z)| = 1] > 1/413;21/2{/) r >3

Thus, Pr[M(z) € USg] > 1/(8(¢ + 1)), and the theorem follows. [l

Comment. Theorem 6.29 is sometimes stated as referring to the unique solution
problem of SAT. In this case and when using a specific family of pairwise indepen-
dent hashing functions, the use of the parsimonious reduction can be avoided. For
details see Exercise 6.37.

Digest. The proof of Theorem 6.29 combines two reduction steps, which refer
to the NP-witness relation of Sg g, herein denoted R'. The main step is a many-
to-one randomized reduction of the search problem of R (resp., of Sg) to the
problem of finding unique solutions for R’ (resp., to (USg:, Sr/)). The second step
is a deterministic many-to-one reduction of the latter problem to the problem of
finding unique solutions for R. Indeed, the proof of Theorem 6.29 focuses on the
first step, while the second step is provided by the parsimonious reduction of R’ to
R (which is guaranteed by the hypothesis). As stated in the previous comment, in
the case of SAT there is a direct way of performing the second step.

6.2.4 Uniform generation of solutions

Recall that approximately counting the number of solutions for a relation R is a
straining of the decision problem Sp (which asks for distinguishing the case that
some solutions exist from the case that no solutions exist). We now turn to a
new type of computational problems, which may be viewed as a straining of search
problems. We refer to the task of generating a uniformly distributed solution for a
given instance, rather than merely finding an adequate solution. Nevertheless, as

242 CHAPTER 6. RANDOMNESS AND COUNTING

we shall see, for many natural problems (and all NP-complete ones) generating a
uniformly distributed solution is randomly reducible to finding a solution.

Needless to say, by definition, algorithms solving this (“uniform generation”)
task must be randomized. Focusing on relations in PC we consider two versions
of the problem, which differ by the level of approximation provided for the desired
(uniform) distribution.'®

Definition 6.30 (uniform generation): Let R € PC and Sg = {z : |[R(z)| > 1},
and let II be a probabilistic process.

1. We say that II solves the uniform generation problem of R if, on input x € Sg,
the process II outputs either an element of R(x) or a special symbol, denoted
1, such that Pr[II(x) € R(z)] > 1/2 and for every y € R(z) it holds that
Prlll(z)=y | II(z) € R(x)] = 1/|R(x)|-

2. For e : N — [0,1], we say that 1I solves the (1 — ¢)-approximate uniform
generation problem of R if, on input v € Sg, the distribution II(z) is e(|z|)-
close'™ to the uniform distribution on R(z).

In both cases, without loss of gemerality, we may require that if x ¢ Sgr then
Pr[II(z) = 1] = 1. More generally, we may require that II never outputs a string
not in R(x).

Note that the error probability of uniform generation (as in Item 1) can be made
exponentially vanishing (in |z|) by employing error-reduction. In contrast, we are
not aware of any general way of reducing the deviation of an approximate uniform
generation procedure (as in Item 2).!®

In §6.2.4.1 we show that, for many search problems, approximate uniform gener-
ation is computationally equivalent to approximate counting. In §6.2.4.2 we present
a direct approach for solving the uniform generation problem of any search prob-
lem in PC by using an oracle to AP. Thus, the uniform generation problem of
any NP-complete problem is randomly reducible to the problem itself (either in its
search or decision version).

6.2.4.1 Relation to approximate counting

We show that, for many natural search problems in PC, the approximate counting
problem associated with R is computationally equivalent to approximate uniform
generation with respect to R. Specifically, we refer to search problems R € PC
such that R'(z;y") def {y" : (z,y'y") € R} is strongly parsimoniously reducible to
R, where a strongly parsimonious reduction of R' to R is a parsimonious reduction g

16Note that a probabilistic algorithm running in strict polynomial-time is not able to output a
perfectly uniform distribution on sets of certain sizes. Specifically, referring to the standard model
that allows only for uniformly selected binary values, such algorithms cannot output a perfectly
uniform distribution on sets having cardinality that is not a power of two.

17See Appendix D.1.1.

18We note that in some cases, the deviation of an approximate uniform generation procedure
can be reduced. See discussion following Theorem 6.31.

6.2. COUNTING 243

that is coupled with an efficiently computable 1-1 mapping of pairs (g(z),y) € R to
pairs (z, h(z,y)) € R’ (i.e., h is efficiently computable and h(z,-) is a 1-1 mapping
of R(g(z)) to R'(x)). For technical reasons, we also assume that |g(z)| > |z| for
every z.!2 Note that, for many natural search problems R, the corresponding R’
is strongly parsimoniously reducible to R, where the additional technical condition
may be enforced by adequate padding (cf., Exercise 2.30). This holds, in particular,
for the search problems of SAT and Perfect Matching.

Recalling that both types of approximation problems are parameterized by the
level of precision, we obtain the following quantitative form of the aforementioned
equivalence.

Theorem 6.31 Let R € PC and let £ be a polynomial such that for every (z,y)€R
it holds that |y| < £(|z|). Suppose that R' is strongly parsimoniously reducible to

R, where R'(z;y') € {y" : (z,4'y") € R}.

1. From approximate counting to approximate uniform generation: Let £(n) =
1/54(n) and let u:N—(0,1) be a function satisfying p(n) > exp(—poly(n)).
Then, (1 — p)-approzimate uniform generation for R is reducible in proba-
bilistic polynomial-time to (1 — €)-approzimating #R.

2. From approximate uniform generation to approximate counting: For every
non-increasing and noticeable € : N — (0,1) (i.e., e(n) > 1/poly(n) for ev-
ery n), the problem of (1 — €)-approzimating #R is reducible in probabilistic
polynomial-time to (1 — €')-approzimate uniform generation problem of R,
where £'(n) = e(n)/74(n).

In fact, Part 1 holds also in case R' is just parsimoniously reducible to R.

Note that the quality of the approximate uniform generation asserted in Part 1
(i-e., p) is independent of the quality of the approximate counting procedure (i.e.,
€) to which the former is reduced, provided that the approximate counter performs
better than some threshold. On the other hand, the quality of the approximate
counting asserted in Part 2 (i.e., €) does depend on the quality of the approximate
uniform generation (i.e., '), but cannot reach beyond a certain bound (i.e., no-
ticeable relative deviation). Recall, that for problems that are NP-complete under
parsimonious reductions the quality of approximate counting procedures can be
improved (see Exercise 6.33). However, Theorem 6.31 is most useful when applied
to problems that are not NP-complete, because for problems that are NP-complete
both approximate counting and uniform generation are randomly reducible to the
corresponding search problem (see Exercise 6.39).

Proof: Throughout the proof, we assume for simplicity (and in fact without loss
of generality) that R(z) # 0 and R(x) C {0,1}¢=D,

Towards Part 1, let us first reduce the uniform generation problem of R to
#R (rather than to approximating #R). On input z € Sk, we shall generate

19This technical condition allows us to replace deviation bounds expressed in terms of |g(z)| by
bounds expressed in terms of |z|, while relying on the fact that £(|g(z)|) < &(|z|) holds for any

non-increasing €: N- (0, 1).

244 CHAPTER 6. RANDOMNESS AND COUNTING

a uniformly distributed y € R(z) by randomly generating its bits one after the
other. We proceed in iterations, entering the ‘" iteration with an (i — 1)-bit
long string y' such that R'(x;y’) def {y" : (z,y'y") € R} is not empty. With
probability |R'(z;y'1)|/|R'(x;y")| we set the ! bit to equal 1, and otherwise we
set it to equal 0. We obtain both |R'(z;y'1)| and |R'(z;y")| by using a parsimonious
reduction g of R = {((z;¥'),y") : (z,y'y") € R} € PC to R. That is, we obtain
|R'(x;y")| by querying for the value of |R(g(z;y'))|. Ignoring integrality issues, all
this works perfectly (i.e., we generate an ¢(n)-bit string uniformly distributed in
R(z)) as long as we have oracle access to #R. Since we only have oracle access
to an approximation of #R, a careful implementation of the foregoing idea is in
place.

Let us denote the approximation oracle by A. Firstly, by adequate error reduc-
tion, we may assume that, for every z, it holds that Pr[A(z) € (1£e(n)) - #R(2)] >
1—p'(]z]), where p'(n) = p(n)/€(n). In the rest of the analysis we ignore the proba-
bility that the estimate of # R(z) provided by the randomized oracle A (on query z)
deviates from the aforementioned interval. (We note that these rare events are the
only source of the possible deviation of the output distribution from the uniform
distribution on R(z).)?° Next, let us assume for a moment that A is deterministic
and that for every x and y' it holds that

Alg(z;y'0)) + A(g(z;9'1)) < Alg(z;y")). (6.10)

We also assume that the approximation is correct at the “trivial level” (where one
may just check whether or not (z,y) is in R); that is, for every y € {0,1}¢(=D it
holds that

A(g(z;y)) = 11if (z,y) € R and A(g(z;y)) = 0 otherwise. (6.11)

We modify the i*? iteration of the foregoing procedure such that, when entering
with the (i — 1)-bit long prefix y’, we set the i*® bit to o € {0, 1} with probability
A(g(z;y'0))/A(g(z;y')) and halt (with output L) with the residual probability
(ier, 1 (A(g(235/0))/Alg(w5y'))) — (A(g(wsy'1)) [A(g(z:))). Tndeed, Eq. (6.10)
guarantees that the latter instruction is sound, since the two main probabilities
sum-up to at most 1. If we completed the last (i.e., £(|z|)") iteration, then we
output the £(|x|)-bit long string that was generated. Thus, as long as Eq. (6.10)
holds (but regardless of other aspects of the quality of the approximation), every
Yy =01 0ye|) € R(x), is output with probability

Alg(z;01)) Alg(wso100)) Alg(#50105 -~ 04 (ja)))
Alg(z;A)) Alg(z;01)) Alg(z; 0102 - 0g(|2))-1))
which, by Eq. (6.11), equals 1/A(g(z;\)). Thus, the procedure outputs each ele-

ment of R(x) with equal probability, and never outputs a non-_L value that is out-
side R(z). It follows that the quality of approximation only effects the probability

(6.12)

2ONote that the (negligible) effect of these rare events may not be easy to correct. For starters,
we do not necessarily get an indication when these rare events occur. Furthermore, these rare
events may occur with different probability in the different invocations of algorithm A (i.e., on
different queries).

6.2. COUNTING 245

that the procedure outputs a non-_L value (which in turn equals |R(z)|/A(g(z; A))).
The key point is that, as long as Eq. (6.11) holds, the specific approximate values
obtained by the procedure are immaterial — with the exception of A(g(z;))), all
these values “cancel out”.

We now turn to enforcing Eq. (6.10) and Eq. (6.11). We may enforce Eq. (6.11)
by performing the straightforward check (of whether or not (z,y) € R) rather
than invoking A(g(z,v)).2! As for Eq. (6.10), we enforce it artificially by using
Al(z,y") Lef (1 4 e(|z]))3€eD=1v'D . A(g(x;9")) instead of A(g(z;y')). Recalling
that A(g(z;y)) = (1% <(Jol)) - |R(59')], we have

Al(z,y")
Al(z,y'o)

(L -+ (l2)* DD (1 = e(|a])) - R (259")]

>
< (L e(|a)) DI (1 4 e(ja])) - R (259/0))

and the claim (that Eq. (6.10) holds) follows by using (1 — (|z|)) - (1 + (]z|))® >
(I+e€(|z])). Note that the foregoing modification only effects the probability of out-
putting a non-_L value; this good event now occurs with probability |R'(z; A)| /A" (z, A),
which is lower-bounded by (1 + ¢(|z|))~(G%=D+1) > 1/2, where the inequality is
due to the setting of € (i.e., e(n) = 1/5¢(n)). Finally, we refer to our assump-
tion that A is deterministic. This assumption was only used in order to identify
the value of A(g(z,y')) obtained and used in the (|y'| — 1)* iteration with the
value of A(g(z,y')) obtained and used in the |y'|'® iteration. The same effect can
be obtained by just re-using the former value (in the |y'['} iteration) rather than
re-invoking A in order to obtain it. Part 1 follows.

Towards Part 2, let use first reduce the task of approximating #R to the
task of (exact) uniform generation for R. On input z € Sg, the reduction uses
the tree of possible prefixes of elements of R(z) in a somewhat different manner.
Again, we proceed in iterations, entering the i‘" iteration with an (i — 1)-bit long
string y' such that R'(x;y’) def {y" : (z,9y'y") € R} is not empty. At the '}
iteration we estimate the bigger among the two fractions |R'(z;y'0)|/|R/(z;y")]|
and |R'(z;y'1)|/|R'(z;y")|, by uniformly sampling the uniform distribution over
R'(x;y"). Thatis, taking poly(|z|/e'(]z|)) uniformly distributed samples in R'(z;y'),
we obtain with overwhelmingly high probability an approximation of these frac-
tions up to an additive deviation of at most &’(|z|). This means that we obtain a
relative approximation up-to a factor of 1 + 3¢'(|z|) for the fraction (or fractions)
that is (resp., are) bigger than 1/3. Indeed, we may not be able to obtain such
a good relative approximation of the other fraction (in the case that the other
fraction is very small), but this does not matter. It also does not matter that
we cannot tell which is the bigger fraction among the two; it only matter that
we use an approximation that indicates a quantity that is, say, bigger than 1/3.
We proceed to the next iteration by augmenting ¢’ using the bit that corresponds
to such a quantity. Specifically, suppose that we obtained the approximations
aoly’) |R(w;y/0)|/|R'(z:y")| and ar(y') ~ | (559'D)|/|R (;5')]. Then we ex-

21 Alternatively, we note that since A is a (1 — ¢)-approximator for ¢ < 1 it must hold that
#R'(z) = 0 implies A(z) = 0. Also, since ¢ < 1/3, if #R'(z) = 1 then A(z) € (2/3,4/3), which

may be rounded to 1.

246 CHAPTER 6. RANDOMNESS AND COUNTING

tend y' by the bit 1 if a1 (y') > ao(y’) and extend y’ by the bit 0 otherwise. Finally,
when we reach y = oy - - - 04(|,|) such that (z,y) € R, we output

Qg ()‘)71 C Qg (01)71 .- 'agmz“(allfz e Ug(m)_l)fl (6.13)

where for each ¢ it holds that a,, (o102 0i—1) is (1 £ 3¢'(|z])) - m%

As in Part 1, actions regarding R' (in this case uniform generation in R') are
conducted via the parsimonious reduction g to R. That is, whenever we need to
sample uniformly in the set R'(x;y’), we sample the set R(g(z;y')) and recover
the corresponding element of R'(z;y’) by using the mapping guaranteed by the
hypothesis that ¢ is strongly parsimonious. Finally, note that so far we assumed
a uniform generation procedure for R, but using an (1 — &')-approximate uniform
generation merely means that all our approximations deviate by another additive
term of €. Thus, with overwhelmingly high probability, for each ¢ it holds that
A, (0102 0;-1) is (L £ 6'(|z|)) - |R' (w;0102 -+ 0:)|/| R (x; 0102 - -0i—1)]. Tt fol-
lows that, on input x, when using an oracle that provides a (1 — ¢’)-approximate
uniform generation for R, with overwhelmingly high probability, the output (as
defined in Eq. (6.13)) is in

(=) o1 oi
11 ((1:I:6€'(|:C|))1- | '3 ”) (6.14)

paiey |R'(x;01 -+ 04)]

where the error probability is due to the unlikely case that in one of the iterations
our approximations deviates from the correct value by more than an additive devi-
ation term of 2¢'(n). Noting that Eq. (6.14) equals (1 +6¢'(|z|))~“I=D - |R(z)| and
using (1 £ 6¢'(|2|))~“1=D C (1 £ &(|z])) (which holds for &' = £/7¢), Part 2 follows.
|

6.2.4.2 A direct procedure for uniform generation

We conclude the current chapter by presenting a direct procedure for solving the
uniform generation problem of any R € PC. This procedure uses an oracle to NP
(or to Sk itself in case it is NP-complete), which is unavoidable because solving the
uniform generation problem of R implies solving the corresponding search prob-
lem (which in turn implies deciding membership in Sg). One advantage of this
procedure, over the reduction presented in §6.2.4.1, is that it solves the uniform
generation problem rather than the approzimate uniform generation problem.

We are going to use hashing again, but this time we use a family of hashing
functions having a stronger “uniformity property” (see Appendix D.2.3). Specifi-
cally, we will use a family of /-wise independent hashing functions mapping ¢-bit
strings to m-bit strings, where ¢ bounds the length of solutions in R, and rely on
the fact that such a family satisfies Lemma D.6. Intuitively, such functions parti-
tion {0, 1}* into 2™ cells and Lemma D.6 asserts that these partitions “uniformly
shatter” all sufficiently large sets. That is, for every set S C {0, 1}* of size Q(£-2™),
the partition induced by almost every function in this family is such that each cell

6.2. COUNTING 247

contains approximately |S|/2™ elements of S. In particular, if | S| = ©(£-2™) then
each cell contains ©(f) elements of S. We denote this family of functions by H}"*,
and rely on the fact that its elements have succinct and effective representation (as
defined in Appendix D.2.1).

Loosely speaking, the following procedure (for uniform generation) first selects
a random hashing function and tests whether it “uniformly shatters” the target set
S = R(z). If this condition holds then the procedure selects a cell at random and
retrieve all the elements of S residing in the chosen cell. Finally, the procedure
either outputs one of the retrieved elements or halts with no output, where each
retrieved element is output with a fixed probability p (which is independent of the
actual number of elements of S that reside in the chosen cell). This guarantees that
each element e € S is output with the same probability (i.e., 2™ - p), regardless
of the number of elements of S that resides with e in the same cell.

In the following construction, we assume that on input x we also obtain a good
approximation to the size of R(x). This assumption can be enforced by using
an approximate counting procedure as a preprocessing stage. Alternatively, the
ideas presented in the following construction yield such an approximate counting
procedure.

Construction 6.32 (uniform generation): On input x and m!, € {m,, m, + 1},
where my = |logs |R(z)|] and R(x) C {0,1}¢, the oracle machine proceeds as

follows.

1. Selecting a partition that “uniformly shatters” R(x). The machine sets m =
max (0, m}, —log, 40¢) and selects uniformly h € H;*. Such a function defines
a partition of {0,1}¢ into 2™ cells®®, and the hope is that each cell contains
approzimately the same number of elements of R(x). Neat, the machine
checks that this is indeed the case or rather than no cell contains more that
120¢ elements of R(z) (i.e., more than twice the expected number). This is
done by checking whether or not (z,h, 112°°+t1) is in the set S’g)H defined as
follows

Sy E @R, 3 st {y: (), y) ERAN (y)=v}| > t} (6.15)

= {(z',h,1Y) : Ju,y1, .y ye S O (' B vy, oYt}
where P (x' 1!, v,y1, ..., y¢) holds if and only if y1 <ys - -- <y, and for every
J € [t] it holds that (z',y;) € R A h'(y;)=v. Note that Sg)H eENP.
If the answer is positive (i.e., there exists a cell that contains more that
120¢ elements of R(z)) then the machine halts with output L. Otherwise,
the machine continues with this choice of h. In this case, no cell contains

more that 120¢ elements of R(x) (i.e., for every v € {0,1}™, it holds that
Hy : (z,y) € R A h(y) =v}| < 120¢). We stress that this is an absolute

guarantee that follows from (x,h, 1120Z+1) ¢ Sg,)H'

22For sake of uniformity, we allow also the case of m = 0, which is rather artificial. In this
case all hashing functions in H? map {0, 1}Z to the empty string, which is viewed as 0°, and thus
define a trivial partition of {0,1}¢ (i.e., into a single cell).

248 CHAPTER 6. RANDOMNESS AND COUNTING

2. Selecting a cell and determining the number of elements of R(z) that are

contained in it. The machine selects uniformly v € {0,1}™ and determines

- H{y : (z,y) €R A h(y)=v}| by making queries to the following NP-set

5522,)}1 def {(@', 00", 1Y) : Fyy, sy st D (@ B 0y,). (6.16)

Specifically, for i = 1,...,120¢, it checks whether (x,h,v,1") is in S’g)H, and
sets s, to be the largest value of © for which the answer is positive.

3. Obtaining all the elements of R(x) that are contained in the selected cell,
and outputting one of them at random. Using s,, the procedure reconstructs
the set S, & {y : (z,y) € R A h(y) =v}, by making queries to the following
NP-set

Sg{?),)H déf {('T’:hlavla]-taj) : Elyl: s Yt s.t. ¢(3)(xlahlavlayla "'7yt7j)}7 (617)

where Y3 (' W v’ y1,...,ye,7) holds if and only if v (z' W, v Y1, ... ys)
holds and the j** bit of y1---y: equals 1. Specifically, for j1 = 1,...,s, and
jo = 1,...,¢, we make the query (z,h,v,1% (51 — 1) - £ + j2) in order to
determine the j$* bit of y;,. Finally, having recovered S,, the procedure
outputs each y € S, with probability 1/120¢, and outputs L otherwise (i.e.,
with probability 1 — (s,/120¢)).

Recall that for |R(z)] = Q(¢) and m = m), — log, 40¢, Lemma D.6 implies that,
with overwhelmingly high probability (over the choice of h € H}"), each set {y :
(x,y) € R A h(y) =v} has cardinality (1 £ 0.5)|R(x)|/2™. Thus, ignoring the case
of |[R(z)| = O(£), Step 1 can be easily adapted to yield an approximate counting
procedure for #R; see Exercise 6.38, which also handles the case of |R(z)| = O(¢)
by using ideas as in Step 2. However, our aim is to establish the following result.

Proposition 6.33 Construction 6.32 solves the uniform generation problem of R.

Proof: Intuitively, by Lemma D.6 (and the setting of m), with overwhelmingly
high probability, a uniformly selected h € H;* partitions R(x) into 2™ cells, each
containing at most 120¢ elements. Following is the tedious proof of this fact. Since
m = max(0,m/ — log, 40¢), we may focus on the case that m! > log,40¢ (as in
the other case |R(x)| < 2™=+! < 80¢). In this case, by Lemma D.6 (using ¢ = 0.5
and m = m!, — log, 40¢ < log, |R(z)| — log, 20¢ (which implies m < log, |R(z)| —
log,(5¢/€?))), with overwhelmingly high probability, each set {y : (z,y) € R A
h(y) =wv} has cardinality (1 £+ 0.5)|R(z)|/2™. Using m! > (log, |R(z)|) — 1 (and
m = m!, — log, 40¢), it follows that |R(z)|/2™ < 80¢ and hence each cell contains
at most 120¢ elements of R(z). We also note that, using m/, < (log, |R(z)|) + 1, it
follows that |R(z)|/2™ > 20¢ and hence each cell contains at least 10¢ elements of
R(x).

The key observation, stated in Step 1, is that if the procedure does not halt
in Step 1 then it is indeed the case that h induces a partition in which each cell

6.2. COUNTING 249

contains at most 120¢ elements of R(x). The fact that these cells may contain a
different number of elements is immaterial, because each element is output with
the same probability (i.e., 1/120¢). What matters is that the average number of
elements in the various cells is sufficiently large, because this average number deter-
mines the probability that the procedure outputs an element of R(z) (rather than
1). Specifically, conditioned on not halting in Step 1, the probability that Step 3
outputs some element of R(z) equals the average number of elements per cell (i.e.,
|R(z)|/2™) divided by 120¢. Recalling that for m > 0 (resp., m = 0) it holds that
|R(z)|/2™ > 20¢ (resp., |R(z)| > 1), we conclude that in this case some element
of R(z) is output with probability at least 1/6 (resp., |R(x)|/120¢). Recalling that
Step 1 halts with negligible probability, it follows that the procedure outputs some
element of R(z) with probability at least 0.99 - min((|R(z)|/120¢),(1/6)). I

Comments. We can easily improve the performance of Construction 6.32 by
dealing separately with the case m = 0. In such a case, Step 3 can be simplified
and improved by uniformly selecting and outputting an element of Sy (which equals
R(z)). Under this modification, the procedure outputs some element of R(z) with
probability at least 1/6. In any case, recall that the probability that a uniform
generation procedure outputs L can be deceased by repeated invocations.

Digest. Construction 6.32 is the culmination of the “hashing paradigm” that
is aimed at allowing various manipulations of arbitrary sets. In particular, as
seen in Construction 6.32, hashing can be used in order to partition a large set
into an adequate number of small subsets that are of approximately the same
size. We stress that hashing is performed by randomly selecting a function in an
adequate family. Indeed, the use of randomization for such purposes (i.e., allowing
manipulation of large sets) seems indispensable.

