
Appendix AGlossary of ComplexityClassesSummary: This glossary includes self-contained de�nitions of mostcomplexity classes mentioned in the book. Needless to say, the glossaryo�ers a very minimal discussion of these classes and the reader is re-ferred to the main text for further discussion. The items are organizedby topics rather than by alphabetic order. Speci�cally, the glossary ispartitioned into two parts, dealing separately with complexity classesthat are de�ned in terms of algorithms and their resources (i.e., timeand space complexity of Turing machines) and complexity classes de-�ned in terms of non-uniform circuits (and referring to their size anddepth). The algorithmic classes include time-complexity based classes(such as P , NP , coNP , BPP, RP , coRP , PH, E , EXP and NEXP)and the space complexity classes L, NL, RL and PSPACE . The non-uniform classes include the circuit classes P=poly as well as NCk andACk.De�nitions (and basic results) regarding many other complexity classes are availableat the constantly evolving Complexity Zoo [1].A.1 PreliminariesComplexity classes are sets of computational problems, where each class containsproblems that can be solved with speci�c computational resources. To de�ne acomplexity class one speci�es a model of computation, a complexity measure (liketime or space), which is always measured as a function of the input length, and abound on the complexity (of problems in the class).We follow the tradition of focusing on decision problems, but refer to theseproblems using the terminology of promise problems (see Section 2.4.1). That is,we will refer to the problem of distinguishing inputs in �yes from inputs in �no,509



510 APPENDIX A. GLOSSARY OF COMPLEXITY CLASSESand denote the corresponding decision problem by � = (�yes;�no). Standarddecision problems are viewed as a special case in which �yes [ �no = f0; 1g�, andthe standard formulation of complexity classes is obtained by postulating that thisis the case. We refer to this case as the case of a trivial promise.The prevailing model of computation is that of Turing machines. This modelcaptures the notion of (uniform) algorithms (see Section 1.2.3). Another importantmodel is the one of non-uniform circuits (see Section 1.2.4). The term uniformityrefers to whether the algorithm is the same one for every input length or whethera di�erent \algorithm" (or rather a \circuit") is considered for each input length.We focus on natural complexity classes, obtained by considering natural com-plexity measures and bounds. Typically, these classes contain natural computa-tional problems (which are de�ned in Appendix G). Furthermore, almost all ofthese classes can be \characterized" by natural problems, which capture everyproblem in the class. Such problems are called complete for the class, which meansthat they are in the class and every problem in the class can be \easily" reduced tothem, where \easily" means that the reduction takes less resources than whateverseems to be requires for solving each individual problem in the class. Thus, anye�cient algorithm for a complete problem implies an algorithm of similar e�ciencyfor all problems in the class.Organization: The glossary is organized by topics (rather than by alphabetic or-der of the various items). Speci�cally, we partition the glossary to classes de�ned interms of algorithmic resources (i.e., time and space complexity of Turing machines)and classes de�ned in terms of circuit (size and depth). The former (algorithm-based) classes are reviewed in Section A.2, while the latter (circuit-based) classesare reviewed in Section A.3.A.2 Algorithm-based classesThe two main complexity measures considered in the context of (uniform) algo-rithms are the number of steps taken by the algorithm (i.e., its time complexity)and the amount of "memory" or \work-space" consumed by the computation (i.e.,its space complexity). We review the time complexity based classes P , NP , coNP ,BPP, RP , coRP , ZPP, PH, E , EXP and NEXP as well as the space complexityclasses L, NL, RL and PSPACE .By prepending the name of a complexity class (of decision problems) withthe pre�x \co" we mean the class of complement problems; that is, the problem� = (�yes;�no) is in coC if and only if (�no;�yes) is in C. Speci�cally, decidingmembership in the set S is in the class coC if and only if deciding membership inthe set f0; 1g� n S is in the class C. Thus, the de�nition of coNP and coRP canbe easily derived from the de�nitions of NP and RP , respectively. Complexityclasses de�ned in terms of symmetric acceptance criteria (e.g., deterministic andtwo-sided error randomized classes) are trivially closed under complementation(e.g., coP = P and coBPP = BPP) and so we do not present their \co"-classes.



A.2. ALGORITHM-BASED CLASSES 511In other cases (most notably NL), the closure property is highly non-trivial andwe comment about it.A.2.1 Time complexity classesWe start with classes that are closely related to polynomial-time computations (i.e.,P , NP , BPP, RP and ZPP), and latter consider the classes PH, E , EXP andNEXP .A.2.1.1 Classes closely related to polynomial timeThe most prominent complexity classes are P and NP, which are extensivelydiscussed in Section 2.1. We also consider classes related to randomized polynomial-time, which are discussed in Section 6.1.P and NP. The class P consists of all decision problem that can be solved in(deterministic) polynomial-time. A decision problem � = (�yes;�no) is in NPif there exists a polynomial p and a (deterministic) polynomial-time algorithm Vsuch that the following two conditions hold1. For every x 2 �yes there exists y 2 f0; 1gp(jxj) such that V (x; y) = 1.2. For every x 2 �no and every y 2 f0; 1g� it holds that V (x; y) = 0.A string y satisfying Condition 1 is called an NP-witness (for x). Clearly, P � NP .Reductions and NP-completeness (NPC). A problem is NP-complete ifit is in NP and every problem in NP is polynomial-time reducible to it, wherepolynomial-time reducibility is de�ned and discussed in Section 2.2. Loosely speak-ing, a polynomial-time reduction of problem � to problem �0 is a polynomial-timealgorithm that solves � by making queries to a subroutine that solves problem �0,where the running-time of the subroutine is not counted in the algorithm's timecomplexity. Typically, NP-completeness is de�ned while restricting the reductionto make a single query and output its answer. Such a reduction, called a Karp-reduction, is represented by a polynomial-time computable mapping that mapsyes-instances of � to yes-instances of �0 (and no-instances of � to no-instances of�0). Hundreds of NP-complete problems are listed in [85].Probabilistic polynomial-time (BPP, RP and ZPP). A decision problem� = (�yes;�no) is in BPP if there exists a probabilistic polynomial-time algorithmA such that the following two conditions hold1. For every x 2 �yes it holds that Pr[A(x)=1] � 2=3.2. For every x 2 �no it holds that Pr[A(x)=0] � 2=3.



512 APPENDIX A. GLOSSARY OF COMPLEXITY CLASSESThat is, the algorithm has two-sided error probability (of 1=3), which can be furtherreduced by repetitions. We stress that due to the two-sided error probability ofBPP, it is not known whether or not BPP is contained in NP . In addition tothe two-sided error class BPP, we consider one-sided error and zero-error classes,denoted RP and ZPP, respectively. A problem � = (�yes;�no) is in RP if thereexists a probabilistic polynomial-time algorithm A such that the following twoconditions hold1. For every x 2 �yes it holds that Pr[A(x)=1] � 1=2.2. For every x 2 �no it holds that Pr[A(x)=0] = 1.Again, the error probability can be reduced by repetitions, and thus RP � BPP \NP . A problem� = (�yes;�no) is in ZPP if there exists a probabilistic polynomial-time algorithm A, which may output a special (\don't know") symbol ?, such thatthe following two conditions hold1. For every x 2 �yes it holds that Pr[A(x)2f1;?g] = 1 and Pr[A(x)=1] � 1=2.2. For every x 2 �no it holds that Pr[A(x)2f0;?g] = 1 and Pr[A(x)=0] � 1=2.Note that P � ZPP = RP \ coRP . When de�ned in terms of promise problems,all the aforementioned randomized classes have complete problems (w.r.t Karp-reductions), but the same is not known when considering only standard decisionproblems (with trivial promise).The counting class #P. Functions in #P count the number of solutions toan NP-type search problem (or, equivalently, the number of NP-witnesses for ayes-instance of a decision problem in NP). Formally, a function f is in #P if thereexists a polynomial p and a (deterministic) polynomial-time algorithm V such thatf(x) = jfy 2 f0; 1gp(jxj) : V (x; y) = 1gj. Indeed, p and V are as in the de�nitionof NP , and it follows that deciding membership in the set fx : f(x) � 1g is inNP . Clearly, #P problems are solvable in polynomial space. Surprisingly, thepermanent of positive integer matrices is #P-complete (i.e., it is in #P and anyfunction in #P is polynomial-time reducible to it).Interactive proofs. A decision problem � = (�yes;�no) has an interactive proofsystem if there exists a polynomial-time strategy V such that the following twoconditions hold:1. For every x 2 �yes there exists a prover strategy P such that the veri�er Valways accepts after interacting with the prover P on common input x.2. For every x 62 �no and every strategy P �, the veri�er V rejects with proba-bility at least 12 after interacting with P � on common input x.The corresponding class is denoted IP , and turns out to equal PSPACE. (Forfurther details see Section 9.1.)



A.2. ALGORITHM-BASED CLASSES 513A.2.1.2 Other time complexity classesThe classes E and EXP corresponding to problems that can be solved (by a deter-ministic algorithm) in time 2O(n) and 2poly(n), respectively, for n-bit long inputs.Clearly, NP � EXP . We also mention NEXP , the class of problems that can besolved by a non-deterministic machine in 2poly(n) steps.1In general, one may de�ne a complexity class for every time bound and ev-ery type of machine (i.e., deterministic, probabilistic and non-deterministic), butpolynomial and exponential bounds seem most natural and very robust. Anotherrobust type of time bounds that is sometimes used is quasi-polynomial time (i.e., ePdenotes the class of problems solvable by deterministic machines of time complexityexp(poly(logn))).The Polynomial-time hierarchy, PH. For any natural number k, the kth levelof the polynomial-time hierarchy consists of problems � = (�yes;�no) such thatthere a polynomial p and a polynomial-time algorithm V that satis�es the followingtwo requirements:1. For every x 2 �yes there exists y1 2 f0; 1gp(jxj) such that for every y2 2f0; 1gp(jxj) there exists y3 2 f0; 1gp(jxj) such that for every y4 2 f0; 1gp(jxj) ...it holds that V (x; y1; y2; y3; y4; :::; yk)=1. That is, the condition regarding xconsists of k alternating quanti�ers.2. For every x 2 �no the foregoing (k-alternating) condition does not hold.That is, for every y1 2 f0; 1gp(jxj) there exists y2 2 f0; 1gp(jxj) such thatfor every y3 2 f0; 1gp(jxj) there exists y4 2 f0; 1gp(jxj) ... it holds thatV (x; y1; y2; y3; y4; :::; yk)=0.Such a problem � is said to be in �k (and �k def= co�k). Indeed, NP = �1corresponds to the special case where k = 1. Interestingly, PH is polynomial-timereducible to #P .A.2.2 Space complexityWhen de�ning space-complexity classes, one counts only the space consumed bythe actual computation, and not the space occupied by the input and output. Thisis formalized by postulating that the input is read from a read-only device (resp.,the output is written on a write-only device). Four important classes of decisionproblems are de�ned next.1Alternatively, analogously to the de�nition of NP , a problem � = (�yes ;�no) is in NEXPif there exists a polynomial p and a polynomial-time algorithm V such that the two conditionshold1. For every x 2 �yes there exists y 2 f0; 1g2p(jxj) such that V (x; y) = 1.2. For every x 2 �no and every y 2 f0; 1g� it holds that V (x; y) = 0.



514 APPENDIX A. GLOSSARY OF COMPLEXITY CLASSES� The class L consists of problems solvable in logarithmic space. That is, aproblem � is in L if there exists a standard (i.e., deterministic) algorithm oflogarithmic space-complexity for solving �. This class contains some simplecomputational problems (e.g., matrix multiplication), and arguably capturesthe most space-e�cient computations. Interestingly, L contains the problemof deciding connectivity of (undirected) graphs.� Classes of problems solvable by randomized algorithms of logarithmic space-complexity include RL and BPL, which are de�ned analogously to RP andBPP. That is, RL corresponds to algorithms with one-sided error probabil-ity, whereas BPL allows two-sided error.� The class NL is the non-deterministic analogue of L, and is traditionally de-�ned in terms of non-deterministic machines of logarithmic space-complexity.2The classNL contains the problem of deciding whether there exists a directedpath between two given vertexes in a given directed graph. In fact, the lat-ter problem is complete for the class (under logarithmic-space reductions).Interestingly, coNL equals NL.� The class PSPACE consists of problems solvable in polynomial space. Thisclass contains very di�cult problems, including the computation of winningstrategies for any \e�cient 2-party games" (see Section 5.4).Clearly, L � RL � NL � P and NP � PSPACE � EXP .A.3 Circuit-based classesWe refer the reader to Section 1.2.4 for a de�nition of Boolean circuits as computingdevices. The two main complexity measures considered in the context of (non-uniform) circuits are the number of gates (or wires) in the circuit (i.e., the circuit'ssize) and the length of the longest directed path from an input to an output (i.e.,the circuit's depth).Throughout this section, when we talk of circuits, we actually refer to families ofcircuits containing a circuit for each instance length, where the n-bit long instancesof the computational problem are handled by the nth circuit in the family. Similarly,when we talk of the size and depth of a circuit, we actually mean the (dependenceon n of the) size and depth of the nth circuit in the family.General polynomial-size circuits (P/poly). The main motivation for the in-troduction of complexity classes based on (non-uniform) circuits is the developmentof lower-bounds. For example, the class of problems solvable by polynomial-sizecircuits, denoted P=poly, is a (strict)3 super-set of P . Thus, showing that NPis not contained in P=poly would imply P 6= NP. For further discussion see2See further discussion of this de�nition in Section 5.3.3In particular, P=poly contains some decision problems that are not solvable by any uniformalgorithm.



A.3. CIRCUIT-BASED CLASSES 515Appendix B.2. An alternative de�nition of P=poly in terms of \machines thattake advice" is provided in Section 3.1.2. We mention that if NP � P=poly thenPH = �2.The subclasses AC0 and TC0. The class AC0, discussed in Appendix B.2.3,consists of problems solvable by constant-depth polynomial-size circuits of un-bounded fan-in. The analogue class that allows also (unbounded fan-in) majority-gates (or, equivalently, threshold-gates) is denoted T C0.The subclasses AC and NC. Turning back to the standard basis (of :, _and ^ gates), for any non-negative integer k, we denote by NCk (resp., ACk)the class of problems solvable by polynomial-size circuits of bounded fan-in (resp.,unbounded fan-in) having depth O(logk n), where n is the input length. Clearly,NCk � ACk � NCk+1. A commonly referred class is NC def= [k2NNCk.We mention that the class NC2 � NL is the habitat of most natural compu-tational problems of Linear Algebra: solving a linear system of equations as wellas computing the rank, inverse and determinant of a matrix. The class NC1 con-tains all symmetric functions, regular languages as well as word problems for �nitegroups and monoids. The class AC0 contains all properties (of �nite objects) thatare expressible by �rst-order logic.Uniformity. The foregoing classes make no reference to the complexity of con-structing the adequate circuits, and it is plausible that there is no e�ective way ofconstructing these circuits (e.g., as in case of circuits that trivially solve undecid-able problem regarding unary instances). A minimal notion of constructibility ofsuch (polynomial-size) circuits is the existence of a polynomial time algorithm thatgiven 1n produces the nth relevant circuit (i.e., the circuit that solves the problemon instances of length n). Such a notion of constructibility means that the familyof circuits is \uniform" in some sense (rather than consisting of circuits that haveno relation between one another). Stronger notions of uniformity (e.g., log-spaceconstructibility) are more adequate for subclasses such as AC and NC. We men-tion that log-space uniform NC circuits correspond to parallel algorithms that usepolynomially many processors and run in polylogarithmic time.



516 APPENDIX A. GLOSSARY OF COMPLEXITY CLASSES



Appendix BOn the Quest for LowerBoundsAlas, Philosophy, Medicine, Law, and unfortunately also Theol-ogy, have I studied in detail, and still remained a fool, not a bitwiser than before. Magister and even Doctor am I called, andfor a decade am I sick and tired of pulling my pupils by the noseand understanding that we can know nothing.1J.W. Goethe, Faust, Lines 354{364Summary: This appendix briey surveys some attempts at provinglower bounds on the complexity of natural computational problems. Inthe �rst part, devoted to Circuit Complexity, we describe lower boundson the size of (restricted) circuits that solve natural computationalproblems. This can be viewed as a program whose long-term goal isproving that P 6= NP . In the second part, devoted to Proof Complex-ity, we describe lower bounds on the length of (restricted) propositionalproofs of natural tautologies. This can be viewed as a program whoselong-term goal is proving that NP 6= coNP .We comment that while the activity in these areas is aimed towardsdeveloping proof techniques that may be applied to the resolution ofthe \big problems" (such as P versus NP), the current achievements(though very impressive) seem very far from reaching this goal. Cur-rent crown-jewel achievements in these areas take the form of tight (orstrong) lower bounds on the complexity of computing (resp., proving)\relatively simple" functions (resp., claims) in restricted models of com-putation (resp., proof systems).1This quote reects a common sentiment, not shared by the author of the current book.517



518 APPENDIX B. ON THE QUEST FOR LOWER BOUNDSB.1 PreliminariesCircuit complexity refers to a non-uniformmodel of computation (see Section 1.2.4),focusing on the size of such circuits, while ignoring the complexity of constructingadequate circuits. Similarly, proof complexity refers to proofs of tautologies, focus-ing on the length of such proofs, while ignoring the complexity of generating suchproofs.Both circuits and proofs are �nite objects that are de�ned on top of the notionof a directed acyclic graph (dag), reviewed in Appendix G.1. In such a dag, verticeswith no incoming edges are called inputs, vertices with no outgoing edges are calledoutputs, and the remaining vertices are called internal vertices. The size of a dagis de�ned as the number of its edges. We will be mostly interested in dags of\bounded fan-in" (i.e., for each vertex, the number of incoming edges is at mosttwo).In order to convert a dag into a computational device (resp., a proof), eachinternal vertex is labeled by a rule, which transforms values assigned to its prede-cessors to values at that vertex. Combined with any possible assignment of valuesto the inputs, these �xed rules induce an assignment of values to all the vertices ofthe dag (by a process that starts at the inputs, and assigns a value to each vertexbased on the values of its predecessors (and according to the corresponding rule)).� In the case of computation devices, the internal vertices are labeled by (binaryor unary) functions over some �xed domain (e.g., a �nite or in�nite �eld).These functions are called gates, and the labeled dag is called a circuit. Sucha circuit (with n inputs and m outputs) computes a �nite function over thecorresponding domain (mapping sequences of length n to sequences of lengthm).� In the case of proofs, the internal vertices are labeled by sound deduction(or inference) rules of some �xed proof system. Any assignment of axioms(of the said system) to the inputs of this labeled dag yields a sequence oftautologies (at all vertices). Typically the dag is assumed to have a singleoutput vertex, and the corresponding sequence of tautologies is viewed as aproof of the tautology assigned to the output.We note that both models partially adhere to the paradigm of simplicity thatunderlies the de�nitions of (uniform) computational models (as discussed in Sec-tion 1.2.3): the aforementioned rules are simple by de�nition { they are applied toat most two values. However, unlike in the case of (uniform) computational mod-els, the current models do not mandate a \uniform" consideration of all possible\inputs" (but rather allow a seperate consideration of each �nite \input" length).For example, each circuit can compute only a �nite function; that is, a functionde�ned over a �xed number of values (i.e., �xed input length). Likewise, a dagthat corresponds to a proof system, yields only proofs of tautologies that refer toa �xed number of axioms.22N.B., we refer to a �xed number of axioms, and not merely to a �xed number of axiom forms.



B.2. BOOLEAN CIRCUIT COMPLEXITY 519Focusing on circuits, we note that in order to allow the computation of func-tions that are de�ned for all input lengths, one must consider in�nite sequencesof dags, one for each length. This yields a model of computation in which each\machine" has an in�nite description (when referring to all input lengths). Indeed,this signi�cantly extends the power of the computation model beyond that of thenotion of algorithm (discussed in Section 1.2.3). However, since we are interestedin lower bounds here, this extension is certainly legitimate and hopefully fruitful:For example, one may hope that the �niteness of the individual circuits will facili-tate the application of combinatorial techniques towards the analysis of the model'spower and limitations. Furthermore, as we shall see, these models open the doorto the introduction (and study) of meaningful restricted classes of computations.Organization: The rest of this appendix is partitioned to three parts. In Sec-tion B.2 we consider Boolean circuits, which are the archetypical model of non-uniform computing devices. In Section B.3 we generalize the treatment by con-sidering arithmetic circuits, which may be de�ned for every algebraic structure(where Boolean circuits are viewed as a special case referring to the two-element�eld, GF(2)). Lastly, in Section B.4, we consider proof complexity.B.2 Boolean Circuit ComplexityIn Boolean circuits the values assigned to all inputs as well as the values induced(by the computation) at all intermediate vertices and outputs are bits. The set ofallowed gates is taken to be any complete basis (i.e., one that allows to compute allBoolean functions). The most popular choice of a complete basis is the set f^;_;:gcorresponding to (two-bit) conjunction, (two-bit) disjunction and negation (of asingle bit), respectively. (The speci�c choice of a complete basis hardly e�ects thestudy of circuit complexity.)For a �nite Boolean function f , we denote by S(f) the size of the smallestBoolean circuit computing f . We will be interested in sequences of functions ffng,where fn is a function on n input bits, and will study their size complexity (i.e.,S(fn)) asymptotically (as a function of n). With some abuse of notation, forf(x) def= fjxj(x), we let S(f) denote the integer function that assigns to n the valueS(fn). Thus, we refer to the following de�nition.De�nition B.1 (circuit complexity): Let f : f0; 1g�! f0; 1g� and ffng be suchthat f(x) = fjxj(x) for every x. The complexity of f (resp., ffng), denoted S(f)(resp., denoted n 7! S(fn)), is a function of n that represents the size of thesmallest Boolean circuit computing fn.We stress that di�erent circuits (e.g., having a di�erent number of inputs) are usedfor di�erent fn's. Still there may be a simple description of this sequence of circuits,say, an algorithm that on input n produces a circuit computing fn. In case suchRecall that an axiom form like � _ :� yields an in�nite number of axioms, each obtained bysubstituting the generic formula (or symbol) � with a �xed propositional formula.



520 APPENDIX B. ON THE QUEST FOR LOWER BOUNDSan algorithm exists and works in time polynomial in the size of its output, we saythat the corresponding sequence of circuits is uniform. Note that if f has a uniformsequence of polynomial-size circuits then f 2 P . On the other hand, any f 2 P has(a uniform sequence of) polynomial-size circuits. Consequently, a super-polynomialsize lower-bound on any function in NP would imply that P 6= NP .De�nition B.1 makes no reference to the uniformity condition (and indeed thesequence of smallest circuits computing ffng may be \highly nonuniform"). Ac-tually, non-uniformity makes the circuit model stronger than Turing machines (or,equivalently, stronger than the model of uniform circuits): there exist functions fthat cannot be computed by Turing machines (regardless of their running time),but do have linear-size circuits.3 This raises the possibility that proving circuitlower-bounds is even harder than resolving the P vs. NP Question.The common belief is that the extra power provided by non-uniformity is irrel-evant to the P vs. NP Question; in particular, it is conjectured that NP-completesets do not have polynomial-size circuits. This conjecture is supported by the factthat its failure will yield an unexpected collapse in the world of uniform compu-tational complexity (see Section 3.2). Furthermore, the hope is that abstractingaway the (supposedly irrelevant) uniformity condition will allow for combinatorialtechniques to analyze the power and limitations of polynomial-size circuits (w.r.tNP-sets). This hope has materialized in the study of restricted classes of circuits(see Sections B.2.2 and B.2.3). Indeed, another advantage of the circuit model isthat it o�ers a framework for describing naturally restricted models of computation.We also mention that Boolean circuits are a natural computational model, cor-responding to \hardware complexity" (which was indeed the original motivationfor their introduction by Shannon [202]), and so their study is of independent in-terest. Moreover, some of the techniques for analyzing Boolean functions foundapplications elsewhere (e.g., in computational learning theory, combinatorics andgame theory).B.2.1 Basic Results and QuestionsWe have already mentioned several basic facts about Boolean circuits. Anotherbasic fact is that most Boolean functions require exponential size circuits, which isdue to the gap between the number of functions and the number of small circuits.Thus, hard functions (i.e., functions that require large circuits and thus have noe�cient algorithms) do exist, to say the least. However, the aforementioned hard-ness result is proved via a counting argument, which provides no way of pointingto any speci�c hard function. The situation is even worse: super-linear circuit-sizelower-bounds are not known for any explicit function f , even when explicitnessis de�ned in a very mild sense that only requires f 2 EXP .4 One major openproblem of circuit complexity is establishing such lower-bounds.3See either Theorem 1.13 or Theorem 3.7.4Indeed, a more natural (and still mild) notion of explicitness requires that f 2 E . This notionimplies that the function's description (restricted to n-bit long inputs) can be constructed in timethat is polynomial in the length of the description.



B.2. BOOLEAN CIRCUIT COMPLEXITY 521Open Problem B.2 Find an explicit function f : f0; 1g� ! f0; 1g (or even f :f0; 1g�!f0; 1g� such that jf(x)j = O(jxj)) for which S(f) is not O(n).A particularly basic special case of this open problem is the question of whetheraddition is easier to perform than multiplication. Let ADDn : f0; 1gn�f0; 1gn !f0; 1gn+1 and MULTn :f0; 1gn�f0; 1gn!f0; 1g2n, denote the addition and multipli-cation functions, respectively, applied to a pair of integers (presented in binary).For addition we have an optimal upper bound; that is, S(ADDn) = O(n). Formultiplication, the standard (elementary school) quadratic-time algorithm can begreatly improved (via Discrete Fourier Transforms) to almost-linear time, yield-ing S(MULTn) = eO(n). Now, the question is whether or not there exist linear-sizecircuits for multiplication (i.e., is S(MULTn) = O(n))?Unable to report on any super-linear lower-bound (for an explicit function),we turn to restricted types of Boolean circuits. There has been some remarkablesuccesses in developing techniques for proving strong lower-bounds for natural re-stricted classes of circuits. We describe the most important ones, and refer thereader to [46, 235] for further detail.Recall that general Boolean circuits can compute every function. In contrast,restricted types of circuits (e.g., monotone circuits) may only be able to computea subclass of all functions (e.g., monotone functions), and in such a case we shallseek lower-bounds on the size of such restricted circuits that compute a function inthe corresponding subclass. Such a restriction is appealing provided that the cor-responding class of functions and the computations represented by the restrictedcircuits are natural (from a conceptual or practical viewpoint). The models dis-cussed below satisfy this condition.B.2.2 Monotone CircuitsOne very natural restriction on circuits arises by forbidding negation (in the setof gates), namely allowing only ^ and _ gates. The resulting circuits are calledmonotone and they can compute a function f : f0; 1gn!f0; 1g if and only if f ismonotone with respect to the standard partial order on n-bit strings (i.e., x � yi� for every bit position i we have xi � yi). An extremely natural question inthis context is whether or not non-monotone operations (in the circuit) help incomputing monotone functions?Before turning to this question, we note that most monotone functions re-quire exponential size circuits (let alone monotone ones).5 Still, proving a super-polynomial lower-bound on the monotone circuit complexity of an explicit mono-tone function was open for several decades, till the invention of the so-called ap-proximation method (by Razborov [187]).Let CLIQUEn be the function that, given a graph on n vertices (by its adjacencymatrix), outputs 1 if and only if the graph contains a complete subgraph of size5A key observation is that it su�ces to consider the set of n-bit monotone functions thatevaluate to 1 (resp., to 0) on each string x = x1 � � �xn satisfying Pni=1 xi > bn=2c (resp.,Pni=1 xi < bn=2c). Note that each such function is speci�ed by � nbn=2c� bits.



522 APPENDIX B. ON THE QUEST FOR LOWER BOUNDS(say) pn. This function is clearly monotone, and CLIQUE = fCLIQUEng is knownto be NP-complete.Theorem B.3 ([187], improved in [7]): There are no polynomial-size monotonecircuits for CLIQUE.We note that the lower-bounds are sub-exponential in the number of vertices (i.e.,S(CLIQUEn) = exp(
(n1=8))), and that similar lower-bounds are known for func-tions in P . Thus, there exists an exponential separation between monotone circuitcomplexity and non-monotone circuit complexity, where this separation refers (ofcourse) to the computation of monotone functions.B.2.3 Bounded-Depth CircuitsThe next restriction refers to the structure of the circuit (or rather to its underlinggraph): we allow all gates, but limit the depth of the circuit. The depth of a dagis simply the length of the longest directed path in it. So in a sense, depth cap-tures the parallel time to compute the function: if a circuit has depth d, then thefunction can be evaluated by enough processors in d phases (where in each phasemany gates are evaluated in parallel). Indeed, parallel time is a natural and im-portant computational resource, referring to the following basic question: can onespeed up computation by using several computers in parallel? Determining whichcomputational tasks can be \parallelized" when many processors are available andwhich are \inherently sequential" is clearly a fundamental question.We will restrict d to be a constant, which still is interesting not only as a measureof parallel time but also due to the relation of this model to expressibility in �rstorder logic as well as to the Polynomial-time Hierarchy (de�ned in Section 3.2). Inthe current setting (of constant-depth circuits), we allow unbounded fan-in (i.e., ^-gates and _-gates taking any number of incoming edges), as otherwise each outputbit can depend only on a constant number of input bits.Let PAR (for parity) denote the sum modulo two of the input bits, and MAJ (formajority) be 1 if and only if there are more 1's than 0's among the input bits. Theinvention of the random restriction method (by Furst, Saxe, and Sipser [83]) led tothe following basic result.Theorem B.4 ([83], improved in [239, 115]): For all constant d, the functions PARand MAJ have no polynomial size circuit of depth d.The aforementioned improvement (of H�astad [115], following Yao [115]) gives arelatively tight lower-bound of exp(
(n1=(d�1))) on the size of n-input PAR circuitsof depth d.Interestingly, MAJ remains hard (for constant-depth polynomial-size circuits)even if the circuits are also allowed (unbounded fan-in) PAR-gates (this result isbased on yet another proof technique: approximation by polynomials [209, 188]).However, the \converse" does not hold (i.e., constant-depth polynomial-size cir-cuits with MAJ-gates can compute PAR), and in general the class of constant-depthpolynomial-size circuits with MAJ-gates (denoted T C0) seems quite powerful. In



B.2. BOOLEAN CIRCUIT COMPLEXITY 523particular, nobody has managed to prove that there are functions in NP that can-not be computed by such circuits, even if their depth is restricted to 3.B.2.4 Formula SizeThe �nal restriction is again structural { we require the underlying dag to be atree (i.e., a dag in which each vertex has at most one outgoing edge). Intuitively,this forbids the computation from reusing a previously computed intermediate value(and if this value is needed again then it has to be recomputed). Thus, the resultingBoolean circuits are simply Boolean formulae. (Indeed, we are back to the basicmodel allowing negation (:), and ^;_ gates of fan-in 2.)Formulae are natural not only for their prevalent mathematical use, but alsobecause their size can be related to the depth of general circuits and to the memoryrequirements of Turing machines (i.e., their space complexity). One of the oldestresults on Circuit Complexity, is that PAR and MAJ have nontrivial lower-boundsin this model. The proof follows a simple combinatorial (or information theoretic)argument.Theorem B.5 [144]: Boolean formulae for n-bit PAR and MAJ require 
(n2) size.This should be contrasted with the linear-size circuits that exist for both functions.6Encouraged by Theorem B.5, one may hope to see super-polynomial lower-boundson the formula-size of explicit functions. This is indeed a famous open problem.Open Problem B.6 Find an explicit Boolean function f that requires super-polynomialsize formulae.An equivalent formulation of this open problem calls for proving a super-logarithmiclower-bound on the depth of formulae (or circuits) computing f .One appealing method for addressing such challenges is the communicationcomplexity method (of Karchmer and Wigderson [141]). This method asserts thatthe depth of a formula for a Boolean function f equals the communication com-plexity in the following two party game, Gf . In the game, the �rst party is givenx 2 f�1(1) \ f0; 1gn, the second party is given y 2 f�1(0) \ f0; 1gn, and theirgoal is to �nd a bit location on which x and y disagree (i.e., i such that xi 6= yi,which clearly exists). To that end, the party exchange messages, according to apredetermined protocol, and the question is what is the communication complexity(in terms of total number of bits exchanged on the worst-case input pair) of thebest such protocol. We stress that no computational restrictions are placed on theparties in the game/protocol.Note that proving a super-logarithmic lower-bound on the communication com-plexity of the game Gf will establish a super-logarithmic lower-bound on the depthof formulae (or circuits) computing f (and thus a super-polynomial lower-boundon the size of formulae computing f). We stress the fact that a lower-bound of apurely information theoretic nature implies a computational lower-bound!6We comment that S(PAR) = O(n) is trivial, but S(MAJ) = O(n) is not.



524 APPENDIX B. ON THE QUEST FOR LOWER BOUNDSWe mention that the communication complexity method has a monotone ver-sion such that the depth of monotone circuits is related to the communicationcomplexity of protocols that are required to �nd an i such that xi > yi (ratherthan any i such that xi 6= yi).7 In fact, the monotone version is better knownthan the general one, due to its success in leading to linear lower-bounds on themonotone depth of natural problems such as perfect matching (established by Razand Wigderson [186]).B.3 Arithmetic CircuitsWe now leave the Boolean rind, and discuss circuits over general �elds. Fixing any�eld F , the gates of the dag will now be the standard + and � operations of the�eld, yielding a so-called arithmetic circuit. The inputs of the dag will be assignedelements of the �eld F , and these values induce an assignment of values (in F ) to allother vertices. Thus, an arithmetic circuit with n inputs and m outputs computesa polynomial map p : Fn ! Fm, and every such polynomial map is computedby some circuit (modulo the convention of allowing some inputs to be set to someconstants, most importantly the constant �1).8Arithmetic circuits provide a natural description of methods for computingpolynomial maps, and consequently their size is a natural measure of the complexityof such maps. We denote by SF (p) the size of a smallest circuit computing thepolynomial map p (and when no subscript is speci�ed, we mean that F = Q(the �eld of rational numbers)). As usual, we shall be interested in sequences offunctions, one per each input size, and will study the corresponding circuit-sizeasymptotically.We note that, for any �xed �nite �eld, arithmetic circuits can simulate Booleancircuits (on Boolean inputs) with only constant factor loss in size. Thus, the studyof arithmetic circuits focuses more on in�nite �elds, where lower bounds may beeasier to obtain.As in the Boolean case, the existence of hard functions is easy to establish (viadimension considerations, rather than counting argument), and we will be inter-ested in explicit (families of) polynomials. Roughly speaking, a polynomial is calledexplicit if there exists an e�cient algorithm that, when given a degree sequence(which speci�es a monomial), outputs the (�nite description of the) correspondingcoe�cient.An important parameter, which is absent in the Boolean model, is the degree ofthe polynomial(s) computed. It is obvious, for example, that a degree d polynomial(even in one variable, i.e., n = 1) requires size at least log d. We briey considerthe univariate case (where d is the only measure of \problem size"), which alreadycontains striking and important open problems. Then we move to the general7Note that since f is monotone, f(x) = 1 and f(y) = 0 implies the existence of an i such thatxi = 1 and yi = 0.8This allows the emulation of adding a constant, multiplication by a constant, and subtraction.We mention that, for the purpose of computing polynomials (over in�nite �elds), division can bee�ciently emulated by the other operations.



B.3. ARITHMETIC CIRCUITS 525multivariate case, in which (as usual) the number of variables (i.e., n) will be themain parameter (and we shall assume that d � n). We refer the reader to [86, 215]for further detail.B.3.1 Univariate PolynomialsHow tight is the log d lower-bounds for the size of an arithmetic circuit computinga degree d polynomial? A simple dimension argument shows that for most degreed polynomials p, it holds that S(p) = 
(d). However, we know of no explicit one:Open Problem B.7 Find an explicit polynomial p of degree d, such that S(p) isnot O(log d).To illustrate this open problem, we consider the following two concrete polynomialspd(x) = xd and qd(x) = (x + 1)(x + 2) � � � (x + d). Clearly, S(pd) � 2 log d (viarepeated squaring), so the trivial lower-bound is essentially tight. On the otherhand, it is a major open problem to determine S(qd), and the common conjectureis that S(qd) is not polynomial in log d. To realize the importance of this conjecture,we state the following proposition:Proposition B.8 If S(qd) = poly(log d), then the integer factorization problemcan be solved by polynomial-size circuits.Recall that it is widely believed that the integer factorization problem is intractable(and, in particular, does not have polynomial-size circuits).Proof Sketch: Proposition B.8 follows by observing that qd(t) = ((t + d)!)=(t!)and that a small circuit for computing qd yields an e�cient way of obtaining thevalue ((t + d)!)=(t!) mod N (by emulating the computation of the former circuitmodulo N). Observing that (Pì=1Ki)! = Qì=1 qKi(Pj̀=i+1Kj), it follows thatthe value of (K!) mod N can be obtained by using circuits for the polynomialshq2i : i = 1; ::; blog2Kci. Next, observe that (K!) mod N and N are relativelyprime if and only if all prime factors of N are bigger than K. Thus, given acomposite N (and circuits for hq2i : i = 1; ::; blog2Nci), we can �nd a factor of Nby performing a binary search for a suitable K.B.3.2 Multivariate PolynomialsWe are now back to polynomials with n variables. To make n our only \problemsize" parameter, it is convenient to restrict ourselves to polynomials whose totaldegree is at most n.Once again, almost every polynomial p in n variables requires size S(p) �exp(
(n)), and we seek explicit polynomial (families) that are hard. Unlike inthe Boolean world, here there are slightly nontrivial lower-bounds (via elementarytools from algebraic geometry).Theorem B.9 [26]: S(xn1 + xn2 + � � �+ xnn) = 
(n logn).