Chapter Notes

One key aspect of randomized procedures is their success probability, which is ob-
viously a quantitative notion. This aspect provides a clear connection between
probabilistic polynomial-time algorithms considered in Section 6.1 and the count-
ing problems considered in Section 6.2 (see also Exercise 6.20). More appealing
connections between randomized procedures and counting problems (e.g., the ap-
plication of randomization in approximate counting) are presented in Section 6.2.
These connections justify the presentation of these two topics in the same chapter.

Randomized algorithms

Making people take an unconventional step requires compelling reasons, and indeed
the study of randomized algorithms was motivated by a few compelling examples.
Ironically, the appeal of the two most famous examples (discussed next) has been
somewhat diminished due to subsequent finding, but the fundamental questions
that emerged remain fascinating regardless of the status of these two examples.

250 CHAPTER 6. RANDOMNESS AND COUNTING

These questions refer to the power of randomization in various computational set-
tings, and in particular in the context of decision and search problems. We shall
return to these questions after briefly reviewing the story of the aforementioned
examples.

The first example: primality testing. For more than two decades, primality
testing was the archetypical example of the usefulness of randomization in the con-
text of efficient algorithms. The celebrated algorithms of Solovay and Strassen [206]
and of Rabin [179], proposed in the late 1970’s, established that deciding primality
is in coRP (i.e., these tests always recognize correctly prime numbers, but they
may err on composite inputs). (The approach of Construction 6.4, which only es-
tablishes that deciding primality is in BPP, is commonly attributed to M. Blum.)
In the late 1980’s, Adleman and Huang [2] proved that deciding primality is in RP
(and thus in ZPP). In the early 2000’s, Agrawal, Kayal, and Saxena [3] showed
that deciding primality is actually in 7. One should note, however, that strong
evidence to the fact that deciding primality is in P was actually available from
the start: we refer to Miller’s deterministic algorithm [161], which relies on the
Extended Riemann Hypothesis.

The second example: undirected connectivity. Another celebrated example
to the power of randomization, specifically in the context of log-space computa-
tions, was provided by testing undirected connectivity. The random-walk algorithm
presented in Construction 6.12 is due to Aleliunas, Karp, Lipton, Lovasz, and Rack-
off [5]. Recall that a deterministic log-space algorithm was found twenty-five years
later (see Section 5.2.4 or [185]).

Another famous example: polynomial identity testing. A third famous
example, which dates back to about the same period, is the polynomial identity
tester of [62, 194, 235]. This tester, presented in §6.1.3.1, has found many applica-
tions in complexity theory (some are implicit in subsequent chapters). Needless to
say, in the abstract setting of Construction 6.7, randomization is indispensable. In-
terestingly, the computational version mentioned in Exercise 6.17 has so far resisted
de-randomization attempts (cf. [130]).

Other randomized algorithms. In addition to the three foregoing examples,
several other appealing randomized algorithms are known. Confining ourselves to
the context of search and decision problems, we mention the algorithms for finding
perfect matchings and minimum cuts in graphs (see, e.g., [87, Apdx. B.1] or [163,
Sec. 12.4&10.2]), and note the prominent role of randomization in computational
number theory (see, e.g., [22] or [163, Chap. 14]). We mention that randomized al-
gorithms are more abundant in the context of approximation problems (let alone in
other computational settings (cf., e.g., Chapter 9, Appendix C, and Appendix D.3).
For a general textbook on randomized algorithms, we refer the interested reader
to [163].

6.2. COUNTING 251

While it can be shown that randomization is essential in several important
computational settings (cf., e.g., Chapter 9, Section 10.1.2, Appendix C, and Ap-
pendix D.3), a fundamental question is whether randomization is essential in the
context of search and decision problems. The prevailing conjecture is that ran-
domization is of limited help in the context of time-bounded and space-bounded
algorithms. For example, it is conjectured that BPP = P and BPL = L. Note
that such conjectures do not rule out the possibility that randomization is helpful
also in these contexts, they merely says that this help is limited. For example, it
may be the case that any quadratic-time randomized algorithm can be emulated
by a cubic-time deterministic algorithm, but not by a quadratic-time deterministic
algorithm.

On the study of BPP. The conjecture BPP = P is referred to as a full deran-
domization of BPP, and can be shown to hold under some reasonable intractability
assumptions. This result (and related ones) will be presented in Section 8.3. In
the current chapter, we only presented uncoditional results regarding BPP like
BPP C P/poly and BPP C PH. Our presentation of Theorem 6.9 follows the
proof idea of Lautemann [146]. A different proof technique, which yields a weaker
result but found more applications (see, e.g., Theorems 6.27 and F.2), was pre-
sented (independently) by Sipser [202].

On the role of promise problems. In addition to their use in the formula-
tion of Theorem 6.9, promise problems allow for establishing complete problems
and hierarchy theorems for randomized computation (see Exercises 6.14 and 6.15,
respectively). We mention that such results are not known for the correspond-
ing classes of standard decision problems. The technical difficulty is that we do
not know how to enumerate and/or recognize probabilistic machines that utilize a
non-trivial probabilistic decision rule.

On the feasibility of randomized computation. Different perspectives on
this question are offered by Chapter 8 and Appendix D.4. Specifically, as advocated
in Chapter 8, generating uniformly distributed bit sequences is not really necessary
for implementing randomized algorithms; it suffices to generate sequences that look
(to their user) as if they are uniformly distributed. In many cases this leads to re-
ducing the number of coin tosses in such implementations, and at times even to a
full (efficient) derandomization (see Sections 8.3 and 8.4). A less radical approach
is presented in Appendix D.4, which deals with the task of extracting almost uni-
formly distributed bit sequences from sources of weak randomness. Needless to say,
these two approaches are complimentary and can be combined.

Counting problems

The counting class #P was introduced by Valiant [223], who proved that computing
the permanent of 0/1-matrices is #P-complete (i.e., Theorem 6.20). Interestingly,

252 CHAPTER 6. RANDOMNESS AND COUNTING

like in the case of Cook’s introduction of NP-completeness [55], Valiant’s motivation
was determining the complexity of a specific problem (i.e., the permanent).

Our presentation of Theorem 6.20 is based both on Valiant’s paper [223] and on
subsequent studies (most notably [29]). Specifically, the high-level structure of the
reduction presented in Proposition 6.21 as well as the “structured” design of the
clause gadget is taken from [223], whereas the Deus Ex Machina gadget presented
in Figure 6.3 is based on [29]. The proof of Proposition 6.22 is also based on [29]
(with some variants). Turning back to the design of clause gadgets we regret not
being able to cite and/or use a systematic study of this design problem.

As noted in the main text, we decided not to present a proof of Toda’s Theo-
rem [215], which asserts that every set in PH is Cook-reducible to #P (i.e., The-
orem 6.16). Appendix F.1 contains a proof of a related result, which implies that
PH is reducible to #P via probabilistic polynomial-time reductions. Alternative
proofs can be found in [132, 207, 215].

Approximate counting and related problems. The approximation proce-
dure for #P is due to Stockmeyer [209], following an idea of Sipser [202]. Our
exposition, however, follows further developments in the area. The randomized
reduction of AP to problems of unique solutions was discovered by Valiant and
Vazirani [225]. Again, our exposition is a bit different.

The connection between approximate counting and uniform generation (pre-
sented in §6.2.4.1) was discovered by Jerrum, Valiant, and Vazirani [129], and
turned out to be very useful in the design of algorithms (e.g., in the “Markov Chain
approach” (see [163, Sec. 11.3.1])). The direct procedure for uniform generation
(presented in §6.2.4.2) is taken from [26].

In continuation to §6.2.2.1, which is based on [135], we refer the interested reader
to [128], which presents a probabilistic polynomial-time algorithm for approximat-
ing the permanent of non-negative matrices. This fascinating algorithm is based
on the fact that knowing (approximately) certain parameters of a non-negative
matrix M allows to approximate the same parameters for a matrix M’ provided
that M and M' are sufficiently similar. Specifically, M and M’ may differ only
on a single entry, and the ratio of the corresponding values must be sufficiently
close to one. Needless to say, the actual observation (is not generic but rather)
refers to specific parameters of the matrix, which include its permanent. Thus,
given a matrix M for which we need to approximate the permanent, we consider a
sequence of matrices My, ..., My = M such that My is the all 1’s matrix (for which
it is easy to evaluate the said parameters), and each M,; is obtained from M; by
reducing some adequate entry by a factor sufficiently close to one. This process of
(polynomially many) gradual changes, allows to transform the dummy matrix M,
into a matrix M; that is very close to M (and hence has a permanent that is very
close to the permanent of M). Thus, approximately obtaining the parameters of
M, allows to approximate the permanent of M.

Finally, we mention that Section 10.1.1 provides a treatment of a different type
of approximation problems. Specifically, when given an instance z (for a search
problem R), rather than seeking an approximation of the number of solutions (i.e.,

6.2. COUNTING 253

#R(z)), one seeks an approximation of the value of the best solution (i.e., best
y € R(z)), where the value of a solution is defined by an auxiliary function.

Exercises

Exercise 6.1 Show that if a search (resp., decision) problem can be solved by a
probabilistic polynomial-time algorithm having zero failure probability, then the
problem can be solve by a deterministic polynomial-time algorithm.

(Hint: replace the internal coin tosses by a fixed outcome that is easy to generate deterministically

(e.g., the all-zero sequence).)

Exercise 6.2 (randomized reductions) In continuation to the definitions pre-
sented in Section 6.1.1, prove the following;:

1. If a problem II is probabilistic polynomial-time reducible to a problem that
is solvable in probabilistic polynomial-time then II is solvable in probabilistic
polynomial-time, where by solving we mean solving correctly except with
negligible probability.

Warning: Recall that in the case that IT' is a search problem, we required
that on input « the solver provides a correct solution with probability at least
1 — u(]z]), but we did not require that it always returns the same solution.

(Hint: without loss of generality, the reduction does not make the same query twice.)
2. Prove that probabilistic polynomial-time reductions are transitive.

3. Prove that randomized Karp-reductions are transitive and that they yield a
special case of probabilistic polynomial-time reductions.

Define one-sided error and zero-sided error randomized (Karp- and Cook-) reduc-
tions, and consider the foregoing items when applied to them. Note that the
implications for the case of one-sided error are somewhat subtle.

Exercise 6.3 (on the definition of probabilistically solving a search problem)
In continuation to the discussion at the beginning of Section 6.1.2, suppose that
for some probabilistic polynomial-time algorithm A and a positive polynomial p

the following holds: for every z € Sg e {z : R(z) # 0} there exists y € R(z)
such that Pr{[A(z) = y] > 0.5+ (1/p(|z|)), whereas for every = ¢ Sg it holds that
Pr[A(z) = L] > 0.5+ (1/p(|z|))-

1. Show that there exists a probabilistic polynomial-time algorithm that solves
the search problem of R with negligible error probability.

(Hint: See Exercise 6.4 for a related procedure.)

2. Reflect on the need to require that one (correct) solution occurs with probabil-
ity greater than 0.5+ (1/p(|z|)). Specifically, what can we do if it is only guar-
anteed that for every « € Sg it holds that Pr[A(z) € R(z)] > 0.5+ (1/p(|z]))
(and for every x ¢ Sg it holds that Pr[A(z) = L] > 0.5+ (1/p(|z|)))?

254 CHAPTER 6. RANDOMNESS AND COUNTING

Note that R is not necessarily in PC. Indeed, in the case that R € PC we can
eliminate the error probability for every z € Sk, and perform error-reduction for
x € Sg as in the case of RP.

Exercise 6.4 (error-reduction for BPP) For ¢ : N — [0, 1], let BPP. denote
the class of decision problems that can be solved in probabilistic polynomial-time
with error probability upper-bounded by e. Prove the following two claims:

1. For every positive polynomial p and e(n) = (1/2) — (1/p(n)), the class BPP.
equals BPP.

2. For every positive polynomial p and e(n) = 2-P(") | the class BPP equals
BPP..

Formulate a corresponding version for the setting of search problem. Specifically,
for every input that has a solution, consider the probability that a specific solution
is output.

Guideline: Given an algorithm A for the syntactically weaker class, consider an algo-
rithm A’ that on input z invokes A on = for ¢(|z|) times, and rules by majority. For Part 1
set t(n) = O(p(n)?) and apply Chebyshev’s Inequality. For Part 2 set t(n) = O(p(n)) and
apply the Chernoff Bound.

Exercise 6.5 (error-reduction for RP) For p : N — [0, 1], we define the class
of decision problem RP, such that it contains S if there exists a probabilistic
polynomial-time algorithm A such that for every z € S it holds that Pr[A(z) =
1] > p(]z|) and for every ¢ S it holds that Pr[A(z) = 0] = 1. Prove the following
two claims:

1. For every positive polynomial p, the class RP,, equals RP.

2. For every positive polynomial p, the class RP equals RP,, where p(n) =
1—2-pm),

(Hint: The one-sided error allows using an “or-rule” (rather than a “majority-rule”) for the

decision.)

Exercise 6.6 (error-reduction for ZPP) For p: N — [0,1], we define the class
of decision problem ZPP, such that it contains S if there exists a probabilistic
polynomial-time algorithm A such that for every z it holds that Pr[A(z) = xs(z)] >
p(|z]) and Pr[A(z) € {xs(z),L}] =1, where xs(z) =1if z € S and xs(z) =0
otherwise. Prove the following two claims:

1. For every positive polynomial p, the class ZPP,,, equals ZPP.

2. For every positive polynomial p, the class ZPP equals ZPP,, where p(n) =
1—2-p),

6.2. COUNTING 255

Exercise 6.7 (an alternative definition of ZPP) We say that the decision prob-
lem S is solvable in expected probabilistic polynomial-time if there exists a random-
ized algorithm A and a polynomial p such that for every « € {0,1}* it holds that
Pr[A(z) = xs(z)] =1 and the expected number of steps taken by A(x) is at most
p(|z|). Prove that S € ZPP if and only if S is solvable in expected probabilistic
polynomial-time.

Guideline: Repeatedly invoking a ZPP algorithm until it yields an output other than L
yields an expected probabilistic polynomial-time solver. On the other hand, truncating
runs of an expected probabilistic polynomial-time algorithm once they exceed twice the
expected number of steps (and outputting L on such runs), we obtain a ZPP algorithm.

Exercise 6.8 Prove that for every S € NP there exists a probabilistic polynomial-
time algorithm A such that for every x € S it holds that Pr[A(z) = 1] > 0 and for
every ¢ S it holds that Pr[A(z) = 0] = 1. That is, A has error probability at
most 1 — exp(—poly(|z|)) on yes-instances but never errs on no-instances. Thus,
NP may be fictitiously viewed as having a huge one-sided error probability.

Exercise 6.9 Let BPP and coRP be classes of promise problems (as in Theo-
rem 6.9).

1. Prove that every problem in BPP is reducible to the set {1} € P by a two-
sided error randomized Karp-reduction.

2. Prove that if a set S is Karp-reducible to RP (resp., coRP) via a deterministic
reduction then S € RP (resp., S € coRP).

Exercise 6.10 (randomness-efficient error-reductions) Note that standard
error-reduction (as in Exercise 6.4) yields error probability § at the cost of increas-
ing the randomness complexity by a factor of O(log(1/6)). Using the randomness-
efficient error-reductions outlined in §D.4.1.3, show that error probability é can be
obtained at the cost of increasing the randomness complexity from r to O(r) +
1.5log,(1/6). Note that this allows satisfying the hypothesis made in the illustra-
tive paragraph of the proof of Theorem 6.9.

Exercise 6.11 In continuation to the illustrative paragraph in the proof of Theo-
rem 6.9, consider the promise problem IT' = (II! ., IT!) such that II! ., = {(z,7) :

yes? - no yes

Ir'|=p'(lz]) A (V" € {0,1}71) A’ (2, /") = 1} and 1T, = {(z,7') : ¢ S}. Recall

no

that for every x it holds that PrTE{OJ}Q},/“zU[Al(g:,r);éXS(x)] < 2= (P (lz)+1)

1. Show that mapping z to (z,7'), where v’ is uniformly distributed in {0, 1}1”("5‘),
constitutes a one-sided error randomized Karp-reduction of S to IT'.

2. Show that II' is in the promise problem class coRP.

Exercise 6.12 (randomized versions of A'P) In continuation to Footnote 7,
counsider the following two variants of M.A (which we consider the main randomized
version of N'P).

256 CHAPTER 6. RANDOMNESS AND COUNTING

1. S € MAW if there exists a probabilistic polynomial-time algorithm V' such
that for every z € S there exists y € {0, 1}P°V(=D) such that Pr[V(z,y)=1] >
1/2, whereas for every « ¢ S and every y it holds that Pr[V(z,y)=0] = 1.

2. S € MA® if there exists a probabilistic polynomial-time algorithm V' such
that for every = € S there exists y € {0, 1}P°V(#D such that Pr[V (z,y)=1] >
2/3, whereas for every « ¢ S and every y it holds that Pr[V(z,y)=0] > 2/3.

Prove that MA®M = NP whereas MA®? = MA.

Guideline: For the first part, note that a sequence of internal coin tosses that makes
V accept (z,y) can be incorporated into y itself (yielding a standard NP-witness). For
the second part, apply the ideas underlying the proof of Theorem 6.9, and note that an
adequate sequence of shifts (to be used by the verifier) can be incorporated in the single
message sent by the prover.

Exercise 6.13 (BPP C ZP’PNP) In continuation to the proof of Theorem 6.9,
present a zero-error randomized reduction of BPP to AN'P, where all classes are the
standard classes of decision problems.

Guideline: On input z, the ZPP-machine uniformly selects s = (s1, ..., 5m), and for each
o € {0,1} makes the query (z,0,3), which is answered positively by the (coNP) oracle if
for every r it holds that V;(A(z,r @ s;) =0). The machine outputs o if and only if the
query (z,0,3) was answered positively, and outputs L otherwise (i.e., both queries were
answered negatively).

Exercise 6.14 (completeness for promise problem versions of BPP) Referring
to the promise problem version of BPP, present a promise problem that is complete
for this class under (deterministic log-space) Karp-reductions.

Guideline: The promise problem consists of yes-instances that are Boolean circuits that
accept at least a 2/3 fraction of their possible inputs and no-instances that are Boolean
circuits that reject at least a 2/3 fraction of their possible inputs. The reduction is
essentially the one provided in the proof of Theorem 2.21, and the promise is used in an
essential way in order to provide a BPP-algorithm.

Exercise 6.15 (hierarchy theorems for promise problem versions of BPTIME)
Fixing a model of computation, let BPTIME(t) denote the class of promise prob-
lems that are solvable by a randomized algorithm of time-complexity ¢ that has a
two-sided error probability at most 1/3. (The standard definition refers only to
decision problems.) Formulate and prove results analogous to Theorem 4.3 and
Corollary 4.4.

Guideline (by Dieter van Melkebeek): Apply the “delayed diagonalization” method
used to prove Theorem 4.6 rather than the simple diagonalization used in Theorem 4.3.
Analogously to the proof of Theorem 4.6, for every ¢ € {0,1}, define Ay (z) = o if
Pr[M'(z) = o] > 2/3 and define Ay (z) = L otherwise (i.e., if 1/3 < Pr[M'(z) = 1] <
2/3), where M'(z) denotes the computation of M (z) truncated after ¢ (|z|) steps. For z €
[anr, Bar —1], define f(z) = Ay (z+1), where f(z) = L means that = violates the promise.

6.2. COUNTING 257

Define f(Bm) = 1 if Ay (anm) = 0 and f(Ba) = 0 otherwise (i.e., if Ay (anm) € {1,L1}).
Note that f(z) is computable in randomized time 5(t1(|w| + 1)) by emulating a single
computation of M'(z) if z € [am,Bm — 1] and emulating all computations of M'(as) if
z = Pm. Prove that the promise problem f cannot be solved in randomized time t1, by
noting that Bas satisfies the promise and that for every z € [aay + 1, Sar] that satisfies the
promise (i.e., f(z) € {0,1}) it holds that if Ay (x) = f(z) then f(z—1) = Am(x) € {0,1}.

Exercise 6.16 (extracting square roots modulo a prime) Using the follow-
ing guidelines, present a probabilistic polynomial-time algorithm that, on input a
prime P and a quadratic residue s (mod P), returns r such that r> =s (mod P).

1. Prove that if P =3 (mod 4) then s("+1)/4 mod P is a square root of the
quadratic residue s (mod P).

2. Note that the procedure suggested in Item 1 relies on the ability to find an
odd integer e such that s¢ = (mod P). Indeed, once such e is found, we
may output s(¢t1)/2 mod P. (In Item 1, we used e = (P —1)/2, which is odd

since P=3 (mod 4).)

Show that it suffices to find an odd integer e together with a residue ¢ and

an even integer ¢ such that s°¢¢ = 1 (mod P), because s = s°t1t¢ =
(s(e+1)/2te’/2)2_

3. Given a prime P =1 (mod 4), a quadratic residue s, and any quadratic
non-residue ¢ (i.e., residue ¢ such that t(~1/2 = —1 (mod P)), show that
e and €' as in Item 2 can be efficiently found.??

4. Prove that, for a prime P, with probability 1/2 a uniformly chosen ¢ €
{1,..., P} satisfies t(~1)/2 = -1 (mod P).

Note that randomization is used only in the last item, which in turn is used only
for P=1 (mod 4).

Exercise 6.17 Referring to the definition of arithmetic circuits (cf. Appendix B.3),
show that the following decision problem is in coRP: Given a pair of circuits
(C1,Cs) of depth d over a field that has more than 2%T% elements, determine
whether the circuits compute the same polynomial.

Guideline: Note that each of these circuits computes a polynomial of degree at most 24,

Exercise 6.18 (small-space randomized step-counter) As defined in Exer-
cise 4.5, a step-counter is an algorithm that halts after issuing a number of “signals”
as specified in its input, where these signals are defined as entering (and leaving)

23Write (P — 1)/2 = (2jo + 1) -72"07 and note that s(20+1)2%0 = 1 (mod P), which may
be written as s(2i0+1):204(2jo+1)-2°0F — 4 (mod P). Given that for some ¢’ > ¢ > 0 and j’

it holds that s(io+1)2'4(2i'+1)-2" = (mod P), show how to find ¢ > ¢ — 1 and j"" such
that s(2jo+1)-2i—1t(2j”+1)-2i" =1 (mod P). (Extra hint: sQio+1)-2 T 25 4127 L 2 4y
(mod P) and t(2/0+1)2' = _1 (mod P).) Applying this reasoning for iy times, we get what

we need.

258 CHAPTER 6. RANDOMNESS AND COUNTING

a designated state (of the algorithm). Recall that a step-counter may be run in
parallel to another procedure in order to suspend the execution after a predeter-
mined number of steps (of the other procedure) has elapsed. Note that there exists
a simple deterministic machine that, on input n, halts after issuing n signals while
using O(1) + log, n space (and O(n) time). The goal of this exercise is presenting a
(randomized) step-counter that allows for many more signals while using the same
amount of space. Specifically, present a (randomized) algorithm that, on input
n, uses O(1) + log, n space (and O(2") time) and halts after issuing an expected
number of 2" signals. Furthermore, prove that, with probability at least 1 —27F+1,

this step-counter halts after issuing a number of signals that is between 2"~* and
PALS

Guideline: Repeat the following experiment till reaching success. Each trial consists of
uniformly selecting n bits (i.e., tossing n unbiased coins), and is deemed successful if all
bits turn out to equal the value 1 (i.e., all outcomes equal HEAD). Note that such a trial
can be implemented by using space O(1) + log, n (mainly for implementing a standard
counter for determining the number of bits). Thus, each trial is successful with probability
27", and the expected number of trials is 2™.

Exercise 6.19 (analysis of random walks on arbitrary undirected graphs)
In order to complete the proof of Proposition 6.13, prove that if {u,v} is an edge
of the graph G = (V, E) then E[X, ,] < 2|E|. Recall that, for a fixed graph, X, .
is a random variable representing the number of steps taken in a random walk that
starts at the vertex w until the vertex v is first encountered.