526 APPENDIX B. ON THE QUEST FOR LOWER BOUNDSThe same techniques extend to prove a similar lower-bound for other natural poly-nomials such as the symmetric polynomials and the determinant. Establishing astronger lower-bound for any explicit polynomial is a major open problem. Anotheropen problem is obtaining a super-linear lower-bound for a polynomial map of con-stant (even 1) total degree. Outstanding candidates for the latter open problemare the linear maps computing the Discrete Fourier Transform over the Complexnumbers, or the Walsh transform over the Rationals (for both O(n logn)-time al-gorithms are known, but no super-linear lower-bounds are known).We now focus on speci�c polynomials of central importance. The most naturaland well studied candidate for the last open problem is the matrix multiplicationfunction MM: let A;B be two m �m matrices over F , and de�ne MMn(A;B) to bethe sequence of n = m2 values of the entries of the matrix A � B. Thus, MMn is asequence of n explicit bilinear forms over the 2n input variables (which representthe entries of both matrices). It is known that SGF(2)(MMn) � 3n (cf., [206]). Onthe other hand, the obvious algorithm that takes O(m3) = O(n3=2) steps can beimproved.Theorem B.10 [62]: For every �eld F , it holds that SF (MMn) = o(n1:19).So what is the complexity of MM (even if one counts only multiplication gates)? Isit linear or almost-linear or is it the case that S(MM) > n� for some � > 1? This isindeed a famous open problem.We next consider the determinant and permanent polynomials (DET and PER,resp.) over the n = m2 variables representing an m�m matrix. While DET playsa major role in classical mathematics, PER is somewhat esoteric in that context(though it appears in Statistical Mechanics and Quantum Mechanics). In the con-text of complexity theory both polynomials are of great importance, because theycapture natural complexity classes. The function DET has relatively low complex-ity (and is related to the class of polynomials having polynomial-sized arithmeticformulae), whereas PER seems to have high complexity (and is complete for thecounting class #P (see x6.2.1)). Thus, it is conjectured that PER is not polynomial-time reducible to DET. One restricted type of reduction that makes sense in thisalgebraic context is a reduction by projection.De�nition B.11 (projections): Let pn : Fn ! F ` and qN : FN ! F ` be poly-nomial maps and x1; :::; xn be variables over F . We say that there is a projectionfrom pn to qN over F , if there exists a function � : [N ]! fx1; :::; xng[F such thatpn(x1; :::; xn) � qN (�(1); :::; �(N)).Clearly, if there is a projection from pn to qN then SF (pn) � SF (qN ). Let DETmand PERm denote the functions DET and PER restricted to m-by-m matrices. It isknown that there is a projection from PERm to DET3m , but to yield a polynomial-time reduction one would need a projection of PERm to DETpoly(m). Needless to say,it is conjectured that no such projection exists.



B.4. PROOF COMPLEXITY 527B.4 Proof ComplexityIt is common practice to classify proofs according to the level of their di�culty,but can this appealing classi�cation be put on sound grounds? This is essentiallythe task undertaken by Proof Complexity. It seeks to classify theorems accordingto the di�culty of proving them, much like Circuit Complexity seeks to classifyfunctions according to the di�culty of computing them. Furthermore, just likein circuit complexity, we shall also refer to a few (restricted) models, called proofsystems, which represent various methods of reasoning. Thus, the di�culty ofproving various theorems will be measured with respect to various proof systems.We will consider only propositional proof systems, and so the theorems (in thesesystems) will be propositional tautologies. Each of these systems will be completeand sound; that is, each tautology and only a tautology will have a proof relativeto these systems. The formal de�nition of a proof system spells out what we takefor granted: the e�ciency of the veri�cation procedure. In the following de�nitionthe e�ciency of the veri�cation procedure refers to its running-time measured interms of the total length of the alleged theorem and proof.9De�nition B.12 [61]: A (propositional) proof system is a polynomial-time Turingmachine M such that a formula T is a tautology if and only if there exists a string�, called a proof, such that M(�; T ) = 1.In agreement with standard formalisms, the proof is viewed as coming before thetheorem. De�nition B.12 guarantees the completeness and soundness of the proofsystem as well as veri�cation e�ciency (relative to the total length of the allegedproof{theorem pair). Note that De�nition B.12 allows proofs of arbitrary length,suggesting that the length of the proof � is a measure of the complexity of thetautology T with respect to the proof system M .For each tautology T , let LM (T ) denote the length of the shortest proof of T inM (i.e., the length of the shortest string � such that M accepts (�; T )). That is,LM captures the proof complexity of various tautologies with respect to the proofsystem M . Abusing notation, we let LM (n) denotes the maximum LM (T ) overall tautologies T of length n. (By de�nition, for every proof system M , the valueLM (n) is well-de�ned and so LM is a total function over the natural numbers.) Thefollowing simple theorem provides a basic connection between proof complexity(with respect to any propositional proof system) and computational complexity(i.e., the NP-vs-coNP Question).Theorem B.13 [61]: There exists a propositional proof system M such that thefunction LM is upper-bounded by a polynomial if and only if NP = coNP.In particular, a propositional proof system M such that LM is upper-bounded bya polynomial coincides with a NP-proof system (as in De�nition 2.5) for the set ofpropositional tautologies, which is a coNP-complete set.9Indeed, this convention di�ers from the convention emplyed in Chapter 9, where the com-plexity of veri�cation (i.e., veri�er's running-time) was measured as a function of the length ofthe alleged theorem. Both approaches were mentioned in Section 2.1, where the two approachescoincide because in Section 2.1 we mandated proofs of length polynomial in the alleged theorem.



528 APPENDIX B. ON THE QUEST FOR LOWER BOUNDSThe long-term goal of Proof Complexity is establishing super-polynomial lower-bounds on the length of proofs in any propositional proof system (and thus es-tablishing NP 6= coNP). It is natural to start this formidable project by �rstconsidering simple (and thus weaker) proof systems, and then moving on to moreand more complex ones. Moreover, various natural proof systems, capturing ba-sic (restricted) types and \primitives" of reasoning as well as natural tautologies,suggest themselves as objects for this study. In the rest of this section we focus onsuch restricted proof systems.Di�erent branches of Mathematics such as logic, algebra and geometry give riseto di�erent proof systems, often implicitly. A typical system would have a set ofaxioms and a set of deduction rules. A proof (in this system) would proceed toderive the desired tautology in a sequence of steps, each producing a formula (oftencalled a line of the proof), which is either an axiom, or follows from previous for-mulae via one of the deduction rules. Regarding these proof systems, we make twoobservations. First, proofs in these systems can be easily veri�ed by an algorithmand thus they �t the general framework of De�nition B.12. Second, these proofsystems perfectly �t the model of a dag with internal vertices lbeled by deductionrules (as in Section B.1): When assigning axioms to the inputs, the application ofthe deduction rules at the internal vertices yields a proof of the tautology assignedto each output.10For various proof systems �, we turn to study the proof length L�(T ) of tau-tologies T in proof system �. The �rst observation, revealing a major di�erencebetween proof complexity and circuit complexity, is that the trivial counting ar-gument fails. The reason is that, while the number of functions on n bits is 22n ,there are at most 2n tautologies of this length. Thus, in proof complexity, even theexistence of a hard tautology, not necessarily an explicit one, would be of interest(and, in particular, if established for all propositional proof systems then it wouldyield NP 6= coNP). (Note that here we refer to hard instances of of a problemand not to hard problems.) Anyhow, as we shall see, most known proof-lengthlower-bounds (with respect to restricted proof systems) apply to very natural (letalone explicit) tautologies.An important convention: There is an equivalent and somewhat more conve-nient view of (simple) proof systems, namely as (simple) refutation systems. First,recalling that 3SAT is NP-complete, note that the negation of any (propositional)tautology can be written as a conjunction of clauses, where each clause is a disjunc-tion of only 3 literals (variables or their negation). Now, if we take these clausesas axioms and derive (using the rules of the system) a obvious contradiction (e.g.,the negation of an axiom, or better yet the empty clause), then we have proved thetautology (since we have proved that its negation yields a contradiction). Proofcomplexity often takes the refutation viewpoint, and often exchanges \tautology"with its negation (\contradiction").10General proof systems as in De�nition B.12 can also be adapted to this formalism, by con-sidering a deduction rule that corresponds to a single step of the machine M . However, thededuction rules considered below are even simpler, and more importantly they are more natural.



B.4. PROOF COMPLEXITY 529Organization: The rest of this section is divided to three parts, referring tological, algebraic and geometric proof systems. We will briey describe importantrepresentative and basic results in each of these domains, and refer the readerto [27] for further detail (and, in particular, to adequate references).B.4.1 Logical Proof SystemsThe proof systems in this section will all have lines that are Boolean formulae,and the di�erences will be in the structural limits imposed on these formulae. Themost basic proof system, called Frege system, puts no restriction on the formulaemanipulated by the proof. It has one derivation rule, called the cut rule: A_C;B_:C ` A_B (for any propositional formulae A;B and C). Adding any other soundrule, like modus ponens, has little e�ect on the length of proofs in this system.Frege systems are basic in the sense that (in several variants) they are themost common systems in Logic. Indeed, polynomial length proofs in Frege systemsnaturally corresponds to \polynomial-time reasoning" about feasible objects. Themajor open problem in proof complexity is �nding any tautology (i.e., a family oftautologies) that has no polynomial-long proof in the Frege system.Since lower-bounds for Frege systems seem intractable at the moment, we turnto subsystems of Frege which are interesting and natural. The most widely studiedsystem (of refutation) is Resolution, whose importance stems from its use by mostpropositional (as well as �rst order) automated theorem provers. The formulae al-lowed as lines in Resolution are clauses (disjunctions), and so the cut rule simpli�esto the resolution rule: A _ x;B _ :x ` A _ B, for any clauses A;B and variable x.The gap between the power of general Frege systems and Resolution is reectedby the existence of tautologies that are easy for Frege and hard for Resolution. Aspeci�c example is provided by the pigeonhole principle, denoted PHPmn , which is apropositional tautology that expresses the fact that there is no one-to-one mappingof m pigeons to n < m holes.Theorem B.14 LFrege(PHPn+1n ) = nO(1) but LResolution(PHPn+1n ) = 2
(n)B.4.2 Algebraic Proof SystemsJust as a natural contradiction in the Boolean setting is an unsatis�able collectionof clauses, a natural contradiction in the algebraic setting is a system of polyno-mials without a common root. Moreover, CNF formulae can be easily convertedto a system of polynomials, one per clause, over any �eld. One often adds thepolynomials x2i � xi which ensure Boolean values.A natural proof system (related to Hilbert's Nullstellensatz, and to computa-tions of Grobner bases in symbolic algebra programs) is Polynomial Calculus, abbre-viated PC. The lines in this system are polynomials (represented explicitly by allcoe�cients), and it has two deduction rules: For any two polynomials g; h, the ruleg; h ` g + h, and for any polynomial g and variable xi, the rule g; xi ` xig. Stronglength lower-bounds (obtained from degree lower-bounds) are known for this sys-



530 APPENDIX B. ON THE QUEST FOR LOWER BOUNDStem. For example, encoding the pigeonhole principle PHPmn as a contradicting setof constant degree polynomials, we have the following lower-bound.Theorem B.15 For every n and every m > n, it holds that LPC(PHPmn ) � 2n=2,over every �eld.B.4.3 Geometric Proof SystemsYet another natural way to represent contradictions is by a set of regions in spacethat have empty intersection. Again, we care mainly about discrete (say, Boolean)domains, and a wide source of interesting contradictions are integer programs aris-ing from Combinatorial Optimization. Here, the constraints are (a�ne) linearinequalities with integer coe�cients (so the regions are subsets of the Boolean cubecarved out by half-spaces). The most basic system is called Cutting Planes (CP),and its lines are linear inequalities with integer coe�cients. The deduction rulesof PC are (the obvious) addition of inequalities, and the (less obvious) division ofthe coe�cients by a constant (and rounding, taking advantage of the integrality ofthe solution space).While PHPmn is \easy" in this system, exponential lower-bounds are known forother tautologies. We mention that they are obtained from the monotone circuitlower bounds of Section B.2.2.



Appendix COn the Foundations ofModern CryptographyIt is possible to build a cabin with no foundations,but not a lasting building.Eng. Isidor Goldreich (1906{1995)Summary: Cryptography is concerned with the construction of com-puting systems that withstand any abuse: Such a system is constructedso to maintain a desired functionality, even under malicious attemptsaimed at making it deviate from this functionality.This appendix is aimed at presenting the foundations of cryptography,which are the paradigms, approaches and techniques used to concep-tualize, de�ne and provide solutions to natural security concerns. Itpresents some of these conceptual tools as well as some of the funda-mental results obtained using them. The emphasis is on the clari�cationof fundamental concepts, and on demonstrating the feasibility of solvingseveral central cryptographic problems. The presentation assumes ba-sic knowledge of algorithms, probability theory and complexity theory,but nothing beyond this.The appendix augments the treatment of one-way functions, pseudoran-dom generators and zero-knowledge proofs, given in Sections 7.1, 8.2and 9.2, respectively.1 Using these basic primitives, the appendix pro-vides a treatment of basic cryptographic applications such as Encryp-tion, Signatures, and General Cryptographic Protocols.1These augmentations are important for cryptography, but are not central to complexity theoryand thus were omitted from the main text. 531



532APPENDIX C. ON THE FOUNDATIONS OF MODERN CRYPTOGRAPHYC.1 Introduction and PreliminariesThe rigorous treatment and vast expansion of cryptography is one of the majorachievements of theoretical computer science. In particular, classical notions suchas secure encryption and unforgeable signatures were placed on sound grounds,and new (unexpected) directions and connections were uncovered. Furthermore,this development was coupled with the introduction of novel concepts such as com-putational indistinguishability, pseudorandomness, and zero-knowledge interactiveproofs, which are of independent interest (see Sections 7.1, 8.2 and 9.2, respec-tively). Indeed, modern cryptography is strongly coupled with complexity theory(in contrast to \classical" cryptography which is strongly related to informationtheory).C.1.1 The Underlying PrinciplesModern cryptography is concerned with the construction of information systemsthat are robust against malicious attempts aimed at causing these systems to violatetheir prescribed functionality. The prescribed functionality may be the secret andauthenticated communication of information over an insecure channel, the holdingof incoercible and secret electronic voting, or conducting any \fault-resilient" multi-party computation. Indeed, the scope of modern cryptography is very broad, andit stands in contrast to \classical" cryptography (which has focused on the singleproblem of enabling secret communication over insecure channel).C.1.1.1 Coping with adversariesNeedless to say, the design of cryptographic systems is a very di�cult task. Onecannot rely on intuitions regarding the \typical" state of the environment in whichthe system operates. For sure, the adversary attacking the system will try to ma-nipulate the environment into \untypical" states. Nor can one be content withcounter-measures designed to withstand speci�c attacks, since the adversary (whichacts after the design of the system is completed) will try to attack the schemes inways that are di�erent from the ones the designer had envisioned. Although thevalidity of the foregoing assertions seems self-evident, still some people hope thatin practice ignoring these tautologies will not result in actual damage. Experi-ence shows that these hopes rarely come true; cryptographic schemes based onmake-believe are broken, typically sooner than later.In view of the foregoing, it makes little sense to make assumptions regardingthe speci�c strategy that the adversary may use. The only assumptions that canbe justi�ed refer to the computational abilities of the adversary. Furthermore,the design of cryptographic systems has to be based on �rm foundations; whereasad-hoc approaches and heuristics are a very dangerous way to go.The foundations of cryptography are the paradigms, approaches and techniquesused to conceptualize, de�ne and provide solutions to natural \security concerns".Solving a cryptographic problem (or addressing a security concern) is a two-stageprocess consisting of a de�nitional stage and a constructive stage. First, in the



C.1. INTRODUCTION AND PRELIMINARIES 533de�nitional stage, the functionality underlying the natural concern is to be iden-ti�ed, and an adequate cryptographic problem has to be de�ned. Trying to listall undesired situations is infeasible and prone to error. Instead, one should de�nethe functionality in terms of operation in an imaginary ideal model, and requirea candidate solution to emulate this operation in the real, clearly de�ned, model(which speci�es the adversary's abilities). Once the de�nitional stage is completed,one proceeds to construct a system that satis�es the de�nition. Such a constructionmay use some simpler tools, and in such a case its security is proved relying on thefeatures of these tools.Example: Starting with the wish to ensure secret (resp., reliable) communicationover insecure channels, the de�nitional stage leads to the formulation of the notionof secure encryption schemes (resp., signature schemes). Next, such schemes areconstructed by using simpler primitives such as one-way functions, and the securityof the construction is proved via a \reducibility argument" (which demonstrateshow inverting the one-way function \reduces" to violating the claimed security ofthe construction; cf., Section 7.1.2).C.1.1.2 The use of computational assumptionsLike in the case of the foregoing example, most of the tools and applications ofcryptography exist only if some sort of computational hardness exists. Speci�cally,these tools and applications require (either explicitly or implicitly) the ability togenerate instances of hard problems. Such ability is captured in the de�nitionof one-way functions. Thus, one-way functions are the very minimum needed fordoing most natural tasks of cryptography. (It turns out, as we shall see, thatthis necessary condition is \essentially" su�cient; that is, the existence of one-wayfunctions (or augmentations and extensions of this assumption) su�ces for doingmost of cryptography.)Our current state of understanding of e�cient computation does not allow usto prove that one-way functions exist. In particular, as discussed in Sections 7.1.1and C.2, proving that one-way functions exist seems even harder than proving thatP 6= NP . Hence, we have no choice (at this stage of history) but to assume thatone-way functions exist. As justi�cation to this assumption we can only o�er thecombined beliefs of hundreds (or thousands) of researchers. Furthermore, thesebeliefs concern a simply stated assumption, and their validity follows from severalwidely believed conjectures which are central to various �elds (e.g., the conjecturedintractability of integer factorization is central to computational number theory).Since we need assumptions anyhow, \why not just assume whatever we want"(i.e., the existence of a solution to some natural cryptographic problem)? Well,�rstly, we need to know what we want; that is, we must �rst clarify what exactlywe want, which means going through the typically complex de�nitional stage. Butonce this stage is completed and a de�nition is obtained, can we just assume theexistence of a system satisfying this de�nition? Not really: the mere existence of ade�nition does not imply that it can be satis�ed by any system.



534APPENDIX C. ON THE FOUNDATIONS OF MODERN CRYPTOGRAPHYThe way to demonstrate that a cryptographic de�nition is viable (and thatthe corresponding intuitive security concern can be satis�ed) is to prove that itcan be satis�ed based on a better understood assumption (i.e., one that is morecommon and widely believed). For example, looking at the de�nition of zero-knowledge proofs, it is not a-priori clear that such proofs exist at all (in a non-trivialsense). The non-triviality of the notion was �rst demonstrated by presenting a zero-knowledge proof system for statements, regarding Quadratic Residuosity, which arebelieved to be hard to verify (without extra information). Furthermore, contraryto prior beliefs, it was later shown that the existence of one-way functions impliesthat any NP-statement can be proved in zero-knowledge. Thus, facts that werenot known at all to hold (and were even believed to be false), have been shownto hold by \reduction" to widely believed assumptions (without which most ofcryptography collapses anyhow).In summary: not all assumptions are equal. Thus, \reducing" a complex, newand doubtful assumption to a widely-believed and simple (or even merely simpler)assumption is of great value. Furthermore, \reducing" the solution of a new taskto the assumed security of a well-known primitive typically means providing aconstruction that, using the known primitive, solves the new task. This meansthat we do not only gain con�dence about the solvability of the new task, but wealso obtain a solution based on a primitive that, being well-known, typically hasseveral candidate implementations.C.1.2 The Computational ModelCryptography, as surveyed here, is concerned with the construction of e�cientschemes for which it is infeasible to violate the security feature. Thus, we need anotion of e�cient computations as well as a notion of infeasible ones. The compu-tations of the legitimate users of the scheme ought be e�cient, whereas violatingthe security features (by an adversary) ought to be infeasible. We stress that we donot identify feasible computations with e�cient ones, but rather view the formernotion as potentially more liberal. Let us elaborate.C.1.2.1 E�cient Computations and Infeasible onesE�cient computations are commonly modeled by computations that are polynomial-time in the security parameter. The polynomial bounding the running-time of thelegitimate user's strategy is �xed and typically explicit (and small). Indeed, ouraim is to have a notion of e�ciency that is as strict as possible (or, equivalently,develop strategies that are as e�cient as possible). Here (i.e., when referring tothe complexity of the legitimate users) we are in the same situation as in any algo-rithmic setting. Things are di�erent when referring to our assumptions regardingthe computational resources of the adversary, where we refer to the notion of fea-sible, which we wish to be as wide as possible. A common approach is to postulatethat feasible computations are polynomial-time too, but here the polynomial is nota-priori speci�ed (and is to be thought of as arbitrarily large). In other words, the



C.1. INTRODUCTION AND PRELIMINARIES 535adversary is restricted to the class of polynomial-time computations and anythingbeyond this is considered to be infeasible.Although many de�nitions explicitly refer to the convention of associating fea-sible computations with polynomial-time ones, this convention is inessential toany of the results known in the area. In all cases, a more general statement canbe made by referring to a general notion of feasibility, which should be preservedunder standard algorithmic composition, yielding theories that refer to adversariesof running-time bounded by any speci�c super-polynomial function (or class offunctions). Still, for sake of concreteness and clarity, we shall use the former con-vention in our formal de�nitions (but our motivational discussions will refer to anunspeci�ed notion of feasibility that covers at least e�cient computations).C.1.2.2 Randomized (or probabilistic) ComputationsRandomized computations play a central role in cryptography. One fundamentalreason for this fact is that randomness is essential for the existence (or rather thegeneration) of secrets. Thus, we must allow the legitimate users to employ random-ized computations, and certainly (since we consider randomization as feasible) wemust consider also adversaries that employ randomized computations. This bringsup the issue of success probability: typically, we require that legitimate users suc-ceed (in ful�lling their legitimate goals) with probability 1 (or negligibly close tothis), whereas adversaries succeed (in violating the security features) with negli-gible probability. Thus, the notion of a negligible probability plays an importantrole in our exposition.One requirement of the de�nition of negligible probability is to provide a robustnotion of rareness: A rare event should occur rarely even if we repeat the experimentfor a feasible number of times. That is, in case we consider any polynomial-timecomputation to be feasible, a function � : N ! N is called negligible if 1 � (1 ��(n))p(n) < 0:01 for every polynomial p and su�ciently big n (i.e., � is negligibleif for every positive polynomial p0 the function �(�) is upper-bounded by 1=p0(�)).We will also refer to the notion of noticeable probability. Here the requirementis that events that occur with noticeable probability, will occur almost surely (i.e.,except with negligible probability) if we repeat the experiment for a polynomialnumber of times. Thus, a function � :N!N is called noticeable if for some positivepolynomial p0 the function �(�) is lower-bounded by 1=p0(�).C.1.3 Organization and BeyondThis appendix focuses on several archetypical cryptographic problems (e.g., en-cryption and signature schemes) and on several central tools (e.g., computationaldi�culty, pseudorandomness, and zero-knowledge proofs). For each of these prob-lems, we start by presenting the natural concern underlying it, then de�ne theproblem, and �nally demonstrate that the problem may be solved. In the latterstep, our focus is on demonstrating the feasibility of solving the problem, not onproviding a practical solution.



536APPENDIX C. ON THE FOUNDATIONS OF MODERN CRYPTOGRAPHYOur aim is to present the basic concepts, techniques and results in cryptography,and our emphasis is on the clari�cation of fundamental concepts and the relation-ship among them. This is done in a way independent of the particularities of somepopular number theoretic examples. These particular examples played a centralrole in the development of the �eld and still o�er the most practical implementa-tions of all cryptographic primitives, but this does not mean that the presentationhas to be linked to them. On the contrary, we believe that concepts are best clari-�ed when presented at an abstract level, decoupled from speci�c implementations.Actual organization: The appendix is organized in two main parts, correspond-ing to the Basic Tools of Cryptography and the Basic Applications of Cryptography.The basic tools: The most basic tool is computational di�culty, which in turn iscaptured by the notion of one-way functions. Another notion of key impor-tance is that of computational indistinguishability, underlying the theory ofpseudorandomness as well as much of the rest of cryptography. Pseudoran-dom generators and functions are important tools that are frequently used.So are zero-knowledge proofs, which play a key role in the design of securecryptographic protocols and in their study.The basic applications: Encryption and signature schemes are the most basicapplications of Cryptography. Their main utility is in providing secret andreliable communication over insecure communication media. Loosely speak-ing, encryption schemes are used for ensuring the secrecy (or privacy) of theactual information being communicated, whereas signature schemes are usedto ensure its reliability (or authenticity). Another basic topic is the construc-tion of secure cryptographic protocols for the implementation of arbitraryfunctionalities.The presentation of the basic tools in Sections C.2{C.4 augments (and sometimesrepeats parts of) Sections 7.1, 8.2, and 9.2 (which provide a basic treatment of one-way functions, pseudorandom generators, and zero-knowledge proofs, respectively).Sections C.5{C.7, provide a overview of the basic applications; that is, EncryptionSchemes, Signature Schemes, and General Cryptographic Protocols.Suggestions for further reading. This appendix is a brief summary of theauthor's two-volume work on the subject [91, 92]. Furthermore, the �rst part (i.e.,Basic Tools) corresponds to [91], whereas the second part (i.e., Basic Applications)corresponds to [92]. Needless to say, the interested reader is referred to thesetextbooks for further detail (and, in particular, for missing references).Practice. The aim of this appendix is to introduce the reader to the theoreticalfoundations of cryptography. As argued, such foundations are necessary for soundpractice of cryptography. Indeed, practice requires much more than theoreticalfoundations, whereas the current text makes no attempt to provide anything be-yond the latter. However, given a sound foundation, one can learn and evaluate



C.2. COMPUTATIONAL DIFFICULTY 537various practical suggestions that appear elsewhere. On the other hand, lack ofsound foundations results in inability to critically evaluate practical suggestions,which in turn leads to unsound decisions. Nothing could be more harmful to thedesign of schemes that need to withstand adversarial attacks than misconceptionsabout such attacks.C.2 Computational Di�cultyModern Cryptography is concerned with the construction of systems that are easyto operate (properly) but hard to foil. Thus, a complexity gap (between the ease ofproper usage and the di�culty of deviating from the prescribed functionality) liesat the heart of Modern Cryptography. However, gaps as required for Modern Cryp-tography are not known to exist; they are only widely believed to exist. Indeed,almost all of Modern Cryptography rises or falls with the question of whether one-way functions exist. We mention that the existence of one-way functions impliesthat NP contains search problems that are hard to solve on the average, whichin turn implies that NP is not contained in BPP (i.e., a worst-case complexityconjecture).Loosely speaking, one-way functions are functions that are easy to evaluate buthard (on the average) to invert. Such functions can be thought of as an e�cientway of generating \puzzles" that are infeasible to solve (i.e., the puzzle is a randomimage of the function and a solution is a corresponding preimage). Furthermore,the person generating the puzzle knows a solution to it and can e�ciently verifythe validity of (possibly other) solutions to the puzzle. Thus, one-way functionshave, by de�nition, a clear cryptographic avor (i.e., they manifest a gap betweenthe ease of one task and the di�culty of a related one).C.2.1 One-Way FunctionsWe start by reproducing the basic de�nition of one-way functions as appearing inSection 7.1.1, where this de�nition is further discussed.De�nition C.1 (one-way functions, De�nition 7.1 restated): A function f :f0; 1g�!f0; 1g� is called one-way if the following two conditions hold:1. Easy to evaluate: There exist a polynomial-time algorithm A such that A(x) =f(x) for every x 2 f0; 1g�.2. Hard to invert: For every probabilistic polynomial-time algorithm A0, everypolynomial p, and all su�ciently large n,Pr[A0(f(x); 1n) 2 f�1(f(x))] < 1p(n)where the probability is taken uniformly over x2f0; 1gn and all the internalcoin tosses of algorithm A0.



538APPENDIX C. ON THE FOUNDATIONS OF MODERN CRYPTOGRAPHYSome of the most popular candidates for one-way functions are based on the con-jectured intractability of computational problems in number theory. One suchconjecture is that it is infeasible to factor large integers. Consequently, the func-tion that takes as input two (equal length) primes and outputs their product iswidely believed to be a one-way function. Furthermore, factoring such a com-posite is infeasible if and only if squaring modulo such a composite is a one-wayfunction (see [183]). For certain composites (i.e., products of two primes that areboth congruent to 3 mod 4), the latter function induces a permutation over theset of quadratic residues modulo this composite. A related permutation, which iswidely believed to be one-way, is the RSA function [193]: x 7! xe mod N , whereN = P � Q is a composite as above, e is relatively prime to (P � 1) � (Q� 1), andx 2 f0; :::; N � 1g. The latter examples (as well as other popular suggestions) arebetter captured by the following formulation of a collection of one-way functions(which is indeed related to De�nition C.1):De�nition C.2 (collections of one-way functions): A collection of functions, ffi :Di ! f0; 1g�gi2I , is called one-way if there exists three probabilistic polynomial-time algorithms, I, D and F , such that the following two conditions hold:1. Easy to sample and compute: On input 1n, the output of (the index selection)algorithm I is distributed over the set I \ f0; 1gn (i.e., is an n-bit long indexof some function). On input (an index of a function) i 2 I, the output of(the domain sampling) algorithm D is distributed over the set Di (i.e., overthe domain of the function fi). On input i 2 I and x 2 Di, (the evaluation)algorithm F always outputs fi(x).2. Hard to invert:2 For every probabilistic polynomial-time algorithm, A0, everypositive polynomial p(�), and all su�ciently large n'sPr �A0(i; fi(x))2f�1i (fi(x))� < 1p(n)where i I(1n) and x D(i).The collection is said to be a collection of permutations if each of the fi's is apermutation over the corresponding Di, and D(i) is almost uniformly distributedin Di.For example, in case of the RSA, one considers fN;e : DN;e ! DN;e that satis�esfN;e(x) = xe mod N , where DN;e = f0; :::; N � 1g. De�nition C.2 is also a goodstarting point for the de�nition of a trapdoor permutation.3 Loosely speaking,the latter is a collection of one-way permutations augmented with an e�cient al-gorithm that allows for inverting the permutation when given adequate auxiliaryinformation (called a trapdoor).2Note that this condition refers to the distributions I(1n) and D(i), which are merely requiredto range over I \ f0; 1gn and Di, respectively. (Typically, the distributions I(1n) and D(i) are(almost) uniform over I \ f0; 1gn and Di, respectively.)3Indeed, a more adequate term would be a collection of trapdoor permutations, but the shorter(and less precise) term is the commonly used one.



C.2. COMPUTATIONAL DIFFICULTY 539De�nition C.3 (trapdoor permutations): A collection of permutations as in Def-inition C.2 is called a trapdoor permutation if there are two auxiliary probabilisticpolynomial-time algorithms I 0 and F�1 such that (1) the distribution I 0(1n) rangesover pairs of strings so that the �rst string is distributed as in I(1n), and (2) forevery (i; t) in the range of I 0(1n) and every x 2 Di it holds that F�1(t; fi(x)) = x.(That is, t is a trapdoor that allows to invert fi.)For example, in case of the RSA, the function fN;e can be inverted by raising theimage to the power d (modulo N = P �Q), where d is the multiplicative inverse ofe modulo (P � 1) � (Q� 1). Indeed, in this case, the trapdoor information is (N; d).Strong versus weak one-way functions (summary of Section 7.1.2). Re-call that the foregoing de�nitions require that any feasible algorithm succeeds ininverting the function with negligible probability. A weaker notion only requiresthat any feasible algorithm fails to invert the function with noticeable probability.It turns out that the existence of such weak one-way functions implies the exis-tence of strong one-way functions (as in De�nition C.1). The construction itselfis straightforward, but analyzing it transcends the analogous information theoreticsetting. Instead, the security (i.e., hardness of inverting) the resulting constructionis proved via a so called \reducibility argument" that transforms the violation ofthe conclusion (i.e., the hypothetical insecurity of the resulting construction) intoa violation of the hypothesis (i.e., insecurity of the given primitive). This strategy(i.e., a \reducibility argument") is used to prove all conditional results in the area.C.2.2 Hard-Core PredicatesRecall that saying that a function f is one-way implies that, given a typical f -image y, it is infeasible to �nd a preimage of y under f . This does not meanthat it is infeasible to �nd partial information about the preimage(s) of y under f .Speci�cally, it may be easy to retrieve half of the bits of the preimage (e.g., givena one-way function f consider the function g de�ned by g(x; r) def= (f(x); r), forevery jxj= jrj). As will become clear in subsequent sections, hiding partial infor-mation (about the function's preimage) plays an important role in many advancedcryptographic constructs (e.g., secure encryption). This partial information can beconsidered as a \hard core" of the di�culty of inverting f . Loosely speaking, apolynomial-time computable (Boolean) predicate b, is called a hard-core of a func-tion f if no feasible algorithm, given f(x), can guess b(x) with success probabilitythat is non-negligibly better than one half. The actual de�nition is presented inSection 7.1.3 (i.e., De�nition 7.6).Note that if b is a hard-core of a 1-1 function f that is polynomial-time com-putable then f is a one-way function. On the other hand, recall that Theorem 7.7asserts that for any one-way function f , the inner-product mod 2 of x and r is ahard-core of the function f 0, where f 0(x; r) = (f(x); r).



540APPENDIX C. ON THE FOUNDATIONS OF MODERN CRYPTOGRAPHYC.3 PseudorandomnessIn practice \pseudorandom" sequences are often used instead of truly random se-quences. The underlying belief is that if an (e�cient) application performs wellwhen using a truly random sequence then it will perform essentially as well whenusing a \pseudorandom" sequence. However, this belief is not supported by ad-hoc notions of \pseudorandomness" such as passing the statistical tests in [146] orhaving large \linear-complexity" (as de�ned in [112]). Needless to say, using such\pseudorandom" sequences (instead of truly random sequences) in a cryptographicapplication is very dangerous.In contrast, truly random sequences can be safely replaced by pseudorandomsequences provided that pseudorandom distributions are de�ned as being compu-tationally indistinguishable from the uniform distribution. Such a de�nition makesthe soundness of this replacement an easy corollary. Loosely speaking, pseudoran-dom generators are then de�ned as e�cient procedures for creating long pseudo-random sequences based on few truly random bits (i.e., a short random seed). Therelevance of such constructs to cryptography is in providing legitimate users thatshare short random seeds a method for creating long sequences that look randomto any feasible adversary (which does not know the said seed).C.3.1 Computational IndistinguishabilityA central notion in Modern Cryptography is that of \e�ective similarity" (a.k.acomputational indistinguishability; cf. [108, 238]). The underlying thesis is thatwe do not care whether or not objects are equal, all we care about is whether ornot a di�erence between the objects can be observed by a feasible computation. Incase the answer is negative, the two objects are equivalent as far as any practicalapplication is concerned. Indeed, in the sequel we will often interchange such(computationally indistinguishable) objects. In this section we recall the de�nitionof computational indistinguishability (presented in Section 8.2.3), and consider twovariants.De�nition C.4 (computational indistinguishability, De�nition 8.4 revised4): Wesay that X = fXngn2N and Y = fYngn2N are computationally indistinguishableif for every probabilistic polynomial-time algorithm D every polynomial p, and allsu�ciently large n,jPr[D(1n; Xn)=1]� Pr[D(1n; Yn)=1]j < 1p(n)where the probabilities are taken over the relevant distribution (i.e., either Xn orYn) and over the internal coin tosses of algorithm D.4For sake of streamlining De�nition C.4 with De�nition C.5 (and unlike in De�nition 8.4), herethe distinguisher is explicitly given the index n of the distribution that it inspects. (In typicalapplications, the di�erence between De�nitions 8.4 and C.4 is immaterial because the index n iseasily determined from any sample of the corresponding distributions.)