Guideline: Let Z, (n) be a random variable counting the number of minimal paths
from w to v that appear along a random walk of length n, where the walk starts at the
stationary vertex distribution (which is well-defined assuming the graph is not bipartite,
which in turn may be enforced by adding a self-loop). On one hand, E[Xu v + Xy o] =
lim,, oo (n/E[Z4,»(n)]), due to the memoryless property of the walk. On the other hand,
letting Xo,. () 2 1 if the edge {u,v} was traversed from v to u in the i*} step of such
a random walk and xv,u.(7) < otherwise, we have > 7" Xyu(i) < Zuw(n) + 1 and
E[xv,u(1)] = 1/2|E| (because, in each step, each directed edge appears on the walk with
equal probability). It follows that E[X,] < 2|E|.

Exercise 6.20 (the class PP D BPP and its relation to #7) In contrast to
BPP, which refers to useful probabilistic polynomial-time algorithms, the class PP
does not capture such algorithms but is rather closely related to #P. A decision
problem S is in PP if there exists a probabilistic polynomial-time algorithm A such
that, for every x, it holds that « € S if and only if Pr[A(z) = 1] > 1/2. Note that
BPP C PP. Prove that PP is Cook-reducible to #P and vise versa.

Guideline: For S € PP (by virtue of the algorithm A), consider the relation R such that
(z,7) € Rif and only if A accepts the input when using the random-input r € {0, 1}13(‘“1‘)7
where p is a suitable polynomial. Thus, x € S if and only if |R(z)| > 21’('”')71, which
in turn can de determined by querying the counting function of R. To reduce f € #P
to PP, consider the relation R € PC that is counted by f (i.e., f(z) = |R(z)|) and the

6.2. COUNTING 259

decision problem Sy as defined in Proposition 6.15. Let p be the polynomial specifying
the length of solutions for R (i.e., (z,y) € R implies |y| = p(|x])), and consider the
following algorithm A': On input (z, N), with probability 1/2, algorithm A’ uniformly
selects y € {0, 1}p(‘z‘) and accepts if and only if (z,y) € R, and otherwise (i.e., with the

22D _Nyo0.5

remaining probability of 1/2) algorithm A’ accepts with probability exactly YRR

Prove that (z, N) € Sy if and only if Pr[A'(z) = 1] > 1/2.

Exercise 6.21 (enumeration problems) For any binary relation R, define the
enumeration problem of R as a function fr : {0,1}* x N — {0,1}* U {L} such that
fr(z,i) equals the i*" element in |R(x)| if |R(x)| > i and fr(z,i) = L otherwise.
The above definition refers to the standard lexicographic order on strings, but any
other efficient order of strings will do.?*

1. Prove that, for any polynomially bounded R, computing #R is reducible to
computing fgr.

2. Prove that, for any R € PC, computing fgr is reducible to some problem in
#P.

Guideline: Consider the binary relation R' = {({z,b),y) : (z,y) € RAy < b},
and show that fg is reducible to #R'. (Extra hint: Note that fz(z,i) =y if and only
if |R'({z,y))| =4 and for every y' < y it holds that |R'({z,y'))| < i.)

Exercise 6.22 (artificial #P-complete problems) Show that there exists a re-
lation R € PC such that #R is #P-complete and Sgp = {0, 1}*. Furthermore, prove
that for every R’ € PC there exists R € PF N PC such that for every x it holds
that #R(z) = #R'(z) + 1. Note that Theorem 6.19 follows by starting with any
relation R’ € PC such that #R' is #P-complete.

Exercise 6.23 (computing the permanent of integer matrices) Prove that
computing the permanent of matrices with 0/1-entries is computationally equiva-
lent to computing the number of perfect matchings in bipartite graphs.

Guideline: Given a bipartite graph G = ((X,Y), F), consider the matrix M representing
the edges between X and Y (i.e., the (i,j)-entry in M is 1 if the i*" vertex of X is
connected to the j** entry of Y), and note that only perfect matchings in G contribute
to the permanent of M.

Exercise 6.24 (computing the permanent modulo 3) Combining Proposition 6.21
and Theorem 6.29, prove that for every fixed n > 1 that does not divide any power

of ¢, computing the permanent modulo n is NP-hard under randomized reductions.

Since Proposition 6.21 holds for ¢ = 2%, hardness holds for every integer n > 1

that is not a power of 2. (We mention that, on the other hand, for any fixed n = 2¢,

the permanent modulo n can be computed in polynomial-time [223, Thm. 3].)

24 An order of strings is a 1-1 and onto mapping p from the natural numbers to the set of all
strings. Such order is called efficient if both p and its inverse are efficiently computable. The
standard lexicographic order satisfies p(i) = y if the string 1y is the (compact) binary expansion
of the integer 7; that is p(1) = A, p(2) =0, u(3) =1, p(4) = 00, etc.

260 CHAPTER 6. RANDOMNESS AND COUNTING

Guideline: Apply the reduction of Proposition 6.21 to the promise problem of deciding
whether a 3CNF formula has a unique satisfiable assignment or is unsatisfiable. Note that
for any m it holds that ¢ Z 0 (mod n).

Exercise 6.25 (negative values in Proposition 6.21) Assuming P # NP, prove
that Proposition 6.21 cannot hold for a set I containing only non-negative integers.
Note that the claim holds even if the set I is not finite (and even if I is the set of
all non-negative integers).

Guideline: A reduction as in Proposition 6.21 yields a Karp-reduction of 3SAT to deciding
whether the permanent of a matrix with entries in I is non-zero. Note that the permanent
of a non-negative matrix is non-zero if and only if the corresponding bipartite graph has
a perfect matching.

Exercise 6.26 (high-level analysis of the permanent reduction) Establish the
correctness of the high-level reduction presented in the proof of Proposition 6.21.
That is, show that if the clause gadget satisfies the three conditions postulated in
the said proof, then each satisfying assignment of ¢ contributes exactly ¢™ to the
SWCC of G4 whereas unsatisfying assignments have no contribution.

Guideline: Cluster the cycle covers of Gy according to the set of track edges that they
use (i.e., the edges of the cycle cover that belong to the various tracks). (Note the
correspondence between these edges and the external edges used in the definition of the
gadget’s properties.) Using the postulated conditions (regarding the clause gadget) prove
that, for each such set 1" of track edges, if the sum of the weights of all cycle covers that
use the track edges T is non-zero then the following hold:

1. The intersection of 1" with the set of track edges incident at each specific clause
gadget is non-empty. Furthermore, if this set contains an incoming edge (resp.,
outgoing edge) of some entry-vertex (resp., exit-vertex) then it also contains an
outgoing edge (resp., incoming edge) of the corresponding exit-vertex (resp., entry-
vertex).

2. If T contains an edge that belongs to some track then it contains all edges of this
track. It follows that, for each variable z, the set 1" contains the edges of a single
track associated with x.

3. The tracks “picked” by T' correspond to a single truth assignment to the variables of
¢, and this assignment satisfies ¢ (because, for each clause, T’ contains an external
edge that corresponds to a literal that satisfies this clause).

Note that different sets of the aforementioned type yield different satisfying assignments,
and that each satisfying assignment is obtained from some set of the aforementioned type.

Exercise 6.27 (analysis of the implementation of the clause gadget) Establish
the correctness of the implementation of the clause gadget presented in the proof of
Proposition 6.21. That is, show that if the box satisfy the three conditions postu-
lated in the said proof, then the clause gadget of Figure 6.4 satisfies the conditions
postulated for it.

Guideline: Cluster the cycle covers of a gadget according to the set of non-box edges that
they use, where non-box edges are the edges shown in Figure 6.4. Using the postulated

6.2. COUNTING 261

conditions (regarding the box) prove that, for each set S of non-box edges, if the sum of
the weights of all cycle covers that use the non-box edges S is non-zero then the following

hold:

1. The intersection of S with the set of edges incident at each box must contain
two (non-selfloop) edges, one incident at each of the box’s terminals. Needless to
say, one edge is incoming and the other outgoing. Referring to the six edges that
connects one of the six designated vertices (of the gadget) with the corresponding
box terminals as connectives, note that if S contains a connective incident at the
terminal of some box then it must also contain the connective incident at the other
terminal. In such a case, we say that this box is picked by 5,

2. Each of the three (literal-designated) boxes that is not picked by S is “traversed”
from left to right (i.e., the cycle cover contains an incoming edge of the left terminal
and an outgoing edge of the right terminal). Thus, the set S must contain a
connective, because otherwise no directed cycle may cover the leftmost vertex shown
in Figure 6.4. That is, S must pick some box.

3. The set S is fully determined by the non-empty set of boxes that it picks.

The postulated properties of the clause gadget follow, with ¢ = b°.

Exercise 6.28 (analysis of the design of a box for the clause gadget) Prove
that the 4-by-4 matrix presented in Eq. (6.4) satisfies the properties postulated for
the “box” used in the second part of the proof of Proposition 6.21. In particular:

1. Show a correspondence between the conditions required of the box and con-
ditions regarding the value of the permanent of certain sub-matrices of the
adjacency matrix of the graph.

(Hint: For example, show that the first condition correspond to requiring that the value
of the permanent of the entire matrix equals zero. The second condition refers to sub-
matrices obtained by omitting either the first row and fourth column or the fourth row

and first column.)

2. Verify that the matrix in Eq. (6.4) satisfies the aforementioned conditions
(regarding the value of the permanent of certain sub-matrices).

Prove that no 3-by-3 matrix (and thus also no 2-by-2 matrix) can satisfy the afore-
mentioned conditions.

Exercise 6.29 (error reduction for approximate counting) Show that the er-
ror probability 6 in Definition 6.24 can be reduced from 1/3 (or even (1/2) +

(1/poly(|«])) to exp(—poly(|z])).

Guideline: Invoke the weaker procedure for an adequate number of times and take the

median value among the values obtained in these invocations.

Exercise 6.30 (strong approximation for some #P-complete problems) Show
that there exists #P-complete problems (albeit unnatural ones) for which an (e, 0)-
approximation can be found by a (deterministic) polynomial-time algorithm. Fur-
thermore, the running-time depends polynomially on 1/e.

262 CHAPTER 6. RANDOMNESS AND COUNTING

Guideline: Combine any #P-complete problem referring to some R; € PC with a
trivial counting problem (e.g., the counting problem associated with the trivial relation
Ry = U, n{(z,y) : z,y € {0,1}"}). Show that, without loss of generality, it holds that
#Ri(z) < 2/*I/2 Prove that the counting problem of R = {(x,1y) : (z,y) € Ri} U
{(z,0y) : (z,y) € Rz} is #P-complete (by reducing from #R1). Present a deterministic
algorithm that, on input # and € > 0, outputs an (¢,0)-approximation of #R(z) in time
poly(|z|/¢) (Extra hint: distinguish between ¢ > 2~121/2 and ¢ < 27121/2),

Exercise 6.31 (relative approximation for DNF satisfaction) Referring to
the text of §6.2.2.1, prove the following claims.

1. Both assumptions regarding the general setting hold in case S; = C;'(1),
where C;*(1) denotes the set of truth assignments that satisfy the conjunc-
tion C;.

Guideline: In establishing the second assumption note that it reduces to the
conjunction of the following two assumptions:

(a) Given 4, one can efficiently generate a uniformly distributed element of Sj.
Actually, generating a distribution that is almost uniform over S; suffices.

(b) Given ¢ and w, one can efficiently determine whether = € Sj.

2. Prove Proposition 6.26, relating to details such as the error probability in an
implementation of Construction 6.25.

3. Note that Construction 6.25 does not require exact computation of |S;|. An-
alyze the output distribution in the case that we can only approximate |S;|
up-to a factor of 1 +¢'.

Exercise 6.32 (reducing the relative deviation in approximate counting)
Prove that, for any R € PC and every polynomial p and constant § < 0.5, there
exists R € PC such that (1/p,d)-approximation for #R is reducible to (1/2,6)-
approximation for #R'. Furthermore, for any F(n) = exp(poly(n)), prove that
there exists R € PC such that (1/p, 6)-approximation for #R is reducible to ap-
proximating #R' to within a factor of F' with error probability 6.

Guideline (for the main part): For t(n) = O(p(n)), define R’ such that (y1, ..., y¢(j2|)) €
R'(z) if and only if (Vi)y; € R(z). Note that |R(z)| = |R'(z)[*t(*D and thus if
a=(1%(1/2)) - |R ()] then a*/*1"D = (1 £ (1/2))/*U=D . |R(x)|.

Exercise 6.33 (deviation reduction in approximate counting, cont.) In con-
tinuation to Exercise 6.32, prove that if R is NP-complete via parsimonious reduc-
tions then, for every positive polynomial p and constant ¢ < 0.5, the problem of
(1/p,8)-approximation for #R is reducible to (1/2,6)-approximation for #R.

(Hint: Compose the reduction (to the problem of (1/2,§)-approximation for #R') provided in
Exercise 6.32 with the parsimonious reduction of #R’ to #R.)

Prove that, for every function F' such that F'(n) = exp(n°!)), we can also reduce
the aforementioned problems to the problem of approximating #R to within a
factor of F' with error probability 6.

6.2. COUNTING 263

Guideline: Using R" as in Exercise 6.32, we encounter a technical difficulty. The issue is
that the composition of the (“amplifying”) reduction of #R to #R" with the parsimonious
reduction of #R' to # R may increase the length of the instance. Indeed, the length of the
new instance is polynomial in the length of the original instance, but this polynomial may
depend on R, which in turn depends on F'. Thus, we cannot use F’(n) = exp(n'/°®))
but F'(n) = exp(n°Y) is fine.

Exercise 6.34 Referring to the procedure in the proof Theorem 6.27, show how to
use an NP-oracle in order to determine whether the number of solutions that “pass
a random sieve” is greater than ¢. You are allowed queries of length polynomial in
the length of z, h and in the size of t.

Guideline: Consider the set S def {(x,,h, 1Y) = Fy1, .., ye st V' (@, hyyt, e ye))

where '(z,h, y1, ..., y:) holds if and only if the y; are different and for every j it holds
that (z,y;) € R A h(y;)=0"

Exercise 6.35 (parsimonious reductions and Theorem 6.29) Demonstrate the
importance of parsimonious reductions in Theorem 6.29 by proving that there ex-
ists a search problem R € PC such that every problem in PC is reducible to R
(by a non-parsimonious reduction) and still the the promise problem (USg, Sg) is
decidable in polynomial-time.

Guideline: Consider the following artificial witness relation R for SAT in which (¢,07) €
Rifo € {0,1} and 7 satisfies ¢. Note that the standard witness relation of SAT is reducible
to R, but this reduction is not parsimonious. Also note that USg = § and thus (USg, Sgr)
is trivial.

Exercise 6.36 In continuation to Exercise 6.35, prove that there exists a search
problem R € PC such that #R is #P-complete and still the the promise problem
(USg, Sg) is decidable in polynomial-time. Provide one proof for the case that R
is PC-complete and another proof for R € PF.

Guideline: For the first case, the relation R suggested in the guideline to Exercise 6.35
will do. For the second case, rely on Theorem 6.20 and on the fact that it is easy to
decide (USgr, Sgr) when R is the corresponding perfect matching relation (by computing

the determinant).

Exercise 6.37 Prove that SAT is randomly reducible to deciding unique solution
for SAT, without using the fact that SAT is NP-complete via parsimonious reductions.

Guideline: Follow the proof of Theorem 6.29, while using the family of pairwise inde-
pendent hashing functions provided in Construction D.3. Note that, in this case, the

condition (7 € Rgpt(¢)) A (h(7) =0%) can be directly encoded as a CNF formula. That

is, consider the formula ¢, such that ¢,(z) Lt #(2) A (h(2)=0%), and note that h(z)=0"

can be written as the conjunction of ¢ conditions, where each condition is a CNF that is
logically equivalent to the parity of some of the bits of z (where the identity of these bits
is determined by h).

264 CHAPTER 6. RANDOMNESS AND COUNTING

Exercise 6.38 (an alternative procedure for approximate counting) Adapt
Step 1 of Construction 6.32 so to obtain an approximate counting procedure for

#R.

Guideline: For m = 0,1,...¢, the procedure invokes Step 1 of Construction 6.32 until
a negative answer is obtained, and outputs 120¢ - 2™ for the current value of m. For
|R(x)| > 804, this yields a constant factor approximation of |R(z)|. In fact, we can obtain
a better estimate by making additional queries at iteration m (i.e., queries of the form
(z,h,1%) for i = 10, ...,120£). The case |R(z)| < 80¢ can be treated by using Step 2 of
Construction 6.32, in which case we obtain an exact count.

Exercise 6.39 Let R be an arbitrary PC-complete search problem. Show that
approximate counting and uniform generation for R can be randomly reduced to
deciding membership in Sg, where by approximate counting we mean a (1 —(1/p)-
approximation for any polynomial p.

Guideline: Note that Construction 6.32 yields such procedures (see also Exercise 6.38),
except that they make oracle calls to some other set in A’P. Using the NP-completeness
of Sgr, we are done.

Chapter 7

The Bright Side of Hardness

So saying she donned her beautiful, glittering golden—Ambrosial
sandals, which carry her flying like the wind over the vast land
and sea; she grasped the redoubtable bronze-shod spear, so stout
and sturdy and strong, wherewith she quells the ranks of heroes
who have displeased her, the [bright-eyed] daughter of her mighty
father.

Homer, Odyssey, 1:96-101

The existence of natural computational problems that are (or seem to be) in-
feasible to solve is usually perceived as bad news, because it means that we cannot
do things we wish to do. But these bad news have a positive side, because hard
problem can be “put to work” to our benefit, most notably in cryptography.

It seems that utilizing hard problems requires the ability to efficiently generate
hard instances, which is not guaranteed by the notion of worst-case hardness. In
other words, we refer to the gap between “occasional” hardness (e.g., worst-case
hardness or mild average-case hardness) and “typical” hardness (with respect to
some tractable distribution). Much of the current chapter is devoted to bridging
this gap, which is known by the term hardness amplification. The actual applica-
tions of typical hardness are presented in Chapter 8 and Appendix C.

Summary: We consider two conjectures that are related to P # NP.
The first conjecture is that there are problems that are solvable in
exponential-time (i.e., in £) but are not solvable by (non-uniform) fam-
ilies of small (say polynomial-size) circuits. We show that this worst-
case conjecture can be transformed into an average-case hardness result;
specifically, we obtain predicates that are strongly “inapproximable” by
small circuits. Such predicates are used towards derandomizing BPP
in a non-trivial manner (see Section 8.3).

The second conjecture is that there are problems in NP (i.e., search
problems in PC) for which it is easy to generate (solved) instances that

265

266 CHAPTER 7. THE BRIGHT SIDE OF HARDNESS

are typically hard to solve (for a party that did not generate these
instances). This conjecture is captured in the formulation of one-way
functions, which are functions that are easy to evaluate but hard to
invert (in an average-case sense). We show that functions that are hard
to invert in a relatively mild average-case sense yield functions that
are hard to invert in a strong average-case sense, and that the latter
yield predicates that are very hard to approximate (called hard-core
predicates). Such predicates are useful for the construction of general-
purpose pseudorandom generators (see Section 8.2) as well as for a host
of cryptographic applications (see Appendix C).

In the rest of this chapter, the actual order of presentation of the two aforemen-
tioned conjectures and their consequences is reversed: We start (in Section 7.1)
with the study of one-way functions, and only later (in Section 7.2) turn to the
study of problems in £ that are hard for small circuits.

Teaching note: We list several reasons for preferring the aforementioned order of
presentation. First, we mention the great conceptual appeal of one-way functions and
the fact that they have very practical applications. Second, hardness amplification
in the context of one-way functions is technically simpler than the amplification of
hardness in the context of £. (In fact, Section 7.2 is the most technical text in this
book.) Third, some of the techniques that are shared by both treatments seem easier to
understand first in the context of one-way functions. Last, the current order facilitates
the possibility of teaching hardness amplification only in one incarnation, where the
context of one-way functions is recommended as the incarnation of choice (for the
aforementioned reasons).

If you wish to teach hardness amplification and pseudorandomness in the two afore-
mentioned incarnations, then we suggest following the order of the current text. That
is, first teach hardness amplification in its two incarnations, and only next teach pseu-

dorandomness in the corresponding incarnations.

Prerequisites: We assume a basic familiarity with elementary probability theory
(see Appendix D.1) and randomized algorithms (see Section 6.1). In particular,
standard conventions regarding random variables (presented in Appendix D.1.1)
and various “laws of large numbers” (presented in Appendix D.1.2) will be exten-
sively used.

7.1 One-Way Functions

Loosely speaking, one-way functions are functions that are easy to evaluate but
hard (on the average) to invert. Thus, in assuming that one-way functions exist,
we are postulating the existence of efficient processes (i.e., the computation of the
function in the forward direction) that are hard to reverse. Analogous phenomena
in daily life are known to us in abundance (e.g., the lighting of a match). Thus,
the assumption that one-way functions exist is a complexity theoretic analogue of
our daily experience.

7.1. ONE-WAY FUNCTIONS 267

One-way functions can also be thought of as efficient ways for generating “puz-
zles” that are infeasible to solve; that is, the puzzle is a random image of the
function and a solution is a corresponding preimage. Furthermore, the person gen-
erating the puzzle knows a solution to it and can efficiently verify the validity of
(possibly other) solutions to the puzzle. In fact, as explained in Section 7.1.1, every
mechanism for generating such puzzles can be converted to a one-way function.

The reader may note that when presented in terms of generating hard puzzles,
one-way functions have a clear cryptographic flavor. Indeed, one-way functions
are central to cryptography, but we shall not explore this aspect here (and rather
refer the reader to Appendix C). Similarly, one-way functions are closely related to
(general-purpose) pseudorandom generators, but this connection will be explored
in Section 8.2. Instead, in the current section, we will focus on one-way functions
per se.

Teaching note: While we recommend including a basic treatment of pseudorandom-
ness within a course on complexity theory, we do not recommend doing so with respect
to cryptography. The reason is that cryptography is far more complex than pseudo-
randomness (e.g., compare the definition of secure encryption to the the definition of
pseudorandom generators). The extra complexity is due to conceptual richness, which
is something good, except that some of these conceptual issues are central to cryptog-
raphy but not to complexity theory. Thus, teaching cryptography in the context of a
course on complexity theory is likely to either overload the course with material that
is not central to complexity theory or cause a superficial and misleading treatment of
cryptography. We are not sure as to which of these two possibilities is worse. Still, for
the benefit of the interested reader, we have included an overview of the foundations of

cryptography as an appendix to the main text (see Appendix C).

7.1.1 Generating hard instances and one-way functions

Let us start by examining the prophecy, made in the preface to this chapter, by
which intractable problems can be used to our benefit. The basic idea is that
intractable problems offer a way of generating an obstacle that stands in the way
of our opponents and thus protects our interests. These opponents may be either
real (e.g., in the context of cryptography) or imaginary (e.g., in the context of
derandomization), but in both cases we wish to prevent them from seeing something
or doing something. Hard obstacles seems useful towards this goal.

Let us assume that P # NP or even that AP is not contained in BPP. Can we
use this assumption to our benefit? Not really: The NP € BPP assumption refers
to the worst-case complexity of problems, while benefiting from hard problems
seems to require the ability to generate hard instances. In particular, the generated
instances should be typically hard and not merely occasionally hard; that is, we
seek average-case hardness and not merely worst-case hardness.

Taking a short digression, we mention that in Section 7.2 we shall see that worst-
case hardness (of NP or even &) can be transformed into average-case hardness
of £. Such a transformation is not known for AP itself, and in some applications
(e.g., in cryptography) we do need the hard-on-the-average problem to be in A/P.

268 CHAPTER 7. THE BRIGHT SIDE OF HARDNESS

In this case, we currently need to assume that, for some problem in NP, it is the
case that hard instances are easy to generate (and not merely exist). That is, we
assume that AP is “hard on the average” with respect to a distribution that is
efficiently sampleable. This assumption will be further discussed in Section 10.2.

However, for the aforementioned applications (e.g., in cryptography) this as-
sumption does not seem to suffice either: we know how to utilize such “hard on
the average” problems only when we can efficiently generate hard instances coupled
with adequate solutions.® That is, we assume that, for some search problem in
PC (resp., decision problem in N'P), we can efficiently generate instance-solution
pairs (resp., yes-instances coupled with corresponding NP-witnesses) such that the
instance is hard to solve (resp., hard to verify as belonging to the set). Needless to
say, the hardness assumption refers to a person that does not get the solution (resp.,
witness). Thus, we can efficiently generate hard “puzzles” coupled with solutions,
and so we may present to others hard puzzles for which we know a solution.

Let us formulate the foregoing discussion. Referring to Definition 2.3, we con-
sider a relation R in PC (i.e., R is polynomially bounded and membership in R can
be determined in polynomial-time), and assume that there exists a probabilistic
polynomial-time algorithm G that satisfies the following two conditions:

1. On input 17, algorithm G always generates a pair in R such that the first
element has length n. That is, Pr[G(1") € RN ({0,1}" x {0,1}*)] = 1.

2. Tt is typically infeasible to find solutions to instances that are generated by
G; that is, when only given the first element of G(1™), it is infeasible to
find an adequate solution. Formally, denoting the first element of G(1™) by
G1(1™), for every probabilistic polynomial-time (solver) algorithm S, it holds
that Pr[(G1(1™),S(G1(1™)) € R] = p(n), where u vanishes faster than any
polynomial fraction (i.e., for every positive polynomial p and all sufficiently
large n it is the case that p(n) < 1/p(n)).

We call G a generator of solved intractable instances for R. We will show that such
a generator exists if and only if one-way functions exist, where one-way functions
are functions that are easy to evaluate but hard (on the average) to invert. That
is, a function f:{0,1}*—{0,1}* is called one-way if there is an efficient algorithm
that on input = outputs f(x), whereas any feasible algorithm that tries to find a
preimage of f(z) under f may succeed only with negligible probability (where the
probability is taken uniformly over the choices of and the algorithm’s coin tosses).
Associating feasible computations with probabilistic polynomial-time algorithms
and negligible functions with functions that vanish faster than any polynomial
fraction, we obtain the following definition.

Definition 7.1 (one-way functions): A function f:{0,1}*—{0,1}* is called one-
way if the following two conditions hold:

LWe wish to stress the difference between the two gaps discussed here. Our feeling is that
the non-usefulness of worst-case hardness (per se) is far more intuitive than the non-usefulness of
average-case hardness that does not correspond to an efficient generation of “solved” instances.

7.1. ONE-WAY FUNCTIONS 269

1. Easy to evaluate: There exist a polynomial-time algorithm A such that A(x) =
f(z) for every x € {0,1}*.

2. Hard to invert: For every probabilistic polynomial-time algorithm A', every
polynomial p, and all sufficiently large n,

Proc oy [A'(f(2),1) € £ (f())] < ﬁ (7.1)

where the probability is taken uniformly over all the possible choices of x €
{0,1}" and all the possible outcomes of the internal coin tosses of algorithm
Al

Algorithm A’ is given the auxiliary input 1™ so as to allow it to run in time poly-
nomial in the length of x, which is important in case f drastically shrinks its input
(e.g., |f(z)| = O(log|z|)). Typically (and, in fact, without loss of generality, see
Exercise 7.1), f is length preserving, in which case the auxiliary input 1™ is re-
dundant. Note that A’ is not required to output a specific preimage of f(x); any
preimage (i.e., element in the set f~!(f(z))) will do. (Indeed, in case f is 1-1,
the string x is the only preimage of f(z) under f; but in general there may be
other preimages.) It is required that algorithm A’ fails (to find a preimage) with
overwhelming probability, when the probability is also taken over the input distri-
bution. That is, f is “typically” hard to invert, not merely hard to invert in some
(“rare”) cases.

Proposition 7.2 The following two conditions are equivalent:
1. There exists a generator of solved intractable instances for some R € N'P.

2. There exist one-way functions.

Proof Sketch: Suppose that G is such a generator of solved intractable instances
for some R € NP, and suppose that on input 1" it tosses £(n) coins. For simplicity,
we assume that £(n) = n, and consider the function g(r) = Gy(1I"l,r), where
G(1™,r) denotes the output of G on input 1™ when using coins 7 (and G, is as
in the foregoing discussion). Then g must be one-way, because an algorithm that
inverts g on input = g(r) obtains 7’ such that G1(1",7") = and G(1™,r") must
be in R (which means that the second element of G(1™,+') is a solution to z). In
case £(n) # n (and assuming without loss of generality that £(n) > n), we define
g(r) = G1(1™, s) where n is the largest integer such that ¢(n) < |r| and s is the
£(n)-bit long prefix of r.

Suppose, on the other hand, that f is a one-way function (and that f is

length preserving). Consider G(1™) that uniformly selects r € {0,1}™ and out-

puts (f(r),r), and let R = {(f(x),z) : x € {0,1}*}. Then R is in PC and G

is a generator of solved intractable instances for R, because any solver of R (on
instances generated by G) is effectively inverting f on f(U,). O

270 CHAPTER 7. THE BRIGHT SIDE OF HARDNESS

Comments. Several candidates one-way functions and variation on the basic
definition appear in Appendix C.2.1. Here, for the sake of future discussions, we
define a stronger version of one-way functions, which refers to the infeasibility of
inverting the function by non-uniform circuits of polynomial-size. We seize the
opportunity and use an alternative technical formulation, which is based on the
probabilistic conventions in Appendix D.1.1.2

Definition 7.3 (one-way functions, non-uniformly hard): A one-way function f:
{0,1}* — {0,1}* is said to be non-uniformly hard to invert if for every family of
polynomial-size circuits {Cy,}, every polynomial p, and all sufficiently large n,

1
PriCo(f(Un), 1") € fFH(f(Un))] < —

[Cn(f(Un),17) (f(Un))] o)
We note that if a function is infeasible to invert by polynomial-size circuits then it is
hard to invert by probabilistic polynomial-time algorithms; that is, non-uniformity

(more than) compensates for lack of randomness. See Exercise 7.2.

7.1.2 Amplification of Weak One-Way Functions

In the forgoing discussion we have interpreted “hardness on the average” in a very
strong sense. Specifically, we required that any feasible algorithm fails to solve
the problem (e.g., invert the one-way function) almost always (i.e., except with
negligible probability). This interpretation is indeed the one that is suitable for
various applications. Still, a weaker interpretation of hardness on the average,
which is also appealing, only requires that any feasible algorithm fails to solve the
problem often enough (i.e., with noticeable probability). The main thrust of the
current section is showing that the mild form of hardness on the average can be
transformed into the strong form discussed in Section 7.1.1. Let us first define the
mild form of hardness on the average, using the framework of one-way functions.
Specifically, we define weak one-way functions.

Definition 7.4 (weak one-way functions): A function f:{0,1}*—{0,1}* is called
weakly one-way if the following two conditions hold:

1. Easy to evaluate: As in Definition 7.1.

2. Weakly hard to invert: There exists a positive polynomial p such that for
every probabilistic polynomial-time algorithm A' and all sufficiently large n,

1

Proegoay [A'(f(2),1") & f1(f(2))] > prn) (7.2)
where the probability is taken uniformly over all the possible choices of x €
{0,1}" and all the possible outcomes of the internal coin tosses of algorithm

A'. In such a case, we say that f is 1/p-one-way.

28pecifically, letting U, denote a random variable uniformly distributed in {0,1}™, we may
write Eq. (7.1) as Pr[A’'(f(Uxn),1™) € f~1(f(Un))] < 1/p(n), recalling that both occurrences of

U, refer to the same sample.

7.1. ONE-WAY FUNCTIONS 271

Here we require that algorithm A’ fails (to find an f-preimage for a random f-
image) with noticeable probability, rather than with overwhelmingly high prob-
ability (as in Definition 7.1). For clarity, we will occasionally refer to one-way
functions as in Definition 7.1 by the term strong one-way functions.

We note that, assuming that one-way functions exist at all, there exists weak
one-way functions that are not strongly one-way (see Exercise 7.3). Still, any weak
one-way function can be transformed into a strong one-way function. This is indeed
the main result of the current section.

Theorem 7.5 (amplification of one-way functions): The existence of weak one-
way functions implies the existence of strong one-way functions.

Proof Sketch: The construction itself is straightforward. We just parse the argu-
ment to the new function into sufficiently many blocks, and apply the weak one-way
function on the individual blocks. That is, suppose that f is 1/p-one-way, for some
polynomial p, and consider the following function

F(zy,..ywe) = (f(x1),..., f(xs)) (7.3)

where t <, -p(n) and 1, ...,z € {0,1}".

(Indeed F should be extended to strings of length outside {n? - p(n) : n € N} and
this extension must be hard to invert on all preimage lengths.)3

We warn that the hardness of inverting the resulting function F' is not estab-
lished by mere “combinatorics” (i.e., considering, for any S C {0,1}", the relative
volume of S* in ({0,1}")", where S represents the set of f-preimages that are
mapped by f to an image that is “easy to invert”). Specifically, one may not as-
sume that the potential inverting algorithm works independently on each block.
Indeed this assumption seems reasonable, but we do not know if nothing is lost
by this restriction. (In fact, proving that nothing is lost by this restriction is a
formidable research project.) In general, we should not make assumptions regard-
ing the class of all efficient algorithms (as underlying the definition of one-way
functions), unless we can actually prove that nothing is lost by such assumptions.

The hardness of inverting the resulting function F' is proved via a so called
“reducibility argument” (which is used to prove all conditional results in the area).
By a reducibility argument we actually mean a reduction, but one that is analyzed
with respect to average case complexity. Specifically, we show that any algorithm
that inverts the resulting function F' with non-negligible success probability can
be used to construct an algorithm that inverts the original function f with success
probability that violates the hypothesis (regarding f). In other words, we reduce
the task of “strongly inverting” f (i.e., violating its weak one-wayness) to the task
of “weakly inverting” F' (i.e., violating its strong one-wayness). In particular, on
input y = f(x), the reduction invokes the F-inverter (polynomially) many times,
each time feeding it with a sequence of random f-images that contains y at a

30ne simple extension is defining F(z) to equal F(z1, ..., Tp.p(n)), Where n is the largest integer

satisfying n?p(n) < |z| and z; is the i*" consecutive n-bit long string in z (i.e., z = 1 - - - Tpyp(n) T

where 1, ..., .5 (n) € {0, 1}7).

272 CHAPTER 7. THE BRIGHT SIDE OF HARDNESS

random location. (Indeed such a sequence corresponds to a random image of F'.)
Details follow.

Suppose towards the contradiction that F'is not strongly one-way; that is, there
exists a probabilistic polynomial-time algorithm B’ and a polynomial ¢(-) so that
for infinitely many m’s

1

Pr[B'(F(U,))€F~(F(Un))] > 2 (7.4)

Focusing on such a generic m and assuming (see Footnote 3) that m = n?p(n), we
present the following probabilistic polynomial-time algorithm, A’; for inverting f.
On input y and 1™ (where supposedly y = f(z) for some = € {0,1}"), algorithm A’
proceeds by applying the following probabilistic procedure, denoted I, on input y
for t'(n) times, where ¢'() is a polynomial that depends on the polynomials p and

q (specifically, we set ¢'(n) = 2n2 - p(n) - g(n?p(n))).

Procedure I (on input y and 1™):

For i =1 to t(n)) -p(n) do begin

(1) Select uniformly and independently a sequence of strings 1, ..., ¥,y € {0,1}".
(2) Compute (z1,..., 24(n)) — B'(f(21), -, [(@iz1),y, [(@it1), s [(@1(n))
(Note that y is placed in the ‘" position instead of f(x;).)
(3) If f(z;) =y then halt and output z;.
(This is considered a success).
end

Using Eq. (7.4), we now present a lower bound on the success probability of al-
gorithm A’, deriving a contradiction to the theorem’s hypothesis. To this end we
define a set, denoted S,,, that contains all n-bit strings on which the procedure I
succeeds with probability greater than n/¢'(n). (The probability is taken only over
the coin tosses of procedure I). Namely,

n

g, %f {xe {0,1}" : PrlI(f() € f7 (f(2))] > W}

In the next two claims we shall show that S,, contains all but at most a 1/2p(n)
fraction of the strings of length n, and that for each string x € S, algorithm A’
inverts f on f(z) with probability exponentially close to 1. It will follow that A’
inverts f on f(U,) with probability greater than 1 — (1/p(n)), in contradiction to
the theorem’s hypothesis.

Claim 7.5.1: For every z €5,

PridA'(f(e)€fH(f(x))] >1-27"

This claim follows directly from the definitions of S,, and A’.

Claim 7.5.2: 1
Sol > <1 - —> .on
15l 2p(n)

7.1. ONE-WAY FUNCTIONS 273

The rest of the proof is devoted to establishing this claim, and indeed combining
Claims 7.5.1 and 7.5.2, the theorem follows.

The key observation is that, for every ¢ € [t(n)] and every z; € {0,1}™\ Sy, it
holds that

Pr [B’(F(Unzp(n))) EF_I(F(Unzp(n))) Ur(j) = l‘l:I
< Pr{I(f@) € S (@) < g

where U,(Ll), s UT(L"'p(n)) denote the n-bit long blocks in the random variable U,z2(y,).
It follows that

£

E P [B(FWasy) € H(FUnsgi)) A (30 5:0. U 40,117\ 5,)]
t(n)
< P B (FUnap)) €F " (FUnyin)) A US) €40,137\ S

< t(n) 2 !
n)- = ‘
- t'(n) 2q(n*p(n))
where the equality is due to t'(n) = 2n? - p(n) - ¢(n?p(n)) and t(n) = n - p(n). On
the other hand, using Eq. (7.4), we have

§ 2 Pr[B(FUnyn) €F (FUnsym))] = Pr[(¥i) UL €S,

1 t(n)
> ——— — —Pr[U,ES,)
) R

Using t(n) = n-p(n), we get Pr[U, € S,] > (1/2¢(n*p(n)))*/("P(") which implies
Pr[U, € S,] > 1 —(1/2p(n)) for sufficiently large n. Claim 7.5.2 follows, and so
does the theorem. [

Digest. Let us recall the structure of the proof of Theorem 7.5. Given a weak
one-way function f, we first constructed a polynomial-time computable function
F with the intention of later proving that F' is strongly one-way. To prove that
F is strongly one-way, we used a reducibility argument. The argument transforms
efficient algorithms that supposedly contradict the strong one-wayness of F' into
efficient algorithms that contradict the hypothesis that f is weakly one-way. Hence
F must be strongly one-way. We stress that our algorithmic transformation, which
is in fact a randomized Cook reduction, makes no implicit or explicit assumptions
about the structure of the prospective algorithms for inverting F'. Such assumptions
(e.g., the “natural” assumption that the inverter of F' works independently on each
block) cannot be justified (at least not at our current state of understanding of the
nature of efficient computations).

We use the term a reducibility argument, rather than just saying a reduction
so as to emphasize that we do not refer here to standard (worst-case complexity)
reductions. Let us clarify the distinction: In both cases we refer to reducing the

274 CHAPTER 7. THE BRIGHT SIDE OF HARDNESS

task of solving one problem to the task of solving another problem; that is, we use
a procedure solving the second task in order to construct a procedure that solves
the first task. However, in standard reductions one assumes that the second task
has a perfect procedure solving it on all instances (i.e., on the worst-case), and
constructs such a procedure for the first task. Thus, the reduction may invoke the
given procedure (for the second task) on very “non-typical” instances. This cannot
be allowed in our reducibility arguments. Here, we are given a procedure that
solves the second task with certain probability with respect to a certain distribution.
Thus, in employing a reducibility argument, we cannot invoke this procedure on
any instance. Instead, we must consider the probability distribution, on instances
of the second task, induced by our reduction. In our case (as in many cases)
the latter distribution equals the distribution to which the hypothesis (regarding
solvability of the second task) refers, but in general these distributions need only
be “sufficiently close” in an adequate sense (which depends on the analysis). In
any case, a careful consideration of the distribution induced by the reducibility
argument is due. (Indeed, the same issue arises in the context of reductions among
“distributional problems” considered in Section 10.2.)

An information theoretic analogue. Theorem 7.5 (or rather its proof) has a
natural information theoretic (or “probabilistic”) analogue that refers to the am-
plification of the success probability by repeated experiments: If some event occurs
with probability p in a single experiment, then the event will occur with very high
probability (i.e., 1 —e™™) when the experiment is repeated n/p times. The analogy
is to evaluating the function F' at a random input, where each block of this input
may be viewed as an attempt to hit the noticeable “hard region” of f. The reader
is probably convinced at this stage that the proof of Theorem 7.5 is much more
complex than the proof of the information theoretic analogue. In the information
theoretic context the repeated experiments are independent by definition, whereas
in the computational context no such independence can be guaranteed. (Indeed, the
independence assumption corresponds to the naive argument discussed at the be-
ginning of the proof of Theorem 7.5.) Another indication to the difference between
the two settings follows. In the information theoretic setting, the probability that
the event did not occur in any of the repeated trials decreases exponentially with
the number of repetitions. In contrast, in the computational setting we can only
reach an unspecified negligible bound on the inverting probabilities of polynomial-
time algorithms. Furthermore, for all we know, it may be the case that F' can be
efficiently inverted on F'(Up2p(,)) with success probability that is sub-exponentially

decreasing (e.g., with probability 2~ (log, ”)3), whereas the analogous information
theoretic bound is exponentially decreasing (i.e., e~ ™).

7.1.3 Hard-Core Predicates

One-way functions per se suffice for one central application: the construction of
secure signature schemes (see Appendix C.6). For other applications, one relies not
merely on the infeasibility of fully recovering the preimage of a one-way function,

7.1. ONE-WAY FUNCTIONS 275

but rather on the infeasibility of meaningfully guessing bits in the preimage. The
latter notion is captured by the definition of a hard-core predicate.

Recall that saying that a function f is one-way means that given a typical y
(in the range of f) it is infeasible to find a preimage of y under f. This does not
mean that it is infeasible to find partial information about the preimage(s) of y

under f. Specifically, it may be easy to retrieve half of the bits of the preimage

(e.g., given a one-way function f consider the function f’ defined by f'(z,r) def

(f(z),r), for every |z|=|r|). We note that hiding partial information (about the
function’s preimage) plays an important role in more advanced constructs (e.g.,
pseudorandom generators and secure encryption). With this motivation in mind,
we will show that essentially any one-way function hides specific partial information
about its preimage, where this partial information is easy to compute from the
preimage itself. This partial information can be considered as a “hard core” of the
difficulty of inverting f. Loosely speaking, a polynomial-time computable (Boolean)
predicate b, is called a hard-core of a function f if no feasible algorithm, given f(z),
can guess b(x) with success probability that is non-negligibly better than one half.

The solid arrows depict easily computable transformation
while the dashed arrows depict infeasible transformations.

Figure 7.1: The hard-core of a one-way function — an illustration.

Definition 7.6 (hard-core predicates): A polynomial-time computable predicate
b:{0,1}* — {0,1} is called a hard-core of a function f if for every probabilistic
polynomial-time algorithm A', every positive polynomial p(-), and all sufficiently
large n’s

PrIA'(f(2) =b(@)] < 3 + ——

2 p(n)

where the probability is taken uniformly over all the possible choices of x € {0,1}"
and all the possible outcomes of the internal coin tosses of algorithm A'.

276 CHAPTER 7. THE BRIGHT SIDE OF HARDNESS

Note that for every b: {0,1}* — {0,1} and f : {0,1}* — {0, 1}*, there exist obvious
algorithms that guess b(z) from f(z) with success probability at least one half (e.g.,
the algorithm that, obliviously of its input, outputs a uniformly chosen bit). Also, if
b is a hard-core predicate (of any function) then it follows that b is almost unbiased
(i.e., for a uniformly chosen z, the difference |Pr[b(z)=0] — Pr[b(z)=1]| must be a
negligible function in n).

Since b itself is polynomial-time computable, the failure of efficient algorithms to
approximate b(z) from f(z) (with success probability that is non-negligibly higher
than one half) must be due either to an information loss of f (i.e., f not being

one-to-one) or to the difficulty of inverting f. For example, for o € {0,1} and

x' €{0,1}*, the predicate b(cx') = o is a hard-core of the function f(oz') N

Hence, in this case the fact that b is a hard-core of the function f is due to the fact
that f loses information (specifically, the first bit: o). On the other hand, in the
case that f loses no information (i.e., f is one-to-one) a hard-core for f may exist
ounly if f is hard to invert. In general, the interesting case is when being a hard-core
is a computational phenomenon rather than an information theoretic one (which
is due to “information loss” of f). It turns out that any one-way function has a
modified version that possesses a hard-core predicate.

Theorem 7.7 (a generic hard-core predicate): For any one-way function f, the
inner-product mod 2 of x and r, denoted b(x,r), is a hard-core of f'(xz,r) =

(f(z), 7).

In other words, Theorem 7.7 asserts that, given f(z) and a random subset S C [|z|],
it is infeasible to guess @;c sx; significantly better than with probability 1/2, where
T =T - - Ty is uniformly distributed in {0, 1}".

Proof Sketch: The proof is by a so-called “reducibility argument” (see Sec-
tion 7.1.2). Specifically, we reduce the task of inverting f to the task of predicting
the hard-core of f’, while making sure that the reduction (when applied to input
distributed as in the inverting task) generates a distribution as in the definition of
the predicting task. Thus, a contradiction to the claim that b is a hard-core of f’
yields a contradiction to the hypothesis that f is hard to invert. We stress that
this argument is far more complex than analyzing the corresponding “probabilis-
tic” situation (i.e., the distribution of (r,b(X,r)), where r € {0,1}" is uniformly
distributed and X is a random variable with super-logarithmic min-entropy (which
represents the “effective” knowledge of x, when given f(z))).

Our starting point is a probabilistic polynomial-time algorithm B that satisfies,
for some polynomial p and infinitely many n’s, Pr[B(f(X,),U,) = b(X,,U,)] >
(1/2) + (1/p(n)), where X,, and U,, are uniformly and independently distributed

over {0,1}". Using a simple averaging argument, we focus on a ¢ def 1/2p(n)

4The min-entropy of X is defined as min, {log,(1/Pr[X = v])}; that is, if X has min-entropy m
then max,{Pr[X = v]} = 27", The Leftover Hashing Lemma (see Appendix D.2) implies that,
in this case, Pr[b(X,Un) = 1|Un] = % + Z*Q(m), where U,, denotes the uniform distribution over

{0,1}".

7.1. ONE-WAY FUNCTIONS 277

fraction of the a’s for which Pr[B(f(z),U,) = b(z,U,)] > (1/2) + & holds. We will
show how to use B in order to invert f, on input f(z), provided that z is in this
good set (which has density ¢).

As a warm-up, suppose for a moment that, for the aforementioned x’s, algorithm
B succeeds with probability p such that p > % + 1/poly(|z|) rather than p >
1 4+ 1/poly(|z]). In this case, retrieving « from f(z) is quite easy: To retrieve the
i*" bit of z, denoted z;, we randomly select 7 € {0,1}!*!, and obtain B(f(z),r) and
B(f(z),r®e?), where e = 0°1101*/~* and v @ u denotes the addition mod 2 of the
binary vectors v and u. A key observation underlying the foregoing scheme as well
as the rest of the proof is that b(z,r@s) = b(z,r) ® b(z, s), which can be readily
verified by writing b(z,y) = > | #;y; mod 2 and noting that addition modulo 2
of bits corresponds to their XOR. Now, note that if both B(f(z),r) = b(x,r)
and B(f(z),r®e') = b(w,r®e’) hold, then B(f(z),r) ® B(f(z),r ®e') equals
b(z,7) ® b(z,rde’) = b(x,e') = x;. The probability that both B(f(z),r)="b(z,r)
and B(f(z),r®e')=b(x,r®e’) hold, for a random r, is at least 1 —2- (1 — p) >
% + m. Hence, repeating the foregoing procedure sufficiently many times
(using independent random choices of such 7’s) and ruling by majority, we retrieve
x; with very high probability. Similarly, we can retrieve all the bits of =, and
hence invert f on f(z). However, the entire analysis was conducted under (the
unjustifiable) assumption that p > %—l—m, whereas we only know that p > %—l—a
for e = 1/poly(|z|).

The problem with the foregoing procedure is that it doubles the original error
probability of algorithm B on inputs of the form (f(x),-). Under the unrealistic
(foregoing) assumption that B’s average error on such inputs is non-negligibly
smaller than %, the “error-doubling” phenomenon raises no problems. However, in
general (and even in the special case where B’s error is exactly i) the foregoing
procedure is unlikely to invert f. Note that the average error probability of B (for
a fixed f(z), when the average is taken over a random r) can not be decreased
by repeating B several times (e.g., for every xz, it may be that B always answer
correctly on three quarters of the pairs (f(z),r), and always err on the remaining
quarter). What is required is an alternative way of using the algorithm B, a way
that does not double the original error probability of B.