C.3. PSEUDORANDOMNESS 541See further discussion in Section 8.2.3. In particular, recall that for \e�cientlyconstructible" distributions, indistinguishability by a single sample (as in De�ni-tion C.4) implies indistinguishability by multiple samples (as in De�nition 8.5).Extension to ensembles indexed by strings. We consider a natural extensionof De�nition C.4 in which, rather than referring to ensembles indexed by N , we referto ensembles indexed by an arbitrary set S � f0; 1g�. Typically, for an ensemblefZ�g�2S , it holds that Z� ranges over strings of length that is polynomially-relatedto the length of �.De�nition C.5 We say that fX�g�2S and fY�g�2S are computationally indistin-guishable if for every probabilistic polynomial-time algorithm D every polynomialp, and all su�ciently long � 2 S,jPr[D(�;X�)=1]� Pr[D(�; Y�)=1]j < 1p(j�j)where the probabilities are taken over the relevant distribution (i.e., either X� orY�) and over the internal coin tosses of algorithm D.Note that De�nition C.4 is obtained as a special case by setting S = f1n : n 2 Ng.A non-uniform version. A non-uniform de�nition of computational indistin-guishability can be derived from De�nition C.5 by arti�cially augmenting the in-dices of the distributions. That is, fX�g�2S and fY�g�2S are computationallyindistinguishable in a non-uniform sense if for every polynomial p the ensemblesfX 0�0g�02S0 and fY 0�0g�02S0 are computationally indistinguishable (as in De�ni-tion C.5), where S0 = f�� : � 2 S ^ � 2 f0; 1gp(j�j)g and X 0�� = X� (resp.,Y 0�� = Y�) for every � 2 f0; 1gp(j�j). An equivalent (alternative) de�nition can beobtained by following the formulation that underlies De�nition 8.12.C.3.2 Pseudorandom GeneratorsLoosely speaking, a pseudorandom generator is an e�cient (deterministic) algorithmthat on input a short random seed outputs a (typically much) longer sequence thatis computationally indistinguishable from a uniformly chosen sequence.De�nition C.6 (pseudorandom generator, De�nition 8.1 restated): Let ` :N!Nsatisfy `(n) > n, for all n 2 N . A pseudorandom generator, with stretch function `,is a (deterministic) polynomial-time algorithm G satisfying the following:1. For every s 2 f0; 1g�, it holds that jG(s)j = `(jsj).2. fG(Un)gn2N and fU`(n)gn2N are computationally indistinguishable, whereUm denotes the uniform distribution over f0; 1gm.Indeed, the probability ensemble fG(Un)gn2N is called pseudorandom.



542APPENDIX C. ON THE FOUNDATIONS OF MODERN CRYPTOGRAPHYWe stress that pseudorandom sequences can replace truly random sequences notonly in \standard" algorithmic applications but also in cryptographic ones. Thatis, any cryptographic application that is secure when the legitimate parties usetruly random sequences, is also secure when the legitimate parties use pseudo-random sequences. The bene�t in such a substitution (of random sequences bypseudorandom ones) is that the latter sequences can be e�ciently generated usingmuch less true randomness. Furthermore, in an interactive setting, it is possible toeliminate all random steps from the on-line execution of a program, by replacingthem with the generation of pseudorandom bits based on a random seed selectedand �xed o�-line (or at set-up time). This allows interactive parties to generatea long sequence of common secret bits based on a shared random seed which mayhave been selected at a much earlier time.Various cryptographic applications of pseudorandom generators will be pre-sented in the sequel, but let us �rst recall that pseudorandom generators exist ifand only if one-way functions exist (see Theorem 8.11). For further treatment ofpseudorandom generators, the reader is referred to Section 8.2.C.3.3 Pseudorandom FunctionsRecall that pseudorandom generators provide a way to e�ciently generate longpseudorandom sequences from short random seeds. Pseudorandom functions, in-troduced and constructed by Goldreich, Goldwasser, and Micali [95], are even morepowerful: they provide e�cient direct access to the bits of a huge pseudorandomsequence (which is not feasible to scan bit-by-bit). More precisely, a pseudorandomfunction is an e�cient (deterministic) algorithm that given an n-bit seed, s, and ann-bit argument, x, returns an n-bit string, denoted fs(x), such that it is infeasibleto distinguish the values of fs, for a uniformly chosen s 2 f0; 1gn, from the valuesof a truly random function F : f0; 1gn ! f0; 1gn. That is, the (feasible) testingprocedure is given oracle access to the function (but not its explicit description),and cannot distinguish the case it is given oracle access to a pseudorandom functionfrom the case it is given oracle access to a truly random function.De�nition C.7 (pseudorandom functions): A pseudorandom function (ensemble),is a collection of functions ffs :f0; 1gjsj!f0; 1gjsjgs2f0;1g� that satis�es the follow-ing two conditions:1. (e�cient evaluation) There exists an e�cient (deterministic) algorithm thatgiven a seed, s, and an argument, x 2 f0; 1gjsj, returns fs(x).2. (pseudorandomness) For every probabilistic polynomial-time oracle machine,M , every positive polynomial p and all su�ciently large n's��Pr[MfUn (1n) = 1]� Pr[MFn(1n) = 1] �� < 1p(n)where Fn denotes a uniformly selected function mapping f0; 1gn to f0; 1gn.



C.3. PSEUDORANDOMNESS 543One key feature of the foregoing de�nition is that pseudorandom functions canbe generated and shared by merely generating and sharing their seed; that is, a\random looking" function fs : f0; 1gn ! f0; 1gn, is determined by its n-bit seeds. Thus, parties wishing to share a \random looking" function fs (determining2n-many values), merely need to generate and share among themselves the n-bitseed s. (For example, one party may randomly select the seed s, and communicateit, via a secure channel, to all other parties.) Sharing a pseudorandom functionallows parties to determine (by themselves and without any further communication)random-looking values depending on their current views of the environment (whichneed not be known a priori). To appreciate the potential of this tool, one shouldrealize that sharing a pseudorandom function is essentially as good as being ableto agree, on the y, on the association of random values to (on-line) given values,where the latter are taken from a huge set of possible values. We stress thatthis agreement is achieved without communication and synchronization: Wheneversome party needs to associate a random value to a given value, v 2 f0; 1gn, it willassociate to v the (same) random value rv 2 f0; 1gn (by setting rv = fs(v), wherefs is a pseudorandom function agreed upon beforehand). Concrete applications of(this power of) pseudorandom functions appear in Sections C.5.2 and C.6.2.Theorem C.8 (How to construct pseudorandom functions): Pseudorandom func-tions can be constructed using any pseudorandom generator.Proof Sketch:5 Let G be a pseudorandom generator that stretches its seed by afactor of two (i.e., `(n) = 2n), and let G0(s) (resp., G1(s)) denote the �rst (resp.,last) jsj bits in G(s). LetG�jsj����2�1(s) def= G�jsj(� � �G�2 (G�1(s)) � � �);de�ne fs(x1x2 � � �xn) def= Gxn���x2x1(s), and consider the function ensemble ffs :f0; 1gjsj!f0; 1gjsjgs2f0;1g� . Pictorially, the function fs is de�ned by n-step walksdown a full binary tree of depth n having labels at the vertices. The root of thetree, hereafter referred to as the level 0 vertex of the tree, is labeled by the strings. If an internal vertex is labeled r then its left child is labeled G0(r) whereas itsright child is labeled G1(r). The value of fs(x) is the string residing in the leafreachable from the root by a path corresponding to the string x.We claim that the function ensemble ffsgs2f0;1g� is pseudorandom. The proofuses the hybrid technique (cf. Section 8.2.3): The ith hybrid, denoted H in, is afunction ensemble consisting of 22i�n functions f0; 1gn!f0; 1gn, each determinedby 2i random n-bit strings, denoted s = hs�i�2f0;1gi . The value of such functionhs at x = ��, where j�j = i, is de�ned to equal G�(s�). Pictorially, the functionhs is de�ned by placing the strings in s in the corresponding vertices of level i, andlabeling vertices of lower levels using the very rule used in the de�nition of fs. Theextreme hybrids correspond to our indistinguishability claim (i.e., H0n � fUn andHnn is a truly random function), and the indistinguishability of neighboring hybrids5See details in [91, Sec. 3.6.2].



544APPENDIX C. ON THE FOUNDATIONS OF MODERN CRYPTOGRAPHYfollows from our indistinguishability hypothesis (by using a reducibility argument).Speci�cally, we show that the ability to distinguish H in from H i+1n yields an abilityto distinguish multiple samples of G(Un) from multiple samples of U2n (by placingon the y, halves of the given samples at adequate vertices of the i+1st level).Variants. Useful variants (and generalizations) of the notion of pseudorandomfunctions include Boolean pseudorandom functions that are de�ned over all strings(i.e., fs : f0; 1g� ! f0; 1g) and pseudorandom functions that are de�ned for otherdomains and ranges (i.e., fs : f0; 1gd(jsj) ! f0; 1gr(jsj), for arbitrary polynomiallybounded functions d; r : N ! N). Various transformations between these variantsare known (cf. [91, Sec. 3.6.4] and [92, Apdx. C.2]).C.4 Zero-KnowledgeZero-knowledge proofs provide a powerful tool for the design of cryptographic pro-tocols as well as a good bench-mark for the study of various issues regarding suchprotocols. Loosely speaking, zero-knowledge proofs are proofs that yield nothingbeyond the validity of the assertion. That is, a veri�er obtaining such a proofonly gains conviction in the validity of the assertion (as if it was told by a trustedparty that the assertion holds). This is formulated by saying that anything that isfeasibly computable from a zero-knowledge proof is also feasibly computable fromthe (valid) assertion itself. The latter formulation follows the simulation paradigm,which is discussed next, while reproducing part of the discussion in x9.2.1.1 andmaking additional comments regarding the use of this paradigm in cryptography.C.4.1 The Simulation ParadigmA key question regarding the modeling of security concerns is how to express theintuitive requirement that an adversary \gains nothing substantial" by deviatingfrom the prescribed behavior of an honest user. The answer provided by the sim-ulation paradigm is that the adversary gains nothing if whatever it can obtain byunrestricted adversarial behavior can also be obtained, within essentially the samecomputational e�ort, by a benign behavior. The de�nition of the \benign behavior"captures what we want to achieve in terms of security, and is speci�c to the securityconcern to be addressed. For example, in the context of zero-knowledge the unre-stricted adversarial behavior is captured by an arbitrary probabilistic polynomial-time veri�er strategy, whereas the benign behavior is any computation that isbased (only) on the assertion itself (while assuming that the latter is valid). Otherexamples are discussed in Sections C.5.1 and C.7.1.The de�nitional approach to security represented by the simulation paradigm(and more generally the entire de�nitional approach surveyed in this appendix) maybe considered overly cautious, because it seems to prohibit also \non-harmful" gainsof some \far fetched" adversaries.6 We warn against this impression. Firstly, there6Indeed, according to the simulation paradigm, a system is called secure only if all possible



C.4. ZERO-KNOWLEDGE 545is nothing more dangerous in cryptography than to consider \reasonable" adver-saries (a notion which is almost a contradiction in terms): typically, the adversarieswill try exactly what the system designer has discarded as \far fetched". Secondly,it seems impossible to come up with de�nitions of security that distinguish \break-ing the system in a harmful way" from \breaking it in a non-harmful way": whatis harmful is application-dependent, whereas a good de�nition of security ought tobe application-independent (as otherwise using the cryptographic system in anynew application will require a full re-evaluation of its security). Furthermore, evenwith respect to a speci�c application, it is typically very hard to classify the set of\harmful breakings".C.4.2 The Actual De�nitionIn x9.2.1.2 zero-knowledge was de�ned as a property of some prover strategies(within the context of interactive proof systems, as de�ned in Section 9.1.2). Moregenerally, the term may apply to any interactive machine, regardless of its goal. Astrategy A is zero-knowledge on (inputs from) the set S if, for every feasible strategyB�, there exists a feasible computation C� such that the following two probabilityensembles are computationally indistinguishable (according to De�nition C.5):1. f(A;B�)(x)gx2S def= the output of B� after interacting with A on commoninput x 2 S; and2. fC�(x)gx2S def= the output of C� on input x 2 S.Recall that the �rst ensemble represents an actual execution of an interactive pro-tocol, whereas the second ensemble represents the computation of a stand-aloneprocedure (called the \simulator"), which does not interact with anybody.The foregoing de�nition does not account for auxiliary information that anadversary B� may have prior to entering the interaction. Accounting for suchauxiliary information is essential for using zero-knowledge proofs as subprotocolsinside larger protocols. This is taken care of by a stricter notion called auxiliary-input zero-knowledge, which was not presented in Section 9.2.De�nition C.9 (zero-knowledge, revisited): A strategy A is auxiliary-input zero-knowledge on inputs from S if, for every probabilistic polynomial-time strategy B�and every polynomial p, there exists a probabilistic polynomial-time algorithm C�such that the following two probability ensembles are computationally indistinguish-able:1. f(A;B�(z))(x)gx2S ; z2f0;1gp(jxj) def= the output of B� when having auxiliary-input z and interacting with A on common input x 2 S; and2. fC�(x; z)gx2S ; z2f0;1gp(jxj) def= the output of C� on inputs x 2 S and z 2f0; 1gp(jxj).adversaries can be adequately simulated by adequate benign behavior. Thus, this approachconsiders also \far fetched" adversaries and does not disregard \non-harmful" gains that cannotbe simulated.



546APPENDIX C. ON THE FOUNDATIONS OF MODERN CRYPTOGRAPHYAlmost all known zero-knowledge proofs are in fact auxiliary-input zero-knowledge.As hinted, auxiliary-input zero-knowledge is preserved under sequential composi-tion. A simulator for the multiple-session protocol can be constructed by itera-tively invoking the single-session simulator that refers to the residual strategy ofthe adversarial veri�er in the given session (while feeding this simulator with thetranscript of previous sessions). Indeed, the residual single-session veri�er gets thetranscript of the previous sessions as part of its auxiliary input (i.e., z in De�ni-tion C.9). For details, see [91, Sec. 4.3.4].C.4.3 A General Result and a Generic ApplicationA question avoided so far is whether zero-knowledge proofs exist at all. Clearly,every set in P (or rather in BPP) has a \trivial" zero-knowledge proof (in which theveri�er determines membership by itself); however, what we seek is zero-knowledgeproofs for statements that the veri�er cannot decide by itself.Assuming the existence of \commitment schemes" (cf. xC.4.3.1), which inturn exist if one-way functions exist [169, 118], there exist (auxiliary-input) zero-knowledge proofs of membership in any NP-set. These zero-knowledge proofs, ab-stractly depicted in Construction 9.10, have the following important property: theprescribed prover strategy is e�cient, provided it is given as auxiliary-input an NP-witness to the assertion (to be proved).7 Implementing the abstract boxes (referredto in Construction 9.10) by commitment schemes, we get:Theorem C.10 (On the applicability of zero-knowledge proofs (Theorem 9.11, re-visited)): If (non-uniformly hard) one-way functions exist then every set S 2 NPhas an auxiliary-input zero-knowledge interactive proof. Furthermore, the pre-scribed prover strategy can be implemented in probabilistic polynomial-time, pro-vided that it is given as auxiliary-input an NP-witness for membership of the com-mon input in S.Theorem C.10 makes zero-knowledge a very powerful tool in the design of crypto-graphic schemes and protocols (see xC.4.3.2). We comment that the intractabilityassumption used in Theorem C.10 seems essential.C.4.3.1 Commitment schemesLoosely speaking, commitment schemes are two-stage (two-party) protocols allow-ing for one party to commit itself (at the �rst stage) to a value while keeping thevalue secret. At a later (i.e., second) stage, the commitment is \opened" and it isguaranteed that the \opening" can yield only a single value, which is determined7The auxiliary-input given to the prescribed prover (in order to allow for an e�cient imple-mentation of its strategy) is not to be confused with the auxiliary-input that is given to maliciousveri�ers (in the de�nition of auxiliary-input zero-knowledge). The former is typically an NP-witness for the common input, which is available to the user that invokes the prover strategy (cf.the generic application discussed in xC.4.3.2). In contrast, the auxiliary-input that is given tomalicious veri�ers models arbitrary partial information that may be available to the adversary.



C.4. ZERO-KNOWLEDGE 547during the committing phase. Thus, the (�rst stage of the) commitment scheme isboth binding and hiding.A simple (uni-directional communication) commitment scheme can be con-structed based on any one-way 1-1 function f (with a corresponding hard-coreb). To commit to a bit �, the sender uniformly selects s 2 f0; 1gn, and sends thepair (f(s); b(s) � �). Note that this is both binding and hiding. An alternativeconstruction, which can be based on any one-way function, uses a pseudorandomgenerator G that stretches its seed by a factor of three (cf. Theorem 8.11). Acommitment is established, via two-way communication, as follows (cf. [169]): Thereceiver selects uniformly r 2 f0; 1g3n and sends it to the sender, which selectsuniformly s 2 f0; 1gn and sends r � G(s) if it wishes to commit to the value oneand G(s) if it wishes to commit to zero. To see that this is binding, observe thatthere are at most 22n \bad" values r that satisfy G(s0) = r �G(s1) for some pair(s0; s1), and with overwhelmingly high probability the receiver will not pick one ofthese bad values. The hiding property follows by the pseudorandomness of G.C.4.3.2 A generic applicationAs mentioned, Theorem C.10 makes zero-knowledge a very powerful tool in thedesign of cryptographic schemes and protocols. This wide applicability is due totwo important aspects regarding Theorem C.10: Firstly, Theorem C.10 provides azero-knowledge proof for every NP-set, and secondly the prescribed prover can beimplemented in probabilistic polynomial-time when given an adequate NP-witness.We now turn to a typical application of zero-knowledge proofs.In a typical cryptographic setting, a user U has a secret and is supposed to takesome action based on its secret. For example, U may be instructed to send severaldi�erent commitments (cf., xC.4.3.1) to a single secret value of its choice. Thequestion is how can other users verify that U indeed took the correct action (asdetermined by U 's secret and publicly known information). Indeed, if U disclosesits secret then anybody can verify that U took the correct action. However, U doesnot want to reveal its secret. Using zero-knowledge proofs we can satisfy both con-icting requirements (i.e., having other users verify that U took the correct actionwithout violating U 's interest in not revealing its secret). That is, U can provein zero-knowledge that it took the correct action. Note that U 's claim to havingtaken the correct action is an NP-assertion (since U 's legal action is determined asa polynomial-time function of its secret and the public information), and that Uhas an NP-witness to its validity (i.e., the secret is an NP-witness to the claim thatthe action �ts the public information). Thus, by Theorem C.10, it is possible forU to e�ciently prove the correctness of its action without yielding anything aboutits secret. Consequently, it is fair to ask U to prove (in zero-knowledge) that itbehaves properly, and so to force U to behave properly. Indeed, \forcing properbehavior" is the canonical application of zero-knowledge proofs (see xC.7.3.2).This paradigm (i.e., \forcing proper behavior" via zero-knowledge proofs), whichin turn is based on Theorem C.10, has been utilized in numerous di�erent settings.Indeed, this paradigm is the basis for the wide applicability of zero-knowledgeprotocols in Cryptography.



548APPENDIX C. ON THE FOUNDATIONS OF MODERN CRYPTOGRAPHYC.4.4 De�nitional Variations and Related NotionsIn this section we consider numerous variants on the notion of zero-knowledge andthe underlying model of interactive proofs. These include black-box simulation andother variants of zero-knowledge (cf. Section C.4.4.1), as well as notions such asproofs of knowledge, non-interactive zero-knowledge, and witness indistinguishableproofs (cf. Section C.4.4.2).Before starting, we call the reader's attention to the notion of computationalsoundness and to the related notion of argument systems, discussed in x9.1.5.2.We mention that argument systems may be more e�cient than interactive proofsas well as provide stronger zero-knowledge guarantees. Speci�cally, almost-perfectzero-knowledge arguments for NP can be constructed based on any one-way func-tion [172], where almost-perfect zero-knowledge means that the simulator's outputis statistically close to the veri�er's view in the real interaction (see a discussionin xC.4.4.1). Note that stronger security guarantee for the prover (as provided byalmost-perfect zero-knowledge) comes at the cost of weaker security guarantee forthe veri�er (as provided by computational soundness). The answer to the questionof whether or not this trade-o� is worthwhile seems to be application dependent,and one should also take into account the availability and complexity of the corre-sponding protocols.C.4.4.1 De�nitional variationsWe consider several de�nitional issues regarding the notion of zero-knowledge (asde�ned in De�nition C.9).Universal and black-box simulation. One strengthening of De�nition C.9 isobtained by requiring the existence of a universal simulator, denoted C, that cansimulate (the interactive gain of) any veri�er strategy B� when given the veri�er'sprogram an auxiliary-input; that is, in terms of De�nition C.9, one should replaceC�(x; z) by C(x; z; hB�i), where hB�i denotes the description of the program of B�(which may depend on x and on z). That is, we e�ectively restrict the simulationby requiring that it be a uniform (feasible) function of the veri�er's program (ratherthan arbitrarily depend on it). This restriction is very natural, because it seemshard to envision an alternative way of establishing the zero-knowledge property ofa given protocol. Taking another step, one may argue that since it seems infea-sible to reverse-engineer programs, the simulator may as well just use the veri�erstrategy as an oracle (or as a \black-box"). This reasoning gave rise to the notionof black-box simulation, which was introduced and advocated in [98] and furtherstudied in numerous works. The belief was that inherent limitations regardingblack-box simulation represent inherent limitations of zero-knowledge itself. Forexample, it was believed that the fact that the parallel version of the interactiveproof of Construction 9.10 cannot be simulated in a black-box manner (unless NPis contained in BPP) implies that this version is not zero-knowledge (as per De�ni-tion C.9 itself). However, the (underlying) belief that any zero-knowledge protocolcan be simulated in a black-box manner was later refuted by Barak [25].



C.4. ZERO-KNOWLEDGE 549Honest veri�er versus general cheating veri�er. De�nition C.9 refers toall feasible veri�er strategies, which is most natural in the cryptographic setting,because zero-knowledge is supposed to capture the robustness of the prover un-der any feasible (i.e., adversarial) attempt to gain something by interacting withit. A weaker and still interesting notion of zero-knowledge refers to what can begained by an \honest veri�er" (or rather a semi-honest veri�er)8 that interactswith the prover as directed, with the exception that it may maintain (and out-put) a record of the entire interaction (i.e., even if directed to erase all recordsof the interaction). Although such a weaker notion is not satisfactory for stan-dard cryptographic applications, it yields a fascinating notion from a conceptualas well as a complexity-theoretic point of view. Furthermore, every proof systemthat is zero-knowledge with respect to the honest-veri�er can be transformed intoa standard zero-knowledge proof (without using intractability assumptions and inthe case of \public-coin" proofs this is done without signi�cantly increasing theprover's computational e�ort; see [228]).Statistical versus Computational Zero-Knowledge. Recall that De�nition C.9postulates that for every probability ensemble of one type (i.e., representing theveri�er's output after interaction with the prover) there exists a \similar" ensembleof a second type (i.e., representing the simulator's output). One key parameter isthe interpretation of \similarity". Three interpretations, yielding di�erent notionsof zero-knowledge, have been extensively considered in the literature:1. Perfect Zero-Knowledge requires that the two probability ensembles be iden-tically distributed.92. Statistical (or Almost-Perfect) Zero-Knowledge requires that these probabilityensembles be statistically close (i.e., the variation distance between themshould be negligible).3. Computational (or rather general) Zero-Knowledge requires that these proba-bility ensembles be computationally indistinguishable.Indeed, Computational Zero-Knowledge is the most liberal notion, and is the notionconsidered in De�nition C.9. We note that the class of problems having statisticalzero-knowledge proofs contains several problems that are considered intractable.The interested reader is referred to [227].8The term \honest veri�er" is more appealing when considering an alternative (equivalent)formulation of De�nition C.9. In the alternative de�nition (see [91, Sec. 4.3.1.3]), the simulatoris \only" required to generate the veri�er's view of the real interaction, where the veri�er's viewincludes its (common and auxiliary) inputs, the outcome of its coin tosses, and all messages ithas received.9The actual de�nition of Perfect Zero-Knowledge allows the simulator to fail (while outputtinga special symbol) with negligible probability, and the output distribution of the simulator isconditioned on its not failing.



550APPENDIX C. ON THE FOUNDATIONS OF MODERN CRYPTOGRAPHYC.4.4.2 Related notions: POK, NIZK, and WIWe briey discuss the notions of proofs of knowledge (POK), non-interactive zero-knowledge (NIZK), and witness indistinguishable proofs (WI).Proofs of Knowledge. Loosely speaking, proofs of knowledge are interactiveproofs in which the prover asserts \knowledge" of some object (e.g., a 3-coloringof a graph), and not merely its existence (e.g., the existence of a 3-coloring of thegraph, which in turn is equivalent to the assertion that the graph is 3-colorable).See further discussion in Section 9.2.3. We mention that proofs of knowledge, and inparticular zero-knowledge proofs of knowledge, have many applications to the designof cryptographic schemes and cryptographic protocols. One famous application ofzero-knowledge proofs of knowledge is to the construction of identi�cation schemes(e.g., the Fiat-Shamir scheme).Non-Interactive Zero-Knowledge. The model of non-interactive zero-knowledge(NIZK) proof systems consists of three entities: a prover, a veri�er and a uniformlyselected reference string (which can be thought of as being selected by a trustedthird party). Both the veri�er and prover can read the reference string (as well asthe common input), and each can toss additional coins. The interaction consists ofa single message sent from the prover to the veri�er, who is then left with the �naldecision (whether or not to accept the common input). The (basic) zero-knowledgerequirement refers to a simulator that outputs pairs that should be computationallyindistinguishable from the distribution (of pairs consisting of a uniformly selectedreference string and a random prover message) seen in the real model.10 We men-tion that NIZK proof systems have numerous applications (e.g., to the constructionof public-key encryption and signature schemes, where the reference string may beincorporated in the public-key), which in turn motivate various augmentations ofthe basic de�nition of NIZK (see [91, Sec. 4.10] and [92, Sec. 5.4.4.4]). Such NIZKproofs for any NP-set can be constructed based on standard intractability assump-tions (e.g., intractability of factoring), but even constructing basic NIZK proofsystems seems more di�cult than constructing interactive zero-knowledge proofsystems.Witness Indistinguishability. The notion of witness indistinguishability wassuggested in [76] as a meaningful relaxation of zero-knowledge. Loosely speaking,for any NP-relation R, a proof (or argument) system for the corresponding NP-setis called witness indistinguishable if no feasible veri�er may distinguish the case inwhich the prover uses one NP-witness to x (i.e., w1 such that (x;w1) 2 R) fromthe case in which the prover is using a di�erent NP-witness to the same input x(i.e., w2 such that (x;w2) 2 R). Clearly, any zero-knowledge protocol is witnessindistinguishable, but the converse does not necessarily hold. Furthermore, it seems10Note that the veri�er does not e�ect the distribution seen in the real model, and so the basicde�nition of zero-knowledge does not refer to it. The veri�er (or rather a process of adaptivelyselecting assertions to be proved) is referred to in the adaptive variants of the de�nition.



C.5. ENCRYPTION SCHEMES 551that witness indistinguishable protocols are easier to construct than zero-knowledgeones. Another advantage of witness indistinguishable protocols is that they areclosed under arbitrary concurrent composition, whereas (in general) zero-knowledgeprotocols are not closed even under parallel composition. Witness indistinguishableprotocols turned out to be an important tool in the construction of more complexprotocols. We refer, in particular, to the technique of [75] for constructing zero-knowledge proofs (and arguments) based on witness indistinguishable proofs (resp.,arguments).C.5 Encryption SchemesThe problem of providing secret communication over insecure media is the tra-ditional and most basic problem of cryptography. The setting of this problemconsists of two parties communicating through a channel that is possibly tappedby an adversary. The parties wish to exchange information with each other, butkeep the \wire-tapper" as ignorant as possible regarding the contents of this infor-mation. The canonical solution to this problem is obtained by the use of encryptionschemes. Loosely speaking, an encryption scheme is a protocol allowing these par-ties to communicate secretly with each other. Typically, the encryption schemeconsists of a pair of algorithms. One algorithm, called encryption, is applied by thesender (i.e., the party sending a message), while the other algorithm, called decryp-tion, is applied by the receiver. Hence, in order to send a message, the sender �rstapplies the encryption algorithm to the message, and sends the result, called theciphertext, over the channel. Upon receiving a ciphertext, the other party (i.e., thereceiver) applies the decryption algorithm to it, and retrieves the original message(called the plaintext).In order for the foregoing scheme to provide secret communication, the receivermust know something that is not known to the wire-tapper. (Otherwise, the wire-tapper can decrypt the ciphertext exactly as done by the receiver.) This extraknowledge may take the form of the decryption algorithm itself, or some parame-ters and/or auxiliary inputs used by the decryption algorithm. We call this extraknowledge the decryption-key. Note that, without loss of generality, we may assumethat the decryption algorithm is known to the wire-tapper, and that the decryp-tion algorithm operates on two inputs: a ciphertext and a decryption-key. (Thisdescription implicitly presupposes the existence of an e�cient algorithm for gener-ating (random) keys.) We stress that the existence of a decryption-key, not knownto the wire-tapper, is merely a necessary condition for secret communication.Evaluating the \security" of an encryption scheme is a very tricky business.A preliminary task is to understand what is \security" (i.e., to properly de�newhat is meant by this intuitive term). Two approaches to de�ning security areknown. The �rst (\classical") approach, introduced by Shannon [204], is informa-tion theoretic. It is concerned with the \information" about the plaintext that is\present" in the ciphertext. Loosely speaking, if the ciphertext contains informa-tion about the plaintext then the encryption scheme is considered insecure. It hasbeen shown that such high (i.e., \perfect") level of security can be achieved only



552APPENDIX C. ON THE FOUNDATIONS OF MODERN CRYPTOGRAPHYif the key in use is at least as long as the total amount of information sent via theencryption scheme [204]. This fact (i.e., that the key has to be longer than theinformation exchanged using it) is indeed a drastic limitation on the applicabilityof such (perfectly-secure) encryption schemes.The second (\modern") approach, followed in the current text, is based oncomputational complexity. This approach is based on the thesis that it does notmatter whether the ciphertext contains information about the plaintext, but ratherwhether this information can be e�ciently extracted. In other words, instead ofasking whether it is possible for the wire-tapper to extract speci�c information, weask whether it is feasible for the wire-tapper to extract this information. It turnsout that the new (i.e., \computational complexity") approach can o�er securityeven when the key is much shorter than the total length of the messages sent viathe encryption scheme.The computational complexity approach enables the introduction of conceptsand primitives that cannot exist under the information theoretic approach. A typ-ical example is the concept of public-key encryption schemes, introduced by Di�eand Hellman [66] (with the most popular candidate suggested by Rivest, Shamir,and Adleman [193]). Recall that in the foregoing discussion we concentrated onthe decryption algorithm and its key. It can be shown that the encryption algo-rithm must also get, in addition to the message, an auxiliary input that depends onthe decryption-key. This auxiliary input is called the encryption-key. Traditionalencryption schemes, and in particular all the encryption schemes used in the millen-nia until the 1980's, operate with an encryption-key that equals the decryption-key.Hence, the wire-tapper in these schemes must be ignorant of the encryption-key,and consequently the key distribution problem arises; that is, how can two par-ties wishing to communicate over an insecure channel agree on a secret encryp-tion/decryption key. (The traditional solution is to exchange the key through analternative channel that is secure, though much more expensive to use.) The com-putational complexity approach allows the introduction of encryption schemes inwhich the encryption-key may be given to the wire-tapper without compromisingthe security of the scheme. Clearly, the decryption-key in such schemes is di�erentfrom the encryption-key, and furthermore it is infeasible to obtain the decryption-key from the encryption-key. Such encryption schemes, called public-key schemes,have the advantage of trivially resolving the key distribution problem (because theencryption-key can be publicized). That is, once some Party X generates a pair ofkeys and publicizes the encryption-key, any party can send encrypted messages toParty X such that Party X can retrieve the actual information (i.e., the plaintext),whereas nobody else can learn anything about the plaintext.In contrast to public-key schemes, traditional encryption schemes in which theencryption-key equals the description-key are called private-key schemes, becausein these schemes the encryption-key must be kept secret (rather than be publicas in public-key encryption schemes). We note that a full speci�cation of eitherschemes requires the speci�cation of the way in which keys are generated; that is, a(randomized) key-generation algorithm that, given a security parameter, producesa (random) pair of corresponding encryption/decryption keys (which are identical



C.5. ENCRYPTION SCHEMES 553in case of private-key schemes).Thus, both private-key and public-key encryption schemes consist of three ef-�cient algorithms: a key generation algorithm denoted G, an encryption algorithmdenoted E, and a decryption algorithm denoted D. For every pair of encryptionand decryption keys (e; d) generated by G, and for every plaintext x, it holds thatDd(Ee(x)) = x, where Ee(x) def= E(e; x) and Dd(y) def= D(d; y). The di�erence be-tween the two types of encryption schemes is reected in the de�nition of security:the security of a public-key encryption scheme should hold also when the adversaryis given the encryption-key, whereas this is not required for a private-key encryp-tion scheme. In the following de�nitional treatment we focus on the public-key case(and the private-key case can be obtained by omitting the encryption-key from thesequence of inputs given to the adversary).C.5.1 De�nitions A good disguise should not reveal the person's height.Sha� Goldwasser and Silvio Micali, 1982For simplicity, we �rst consider the encryption of a single message (which, for fur-ther simplicity, is assumed to be of length that equals the security parameter, n).11As implied by the foregoing discussion, a public-key encryption scheme is said tobe secure if it is infeasible to gain any information about the plaintext by lookingat the ciphertext (and the encryption-key). That is, whatever information aboutthe plaintext one may compute from the ciphertext and some a-priori informa-tion, can be essentially computed as e�ciently from the a-priori information alone.This fundamental de�nition of security, called semantic security, was introducedby Goldwasser and Micali [108].De�nition C.11 (semantic security): A public-key encryption scheme (G;E;D)is semantically secure if for every probabilistic polynomial-time algorithm, A, thereexists a probabilistic polynomial-time algorithm B such that for every two functionsf; h : f0; 1g�!f0; 1g� and all probability ensembles fXngn2N that satisfy jh(x)j =poly(jxj) and Xn 2 f0; 1gn, it holds thatPr[A(e; Ee(x); h(x))=f(x)] < Pr[B(1n; h(x))=f(x)] + �(n)where the plaintext x is distributed according to Xn, the encryption-key e is dis-tributed according to G(1n), and � is a negligible function.That is, it is feasible to predict f(x) from h(x) as successfully as it is to predictf(x) from h(x) and (e; Ee(x)), which means that nothing is gained by obtaining(e; Ee(x)). Note that no computational restrictions are made regarding the func-tions h and f . We stress that the foregoing de�nition (as well as the next one)11In the case of public-key schemes no generality is lost by these simplifying assumptions, but inthe case of private-key schemes one should consider the encryption of polynomially-many messages(as we do at the end of this section).