The key idea is generating the r’s in a way that allows applying algorithm
B only once per each r (and 4), instead of twice. Specifically, we will invoke B
on (f(z),r®e’) in order to obtain a “guess” for b(z,r De’), and obtain b(z,r)
in a different way (which does not involve using B). The good news is that the
error probability is no longer doubled, since we only use B to get a “guess” of
b(z,r ®e’). The bad news is that we still need to know b(z,r), and it is not
clear how we can know b(x,r) without applying B. The answer is that we can
guess b(x,7) by ourselves. This is fine if we only need to guess b(x,r) for one
r (or logarithmically in |z| many 7’s), but the problem is that we need to know
(and hence guess) the value of b(z,r) for polynomially many r’s. The obvious
way of guessing these b(z,r)’s yields an exponentially small success probability.
Instead, we generate these polynomially many 7’s such that, on one hand they are
“sufficiently random” whereas, on the other hand, we can guess all the b(x,r)’s

278 CHAPTER 7. THE BRIGHT SIDE OF HARDNESS

with noticeable success probability.® Specifically, generating the r’s in a specific
patrwise independent manner will satisfy both these (conflicting) requirements. We
stress that in case we are successful (in our guesses for all the b(x,r)’s), we can
retrieve x with high probability. Hence, we retrieve with noticeable probability.

A word about the way in which the pairwise independent r’s are generated
(and the corresponding b(z,r)’s are guessed) is indeed in place. To generate m =

poly(|z|) many r’s, we uniformly (and independently) select ¢ def log, (m+1) strings
in {0,1}/®. Let us denote these strings by s', ..., s*. We then guess b(x, s*) through
b(z,s"). Let us denote these guesses, which are uniformly (and independently)
chosen in {0,1}, by o' through o‘. Hence, the probability that all our guesses
for the b(w,s')’s are correct is 27¢ = m. The different 7’s correspond to
the different non-empty subsets of {1,2,...,¢}. Specifically, for every such subset
J, we let r/ def ®jess’. The reader can easily verify that the r/’s are pairwise
independent and each is uniformly distributed in {0, 1}"”‘; see Exercise 7.5. The
key observation is that b(z,r”) = b(z, ®jecs8’) = ®jcsb(x,s’). Hence, our guess
for b(z,r”) is ®je 07, and with noticeable probability all our guesses are correct.
Wrapping-up everything, we obtain the following procedure, where € = 1/poly(n)
represents a lower-bound on the advantage of B in guessing b(z,) for an ¢ fraction
of the z’s (i.e., for these good #’s it holds that Pr[B(f(z),U,) = b(z,U,)] > & +¢).

Inverting procedure (on input y = f(z) and parameters n and ¢):
Set £ = log,(n/e?) + O(1).
(1) Select uniformly and independently s, ...,s* € {0,1}".
Select uniformly and independently o', ...,0 € {0,1}.
(2) For every non-empty J C [{], compute 7/ = ®;cs87 and p/ = @jey07.
(3) For i =1, ...,n determine the bit z; according to the majority vote
of the (2 — 1)-long sequence of bits (p’ & B(f(x),r’ ®e'))pzsci-
(4) Output 23 - - zy,.

Note that the “voting scheme” employed in Step 3 uses pairwise independent sam-
ples (i.e., the r/’s), but works essentially as well as it would have worked with
independent samples (i.e., the independent 7’s).5 That is, for every 7 and J, it
holds that Pro o« [B(f(z),r’®e’) = b(z,r’®e')] > (1/2) +¢, where 1’/ = &je 87,
and (for every fixed) the events corresponding to different J’s are pairwise inde-
pendent. It follows that if for every j € [€] it holds that o7 = b(x,s’), then for
every ¢+ and J we have

Pro.. o’ ® B(f(z),r' ®e') = b(x,)] (7.5)

5 Alternatively, we can try all polynomially many possible guesses. In such a case, we shall
output a list of candidates that, with high probability, contains x. (See Exercise 7.6.)

60ur focus here is on the accuracy of the approximation obtained by the sample, and not so
much on the error probability. We wish to approximate Pr[b(z,r) ® B(f(z), r®e') = 1] up to
an additive term of ¢, because such an approximation allows to correctly determine b(z, ei). A
pairwise independent sample of O(t/£2) points allows for an approximation of a value in [0, 1] up
to an additive term of € with error probability 1/¢, whereas a totally random sample of the same
size yields error probability exp(—t). Since we can afford setting ¢ = poly(n) and having error
probability 1/2n, the difference in the error probability between the two approximation schemes
is not important here. For a wider perspective see Appendix D.1.2 and D.3.

7.1. ONE-WAY FUNCTIONS 279

. . 1
= Prs17m7sz[B(f(x),r‘]@el) = b(x,r‘]@e’)] > 3 +e

where the equality is due to p’ = @jcs07 = b(z,17) = b(z,r’ ®e’) B b(z,e'). Note
that Eq. (7.5) refers to the correctness of a single vote for b(z,e’). Using m =
2 —1 = O(n/£?) and noting that these (Boolean) votes are pairwise independent,
we infer that the probability that the majority of these votes is wrong is upper-
bounded by 1/2n. Using a union bound on all i’s, we infer that with probability at
least 1/2, all majority votes are correct and thus x is retrieved correctly. Recall that
the foregoing is conditioned on o7 = b(z, s’) for every j € [¢], which in turn holds
with probability 27¢ = (m + 1)~! = Q(¢?/n) = 1/poly(n). Thus, z is retrieved
correctly with probability 1/poly(n), and the theorem follows. [

Digest. Looking at the proof of Theorem 7.7, we note that it actually refers

to an arbitrary black-box B, (-) that approximates b(z,-); specifically, in the case

of Theorem 7.7 we used B,(r) def B(f(x),r). In particular, the proof does not

use the fact that we can verify the correctness of the preimage recovered by the
described process. Thus, the proof actually establishes the existence of a poly(n/e)-
time oracle machine that, for every x € {0,1}", given oracle access to any B, :
{0,1}™ — {0, 1} satisfying

1
Prrcqoys [Be(r) = bz,)] 2 5+ (76)

outputs x with probability at least poly(e/n). Specifically, z is output with proba-
bility at least p Lef Q(e?/n). Noting that z is merely a string for which Eq. (7.6)
holds, it follows that the number of strings that satisfy Eq. (7.6) is at most 1/p.

Furthermore, by iterating the foregoing procedure for O(1/p) times we can obtain
all these strings (see Exercise 7.7).

Theorem 7.8 (Theorem 7.7, revisited): There ezxists a probabilistic oracle ma-
chine that, given parameters n,e and oracle access to any function B : {0,1}" —
{0,1}, halts after poly(n/e) steps and with probability at least 1/2 outputs a list of
all strings © € {0,1}™ that satisfy

1
Prrcoaye[B(r) = bz, r)] > 5 +e,

where b(x,r) denotes the inner-product mod 2 of x and r.

This machine can be modified such that, with high probability, its output list does
not include any string « such that Pr.cgo13=[B(r) = b(z,r)] < 1 + £.

Theorem 7.8 means that if given some information about x it is hard to recover
x, then given the same information and a random r it is hard to predict b(z,r).
This assertion is proved by the counter-positive (see Exercise 7.14). Indeed, the
foregoing statement is in the spirit of Theorem 7.7 itself, except that it refers to any
“information about z” (rather than to the value f(z)). To demonstrate the point,

280 CHAPTER 7. THE BRIGHT SIDE OF HARDNESS

let us rephrase the foregoing statement as follows: for every randomized process I1,

if given s it is hard to obtain I1(s) then given s and a random r it is hard to predict
b(IL(s),7).T

A coding theory perspective. Theorem 7.8 can be viewed as a list decoding
procedure for the Hadamard Code, where the Hadamard encoding of a string « €
{0, 1}" is the 2™-bit long string containing b(zx,r) for every r € {0,1}"™. In contrast
to standard decoding in which the task is recovering the unique information that is
encoded in the codeword that is closest to the given string, in list decoding the task
is recovering all strings having encoding that is at a specified distance from the
given string.® We mention that list decoding is applicable and valuable in the case
that the specified distance does not allow for unique decoding (i.e., the specified
distance is greater than half the distance of the code).

Applications of hard-core predicates. Turning back to hard-core predicates,
we mention that they play a central role in the construction of general-purpose pseu-
dorandom generators (see Section 8.2), commitment schemes and zero-knowledge
proofs (see Sections 9.2.2 and C.4.3), and encryption schemes (see Appendix C.5).

7.1.4 Reflections on hardness amplification

Let us take notice that something truly amazing happens in Theorems 7.5 and 7.7.
We are not talking merely of using an assumption to derive some conclusion; this is
common practice in Mathematics and Science (and was indeed done several times
in previous chapters, starting with Theorem 2.28). The thing that is special about
Theorems 7.5 and 7.7 (and we shall see more of this in Section 7.2 as well as in
Sections 8.2 and 8.3) is that a relatively mild intractability assumption is shown to
imply a stronger intractability result.

This strengthening of an intractability phenomenon (a.k.a hardness amplifi-
cation) takes place while we admit that we do not understand the intractability
phenomenon (because we do not understand the nature of efficient computation).
Nevertheless, hardness amplification is enabled by the use of the counter-positive,
which in this case is called a reducibility argument. At this point things look less
miraculous: a reducibility argument calls for the design of a procedure (i.e., a re-
duction) and a probabilistic analysis of its behavior. The design and analysis of
such procedures may not be easy, but it is certainly within the standard exper-
tise of computer science. The fact that hardness amplification is achieved via this
counter-positive is best represented in the statement of Theorem 7.8.

"Indeed, Theorem 7.7 is obtained as a special case by letting II(s) be uniformly distributed in
7).

8Further discussion of error-correcting codes and list-decoding is provided in Appendix E.1.

7.2. HARD PROBLEMS IN E 281

7.2 Hard Problems in E

As in Section 7.1, we start with the assumption P # NP and seek to use it to
our benefit. Again, we shall actually use a seemingly stronger assumption; here
the strengthening is in requiring worst-case hardness with respect to non-uniform
models of computation (rather than average-case harduness with respect to the
standard uniform model). Specifically, we shall assume that A/P cannot be solved
by (non-uniform) families of polynomial-size circuits; that is, AP is not contained
in P/poly (even not infinitely often).

Our goal is to transform this worst-case assumption into an average-case con-
dition, which is useful for our applications. Since the transformation will not yield
a problem in AP but rather one in £, we might as well take the seemingly weaker
assumption by which £ is not contained in P/poly (see Exercise 7.9). That is,
our starting point is actually that there exists an exponential-time solvable decision
problem such that any family of polynomial-size circuit fails to solve it correctly on
all but finitely many input lengths.®

A different perspective on our assumption is provided by the fact that £ con-
tains problems that cannot be solved in polynomial-time (cf.. Section 4.2.1). The
current assumption goes beyond this fact by postulating the failure of non-uniform
polynomial-time machines rather than the failure of (uniform) polynomial-time
machines.

Recall that our goal is to obtain a predicate (i.e., a decision problem) that is
computable in exponential-time but is inapproximable by polynomial-size circuits.
For sake of later developments, we formulate a general notion of inapproximability.

Definition 7.9 (inapproximability, a general formulation): We say that f : {0,1}* —
{0,1} is (S, p)-inapproximable if for every family of S-size circuits {Cr},en and all
sufficiently large n it holds that

PrICA(U) # (U] 2 22 (7.7

We say that f is T-inapproximable if it is (T,1 — (1/T))-inapprozimable.

We chose the specific form of Eq. (7.7) such that the “level of inapproximability”
represented by the parameter p will range in (0,1) and increase with the value
of p. Specifically, (almost-everywhere) worst-case hardness for circuits of size S
is represented by (S, p)-inapproximability with p(n) = 27"*! (i.e., in this case
Pr[C(U,) # f(U,)] > 2~ for every circuit C,, of size S(n)). On the other hand, no
predicate can be (S, p)-inapproximable for p(n) =1 — 27" even with S(n) = O(n)
(ie., PrlC(U,) = f(Uy,)] > 0.5+ 27! holds for some linear-size circuit; see
Exercise 7.10).

We note that Eq. (7.7) can be interpreted as an upper-bound on the correlation
of each adequate circuit with f (i.e., Eq. (7.7) is equivalent to E[x(C(Uy,), f(U,))] <

9Note that our starting point is actually stronger than assuming the existence of a function f
in £\ P/poly. Such an assumption would mean that any family of polynomial-size circuit fails
to compute f correctly on infinitely many input lengths, whereas our starting point postulates
failures on all but finitely many lengths.

282 CHAPTER 7. THE BRIGHT SIDE OF HARDNESS

1 — p(n), where x(o,7) = 1 if ¢ = 7 and x(o,7) = —1 otherwise).!® Thus, T-
inapproximability means that no family of size T circuits can correlate f better
than 1/T.

We note that the existence of a non-uniformly hard one-way function (as in
Definition 7.3) implies the existence of an exponential-time computable predicate
that is T-inapproximable for every polynomial T'. (For details see Exercise 7.21.)
However, our goal in this section is to establish this conclusion under a seemingly
weaker assumption.

On almost everywhere hardness. We highlight the fact that both our as-
sumptions and conclusions refer to almost everywhere hardness. For example, our
starting point is not merely that £ is not contained in P/poly (or in other circuit
size classes to be discussed), but rather that this is the case almost everywhere.
Note that by saying that f has circuit complexity exceeding S, we merely mean
that there are infinitely many n’s such that no circuit of size S(n) can compute f
correctly on all inputs of length n. In contrast, by saying that f has circuit com-
plexity exceeding S almost everywhere, we mean that for all but finite many n’s no
circuit of size S(n) can computes f correctly on all inputs of length n. (Indeed, it is
not known whether an “infinitely often” type of hardness implies a corresponding
“almost everywhere” hardness.)

The class £. Recall that £ denote the class of exponential-time solvable decision

problems (equivalently, exponential-time computable Boolean predicates); that is,

€ = U.DTIME(t.), where t.(n) el gen

The rest of this section. We start (in Section 7.2.1) with a treatment of as-
sumptions and hardness amplification regarding polynomial-size circuits, which
suffice for non-trivial derandomization of BPP. We then turn (in Section 7.2.2) to
assumptions and hardness amplification regarding exponential-size circuits, which
yield a “full” derandomization of BPP (i.e., BPP = P). In fact, both sections
contain material that is applicable to various other circuit-size bounds, but the
motivational focus is as stated.

Teaching note: Section 7.2.2 is advanced material, which is best left for independent
reading. Furthermore, for one of the central results (i.e., Lemma 7.23) only an outline
is provided and the interested reader is referred to the original paper [125].

7.2.1 Amplification wrt polynomial-size circuits
Our goal here is to prove the following result.

Theorem 7.10 Suppose that for every polynomial p there exists a problem in £
having circuit complexity that is almost-everywhere greater than p. Then there exist
polynomial-inapproximable Boolean functions in E; that is, for every polynomial p
there exists a p-inapprozimable Boolean function in &.

0Tndeed, E[x(X,Y)] =PriX=Y] —Pr[X#Y] =1 - 2Pr[X #Y].

7.2. HARD PROBLEMS IN E 283

Theorem 7.10 is used towards deriving a meaningful derandomization of BPP
under the aforementioned assumption (see Part 2 of Theorem 8.19). We present
two proofs of Theorem 7.10. The first proof proceeds in two steps:

1. Starting from the worst-case hypothesis, we first establish some mild level of
average-case hardness (i.e., a mild level of inapproximability). Specifically,
we show that for every polynomial p there exists a problem in & that is
(p,€)-inapproximable for e(n) = 1/n3.

2. Using the foregoing mild level of inapproximability, we obtain the desired
strong level of inapproximability (i.e., p’-inapproximability for every polyno-
mial p'). Specifically, for every two polynomials p; and p,, we prove that if the
function f is (p1,1/p2)-inapprozimable, then the function F(x1,...,Tyn)) =
69:(:"1)]‘(3:1-), where t(n) = n-pa(n) and Ty, ..., Tyn) € {0,1}", is p'-inapprozimable
for p'(t(n) - n) = p1(n)*D) /poly(t(n)). This claim is known as Yao's XOR
Lemma and its proof is far more complex than the proof of its information
theoretic analogue (discussed at the beginning of §7.2.1.2).

The second proof of Theorem 7.10 consists of showing that the construction em-
ployed in the first step, when composed with Theorem 7.8, actually yields the
desired end result. This proof will uncover a connection between hardness amplifi-
cation and coding theory. Our presentation will thus proceed in three corresponding
steps (presented in §7.2.1.1-7.2.1.3, and schematically depicted in Figure 7.2).

vialist decoding (7.2.1.3)

mild
_ Yao's XOR .
worst-case average-case Inappr ox.
HARDNESS HARDNESS 7212
derandomized

Yao's XOR (7.2.2)

Figure 7.2: Proofs of hardness amplification: organization

7.2.1.1 From worst-case hardness to mild average-case hardness

The transformation of worst-case hardness into average-case hardness (even in a
mild sense) is indeed remarkable. Note that worst-case hardness may be due to
a relatively small number of instances, whereas even mild forms of average-case
hardness refer to a very large number of possible instances.!! In other words, we
should transform hardness that may occur on a negligible fraction of the instances

HIndeed, worst-case hardness with respect to polynomial-size circuits cannot be due to a poly-
nomial number of instances, because a polynomial number of instances can be hard-wired into

284 CHAPTER 7. THE BRIGHT SIDE OF HARDNESS

into hardness that occurs on a noticeable fraction of the instances. Intuitively, we
should “spread” the hardness of few instances (of the original problem) over all (or
most) instances (of the transformed problem). The counter-positive view is that
computing the value of typical instances of the transformed problem should enable
solving the original problem on every instance.

The aforementioned transformation is based on the self-correction paradigm,
to be reviewed first. The paradigm refers to functions g that can be evaluated
at any desired point by using the value of ¢ at a few random points, where each
of these points is uniformly distributed in the function’s domain (but indeed the
points are not independently distributed). The key observation is that if g(z) can
be reconstructed based on the value of g at ¢ such random points, then such a
reconstruction can tolerate a 1/3t fraction of errors (regarding the values of g).
Thus, if we can correctly obtain the value of g on all but at most a 1/3t fraction
of its domain, then we can probabilistically recover the correct value of g at any
point with very high probability. It follows that if no probabilistic polynomial-time
algorithm can correctly compute g in the worst-case sense, then every probabilistic
polynomial-time algorithm must fail to correctly compute g on more than a 1/3t
fraction of its domain.

The archetypical example of a self-correctable function is any m-variate poly-
nomial of individual degree d over a finite field F' such that |F| > dm + 1. The
value of such a polynomial at any desired point x can be recovered based on the
values of dm + 1 points (other than z) that reside on a random line that passes
through x. Note that each of these points is uniformly distributed in F™, which is
the function’s domain. (For details, see Exercise 7.11.)

Recall that we are given an arbitrary function f € £ that is hard to compute
in the worst-case. Needless to say, this function is not necessarily self-correctable
(based on relatively few points), but it can be extended into such a function.
Specifically, we extend f : [N] — {0, 1} (viewed as f : [NY/™]™ — {0,1}) to an m-
variate polynomial of individual degree d over a finite field F' such that |F| > dm+1
and (d + 1)™ = N. Intuitively, in terms of worst-case complexity, the extended
function is at least as hard as f, which means that it is hard (in the worst-case).
The point is that the extended function is self-correctable and thus its worst-case
hardness implies that it must be at least mildly hard in the average-case. Details
follow.

Construction 7.11 (multi-variate extension)'?: For any function f, : {0,1}" —
{0,1}, a finite field F', a set H C F and an integer m such that |[H|™ = 2™ and
|F| > (JH| — 1)m + 1, we consider the function f, : F™ — F defined as the m-
variate polynomial of individual degree |H|—1 that extends f, : H™ — {0,1}. That

such circuits. Still, for all we know, worst-case hardness may be due to a small super-polynomial
number of instances (e.g., nlog2n instances). In contrast, even mild forms of average-case hardness
must be due to an exponential number of instances (i.e., 2™ /poly(n) instances).

12The algebraic fact underlying this construction is that for any function f : H™ — F there
exists a unique m-variate polynomial f : F™ — F of individual degree |H| —1 such that for every
x € H™ it holds that f(:c) = f(«). This polynomial is called a multi-variate polynomial extension
of f, and it can be found in poly(|H|™ log |F’|)-time. For details, see Exercise 7.12.

7.2. HARD PROBLEMS IN E 285

is, we identify {0,1}™ with H™, and define fn as the unique m-variate polynomaial
of individual degree |H| — 1 that satisfies fn(z) = fn(x) for every x € H™, where
we view {0,1} as a subset of F.

Note that fn can be evaluated at any desired point, by evaluating f, on its entire
domain, and determining the unique m-variate polynomial of individual degree
|H|—1 that agrees with f,, on H™ (see Exercise 7.12). Thus, for f : {0,1}* — {0, 1}
in &, the corresponding f (defined by separately extending the restriction of f to
each input length) is also in £. For the sake of preserving various complexity
measures, we wish to have |F™| = poly(2"), which leads to setting m = n/log, n
(yielding |H| = n and |F| = poly(n)). In particular, in this case f, is defined over
strings of length O(n). The mild average-case hardness of f follows by the forgoing
discussion. In fact, we state and prove a more general result.

Theorem 7.12 Suppose that there exists a Boolean function f in € having cir-
cust complexity that is almost-everywhere greater than S. Then, there exists an
exponential-time computable function f : {0,1}* — {0,1}* such that |f(z)| < |z|
and for every family of circuit {C),},cn of size S'(n') = S(n'/O(1))/poly(n') it
holds that Pr[C!, (U,) # F(U.)] > (1/n')2. Furthermore, f does not depend on S.

Theorem 7.12 seems to complete the first step of the proof of Theorem 7.10, ex-
cept that we desire a Boolean function rather than a function that merely does
not stretch its input. The extra step of obtaining a Boolean function that is
(poly(n),n~3)-inapproximable is taken in Exercise 7.13.13 Essentially, if f is hard
to compute on a noticeable fraction of its inputs then the Boolean predicate that
on input (z,i) returns the i*" bit of f(z) must be mildly inapproximable.

Proof Sketch: Given f as in the hypothesis and for every n € N, we consider the
restriction of f to {0,1}", denoted f,, and apply Construction 7.11 to it, while
using m = n/logn, |H| = n and n? < |F| = poly(n). Recall that the resulting
function f, maps strings of length n’ = log, |[F™| = O(n) to strings of length
log, |F'| = O(log n). Following the foregoing discussion, we shall show that circuits
that approximate fn too well yield circuits that compute f,, correctly on each input.
Using the hypothesis regarding the size of the latter, we shall derive a lower-bound
on the size of the former. The actual (reducibility) argument proceeds as follows.
We fix an arbitrary circuit C, that satisfies

Pr[C;L’(Un’) = fn(Un’)] >1- (]_/’I’L,)Z >1- (1/3t)7 (78)

where t & (JH| — 1)m + 1 = o(n?) exceeds the total degree of f,. Using the
self-correction feature of f,, we observe that by making ¢ oracle calls to C!, we can

probabilistically recover the value of (f,, and thus of) f, on each input, with proba-
bility at least 2/3. Using error-reduction and (non-uniform) derandomization as in

13 A quantitatively stronger bound can be obtained by noting that the proof of Theorem 7.12
actually establishes an error lower-bound of Q((logn')/(n')?) and that |f(z)| = O(log |z|).

286 CHAPTER 7. THE BRIGHT SIDE OF HARDNESS

the proof of Theorem 6.3,'* we obtain a circuit of size n® - |C!,| that computes f,.
By the hypothesis n?-|C!,| > S(n), and so |C!,| > S(n'/O(1))/poly(n’). Recalling
that C7, is an arbitrary circuit that satisfies Eq. (7.8), the theorem follows. [

Digest. The proof of Theorem 7.12 is actually a worst-case to average-case re-
duction. That is, the proof consists of a self-correction procedure that allows for
the evaluation of f at any desired n-bit long point, using oracle calls to any circuit
that computes f correctly on a 1 — (1/n")? fraction of the n'-bit long inputs. We
recall that if f € £ then f € &, but we do not know how to preserve the complexity
of f in case it is in A"P. (Various indications to the difficulty of a worst-case to
average-case reduction for NP are known; see, e.g., [40].)

We mention that the ideas underlying the proof of Theorem 7.12 have been
applied in a large variety of settings. For example, we shall see applications of
the self-correction paradigm in §9.3.2.1 and in §9.3.2.2. Furthermore, in §9.3.2.2
we shall re-encounter the very same multi-variate extension used in the proof of
Theorem 7.12.

7.2.1.2 Yao’s XOR Lemma

Having obtained a mildly inapproximable predicate, we wish to obtain a strongly
inapproximable one. The information theoretic context provides an appealing sug-
gestion: Suppose that X is a Boolean random variable (representing the mild
inapproximability of the aforementioned predicate) that equals 1 with probability
e. Then XORing the outcome of n/e independent samples of X yields a bit that
equals 1 with probability 0.5 & exp(—Q(n)). It is tempting to think that the same
should happen in the computational setting. That is, if f is hard to approximate
correctly with probability exceeding 1 — ¢ then XORing the output of f on n/e
non-overlapping parts of the input should yield a predicate that is hard to approx-
imate correctly with probability that is non-negligibly higher than 1/2. The latter
assertion turns out to be correct, but (even more than in Section 7.1.2) the proof
of the computational phenomenon is considerably more complex than the analysis
of the information theoretic analogue.

Theorem 7.13 (Yao’s XOR Lemma): There ezxist a universal constant ¢ > 0 such
that the following holds. If, for some polynomials py; and ps, the Boolean function f
is (p1,1/p2)-inapprozimable, then the function F(xy, ..., Tyn)) = 692(:”1)]”(%), where
t(n) = n-pa(n) and w1, ..., 44, € {0,1}", is p'-inapprozimable for p'(t(n) -n) =
p1(n)¢/t(n)'/¢. Furthermore, the claim holds also if the polynomials py and py are
replaced by any integer functions.

LM Pirst, we apply the foregoing probabilistic procedure O(n) times and take a majority vote.
This yields a probabilistic procedure that, on input = € {0,1}", invokes C’, for o(n?) times and
computes f(x) correctly with probability greater than 1 — 27 ™. Finally, we just fix a sequence
of random choices that is good for all 2" possible inputs, and obtain a circuit of size n® - |C:L,\

that computes f, correctly on every n-bit input.

7.2. HARD PROBLEMS IN E 287

Combining Theorem 7.12 (and Exercise 7.13), and Theorem 7.13, we obtain a proof
of Theorem 7.10. (Recall that an alternative proof is presented in §7.2.1.3.)

We note that proving Theorem 7.13 seems more difficult than proving Theo-
rem 7.5 (i.e., the amplification of one-way functions), due to two issues. Firstly,
unlike in Theorem 7.5, the computational problems are not in PC and thus we
cannot efficiently recognize correct solutions to them. Secondly, unlike in Theo-
rem 7.5, solutions to instances of the transformed problem do not correspond of
the concatenation of solutions for the original instances, but are rather a function
of the latter that losses almost all the information about the latter. The proof of
Theorem 7.13 presented next deals with each of these two difficulties separately.

Several different proofs of Theorem 7.13 are known. As just stated, the proof
that we present is conceptually appealing because it deal separately with two unre-
lated difficulties. Furthermore, this proof benefits most from the material already
presented in Section 7.1. The proof proceeds in two steps:

1. First we prove that the corresponding “direct product” function P(x1, ..., Zyn)) =
(f(w1), ..., f(my(n))) is difficult to compute in a strong average-case sense.

2. Next we establish the desired result by an application of Theorem 7.8.

Thus, given Theorem 7.8, our main focus is on the first step, which is of independent
interest (and is thus generalized from Boolean functions to arbitrary ones).

Theorem 7.14 (The Direct Product Lemma): Let p; and py be two polynomials,
and suppose that f : {0,1}* — {0,1}* is such that for every family of p;-size
circuits, {Cn},en, and all sufficiently large n € N, it holds that Pr[C,(U,) #
f(UR)] > 1/p2(n). Let P(z1,...,Ty(n)) = (f(71), ., [(Te(n))), where T1,..., 24(n) €
{0,1}™ and t(n) = n - pa(n). Then, for any ' : N — [0,1], setting p' such that
p'(t(n) - n) = pi(n)/poly(t(n)/e'(t(n) - n)), it holds that every family of p'-size
circuits, {C),} e, satisfies Pr[C) (Un) = P(Un)| < €'(m). Furthermore, the
claim holds also if the polynomials py and py are replaced by any integer functions.

In particular, for an adequate constant ¢ > 0, selecting &'(¢(n) - n) = p1(n) ¢

obtain p'(t(n) - n) = py(n)/t(n)*/¢, and so &'(m) < 1/p'(m).

, we

Deriving Theorem 7.13 from Theorem 7.14. Theorem 7.13 follows from
Theorem 7.14 by considering the function P'(z1, ..., Ty(n),7) = b(f(w1) -+ f(T4(n)), 7),
where f is a Boolean function, r € {0,1}*™ and b(y,r) is the inner-product
modulo 2 of the ¢(n)-bit long strings y and r. Note that, for the corresponding
P, we have P'(71,...,Zyn),7) = b(P(Z1,...,T4(n)),7), Whereas F(z1,...,Tyn)) =
P'(x1, . Ty(n) 14")). Intuitively, the inapproximability of P’ should follow from
the strong average-case hardness of P (via Theorem 7.8), whereas it should be pos-
sible to reduce the approximation of P’ to the approximation of F' (and thus derive
the desired inapproximability of F'). Indeed, this intuition does not fail, but detail-
ing the argument seems a bit cumbersome (and so we only provide the clues here).
Assuming that f is (p1,1/p2)-inapproximable, we first apply Theorem 7.14 (with
e'(t(n) -m) = p1(n)~¢) and then apply Theorem 7.8 (see Exercise 7.14), inferring

288 CHAPTER 7. THE BRIGHT SIDE OF HARDNESS

that P’ is p/-inapproximable for p'(t(n) - n) = p1(n)?™) /poly(t(n)). The less obvi-
ous part of the argument is reducing the approximation of P’ to the approximation
of F'. The key observation is that

P21,y Ty, 1) = F21, 000 20m) @ @D f(21) (7.9)

2r; =0

where z; = x; if 1, = 1 and is an arbitrary n-bit long string otherwise. Now, if
somebody provides us with samples of the distribution (U,, f(U,)), then we can
use these samples in the role of the pairs (z;, f(z;)) for the indices 7 that satisfy
r; = 0. Considering a best choice of such samples (i.e., one for which we obtain the
best approximation of P'), we obtain a circuit that approximates P’ (by using a
circuit that approximates F' and the said choices of samples). (The details are left
for Exercise 7.16.) Theorem 7.13 follows.

Proving Theorem 7.14. Note that Theorem 7.14 is closely related to Theo-
rem 7.5; see Exercise 7.17 for details. This suggests employing an analogous proof
strategy; that is, converting circuits that violate the theorem’s conclusion into cir-
cuits that violate the theorem’s hypothesis. We note, however, that things were
much simpler in the context of Theorem 7.5: there we could (efficiently) check
whether or not a value contained in the output of the circuit that solves the direct-
product problem constitutes a correct answer for the corresponding instance of the
basic problem. Lacking such an ability in the current context, we shall have to
use such values more carefully. Loosely speaking, we shall take a weighted ma-
jority vote among various answers, where the weights reflect our confidence in the
correctness of the various answers.

We establish Theorem 7.14 by applying the following lemma that provides quan-
titative bounds on the feasibility of computing the direct product of two functions.
In this lemma, {Y, },,en and {Z,, },,, v are independent probability ensembles such
that Yo, Z, € {0,1}™, and X,, = (Yy(n), Zn—¢(n)) for some function £: N — N.
The lemma refers to the success probability of computing the direct product func-
tion F':{0,1}* — {0,1}* defined by F(yz) = (Fi(y), F>(2)), where |y| = ¢(Jyz|),
when given bounds on the success probability of computing F; and F» (separately).
Needless to say, these probability bounds refer to circuits of certain sizes. We stress
that the lemma is not symmetric with respect to the two functions: it guarantees a
stronger (and in fact lossless) preservation of circuit sizes for one of the functions
(which is arbitrarily chosen to be Fy).

Lemma 7.15 (Direct Product, a quantitative two argument version): For {Y,,},
{Zn}, Fi, Fa, £, {X,,} and F as in the foregoing, let pi(-) be an upper-bound on
the success probability of s1(-)-size circuits in computing Fy over {Y,,}. That is,
for every such circuit family {Cy,}

PrCom(Yim)=F1(Ym)] < pr(m).

Likewise, suppose that p2(-) is an upper-bound on the probability that so(-)-size
circuits compute Fy over {Z,,}. Then, for every function ¢ : N— R, the function

7.2. HARD PROBLEMS IN E 289

p defined as
p(n) = p1(E(n)) - pa(n — €(n)) + e(n)

is an upper-bound on the probability that families of s(-)-size circuits correctly com-
pute F' over {X,,}, where

s(n) = min {Sl(ﬁ(n)) , M}

poly(n/e(n))

Theorem 7.14 is derived from Lemma 7.15 by using a careful induction, which
capitalizes on the highly quantitative form of Lemma 7.15 and in particular on the
fact that no loss is incurred for one of the two functions that are used. We first
detail this argument, and next establish Lemma 7.15 itself.

Deriving Theorem 7.14 from Lemma 7.15. We write P(z1, 2, ..., Ty(n)) as
P (g1, 2o, ..., Ty(n)), Where PO(zy, ... x5) = (f(x1), ..., f(2:)) and PO (zq, ..., 2;)
(P Y (xy,...,2; 1), f(x;)). For any function e, we shall prove by induction on i
that circuits of size s(n) = py(n)/poly(t(n)/e(n)) cannot compute P (U;.,,) with
success probability greater than (1—(1/p2(n))'+(i—1)-2(n), where p; and p are as
in Theorem 7.14. Thus, no s(n)-size circuit can compute P(t("))(Ut(n).n) with suc-
cess probability greater than (1—(1/p2(n))™) +(t(n)—1)-e(n) = exp(—n)+(t(n)—
1)-e(n). Recalling that this is established for any function e, Theorem 7.14 follows
(by using e(n) = €'(t(n) -n)/t(n), and observing that the setting s(n) = p'(¢(n) -n)
satisfies s(n) = py(n)/poly(t(n)/e(n))).

Turning to the induction itself, we first note that its basis (i.e., ¢ = 1) is
guaranteed by the theorem’s hypothesis (i.e., the hypothesis of Theorem 7.14
regarding f). The induction step (i.e., from ¢ to ¢ + 1) will be proved by us-
ing Lemma 7.15 with F; = P® and F, = f, along with the parameter setting
AV () = (1= (1/pa(n)) + (i = 1) -£(n), s (i n) = s(n), py’(n) = 1 (1/pa(n))
and sgz) (n) = poly(n/e(n)) - s(n) = p1(n). Details follow.

Note that the induction hypothesis (regarding P(i)) implies that F) satisfies the
hypothesis of Lemma 7.15 (w.r.t size ng) and success rate pgl)), whereas the theo-
rem’s hypothesis regarding f implies that F, satisfies the hypothesis of Lemma 7.15

(w.r.tsize s and success rate p\)). Thus, F' = P(i+D) satisfies the lemma’s conclu-

sion with respect to circuits of size min(sgl)(i-n), séz)(n)/poly(n/s(n))) = s(n) and
success rate p\” (i-n) - p{”) (n) + £(n) which is upper-bounded by (1— (1/ps(n))i+! +
i-&(n). This completes the induction step.

We stress the fact that we used induction for a non-constant number of steps,
and that this was enabled by the highly quantitative form of the inductive claim and
the small loss incurred by the inductive step. Specifically, the size bound did not
decrease during the induction (although we could afford a small additive loss in each
step, but not a constant factor loss). Likewise, the success rate suffered an additive
increase of €(n) in each step, which was accommodated by the inductive claim.
Thus, assuming the correctness of Lemma 7.15, we have established Theorem 7.14.

O

290 CHAPTER 7. THE BRIGHT SIDE OF HARDNESS

Proof of Lemma 7.15: Proceeding (as usual) by the contrapositive, we consider
a family of s(-)-size circuits {Cy},,en that violates the lemma’s conclusion; that is,
Pr[Cn(X,) = F(X,)] > p(n). We will show how to use such circuits in order to
obtain either circuits that violate the lemma’s hypothesis regarding F} or circuits
that violate the lemma’s hypothesis regarding F>. Towards this end, it is instructive
to write the success probability of C,, in a conditional form, while denoting the 7*!
output of Cn(x) by Cn(x)z (i'e-; Cn(w) = (Cn(x)hcn(w)z))

Pr[cn(}fl(n)a anl(n)) :F(Ye(n), anl(n))]
= Pr[Cn(n(n)a Z’nfl(n))l :Fl ()/l(n))]
Pr(Cn(Yen), Zn—t(n))2 = F2(Zn—t(n)) | Cr(Ye(n), Zn—t(n))1 =F1(Ye(n))]-

The basic idea is that if the first factor is greater than p;(¢(n)) then we imme-
diately derive a circuit (i.e., C},(y) = Cn(¥y, Zn—g(n))1) contradicting the lemma’s
hypothesis regarding F7, whereas if the second factor is significantly greater than
p2(n — £(n)) then we can obtain a circuit contradicting the lemma’s hypothesis
regarding F». The treatment of the latter case is indeed not obvious. The idea
is that a sufficiently large sample of (Yy(n), F1(Yy(n))), which may be hard-wired
into the circuit, allows using the conditional probability space (in such a circuit)
towards an attempt to approximate F,. That is, on input z, we select uniformly a
string y satisfying Cp,(y, 2z)1 = Fi(y) (from the aforementioned sample), and out-
put Cp(y, z)2. For a fixed z, sampling of the conditional space (i.e., y’s satisfying
Cn(y,2)1 = F1(y)) is possible provided that Pr[C,,(Yy(n), 2)1 = F1(Yi(n))] holds with
noticeable probability. The last caveat motivates a separate treatment of z’s having
a noticeable value of Pr[Cy,(Yy(n), 2)1 = F1(Yy(n))] and of the rest of 2’s (which are
essentially ignored). Details follow.

Let us first simplify the notations by fixing a generic » and using the abbre-
viations C = Cp,, ¢ = ¢(n), £ = £€(n), Y =Y, and Z = Y,,_,. We call z good
it PriC(Y,2)1 = Fi(Y)] > ¢/2 and let G be the set of good z’s. Next, rather
than considering the event C(Y,Z) = F(Y, Z), we consider the combined event
CY,Z)=F(Y,Z) A Z€@, which occurs with almost the same probability (up to
an additive error term of £/2). This is the case because, for any z ¢ G, it holds
that

PriC(Y,z)=F(Y,z)] < PriC(Y,z)1=F1(Y)] < ¢/2

and thus 2’s that are not good do not contribute much to Pr[C(Y,Z)=F(Y, Z)];
that is, Pr[C(Y, Z)=F(Y,Z) A Z €G] is lower-bounded by Pr[C(Y, Z)=F (Y, Z)] —
e/2. Using Pr[C(Y,2)=F(Y, z)] > p(n) = p1(€) - p2(n — €) + €, we have

PrC(Y, Z)=F(Y,Z) A Z€G] > pr(0) - pa(n — €) + % (7.10)
We proceed according to the forgoing outline, first showing that if Pr[C(Y, Z); =
F1(Y)] > p1(£) then we immediately derive circuits violating the hypothesis con-
cerning F). Actually, we prove something stronger (which we will actually need for
the other case).

Claim 7.15.1: For every z, it holds that Pr[C(Y, 2)1 =F1(Y)] < p1(£).

7.2. HARD PROBLEMS IN E 291

Proof: Otherwise, using any z € {0,1}"* that satisfies Pr[C(Y,2);, = F1(Y)] >
p1(£), we obtain a circuit C'(y) def C(y, z)1 that contradicts the lemma’s hypothesis
concerning F}. O

Using Claim 7.15.1, we show how to obtain a circuit that violates the lemma’s
hypothesis concerning F5, and doing so we complete the proof of the lemma.

Claim 7.15.2: There exists a circuit C" of size ss(n — £) such that

PrC(Y,2)=F(Y,Z) A Z€G] =
p1(€) 2

PriC"(2)=F(Z2))
> pa(n—10)

Proof: The second inequality is due to Eq. (7.10), and thus we focus on establish-
ing the first inequality. We construct the circuit C" as suggested in the foregoing

outline. Specifically, we take a poly(n/e)-large sample, denoted S, from the distri-

bution (Y, F1(Y)) and let C"(z) = C(y, z)2, where (y,v) is a uniformly selected

among the elements of S for which C(y, z); = v holds. Details follow.

Let m be a sufficiently large number that is upper-bounded by a polynomial
in n/e, and consider a random sequence of m pairs, generated by taking m in-
dependent samples from the distribution (Y, Fi(Y)). We stress that we do not
assume here that such a sample, denoted S, can be produced by an efficient (uni-
form) algorithm (but, jumping ahead, we remark that such a sequence can be
fixed non-uniformly). For each z € G C {0,1}" ¢, we denote by S, the set of
pairs (y,v) € S for which C(y,z); = v. Note that S, is a random sample of the
residual probability space defined by (Y, F1(Y)) conditioned on C(Y,z2); = F1(Y).
Also, with overwhelmingly high probability, |S.| = Q(n/e?), because z € G im-
plies Pr[C(Y,z)1 =F1(Y)] > ¢/2 and m = Q(n/e?).!> Thus, for each z € G, with
overwhelming probability (taken over the choices of S), the sample S, provides
a good approximation to the conditional probability space.!® In particular, with
probability greater than 1 — 27", it holds that

M) €5 L0 2BEN 5 o =R | C =R - 5.

(7.11)

Thus, with positive probability, Eq. (7.11) holds for all z € G C {0,1}"~*. The

circuit C" computing F is now defined as follows. The circuit will contain a set

S ={(yi,vi) 14 =1,....,m} (ie., S is “hard-wired” into the circuit C"") such that
the following two conditions hold:

1. For every i € [m] it holds that v; = Fi (y;).

2. For each good z the set S, = {(y,v)€S : C(y, z)1 =v} satisfies Eq. (7.11).

(In particular, S, is not empty for any good z.)

15Note that the expected size of S, is m -¢/2 = Q(n/e?). Using Chernoff Bound, we get
Prs[|Sz| < me/4] = exp(—Q(n/e2)) <277,

OFor T, = {y : C(y,z)1 = Fi(y)}, we are interested in a sample S’ of 7. such that
{y € S’ : C(y,z)2=F>(z)}|/|S'| approximates Pr[C(Y,z)2 = F2(z)|Y € T.] up-to an additive
term of £/2. Using Chernoff Bound again, we note that a random S’ C T, of size 2(n/c?)
provides such an approximation with probability greater than 1 —27™.

292 CHAPTER 7. THE BRIGHT SIDE OF HARDNESS

On input z, the circuit C" first determines the set S,, by running C for m times and
checking, for each ¢ = 1,...,m, whether or not C(y;,z) = v;. In case S, is empty,
the circuit returns an arbitrary value. Otherwise, the circuit selects uniformly a
pair (y,v) € S, and outputs C(y, z)2. (The latter random choice can be eliminated
by an averaging argument; see Exercise 7.15.) Using the definition of C" and
Eq. (7.11), we have:

PriC"(Z)=Fy(2)] > Y PriZ=2z]-Pr[C"(z)=Fy(2)]

2€G
_ 7=, K@:v) €. : Cly,2): = Fo(2)}]
- 2 Pl -]

> Y Priz=z] (PO, 22 =Fo(2) | OV, 2) =R (V)] - 5)

ze@

—.. PriC(Y,2)2=Fy(2) A C(Y, 21 =F1(Y)]
Y piz=: (PAC(Y, 2 = Fi (V)

zeCG

Next, using Claim 7.15.1, we have:

"oy L PI[C(Y,2)=F(Y,2)] e
PriC"(Z2)=Fx(Z)] = (;Pr[Z_z]- 0) - <
_ PIC(YV,Z)=F(Y,Z) A ZeG] ¢
B p1(€) 2

Finally, using Eq. (7.10), the claim follows. O
This completes the proof of the lemma. [

Comments. Firstly, we wish to call attention to the care with which an inductive
argument needs to be carried out in the computational setting, especially when a
non-constant number of inductive steps is concerned. Indeed, our inductive proof
of Theorem 7.14 involves invoking a quantitative lemma (i.e., Lemma 7.15) that
allows to keep track of the relevant quantities (e.g., success probability and circuit
size) throughout the induction process. Secondly, we mention that Lemma 7.15
(as well as Theorem 7.14) has a uniform complexity version that assumes that one
can efficiently sample the distribution (Yy(n), F1(Yy(n))) (resp., (Un, f(Un))). For
details see [99]. Indeed, a good lesson from the proof of Lemma 7.15 is that non-
uniform circuits can “effectively sample” any distribution. Lastly, we mention that
Theorem 7.5 (the amplification of one-way functions) and Theorem 7.13 (Yao’s
XOR Lemma) also have (tight) quantitative versions (see, e.g., [88, Sec. 2.3.2] and
[99, Sec. 3], respectively).

7.2.1.3 List decoding and hardness amplification

Recall that Theorem 7.10 was proved in §7.2.1.1-7.2.1.2, by first constructing a
mildly inapproximable predicate via Construction 7.11, and then amplifying its

2

)

7.2. HARD PROBLEMS IN E 293

hardness via Yao’s XOR Lemma. In this subsection we show that the construc-
tion used in the first step (i.e., Construction 7.11) actually yields a strongly in-
approximable predicate. Thus, we provide an alternative proof of Theorem 7.10.
Specifically, we show that a strongly inapproximable predicate (as asserted in The-
orem 7.10) can be obtained by combining Construction 7.11 (with a suitable choice
of parameters) and the inner-product construction (of Theorem 7.8). The main
ingredient of this argument is captured by the following result.

Proposition 7.16 Suppose that there exists a Boolean function f in € having cir-
cuit complexity that is almost-everywhere greater than S, and let ¢ : N — [0,1] sat-
isfying e(n) > 2™, Let f,, be the restriction of f to {0,1}", and let f,, be the func-
tion obtained from f, when applying Construction 7.11'7 with |H| = n/e(n) and
|F| = |H|?. Then, the function f : {0,1}* — {0,1}*, defined by f(z) = fm/g(:ﬂ),
is computable in exponential-time and for every family of circuit {C], }, cn of size
S'(n') = poly(e(n'/3)/n') - S(n'/3) it holds that Pr[C", (Un) = f(Un)] < £'(n') <
e(n'/3).

Before turning to the proof of Proposition 7.16, let us describe how it yields an
alternative proof of Theorem 7.10. Firstly, for some v > 0, Proposition 7.16 yields
an exponential-time computable function f such that |f(z)| < |z| and for ev-
ery family of circuit {C], }, en of size S'(n') = S(n'/3)7/poly(n') it holds that
Pr[C!, (Up) = f(Un)] < 1/8'(n'). Combining this with Theorem 7.8 (cf. Ex-
ercise 7.14), we infer that P(z,r) = b(f(z),r), where |r| = |f(z)] < |z, is S"-
inapproximable for S”(n'") = S'(n" /2)?(") /poly(n''). In particular, for every poly-
nomial p, we obtain a p-inapproximable predicate in £ by applying the foregoing
with S(n) = poly(n,p(n)). Thus, Theorem 7.10 follows.

Teaching note: The following material is very advanced and is best left for indepen-
dent reading. Furthermore, its understanding requires being comfortable with basic

notions of error-correcting codes (as presented in Appendix E.1).

Proposition 7.16 is proven by observing that the transformation of f,, to fn
counstitutes a “good” code (see §E.1.1.4) and that any such code provides a worst-
case to (strongly) average-case reduction. We start by defining the class of codes
that suffices for the latter reduction, while noting that the code underlying the
mapping f, — fn is actually stronger than needed.

Definition 7.17 (efficient codes supporting implicit decoding): For fized functions
¢,0: N - Nand o : N — [0,1], the mapping T : {0,1}* — {0,1}* is said to
be efficient and supports implicit decoding with parameters ¢, ¢, « if it satisfies the
following two conditions:

I7Recall that in Construction 7.11 we have |H|™ = 2™, which may yield a non-integer m if we
insist on |H| = n/e(n). This problem was avoided in the proof of Theorem 7.12 (where |H| =n
was used), but is more acute in the current context because of € (e.g., we may have e(n) = 2=27/7),
Thus, we should either relax the requirement |H|™ = 27 (e.g., allow 2" < |H|™ < 22™) or relax
the requirement |H| = n/e(n). However, for the sake of simplicity, we ignore this issue in the
presentation.