554APPENDIX C. ON THE FOUNDATIONS OF MODERN CRYPTOGRAPHYrefers to public-key encryption schemes, and in the case of private-key schemesalgorithm A is not given the encryption-key e.The following technical interpretation of security states that it is infeasible todistinguish the encryptions of any two plaintexts (of the same length).12 As weshall see, this de�nition (also originating in [108]) is equivalent to De�nition C.11.De�nition C.12 (indistinguishability of encryptions): A public-key encryptionscheme (G;E;D) has indistinguishable encryptions if for every probabilistic polynomial-time algorithm, A, and all sequences of triples, (xn; yn; zn)n2N, where jxnj = jynj =n and jznj = poly(n), it holds thatjPr[A(e; Ee(xn); zn)=1]� Pr[A(e; Ee(yn); zn)=1]j = �(n)Again, e is distributed according to G(1n), and � is a negligible function.In particular, zn may equal (xn; yn). Thus, it is infeasible to distinguish the en-cryptions of any two �xed messages (such as the all-zero message and the all-onesmessage). Thus, the following motto is adequate too.A good disguise should not allow a mother to distinguish her own children.Sha� Goldwasser and Silvio Micali, 1982De�nition C.11 is more appealing in most settings where encryption is consideredthe end goal. De�nition C.12 is used to establish the security of candidate en-cryption schemes as well as to analyze their application as modules inside largercryptographic protocols. Thus, the equivalence of these de�nitions is of majorimportance.Equivalence of De�nitions C.11 and C.12 { proof ideas. Intuitively, in-distinguishability of encryptions (i.e., of the encryptions of xn and yn) is a specialcase of semantic security; speci�cally, it corresponds to the case that Xn is uni-form over fxn; yng, the function f indicates one of the plaintexts and h does notdistinguish them (i.e., f(w) = 1 i� w = xn and h(xn) = h(yn) = zn, where zn isas in De�nition C.12). The other direction is proved by considering the algorithmB that, on input (1n; v) where v = h(x), generates (e; d)  G(1n) and outputsA(e; Ee(1n); v), where A is as in De�nition C.11. Indistinguishability of encryptionsis used to prove that B performs as well as A (i.e., for every h; f and fXngn2N,it holds that Pr[B(1n; h(Xn))=f(Xn)] = Pr[A(e; Ee(1n); h(Xn))=f(Xn)] approx-imately equals Pr[A(e; Ee(Xn); h(Xn))=f(Xn)]).Probabilistic Encryption: A secure public-key encryption scheme must em-ploy a probabilistic (i.e., randomized) encryption algorithm. Otherwise, given theencryption-key as (additional) input, it is easy to distinguish the encryption of the12Indeed, satisfying this condition requires using a probabilistic encryption algorithm.



C.5. ENCRYPTION SCHEMES 555all-zero message from the encryption of the all-ones message.13 This explains theassociation of the robust de�nitions of security with the paradigm of probabilisticencryption, an association that originates in the title of the pioneering work ofGoldwasser and Micali [108].Further discussion: We stress that (the equivalent) De�nitions C.11 and C.12go way beyond saying that it is infeasible to recover the plaintext from the ci-phertext. The latter statement is indeed a minimal requirement from a secureencryption scheme, but is far from being a su�cient requirement. Typically, en-cryption schemes are used in applications where even obtaining partial informationon the plaintext may endanger the security of the application. When designing anapplication-independent encryption scheme, we do not know which partial informa-tion endangers the application and which does not. Furthermore, even if one wantsto design an encryption scheme tailored to a speci�c application, it is rare (to saythe least) that one has a precise characterization of all possible partial informationthat endanger this application. Thus, we need to require that it is infeasible toobtain any information about the plaintext from the ciphertext. Furthermore, inmost applications the plaintext may not be uniformly distributed and some a-prioriinformation regarding it may be available to the adversary. We require that thesecrecy of all partial information is preserved also in such a case. That is, evenin presence of a-priori information on the plaintext, it is infeasible to obtain any(new) information about the plaintext from the ciphertext (beyond what is feasibleto obtain from the a-priori information on the plaintext). The de�nition of seman-tic security postulates all of this. The equivalent de�nition of indistinguishabilityof encryptions is useful in demonstrating the security of candidate constructions aswell as for arguing about their e�ect as part of larger protocols.Security of multiple messages: De�nitions C.11 and C.12 refer to the se-curity of an encryption scheme that is used to encrypt a single plaintext (per agenerated key). Since the plaintext may be longer than the key14, these de�ni-tions are already non-trivial, and an encryption scheme satisfying them (even inthe private-key model) implies the existence of one-way functions. Still, in manycases, it is desirable to encrypt many plaintexts using the same encryption-key.Loosely speaking, an encryption scheme is secure in the multiple-messages settingif conditions as in De�nition C.11 (resp., De�nition C.12) hold when polynomially-many plaintexts are encrypted using the same encryption-key (cf. [92, Sec. 5.2.4]).In the public-key model, security in the single-message setting implies security inthe multiple-messages setting. We stress that this is not necessarily true for the13The same holds for (stateless) private-key encryption schemes, when considering the securityof encrypting several messages (rather than a single message as in the foregoing text). Forexample, if one uses a deterministic encryption algorithm then the adversary can distinguish twoencryptions of the same message from the encryptions of a pair of di�erent messages.14Recall that for sake of simplicity we have considered only messages of length n, but thegeneral de�nitions refer to messages of arbitrary (polynomial in n) length. We comment that, inthe general form of De�nition C.11, one should provide the length of the message as an auxiliaryinput to both algorithms (A and B).



556APPENDIX C. ON THE FOUNDATIONS OF MODERN CRYPTOGRAPHYprivate-key model.C.5.2 ConstructionsIt is common practice to use \pseudorandom generators" as a basis for private-key encryption schemes. We stress that this is a very dangerous practice whenthe \pseudorandom generator" is easy to predict (such as the \linear congruentialgenerator"). However, this common practice becomes sound provided one usespseudorandom generators (as de�ned in Section C.3.2). An alternative and moreexible construction follows.Private-Key Encryption Scheme based on Pseudorandom Functions:We present a simple construction of a private-key encryption scheme that usespseudorandom functions as de�ned in Section C.3.3. The key-generation algorithmconsists of uniformly selecting a seed s 2 f0; 1gn for a (pseudorandom) function, de-noted fs. To encrypt a message x 2 f0; 1gn (using key s), the encryption algorithmuniformly selects a string r 2 f0; 1gn and produces the ciphertext (r; x � fs(r)),where � denotes the exclusive-or of bit strings. To decrypt the ciphertext (r; y)(using key s), the decryption algorithm just computes y � fs(r). The proof ofsecurity of this encryption scheme consists of two steps:1. Proving that an idealized version of the scheme, in which one uses a uniformlyselected function F :f0; 1gn!f0; 1gn, rather than the pseudorandom functionfs, is secure.2. Concluding that the real scheme is secure (because, otherwise one could dis-tinguish a pseudorandom function from a truly random one).Note that we could have gotten rid of the randomization (in the encryption process)if we had allowed the encryption algorithm to be history dependent (e.g., use acounter in the role of r). This can be done if all parties that use the same key(for encryption) coordinate their encryption actions (by maintaining a joint state(e.g., counter)). Indeed, when using a private-key encryption scheme, a commonsituation is that the same key is only used for communication between two speci�cparties, which update a joint counter during their communication. Furthermore,if the encryption scheme is used for fifo communication between the parties andboth parties can reliably maintain the counter value, then there is no need (forthe sender) to send the counter value. (The resulting scheme is related to \streamciphers" which are commonly used in practice.)We comment that the use of a counter (or any other state) in the encryptionprocess is not reasonable in the case of public-key encryption schemes, because itis incompatible with the canonical usage of such schemes (i.e., allowing all partiesto send encrypted messages to the \owner of the encryption-key" without engagingin any type of further coordination or communication). Furthermore (unlike in thecase of private-key schemes), probabilistic encryption is essential for the securityof public-key encryption schemes even in the case of encrypting a single message.



C.5. ENCRYPTION SCHEMES 557Following Goldwasser and Micali [108], we now demonstrate the use of probabilisticencryption in the construction of public-key encryption schemes.Public-Key Encryption Scheme based on Trapdoor Permutations: Wepresent two constructions of public-key encryption schemes that employ a collectionof trapdoor permutations, as de�ned in De�nition C.3. Let ffi : Di ! Digi besuch a collection, and let b be a corresponding hard-core predicate. In the �rstscheme, the key-generation algorithm consists of selecting a permutation fi alongwith a corresponding trapdoor t, and outputting (i; t) as the key-pair. To encrypta (single) bit � (using the encryption-key i), the encryption algorithm uniformlyselects r 2 Di, and produces the ciphertext (fi(r); � � b(r)). To decrypt theciphertext (y; �) (using the decryption-key t), the decryption algorithm computes� � b(f�1i (y)) (using the trapdoor t of fi). Clearly, (� � b(r))� b(f�1i (fi(r))) = �.Indistinguishability of encryptions is implied by the hypothesis that b is a hard-coreof fi. We comment that this scheme is quite wasteful in bandwidth; nevertheless,the paradigm underlying its construction (i.e., applying the trapdoor permutationto a randomized version of the plaintext rather than to the actual plaintext) isvaluable in practice.A more e�cient construction of a public-key encryption scheme, which usesthe same key-generation algorithm, follows. To encrypt an `-bit long string x(using the encryption-key i), the encryption algorithm uniformly selects r 2 Di,computes y  b(r) � b(fi(r)) � � � b(f `�1i (r)) and produces the ciphertext (fì (r); x �y). To decrypt the ciphertext (u; v) (using the decryption-key t), the decryptionalgorithm �rst recovers r = f�`i (u) (using the trapdoor t of fi), and then obtainsv�b(r)�b(fi(r)) � � � b(f `�1i (r)). Note the similarity to the Blum-Micali Construction(depicted in Eq. (8.10)), and the fact that the proof of the pseudorandomness ofEq. (8.10) can be extended to establish the computational indistinguishability of(b(r) � � � b(f `�1i (r)); fì (r)) and (r0; fì (r)), for random and independent r 2 Di andr0 2 f0; 1g`. Indistinguishability of encryptions follows, and thus the second schemeis secure. We mention that, assuming the intractability of factoring integers, thisscheme has a concrete implementation with e�ciency comparable to that of RSA.C.5.3 Beyond Eavesdropping SecurityOur treatment so far has referred only to a \passive" attack in which the adversarymerely eavesdrops the line over which ciphertexts are sent. Stronger types of at-tacks (i.e., \active" ones), culminating in the so-called Chosen Ciphertext Attack,may be possible in various applications. Speci�cally, in some settings it is feasiblefor the adversary to make the sender encrypt a message of the adversary's choice,and in some settings the adversary may even make the receiver decrypt a ciphertextof the adversary's choice. This gives rise to chosen plaintext attacks and to chosenciphertext attacks, respectively, which are not covered by the security de�nitionsconsidered in Sections C.5.1 and C.5.2. Here we briey discuss such \active" at-tacks, focusing on chosen ciphertext attacks (of the strongest type known as \aposteriori" or \CCA2").



558APPENDIX C. ON THE FOUNDATIONS OF MODERN CRYPTOGRAPHYLoosely speaking, in a chosen ciphertext attack, the adversary may obtain thedecryptions of ciphertexts of its choice, and is deemed successful if it learns some-thing regarding the plaintext that corresponds to some di�erent ciphertext (see [92,Sec. 5.4.4]). That is, the adversary is given oracle access to the decryption functioncorresponding to the decryption-key in use (and, in the case of private-key schemes,it is also given oracle access to the corresponding encryption function). The adver-sary is allowed to query the decryption oracle on any ciphertext except for the \testciphertext" (i.e., the very ciphertext for which it tries to learn something aboutthe corresponding plaintext). It may also make queries that do not correspond tolegitimate ciphertexts, and the answer will be accordingly (i.e., a special `failure'symbol). Furthermore, the adversary may e�ect the selection of the test cipher-text (by specifying a distribution from which the corresponding plaintext is to bedrawn).Private-key and public-key encryption schemes secure against chosen ciphertextattacks can be constructed under (almost) the same assumptions that su�ce forthe construction of the corresponding passive schemes. Speci�cally:Theorem C.13 Assuming the existence of one-way functions, there exist private-key encryption schemes that are secure against chosen ciphertext attack.Theorem C.14 Assuming the existence of enhanced15 trapdoor permutations,there exist public-key encryption schemes that are secure against chosen cipher-text attack.Both theorems are proved by constructing encryption schemes in which the adver-sary's gain from a chosen ciphertext attack is eliminated by making it infeasible(for the adversary) to obtain any useful knowledge via such an attack. In the caseof private-key schemes (i.e., Theorem C.13), this is achieved by making it infeasible(for the adversary) to produce legitimate ciphertexts (other than those explicitlygiven to it, in response to its request to encrypt plaintexts of its choice). This,in turn, is achieved by augmenting the ciphertext with an \authentication tag"that is hard to generate without knowledge of the encryption-key; that is, we use amessage-authentication scheme (as de�ned in Section C.6). In the case of public-key schemes (i.e., Theorem C.14), the adversary can certainly generate ciphertextsby itself, and the aim is to make it infeasible (for the adversary) to produce legit-imate ciphertexts without \knowing" the corresponding plaintext. This, in turn,will be achieved by augmenting the plaintext with a non-interactive zero-knowledge\proof of knowledge" of the corresponding plaintext.Security against chosen ciphertext attack is related to the notion of non-malleabilityof the encryption scheme. Loosely speaking, in a non-malleable encryption schemeit is infeasible for an adversary, given a ciphertext, to produce a valid ciphertextfor a related plaintext (e.g., given a ciphertext of a plaintext 1x, for an unknown x,it is infeasible to produce a ciphertext to the plaintext 0x). For further discussionsee [92, Sec. 5.4.5].15Loosely speaking, the enhancement refers to the hardness condition of De�nition C.2, andrequires that it be hard to recover f�1i (y) also when given the coins used to sample y (ratherthan merely y itself). See [92, Apdx. C.1].



C.6. SIGNATURES AND MESSAGE AUTHENTICATION 559C.6 Signatures and Message AuthenticationBoth signature schemes and message authentication schemes are methods for \vali-dating" data; that is, verifying that the data was approved by a certain party (or setof parties). The di�erence between signature schemes and message authenticationschemes is that signatures should be universally veri�able, whereas authenticationtags are only required to be veri�able by parties that are also able to generatethem.Signature Schemes: The need to discuss \digital signatures" (cf. [66, 182]) hasarisen with the introduction of computer communication to the business environ-ment (in which parties need to commit themselves to proposals and/or declarationsthat they make). Discussions of \unforgeable signatures" did take place also priorto the computer age, but the objects of discussion were handwritten signatures(and not digital ones), and the discussion was not perceived as related to cryp-tography. Loosely speaking, a scheme for unforgeable signatures should satisfy thefollowing requirements:� each user can e�ciently produce its own signature on documents of its choice;� every user can e�ciently verify whether a given string is a signature of another(speci�c) user on a speci�c document; but� it is infeasible to produce signatures of other users to documents they did notsign.We note that the formulation of unforgeable digital signatures provides also a clearstatement of the essential ingredients of handwritten signatures. The ingredientsare each person's ability to sign for itself, a universally agreed veri�cation proce-dure, and the belief (or assertion) that it is infeasible (or at least hard) to forgesignatures (i.e., produce some other person's signatures to documents that werenot signed by it such that these \unauthentic" signatures are accepted by theveri�cation procedure).Message authentication schemes: Message authentication is a task relatedto the setting considered for encryption schemes; that is, communication over aninsecure channel. This time, we consider an active adversary that is monitoringthe channel and may alter the messages sent over it. The parties communicatingthrough this insecure channel wish to authenticate the messages they send suchthat their counterpart can tell an original message (sent by the sender) from amodi�ed one (i.e., modi�ed by the adversary). Loosely speaking, a scheme formessage authentication should satisfy the following requirements:� each of the communicating parties can e�ciently produce an authenticationtag to any message of its choice;� each of the communicating parties can e�ciently verify whether a given stringis an authentication tag of a given message; but



560APPENDIX C. ON THE FOUNDATIONS OF MODERN CRYPTOGRAPHY� it is infeasible for an external adversary (i.e., a party other than the commu-nicating parties) to produce authentication tags to messages not sent by thecommunicating parties.Note that, in contrast to the speci�cation of signature schemes, we do not requireuniversal veri�cation: only the designated receiver is required to be able to verifythe authentication tags. Furthermore, we do not require that the receiver can notproduce authentication tags by itself (i.e., we only require that external parties cannot do so). Thus, message authentication schemes cannot convince a third partythat the sender has indeed sent the information (rather than the receiver havinggenerated it by itself). In contrast, signatures can be used to convince third parties:in fact, a signature to a document is typically sent to a second party so that inthe future this party may (by merely presenting the signed document) convincethird parties that the document was indeed generated (or rather approved) by thesigner.C.6.1 De�nitionsBoth signature schemes and message authentication schemes consist of three e�-cient algorithms: key generation, signing and veri�cation. As in the case of encryp-tion schemes, the key-generation algorithm, denoted G, is used to generate a pair ofcorresponding keys, one is used for signing (via algorithm S) and the other is usedfor veri�cation (via algorithm V ). That is, Ss(�) denotes a signature produced byalgorithm S on input a signing-key s and a document �, whereas Vv(�; �) denotesthe verdict of the veri�cation algorithm V regarding the document � and the al-leged signature � relative to the veri�cation-key v. Needless to say, for any pair ofkeys (s; v) generated by G and for every �, it holds that Vv(�; Ss(�)) = 1.The di�erence between the two types of schemes is reected in the de�nition ofsecurity. In the case of signature schemes, the adversary is given the veri�cation-key, whereas in the case of message authentication schemes the veri�cation-key(which may equal the signing-key) is not given to the adversary. Thus, schemesfor message authentication can be viewed as a private-key version of signatureschemes. This di�erence yields di�erent functionalities (even more than in the caseof encryption): In typical use of a signature scheme, each user generates a pair ofsigning and veri�cation keys, publicizes the veri�cation-key and keeps the signing-key secret. Subsequently, each user may sign documents using its own signing-key,and these signatures are universally veri�able with respect to its public veri�cation-key. In contrast, message authentication schemes are typically used to authenticateinformation sent among a set of mutually trusting parties that agree on a secretkey, which is being used both to produce and verify authentication-tags. (Indeed,it is assumed that the mutually trusting parties have generated the key together orhave exchanged the key in a secure way, prior to the communication of informationthat needs to be authenticated.)We focus on the de�nition of secure signature schemes, and consider very pow-erful attacks on the signature scheme as well as a very liberal notion of breakingit. Speci�cally, the attacker is allowed to obtain signatures to any message of its



C.6. SIGNATURES AND MESSAGE AUTHENTICATION 561choice. One may argue that in many applications such a general attack is not pos-sible (because messages to be signed must have a speci�c format). Yet, our viewis that it is impossible to de�ne a general (i.e., application-independent) notionof admissible messages, and thus a general/robust de�nition of an attack seemsto have to be formulated as suggested here. (Note that at worst, our approach isoverly cautious.) Likewise, the adversary is said to be successful if it can producea valid signature to any message for which it has not asked for a signature duringits attack. Again, this means that the ability to form signatures to \nonsensical"messages is also viewed as a breaking of the scheme. Yet, again, we see no wayto have a general (i.e., application-independent) notion of \meaningful" messages(such that only forging signatures to them will be considered a breaking of thescheme).De�nition C.15 (secure signature schemes { a sketch): A chosen message attackis a process that, on input a veri�cation-key, can obtain signatures (relative tothe corresponding signing-key) to messages of its choice. Such an attack is said tosucceed (in existential forgery) if it outputs a valid signature to a message for whichit has not requested a signature during the attack. A signature scheme is secure (orunforgeable) if every feasible chosen message attack succeeds with at most negligibleprobability, where the probability is taken over the initial choice of the key-pair aswell as over the adversary's actions.One popular suggestion is signing messages by applying the inverse of a trapdoorpermutation, where the trapdoor is used as a signing-key and the permutationitself is used (in the forward direction) towards veri�cation. We warn that, ingeneral, this scheme does not satisfy De�nition C.15 (e.g., the permutation may bea homomorphism of some group).C.6.2 ConstructionsSecure message authentication schemes can be constructed using pseudorandomfunctions (or rather the generalized notion of pseudorandom functions discussedat the end of Section C.3.3). Speci�cally, the key-generation algorithm consists ofuniformly selecting a seed s 2 f0; 1gn for such a function, denoted fs : f0; 1g�!f0; 1gn, and the (only valid) tag of message x with respect to the key s is fs(x).As in the case of our private-key encryption scheme, the proof of security of thecurrent message authentication scheme consists of two steps:1. Proving that an idealized version of the scheme, in which one uses a uniformlyselected function F :f0; 1g�!f0; 1gn, rather than the pseudorandom functionfs, is secure (i.e., unforgeable).2. Concluding that the real scheme is secure (because, otherwise one could dis-tinguish a pseudorandom function from a truly random one).Note that this message authentication scheme makes an \extensive use of pseu-dorandom functions" (i.e., the pseudorandom function is applied directly to the



562APPENDIX C. ON THE FOUNDATIONS OF MODERN CRYPTOGRAPHYmessage, which may be rather long). More e�cient schemes can be constructedeither based on a more restricted use of a pseudorandom function or based on othercryptographic primitives.Constructing secure signature schemes seems more di�cult than constructingmessage authentication schemes. Nevertheless, secure signature schemes can beconstructed based on the same assumptions.Theorem C.16 The following three conditions are equivalent:1. One-way functions exist.2. Secure signature schemes exist.3. Secure message authentication schemes exist.We stress that, unlike in the case of public-key encryption schemes, the constructionof signature schemes (which may be viewed as a public-key analogue of messageauthentication) does not require a trapdoor property. Three central paradigmsused in the construction of secure signature schemes are the \refreshing" of the\e�ective" signing-key, the usage of an \authentication tree", and the \hashingparadigm" (to be all discussed in the sequel). In addition to being used in theproof of Theorem C.16, these three paradigms are of independent interest.The refreshing paradigm. Introduced in [110], the refreshing paradigm is aimedat limiting the potential dangers of chosen message attacks. This is achieved bysigning the actual document using a newly (and randomly) generated instanceof the signature scheme, and authenticating (the veri�cation-key of) this randominstance with respect to the �xed and public veri�cation-key.16 Intuitively, thegain in terms of security is that a full-edged chosen message attack cannot belaunched on a �xed instance of the underlying signature schemes (i.e., on the �xedveri�cation-key that was published by the user and is known to the attacker). Allthat an attacker may obtain (via a chosen message attack on the new scheme) issignatures, relative to the original signing-key (which is coupled with the �xed andpublic veri�cation-key), to random strings (or rather random veri�cation-keys) aswell as additional signatures that are each relative to a random and independentlydistributed signing-key (which is coupled with a freshly generated veri�cation-key).Authentication trees. The security bene�ts of the refreshing paradigm are am-pli�ed when combining it with the use of authentication trees. The idea is to use thepublic veri�cation-key (only) for authenticating several (e.g., two) fresh instancesof the signature scheme, use each of these instances for authenticating several ad-ditional fresh instances, and so on. Thus, we obtain a tree of fresh instances of thebasic signature scheme, where each internal node authenticates its children. We16That is, consider a basic signature scheme (G;S; V ) used as follows. Suppose that the userU has generated a key-pair (s; v) G(1n), and has placed the veri�cation-key v on a public-�le.When a party asks U to sign some document �, the user U generates a new (\fresh") key-pair(s0; v0)  G(1n), signs v0 using the original signing-key s, signs � using the new signing-key s0,and presents (Ss(v0); v0; Ss0 (�)) as a signature to �. An alleged signature, (�1; v0; �2), is veri�edby checking whether both Vv(v0; �1) = 1 and Vv0 (�; �2) = 1 hold.



C.6. SIGNATURES AND MESSAGE AUTHENTICATION 563can now use the leaves of this tree for signing actual documents, where each leaf isused at most once. Thus, a signature to an actual document consists of1. a signature to this document authenticated with respect to the veri�cation-key associated with some leaf, and2. a sequence of veri�cation-keys associated with the nodes along the path fromthe root to this leaf, where each such veri�cation-key is authenticated withrespect to the veri�cation-key of its parent.We stress that the same signature, relative to the key of the parent node, is usedfor authenticating the veri�cation-keys of all its children. Thus, each instance ofthe signature scheme is used for signing at most one string (i.e., a single sequence ofveri�cation-keys if the instance resides in an internal node, and an actual documentif the instance resides in a leaf).17 Hence, it su�ces to use a signature scheme that issecure as long as it is applied for legitimately signing a single string. Such signatureschemes, called one-time signature schemes, are easier to construct than standardsignature schemes, especially if one only wishes to sign strings that are signi�cantlyshorter than the signing-key (resp., than the veri�cation-key). For example, usinga one-way function f , we may let the signing-key consist of a sequence of n pairs ofstrings, let the corresponding veri�cation-key consist of the corresponding sequenceof images of f , and sign an n-bit long message by revealing the adequate preimages.(That is, the signing-key consist of a sequence ((s01; s11); :::; (s0n; s1n)) 2 f0; 1g2n2 , thecorresponding veri�cation-key is (f(s01); f(s11)); :::; (f(s0n); f(s1n))), and the signa-ture of the message �1 � � ��n is (s�11 ; :::; s�nn ).)The hashing paradigm. Note, however, that in the foregoing authentication-tree, the instances of the signature scheme (associated with internal nodes) areused for signing a pair of veri�cation-keys. Thus, we need a one-time signaturescheme that can be used for signing messages that are longer than the veri�cation-key. In order to bridge the gap between (one-time) signature schemes that areapplicable for signing short messages and schemes that are applicable for signinglong messages, we use the hashing paradigm. This paradigm refers to the commonpractice of signing documents via a two stage process: First the actual document ishashed to a (relatively) short string, and next the basic signature scheme is appliedto the resulting string. This practice is sound provided that the hashing functionbelongs to a family of collision-resistant hashing (a.k.a collision-free hashing) func-tions. Loosely speaking, the collision-resistant requirement means that, given ahash function that is randomly selected in such a family, it is infeasible to �nd twodi�erent strings that are hashed by this function to the same value. We also refer17A naive implementation of the foregoing (full-edged) signature scheme calls for storing in(secure) memory all the instances of the basic (one-time) signature scheme that are generatedthroughout the entire signing process (which refers to numerous documents). However, we notethat it su�ces to be able to reconstruct the random-coins used for generating each of theseinstances, and the former can be determined by a pseudorandom function (applied to the nameof the corresponding vertex in the tree). Indeed, the seed of this pseudorandom function will bepart of the signing-key of the resulting (full-edged) signature scheme.



564APPENDIX C. ON THE FOUNDATIONS OF MODERN CRYPTOGRAPHYthe interested reader to a variant of the hashing paradigm that uses the seeminglyweaker notion of a family of Universal One-Way Hash Functions (see [171] or [92,Sec. 6.4.3]).C.7 General Cryptographic ProtocolsThe design of secure protocols that implement arbitrary desired functionalities isa major part of modern cryptography. Taking the opposite perspective, the designof any cryptographic scheme may be viewed as the design of a secure protocol forimplementing a corresponding functionality. Still, we believe that it makes sense todi�erentiate between basic cryptographic primitives (which involve little interac-tion) like encryption and signature schemes on one hand, and general cryptographicprotocols on the other hand.In this section, we survey general results concerning secure multi-party com-putations, where the two-party case is an important special case. In a nutshell,these results assert that one can construct protocols for securely computing anydesirable multi-party functionality. Indeed, what is striking about these results istheir generality, and we believe that the wonder is not diminished by the (variousalternative) conditions under which these results hold.A general framework for casting (m-party) cryptographic (protocol) problemsconsists of specifying a random process18 that maps m inputs to m outputs. Theinputs to the process are to be thought of as the local inputs of m parties, and them outputs are their corresponding local outputs. The random process describesthe desired functionality. That is, if the m parties were to trust each other (or trustsome external party), then they could each send their local input to the trustedparty, who would compute the outcome of the process and send to each party thecorresponding output. A pivotal question in the area of cryptographic protocols isto what extent can this (imaginary) trusted party be \emulated" by the mutuallydistrustful parties themselves.The results surveyed in this section describe a variety of models in which suchan \emulation" is possible. The models vary by the underlying assumptions re-garding the communication channels, numerous parameters governing the extentof adversarial behavior, and the desired level of emulation of the trusted party (i.e.,level of \security"). Our treatment refers to the security of stand-alone executions.The preservation of security in an environment in which many executions of manyprotocols are attacked is beyond the scope of this section, and the interested readeris referred to [92, Sec. 7.7.2].18That is, we consider the secure evaluation of randomized functionalities, rather than \only"the secure evaluation of functions. Speci�cally, we consider an arbitrary (randomized) processF that on input (x1; :::; xm), �rst selects at random (depending only on ` def= Pmi=1 jxij) an m-ary function f , and then outputs the m-tuple f(x1; :::; xm) = (f1(x1; :::; xm); :::; fm(x1; :::; xm)).In other words, F (x1; :::; xm) = F 0(r; x1; :::; xm), where r is uniformly selected in f0; 1g`0 (with`0 = poly(`)), and F 0 is a function mapping (m+ 1)-long sequences to m-long sequences.



C.7. GENERAL CRYPTOGRAPHIC PROTOCOLS 565C.7.1 The De�nitional Approach and Some ModelsBefore describing the aforementioned results, we further discuss the notion of\emulating a trusted party", which underlies the de�nitional approach to securemulti-party computation. This approach follows the simulation paradigm (cf. Sec-tion C.4.1) which deems a scheme to be secure if whatever a feasible adversary canobtain after attacking it, is also feasibly attainable by a benign behavior. In thegeneral setting of multi-party computation we compare the e�ect of adversariesthat participate in the execution of the actual protocol to the e�ect of adversariesthat participate in an imaginary execution of a trivial (ideal) protocol for com-puting the desired functionality with the help of a trusted party. If whatever theadversaries can feasibly obtain in the real setting can also be feasibly obtained inthe ideal setting then the actual protocol \emulates the ideal setting" (i.e., \emu-lates a trusted party"), and thus is deemed secure. This approach can be appliedin a variety of models, and is used to de�ne the goals of security in these models.19We �rst discuss some of the parameters used in de�ning various models, and nextdemonstrate the application of the foregoing approach in two important cases. Forfurther details, see [92, Sec. 7.2 and 7.5.1].C.7.1.1 Some parameters used in de�ning security modelsThe following parameters are described in terms of the actual (or real) computation.In some cases, the corresponding de�nition of security is obtained by imposing somerestrictions or provisions on the ideal model.20 In all cases, the desired notion ofsecurity is de�ned by requiring that for any adequate adversary in the real model,there exist a corresponding adversary in the corresponding ideal model that obtainsessentially the same impact (as the real-model adversary).The communication channels: Most works in cryptography assume that com-munication is synchronous and that point-to-point channels exist between everypair of processors (i.e., a complete network). It is further assumed that the ad-versary cannot modify (or omit or insert) messages sent over any communicationchannel that connects honest parties. In the standard model, the adversary maytap all communication channels, and thus obtain any message sent between honestparties. In an alternative model, called the private-channel model, one postulates19A few technical comments are in place. Firstly, we assume that the inputs of all partiesare of the same length. We comment that as long as the lengths of the inputs are polynomiallyrelated, the foregoing convention can be enforced by padding. On the other hand, some lengthrestriction is essential for the security results, because in general it is impossible to hide allinformation regarding the length of the inputs to a protocol. Secondly, we assume that thedesired functionality is computable in probabilistic polynomial-time, because we wish the secureprotocol to run in probabilistic polynomial-time (and a protocol cannot be more e�cient thanthe corresponding centralized algorithm). Clearly, the results can be extended to functionalitiesthat are computable within any given (time-constructible) time bound, using adequate padding.20For example, in the case of two-party computation (see xC.7.1.3), secure computation ispossible only if premature termination is not considered a breach of security. In that case, thesuitable security de�nition is obtained (via the simulation paradigm) by allowing (an analogueof) premature termination in the ideal model.



566APPENDIX C. ON THE FOUNDATIONS OF MODERN CRYPTOGRAPHYthat the adversary cannot obtain messages sent between any pair of honest parties.Indeed, in some cases, the private-channel model can be emulated by the standardmodel (e.g., by using a secure encryption scheme).Set-up assumptions: Unless stated di�erently, no set-up assumptions are made(except for the obvious assumption that all parties have identical copies of theprotocol's program).Computational limitations: Typically, the focus is on computationally-boundedadversaries (e.g., probabilistic polynomial-time adversaries). However, the private-channel model allows for the (meaningful) consideration of computationally-unboundedadversaries.21Restricted adversarial behavior: The parameters of the model include ques-tions like whether the adversary is \active" or \passive" (i.e., whether a dishonestparty takes active steps to disrupt the execution of the protocol or merely gathersinformation) and whether or not the adversary is \adaptive" (i.e., whether the setof dishonest parties is �xed before the execution starts or is adaptively chosen byan adversary during the execution).Restricted notions of security: One important example is the willingness totolerate \unfair" protocols in which the execution can be suspended (at any time)by a dishonest party, provided that it is detected doing so. We stress that in case theexecution is suspended, the dishonest party does not obtain more information thanit could have obtained when not suspending the execution. (What may happen isthat the honest parties will not obtain their desired outputs, but will detect thatthe execution was suspended.) We stress that the motivation to this restrictedmodel is the impossibility of obtaining general secure two-party computation inthe unrestricted model.Upper bounds on the number of dishonest parties: These are assumedin some models, when required. For example, in some models, secure multi-partycomputation is possible only if a majority of the parties is honest.C.7.1.2 Example: Multi-party protocols with honest majorityHere we consider an active, non-adaptive, and computationally-bounded adversary,and do not assume the existence of private channels. Our aim is to de�ne multi-21We stress that, also in the case of computationally-unbounded adversaries, security shouldbe de�ned by requiring that, for every real adversary, whatever the adversary can compute afterparticipating in the execution of the actual protocol is computable within comparable time byan imaginary adversary participating in an imaginary execution of the trivial ideal protocol (forcomputing the desired functionality with the help of a trusted party). That is, although nocomputational restrictions are made on the real-model adversary, it is required that the ideal-model adversary that obtains the same impact does so within comparable time (i.e., within timethat is polynomially related to the running time of the real-model adversary being simulated).



C.7. GENERAL CRYPTOGRAPHIC PROTOCOLS 567party protocols that remain secure provided that the honest parties are in majority.(The reason for requiring an honest majority will be discussed at the end of thissubsection.)We �rst observe that in any multi-party protocol, each party may change itslocal input before even entering the execution of the protocol. However, this isunavoidable also when the parties utilize a trusted party. Consequently, such ane�ect of the adversary on the real execution (i.e., modi�cation of its own inputprior to entering the actual execution) is not considered a breach of security. Ingeneral, whatever cannot be avoided when the parties utilize a trusted party, isnot considered a breach of security. We wish secure protocols (in the real model)to su�er only from whatever is unavoidable also when the parties utilize a trustedparty. Thus, the basic paradigm underlying the de�nitions of secure multi-partycomputations amounts to requiring that the only situations that may occur in thereal execution of a secure protocol are those that can also occur in a correspondingideal model (where the parties may employ a trusted party). In other words, the\e�ective malfunctioning" of parties in secure protocols is restricted to what ispostulated in the corresponding ideal model.In light of the foregoing, we start by de�ning an ideal model (or rather themisbehavior allowed in it). Since we are interested in executions in which themajority of parties are honest, we consider an ideal model in which any minoritygroup (of the parties) may collude as follows:1. First, the members of this dishonest minority share their original inputs anddecide together on replaced inputs to be sent to the trusted party. (The otherparties send their respective original inputs to the trusted party.)2. Upon receiving inputs from all parties, the trusted party determines the cor-responding outputs and sends them to the corresponding parties. (We stressthat the information sent between the honest parties and the trusted partyis not seen by the dishonest colluding minority.)3. Upon receiving the output-message from the trusted party, each honest partyoutputs it locally, whereas the members of the dishonest minority share theoutput-messages and determine their local outputs based on all they know(i.e., their initial inputs and their received output-messages).A secure multi-party computation with honest majority is required to emulate thisideal model. That is, the e�ect of any feasible adversary that controls a minority ofthe parties in a real execution of such a (real) protocol, can be essentially simulatedby a (di�erent) feasible adversary that controls the corresponding parties in theideal model.De�nition C.17 (secure protocols { a sketch): Let f be an m-ary functionalityand � be an m-party protocol operating in the real model.� For a real-model adversary A, controlling some minority of the parties (andtapping all communication channels), and an m-sequence x, we denote byreal�;A(x) the sequence of m outputs resulting from the execution of � oninput x under the attack of the adversary A.