294 CHAPTER 7. THE BRIGHT SIDE OF HARDNESS

1. Encoding (or efficiency): The mapping I is polynomial-time computable.

It is instructive to view I' as mapping N-bit long strings to sequences of
length £(N) over [¢(N)], and to view each (codeword) T'(z) € [q(|z])]*I=D as
a mapping from [€(|z])] to [g(|x])].

2. Decoding (in implicit form): There ezists a polynomial p such that the fol-
lowing holds. For every w:[{(N)]— [g(N)] and every x € {0,1}" such that
['(z) is (1 — a(N))-close to w, there exists an oracle-aided'® circuit C of size
p((log N)/a(N)) such that, for every i € [N], it holds that C*(i) equals the
it bit of x.

The encoding condition implies that ¢ is polynomially bounded. The decoding
condition refers to any I'-codeword that agrees with the oracle w : [¢{(N)] — [g(V)]
on an «(N) fraction of the £(N) coordinates, where a(N) may be very small.
We highlight the non-triviality of the decoding condition: There are N bits of
information in z, while the size of the circuit C is only p((log N)/a(N)) and yet C
should be able to recover any desired entry of z by making queries to w, which may
be a highly corrupted version of I'(x). Needless to say, the number of queries made
by C is upper-bounded by its size (i.e.,p((log N)/a(N))). On the other hand, the
decoding condition does not refer to the complexity of obtaining the aforementioned
oracle-aided circuits.

Let us relate the transformation of f,, to fn, which underlies Proposition 7.16,
to Definition 7.17. We view f,, as a binary string of length N = 2™ (representing
the truth-table of f,, : H™ — {0,1}) and analogously view fn:F™ — F as an
element of FI¥1™ = FN° (or as a mapping from [N3] to [|[F|]).1* Recall that the
transformation of f,, to fn is efficient. We mention that this transformation also
supports implicit decoding with parameters q,f,a such that £(N) = N3, a(N) =
e(n), and q(N) = (n/e(n))3, where N = 2. The latter fact is highly non-trivial,
but establishing it is beyond the scope of the current text (and the interested reader
is referred to [213]).

We mention that the transformation of f, to fn enjoys additional features,
which are not required in Definition 7.17 and will not be used in the current context.
For example, there are at most O(1/a(2")?) codewords (i.e., f,’s) that are (1 —
a(2™))-close to any fixed w : [¢(2™)] — [g(2™)], and the corresponding oracle-aided
circuits can be constructed in probabilistic p(n/a(2"))-time.2’ These results are

80racle-aided circuits are defined analogously to oracle Turing machines. Alternatively, we
may consider here oracle machines that take advice such that both the advice length and the
machine’s running time are upper-bounded by p((log N)/a(N)). The relevant oracles may be
viewed either as blocks of binary strings that encode sequences over [¢(IN)] or as sequences over
[g(N)]. Indeed, in the latter case we consider non-binary oracles, which return elements in [g(N)].

YRecall that N = 2" = |H|™ and |F| = |H|?. Hence, |F|™ = N3.

20T he construction may yield also oracle-aided circuits that compute the decoding of codewords
that are almost (1 — «(2™))-close to w. That is, there exists a probabilistic p(n/a(2™))-time
algorithm that outputs a list of circuits that, with high probability, contains an oracle-aided
circuit for the decoding of each codeword that is (1 — @(2™))-close to w. Furthermore, with high
probability, the list contains only circuits that decode codewords that are (1 — «(2™)/2)-close to
w.

7.2. HARD PROBLEMS IN E 295

termed “list decoding with implicit representations” (and we refer the interested
reader again to [213]).

Our focus is on showing that efficient codes that supports implicit decoding
suffice for worst-case to (strongly) average-case reductions. We state and prove a

general result, noting that in the special case of Proposition 7.16 ¢, = fn (and
((2m) = 23m).

Theorem 7.18 Suppose that there exists a Boolean function f in £ having cir-
cuit complexity that is almost-everywhere greater than S, and let ¢ : N — [0,1].
Consider a polynomial £ : N — N such that n — log, £(2") is a 1-1 map of the
integers, and let m(n) = log, £(2"); e.g., if {(N) = N3 then m(n) = 3n. Suppose
that the mapping I' : {0,1}* — {0,1}* is efficient and supports implicit decoding
with parameters q,, o such that a(N) = e(|logy, N|). Define g, : [£(2")] — [¢(2™)]
such that g, (i) equals the i*™ element of T((fn)) € [q(2™)]*®"), where (f,) denotes
the 2™-bit long description of the truth-table of f,. Then, the function g : {0,1}* —
{0,1}*, defined by g(z) = gm-1(j-))(2), is computable in exponential-time and for
every family of circuit {C!,}, cn of size S'(n') = poly(e(m~t(n'))/n')-S(m~1(n'))
it holds that Pr[C!,(Uy) = g(Up)] < €'(n') = e(m~t(n')).

Proof Sketch: First note that we can generate the truth-table of f,, in exponential-
time, and by the encoding condition of T" it follows that g, can be evaluated in
exponential-time. The average-case hardness of ¢ is established via a reducibil-
ity argument as follows. We consider a circuit C' = CJ, of size S’ such that
Pr[C!,(Up) = g(Un)] < €'(n'), let n = m™*(n'), and recall that &'(n') = e(n) =
a(2"). Then, C' : {0,1}" — {0,1} (viewed as a function) is (1 — a(2"))-close to
the function g,, which in turn equals I'((f,,)). The decoding condition of I" asserts
that we can recover each bit of (f,) (i.e., evaluate f,) by an oracle-aided circuit
D of size p(n/a(2™)) that uses (the function) C’ as an oracle. Combining (the
circuit C') with the oracle-aided circuit D, we obtain a (standard) circuit of size
p(n/a(2™)) - S'(n') < S(n) that computes f,,. The theorem follows (i.e., the viola-
tion of the conclusion regarding ¢ implies the violation of the hypothesis regarding

=

Advanced comment. For simplicity, we formulated Definition 7.17 in a crude
manner that suffices for the proving Proposition 7.16, where ¢(IN) = ((logy N)/a(N))3.
The issue is the existence of codes that satisfy Definition 7.17: In general, such
codes may exist only when using a more careful formulation of the decoding condi-
tion that refers to codewords that are (1 — ((1/¢(IV)) + a(V)))-close to the oracle
w:[¢(N)]—[q(N)] rather than being (1 — a(N))-close to it.2! Needless to say, the
difference is insignificant in the case that a(N) > 1/¢(N) (as in Proposition 7.16),

21Note that this is the “right” formulation, because in the case that «(N) < 1/q(N) it seems
impossible to satisfy the decoding condition (as stated in Definition 7.17). Specifically, a random
£(N)-sequence over [g(N)] is expected to be (1 — (1/q(N)))-close to any fixed codeword, and
with overwhelmingly high probability it will be (1 — ((1 — o(1))/q(IN)))-close to almost all the
codewords, provided £(N) > ¢(N)2. But in case N > poly(g(N)), we cannot hope to recover
almost all N-bit long strings based on poly(q(IN)log N) bits of advice (per each of them).

296 CHAPTER 7. THE BRIGHT SIDE OF HARDNESS

but it is significant in case we care about binary codes (i.e., g(N) = 2, or codes
over other small alphabets). We mention that Theorem 7.18 can be adapted to
this context (of ¢(N) = 2), and directly yields strongly inapproximable predicates.
For details, see Exercise 7.18.

7.2.2 Amplification wrt exponential-size circuits

For the purpose of stronger derandomization of BPP, we start with a stronger as-
sumption regarding the worst-case circuit complexity of £ and turn it to a stronger
inapproximability result.

Theorem 7.19 Suppose that there exists a decision problem L € € having almost-
everywhere exponential circuit complexity; that is, there exists a constantb > 0 such

that, for all but finitely many n’s, any circuit that correctly decides L on {0,1}"

has size at least 2°™. Then, for some constant ¢ > 0 and T'(n) def 2¢™ there exists

a T-inapproximable Boolean function in £.

Theorem 7.19 can be used for deriving a full derandomization of BPP (i.e., BPP =
P) under the aforementioned assumption (see Part 1 of Theorem 8.19).

Theorem 7.19 follows as a special case of Proposition 7.16 (combined with The-
orem 7.8; see Exercise 7.19). An alternative proof, which uses different ideas that
are of independent interest, will be briefly reviewed next. The starting point of the
latter proof is a mildly inapproximable predicate, as provided by Theorem 7.12.
However, here we cannot afford to apply Yao’s XOR Lemma (i.e., Theorem 7.13),
because the latter relates the size of circuits that strongly fail to approximate a
predicate defined over poly(n)-bit long strings to the size of circuits that fail to
mildly approximate a predicate defined over n-bit long strings. That is, Yao’s
XOR Lemma asserts that if f : {0,1}" — {0,1} is mildly inapproximable by
S¢-size circuits then F : {0,1}P°(") — {0,1} is strongly inapproximable by Sp-
size circuits, where Sr(poly(n)) is polynomially related to Sy(n). In particular,
Sr(poly(n)) < Sf(n) seems inherent in this reasoning. For the case of polynomial
lower-bounds, this is good enough (i.e., if Sy can be an arbitrarily large polynomial
then so can Sr), but for Sy(n) = exp(Q2(n)) we cannot obtain Sg(m) = exp(Q2(m))
(but rather only obtain Sx(m) = exp(m®?1))).

The source of trouble is that amplification of inapproximability was achieved
by taking a polynomial number of independent instances. Indeed, we cannot hope
to amplify hardness without applying f on many instances, but these instances
need not be independent. Thus, the idea is to define F(r) = @P°Y™ f(x,), where
L1, Tpoly(n) € 10,1} are generated from r and still |r| = O(n). That is, we
seek a “derandomized” version of Yao’s XOR Lemma. In other words, we seek a
“pseudorandom generator” of a type appropriate for expanding r to dependent z;’s
such that the XOR of the f(z;)’s is as inapproximable as it would have been for
independent z;’s.??

22Indeed, this falls within the general paradigm discussed in Section 8.1. Furthermore, this sug-
gestion provides another perspective on the connection between randomness and computational
difficulty, which is the focus of much discussion in Chapter 8 (see, e.g., §8.2.7.2).

7.2. HARD PROBLEMS IN E 297

Teaching note: In continuation to Footnote 22, we note that there is a strong con-
nection between the rest of this section and Chapter 8. On top of the aforementioned
conceptual aspect, we will use technical tools from Chapter 8 towards establishing the
derandomized version of the XOR Lemma. These tools include pairwise independence
generators (see Section 8.5.1), random walks on expanders (see Section 8.5.3), and the
Nisan-Wigderson Construction (Construction 8.17). Indeed, recall that Section 7.2.2 is
advanced material, which is best left for independent reading.

The pivot of the proof is the notion of a hard region of a Boolean function.
Loosely speaking, S is a hard region of a Boolean function f if f is strongly inap-
prozimable on a random input in S; that is, for every (relatively) small circuit C,,,
it holds that Pr[C,(U,) = f(U,)|U, € S] = 1/2. By definition, {0,1}* is a hard
region of any strongly inapproximable predicate. As we shall see, any mildly inap-
proximable predicate has a hard region of density related to its inapproximability
parameter. Loosely speaking, hardness amplification will proceed via methods for
generating related instances that hit the hard region with sufficiently high proba-
bility. But, first let us study the notion of a hard region.

7.2.2.1 Hard regions

We actually generalize the notion of hard regions to arbitrary distributions. The
important special case of uniform distributions (on n-bit long strings) is obtained
from Definition 7.20 by letting X,, equal U,, (i.e., the uniform distribution over
{0,1}"). In general, we only assume that X,, € {0,1}™.

Definition 7.20 (hard region relative to arbitrary distribution): Let f:{0,1}* —
{0,1} be a Boolean predicate, {X,},cn be a probability ensemble, s: N — N and
e:N—[0,1].

o We say that a set S is a hard region of f relative to {X,},cn with respect
to s(-)-size circuits and advantage €(-) if for every n and every circuit C,, of
size at most s(n), it holds that

PrICH (Xa) = f(Xo)| X0 €5] < 5 +e(n).

o We say that f has a hard region of density p(-) relative to {X,},cn (with
respect to s(-)-size circuits and advantage £(-)) if there ewists a set S that
is a hard region of f relative to {X,},en (with respect to the foregoing
parameters) such that Pr[X, €S,] > p(n).

Note that a Boolean function f is (s,1 — 2¢)-inapproximable if and only if {0,1}*
is a hard region of f relative to {U,}, cy with respect to s(-)-size circuits and
advantage (). Thus, strongly inapproximable predicates (e.g., S-inapproximable
predicates for super-polynomial S) have a hard region of density 1 (with respect to
anegligible advantage).?* But this trivial observation does not provide hard regions

23Likewise, mildly inapproximable predicates have a hard region of density 1 with respect to
an advantage that is noticeably smaller than 1/2.

298 CHAPTER 7. THE BRIGHT SIDE OF HARDNESS

(with respect to a small (i.e., close to zero) advantage) for mildly inapproximable
predicates. Providing such hard regions is the contents of the following theorem.

Theorem 7.21 (hard regions for mildly inapproximable predicates): Let f:{0,1}* —
{0,1} be a Boolean predicate, {X,},cn be a probability ensemble, s:N— N, and
p: N —10,1] such that p(n) > 1/poly(n). Suppose that, for every circuit C,, of
size at most s(n), it holds that Pr[Cp(X,) = f(X,)] <1 —p(n). Then, for every
e:N—10,1], the function f has a hard region of density p'(-) relative to {X,},eN
with respect to s'(-)-size circuits and advantage £(-), where p'(n) def (1—-0(1))-p(n)
and s'(n) ef s(n)/poly(n/e(n)).

In particular, if f is (s,2p)-inapproximable then f has a hard region of density
P’ () = p(-) relative to the uniform distribution (with respect to s'(-)-size circuits
and advantage e()).

Proof Sketch:?* The proof proceeds by first establishing that {X,,} is “related” to
(or rather “dominates”) an ensemble {Y;,} such that f is strongly inapproximable
on {Y,}, and next showing that this implies the claimed hard region. Indeed, this
notion of “related ensembles” plays a central role in the proof.

For p:N— |0, 1], we say that {X,,} p-dominates {Y,,} if for every x it holds that
Pr[X,=x] > p(n) - Pr[Y,, =z]. In this case we also say that {Y,,} is p-dominated
by {X,.}. We say that {Y,,} is critically p-dominated by {X,,} if for every x either
Pr[Y,,=z] = (1/p(n)) - Pr|X,,=z] or Pr[Y,,=x] = 0.2

The notions of domination and critical domination play a central role in the
proof, which consists of two parts. In the first part (Claim 7.21.1), we prove
that, for {X,,} and p as in the theorem’s hypothesis, there exists a ensemble {Y;,}
that is p-dominated by {X,} such that f is strongly inapproximable on {¥;,}. In
the second part (Claim 7.21.2), we prove that the existence of such a dominated
ensemble implies the existence of an ensemble {Z,} that is critically p'-dominated
by {X,} such that f is strongly inapproximable on {Z,}. Finally, we note that
such a critically dominated ensemble yields a hard region of f relative to {X,},
and the theorem follows.

Claim 7.21.1: Under the hypothesis of the theorem it holds that there exists a
probability ensemble {Y;,} that is p-dominated by {X,,} such that, for every s'(n)-
size circuit C},, it holds that

L) (7.12)

PrCW(Ya) = F(Ya)] < 5 + 5~

N —

Proof: We start by assuming, towards the contradiction, that for every distri-
bution Y;, that is p-dominated by X,, there exists a s'(n)-size circuits C,, such
that Pr[Cp(Yy) = f(Yn)] > 0.5+ ¢'(n), where €'(n) = ¢(n)/2. One key observa-
tion is that there is a correspondence between the set of all distributions that are

24Gee details in [99, Apdx. A].

25 Actually, we should allow one point of exception; that is, relax the requirement by saying
that for at most one string @ € {0, 1}"™ it holds that 0 < Pr[Y, =z] < Pr[X,, =z]/p(n). This point
has little effect on the proof, and is ignored in our presentation.

7.2. HARD PROBLEMS IN E 299

each p-dominated by X,, and the set of all the convex combinations of critically p-
dominated (by X,,) distributions; that is, each p-dominated distribution is a convex
combinations of critically p-dominated distributions and vice versa (cf., a special
case in §D.4.1.1). Thus, considering an enumeration erl), e ert) of the critically
p-dominated (by X,,) distributions, we conclude that for every distribution 7 on

[t] there exists a s'(n)-size circuits C,, such that

> ow(@) - PriC. (V) = F(VIN] > 0.5 +¢'(n). (7.13)

=1

Now, consider a finite game between two players, where the first player selects a crit-
ically p-dominated (by X,,) distribution, and the second player selects a s'(n)-size
circuit and obtains a payoff as determined by the corresponding success probability;
that is, if the first player selects the i*® critically dominated distribution and the
second player selects the circuit C then the payoff equals Pr[C’(YTEl)) = f(YTEZ))].
Eq. (7.13) may be interpreted as saying that for any randomized strategy for the
first player there exists a deterministic strategy for the second player yielding aver-
age payoff greater than 0.54¢'(n). The Min-Max Principle (cf. von Neumann [227])
asserts that in such a case there exists a randomized strategy for the second player
that yields average payoff greater than 0.5 + &'(n) no matter what strategy is em-
ployed by the first player. This means that there exists a distribution, denoted D,,,
on s'(n)-size circuits such that for every 7 it holds that

PrD, (YY) = f(V)] > 0.5+ '(n), (7.14)

where the probability refers both to the choice of the circuit D,, and to the random
variable Y,,. Let B,, = {x : Pr[D,(z) = f(z)] < 0.5 + ¢'(n)}. Then, Pr[X, €
B,] < p(n), because otherwise we reach a contradiction to Eq. (7.14) by defining
Y, such that Pr[Y,, =z] = Pr[X,,=z]/Pr[X,, € B,] if x € B,, and Pr[Y,,=2] =0
otherwise.?S By employing standard amplification to D,,, we obtain a distribution
D!, over poly(n/e'(n)) - s'(n)-size circuits such that for every z € {0,1}"\ B, it
holds that Pr[D] (z) = f(z)] > 1 — 2™ It follows that there exists a s(n)-sized
circuit Cp, such that Cp(z) = f(z) for every z € {0,1}"\ B,, which implies that
Pr[Cn(X,) = f(X,)] > Pr[X,, € {0,1}™\ B,] > 1 — p(n), in contradiction to the
theorem’s hypothesis. The claim follows. O

We next show that the conclusion of Claim 7.21.1 (which was stated for ensembles
that are p-dominated by {X,,}) essentially holds also when allowing only critically
p-dominated (by {X,}) ensembles. The following precise statement involves some
loss in the domination parameter p (as well as in the advantage €).

Claim 7.21.2: If there exists a probability ensemble {Y,} that is p-dominated
by {X,} such that for every s'(n)-size circuit C,, it holds that Pr[C,(Y,) =

26Note that Y, is p-dominated by X, whereas by the hypothesis Pr[D,(Yn) = f(Yn)] <
0.5+4¢'(n). Using the fact that any p-dominated distribution is a convex combination of critically
p-dominated distributions, it follows that Pr[Dn(YTgl)) = f(YTEl))} < 0.5 + ¢'(n) holds for some

critically p-dominated Y,Ei) .

300 CHAPTER 7. THE BRIGHT SIDE OF HARDNESS

f(Y)] < 0.5+ (e(n)/2), then there exists a probability ensemble {Z,} that is
critically p’-dominated by {X,,} such that for every s'(n)-size circuit C, it holds
that Pr[C,,(Z,) = f(Z,)] £ 0.5+ &(n).

In other words, Claim 7.21.2 asserts that the function f has a hard region of
density p'(+) relative to {X,} with respect to s'(-)-size circuits and advantage ¢(-),
thus establishing the theorem. The proof of Claim 7.21.2 uses the Probabilistic
Method (cf. [10]). Specifically, we select a set S, at random by including each
n-bit long string « with probability

p(x) def pn) - Pri¥y =] <1 (7.15)

independently of the choice of all other strings. It can be shown that, with high
probability over the choice of S, it holds that Pr[X, € S,] = p(n) and that
PriCn(X,) = f(Xn)| X, € Sn] < 0.5+ e(n) for every circuit C,, of size s'(n). The
latter assertion is proved by a union bound on all relevant circuits, while showing
that for each such circuit C,, with probability 1 — exp(—s’(n)?) over the choice of
Sy, it holds that |Pr[C,(X,) = f(X,)|Xn € Sp] — Pr[Ch(Yy) = f(YR)]] < e(n)/2.
For details, see [99, Apdx. A]. (This completes the proof of the theorem.) O

7.2.2.2 Hardness amplification via hard regions

Before showing how to use the notion of a hard region in order to prove a deran-
domized version of Yao’s XOR Lemma, we show how to use it in order to prove
the original version of Yao’s XOR Lemma (i.e., Theorem 7.13).

An alternative proof of Yao’s XOR Lemma. Let f, p;, and p2 be as
in Theorem 7.13. Then, by Theorem 7.21, for p'(n) = 1/3pa(n) and s'(n) =
p1(n)?*") /poly(n), the function f has a hard region S of density p' (relative to
{U,}) with respect to s'(-)-size circuits and advantage 1/s'(-). Thus, for t(n) =
n - po(n) and F as in Theorem 7.13, with probability at least 1 — (1 — p/(n))"™) =
1 — exp(—Q(n)), one of the ¢(n) random (n-bit long) blocks of F' resides in S
(i.e., the hard region of f). Intuitively, this suffices for establishing the strong
inapproximability of F. Indeed, suppose towards the contradiction that a small
(i-e., p'(t(n) - n)-size) circuit C, can approximate F' (over Uy(,).,) With advantage
e(n) + exp(—(n)), where e(n) > 1/s'(n). Then, the e(n) term must be due to
t(n)-n-bit long inputs that contain a block in S. Using an averaging argument, we
can first fix the index of this block and then the contents of the other blocks, and
infer the following: for some i € [t(n)] and 1, ..., Ty(n) € {0, 1}" it holds that

1
PriCn(z',Up,2") = F(2',U,,2")| U, € S] > 5 +¢e(n)

where 2’ = (21, ..., 7,-1) € {0, 1}V and 2" = (@41, ..., By(ny) € {0, 1},
Hard-wiring i € [t(n)], 2’ = (21,...,mi—1) and 2" = (@iy1,..., Ty(n)) as well as

i ®,2:f(z;) in C,,, we obtain a contradiction to the (established) fact that

7.2. HARD PROBLEMS IN E 301

S is a hard region of f (by using the circuit C) (z) = C,(2',2,2") & o). Thus,
Theorem 7.13 follows (for any p'(t(n) -n) < s'(n) —1).

Derandomized versions of Yao’s XOR Lemma. We first show how to use
the notion of a hard region in order to amplify very mild inapproximability to
a constant level of inapproximability. Recall that our goal is to obtain such an
amplification while applying the given function on many (related) instances, where
each instance has length that is linearly related to the length of the input of the
resulting function. Indeed, these related instances are produced by applying an
adequate “pseudorandom generator” (see Chapter 8). The following amplification
utilizes a pairwise independence generator (see Section 8.5.1), denoted G, that
stretches 2n-bit long seeds to sequernces of n strings, each of length n.

Lemma 7.22 (derandomized XOR Lemma up to constant inapproximability):
Suppose that f : {0,1}* — {0,1} is (T, p)-inapprozimable, for p(n) > 1/poly(n),
and assume for simplicity that p(n) < 1/n. Let b denote the inner-product mod 2
predicate, and G be the aforementioned pairwise independence generator. Then
Fi(s,r) = b(f(z1)--- f(zn),r), where |r| = n = |s|/2 and (z1,...,z,) = G(s), is
(T", p")-inapprozimabdle for T'(n') = T'(n'/3)/poly(n') and p'(n') = Q(n'- p(n'/3)).

Needless to say, if f € £ then Fy € £. By applying Lemma 7.22 for a constant
number of times, we may transform an (7', 1/poly)-inapproximable predicate into
an (T",Q(1))-inapproximable one, where T"(n"") = T'(n" /O(1))/poly(n").