568APPENDIX C. ON THE FOUNDATIONS OF MODERN CRYPTOGRAPHY� For an ideal-model adversary A0, controlling some minority of the parties,and an m-sequence x, we denote by idealf;A0(x) the sequence of m outputsresulting from the foregoing three-step ideal process, when applied to input xunder the attack of the adversary A0 and when the trusted party employs thefunctionality f .We say that � securely implements f with honest majority if for every feasible real-model adversary A, controlling some minority of the parties, there exists a feasibleideal-model adversary A0, controlling the same parties, such that the probability en-sembles freal�;A(x)gx and fidealf;A0(x)gx are computationally indistinguishable(as in De�nition C.5).Thus, security means that the e�ect of each minority group in a real executionof a secure protocol is \essentially restricted" to replacing its own local inputs(independently of the local inputs of the majority parties) before the protocolstarts, and replacing its own local outputs (depending only on its local inputs andoutputs) after the protocol terminates. (We stress that in the real execution theminority parties do obtain additional pieces of information; yet in a secure protocolthey gain nothing from these additional pieces of information, because they canactually reproduce those by themselves.)The fact that De�nition C.17 refers to a model without private channels isreected in the fact that our (sketchy) de�nition of the real-model adversary al-lowed it to tap all channels, which in turn e�ects the set of possible ensemblesfreal�;A(x)gx. When de�ning security in the private-channel model, the real-model adversary is not allowed to tap channels between honest parties, and thisagain e�ects the possible ensembles freal�;A(x)gx. On the other hand, whende�ning security with respect to passive adversaries, both the scope of the real-model adversaries and the scope of the ideal-model adversaries change. In thereal-model execution, all parties follow the protocol but the adversary may alterthe output of the dishonest parties arbitrarily depending on their intermediate in-ternal states during the entire execution. In the corresponding ideal-model, theadversary is not allowed to modify the inputs of dishonest parties (in Step 1), butis allowed to modify their outputs (in Step 3).We comment that a de�nition analogous to De�nition C.17 can be presented alsoin the case that the dishonest parties are not in minority. In fact, such a de�nitionseems more natural, but the problem is that such a de�nition cannot be satis�ed.That is, most (natural) functionalities do not have protocols for computing themsecurely in the case that at least half of the parties are dishonest and employ anadequate adversarial strategy. This follows from an impossibility result regardingtwo-party computation, which essentially asserts that there is no way to prevent aparty from prematurely suspending the execution. On the other hand, secure multi-party computation with dishonest majority is possible if premature suspension ofthe execution is not considered a breach of security (see xC.7.1.3).



C.7. GENERAL CRYPTOGRAPHIC PROTOCOLS 569C.7.1.3 Another example: Two-party protocols allowing abortIn light of the last paragraph, we now consider multi-party computations in whichpremature suspension of the execution is not considered a breach of security. Forsimplicity, we focus on the special case of two-party computations. (As in xC.7.1.2,we consider a non-adaptive, active, and computationally-bounded adversary.)Intuitively, in any two-party protocol, each party may suspend the executionat any point in time, and furthermore it may do so as soon as it learns the desiredoutput. Thus, if the output of each party depends on the inputs of both parties,then it is always possible for one of the parties to obtain the desired output whilepreventing the other party from fully determining its own output.22 The samephenomenon occurs even in the case that the two parties just wish to generate acommon random value. In order to account for this phenomenon, when consideringactive adversaries in the two-party setting, we do not consider such prematuresuspension of the execution a breach of security. Consequently, we consider an idealmodel in which each of the two parties may \shut-down" the trusted (third) partyat any point in time. In particular, this may happen after the trusted party hassupplied the outcome of the computation to one party but before it has suppliedthe outcome to the other party. Thus, an execution in the corresponding idealmodel proceeds as follows:1. Each party sends its input to the trusted party, where the dishonest partymay replace its input or send no input at all (which can be treated as sendinga default value).2. Upon receiving inputs from both parties, the trusted party determines thecorresponding pair of outputs, and sends the �rst output to the �rst party.3. If the �rst party is dishonest, then it may instruct the trusted party to halt,otherwise it always instructs the trusted party to proceed. If instructed toproceed, the trusted party sends the second output to the second party.4. Upon receiving the output-message from the trusted party, an honest partyoutputs it locally, whereas a dishonest party may determine its output basedon all it knows (i.e., its initial input and its received output).A secure two-party computation allowing abort is required to emulate this idealmodel. That is, as in De�nition C.17, security is de�ned by requiring that forevery feasible real-model adversary A, there exists a feasible ideal-model adversaryA0, controlling the same party, such that the probability ensembles representingthe corresponding (real and ideal) executions are computationally indistinguish-able. This means that each party's \e�ective malfunctioning" in a secure protocolis restricted to supplying an initial input of its choice and aborting the computationat any point in time. (Needless to say, the choice of the initial input of each partymay not depend on the input of the other party.)22In contrast, in the case of an honest majority (cf., xC.7.1.2), the honest party that fails toobtain its output is not alone. It may seek help from the other honest parties, which (being inmajority and) by joining forces can do things that dishonest minorities cannot do: See xC.7.3.2.



570APPENDIX C. ON THE FOUNDATIONS OF MODERN CRYPTOGRAPHYWe mention that an alternative way of dealing with the problem of prematuresuspension of execution (i.e., abort) is to restrict the attention to single-outputfunctionalities; that is, functionalities in which only one party is supposed to obtainan output. The de�nition of secure computation of such functionalities can be madeidentical to De�nition C.17, with the exception that no restriction is made on theset of dishonest parties (and in particular one may consider a single dishonest partyin the case of two-party protocols). For further details, see [92, Sec. 7.2.3].C.7.2 Some Known ResultsWe next list some of the models for which general secure multi-party computationis known to be attainable (i.e., models in which one can construct secure multi-party protocols for computing any desired functionality). We mention that the �rstresults of this type were obtained by Goldreich, Micali, Wigderson and Yao [100,240, 101].In the standard channel model. Assuming the existence of enhanced23 trap-door permutations, secure multi-party computation is possible in the following threemodels (cf. [100, 240, 101] and details in [92, Chap. 7]):1. Passive adversaries, for any number of dishonest parties.2. Active adversaries that may control only a minority of the parties.3. Active adversaries, for any number of dishonest parties, provided that sus-pension of execution is not considered a violation of security (cf. xC.7.1.3).In all these cases, the adversaries are computationally-bounded and non-adaptive.On the other hand, the adversaries may tap the communication lines between hon-est parties (i.e., we do not assume \private channels" here). The results for activeadversaries assume a broadcast channel. Indeed, the latter can be implemented(while tolerating any number of dishonest parties) using a signature scheme andassuming that each party knows (or can reliably obtain) the veri�cation-key corre-sponding to each of the other parties.In the private channels model. Making no computational assumptions andallowing computationally-unbounded adversaries, but assuming private channels,secure multi-party computation is possible in the following two models (cf. [34, 53]):1. Passive adversaries that may control only a minority of the parties.2. Active adversaries that may control only less than one third of the parties.In both cases the adversaries may be adaptive.23See Footnote 15.



C.7. GENERAL CRYPTOGRAPHIC PROTOCOLS 571C.7.3 Construction Paradigms and Two Simple ProtocolsWe briey sketch a couple of paradigms used in the construction of secure multi-party protocols. We focus on the construction of secure protocols for the modelof computationally-bounded and non-adaptive adversaries [100, 240, 101]. Theseconstructions proceed in two steps (see details in [92, Chap. 7]): First a secure pro-tocol is presented for the model of passive adversaries (for any number of dishonestparties), and next such a protocol is \compiled" into a protocol that is secure inone of the two models of active adversaries (i.e., either in a model allowing theadversary to control only a minority of the parties or in a model in which prema-ture suspension of the execution is not considered a violation of security). Thesetwo steps are presented in the following two corresponding subsections, in whichwe also present two relatively simple protocols for two speci�c tasks, which in turnare used extensively in the general protocols.Recall that in the model of passive adversaries, all parties follow the prescribedprotocol, but at termination the adversary may alter the outputs of the dishonestparties depending on their intermediate internal states (during the entire execu-tion). We refer to protocols that are secure in the model of passive (resp., active)adversaries by the term passively-secure (resp., actively-secure).C.7.3.1 Passively-secure computation with sharesFor sake of simplicity, we consider here only the special case of deterministic m-aryfunctionalities (i.e., functions). We assume that the m parties hold a circuit forcomputing the value of the function on inputs of the adequate length, and that thecircuit contains only and and not gates. The key idea is having each party \secretlyshare" its input with everybody else, and having the parties \secretly transform"shares of the input wires of the circuit into shares of the output wires of thecircuit, thus obtaining shares of the outputs (which allows for the reconstructionof the actual outputs). The value of each wire in the circuit is shared such thatall shares yield the value, whereas lacking even one of the shares keeps the valuetotally undetermined. That is, we use a simple secret sharing scheme such that abit b is shared by a random sequence of m bits that sum-up to b mod 2. First, eachparty shares each of its input bits with all parties (by secretly sending each party arandom value and setting its own share accordingly). Next, all parties jointly scanthe circuit from its input wires to its output wires, processing each gate as follows:� When encountering a gate, the parties already hold shares of the values ofthe wires entering the gate, and their aim is to obtain shares of the value ofthe wires exiting the gate.� For a not-gate this is easy: the �rst party just ips the value of its share,and all other parties maintain their shares.� Since an and-gate corresponds to multiplication modulo 2, the parties needto securely compute the following randomized functionality (where the xi'sdenote shares of one entry-wire, the yi's denote shares of the second entry-wire, the zi's denote shares of the exit-wire, and the shares indexed by i are



572APPENDIX C. ON THE FOUNDATIONS OF MODERN CRYPTOGRAPHYheld by Party i):((x1; y1); :::; (xm; ym)) 7! (z1; :::; zm) , where (C.1)mXi=1 zi =  mXi=1 xi! � mXi=1 yi!: (C.2)That is, the zi's are random subject to Eq. (C.2).Finally, the parties send their shares of each circuit-output wire to the designatedparty, which reconstructs the value of the corresponding bit. Thus, the parties havepropagated shares of the circuit-input wires into shares of the circuit-output wires,by repeatedly conducting a passively-secure computation of them-ary functionalityof Eq. (C.1)& (C.2). That is, securely evaluating the entire (arbitrary) circuit\reduces" to securely conducting a speci�c (very simple) multi-party computation.But things get even simpler: the key observation is that mXi=1 xi! � mXi=1 yi! = mXi=1 xiyi + X1�i<j�m (xiyj + xjyi) : (C.3)Thus, the m-ary functionality of Eq. (C.1)& (C.2) can be computed as follows(where all arithmetic operations are mod 2):1. Each Party i locally computes zi;i def= xiyi.2. Next, each pair of parties (i.e., Parties i and j) securely compute randomshares of xiyj + yixj . That is, Parties i and j (holding (xi; yi) and (xj ; yj),respectively), need to securely compute the randomized two-party function-ality ((xi; yi); (xj ; yj)) 7! (zi;j ; zj;i), where the z's are random subject tozi;j + zj;i = xiyj + yixj . Equivalently, Party j uniformly selects zj;i 2 f0; 1g,and Parties i and j securely compute the following deterministic functionality((xi; yi); (xj ; yj ; zj;i)) 7! (zj;i + xiyj + yixj ; �); (C.4)where � denotes the empty string.3. Finally, for every i = 1; :::;m, the sum Pmj=1 zi;j yields the desired share ofParty i.The foregoing construction is analogous to a construction that was outlined in [101].A detailed description and full proofs appear in [92, Sec. 7.3.4 and 7.5.2].The foregoing construction \reduces" the passively-secure computation of anym-ary functionality to the implementation of the simple 2-ary functionality ofEq. (C.4). The latter can be implemented in a passively-secure manner by using a1-out-of-4 Oblivious Transfer. Loosely speaking, a 1-out-of-k Oblivious Transfer isa protocol enabling one party to obtain one out of k secrets held by another party,without the second party learning which secret was obtained by the �rst party.That is, it allows a passively-secure computation of the two-party functionality(i; (s1; :::; sk)) 7! (si; �): (C.5)



C.7. GENERAL CRYPTOGRAPHIC PROTOCOLS 573Note that any function f : [k] � f0; 1g� ! f0; 1g� � f�g can be computed in apassively-secure manner by invoking a 1-out-of-k Oblivious Transfer on inputs iand (f(1; y); :::; f(k; y)), where i (resp., y) is the initial input of the �rst (resp.,second) party.A passively-secure 1-out-of-k Oblivious Transfer. Using a collection of en-hanced trapdoor permutations, ff� : D� ! D�g�2I and a corresponding hard-corepredicate b, we outline a passively-secure implementation of the functionality ofEq. (C.5), when restricted to single-bit secrets.Inputs: The �rst party, hereafter called the receiver, has input i 2 f1; 2; :::; kg. Thesecond party, called the sender, has input (�1; �2; :::; �k) 2 f0; 1gk.Step S1: The sender selects at random a permutation f� along with a correspond-ing trapdoor, denoted t, and sends the permutation f� (i.e., its index �) tothe receiver.Step R1: The receiver uniformly and independently selects x1; :::; xk 2 D�, setsyi = f�(xi) and yj = xj for every j 6= i, and sends (y1; y2; :::; yk) to thesender.Thus, the receiver knows f�1� (yi) = xi, but cannot predict b(f�1� (yj)) for anyj 6= i. Needless to say, the last assertion presumes that the receiver followsthe protocol (i.e., we only consider passive-security).Step S2: Upon receiving (y1; y2; :::; yk), using the inverting-with-trapdoor algo-rithm and the trapdoor t, the sender computes zj = f�1� (yj), for everyj 2 f1; :::; kg. It sends the k-tuple (�1 � b(z1); �2 � b(z2); :::; �k � b(zk))to the receiver.Step R2: Upon receiving (c1; c2; :::; ck), the receiver locally outputs ci � b(xi).We �rst observe that this protocol correctly computes 1-out-of-k Oblivious Trans-fer; that is, the receiver's local output (i.e., ci�b(xi)) indeed equals (�i�b(f�1� (f�(xi))))�b(xi) = �i. Next, we o�er some intuition as to why this protocol constitutes aprivately-secure implementation of 1-out-of-k Oblivious Transfer. Intuitively, thesender gets no information from the execution because, for any possible value of i,the sender sees the same distribution; speci�cally, a sequence of k uniformly andindependently distributed elements of D�. (Indeed, the key observation is that ap-plying f� to a uniformly distributed element of D� yields a uniformly distributedelement of D�.) As for the receiver, intuitively, it gains no computational knowl-edge from the execution because, for j 6= i, the only information that the receiverhas regarding �j is the triple (�; xj ; �j � b(f�1� (xj))), where xj is uniformly dis-tributed in D�, and from this information it is infeasible to predict �j better thanby a random guess.24 (See [92, Sec. 7.3.2] for a detailed proof of security.)24The latter intuition presumes that sampling D� is trivial (i.e., that there is an easily com-putable correspondence between the coins used for sampling and the resulting sample), whereasin general the coins used for sampling may be hard to compute from the corresponding outcome.This is the reason that an enhanced hardness assumption is used in the general analysis of theforegoing protocol.



574APPENDIX C. ON THE FOUNDATIONS OF MODERN CRYPTOGRAPHYC.7.3.2 From passively-secure protocols to actively-secure onesWe show how to transform any passively-secure protocol into a correspondingactively-secure protocol. The communication model in both protocols consists ofa single broadcast channel. Note that the messages of the original protocol maybe assumed to be sent over a broadcast channel, because the adversary may seethem anyhow (by tapping the point-to-point channels), and because a broadcastchannel is trivially implementable in the case of passive adversaries. As for the re-sulting actively-secure protocol, the broadcast channel it uses can be implementedvia an (authenticated) Byzantine Agreement protocol, thus providing an emulationof this model on the standard point-to-point model (in which a broadcast channeldoes not exist). We mention that authenticated Byzantine Agreement is typicallyimplemented using a signature scheme (and assuming that each party knows theveri�cation-key corresponding to each of the other parties).Turning to the transformation itself, the main idea (mentioned in xC.4.3.2) isusing zero-knowledge proofs in order to force parties to behave in a way that isconsistent with the (passively-secure) protocol. Actually, we need to con�ne eachparty to a unique consistent behavior (i.e., according to some �xed local input and asequence of coin tosses), and to guarantee that a party cannot �x its input (and/orits coin tosses) in a way that depends on the inputs (and/or coin tosses) of honestparties. Thus, some preliminary steps have to be taken before the step-by-stepemulation of the original protocol may start. Speci�cally, the compiled protocol(which, like the original protocol, is executed over a broadcast channel) proceedsas follows:1. Committing to the local input: Prior to the emulation of the original protocol,each party commits to its input (using a commitment scheme as de�nedin xC.4.3.1). In addition, using a zero-knowledge proof-of-knowledge (seeSection 9.2.3), each party also proves that it knows its own input; that is,it proves that it can decommit to the commitment it sent. (These zero-knowledge proof-of-knowledge prevent dishonest parties from setting theirinputs in a way that depends on inputs of honest parties.)2. Generation of local random tapes: Next, all parties jointly generate a se-quence of random bits for each party such that only this party knows theoutcome of the random sequence generated for it, and everybody else gets acommitment to this outcome. These sequences will be used as the random-inputs (i.e., sequence of coin tosses) for the original protocol. Each bit in therandom-sequence generated for Party X is determined as the exclusive-or ofthe outcomes of instances of an (augmented) coin-tossing protocol (cf. [92,Sec. 7.4.3.5]) that Party X plays with each of the other parties. The lat-ter protocol provides the other parties with a commitment to the outcomeobtained by Party X.3. E�ective prevention of premature termination: In addition, when compiling(the passively-secure protocol to an actively-secure protocol) for the modelthat allows the adversary to control only a minority of the parties, each party



C.7. GENERAL CRYPTOGRAPHIC PROTOCOLS 575shares its input and its random-input with all other parties using a \Veri�ableSecret Sharing" (VSS) protocol (cf. [92, Sec. 7.5.5.1]). Loosely speaking, aVSS protocol allows sharing a secret in a way that enables each participantto verify that the share it got �ts the publicly posted information, whichincludes commitments to all shares, where a su�cient number of the latterallow for the e�cient recovery of the secret. The use of VSS guarantees thatif Party X prematurely suspends the execution, then the honest parties cantogether reconstruct all Party X's secrets and carry on the execution whileplaying its role. This step e�ectively prevents premature termination, and isnot needed in a model that does not consider premature termination a breachof security.4. Step-by-step emulation of the original protocol: Once all the foregoing stepsare completed, the new protocol emulates the steps of the original protocol.In each step, each party augments the message determined by the originalprotocol with a zero-knowledge proof that asserts that the message was in-deed computed correctly. Recall that the next message (as determined bythe original protocol) is a function of the sender's own input, its random-input, and the messages it has received so far (where the latter are known toeverybody because they were sent over a broadcast channel). Furthermore,the sender's input is determined by its commitment (as sent in Step 1), andits random-input is similarly determined (in Step 2). Thus, the next mes-sage (as determined by the original protocol) is a function of publicly knownstrings (i.e., the said commitments as well as the other messages sent overthe broadcast channel). Moreover, the assertion that the next message wasindeed computed correctly is an NP-assertion, and the sender knows a cor-responding NP-witness (i.e., its own input and random-input as well as thecorresponding decommitment information). Thus, the sender can prove inzero-knowledge (to each of the other parties) that the message it is sendingwas indeed computed according to the original protocol.The foregoing compilation was �rst outlined in [100, 101]. A detailed descriptionand full proofs appear in [92, Sec. 7.4 and 7.5].A secure coin-tossing protocol. Using a commitment scheme, we outline asecure (ordinary as opposed to augmented) coin-tossing protocol.Step C1: Party 1 uniformly selects � 2 f0; 1g and sends Party 2 a commitment,denoted c, to �.Step C2: Party 2 uniformly selects �0 2 f0; 1g, and sends �0 to Party 1.Step C3: Party 1 outputs the value � � �0, and sends � along with the decommit-ment information, denoted d, to Party 2.Step C4: Party 2 checks whether or not (�; d) �t the commitment c it has obtainedin Step 1. It outputs � � �0 if the check is satis�ed and halts with output ?



576APPENDIX C. ON THE FOUNDATIONS OF MODERN CRYPTOGRAPHYotherwise, where ? indicates that Party 1 has e�ectively aborted the protocolprematurely.Intuitively, Steps C1{C2 may be viewed as \tossing a coin into the well". Atthis point (i.e., after Step C2), the value of the coin is determined (essentiallyas a random value), but only one party (i.e., Party 1) \can see" (i.e., knows) thisvalue. Clearly, if both parties are honest then they both output the same uniformlychosen bit, recovered in Steps C3 and C4, respectively. Intuitively, each partycan guarantee that the outcome is uniformly distributed, and Party 1 can causepremature termination by improper execution of Step 3. Formally, we have to showhow the e�ect of any real-model adversary can be simulated by an adequate ideal-model adversary (which is allowed premature termination). This is done in [92,Sec. 7.4.3.1].C.7.4 Concluding RemarksIn Sections C.7.1-C.7.2 we have mentioned numerous de�nitions and results regard-ing secure multi-party protocols, where some of these de�nitions are incomparableto others (i.e., they neither imply the others nor are implies by them). For example,in xC.7.1.2 and xC.7.1.3, we have presented two alternative de�nitions of \securemulti-party protocols", one requiring an honest majority and the other allowingabort. These de�nitions are incomparable and there is no generic reason to preferone over the other. Actually, as mentioned in xC.7.1.2, one could formulate a nat-ural de�nition that implies both de�nitions (i.e., waiving the bound on the numberof dishonest parties in De�nition C.17). Indeed, the resulting de�nition is free ofthe annoying restrictions that were introduced in each of the two aforementionedde�nitions; the \only" problem with the resulting de�nition is that it cannot besatis�ed (in general). Thus, for the �rst time in this appendix, we have reached asituation in which a natural (and general) de�nition cannot be satis�ed, and we areforced to choose between two weaker alternatives, where each of these alternativescarries fundamental disadvantages.In general, Section C.7 carries a stronger avor of compromise (i.e., recognizinginherent limitations and settling for a restricted meaningful goal) than previoussections. In contrast to the impression given in other parts of this appendix, itturns out that we cannot get all that we may want (and this is without mentioningthe problems involved in preserving security under concurrent composition; cf. [92,Sec. 7.7.2]). Instead, we should study the alternatives, and go for the one that bestsuits our real needs.Indeed, as stated in Section C.1, the fact that we can de�ne a cryptographicgoal does not mean that we can satisfy it as de�ned. In case we cannot satisfythe initial de�nition, we should search for relaxations that can be satis�ed. Theserelaxations should be de�ned in a clear manner such that it would be obvious whatthey achieve (and what they fail to achieve). Doing so will allow a sound choice ofthe relaxation to be used in a speci�c application.



Appendix DProbabilistic Preliminariesand Advanced Topics inRandomizationWhat is this? Chicken Curry and Seafood Salad?Fine, but in the same plate? This is disgusting!Johan H�astad at Grendel's, Cambridge (1985)Summary: This appendix lumps together some preliminaries regard-ing probability theory and some advanced topics related to the role anduse of randomness in computation. Needless to say, each of these topicsappears in a separate section.The probabilistic preliminaries include our conventions regarding ran-dom variables, which are used throughout the book. Also included areoverviews of three useful probabilistic inequalities: Markov's Inequality,Chebyshev's Inequality, and Cherno� Bound.The advanced topics include hashing, sampling, and randomness ex-traction. For hashing, we describe constructions of pairwise (and t-wiseindependent) hashing functions and (a few variants of) the LeftoverHashing Lemma (used a few times in the main text). We then reviewthe \complexity of sampling": that is, the number of samples and therandomness complexity involved in estimating the average value of anarbitrary function de�ned over a huge domain. Finally, we provide anoverview on the question of extracting almost perfect randomness fromsources of weak (or defected) randomness.577



578APPENDIXD. PROBABILISTIC PRELIMINARIES AND ADVANCED TOPICS IN RANDOMIZATIOND.1 Probabilistic preliminariesProbability plays a central role in complexity theory (see, for example, Chapters 6{9). We assume that the reader is familiar with the basic notions of probabilitytheory. In this section, we merely present the probabilistic notations that are usedthroughout the book and three useful probabilistic inequalities.D.1.1 Notational ConventionsThroughout the entire book we refer only to discrete probability distributions.Speci�cally, the underlying probability space consists of the set of all strings of acertain length `, taken with uniform probability distribution. That is, the samplespace is the set of all `-bit long strings, and each such string is assigned probabilitymeasure 2�`. Traditionally, random variables are de�ned as functions from thesample space to the reals. Abusing the traditional terminology, we use the termrandom variable also when referring to functions mapping the sample space into theset of binary strings. We often do not specify the probability space, but rather talkdirectly about random variables. For example, we may say that X is a randomvariable assigned values in the set of all strings such that Pr[X = 00] = 14 andPr[X =111] = 34 . (Such a random variable may be de�ned over the sample spacef0; 1g2, so that X(11) = 00 and X(00) = X(01) = X(10) = 111.) One importantcase of a random variable is the output of a randomized process (e.g., a probabilisticpolynomial-time algorithm, as in Section 6.1).All our probabilistic statements refer to random variables that are de�ned be-forehand. Typically, we may write Pr[f(X) = 1], where X is a random variablede�ned beforehand (and f is a function). An important convention is that all oc-currences of the same symbol in a probabilistic statement refer to the same (unique)random variable. Hence, if B(�; �) is a Boolean expression depending on two vari-ables, and X is a random variable then Pr[B(X;X)] denotes the probability thatB(x; x) holds when x is chosen with probability Pr[X=x]. For example, for everyrandom variableX , we have Pr[X=X ] = 1. We stress that if we wish to discuss theprobability that B(x; y) holds when x and y are chosen independently with identi-cal probability distribution, then we will de�ne two independent random variableseach with the same probability distribution. Hence, if X and Y are two indepen-dent random variables then Pr[B(X;Y )] denotes the probability that B(x; y) holdswhen the pair (x; y) is chosen with probability Pr[X=x] � Pr[Y =y]. For example,for every two independent random variables, X and Y , we have Pr[X = Y ] = 1only if both X and Y are trivial (i.e., assign the entire probability mass to a singlestring).Throughout the entire book, Un denotes a random variable uniformly dis-tributed over the set of all strings of length n. Namely, Pr[Un = �] equals 2�nif � 2 f0; 1gn and equals 0 otherwise. We often refer to the distribution of Un asthe uniform distribution (neglecting to qualify that it is uniform over f0; 1gn). In ad-dition, we occasionally use random variables (arbitrarily) distributed over f0; 1gnor f0; 1g`(n), for some function ` : N!N . Such random variables are typicallydenoted by Xn, Yn, Zn, etc. We stress that in some cases Xn is distributed over



D.1. PROBABILISTIC PRELIMINARIES 579f0; 1gn, whereas in other cases it is distributed over f0; 1g`(n), for some function `(which is typically a polynomial). We often talk about probability ensembles, whichare in�nite sequence of random variables fXngn2N such that each Xn ranges overstrings of length bounded by a polynomial in n.Statistical di�erence. The statistical distance (a.k.a variation distance) betweenthe random variables X and Y is de�ned as12 �Xv jPr[X = v]� Pr[Y = v]j = maxS fPr[X 2 S]� Pr[Y 2 S]g: (D.1)We say that X is �-close (resp., �-far) to Y if the statistical distance between themis at most (resp., at least) �.D.1.2 Three InequalitiesThe following probabilistic inequalities are very useful. These inequalities refer torandom variables that are assigned real values and provide upper-bounds on theprobability that the random variable deviates from its expectation.D.1.2.1 Markov's InequalityThe most basic inequality isMarkov's Inequality that applies to any random variablewith bounded maximum or minimum value. For simplicity, this inequality is statedfor random variables that are lower-bounded by zero, and reads as follows: Let Xbe a non-negative random variable and v be a non-negative real number. ThenPr [X�v] � E(X)v (D.2)Equivalently, Pr[X � r � E(X)] � 1r . The proof amounts to the following sequence:E(X) = Xx Pr[X=x] � x� Xx<v Pr[X=x] � 0 +Xx�v Pr[X=x] � v= Pr[X�v] � vD.1.2.2 Chebyshev's InequalityUsing Markov's inequality, one gets a potentially stronger bound on the deviationof a random variable from its expectation. This bound, called Chebyshev's inequal-ity, is useful when having additional information concerning the random variable(speci�cally, a good upper bound on its variance). For a random variable X of�nite expectation, we denote by Var(X) def= E[(X � E(X))2] the variance of X , and



580APPENDIXD. PROBABILISTIC PRELIMINARIES AND ADVANCED TOPICS IN RANDOMIZATIONobserve that Var(X) = E(X2)�E(X)2. Chebyshev's Inequality then reads as follows:Let X be a random variable, and � > 0. ThenPr [jX � E(X)j��] � Var(X)�2 : (D.3)Proof: We de�ne a random variable Y def= (X � E(X))2, and apply Markov'sinequality. We getPr [jX � E(X)j��] = Pr �(X � E(X))2 � �2�� E[(X � E(X))2]�2and the claim follows.Corollary (Pairwise Independent Sampling): Chebyshev's inequality is particu-larly useful in the analysis of the error probability of approximation via repeatedsampling. It su�ces to assume that the samples are picked in a pairwise indepen-dent manner, where X1; X2; :::; Xn are pairwise independent if for every i 6= j andevery �; � it holds that Pr[Xi=� ^ Xj =�] = Pr[Xi=�] � Pr[Xj =�]. The corol-lary reads as follows: Let X1; X2; :::; Xn be pairwise independent random variableswith identical expectation, denoted �, and identical variance, denoted �2. Then,for every " > 0, it holds thatPr �����Pni=1Xin � ����� � "� � �2"2n : (D.4)Proof: De�ne the random variables Xi def= Xi � E(Xi). Note that the X i's arepairwise independent, and each has zero expectation. Applying Chebyshev's in-equality to the random variablePni=1 Xin , and using the linearity of the expectationoperator, we get Pr "����� nXi=1 Xin � ������ � "# � Var �Pni=1 Xin �"2= E h�Pni=1Xi�2i"2 � n2Now (again using the linearity of expectation)E24 nXi=1Xi!235 = nXi=1 E hX2i i+ X1�i 6=j�n E �XiXj�By the pairwise independence of the X i's, we get E[XiXj ] = E[Xi] � E[Xj ], andusing E[Xi] = 0, we get E24 nXi=1 Xi!235 = n � �2



D.1. PROBABILISTIC PRELIMINARIES 581The corollary follows.D.1.2.3 Cherno� BoundWhen using pairwise independent sample points, the error probability in the ap-proximation decreases linearly with the number of sample points (see Eq. (D.4)).When using totally independent sample points, the error probability in the approx-imation can be shown to decrease exponentially with the number of sample points.(Recall that the random variables X1; X2; :::; Xn are said to be totally independentif for every sequence a1; a2; :::; an it holds that Pr[^ni=1Xi=ai] =Qni=1 Pr[Xi=ai].)Probability bounds supporting the foregoing statement are given next. The �rstbound, commonly referred to as Cherno� Bound, concerns 0-1 random variables(i.e., random variables that are assigned as values either 0 or 1), and asserts thefollowing. Let p � 12 , and X1; X2; :::; Xn be independent 0-1 random variables suchthat Pr[Xi=1] = p, for each i. Then, for every " 2 (0; p], it holds thatPr �����Pni=1Xin � p���� > "� < 2 � e�c�"2�n , where c = max(2; 13p ). (D.5)The more common formulation sets c = 2, but the case c = 1=3p is very usefulwhen p is small and one cares about a multiplicative deviation (e.g., " = p=2).Proof Sketch: We upper-bound Pr[Pni=1Xi � pn > "n], and Pr[pn�Pni=1Xi >"n] is bounded similarly. Letting Xi def= Xi � E(Xi), we apply Markov's inequalityto the random variable e�Pni=1Xi , where � 2 (0; 1] will be determined to optimizethe expressions that we derive. Thus, Pr[Pni=1Xi > "n] is upper-bounded byE[e�Pni=1Xi ]e�"n = e��"n � nYi=1E[e�Xi ]where the equality is due to the independence of the random variables. To simplifythe rest of the proof, we establish a sub-optimal bound as follows. Using a Taylorexpansion of ex (e.g., ex < 1+x+x2 for jxj � 1) and observing that E[Xi] = 0, weget E[e�Xi ] < 1+�2E[X2i ], which equals 1+�2p(1�p). Thus, Pr[Pni=1Xi�pn > "n]is upper-bounded by e��"n � (1 + �2p(1� p))n < exp(��"n+ �2p(1� p)n), whichis optimized at � = "=(2p(1� p)) yielding exp(� "24p(1�p) � n) � exp(�"2 � n).The foregoing proof strategy can be applied in more general settings.1 A moregeneral bound, which refers to independent random variables that are each boundedbut are not necessarily identical, is given next (and is commonly referred to asHoefding Inequality). Let X1; X2; :::; Xn be n independent random variables, eachranging in the (real) interval [a; b], and let � def= 1nPni=1 E(Xi) denote the average1For example, verify that the current proof actually applies to the case that Xi 2 [0; 1] ratherthan Xi 2 f0; 1g, by noting that Var[Xi] � p(1� p) still holds.



582APPENDIXD. PROBABILISTIC PRELIMINARIES AND ADVANCED TOPICS IN RANDOMIZATIONexpected value of these variables. Then, for every " > 0,Pr �����Pni=1Xin � ����� > "� < 2 � e� 2"2(b�a)2 �n (D.6)The special case (of Eq. (D.6)) that refers to identically distributed random vari-ables is easy to derive from the foregoing Cherno� Bound (by recalling Footnote 1and using a linear mapping of the interval [a; b] to the interval [0; 1]). This specialcase is useful in estimating the average value of a (bounded) function de�ned overa large domain, especially when the desired error probability needs to be negligi-ble (i.e., decrease faster than any polynomial in the number of samples). Such anestimate can be obtained provided that we can sample the function's domain (andevaluate the function).D.1.2.4 Pairwise independent versus totally independent samplingTo demonstrate the di�erence between the sampling bounds provided in xD.1.2.2and xD.1.2.3, we consider the problem of estimating the average value of a functionf : 
 ! [0; 1]. In general, we say that a random variable Z provides an ("; �)-approximation of a value v if Pr[jZ � vj > "] � �. By Eq. (D.6), the average valueof f evaluated at n = O(("�2 � log(1=�)) independent samples (selected uniformlyin 
) yield an ("; �)-approximation of � = Px2
 f(x)=j
j. Thus, the number ofsample points is polynomially related to "�1 and logarithmically related to ��1. Incontrast, by Eq. (D.4), an ("; �)-approximation by n pairwise independent samplescalls for setting n = O("�2 � ��1). We stress that, in both cases the number ofsamples is polynomially related to the desired accuracy of the estimation (i.e., ").The only advantage of totally independent samples over pairwise independent onesis in the dependency of the number of samples on the error probability (i.e., �).D.2 HashingHashing is extensively used in complexity theory (see, e.g., x6.2.2.2, Section 6.2.3,x6.2.4.2, x8.2.5.3, and x8.4.2.1). The typical application is for mapping arbitrary(unstructured) sets \almost uniformly" to a structured set of adequate size. Specif-ically, hashing is used for mapping an arbitrary 2m-subset of f0; 1gn to f0; 1gm inan \almost uniform" manner.For any �xed set S of cardinality 2m, there exists a 1-1 mapping fS : S !f0; 1gm, but this mapping is not necessarily e�ciently computable (e.g., it mayrequire \knowing" the entire set S). On the other hand, no single function f :f0; 1gn ! f0; 1gm can map every 2m-subset of f0; 1gn to f0; 1gm in a 1-1 manner(or even approximately so). Nevertheless, for every 2m-subset S � f0; 1gn, arandom function f : f0; 1gn ! f0; 1gm has the property that, with overwhelminglyhigh probability, f maps S to f0; 1gm such that no point in the range has too manyf -preimages in S. The problem is that a truly random function is unlikely to havea succinct representation (let alone an e�cient evaluation algorithm). We thus seekfamilies of functions that have a \random mapping" property (as in Item 1 of the



D.2. HASHING 583following de�nition), but do have a succinct representation as well as an e�cientevaluation algorithm (as in Items 2 and 3 of the following de�nition).D.2.1 De�nitionsMotivated by the foregoing discussion, we consider families of functions fHmn gm<nsuch that the following properties hold:1. For every S � f0; 1gn, with high probability, a function h selected uniformlyin Hmn maps S to f0; 1gm in an \almost uniform" manner. For example, wemay require that, for any jSj = 2m and each point y, with high probabilityover the choice of h, it holds that jfx 2 S : h(x) = ygj � poly(n).2. The functions in Hmn have succinct representation. For example, we mayrequire that Hmn � f0; 1g`(n;m), for some polynomial `.3. The functions in Hmn can be e�ciently evaluated. That is, there exists apolynomial-time algorithm that, on input a representation of a function, h(in Hmn ), and a string x2f0; 1gn, returns h(x). In some cases we make evenmore stringent requirements regarding the algorithm (e.g., that it runs inlinear space).Condition 1 was left vague on purpose. At the very least, we require that theexpected size of fx 2 S : h(x) = yg equals jSj=2m. We shall see (in Section D.2.3)that di�erent interpretations of Condition 1 are satis�ed by di�erent families ofhashing functions. We focus on t-wise independent hashing functions, de�ned next.De�nition D.1 (t-wise independent hashing functions): A family Hmn of func-tions from n-bit strings to m-bit strings is called t-wise independent if for every tdistinct domain elements x1; :::; xt 2 f0; 1gn and every y1; :::; yt 2 f0; 1gm it holdsthat Prh2Hmn [^ti=1h(xi) = yi] = 2�t�mThat is, a uniformly chosen h 2 Hmn maps every t domain elements to the range ina totally uniform manner. Note that for t � 2, it follows that the probability thata random h 2 Hmn maps two distinct domain elements to the same image equals2�m. Such (families of) functions are called universal (cf. [50]), but we will focuson the stronger condition of t-wise independence.D.2.2 ConstructionsThe following constructions are merely a re-interpretation of the constructionspresented in x8.5.1.1. (Alternatively, one may view the constructions presentedin x8.5.1.1 as a re-interpretation of the following two constructions.)Construction D.2 (t-wise independent hashing): For t;m; n 2 N such that m �n, consider the following family of hashing functions mapping n-bit strings to m-bit strings. Each t-sequence s = (s0; s1; :::; st�1) 2 f0; 1gt�n describes a function



584APPENDIXD. PROBABILISTIC PRELIMINARIES AND ADVANCED TOPICS IN RANDOMIZATIONhs : f0; 1gn ! f0; 1gm such that hs(x) equals the m-bit pre�x of the binary repre-sentation of Pt�1j=0 sjxj , where the arithmetic is that of GF(2n), the �nite �eld of2n elements.Proposition 8.24 implies that Construction D.2 constitutes a family of t-wise inde-pendent hash functions. Typically, we will use either t = 2 or t = �(n). To makethe construction totally explicit, we need an explicit representation of GF(2n);see comment following Proposition 8.24. An alternative construction for the caseof t = 2 may be obtained analogously to the pairwise independent generator ofProposition 8.25. Recall that a Toeplitz matrix is a matrix with all diagonals beinghomogeneous; that is, T = (ti;j) is a Toeplitz matrix if ti;j = ti+1;j+1, for all i; j.Construction D.3 (alternative pairwise independent hashing): For m � n, con-sider the family of hashing functions in which each pair (T; b), consisting of an-by-m Toeplitz matrix T and an m-dimensional vector b, describes a functionhT;b : f0; 1gn ! f0; 1gm such that hT;b(x) = Tx+ b.Proposition 8.25 implies that Construction D.3 constitutes a family of pairwiseindependent hash functions. Note that a n-by-m Toeplitz matrix can be speci�edby n+m� 1 bits, yielding a description length of n+2m� 1 bits. An alternativeconstruction (analogous to Eq. (8.23) and requiringm�n+m bits of representation)uses arbitrary n-by-m matrices rather than Toeplitz matrices.D.2.3 The Leftover Hash LemmaWe now turn to the \almost uniform" cover condition (i.e., Condition 1) mentionedin Section D.2.1. One concrete interpretation of this condition is given by thefollowing lemma (and another interpretation is implied by it: see Theorem D.5).Lemma D.4 Let m � n be integers, Hmn be a family of pairwise independent hashfunctions, and S � f0; 1gn. Then, for every y 2 f0; 1gm and every " > 0, for allbut at most an 2m"2jSj fraction of h 2 Hmn it holds that(1� ") � jSj2m < jfx 2 S : h(x) = ygj < (1 + ") � jSj2m : (D.7)Note that by pairwise independence (or rather even by 1-wise independence), theexpected size of fx 2 S : h(x) = yg is jSj=2m, where the expectation is takenuniformly over all h 2 Hmn . The lemma upper bounds the fraction of h's thatdeviate from the expected behavior (i.e., for which jh�1(y)\Sj 6= (1� ") � jSj=2m).Needless to say, the bound is meaningful only in case jSj > 2m="2. Focusing onthe case that jSj > 2m and setting " = 3p2m=jSj, we infer that for all but at mostan " fraction of h 2 Hmn it holds that jfx 2 S : h(x) = ygj = (1� ") � jSj=2m. Thus,each range element has approximately the right number of h-preimages in the setS, under almost all h 2 Hmn .Proof: Fixing an arbitrary set S � f0; 1gn and an arbitrary y 2 f0; 1gm, weestimate the probability that a uniformly selected h 2 Hmn violates Eq. (D.7). We



D.2. HASHING 585de�ne random variables �x, over the aforementioned probability space, such that�x = �x(h) equal 1 if h(x) = y and �x = 0 otherwise. The expected value ofPx2S �x is � def= jSj � 2�m, and we are interested in the probability that this sumdeviates from the expectation. Applying Chebyshev's Inequality, we getPr "�������Xx2S �x����� � " � �# < �"2�2because Var[Px2S �x] < jSj � 2�m by the pairwise independence of the �x's and thefact that E[�x] = 2�m. The lemma follows.A generalization (called mixing). The proof of Lemma D.4 can be easilyextended to show that for every set T � f0; 1gm and every " > 0, for all butat most an 2mjT j�jSj"2 fraction of h 2 Hmn it holds that jfx 2 S : h(x) 2 Tgj =(1 � ") � jT j � jSj=2m. (Hint: rede�ne �x = �(h) = 1 if h(x) 2 T and �x = 0otherwise.) This assertion is meaningful provided that jT j � jSj > 2m="2, and in thecase that m = n it is called a mixing property.An extremely useful corollary. The aforementioned generalization of Lemma D.4asserts that, for any �xed set of preimages S � f0; 1gn and any �xed sets of imagesT � f0; 1gm, most functions in Hmn behave well with respect to S and T (in thesense that they map approximately the adequate fraction of S (i.e., jT j=2m) to T ).A seemingly stronger statement, which is (non-trivially) implied by Lemma D.4 it-self, reverses the order of quanti�cation with respect to T ; that is, for all adequatesets S, most functions in Hmn map S to f0; 1gm in an almost uniform manner (i.e.,assign each set T approximately the adequate fraction of S, where here the ap-proximation is up to an additive deviation). As we shall see, this is a consequenceof the following theorem.Theorem D.5 (a.k.a Leftover Hash Lemma): Let Hmn and S � f0; 1gn be as inLemma D.4, and de�ne " = 3p2m=jSj. Consider random variables X and H thatare uniformly distributed on S and Hmn , respectively. Then, the statistical distancebetween (H;H(X)) and (H;Um) is at most 2".It follows that, for X and " as in Theorem D.5 and any � > 0, for all but atmost an � fraction of the functions h 2 Hmn it holds that h(X) is (2"=�)-closeto Um.2 (Using the terminology of the subsequent Section D.4, we may say thatTheorem D.5 asserts that Hmn yields a strong extractor (with parameters to bespelled out there).)Proof: Let V denote the set of pairs (h; y) that violate Eq. (D.7), and V def=(Hmn � f0; 1gm) n V . Then for every (h; y) 2 V it holds thatPr[(H;H(X)) = (h; y)] = Pr[H = h] � Pr[h(X) = y]= (1� ") � Pr[(H;Um) = (h; y)]:2This follows by de�ning a random variable � = �(h) such that � equals the statistical distancebetween h(X) and Um, and applying Markov's inequality.



586APPENDIXD. PROBABILISTIC PRELIMINARIES AND ADVANCED TOPICS IN RANDOMIZATIONOn the other hand, by the setting of " and Lemma D.4 (which imply that Pr[(H; y) 2V ] � " for every y 2 f0; 1gm), we have Pr[(H;Um) 2 V ] � ". It follows thatPr[(H;H(X)) 2 V ] = 1� Pr[(H;H(X)) 2 V ]� 1� Pr[(H;Um)) 2 V ] + " � 2":Using all these upper-bounds, we upper-bounded the statistical di�erence between(H;H(X)) and (H;Um), denoted �, by separating the contribution of V and V .Speci�cally, we have� = 12 � X(h;y)2Hmn �f0;1gm jPr[(H;H(X))=(h; y)]� Pr[(H;Um)=(h; y)]j� "2 + 12 � X(h;y)2V jPr[(H;H(X))=(h; y)]� Pr[(H;Um)=(h; y)]j ;where the �rst term upper-bounds the contribution of all pairs (h; y) 2 V . Hence,� � "2 + 12 � X(h;y)2V (Pr[(H;H(X))=(h; y)] + Pr[(H;Um)=(h; y)])� "2 + 12 � (2"+ ") ;where the �rst inequality is trivial (i.e., j� � �j � � + � for any non-negative �and �), and the second inequality uses the foregoing upper-bounds (i.e., Pr[(H;H(X)) 2V ] � 2" and Pr[(H;Um) 2 V ] � "). The theorem follows.An alternative proof of Theorem D.5. De�ne the collision probability of arandom variable Z, denote cp(Z), as the probability that two independent samplesof Z yield the same result. Alternatively, cp(Z) def= Pz Pr[Z = z]2. Theorem D.5follows by combining the following two facts:1. A general fact: If Z 2 [N ] and cp(Z) � (1 + 4�2)=N then Z is �-close to theuniform distribution on [N ].We prove the contra-positive: Assuming that the statistical distance betweenZ and the uniform distribution on [N ] equals �, we show that cp(Z) �(1+4�2)=N . This is done by de�ning L def= fz : Pr[Z = z] < 1=Ng, and lower-bounding cp(Z) by using the fact that the collision probability is minimizedon uniform distributions. Speci�cally, considering the uniform distributionson L and [N ] n L respectively, we havecp(Z) � jLj � �Pr[Z 2 L]jLj �2 + (N � jLj) ��Pr[Z 2 [N ] n L]N � jLj �2: (D.8)Using � = � � Pr[Z 2 L], where � = jLj=N , the r.h.s of Eq. (D.8) equals(���)2�N + (1�(���))2(1��)N = �1 + �2(1��)�� � 1N � �1 + 4�2� � 1N .



D.2. HASHING 5872. The collision probability of (H;H(X)) is at most (1+ (2m=jSj))=(jHmn j � 2m).(Furthermore, this holds even if Hmn is only universal.)The proof is by a straightforward calculation. Speci�cally, note that cp(H;H(X)) =jHmn j�1�Eh2Hmn [cp(h(X))], whereas Eh2Hmn [cp(h(X))] = jSj�2Px1;x22S Pr[H(x1) =H(x2)]. The sum equals jSj + (jSj2 � jSj) � 2�m, and so cp(H;H(X)) <jHmn j�1 � (2�m + jSj�1).It follows that (H;H(X)) is 2p2m=jSj-close to (H;Um), which is actually a strongerbound than the one asserted by Theorem D.5.Stronger uniformity via higher independence. Recall that Lemma D.4 as-serts that for each point in the range of the hash function, with high probabilityover the choice of the hash function, this �xed point has approximately the expectednumber of preimages in S. A stronger condition asserts that, with high probabilityover the choice of the hash function, every point in its range has approximatelythe expected number of preimages in S. Such a guarantee can be obtained whenusing n-wise independent hash functions (rather than using pairwise independenthash functions).Lemma D.6 Let m � n be integers, Hmn be a family of n-wise independent hashfunctions, and S � f0; 1gn. Then, for every " 2 (0; 1), for all but at most an2m � (n �2m="2jSj)n=2 fraction of the functions h 2 Hmn , it is the case that Eq. (D.7)holds for every y 2 f0; 1gm.Indeed, the lemma should be used with 2m < "2jSj=4n. In particular, using m =log2 jSj � log2(5n="2) guarantees that with high probability (i.e., 1� 2m � 5�n=2 �1� (4=5)n=2) each range elements has (1� ") � jSj=2m preimages in S. Under thissetting of parameters jSj=2m = 5n="2, which is poly(n) whenever " = 1=poly(n).Needless to say, this guarantee is stronger than the conclusion of Theorem D.5.Proof: The proof follows the footsteps of the proof of Lemma D.4, taking advan-tage of the fact that here the random variables (i.e., the �x's) are n-wise indepen-dent. For t = n=2, this allows using the so-called 2tth moment analysis, whichgeneralizes the second moment analysis of pairwise independent samplying (pre-sented in xD.1.2.2). As in the proof of Lemma D.4, we �x any S and y, and de�ne�x = �x(h) = 1 if and only if h(x) = y. Letting � = E[Px2S �x] = jSj=2m and�x = �x � E(�x), we start with Markov's inequality:Pr "�������Xx2S �x����� � " � �# � E[(Px2S �x)2t]"2t�2t= Px1;:::;x2t2S E[Q2ti=1 �xi ]"2t � (jSj=2m)2t (D.9)Using 2t-wise independence, we note that only the terms in Eq. (D.9) that do notvanish are those in which each variable appears with multiplicity. This mean thatonly terms having less than t distinct variables contribute to Eq. (D.9). Now, for



588APPENDIXD. PROBABILISTIC PRELIMINARIES AND ADVANCED TOPICS IN RANDOMIZATIONevery j � t, we have less than �jSjj � � (2t!) < (2t!=j!) � jSjj terms with j distinctvariables, and each such term contributes less than (2�m)j to the sum (because forevery e > 1 it holds that E[�exi ] < E[�xi ] = 2�m). Thus, Eq. (D.9) is upper-boundedby 2t!("jSj=2m)2t � tXj=1 (jSj=2m)jj! < 2 � 2t!=t!("2jSj=2m)t < �2t � 2m"2jSj �twhere the �rst inequality assumes jSj > n2m (which is justi�ed by the fact that theclaim hold vacuously otherwise). This upper-bounds the probability that a randomh 2 Hmn violates Eq. (D.7) with respect to a �xed y. Using a union bound on ally 2 f0; 1gm, the lemma follows.D.3 SamplingIn many settings repeated sampling is used to estimate the average (or other statis-tics) of a huge set of values.3 Namely, given a \value" function � : f0; 1gn! R,one wishes to approximate �� def= 12n Px2f0;1gn �(x) without having to inspect thevalue of � at each point of the domain. The obvious thing to do is sampling thedomain at random, and obtaining an approximation to �� by taking the average ofthe values of � on the sample points. It turns out that certain \pseudorandom"sequences of sample points may serve almost as well as truly random sequences ofsample points, and thus the foregoing problem is indeed related to Section 8.5.D.3.1 Formal SettingIt is essential to have the range of the function � be bounded (since otherwise noreasonable approximation is possible). For simplicity, we adopt the convention ofhaving [0; 1] be the range of �, and the problem for other (predetermined) rangescan be treated analogously. Our notion of approximation depends on two param-eters: accuracy (denoted ") and error probability (denoted �). We wish to have analgorithm that, with probability at least 1� �, gets within " of the correct value.This leads to the following de�nition.De�nition D.7 (sampler): A sampler is a randomized oracle machine that oninput parameters n (length), " (accuracy) and � (error), and oracle access to anyfunction � : f0; 1gn! [0; 1], outputs, with probability at least 1� �, a value that isat most " away from �� def= 12n Px2f0;1gn �(x). Namely,Pr[jsampler�(n; "; �)� ��j > "] < �where the probability is taken over the internal coin tosses of the sampler.A non-adaptive sampler is a sampler that consists of two deterministic algorithms:a sample generating algorithm, G, and a evaluation algorithm, V . On input n; "; �3Indeed, this problem was already mentioned in xD.1.2.4.



D.3. SAMPLING 589and a random seed of adequate length, algorithm G generates a sequence of queries,denoted s1; :::; sm 2 f0; 1gn. Algorithm V is given the corresponding sequence of�-values (i.e., �(s1); :::; �(sm)) and outputs an estimate to ��.We are interested in \the complexity of sampling" quanti�ed as a function of theparameters n, " and �. Speci�cally, we will consider three complexity measures:The sample complexity (i.e., the number of oracle queries made by the sampler); therandomness complexity (i.e., the length of the random seed used by the sampler);and the computational complexity (i.e., the running-time of the sampler). We saythat a sampler is e�cient if its running-time is polynomial in the total length ofits queries (i.e., polynomial in both its sample complexity and in n). We will focuson e�cient samplers. Furthermore, we will be most interested in e�cient samplersthat have optimal (up-to a constant factor) sample complexity, and will seek tominimize the randomness complexity of such samplers. Note that minimizing therandomness complexity without referring to the sample complexity makes no sense.D.3.2 Known ResultsWe note that all the following positive results refer to non-adaptive samplers,whereas the lower bound hold also for general samplers. For more details on theseresults, see [90, Sec. 3.6.4] and the references therein.The naive sampler. The straightforward method (a.k.a the naive sampler)consists of uniformly and independently selecting su�ciently many sample points(queries), and outputting the average value of the function on these points. UsingCherno� Bound it follows that O( log(1=�)"2 ) sample points su�ce. As indicated next,the naive sampler is optimal (up-to a constant factor) in its sample complexity, butis quite wasteful in randomness.It is known that 
( log(1=�)"2 ) samples are needed in any sampler, and that anysampler that makes s(n; "; �) queries must have randomness complexity at leastn + log2(1=�) � log2 s(n; "; �) � O(1). These lower bounds are tight (as demon-strated by non-explicit and ine�cient samplers). The foregoing facts guide ourquest for improvements, which is aimed at �nding more randomness-e�cient waysof e�ciently generating sample sequences that can be used in conjunction with anappropriate evaluation algorithm V . (We stress that V need not necessarily takethe average of the values of the sampled points.)The pairwise-independent sampler. Using a pairwise-independence genera-tor (cf. x8.5.1.1) for generating sample points, along with the natural evaluationalgorithm (which outputs the average of the values of these points), we can ob-tain a great saving in the randomness complexity: In particular, using a seed oflength 2n, we can generate O(1=�"2) pairwise-independent sample points, which(by Eq. (D.4)) su�ce for getting accuracy " with error �. Thus, this (Pairwise-Independent) sampler uses 2n coin tosses rather than the 
((log(1=�))"�2 �n) cointosses used by the naive sampler. Furthermore, for constant � > 0, the Pairwise-Independent Sampler is optimal up-to a constant factor in both its sample and



590APPENDIXD. PROBABILISTIC PRELIMINARIES AND ADVANCED TOPICS IN RANDOMIZATIONrandomness complexities. However, for small � (i.e., � = o(1)), this sampler iswasteful in sample complexity.The Median-of-Averages sampler. A new idea is required for going fur-ther, and a relevant tool { random walks on expander graphs (see Sections 8.5.3and E.2) { is needed too. Speci�cally, we combine the Pairwise-Independent Sam-pler with the Expander Random Walk Generator (of Proposition 8.29) to obtaina new sampler. The new sampler uses a t-long random walk on an expander withvertex set f0; 1g2n for generating a sequence of t def= O(log(1=�)) related seeds for tinvocations of the Pairwise-Independent Sampler, where each of these invocationsuses the corresponding 2n bits to generate a sequence of O(1="2) samples in f0; 1gn.The new sampler, called the Median-of-Averages Sampler, outputs the median ofthe t values obtained in these t invocation of the Pairwise-Independent Sampler.In analyzing this sampler, we �rst note that each of the foregoing t invocationsreturns a value that, with probability at least 0:9, is "-close to ��. By Theorem 8.28(see also Exercise 8.44), with probability at least 1�exp(�t) = 1��, most of theset invocations return an "-close approximation. Hence, the median among these tvalues is an ("; �)-approximation to the correct value. The resulting sampler hassample complexity O( log(1=�)"2 ) and randomness complexity 2n+O(log(1=�)), whichis optimal up-to a constant factor in both complexities.Further improvements. The randomness complexity of the Median-of-AveragesSampler can be decreased from 2n+O(log(1=�)) to n+O(log(1=�")), while main-taining its (optimal) sample complexity (of O( log(1=�)"2 )). This is done by replacingthe Pairwise Independent Sampler by a sampler that picks a random vertex in asuitable expander, samples all its neighbors, and outputs the average value seen.Averaging Samplers. Averaging (a.k.a. \Oblivious") samplers are non-adaptivesamplers in which the evaluation algorithm is the natural one: that is, it merelyoutputs the average of the values of the sampled points. Indeed, the Pairwise-Independent Sampler is an averaging sampler, whereas the Median-of-AveragesSampler is not. Interestingly, averaging samplers have applications for which ordi-nary non-adaptive samplers do not su�ce. Averaging samplers are closely relatedto randomness extractors, de�ned and discussed in the subsequent Section D.4.An odd perspective. Recall that a non-adaptive sampler consists of a samplegenerator G and an evaluator V such that for every � :f0; 1gn! [0; 1] it holds thatPr(s1;:::;sm) G(Uk)[jV (�(s1); :::; �(sm))� ��j > "] < �; (D.10)where k denotes the length of the sampler's (random) seed. Thus, we may viewG as a pseudorandom generator that is subjected to a class of distinguishers thatis determined by a �xed algorithm V and an arbitrary function � : f0; 1gn ![0; 1]. Speci�cally, assuming that V works well when the m samples are distributeduniformly and independently (i.e., Pr[jV (�(U (1)n ); :::; �(U (m)n )) � ��j > "] < �), we



D.4. RANDOMNESS EXTRACTORS 591require G to generate sequences that satisfy the corresponding condition (as statedin Eq. (D.10)). What is a bit odd about the foregoing perspective is that, exceptfor the case of averaging samplers, the class of distinguishers considered here ise�ected by a component (i.e., the evaluator V ) that is potentially custom-made tohelp the generator G fool the distinguisher.4D.3.3 HittersHitters may be viewed as a relaxation of samplers. Speci�cally, considering onlyBoolean functions, hitters are required to generate a sample that contains a pointevaluating to 1 whenever at least an " fraction of the function values equal 1.That is, a hitter is a randomized algorithm that on input parameters n (length)," (accuracy) and � (error), outputs a list of n-bit strings such that, for every setS � f0; 1gn of density greater than ", with probability at least 1 � �, the listcontains at least one element of S. Note the correspondence to the ("; �)-hittingproblem de�ned in Section 8.5.3.Needless to say, any sampler yields a hitter (with respect to essentially thesame parameters n, " and �).5 However, hitting is strictly easier than evaluatingthe density of the target set: O(1=") (pairwise independent) random samples su�ceto hit any set of density " with constant probability, whereas 
(1="2) samples areneeded for approximating the average value of a Boolean function up to accuracy "(with constant error probability). Indeed, adequate simpli�cations of the samplersdiscussed in Appendix D.3.2 yield hitters with sample complexity proportional to1=" (rather than to 1="2).D.4 Randomness ExtractorsExtracting almost-perfect randomness from sources of weak (i.e., defected) ran-domness is crucial for the actual use of randomized algorithms, procedures andprotocols. The latter are analyzed assuming that they are given access to a perfectrandom source, while in reality one typically has access only to sources of weak(i.e., highly imperfect) randomness. This gap is bridged by using randomness ex-tractors, which are e�cient procedures that (possibly with the help of little extrarandomness) convert any source of weak randomness into an almost-perfect randomsource. Thus, randomness extractors are devices that greatly enhance the quality4Another aspect in which samplers di�er from the various pseudorandom generators discussedin Chapter 8 is in the aim to minimize, rather than maximize, the number of \blocks" (denotedhere by m) in the output sequence. However, also in the case of samplers the aim is to maximizethe block-length (denoted here by n).5Speci�cally, any sampler with respect to the parameters n, " and �, yields a hitter withrespect to the parameters n, 2" and �. (The need for slackness is easily demonstrated by notingthat estimating the average with accuracy " = 1=2 is trivial, whereas hitting is non-trivial for anyaccuracy (density) " < 1.) The claim is obvious for non-adaptive samplers, but actually holdsalso for adaptive samplers. Note that adaptivity does not provide any advantage in the contextof hitters, because one may assume (without loss of generality) that all prior samples missed thetarget set S.



592APPENDIXD. PROBABILISTIC PRELIMINARIES AND ADVANCED TOPICS IN RANDOMIZATIONof random sources. In addition, randomness extractors are related to several otherfundamental problems, to be further discussed later.One key parameter, which was avoided in the foregoing discussion, is the classof weak random sources from which we need to extract almost perfect randomness.Needless to say, it is preferable to make as little assumptions as possible regardingthe weak random source. In other words, we wish to consider a wide class ofsuch sources, and require that the randomness extractor (often referred to as theextractor) \works well" for any source in this class. A general class of such sources isde�ned in xD.4.1.1, but �rst we wish to mention that even for very restricted classesof sources no deterministic extractor can work.6 To overcome this impossibilityresult, two approaches are used:Seeded extractors: The �rst approach consists of considering randomized ex-tractors that use a relatively small amount of randomness (in addition tothe weak random source). That is, these extractors obtain two inputs: ashort truly random seed and a relatively long sequence generated by an arbi-trary source that belongs to the speci�ed class of sources. This suggestion ismotivated in two di�erent ways:1. The application may actually have access to an almost-perfect randomsource, but bits from this high-quality source are much more expen-sive than bits from the weak (i.e., low-quality) random source. Thus,it makes sense to obtain few high-quality bits from the almost-perfectsource and use them to \purify" the cheap bits obtained from the weak(low-quality) source. Thus, combining many cheap (but low-quality)bits with few high-quality (but expensive) bits, we obtain many high-quality bits.2. In some applications (e.g., when using randomized algorithms), it maybe possible to invoke the application multiple times, and use the \typi-cal" outcome of these invocations (e.g., rule by majority in the case of adecision procedure). For such applications, we may proceed as follows:�rst we obtain an outcome r of the weak random source, then we invokethe application multiple times such that for every possible seed s weinvoke the application feeding it with extract(s; r), and �nally we usethe \typical" outcome of these invocations. Indeed, this is analogous tothe context of derandomization (see Section 8.3), and likewise this al-ternative is typically not applicable to cryptographic and/or distributedsettings.Few independent sources: The second approach consists of considering deter-ministic extractors that obtain samples from a few (say two) independentsources of weak randomness. Such extractors are applicable in any setting(including in cryptography), provided that the application has access to therequired number of independent weak random sources.6For example, consider the class of sources that output n-bit strings such that no stringoccurs with probability greater than 2�(n�1) (i.e., twice its probability weight under the uniformdistribution).



D.4. RANDOMNESS EXTRACTORS 593In this section we focus on the �rst type of extractors (i.e., the seeded extractors).This choice is motivated both by the relatively more mature state of the researchof seeded extractors and by the closer connection between seeded extractors andother topics in complexity theory.D.4.1 De�nitions and various perspectivesWe �rst present a de�nition that corresponds to the foregoing motivational discus-sion, and later discuss its relation to other topics in complexity.D.4.1.1 The Main De�nitionA very wide class of weak random sources corresponds to sources in which nospeci�c output is too probable. That is, the class is parameterized by a (probability)bound � and consists of all sources X such that for every x it holds that Pr[X =x] � �. In such a case, we say that X has min-entropy7 at least log2(1=�). Indeed,we represent sources as random variables, and assume that they are distributed overstrings of a �xed length, denoted n. An (n; k)-source is a source that is distributedover f0; 1gn and has min-entropy at least k.An interesting special case of (n; k)-sources is that of sources that are uniformover some subset of 2k strings. Such sources are called (n; k)-at. A useful obser-vation is that each (n; k)-source is a convex combination of (n; k)-at sources.De�nition D.8 (extractor for (n; k)-sources):1. An algorithm Ext :f0; 1gd�f0; 1gn!f0; 1gm is called an extractor with error" for the class C if for every source X in C it holds that Ext(Ud; X) is "-closeto Um. If C is the class of (n; k)-sources then Ext is called a (k; ")-extractor.2. An algorithm Ext is called a strong extractor with error " for C if for everysource X in C it holds that (Ud;Ext(Ud; X)) is "-close to (Ud; Um). A strong(k; ")-extractor is de�ned analogously.Using the aforementioned \decomposition" of (n; k)-sources into (n; k)-at sources,it follows that Ext is a (k; ")-extractor if and only if it is an extractor with error" for the class of (n; k)-at sources. (A similar claim holds for strong extractors.)Thus, much of the technical analysis is conducted with respect to the class of(n; k)-at sources. For example, by analyzing the case of (n; k)-at sources it iseasy to see that, for d = log2(n="2) + O(1), there exists a (k; ")-extractor Ext :f0; 1gd�f0; 1gn ! f0; 1gk. (The proof employs the Probabilistic Method and usesa union bound on the (�nite) set of all (n; k)-at sources.)87Recall that the entropy of a random variableX is de�ned asPx Pr[X = x]�log2(1=Pr[X = x]).Indeed the min-entropy of X equals minxflog2(1=Pr[X = x])g, and is always upper-bounded byits entropy.8Indeed, the key fact is that the number of (n; k)-at sources is N def= �2n2k�. The probabilitythat a random function Ext : f0; 1gd � f0; 1gn ! f0; 1gk is not an extractor with error " for a



594APPENDIXD. PROBABILISTIC PRELIMINARIES AND ADVANCED TOPICS IN RANDOMIZATIONWe seek, however, explicit extractors; that is, extractors that are implementableby polynomial-time algorithms. We note that the evaluation algorithm of any fam-ily of pairwise independent hash functions mapping n-bit strings to m-bit stringsconstitutes a (strong) (k; ")-extractor for " = 2�
(k�m) (see Theorem D.5). How-ever, these extractors necessarily use a long seed (i.e., d � 2m must hold (andin fact d = n + 2m � 1 holds in Construction D.3)). In Section D.4.2 we surveyconstructions of e�cient (k; ")-extractors that obtain logarithmic seed length (i.e.,d = O(log(n="))). But before doing so, we provide a few alternative perspectiveson extractors.An important note on logarithmic seed length. The case of logarithmic seedlength (i.e., d = O(log(n="))) is of particular importance for a variety of reasons.Firstly, when emulating a randomized algorithm using a defected random source(as in Item 2 of the motivational discussion of seeded extractors), the overhead isexponential in the length of the seed. Thus, the emulation of a generic probabilisticpolynomial-time algorithm can be done in polynomial time only if the seed lengthis logarithmic. Similarly, the applications discussed in xD.4.1.2 and xD.4.1.3 arefeasible only if the seed length is logarithmic. Lastly, we note that logarithmic seedlength is an absolute lower-bound for (k; ")-extractors, whenever k < n � n
(1)(and the extractor is non-trivial (i.e., m � 1 and " < 1=2)).D.4.1.2 Extractors as averaging samplersThere is a close relationship between extractors and averaging samplers (which arede�ned towards the end of Section D.3.2). We shall �rst show that any averagingsampler gives rise to an extractor. Let G : f0; 1gn ! (f0; 1gm)t be the sample gen-erating algorithm of an averaging sampler having accuracy " and error probability�. That is, G uses n bits of randomness and generates t sample points in f0; 1gmsuch that, for every f : f0; 1gm ! [0; 1] with probability at least 1� �, the averageof the f -values of these t pseudorandom points resides in the interval [f �"], wheref def= E[f(Um)]. De�ne Ext : [t] � f0; 1gn ! f0; 1gm such that Ext(i; r) is theith sample generated by G(r). We shall prove that Ext is a (k; 2")-extractor, fork = n� log2("=�).Suppose towards the contradiction that there exists a (n; k)-at source X suchthat for some S � f0; 1gm it is the case that Pr[Ext(Ud; X) 2 S] > Pr[Um 2 S]+2",where d = log2 t and [t] � f0; 1gd. De�neB = fx 2 f0; 1gn : Pr[Ext(Ud; x) 2 S] > (jSj=2m) + "g:Then, jBj > " � 2k = � � 2n. De�ning f(z) = 1 if z 2 S and f(z) = 0 otherwise, wehave f def= E[f(Um)] = jSj=2m. But, for every r 2 B the f -average of the sample�xed (n; k)-at source is upper-bounded by p def= 22k � exp(�
(2d+k"2)), because p bounds theprobability that when selecting 2d+k random k-bit long strings there exists a set T � f0; 1gk thatis hit by more than ((jT j=2k) + ") � 2d+k of these strings. Note that for d = log2(n="2) +O(1) itholds that N � p� 1. In fact, the same analysis applies to the extraction of m = k + log2 n bits(rather than k bits).



D.4. RANDOMNESS EXTRACTORS 595G(r) is greater than f + ", in contradiction to the hypothesis that the sampler haserror probability � (with respect to accuracy ").We now turn to show that extractors give rise to averaging samplers. Let Ext :f0; 1gd � f0; 1gn ! f0; 1gm be a (k; ")-extractor. Consider the sample generationalgorithm G : f0; 1gn ! (f0; 1gm)2d de�ne by G(r) = (Ext(s; r))s2f0;1gd . We provethat G corresponds to an averaging sampler with accuracy " and error probability� = 2�(n�k�1).Suppose towards the contradiction that there exists a function f : f0; 1gm ![0; 1] such that for �2n = 2k+1 strings r 2 f0; 1gn the average f -value of thesample G(r) deviates from f def= E[f(Um)] by more than ". Suppose, without lossof generality, that for at least half of these r's the average is greater than f + ",and let B denote the set of these r's. Then, for X that is uniformly distributed onB and is thus a (n; k)-source, we haveE[f(Ext(Ud; X))] > E[f(Um)] + ";which (using jf(z)j � 1 for every z) contradicts the hypothesis that Ext(Ud; X) is"-close to Um.D.4.1.3 Extractors as randomness-e�cient error-reductionsAs may be clear from the foregoing discussion, extractors yield randomness-e�cientmethods for error-reduction. This is the case because error-reduction is a spe-cial case of the sampling problem, obtained by considering Boolean functions.Speci�cally, for a two-sided error decision procedure A, consider the functionfx : f0; 1g�(jxj)! f0; 1g such that fx(r) = 1 if A(x; r) = 1 and fx(r) = 0 otherwise.Assuming that the probability that A is correct is at least 0:5 + " (say " = 1=6),error reduction amounts to providing a sampler with accuracy " and any desirederror probability � � " for the Boolean function fx. Thus, by xD.4.1.2, any (k; ")-extractor Ext : f0; 1gd�f0; 1gn ! f0; 1g�(jxj) with k = n� log(1=�)� 1 yields thedesired error-reduction, provided that 2d is feasible (e.g., 2d = poly(�(jxj)), where�(�) represents the randomness complexity of the original algorithm A). The ques-tion of interest here is how does n (which represents the randomness complexity ofthe corresponding sampler) grow as a function of �(jxj) and �.Error-reduction using the extractor Ext: [poly(�(jxj))]�f0; 1gn!f0; 1g�(jxj)error probability randomness complexityoriginal algorithm 1=3 �(jxj)resulting algorithm � (may depend on jxj) n (function of �(jxj) and �)Needless to say, the answer to the foregoing question depends on the quality of theextractor that we use. In particular, using Part 1 of the forthcoming Theorem D.10,we note that for every � > 1, one can obtain n = O(�(jxj)) + � log2(1=�), for any� > 2�poly(�(jxj)). Note that, for � < 2�O(�(jxj)), this bound on the randomness-complexity of error-reduction is better than the bound of n = �(jxj) +O(log(1=�))that is provided (for the reduction of one-sided error) by the Expander Random



596APPENDIXD. PROBABILISTIC PRELIMINARIES AND ADVANCED TOPICS IN RANDOMIZATIONWalk Generator (of Section 8.5.3), albeit the number of samples here is larger (i.e.,poly(�(jxj)=�) rather than O(log(1=�))).Mentioning the reduction of one-sided error-probability brings us to a cor-responding relaxation of the notion of an extractor, which is called a disperser.Loosely speaking, a (k; ")-disperser is only required to hit (with positive probabil-ity) any set of density greater than " in its image, rather than produce a distributionthat is "-close to uniform.De�nition D.9 (dispersers): An algorithm Dsp : f0; 1gd � f0; 1gn ! f0; 1gm iscalled a (k; ")-disperser if for every (n; k)-source X the support of Dsp(Ud; X) coversat least (1� ") � 2m points. Alternatively, for every set S � f0; 1gm of size greaterthan "2m it holds that Pr[Dsp(Ud; X) 2 S] > 0.Dispersers can be used for the reduction of one-sided error analogously to theuse of extractors for the reduction of two-sided error. Speci�cally, regarding theaforementioned function fx (and assuming that Pr[fx(U`(jxj))=1] > "), we may useany (k; ")-disperser Dsp : f0; 1gd � f0; 1gn ! f0; 1g`(jxj) towards �nding a point zsuch that fx(z) = 1. Indeed, if Pr[fx(U`(jxj)) = 1] > " then there are less than 2kpoints z such that (8s2f0; 1gd) fx(Dsp(s; z)) = 0, and thus the one-sided error canbe reduced from 1� " to 2�(n�k) while using n random bits. (Note that dispersersare closely related to hitters (cf. Appendix D.3.3), analogously to the relation ofextractors and averaging samplers.)D.4.1.4 Other perspectivesExtractors and dispersers have an appealing interpretation in terms of bipartitegraphs. Starting with dispersers, we view any (k; ")-disperser Dsp : f0; 1gd �f0; 1gn ! f0; 1gm as a bipartite graph G = ((f0; 1gn; f0; 1gm); E) such that E =f(x;Dsp(s; x)) : x 2 f0; 1gn; s 2 f0; 1gdg. This graph has the property that anysubset of 2k vertices on the left (i.e., in f0; 1gn) has a neighborhood that containsat least a 1 � " fraction of the vertices of the right, which is remarkable in thetypical case where d is small (e.g., d = O(log n=")) and n � k � m whereasm = 
(k) (or at least m = k
(1)). Furthermore, if Dsp is e�ciently computablethen this bipartite graph is strongly constructible in the sense that, given a vertexon the left, one can e�ciently �nd each of its neighbors. Any (k; ")-extractorExt : f0; 1gd � f0; 1gn ! f0; 1gm yields an analogous graph with an even strongerproperty: the neighborhood multi-set of any subset of 2k vertices on the left coversthe vertices on the right in an almost uniform manner.An odd perspective. In addition to viewing extractors as averaging samplers,which in turn may be viewed within the scope of the pseudorandomness paradigm,we mention here an even more odd perspective. Speci�cally, randomness extractorsmay be viewed as randomized algorithms (distinguishers) designed on purpose suchthat to be fooled by any weak random source (but not by an even worse source).Speci�cally, for any (k; ")-extractor Ext : f0; 1gd � f0; 1gn ! f0; 1gm, where " �1=100, m = k = !(logn=") and d = O(log n="), consider the following class of



D.4. RANDOMNESS EXTRACTORS 597distinguishers (or tests), parameterized by subsets of f0; 1gm: for S � f0; 1gm, thetest TS satis�es Pr[TS(x)=1] = Pr[Ext(Ud; x) 2 S] (i.e., on input x 2 f0; 1gn, thetest uniformly selects s 2 f0; 1gd and outputs 1 if and only if Ext(s; x) 2 S). Then,as shown next, any (n; k)-source is \pseudorandom" with respect to this class ofdistinguishers, but su�ciently \non-(n; k)-sources" are not \pseudorandom" withrespect to this class of distinguishers.1. For every (n; k)-source X and every S � f0; 1gm, the test TS does not dis-tinguish X from Un (i.e., Pr[TS(X) = 1] = Pr[TS(Un) = 1] � 2"), becauseExt(Ud; X) is 2"-close to Ext(Ud; Un) (since each is "-close to Um).2. On the other hand, for every (n; k � d � 4)-at source Y there exists a setS such that TS distinguish Y from Un with gap at least 0:9 (e.g., for Sthat equals the support of Ext(Ud; Y ), it holds that Pr[TS(Y ) = 1] = 1 butPr[TS(Un)=1] � Pr[Um 2 S] + " = 2d+(k�d�4)�m + " < 0:1). Furthermore,any source that has entropy below (k=4)� d will be detected as defected bythis class (with probability at least 2=3).9Thus, this weird class of tests deems each (n; k)-source as \pseudorandom" whiledeeming sources of signi�cantly lower entropy (e.g., entropy lower than (k=4)� d)as non-pseudorandom. Indeed, this perspective stretches the pseudorandomnessparadigm quite far.D.4.2 ConstructionsRecall that we seek explicit constructions of extractors; that is, functions Ext :f0; 1gd � f0; 1gn ! f0; 1gm that can be computed in polynomial-time. The ques-tion, of course, is of parameters; that is, having explicit (k; ")-extractors with m aslarge as possible and d as small as possible. We �rst note that, except in \patholog-ical" cases10, both m � k+d�(2 log2(1=")�O(1)) and d � log2((n�k)="2)�O(1)must hold, regardless of the explicitness requirement. The aforementioned boundsare in fact tight; that is, there exists (non-explicit) (k; ")-extractors with m =k + d � 2 log2(1=")� O(1) and d = log2((n � k)="2) + O(1). The obvious goal ismeeting these bounds via explicit constructions.D.4.2.1 Some known resultsDespite tremendous progress on this problem (and occasional claims regarding \op-timal" explicit constructions), the ultimate goal was not reached yet. Nevertheless,the known explicit constructions are pretty close to being optimal.Theorem D.10 (explicit constructions of extractors): Explicit (k; ")-extractors ofthe form Ext : f0; 1gd�f0; 1gn ! f0; 1gm exist for the following cases (i.e., settingsof the parameters d and m):9For any such source Y , the distribution Z = Ext(Ud; Y ) has entropy at most k=4 = m=4,and thus is 0:7-far from Um (and 2=3-far from Ext(Ud; Un)). The lower-bound on the statisticaldistance between Z and Um can be proved by the contra-positive: if Z is �-close to Um then itsentropy is at least (1 � �) �m� 1 (e.g., by using Fano's inequality, see [63, Thm. 2.11.1]).10That is, for " < 1=2 and m > d.