Proof Sketch: As in the foregoing proof (of the original version of Yao’s XOR
Lemma), we first apply Theorem 7.21. This time we set the parameters so to infer
that, for a(n) = p(n)/3 and t'(n) = T'(n)/poly(n), the function f has a hard region
S of density a (relative to {U,}) with respect to t'(-)-size circuits and advantage
0.01. Next, as in §7.2.1.2, we shall consider the corresponding (derandomized)
direct product problem; that is, the function Pi(s) = (f(z1),..., f(z,)), where
|s] = 2n and (z1,...,z,) = G(s). We will first show that P; is hard to compute
on an Q(n - a(n)) fraction of the domain, and the quantified inapproximality of F;
will follow.

Oune key observation is that, by Exercise 7.20, with probability at least 5(n) def
n-a(n)/2, at least one of the n strings output by G(Us,,) resides in S. Intuitively,
we expect every t'(n)-sized circuit to fail in computing P; (Us,) with probability
at least 0.495(n), because with probability 3(n) the sequence G(Us,) contains an
element in the hard region of f (and in this case the value can be guessed correctly
with probability at most 0.51). The actual proof relies on a reducibility argument,
which is less straightforward than the argument used in the non-derandomized case.

For technical reasons?®”, we use the condition a(n) < 1/2n (which is guaranteed

by the hypothesis that p(n) < 1/n and our setting of a(n) = p(n)/3). In this

case Exercise 7.20 implies that, with probability at least B(n) o750 a(n),

at least one of the n strings output by G(Usz,) resides in S. We shall show that

27The following argument will rely on the fact that 8(n) — v(n) > 0.51n - a(n), where y(n) =
Q(B(n))-

302 CHAPTER 7. THE BRIGHT SIDE OF HARDNESS

every (t'(n) — poly(n))-sized circuit fails in computing P, with probability at least
v(n) = 0.38(n). As usual, the claim is proved by a reducibility argument. Let G(s);
denote the i'! string in the sequence G(s) (i.e., G(s) = (G(5)1, .., G(s)n)), and note
that given i and = we can efficiently sample G *(z) = = {s€{0,1}*" : G(s); =x}.
Given a circuit C,, that computes P; (Us,) correctly with probability 1 —y(n), we
consider the circuit C!, that, on input x, uniformly selects i € [n] and s € G; *(z),
and outputs the ¢t bit in C,(s). Then, by the construction (of C!) and the
hypothesis regarding C,,, it holds that

PHCL(U) = fUIUNES] 2 3 = PrlCo(Usn) = A (Uan)[G(Uan): €5]

Pr[Cp(Uan) = PL(Uzpn) A 3i G4(Us): € S]

= - max, {Pr[G(Uan): € 51}
> (1—’7("))—((1)—ﬁ(n))
_0.78(n)

= na(n) > 0.52.

This contradicts the fact that .S is a hard region of f with respect to ¢'(-)-size circuits
and advantage 0.01. Thus, we have established that every (¢'(n) — poly(n))-sized
circuit fails in computing P1 with probability at least v(n) = 0.38(n).

Having established the hardness of P;, we now infer the mild inapproximability
of Fi, where Fi(s,r) = b(Pi(s),r). It suffices to employ the simple (warm-up)
case discussed at the beginning of the proof of Theorem 7.7 (where the predic-
tor errs with probability less than 1/4, rather than the full-fledged result that
refers to prediction error that is only smaller than 1/2). Denoting by nc(s) =
Prreqo,132[C(s,7) #b(P1(s),7)] the prediction error of the circuit C, we recall that
if ne(s) < 0.24 then C can be used to recover P;(s). Thus, for circuits C of size
T'(3n) = t'(n)/poly(n) it must hold that Prs[nc(s)>0.24] > v(n). It follows that

Es[nc(s)] > 0.24y(n), which means that every T"(3n)-sized circuits fails to com-

pute (s,7) — b(Pi(s),r) with probability at least 6(|s| + |r|) < 0.24 - ~(|r[)- This

means that F is (17", 26)-inapproximable, and the lemma follows (when noting that

s(n') = Qn' - a(n'/3))). O

The next lemma offers an amplification of constant inapproximability to strong
inapproximability. Indeed, combining Theorem 7.12 with Lemmas 7.22 and 7.23,
yields Theorem 7.19 (as a special case).

Lemma 7.23 (derandomized XOR Lemma starting with constant inapproxima-
bility): Suppose that f : {0,1}* — {0,1} is (T, p)-inapprozimable, for some con-
stant p, and let b denote the inner-product mod 2 predicate. Then there exists an
exponential-time computable function G such that Fy(s,r) = b(f(x1)--- f(zn),7),
where (x1,...,T,) = G(s) and n = Q(|s]) = |r] = |z1| = -+ = |xnu|, s T'-
inapprozimable for T'(n') = T(n'/O(1))*M) /poly(n').

7.2. HARD PROBLEMS IN E 303

Again, if f € £ then F; € €.

Proof Outline:?® As in the proof of Lemma 7.22, we start by establishing
a hard region of density p/3 for f (this time with respect to circuits of size
T(n)*® /poly(n) and advantage T'(n) ?(1)), and focus on the analysis of the
(derandomized) direct product problem corresponding to computing the function
Py(s) = (f(z1), ..., f(zn)), where |s| = O(n) and (z1,...,z,) = G(s). The “gen-
erator” G is defined such that G(s's") = Gi(s') ® Ga(s"), where |s'| = [s"],
|G1(s")] = |G2(s")|, and the following conditions hold:

1. G, is the Expander Random Walk Generator discussed in Section 8.5.3. It
can be shown that G;(Up(n)) outputs a sequence of n strings such that for
any set S of density p, with probability 1 — exp(—Q(pn)), at least Q(pn)
of the strings hit S. Note that this property is inherited by G, provided
|G1(s")| = |Ga(s")| for any |s'| = |s”|. It follows that, with probability
1 —exp(—Q(pn)), a constant fraction of the x;’s in the definition of P, hit
the hard region of f.

It is tempting to say that small circuits cannot compute P, better than with
probability exp(—§(pn)), but this is clear only in the case that the z;’s that
hit the hard region are distributed independently (and uniformly) in it, which
is hardly the case here. Indeed, G5 is used to handle this problem.

2. G is the “set projection” system underlying Construction 8.17; specifically,
Ga(s) = (ssy,---, S5,), where each S; is an n-subset of [|s|] and the S;’s have
pairwise intersections of size at most n/O(1).2? An analysis as in the proof
of Theorem 8.18 can be employed for showing that the dependency among
the z;’s does not help for computing a particular f(z;) when given z; as well
as all the other f(z;)’s. (Note that this property of G is inherited by G.)

The actual analysis of the construction (via a guessing game presented in [125,
Sec. 3]), links the success probability of computing P, to the advantage of guessing
f on its hard region. The interested reader is referred to [125]. O

Digest. Both Lemmas 7.22 and 7.23 are proved by first establishing correspond-
ing derandomized versions of the “direct product” lemma (Theorem 7.14); in fact,
the core of these proofs is proving adequate derandomized “direct product” lemmas.
We call the reader’s attention to the seemingly crucial role of this step (especially
in the proof of Lemma 7.23): We cannot treat the values f(z1),...f(z,) as if they
were independent (at least not for the generator G as postulated in these lemmas),
and so we seek to avoid analyzing the probability of correctly computing the XOR
of all these values. In contrast, we have established that it is very hard to correctly
compute all n values, and thus XORing a random subset of these values yields a
strongly inapproximable predicate. (Note that the argument used in Exercise 7.16

28For details, see [125].
29Recall that sg denotes the projection of s on coordinates S C [|s|]; that is, for s = o1 --- 0o},

and S = {4; : j =1,...,n}, we have sg =04, -+ -0y, .

304 CHAPTER 7. THE BRIGHT SIDE OF HARDNESS

fails here, because the x;’s are not independent, which is the reason that we XOR
a random subset of these values rather than all of them.)

Chapter Notes

The notion of a one-way function was suggested by Diffie and Hellman [63]. The
notion of weak one-way functions as well as the amplification of one-way functions
(i.e., Theorem 7.5) were suggested by Yao [231]. A proof of Theorem 7.5 has first
appeared in [84].

The concept of hard-core predicates was suggested by Blum and Micali [37].
They also proved that a particular predicate constitutes a hard-core for the “DLP
function” (i.e., exponentiation in a finite field), provided that the latter function
is one-way. The generic hard-core predicate (of Theorem 7.7) was suggested by
Levin, and proven as such by Goldreich and Levin [96]. The proof presented here
was suggested by Rackoff. We comment that the original proof has its own merits
(cf., e.g., [102]).

The construction of canonical derandomizers (see Section 8.3) and, specifically,
the Nisan-Wigderson framework (i.e., Construction 8.17) has been the driving force
behind the study of inapproximable predicates in £. Theorem 7.10 is due to [20],
whereas Theorem 7.19 is due to [125]. Both results rely heavily of variants of Yao’s
XOR Lemma, to be reviewed next.

Like several other fundamental insights attributed to Yao’s paper [231], Yao’s
XOR Lemma (i.e., Theorem 7.13) is not even stated in [231] but is rather due
to Yao’s oral presentations of his work. The first published proof of Yao’s XOR
Lemma was given by Levin (see [99, Sec. 3]). The proof presented in §7.2.1.2 is
due to Goldreich, Nisan and Wigderson [99, Sec. 5].

The notion of a hard region and its applications to proving the original version
of Yao’s XOR Lemma as well as the first derandomization of it (i.e., Lemma 7.22)
are due to Impagliazzo [123]. The second derandomization (i.e., Lemma 7.23) as
well as Theorem 7.19 are due to Impagliazzo and Wigderson [125].

Theorem 7.12 is due to [20], and the presentation in §7.2.1.1 is based on this
work. The connection between list decoding and hardness amplification (i.e.,
§7.2.1.3), yielding an alternative proof of Theorem 7.19, is due to Sudan, Trevisan,
and Vadhan [213].

Hardness amplification for AP has been the subject of recent attention: An
amplification of mild inapproximability to strong inapproximability is provided
in [118], and an indication to the impossibility of a worst-case to average-case
reductions (at least non-adaptive ones) is provided in [40].

Exercises

Exercise 7.1 Prove that if one way-functions exist then there exists one-way func-
tions that are length preserving (i.e., | f(x)| = || for every z € {0,1}").

7.2. HARD PROBLEMS IN E 305

Guideline: Clearly, for some polynomial p, it holds that | f(z)| < p(|z|) for all z. Assume,
without loss of generality that n +— p(n) is 1-1 and increasing, and let p~*(m) = n if
p(n) < m < p(n+1). Define f'(z) = f(2)01*1= @=L where z is the p~1(]z|)-bit long
prefix of z.

Exercise 7.2 Prove that if a function f is hard to invert in the sense of Defini-
tion 7.3 then it is hard to invert in the sense of Definition 7.1.

Guideline: Consider a sequence of internal coin tosses that maximizes the probability
in Eq. (7.1).

Exercise 7.3 Assuming the existence of one-way functions, prove that there exists
a weak one-way function that is not strongly one-way.

Exercise 7.4 (a universal one-way function (by L. Levin)) Using the notion
of a universal machine, present a polynomial-time computable function that is hard
to invert (in the sense of Definition 7.1) if and only if there exist one-way functions.

Guideline: Consider the function F' that parses its input into a pair (M, z) and emulates
|| steps of M on input z. Note that if there exists a one-way function that can be
evaluated in cubic time then F' is a weak one-way function. Using padding, prove that
there exists a one-way function that can be evaluated in cubic time if and only if there

exist one-way functions.

Exercise 7.5 For ¢ > 1, prove that the following 2° — 1 samples are pairwise
independent and uniformly distributed in {0,1}™. The samples are generated by
uniformly and independently selecting ¢ strings in {0,1}". Denoting these strings
by s!,...,s¢, we generate 2° — 1 samples corresponding to the different non-empty

subsets of {1,2,...,} such that for subset J we let 7/ def Djess’.

Guideline: For J # J', it holds that 7’/ or! = ®jecxs’, where K denotes the symmetric
difference of J and J'. See related material in Section 8.5.1.

Exercise 7.6 (a variant on the proof of Theorem 7.7) Provide a detailed pre-
sentation of the alternative procedure outlined in Footnote 5. That is, prove that
for every z € {0,1}", given oracle access to any B, : {0,1}"™ — {0, 1} that satisfies
Eq. (7.6), this procedure makes poly(n/e) steps and outputs a list of strings that,
with probability at least 1/2, contains .

Exercise 7.7 (proving Theorem 7.8) Recall that the proof of Theorem 7.7 es-
tablishes the existence of a poly(n/e)-time oracle machine M such that, for every
B :{0,1}" — {0,1} and every = € {0,1}" that satisfy Pr,[B(r) = b(z,r)] > 1 +¢,
it holds that Pr[M®Z(n,e) = 2] = Q(¢2/n). Show that this implies Theorem 7.8.
(Indeed, an alternative proof can be derived by adapting Exercise 7.6.)

Guideline: Apply a “coupon collector” argument.

Exercise 7.8 A polynomial-time computable predicate b : {0,1}*— {0, 1} is called
a universal hard-core predicate if for every one-way function f, the predicate b is

306 CHAPTER 7. THE BRIGHT SIDE OF HARDNESS

a hard-core of f. Note that the predicate presented in Theorem 7.7 is “almost
universal” (i.e., for every one-way function f, that predicate is a hard-core of
f'(z,r) = (f(z),r), where |z| = |r|). Prove that there exist no universal hard-
core predicate.

Guideline: Let b be a candidate universal hard-core predicate, and let f be an arbitrary
one-way function. Then consider the function f'(z) = (f(z),b(x)).

Exercise 7.9 Prove that if NP is not contained in P/poly then neither is £.
Furthermore, for every S : N — N, if some problem in NP does not have circuits
of size S then for some constant £ > 0 there exists a problem in £ that does not
have circuits of size S’, where S'(n) = S(n°). Repeat the exercise for the “almost
everywhere” case.

Guideline: Although AP is not known to be in £, it is the case that SAT is in £, which
implies that A'P is reducible to a problem in £. For the “almost everywhere” case, address
the fact that the said reduction may not preserve the length of the input.

Exercise 7.10 For every function f : {0,1}" — {0, 1}, present a linear-size circuit
C,, such that Pr[C(U,) = f(U,)] > 0.5+ 2™ ™. Furthermore, for every ¢t < 2771,
present a circuit C,, of size O(t - n) such that Pr[C(U,) = f(U,)] > 0.5+1¢-27".
Warning: you may not assume that Pr[f(U,,) = 1] = 0.5.

Exercise 7.11 (self-correction of low-degree polynomials) Let d,m be in-
tegers, and F' be a finite field of cardinality greater than ¢ L dm + 1. Let
p: F™ — F be a polynomial of individual degree d, and g, ...,a; be t distinct
non-zero elements of F.

1. Show that, for every z,y € F™, the value of p(z) can be efficiently computed
from the values of p(z + a1y),...,p(x + azy), where x and y are viewed as
m-ary vectors over F'.

2. Show that, for every z € F™ and « € F'\ {0}, if we uniformly select r € F'™
then the point = + ar is uniformly distributed in F™.

Conclude that p(z) can be recovered based on ¢ random points, where each point
is uniformly distributed in F™.

Exercise 7.12 (low degree extension) Prove that for any H C F and every

function f : H™ — F there exists an m-variate polynomial f : F™ — F of
individual degree |H| — 1 such that for every z € H™ it holds that f(z) = f(z).

Guideline: Define f(z) = > 8a(z) - f(a), where 6, is an m-variate of individual

aeH'”L a
degree |H| —1 such that 64(a) = 1 whereas 64(x) = 0 for every z € H™ \ {a}. Specifically,

Baryam (T15 00 Tm) = HT:1 HbeH\{ai}((wi —b)/(a:i —b)).

Exercise 7.13 Suppose that f and S’ are as in the conclusion of Theorem 7.12.
Prove that there exists a Boolean function g in € that is (S”,¢)-inapproximable
for S”(n' + O(logn')) = S'(n')/n' and e(m) = 1/m?3.

Guideline: Consider the function g defined such that g(z,4) equals the i*" bit of f(z).

7.2. HARD PROBLEMS IN E 307

Exercise 7.14 (a generic application of Theorem 7.8) For any ¢ : N— N,
let h: {0,1}* — {0, 1}* be a function such that |h(x)| = £(|z|) for every z € {0,1}*,
and {X,},cn be a probability ensemble. Suppose that, for some s : N — N and
e : N — [0,1], for every family of s-size circuits {C,, },cn and all sufficiently large n
it holds that Pr[C,,(X,,) = h(X,)] < e(n). Suppose that s’ : N - N and &' : N —
[0,1] satisfy s'(n + £(n)) < s(n)/poly(n/e'(n + €(n))) and £'(n + £(n)) > 2¢(n).
Show that Theorem 7.8 implies that for every family of s'-size circuits {C}, }, N
and all sufficiently large n’ = n + £(n) it holds that

1
PHCl s () (X Uty) = B(A(X0), Uro))] < 5 +2'(n+ ().

Note that if X, is uniform over {0,1}" then the predicate h'(z,r) = b(h(z),r),
where |r| = |h(z)|, is (s’,1 — 2¢')-inapproximable. Conclude that, in this case, if
e(n) = 1/s(n) and s'(n + £(n)) = s(n)*™) /poly(n), then A’ is s'-inapproximable.

Exercise 7.15 (derandomization via averaging arguments) Let C : {0,1}"x
{0,1}™ — {0,1}* be a circuit, which may represent a “probabilistic circuit” that
processes the first input using a sequence of choices that are given as a second
input. Let X and Z be two independent random variables distributed over {0,1}"
and {0,1}™, respectively, and let x be a Boolean predicate (which may represent

a success event regarding the behavior of C). Prove that there exists a string

z € {0,1}™ such that for C,(x) = C(z,z) it holds that Pr[x(X,C.(X))=1] >

Prix(X,C(X, Z))=1].

Exercise 7.16 (from “selective XOR” to “standard XOR”) Let f be a Boolean
function, and b(y, r) denote the inner-product modulo 2 of the equal-length strings y

and r. Suppose that F'(zy, ..., Ty(n),T) def b(f(z1) - f(Ty(n)),7), where zy, ..., Ty(n) €
{0,1}™ and 7 € {0,1}*"™) is T"-inapproximable. Assuming that n s t(n)-n is 1-1,
prove that F(z) e F'(z, 1" (=D) where t/(t(n) -n) = t(n), is T-inapproximable for
T(m)=T(m+t'(m)) — O(m).

Guideline: Reduce the approximation of F’ to the approximation of F. An important
observation is that for any @ = (z1,..., Zy(n)), ' = (21, ..., Ty(,)), and 7 =71 -1y, such
that z; = x; if 7 = 1, it holds that F'(z,r) = F(z') ® ®sr,=0f(x}). This suggests a
non-uniform reduction of ¥’ to F, which uses “adequate” z1, ..., z;(,) € {0,1}" as well as
the corresponding values f(z;)’s as advice. On input 1, ..., Ty(n), 71 - - * T¢(n), the reduction
sets ; = z; if r; = 1 and @ = 2; otherwise, makes the query z' = (1, ...,w;(n)) to F,
and returns F(w’) @iir;=0 f(zi). Analyze this reduction in the case that 21500 Ze(n) €
{0,1}™ are uniformly distributed, and infer that they can be set to some fixed values (see
Exercise 7.15).

Exercise 7.17 (Theorem 7.14 versus Theorem 7.5) Consider a generalization
of Theorem 7.14 in which f and P are functions from strings to sets of strings such
that P(xy,...,xz¢) = f(z1) X --- X f(z).

1. Prove that if for every family of p;-size circuits, {C },,cn, and all sufficiently
large n € N, it holds that Pr[C,(U,) € f(U,)] > 1/pa(n) then for every

308 CHAPTER 7. THE BRIGHT SIDE OF HARDNESS

family of p'-size circuits, {C},}.en, it holds that Pr[C] (Uy) € P(Un)] <
e'(m), where ¢’ and p’ are as in Theorem 7.14. Further generalize the claim
by replacing {U,},cn with an arbitrary distribution ensemble { X}, cn, and
replacing U,, by a t(n)-fold Cartesian product of X,, (where m = t(n) - n).

2. Show that the foregoing generalizes both Theorem 7.14 and a non-uniform
complexity version of Theorem 7.5.

Exercise 7.18 (refinement of the main theme of §7.2.1.3) Consider the fol-
lowing modification of Definition 7.17, in which the decoding condition refers to
an agreement threshold of (1/¢(N)) + a(N) rather than to a threshold of a(N).
The modified definition reads as follows (where p is a fixed polynomial): For every
w:[l(N)] = [qg(N)] and x€{0,1}" such that I'(x) is (1 — ((1/q(N)) + a(N)))-close
to w, there exists an oracle-aided circuit C of size p((log N)/a(N)) such that C* (i)
yields the i*® bit of x for every i € [N].

1. Formulate and prove a version of Theorem 7.18 that refers to the modified
definition (rather than to the original one).

Guideline: The modified version should refer to computing g(U,,(n)) with success
probability greater than (1/¢(n)) + e(n) (rather than greater than e(n)).

2. Prove that, when applied to binary codes (i.e., ¢ = 2), the version in Item 1
yields S”-inapproximable predicates, for S”(n') = S(m " (n'))*® /poly(n').

3. Prove that the Hadamard Code allows implicit decoding under the modified
definition (but not according to the original one).3°

Guideline: This is the actual contents of Theorem 7.8.

Show that if T': {0,1}Y — [¢(V)]*™) is a (non-binary) code that allows implicit
decoding then encoding its symbols by the Hadamard code yields a binary code
({0, 13N = {0, 1}4M2"=2 71y hat allows implicit decoding. Note that efficient
encoding is preserved only if g(N) < poly(N).

Exercise 7.19 (using Proposition 7.16 to prove Theorem 7.19) Prove The-
orem 7.19 by combining Proposition 7.16 and Theorem 7.8.

Guideline: Note that, for some v > 0, Proposition 7.16 yields an exponential-time com-
putable function f such that |f(z)| < |#| and for every family of circuit {C) } e of
size §'(n') = S(n'/3)" /poly(n') it holds that Pr[C’,(U,) = f(Un)] < 1/5"(n'). Com-
bining this with Theorem 7.8, infer that P(z,r) = b(f(z),), where |r| = |f(x)| < ||, is
S"-inapproximable for S”(n') = S(n" /2)?™® /poly(n"). Note that if S(n) = 2") then
S”(n”) — 2Q(n”).

Exercise 7.20 Let G be a pairwise independent generator (i.e., as in Lemma 7.22),

S C{0,1}"™and « = |S|/2™. Prove that, with probability at least min(n-a,1)/2, at

30Needless to say, the Hadamard Code is not efficient (for the trivial reason that its codewords
have exponential length).

7.2. HARD PROBLEMS IN E 309

least one of the n strings output by G(Us,) resides in S. Furthermore, if « < 1/2n
then this probability is at least 0.75-n - a.

Guideline: Using the pairwise independence property and employing the Inclusion-
Exclusion formula, we lower-bound the aforementioned probability by n -« — (72’) -a?.
If o < 1/n then the claim follows, otherwise we employ the same reasoning to the first

1/« elements in the output of G(Usy).

Exercise 7.21 (one-way functions versus inapproximable predicates) Prove
that the existence of a non-uniformly hard one-way function (as in Definition 7.3)
implies the existence of an exponential-time computable predicate that is T-inapproximable
(as per Definition 7.9), for every polynomial 7'.

Guideline: Suppose first that the one-way function f is length-preserving and 1-1. Con-
sider the hard-core predicate b guaranteed by Theorem 7.7 for g(z,r) = (f(z),r), define
the Boolean function h such that h(z) = b(g™*(z)), and show that h is T-inapproximable
for every polynomial T'. For the general case a different approach seems needed. Specif-
ically, given a (length preserving) one-way function f, consider the Boolean function h
defined as h(z,i,0) = 1 if and only if the i*" bit of the lexicographically first element in
f7H2) = {z : f(z) = 2} equals 0. (In particular, if f7'(z) = @ then h(z,i,0) = 0 for
every i and 0.)®' Note that h is computable in exponential-time, but is not (worst-case)
computable by polynomial-size circuits. Applying Theorem 7.10, we are done.

31Thus, h may be easy to computed in the average-case sense (e.g., if f(z) = 01*! f'(z) for some
one-way function f').

310 CHAPTER 7. THE BRIGHT SIDE OF HARDNESS