598APPENDIXD. PROBABILISTIC PRELIMINARIES AND ADVANCED TOPICS IN RANDOMIZATION1. For d = O(log n=") and m = (1��) �(k�O(d)), where � > 0 is an arbitrarilysmall constant and provided that " > exp(�k1��).2. For d = (1+�) � log2 n and m = k=poly(logn), where "; � > 0 are arbitrarilysmall constants.Proofs of Part 1 and Part 2 can be found in [113] and [201], respectively. We notethat, for sake of simplicity, we did not quote the best possible bounds. Furthermore,we did not mention additional incomparable results (which are relevant for di�erentranges of parameters).We refrain from providing an overview of the proof of Theorem D.10, but ratherreview the proof of a weaker result that provides explicit (n ; poly(1=n))-extractorsfor the case of d = O(log n) and m = n
(), where  > 0 is an arbitrarily smallconstant. Indeed, in xD.4.2.2, we review the conceptual insight that underlies thisresult (as well as much of the subsequent developments in the area).D.4.2.2 The pseudorandomness connectionWe conclude this section with an overview of a fruitful connection between extrac-tors and certain pseudorandom generators. The connection, discovered by Tre-visan [222], is surprising in the sense that it goes in a non-standard direction: ittransforms certain pseudorandom generators into extractors. As argued throughoutthis book (most conspicuously at the end of Section 7.1.2), computational objectsare typically more complex than the corresponding information theoretical objects.Thus, if pseudorandom generators and extractors are at all related (which was notsuspected before [222]) then this relation should not be expected to help in the con-struction of extractors, which seem an information theoretic object. Nevertheless,the discovery of this relation did yield a breakthrough in the study of extractors.11Teaching note: The current text assumes familiarity with pseudorandom generatorsand in particular with the Nisan{Wigderson Generator (presented in x8.3.2.1).But before describing the connection, let us wonder for a moment. Just lookingat the syntax, we note that pseudorandom generators have a single input (i.e., theseed), while extractors have two inputs (i.e., the n-bit long source and the d-bitlong seed). But taking a second look at the Nisan{Wigderson Generator (i.e., thecombination of Construction 8.17 with an ampli�cation of worst-case to average-case hardness), we note that this construction can be viewed as taking two inputs:a d-bit long seed and a \hard" predicate on d0-bit long strings (where d0 = 
(d)).12Now, an appealing idea is to use the n-bit long source as a (truth-table) descriptionof a (worse-case) hard predicate (which indeed means setting n = 2d0). The keyobservation is that even if the source is only weakly random then it is likely torepresent a predicate that is hard on the worst-case.11We note that once the connection became better understood, inuence started going in the\right" direction: from extractors to pseudorandom generators.12Indeed, to �t the current context, we have modi�ed some notations. In Construction 8.17 thelength of the seed is denoted by k and the length of the input for the predicate is denoted by m.



D.4. RANDOMNESS EXTRACTORS 599Recall that the aforementioned construction is supposed to yield a pseudoran-dom generator whenever it starts with a hard predicate. In the current context,where there are no computational restrictions, pseudorandomness is supposed tohold against any (computationally unbounded) distinguisher, and thus here pseudo-randomness means being statistically close to the uniform distribution (on stringsof the adequate length, denoted `). Intuitively, this makes sense only if the ob-served sequence is shorter that the amount of randomness in the source (and seed),which is indeed the case (i.e., ` < k + d, where k denotes the min-entropy of thesource). Hence, there is hope to obtain a good extractor this way.To turn the hope into a reality, we need a proof (which is sketched next). Look-ing again at the Nisan{Wigderson Generator, we note that the proof of indistin-guishability of this generator provides a black-box procedure for computing the un-derlying predicate when given oracle access to any potential distinguisher. Specif-ically, in the proofs of Theorems 7.19 and 8.18 (which holds for any ` = 2
(d0))13,this black-box procedure was implemented by a relatively small circuit (whichdepends on the underlying predicate). Hence, this procedure contains relativelylittle information (regarding the underlying predicate), on top of the observed `-bit long output of the extractor/generator. Speci�cally, for some �xed polynomialp, the amount of information encoded in the procedure (and thus available to it) isupper-bound by b def= p(`), while the procedure is suppose to compute the underly-ing predicate correctly on each input. That is, b bits of information are supposedto fully determine the underlying predicate, which in turn is identical to the n-bitlong source. However, if the source has min-entropy exceeding b, then it cannot befully determine using only b bits of information. It follows that the foregoing con-struction constitutes a (b+O(1); 1=6)-extractor (outputting ` = b
(1) bits), wherethe constant 1=6 is the one used in the proof of Theorem 8.18 (and the argumentholds provided that b = n
(1)). Note that this extractor uses a seed of lengthd = O(d0) = O(log n). The argument can be extended to obtain (k; poly(1=k))-extractors that output k
(1) bits using a seed of length d = O(log n), provided thatk = n
(1).We note that the foregoing description has only referred to two abstract prop-erties of the Nisan{Wigderson Generator: (1) the fact that this generator usesany worst-case hard predicate as a black-box, and (2) the fact that its analysisuses any distinguisher as a black-box. In particular, we viewed the ampli�cationof worst-case hardness to inapproximability (performed in Theorem 7.19) as partof the construction of the pseudorandom generator. An alternative presentation,which is more self-contained, replaces the ampli�cation step of Theorem 7.19 by adirect argument in the current (information theoretic) context and plugs the result-ing predicate directly into Construction 8.17. The advantages of this alternativeinclude using a simpler ampli�cation (since ampli�cation is simpler in the informa-tion theoretic setting than in the computational setting), and deriving transparentconstruction and analysis (which mirror Construction 8.17 and Theorem 8.18, re-spectively).13Recalling that n = 2d0 , the restriction ` = 2
(d0) implies ` = n
(1).



600APPENDIXD. PROBABILISTIC PRELIMINARIES AND ADVANCED TOPICS IN RANDOMIZATIONThe alternative presentation. The foregoing analysis transforms a generic dis-tinguisher into a procedure that computes the underlying predicate correctly oneach input, which fully determines this predicate. Hence, an upper-bound on theinformation available to this procedure yields an upper-bound on the number ofpossible outcomes of the source that are bad for the extractor. In the alternativepresentation, we transforms a generic distinguisher into a procedure that only ap-proximates the underlying predicate; that is, the procedure yields a function thatis relatively close to the underlying predicate. If the potential underlying pred-icates are far apart, then this yields the desired bound (on the number of badsource-outcomes that correspond to such predicates). Thus, the idea is to encodethe n-bit long source by an error correcting code of length n0 = poly(n) and rel-ative distance 0:5 � (1=n)2, and use the resulting codeword as a truth-table of apredicate for Construction 8.17.14 Such codes (coupled with e�cient encoding al-gorithms) do exist (see xE.1.2.5), and the bene�t in using them is that each n0-bitlong string (determined by the information available to the aforementioned ap-proximation procedure) may be (0:5� (1=n))-close to at most O(n2) codewords15(which correspond to potential predicates). Thus, each approximation procedurerules out at most O(n2) potential predicates (i.e., source outcomes). In summary,the resulting extractor converts the n-bit input x into a codeword x0 2 f0; 1gn0,viewed as a predicate over f0; 1gd0 (where d0 = log2 n0), and evaluates this predicateat the ` projections of the d-bit long seed, where these projections (to d0 bits) aredetermined by the corresponding set system (i.e., the `-long sequence of d0-subsetsof [d] that is used in Construction 8.17). The analysis mirrors the proof of Theo-rem 8.18, and yields a bound of 2O(`2) � O(n2) on the number of bad outcomes forthe source, where O(`2) upper-bounds the amount of information encoded in (andavailable to) the approximation procedure, and O(n2) upper-bounds the numberof source-outcomes that correspond to codewords that are each (0:5� (1=n))-closeto any �xed approximation procedure.D.4.2.3 Recommended readingThe interested reader is referred to a survey of Shaltiel [200]. This survey con-tains a comprehensive introduction to the area, including an overview of the ideasthat underly the various constructions. In particular, the survey describes the ap-proaches used before the discovery of the pseudorandomness connection, the con-nection itself (and the constructions that arise from it), and the \third generation"of constructions that followed.The aforementioned survey predates the most recent constructions (of extrac-tors) that extract a constant fraction of the min-entropy using a logarithmicallylong seed (cf. Part 1 of Theorem D.10). Such constructions were �rst presentedin [159] and improved (using di�erent ideas) in [113]. Indeed, we refer to readerto [113], which provides a self-contained description of the best known extractor(for almost all settings of the relevant parameters).14Indeed, the use of this error correcting code replaces the hardness-ampli�cation step of The-orem 7.19.15See Appendix E.1.4.



Appendix EExplicit ConstructionsIt is easier for a camel to go through the eye of a needle, thanfor a rich man to enter into the kingdom of God.Matthew, 19:24.Complexity theory provides a clear de�nition of the intuitive notion of an explicitconstruction. Furthermore, it also suggests a hierarchy of di�erent levels of explic-itness, referring to the ease of constructing the said object.The basic levels of explicitness are provided by considering the complexity offully constructing the object (e.g., the time it takes to print the truth-table ofa �nite function). In this context, explicitness often means outputting a full de-scription of the object in time that is polynomial in the length of that description.Stronger levels of explicitness emerge when considering the complexity of answeringnatural queries regarding the object (e.g., the time it takes to evaluate a �xed func-tion at a given input). In this context, (strong) explicitness often means answeringsuch queries in polynomial-time.The aforementioned themes are demonstrated in our brief review of explicitconstructions of error correcting codes and expander graphs. These constructionsare, in turn, used in various parts of the main text.Summary: This appendix provides a brief overview of aspects of cod-ing theory and expander graphs that are most relevant to complexitytheory. Starting with coding theory, we review several popular con-structions of error correcting codes, culminating in the construction of a\good" binary code (i.e., a code that achieves constant relative distanceand constant rate). The latter code is obtained by \concatenating" aReed-Solomon code with a \mildly explicit" construction of a \good"binary code (which is applied to small pieces of information). We alsobriey review the notions of locally testable and locally decodable codes,and present a useful \list decoding bound" (i.e., an upper-bound on thenumber of codewords that are close to any single sequence).601



602 APPENDIX E. EXPLICIT CONSTRUCTIONSTurning to expander graphs, we review two standard de�nitions of ex-pansion (representing combinatorial and algebraic perspectives), andtwo properties of expanders that are related to (single-step and multi-step) random walks on them. We also spell-out two levels of explicitnessof graphs, which correspond to the aforementioned notions of basic andstrong explicitness. Finally, we review two explicit constructions ofexpander graphs.E.1 Error Correcting CodesIn this section we highlight some issues and aspects of coding theory that are mostrelevant to the current book. The interested reader is referred to [217] for a morecomprehensive treatment of the computational aspects of coding theory. Structuralaspects of coding theory, which are at the traditional focus of that �eld, are coveredin standard textbook such as [163].E.1.1 Basic NotionsLoosely speaking, an error correcting code is a mapping of strings to longer stringssuch that any two di�erent strings are mapped to a corresponding pair of stringsthat are far apart (and not merely di�erent). Speci�cally, C : f0; 1gk ! f0; 1gnis a (binary) code of distance d if for every x 6= y 2 f0; 1gk it holds that C(x) andC(y) di�er on at least d bit positions. Indeed, the relation between k, n and d is ofmajor concern: typically, the aim is having a large distance (i.e., large d) withoutintroducing too much redundancy1 (i.e., have n as small as possible with respect tok (and d)).It will be useful to extend the foregoing de�nition to sequences over an arbitrary(�nite) alphabet �, and to use some notations. Speci�cally, for x 2 �m, we denotethe ith symbol of x by xi (i.e., x = x1 � � �xm), and consider codes over � (i.e.,mappings of �-sequences to �-sequences). The mapping (code) C : �k ! �n hasdistance d if for every x 6= y 2 �k it holds that jfi : C(x)i 6= C(y)igj � d. Themembers of fC(x) : x 2 �kg are called codewords (and in some texts this set itselfis called a code).In general, we de�ne a metric, called Hamming distance, over the set of n-longsequences over �. The Hamming distance between y and z, where y; z 2 �n, isde�ned as the number of locations on which they disagree (i.e., jfi : yi 6= zigj). TheHamming weight of such sequences is de�ned as the number of non-zero elements(assuming that one element of � is viewed as zero). Typically, � is associatedwith an additive group, and in this case the distance between y and z equals theHamming weight of w = y � z, where wi = yi � zi (for every i).1Note that a trivial way of obtaining distance d is to duplicate each symbol d times. This(\repetition") code satis�es n = d � k, while we shall seek n� d � k. Indeed, as we shall see, onecan obtain simultaneously n = O(k) and d = 
(k).



E.1. ERROR CORRECTING CODES 603Asymptotics. We will actually consider in�nite families of codes; that is, fCk :�kk ! �n(k)k gk2S , where S � N (and typically S = N). (N.B., we allow �kto depend on k.) We say that such a family has distance d : N ! N if forevery k 2 S it holds that Ck has distance d(k). Needless to say, both n = n(k)(called the block-length) and d(k) depend on k, and the aim is having a lineardependence (i.e., n(k) = O(k) and d(k) = 
(n(k))). In such a case, one talks of therelative rate of the code (i.e., the constant k=n(k)) and its relative distance (i.e., theconstant d(k)=n(k)). In general, we will often refer to relative distances betweensequences. For example, for y; z 2 �n, we say that y and z are "-close (resp., "-far)if jfi : yi 6= zigj � " � n (resp., jfi : yi 6= zigj � " � n).Explicitness. A mild notion of explicitness refers to constructing the list of allcodewords in time that is polynomial in its length (which is exponential in k).A more standard notion of explicitness refers to generating a speci�c codeword(i.e., producing C(x) when given x), which coincides with the encoding task men-tioned next. Stronger notions of explicitness refer to other computational problemsconcerning codes (e.g., various decoding tasks).Computational problems. The most basic computational tasks associated withcodes are encoding and decoding (under noise). The de�nition of the encoding taskis straightforward (i.e., map x 2 �kk to Ck(x)), and an e�cient algorithm is requiredto compute each symbol in Ck(x) in poly(k; log j�kj)-time.2 When de�ning the de-coding task we note that \minimum distance decoding" (i.e., given w 2 �n(k)k ,�nd x such that Ck(x) is closest to w (in Hamming distance)) is just one naturalpossibility. Two related variants, regarding a code of distance d, are:Unique decoding: Given w 2 �n(k)k that is at Hamming distance less than d(k)=2from some codeword Ck(x), retrieve the corresponding decoding of Ck(x)(i.e., retrieve x).Needless to say, this task is well-de�ned because there cannot be two di�erentcodewords that are each at Hamming distance less than d(k)=2 from w.List decoding: Given w 2 �n(k)k and a parameter d0 (which may be greater thand(k)=2), output a list of all codewords (or rather their decoding) that are atHamming distance at most d0 from w. (That is, the task is outputting thelist of all x 2 �kk such that Ck(x) is at distance at most d0 from w.)Typically, one considers the case that d0 < d(k). See Section E.1.4 for adiscussion of upper-bounds on the number of codewords that are within acertain distance from a generic sequence.Two additional computational tasks are considered in Section E.1.3.2The foregoing formulation is not the one that is common in coding theory, but it is the mostnatural one for our applications. On one hand, this formulation is applicable also to codes withsuper-polynomial block-length. On the other hand, this formulation does not support a discussionof practical algorithms that compute the codeword faster than is possible when computing eachof the codeword's bits separately.



604 APPENDIX E. EXPLICIT CONSTRUCTIONSLinear codes. Associating �k with some �nite �eld, we call a code Ck : �kk !�n(k)k linear if it satis�es Ck(x + y) = Ck(x) + Ck(y), where x and y (resp., Ck(x)and Ck(y)) are viewed as k-dimensional (resp., n(k)-dimensional) vectors over �k,and the arithmetic is of the corresponding vector space. A useful property of linearcodes is that their distance equals the Hamming weight of the lightest codewordother than Ck(0k) (= 0n(k)); that is, minx 6=yfjfi : Ck(x)i 6= Ck(y)igjg equalsminx 6=0kfjfi : Ck(x)i 6= 0gjg. Another useful property of linear codes is thatthe code is fully speci�ed by a k-by-n(k) matrix, called the generating matrix,that consists of the codewords of some �xed basis of �kk. That is, the set of allcodewords is obtained by taking all j�kjk di�erent linear combination of the rowsof the generating matrix.E.1.2 A Few Popular CodesOur focus will be on explicitly constructible codes; that is, (families of) codes of theform fCk : �kk ! �n(k)k gk2S that are coupled with e�cient encoding and decodingalgorithms. But before presenting several such codes, let us consider a non-explicitcode (having \good parameters"); that is, the following result asserts the existenceof certain codes without pointing to any speci�c code (let alone an explicit one).Proposition E.1 (on the distance of random linear codes): Let n; d; t : N ! Nbe such that, for all su�ciently large k, it holds thatn(k) � max�2d(k); k + t(k)1�H2(d(k)=n(k))�; (E.1)where H2(�) def= � log2(1=�) + (1 � �) log2(1=(1 � �)). Then, for all su�cientlylarge k, with probability greater than 1� 2�t(k), a random linear transformation off0; 1gk to f0; 1gn(k) constitutes a code of distance d(k).Indeed, for asserting that most random linear codes are good it su�ces to set t = 1,while for merely asserting the existence of a good linear code even setting t = 0will do. Also, for every constant � 2 (0; 0:5) there exists a constant � > 0 andan in�nite family of codes fCk : f0; 1gk ! f0; 1gk=�gk2N of relative distance �.Speci�cally, any constant � � (1�H2(�)) will do.Proof: We consider a uniformly selected k-by-n(k) generating matrix over GF(2),and upper-bound the probability that it yields a linear code of distance less thand(k). We use a union bound on all possible 2k � 1 linear combinations of therows of the generating matrix, where for each such combination we compute theprobability that it yields a codeword of Hamming weight less than d(k). Ob-serve that the result of each such linear combination is uniformly distributed overf0; 1gn(k), and thus this codeword has Hamming weight less than d(k) with prob-ability p def= Pd(k)�1i=0 �n(k)i � � 2�n(k). Clearly, for d(k) � n(k)=2, it holds thatp < d(k) � 2�(1�H2(d(k)=n(k)))�n(k)), but actually p � 2�(1�H2(d(k)=n(k)))�n(k)) holdsas well (e.g., use [11, Cor. 14.6.3]). Using (1 � H2(d(k)=n(k))) � n(k) � k + t(k),the proposition follows.



E.1. ERROR CORRECTING CODES 605E.1.2.1 A mildly explicit version of Proposition E.1Note that Proposition E.1 yields a deterministic algorithm that �nds a linear codeof distance d(k) by conducting an exhaustive search over all possible generatingmatrices; that is, a good code can be found in time exp(k � n(k)). The timebound can be improved to exp(k + n(k)), by constructing the generating matrixin iterations such that, at each iteration, the current set of rows is augmentedwith a single row while maintaining the natural invariance (i.e., all non-emptylinear combinations of the current rows have weight at least d(k)). Thus, at eachiteration, we conduct an exhaustive search over all possible values of the next (n(k)-bit long) row, and for each such candidate value we check whether the foregoinginvariance holds (by considering all linear combinations of the previous rows andthe current candidate).Note that the proof of Proposition E.1 can be adapted to assert that, as longas we have less than k rows, a random choice of the next row will do with positiveprobability. Thus, the foregoing iterative algorithm �nds a good code in timePki=1 2n(k) � 2i�1 � poly(n(k)) = exp(n(k) + k). In the case that n(k) = O(k), thisyields an algorithm that runs in time that is polynomial in the size of the code (i.e.,the number of codewords (i.e., 2k)). Needless to say, this mild level of explicitness isinadequate for most coding applications; however, it will be useful to us in xE.1.2.5.E.1.2.2 The Hadamard CodeThe Hadamard code is the longest (non-repetitive) linear code over f0; 1g � GF(2).That is, x 2 f0; 1gk is mapped to the sequence of all n(k) = 2k possible linearcombinations of its bits; that is, bit locations in the codewords are associated withk-bit strings such that location � 2 f0; 1gk in the codeword of x holds the valuePki=1 �ixi. It can be veri�ed that each non-zero codeword has weight 2k�1, andthus this code has relative distance d(k)=n(k) = 1=2 (albeit its block-length n(k)is exponential in k).Turning to the computational aspects, we note that encoding is very easy. Asfor decoding, the warm-up discussion at the beginning of the proof of Theorem 7.7provides a very fast probabilistic algorithm for unique decoding, whereas Theo-rem 7.8 itself provides a very fast probabilistic algorithm for list decoding.We mention that the Hadamard code has played a key role in the proof of thePCP Theorem (Theorem 9.16); see x9.3.2.1.A propos long codes. We mention that the longest (non-repetitive) binarycode (called the Long-Code and introduced in [29]) is extensively used in the de-sign of \advanced" PCP systems (see, e.g., [116, 117]). In this code, a k-bit longstring x is mapped to the sequence of n(k) = 22k values, each corresponding tothe evaluation of a di�erent Boolean function at x; that is, bit locations in thecodewords are associated with Boolean functions such that the location associatedwith f :f0; 1gk!f0; 1g in the codeword of x holds the value f(x).



606 APPENDIX E. EXPLICIT CONSTRUCTIONSE.1.2.3 The Reed{Solomon CodeReed-Solomon codes can be de�ned for any adequate non-binary alphabet, wherethe alphabet is associated with a �nite �eld of n elements, denoted GF(n). Forany k < n, the code maps univariate polynomials of degree k � 1 over GF(n)to their evaluation at all �eld elements. That is, p 2 GF(n)k (viewed as sucha polynomial), is mapped to the sequence (p(�1); :::; p(�n)), where �1; :::; �n is acanonical enumeration of the elements of GF(n).3 This mapping is called a Reed-Solomon code with parameters k and n, and its distance is n� k+1 (because anynon-zero polynomials of degree k�1 evaluates to zero at less than k points). Indeed,this code is linear (over GF(n)), since p(�) is a linear combination of p0; :::; pk�1,where p(�) =Pk�1i=0 pi�i.The Reed-Solomon code yields in�nite families of codes with constant rate andconstant relative distance (e.g., by taking n(k) = 3k and d(k) = 2k), but thealphabet size grows with k (or rather with n(k) > k). E�cient algorithms forunique decoding and list decoding are known (see [216] and references therein).These computational tasks correspond to the extrapolation of polynomials basedon a noisy version of their values at all possible evaluation points.E.1.2.4 The Reed{Muller CodeReed-Muller codes generalize Reed-Solomon codes by considering multi-variatepolynomials rather than univariate polynomials. Consecutively, the alphabet maybe any �nite �eld, and in particular the two-element �eld GF(2). Reed-Muller codes(and variants of them) are extensively used in complexity theory; for example, theyunderly Construction 7.11 and the PCP constructed at the end of x9.3.2.2. Therelevant property of these (non-binary) codes is that, under a suitable setting ofparameters that satis�es n(k) = poly(k), they allow super fast \codeword testing"and \self-correction" (see discussion in Section E.1.3).For any prime power q and parameters m and r, we consider the set, denotedPm;r, of all m-variate polynomials of total degree at most r over GF(q). Eachpolynomial in Pm;r is represented by the k = logq jPm;rj coe�cients of all relevantmonomials, where in the case that r < q it holds that k = �m+rm �. We considerthe code C : GF(q)k ! GF(q)n, where n = qm, mapping m-variate polynomials oftotal degree at most r to their values at all qm evaluation points. That is, the m-variate polynomial p of total degree at most r is mapped to the sequence of values(p(�1); :::; p(�n)), where �1; :::; �n is a canonical enumeration of all the m-tuplesof GF(q). The relative distance of this code is lower-bounded by (q � r)=q (cf.,Lemma 6.8).In typical applications one sets r = �(m2 logm) and q = poly(r), which yieldsk > mm and n = poly(r)m = poly(mm). Thus we have n(k) = poly(k) but notn(k) = O(k). As we shall see in Section E.1.3, the advantage (in comparison to theReed-Solomon code) is that codeword testing and self-correction can be performed3Alternatively, we may map (v1; :::; vk) 2 GF(n)k to (p(�1); :::; p(�n)), where p is the uniqueunivariate polynomial of degree k � 1 that satis�es p(�i) = vi for i = 1; :::; k. Note that thismodi�cation amounts to a linear transformation of the generating matrix.



E.1. ERROR CORRECTING CODES 607at complexity related to q = poly(logn). Actually, most complexity applicationsuse a variant in which only m-variate polynomials of individual degree r0 = r=m areencoded. In this case, an alternative presentation (analogous to the one presented inFootnote 3) is preferred: The information is viewed as a function f : Hm ! GF(q),where H � GF(q) is of size r0+1, and is encoded by the evaluation at all points inGF(q)m of the (unique) m-variate polynomial of individual degree r0 that extendsthe function f (see Construction 7.11).E.1.2.5 Binary codes of constant relative distance and constant rateRecall that we seek binary codes of constant relative distance and constant rate.Proposition E.1 asserts that such codes exists, but does not provide an explicitconstruction. The Hadamard code is explicit but does not have a constant rate (tosay the least (since n(k) = 2k)).4 The Reed-Solomon code has constant relativedistance and constant rate but uses a non-binary alphabet (which grows at leastlinearly with k). Thus, all codes we have reviewed so far fall short of providingan explicit construction of binary codes of constant relative distance and constantrate. We achieve the desired construction by using the paradigm of concatenatedcodes [78], which is of independent interest. (Concatenated codes may be viewedas a simple analogue of the proof composition paradigm presented in x9.3.2.2.)Intuitively, concatenated codes are obtained by �rst encoding information, viewedas a sequence over a large alphabet, by some code and next encoding each resultingsymbol, which is viewed as a sequence of over a smaller alphabet, by a second code.Formally, consider �1 � �k22 and two codes, C1 : �k11 ! �n11 and C2 : �k22 ! �n22 .Then, the concatenated code of C1 and C2, maps (x1; :::; xk1) 2 �k11 � �k1k22 to(C2(y1); :::; C2(yn1)), where (y1; :::; yn1) = C1(x1; :::; xk1).Note that the resulting code C : �k1k22 ! �n1n22 has constant rate and con-stant relative distance if both C1 and C2 have these properties. Encoding inthe concatenated code is straightforward. To decode a corrupted codeword ofC, we view the input as an n1-long sequence of blocks, where each block is ann2-long sequence over �2. Applying the decoder of C2 to each block, we obtainn1 sequences (each of length k2) over �2, and interpret each such sequence asa symbol of �1. Finally, we apply the decoder of C1 to the resulting n1-longsequence (over �1), and interpret the resulting k1-long sequence (over �1) as ak1k2-long sequence over �2. The key observation is that if w 2 �n1n22 is "1"2-closeto C(x1; :::; xk1 ) = (C2(y1); :::; C2(yn1)) then at least (1� "1) � n1 of the blocks of ware "2-close to the corresponding C2(yi).5We are going to consider the concatenated code obtained by using the Reed-Solomon Code C1 : GF(n1)k1 ! GF(n1)n1 as the large code, setting k2 = log2 n1,and using the mildly explicit version of Proposition E.1 (see also xE.1.2.1) C2 :f0; 1gk2 ! f0; 1gn2 as the small code. We use n1 = 3k1 and n2 = O(k2), and so the4Binary Reed-Muller codes also fail to simultaneously provide constant relative distance andconstant rate.5This observation o�ers unique decoding from a fraction of errors that is the product of thefractions (of error) associated with the two original codes. Stronger statements regarding uniquedecoding of the concatenated code can be made based on more re�ned analysis (cf. [78]).



608 APPENDIX E. EXPLICIT CONSTRUCTIONSconcatenated code is C : f0; 1gk ! f0; 1gn, where k = k1k2 and n = n1n2 = O(k).The key observation is that C2 can be constructed in exp(k2)-time, whereas hereexp(k2) = poly(k). Furthermore, both encoding and decoding with respect to C2can be performed in time exp(k2) = poly(k). Thus, we get:Theorem E.2 (an explicit good code): There exists constants �; � > 0 and anexplicit family of binary codes of rate � and relative distance at least �. That is,there exists a polynomial-time (encoding) algorithm C such that jC(x)j = jxj=� (forevery x) and a polynomial-time (decoding) algorithm D such that for every y thatis �=2-close to some C(x) it holds that D(y) = x. Furthermore, C is a linear code.The linearity of C is justi�ed by using a Reed-Solomon code over the extension �eldF = GF(2k2), and noting that this code induces a linear transformation over GF(2).Speci�cally, the value of a polynomial p over F at a point � 2 F can be obtainedas a linear transformation of the coe�cient of p, when viewed as k2-dimensionalvectors over GF(2).Relative distance approaching one half. Note that starting with a Reed-Solomon code of relative distance �1 and a smaller code C2 of relative distance�2, we obtain a concatenated code of relative distance �1�2. Recall that, for anyconstant �1 < 1, there exists a Reed-Solomon code C1 : GF(n1)k1 ! GF(n1)n1 ofrelative distance �1 and constant rate (i.e., 1� �1). Thus, for any constant " > 0,we may obtain an explicit code of constant rate and relative distance (1=2) � "(e.g., by using �1 = 1 � ("=2) and �2 = (1 � ")=2). Furthermore, giving up onconstant rate, we may start with a Reed-Solomon code of block-length n1(k1) =poly(k1) and distance n1(k1)�k1 over [n1(k1)], and use a Hadamard code (encoding[n1(k1)] � f0; 1glog2 n1(k1) by f0; 1gn1(k1)) in the role of the small code C2. Thisyields a (concatenated) binary code of block length n(k) = n1(k)2 = poly(k) anddistance (n1(k)�k) �n1(k)=2. Thus, the resulting explicit code has relative distance12 � k2pn(k) = 12 � o(1), provided that n(k) = !(k2).E.1.3 Two Additional Computational ProblemsIn this section we briey review relaxations of two traditional coding theoretic tasks.The purpose of these relaxations is enabling the design of super-fast (randomized)algorithms that provide meaningful information. Speci�cally, these algorithms mayrun in sub-linear (e.g., poly-logarithmic) time, and thus cannot possibly solve theunrelaxed version of the corresponding problem.Local testability. This task refers to testing whether a given word is a codeword(in a predetermine code), based on (randomly) inspecting few locations in theword. Needless to say, we can only hope to make an approximately correctdecision; that is, accept each codeword and reject with high probability eachword that is far from the code. (Indeed, this task is within the framework ofproperty testing; see Section 10.1.2.)



E.1. ERROR CORRECTING CODES 609Local decodability. Here the task is to recover a speci�ed bit in the plaintext by(randomly) inspecting few locations in a mildly corrupted codeword. Thistask is somewhat related to the task of self-correction (i.e., recovering a spec-i�ed bit in the codeword itself, by inspecting few locations in the mildlycorrupted codeword).Note that the Hadamard code is both locally testable and locally decodable as wellas self-correctable (based on a constant number of queries into the word); these factswere demonstrated and extensively used in x9.3.2.1. However, the Hadamard codehas an exponential block-length (i.e., n(k) = 2k), and the question is whether onecan achieve analogous results with respect to a shorter code (e.g., n(k) = poly(k)).As hinted in xE.1.2.4, the answer is positive (when we refer to performing theseoperations in time that is poly-logarithmic in k):Theorem E.3 For some constant � > 0 and polynomials n; q : N ! N , thereexists an explicit family of codes fCk : [q(k)]k ! [q(k)]n(k)gk2N of relative distance� that can be locally testable and locally decodable in poly(log k)-time. That is, thefollowing three conditions hold.1. Encoding: There exists a polynomial time algorithm that on input x 2 [q(k)]kreturns Ck(x).2. Local Testing: There exists a probabilistic polynomial-time oracle machineT that given k (in binary)6 and oracle access to w 2 [q(k)]n(k) (viewed asw : [n(k)]! [q(k)]) distinguishes the case that w is a codeword from the casethat w is �=2-far from any codeword. Speci�cally:(a) For every x 2 [q(k)]k it holds that Pr[TCk(x)(k)=1] = 1.(b) For every w 2 [q(k)]n(k) that is �=2-far from any codeword of Ck it holdsthat Pr[Tw(k)=1] � 1=2.As usual, the error probability can be reduced by repetitions.3. Local Decoding: There exists a probabilistic polynomial-time oracle machineD that given k and i 2 [k] (in binary) and oracle access to any w 2 [q(k)]n(k)that is �=2-close to Ck(x) returns xi; that is, Pr[Dw(k; i)=xi] � 2=3.Self correction holds too: there exists a probabilistic polynomial-time oraclemachine M that given k and i 2 [n(k)] (in binary) and oracle access to anyw 2 [q(k)]n(k) that is �=2-close to Ck(x) returns Ck(x)i; that is, Pr[Dw(k; i)=Ck(x)i] � 2=3.We stress that all these oracle machines work in time that is polynomial in the bi-nary representation of k, which means that they run in time that is poly-logarithmicin k. The code asserted in Theorem E.3 is a (small modi�cation of a) Reed-Mullercode, for r = m2 logm < q(k) = poly(r) and [n(k)] � GF(q(k))m (see xE.1.2.4).76Thus, the running time of T is poly(jkj) = poly(log k).7The modi�cation is analogous to the one presented in Footnote 3: For a suitable choice ofk points �1; :::; �k 2 GF(q(k))m, we map v1; :::; vk to (p(�1); :::; p(�n)), where p is the uniquem-variate polynomial of degree at most r that satis�es p(�i) = vi for i = 1; :::; k.



610 APPENDIX E. EXPLICIT CONSTRUCTIONSThe aforementioned oracle machines queries the oracle w : [n(k)] ! GF(q(k))at a non-constant number of locations. Speci�cally, self-correction for locationi 2 GF(q(k))m is performed by selecting a random line (over GF(q(k))m) thatpasses through i, recovering the values assigned by w to all q(k) points on thisline, and performing univariate polynomial extrapolation (under mild noise). Lo-cal testability is easily reduced to self-correction, and (under the aforementionedmodi�cation) local decodability is a special case of self-correction.Constant number of (binary) queries. The local testing and decoding al-gorithms asserted in Theorem E.3 make a polylogarithmic number of queries intothe oracle. Furthermore, these queries (which refer to a non-binary code) arenon-binary (i.e., they are each answered by a non-binary value). In contrast, theHadamard code has local testing and decoding algorithms that use a constant num-ber of binary queries. Can this be obtained with much shorter (binary) codewords?That is, rede�ning local testability and decodability as requiring a constant numberof queries, we ask whether binary codes of signi�cantly shorter block-length can belocally testable and decodable. For local testability the answer is de�nitely positive:one can construct such (locally testable and binary) codes with block-length thatis nearly linear (i.e., linear up to polylogarithmic factors; see [36, 67]). For localdecodability, the shortest known code has super-polynomial length (see [241]). Inlight of this state of a�airs, we advocate natural relaxations of the local decodabilitytask (e.g., the one studied in [35]).The interested reader is referred to [93], which includes more details on locallytestable and decodable codes as well as a wider perspective. (Note, however, thatthis survey was written prior to [67] and [241], which resolve two major openproblems discussed in [93].)E.1.4 A List Decoding BoundA necessary condition for the feasibility of the list decoding task is that the listof codewords that are close to the given word is short. In this section we presentan upper-bound on the length of such lists, noting that this bound has foundseveral applications in complexity theory (and speci�cally to studies related to thecontents of this book). In contrast, we do not present far more famous bounds(which typically refer to the relation among the main parameters of codes (i.e.,k; n and d)), because they seem less relevant to the contents of this book.We start with a general statement that refers to any alphabet � � [q], and laterspecialize it to the case that q = 2. Especially in the general case, it is natural andconvenient to consider the agreement (rather than the distance) between sequencesover [q]. Furthermore, it is natural to focus on agreement rate of at least 1=q, andit is convenient to state the following result in terms of the \excessive agreementrate" (i.e., the excess beyond 1=q).8 Loosely speaking, the following result upper-bounds the number of codewords that have a (su�cient) large agreement rate with8Indeed, we only consider codes with distance d � (1� 1=q) �n (i.e., agreement rate of at least1=q) and words that are at distance at most d from the code. Note that a random sequence isexpected to agree with any �xed sequence on a 1=q fraction of the locations.



E.2. EXPANDER GRAPHS 611any �xed sequence, where the upper-bound depends only on this agreement rateand the agreement rate between codewords (as well as on the alphabet size, butnot on k and n).Lemma E.4 (Part 2 of [105, Thm. 15]): Let C : [q]k ! [q]n be an arbitrarycode of distance d � n � (n=q), and let �C def= (1 � (d=n)) � (1=q) � 0 denotethe corresponding upper-bound on the excessive agreement rate between codewords.Suppose that � 2 (0; 1) satis�es� > s�1� 1q� � �C: (E.2)Then, for any w 2 [q]n, the number of codewords that agree with w on at least((1=q) + �) � n positions (i.e., are at distance at most (1� ((1=q) + �)) � n from w)is upper-bounded by (1� (1=q))2 � (1� (1=q)) � �C�2 � (1� (1=q)) � �C : (E.3)In the binary case (i.e., q = 2), Eq. (E.2) requires � >p�C=2 and Eq. (E.3) yieldsthe upper-bound (1� 2�C)=(4�2 � 2�C). We highlight two speci�c cases:1. At the end of xD.4.2.2, we refer to this bound (for the binary case) whilesetting �C = (1=k)2 and � = 1=k. Indeed, in this case (1�2�C)=(4�2�2�C) =O(k2).2. In the case of the Hadamard code, we have �C = 0. Thus, for every w 2f0; 1gn and every � > 0, the number of codewords that are (0:5� �)-close tow is at most 1=4�2.In the general case (and speci�cally for q � 2) it is useful to simplify Eq. (E.2) by� > minfp�C; (1=q) +p�C � (1=q)g and Eq. (E.3) by 1�2��C .E.2 Expander GraphsIn this section we review basic facts regarding expander graphs that are mostrelevant to the current book. For a wider perspective, the interested reader isreferred to [124].Loosely speaking, expander graphs are regular graphs of small degree that ex-hibit various properties of cliques.9 In particular, we refer to properties such as therelative sizes of cuts in the graph (i.e., relative to the number of edges), and therate at which a random walk converges to the uniform distribution (relative to thelogarithm of the graph size to the base of its degree).9Another useful intuition is that expander graphs exhibit various properties of random regulargraphs of the same degree.



612 APPENDIX E. EXPLICIT CONSTRUCTIONSSome technicalities. Typical presentations of expander graphs refer to one ofseveral variants. For example, in some sources, expanders are presented as bipartitegraphs, whereas in others they are presented as ordinary graphs (and are in factvery far from being bipartite). We shall follow the latter convention. Furthermore,at times we implicitly consider an augmentation of these graphs where self-loopsare added to each vertex. For simplicity, we also allow parallel edges.We often talk of expander graphs while we actually mean an in�nite collectionof graphs such that each graph in this collection satis�es the same property (whichis informally attributed to the collection). For example, when talking of a d-regularexpander (graph) we actually refer to an in�nite collection of graphs such that eachof these graphs is d-regular. Typically, such a collection (or family) contains a singleN -vertex graph for every N 2 S, where S is an in�nite subset of N . Throughoutthis section, we denote such a collection by fGNgN2S, with the understanding thatGN is a graph with N vertices and S is an in�nite set of natural numbers.E.2.1 De�nitions and PropertiesWe consider two de�nitions of expander graphs, two di�erent notions of explicitconstructions, and two useful properties of expanders.E.2.1.1 Two mathematical de�nitionsWe start with two di�erent de�nitions of expander graphs. These de�nitions arequalitatively equivalent and even quantitatively related. We start with an algebraicde�nition, which seems technical in nature but is actually the de�nition typicallyused in complexity theoretic applications, since it directly implies various \mixingproperties" (see xE.2.1.3). We later present a very natural combinatorial de�nition(which is the source of the term \expander").The algebraic de�nition (eigenvalue gap). Identifying graphs with their ad-jacency matrix, we consider the eigenvalues (and eigenvectors) of a graph (or ratherof its adjacency matrix). Any d-regular graph G = (V;E) has the uniform vectoras an eigenvector corresponding to the eigenvalue d, and if G is connected andnon-bipartite then the absolute values of all other eigenvalues are strictly smallerthan d. The eigenvalue bound, denoted �(G) < d, of such a graph G is de�ned asa tight upper-bound on the absolute value of all the other eigenvalues. (In fact,in this case it holds that �(G) < d � 
(1=djV j2).)10 The algebraic de�nition ofexpanders refers to an in�nite family of d-regular graphs and requires the existenceof a constant eigenvalue bound that holds for all the graphs in the family.De�nition E.5 An in�nite family of d-regular graphs, fGNgN2S, where S � N ,satis�es the eigenvalue bound � if for every N 2 S it holds that �(GN ) � �. In10This follows from the connection to the combinatorial de�nition (see Theorem E.7). Specif-ically, the square of this graph, denoted G2, is jV j�1-expanding and thus it holds that �(G)2 =�(G2) < d2 � 
(jV j�2).



E.2. EXPANDER GRAPHS 613such a case, we say that fGNgN2S is a family of (d; �)-expanders, and call d � �its eigenvalue gap.It will be often convenient to consider relative (or normalized) versions of theforegoing quantities, obtained by division by d.The combinatorial de�nition (expansion). Loosely speaking, expansion re-quires that any (not too big) set of vertices of the graph has a relatively large setof neighbors. Speci�cally, a graph G = (V;E) is c-expanding if, for every set S � Vof cardinality at most jV j=2, it holds that�G(S) def= fv : 9u2S s.t. fu; vg2Eg (E.4)has cardinality at least (1 + c) � jSj. Assuming the existence of self-loops on allvertices, the foregoing requirement is equivalent to requiring that j�G(S) n Sj �c � jSj. In this case, every connected graph G = (V;E) is (1=jV j)-expanding.11The combinatorial de�nition of expanders refers to an in�nite family of d-regulargraphs and requires the existence of a constant expansion bound that holds for allthe graphs in the family.De�nition E.6 An in�nite family of d-regular graphs, fGNgN2S is c-expanding iffor every N 2 S it holds that GN is c-expanding.The two de�nitions of expander graphs are related (see [11, Sec. 9.2] or [124,Sec. 4.5]). Speci�cally, the \expansion bound" and the \eigenvalue bound" arerelated as follows.Theorem E.7 Let G be a d-regular graph having a self-loop on each vertex.121. The graph G is c-expanding for c � (d� �(G))=2d.2. If G is c-expanding then d� �(G) � c2=(4 + 2c2).Thus, any non-zero bound on the combinatorial expansion of a family of d-regulargraphs yields a non-zero bound on its eigenvalue gap, and vice versa. Note, how-ever, that the back-and-forth translation between these measures is not tight. Wenote that the applications presented in the main text (see, e.g., Section 8.5.3 andx9.3.2.3) refer to the algebraic de�nition, and that the loss incurred in Theorem E.7is immaterial for them.11In contrast, a bipartite graph G = (V;E) is not expanding, because it always contains a setS of size at most jV j=2 such that j�G(S)j � jSj (although it may hold that j�G(S) n Sj � jSj).12Recall that in such a graph G = (V;E) it holds that �G(S) � S for every S � V , and thusj�G(S)j = j�G(S) n Sj + jSj. Furthermore, in such a graph all eigenvalues are greater than orequal to �d + 1, and thus if d � �(G) < 1 then this is due to a positive eigenvalue of G. Thesefacts are used for bridging the gap between Theorem E.7 and the more standard versions (see,e.g., [11, Sec. 9.2]) that refer to variants of both de�nitions. Speci�cally, [11, Sec. 9.2] refers to�+G(S) = �G(S) n S and �2(G), where �2(G) is the second largest eigenvalue of G, rather thanreferring to �G(S) and �(G). Note that, in general, �G(S) may be attained by the di�erencebetween the smallest eigenvalue of G (which may be negative) and �d.



614 APPENDIX E. EXPLICIT CONSTRUCTIONSAmpli�cation. The \quality of expander graphs improves" by raising thesegraphs to any power t > 1 (i.e., raising their adjacency matrix to the tth power),where this operation corresponds to replacing t-paths (in the original graphs)by edges (in the resulting graphs). Speci�cally, when considering the algebraicde�nition, it holds that �(Gt) = �(G)t, but indeed the degree also gets raisedto the power t. Still, the ratio �(Gt)=dt deceases with t. An analogous phe-nomenon occurs also under the combinatorial de�nition, provided that some suit-able modi�cations are applied. For example, if for every S � V it holds thatj�G(S)j � min((1 + c) � jSj; jV j=2), then for every S � V it holds that j�Gt(S)j �min((1 + c)t � jSj; jV j=2).The optimal eigenvalue bound. For every d-regular graphG = (V;E), it holdsthat �(G) � 2G � pd� 1, where G = 1 � O(1= logd jV j). Thus, for any in�nitefamily of (d; �)-expanders, it must holds that � � 2pd� 1.E.2.1.2 Two levels of explicitnessTowards discussing various notions of explicit constructions of graphs, we need to�x a representation of such graphs. Speci�cally, throughout this section, whenreferring to an in�nite family of graphs fGNgN2S, we shall assume that the vertexset of GN equals [N ]. Indeed, at times, we shall consider vertex sets having adi�erent structure (e.g., [m] � [m] for some m 2 N), but in all these cases thereexists a simple isomorphism of these sets to the canonical representation (i.e., thereexists an e�ciently computable and invertible mapping of the vertex set of GN to[N ]).Recall that a mild notion of explicit constructiveness refers to the complexity ofconstructing the entire object (i.e., the graph). Applying this notion to our setting,we say that an in�nite family of graphs fGNgN2S is explicitly constructible if thereexists a polynomial-time algorithm that, on input 1N (where N 2 S), outputs thelist of the edges in the N-vertex graph GN . That is, the entire graph is constructedin time that is polynomial in its size (i.e., in poly(N)-time).The foregoing (mild) level of explicitness su�ces when the application requiresholding the entire graph and/or when the running-time of the application is lower-bounded by the size of the graph. In contrast, other applications refer to a hugevirtual graph (which is much bigger than their running time), and only requirethe computation of the neighborhood relation in such a graph. In this case, thefollowing stronger level of explicitness is relevant.A strongly explicit construction of an in�nite family of (d-regular) graphs fGNgN2Sis a polynomial-time algorithm that on input N 2 S (in binary), a vertex v in theN-vertex graph GN (i.e., v 2 [N ]), and an index i 2 [d], returns the ith neighborof v. That is, the \neighbor query" is answered in time that is polylogarithmic inthe size of the graph. Needless to say, this strong level of explicitness implies thebasic (mild) level.An additional requirement, which is often forgotten but is very important, refersto the \tractability" of the set S. Speci�cally, we require the existence of ane�cient algorithm that given any n 2 N �nds an s 2 S such that n � s < 2n.



E.2. EXPANDER GRAPHS 615Corresponding to the two foregoing levels of explicitness, \e�cient" may meaneither running in time poly(n) or running in time poly(logn). The requirementthat n � s < 2n su�ces in most applications, but in some cases a smaller interval(e.g., n � s < n +pn) is required, whereas in other cases a larger interval (e.g.,n � s < poly(n)) su�ces.Greater exibility. In continuation to the foregoing paragraph, we commentthat expanders can be combined in order to obtain expanders for a wider range ofgraph sizes. For example, given two d-regular c-expanding graphs, G1 = (V1; E1)and G2 = (V2; E2) where jV1j � jV2j and c � 1, we can obtain a (d + 1)-regularc=2-expanding graph on jV1j + jV2j vertices by connecting the two graphs using aperfect matching of V1 and jV1j of the vertices of V2 (and adding self-loops to theremaining vertices of V2). More generally, combining the d-regular c-expandinggraphs G1 = (V1; E1) through Gt = (Vt; Et), where N 0 def= Pt�1i=1 jVij � jVtj, yieldsa (d + 1)-regular c=2-expanding graph on Pti=1 jVij vertices (by using a perfectmatching of [t�1i=1Vi and N 0 of the vertices of Vt).E.2.1.3 Two propertiesThe following two properties provide a quantitative interpretation to the statementthat expanders approximate the complete graph (or behave approximately likea complete graph). When referring to (d; �)-expanders, the deviation from thebehavior of a complete graph is represented by an error term that is linear in �=d.The mixing lemma. Loosely speaking, the following (folklore) lemma assertsthat in expander graphs (for which � � d) the fraction of edges connecting twolarge sets of vertices approximately equals the product of the densities of these sets.This property is called mixing.Lemma E.8 (Expander Mixing Lemma): For every d-regular graph G = (V;E)and for every two subsets A;B � V it holds that����� j(A�B) \ ~Ejj ~Ej � jAjjV j � jBjjV j ����� � �(G)pjAj � jBjd � jV j � �(G)d (E.5)where ~E denotes the set of directed edges (i.e., vertex pairs) that correspond to theundirected edges of G (i.e., ~E = f(u; v) : fu; vg2Eg and j ~Ej = djV j).In particular, j(A � A) \ ~Ej = (�(A) � d � �(G)) � jAj, where �(A) = jAj=jV j. Itfollows that j(A � (V nA)) \ ~Ej = ((1� �(A)) � d� �(G)) � jAj.Proof: Let N def= jV j and � def= �(G). For any subset of the vertices S � V , wedenote its density in V by �(S) def= jSj=N . Hence, Eq. (E.5) is restated as����� j(A�B) \ ~Ejd �N � �(A) � �(B)����� � �p�(A) � �(B)d :



616 APPENDIX E. EXPLICIT CONSTRUCTIONSWe proceed by providing bounds on the value of j(A�B)\ ~Ej. To this end we leta denote the N -dimensional Boolean vector having 1 in the ith component if andonly if i 2 A. The vector b is de�ned similarly. Denoting the adjacency matrix ofthe graph G by M = (mi;j), we note that j(A � B) \ ~Ej equals a>Mb (because(i; j) 2 (A � B) \ ~E if and only if it holds that i 2 A, j 2 B and mi;j = 1).We consider the orthogonal eigenvector basis, e1; :::; eN , where e1 = (1; :::; 1)> andei>ei = N for each i, and write each vector as a linear combination of the vectorsin this basis. Speci�cally, we denote by ai the coe�cient of a in the direction of ei;that is, ai = (a>ei)=N and a =Pi aiei. Note that a1 = (a>e1)=N = jAj=N = �(A)and PNi=1 a2i = (a>a)=N = jAj=N = �(A). Similarly for b. It now follows thatj(A�B) \ ~Ej = a>M NXi=1 biei= NXi=1 bi�i � a>eiwhere �i denotes the ith eigenvalue of M . Note that �1 = d and for every i � 2 itholds that j�ij � �. Thus,j(A�B) \ ~EjdN = NXi=1 bi�i � aid= �(A)�(B) + NXi=2 �iaibid2 "�(A)�(B) � �d � NXi=2 aibi#Using PNi=1 a2i = �(A) and PNi=1 b2i = �(B), and applying Cauchy-Schwartz In-equality, we bound PNi=2 aibi by p�(A)�(B). The lemma follows.The random walk lemma. Loosely speaking, the �rst part of the followinglemma asserts that, as far as remaining \trapped" in some subset of the vertex setis concerned, a random walk on an expander approximates a random walk on thecomplete graph.Lemma E.9 (Expander Random Walk Lemma): Let G = ([N ]; E) be a d-regulargraph, and consider walks on G that start from a uniformly chosen vertex and take`�1 additional random steps, where in each such step we uniformly selects one outof the d edges incident at the current vertex and traverses it.Theorem 8.28 (restated): Let W be a subset of [N ] and � def= jW j=N . Then theprobability that such a random walk stays in W is at most� ���+ (1� �) � �(G)d �`�1: (E.6)



E.2. EXPANDER GRAPHS 617Exercise 8.43 (restated): For any W0; :::;W`�1 � [N ], the probability that a randomwalk of length ` intersects W0 �W1 � � � � �W`�1 is at mostp�0 � `�1Yi=1q�i + (�=d)2; (E.7)where �i def= jWij=N .The basic principle underlying Lemma E.9 was discovered by Ajtai, Komlos, andSzemer�edi [4], who proved a bound as in Eq. (E.7). The better analysis yieldingTheorem 8.28 is due to [135, Cor. 6.1]. A more general bound that refer to theprobability of visiting W for a number of times that approximates jW j=N is givenin [120], which actually considers an even more general problem (i.e., obtainingCherno�-type bounds for random variables that are generated by a walk on anexpander).Proof of Equation (E.7): The basic idea is viewing events occuring during therandom walk as an evolution of a corresponding probability vector under suitabletransformations. The transformations correspond to taking a random step in Gand to passing through a \sieve" that keeps only the entries that correspond tothe current set Wi. The key observation is that the �rst transformation shrinksthe component that is orthogonal to the uniform distribution, whereas the sec-ond transformation shrinks the component that is in the direction of the uniformdistribution. Details follow.Let A be a matrix representing the random walk on G (i.e., A is the adjacencymatrix of G divided by d), and let �̂ def= �(G)=d (i.e., �̂ upper-bounds the abso-lute value of every eigenvalue of A except the �rst one). Note that the uniformdistribution, represented by the vector u = (N�1; :::; N�1)>, is the eigenvector ofA that is associated with the largest eigenvalue (which is 1). Let Pi be a 0-1 ma-trix that has 1-entries only on its diagonal such that entry (j; j) is set to 1 if andonly if j 2 Wi. Then, the probability that a random walk of length ` intersectsW0 �W1 � � � � �W`�1 is the sum of the entries of the vectorv def= P`�1A � � �P2AP1AP0u: (E.8)We are interested in upper-bounding kvk1, and use kvk1 � pN � kvk, where kzk1and kzk denote the L1-norm and L2-norm of z, respectively (e.g., kuk1 = 1 andkuk = N�1=2). The key observation is that the linear transformation PiA shrinksevery vector.Main Claim. For every z, it holds that kPiAzk � (�i + �̂2)1=2 � kzk.Proof. Intuitively, A shrinks the component of z that is orthogonal to u, whereas Pishrinks the component of z that is in the direction of u. Speci�cally, we decomposez = z1 + z2 such that z1 is the projection of z on u and z2 is the componentorthogonal to u. Then, using the triangle inequality and other obvious facts (which



618 APPENDIX E. EXPLICIT CONSTRUCTIONSimply kPiAz1k = kPiz1k and kPiAz2k � kAz2k), we havekPiAz1 + PiAz2k � kPiAz1k+ kPiAz2k� kPiz1k+ kAz2k� p�i � kz1k+ �̂ � kz2kwhere the last inequality uses the fact that Pi shrinks any uniform vector by elimi-nating 1��i of its elements, whereas A shrinks the length of any eigenvector exceptu by a factor of at least �̂. Using the Cauchy-Schwartz inequality13, we getkPiAzk � q�i + �̂2 �pkz1k2 + kz2k2= q�i + �̂2 � kzkwhere the equality is due to the fact that z1 is orthogonal to z2.Recalling Eq. (E.8) and using the Main Claim (and kvk1 � pN � kvk), we getkvk1 � pN � kP`�1A � � �P2AP1AP0uk� pN � `�1Yi=1q�i + �̂2! � kP0uk:Finally, using kP0uk =p�0N � (1=N)2 =p�0=N , we establish Eq. (E.7).Rapid mixing. A property related to Lemma E.9 is that a random walk startingat any vertex converges to the uniform distribution on the expander vertices after alogarithmic number of steps. Speci�cally, we claim that starting at any distributions (including a distribution that assigns all weight to a single vertex) after ` stepson a (d; �)-expander G = ([N ]; E) we reach a distribution that is pN � (�=d)`-closeto the uniform distribution over [N ]. Using notation as in the proof of Eq. (E.7),the claim asserts that kA`s � uk1 � pN � �̂`, which is meaningful only for ` >0:5 � log1=�̂N . The claim is proved by recalling that kA`s� uk1 � pN � kA`s� ukand using the fact that s� u is orthogonal to u (because the former is a zero-sumvector). Thus, kA`s � uk = kA`(s � u)k � �̂`ks � uk and using ks � uk < 1 theclaim follows.E.2.2 ConstructionsMany explicit constructions of (d; �)-expanders are known. The �rst such con-struction was presented in [164] (where � < d was not explicitly bounded), and anoptimal construction (i.e., an optimal eigenvalue bound of � = 2pd� 1) was �rst13That is, we get p�ikz1k + �̂kz2k � p�i + �̂2 �pkz1k2 + kz2k2, by using Pni=1 ai � bi ��Pni=1 ai2�1=2 � �Pni=1 bi2�1=2, with n = 2, a1 = p�i, b1 = kz1k, etc.



E.2. EXPANDER GRAPHS 619provided in [160]. Most of these constructions are quite simple (see, e.g., xE.2.2.1),but their analysis is based on non-elementary results from various branches of math-ematics. In contrast, the construction of Reingold, Vadhan, and Wigderson [191],presented in xE.2.2.2, is based on an iterative process, and its analysis is based ona relatively simple algebraic fact regarding the eigenvalues of matrices.Before turning to these explicit constructions we note that it is relatively easyto prove the existence of 3-regular expanders, by using the Probabilistic Method(cf. [11]) and referring to the combinatorial de�nition of expansion.14E.2.2.1 The Margulis{Gabber{Galil ExpanderFor every natural number m, consider the graph with vertex set Zm�Zm and theedge set in which every hx; yi 2 Zm �Zm is connected to the vertices hx� y; yi,hx� (y + 1); yi, hx; y � xi, and hx; y � (x+ 1)i, where the arithmetic is modulo m.This yields an extremely simple 8-regular graph with an eigenvalue bound that isa constant � < 8 (which is independent of m). Thus, we get:Theorem E.10 There exists a strongly explicit construction of a family of (8; 7:9999)-expanders for graph sizes fm2 : m2Ng. Furthermore, the neighbors of a vertex inthese expanders can be computed in logarithmic-space.15An appealing property of Theorem E.10 is that, for every n 2 N , it directly yieldsexpanders with vertex set f0; 1gn. This is obvious in case n is even, but can beeasily achieved also for odd n (e.g., use two copies of the graph for n � 1, andconnect the two copies by the obvious perfect matching).Theorem E.10 is due to Gabber and Galil [84], building on the basic approachsuggested by Margulis [164]. We mention again that the (strongly explicit) (d; �)-expanders of [160] achieve the optimal eigenvalue bound (i.e., � = 2pd� 1), butthere are annoying restrictions on the degree d (i.e., d � 1 should be a primecongruent to 1 modulo 4) and on the graph sizes for which this construction works.1614This can be done by considering a 3-regular graph obtained by combining an N-cycle with arandom matching of the �rst N=2 vertices and the remaining N=2 vertices. It is actually easierto prove the related statement that refers to the alternative de�nition of combinatorial expansionthat refers to the relative size of �+G(S) = �G(S) n S (rather than to the relative size of �G(S)).In this case, for a su�ciently small " > 0 and all su�ciently large N , a random 3-regular N-vertex graph is \"-expanding" with overwhelmingly high probability. The proof proceeds byconsidering a (not necessarily simple) graph G obtained by combining three uniformly chosenperfect matchings of the elements of [N ]. For every S � [N ] of size at most N=2 and for every setT of size "jSj, we consider the probability that for a random perfect matching M it holds that�+M (S) � T . The argument is concluded by applying a union bound.15In fact, for m that is a power of two (and under a suitable encoding of the vertices), theneighbors can be computed by a on-line algorithm that uses a constant amount of space. Thesame holds also for a variant in which each vertex hx; yi is connected to the vertices hx� 2y; yi,hx� (2y + 1); yi, hx; y � 2xi, and hx; y � (2x+ 1)i. This variant yields a better known bound on�, i.e., � � 5p2 � 7:071.16The construction in [160] allows graph sizes of the form (p3 � p)=2, where p � 1 (mod 4) isa prime such that d� 1 is a quadratic residue modulo p. As stated in [8, Sec. 2], the constructioncan be extended to graph sizes of the form (p3k � p3k�2)=2, for any k 2 N and p as in theforegoing.



620 APPENDIX E. EXPLICIT CONSTRUCTIONSE.2.2.2 The Iterated Zig-Zag ConstructionThe starting point of the following construction is a very good expander G ofconstant size, which may be found by an exhaustive search. The constructionof a large expander graph proceeds in iterations, where in the ith iteration thecurrent graph Gi and the �xed graph G are combined, resulting in a larger graphGi+1. The combination step guarantees that the expansion property of Gi+1 is atleast as good as the expansion of Gi, while Gi+1 maintains the degree of Gi andis a constant times larger than Gi. The process is initiated with G1 = G2 andterminates when we obtain a graph Gt of approximately the desired size (whichrequires a logarithmic number of iterations).
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In this example G0 is 6-regular and G is a 3-regular graph having sixvertices. In the graph G0 (not shown), the 2nd edge of vertex u isincident at v, as its 5th edge. The wide 3-segment line shows one ofthe corresponding edges of G0z G, which connects the vertices hu; 3iand hv; 2i.Figure E.1: Detail of the zig-zag product of G0 and G.The Zig-Zag product. The heart of the combination step is a new type of\graph product" called Zig-Zag product. This operation is applicable to any pairof graphs G = ([D]; E) and G0 = ([N ]; E0), provided that G0 (which is typicallylarger than G) is D-regular. For simplicity, we assume that G is d-regular (wheretypically d� D). The Zig-Zag product of G0 and G, denoted G0z G, is de�ned asa graph with vertex set [N ] � [D] and an edge set that includes an edge betweenhu; ii 2 [N ]� [D] and hv; ji if and only if fi; kg; f`; jg 2 E and the kth edge incidentat u equals the `th edge incident at v. That is, hu; ii and hv; ji are connected inG0z G if there exists a \three step sequence" consisting of a G-step from hu; ii tohu; ki (according to the edge fi; kg of G), followed by a G0-step from hu; ki to hv; `i



E.2. EXPANDER GRAPHS 621(according to the kth edge of u in G0 (which is the `th edge of v)), and a �nal G-stepfrom hv; `i to hv; ji (according to the edge f`; jg of G). See Figure E.1 as well asfurther formalization (which follows).Teaching note: The following paragraph, which provides a formal description of thezig-zag product, can be ignored in �rst reading but is useful for more advanced discus-sion.It will be convenient to represent graphs like G0 by their edge-rotation function,denoted R0 : [N ] � [D] ! [N ] � [D], such that R0(u; i) = (v; j) if fu; vg is the ithedge incident at u as well as the jth edge incident at v. That is, R0 rotates thepair (u; i), which represents one \side" of the edge fu; vg (i.e., the side incident atu as its ith edge), resulting in the pair (v; j), which represents the other side of thesame edge (which is the jth edge incident at v). For simplicity, we assume thatthe (constant-size) d-regular graph G = ([D]; E) is edge-colorable with d colors,which in turn yields a natural edge-rotation function (i.e., R(i; �) = (j; �) if theedge fi; jg is colored �). We will denote by E�(i) the vertex reached from i 2 [D]by following the edge colored � (i.e., E�(i) = j i� R(i; �) = (j; �)). The Zig-Zagproduct of G0 and G, denoted G0z G, is then de�ned as a graph with the vertex set[N ]� [D] and the edge-rotation function(hu; ii; h�; �i) 7! (hv; ji; h�; �i) if R0(u;E�(i)) = (v; E�(j)). (E.9)That is, edges are labeled by pairs over [d], and the h�; �ith edge out of vertexhu; ii 2 [N ]�[D] is incident at the vertex hv; ji (as its h�; �ith edge) if R(u;E�(i)) =(v; E�(j)), where indeed E�(E�(j)) = j. Intuitively, based on h�; �i, we �rsttake a G-step from hu; ii to hu;E�(i)i, then viewing hu;E�(i)i � (u;E�(i)) asa side of an edge of G0 we rotate it (i.e., we e�ectively take a G0-step) reaching(v; j0) def= R0(u;E�(i)), and �nally we take a G-step from hv; j0i to hv; E�(j0)i.Clearly, the graph G0z G is d2-regular and has D � N vertices. The key fact,proved in [191] (using techniques as in xE.2.1.3), is that the relative eigenvalue-valueof the zig-zag product is upper-bounded by the sum of the relative eigenvalue-valuesof the two graphs; that is, ��(G0z G) � ��(G0)+��(G), where ��(�) denotes the relativeeigenvalue-bound of the relevant graph. The (qualitative) fact that G0z G is anexpander if both G0 and G are expanders is very intuitive (e.g., consider whathappens if G0 or G is a clique). Things are even more intuitive if one considers the(related) replacement product of G0 and G, denoted G0r G, where there is an edgebetween hu; ii 2 [N ] � [D] and hv; ji if and only if either u = v and fi; jg 2 E orthe ith edge incident at u equals the jth edge incident at v.The iterated construction. The iterated expander construction uses the afore-mentioned zig-zag product as well as graph squaring. Speci�cally, the construc-tion starts17 with the d2-regular graph G1 = G2 = ([D]; E2), where D = d4 and��(G) < 1=4, and proceeds in iterations such thatGi+1 = G2iz G for i = 1; 2; :::; t�1,17Recall that, for a su�ciently large constant d, we �rst �nd a d-regular graph G = ([d4];E)satisfying ��(G) < 1=4, by exhaustive search.



622 APPENDIX E. EXPLICIT CONSTRUCTIONSwhere t is logarithmic in the desired graph size. That is, in each iteration, the cur-rent graph is �rst squared and then composed with the �xed (d-regular D-vertex)graph G via the zig-zag product. This process maintains the following two invari-ants:1. The graph Gi is d2-regular and has Di vertices.(The degree bound follows from the fact that a zig-zag product with a d-regular graph always yields a d2-regular graph.)2. The relative eigenvalue-bound of Gi is smaller than one half (i.e., ��(Gi) <1=2).(Here we use the fact that ��(G2i�1z G) � ��(G2i�1) + ��(G), which in turnequals ��(Gi�1)2 + ��(G) < (1=2)2 + (1=4). Note that graph squaring is usedto reduce the relative eigenvalue of Gi before increasing it by zig-zag productwith G.)In order to show that we can actually construct Gi, we show that we can com-pute the edge-rotation function that correspond to its edge set. This boils downto showing that, given the edge-rotation function of Gi�1, we can compute theedge-rotation function of G2i�1 as well as of its zig-zag product with G. Notethat this entire computation amounts to two recursive calls to computations re-garding Gi�1 (and two computations that correspond to the constant graph G).But since the recursion depth is logarithmic in the size of the �nal graph (i.e.,t = logD jvertices(Gt)j), the total number of recursive calls is polynomial in thesize of the �nal graph (and thus the entire computation is polynomial in the size ofthe �nal graph). This su�ces for the minimal (i.e., \mild") notion of explicitness,but not for the strong one.The strongly explicit version. To achieve a strongly explicit construction, weslightly modify the iterative construction. Rather than letting Gi+1 = G2iz G, welet Gi+1 = (Gi � Gi)2z G, where G0 � G0 denotes the tensor product of G0 withitself; that is, if G0 = (V 0; E0) then G0 �G0 = (V 0 � V 0; E00), whereE00 = ffhu1; u2i; hv1; v2ig : fu1; v1g; fu2; v2g2E0g(i.e., hu1; u2i and hv1; v2i are connected in G0 �G0 if for i = 1; 2 it holds that ui isconnected to vi in G0). The corresponding edge-rotation function isR00(hu1; u2i; hi1; i2i) = (hv1; v2i; hj1; j2i);where R0(u1; i1) = (v1; j1) and R0(u2; i2) = (v2; j2). We still use G1 = G2, where(as before) G is d-regular and ��(G) < 1=4, but here G has D = d8 vertices.18 Usingthe fact that tensor product preserves the relative eigenvalue-bound while squaringthe degree (and the number of vertices), we note that the modi�ed iteration Gi+1 =(Gi�Gi)2z G yields a d2-regular graph with (D2i�1)2 �D = D2i+1�1 vertices, and18The reason for the change is that (Gi �Gi)2 will be d8-regular, since Gi will be d2-regular.



E.2. EXPANDER GRAPHS 623that ��(Gi+1) < 1=2 (because ��((Gi �Gi)2z G) � ��(Gi)2+ ��(G)). Computing theneighbor of a vertex in Gi+1 boils down to a constant number of such computationsregarding Gi, but due to the tensor product operation the depth of the recursionis only double-logarithmic in the size of the �nal graph (and hence logarithmic inthe length of the description of vertices in this graph).Digest. In the �rst construction, the zig-zag product was used both in order toincrease the size of the graph and to reduce its degree. However, as indicated bythe second construction (where the tensor product of graphs is the main vehiclefor increasing the size of the graph), the primary e�ect of the zig-zag product isreducing the graph's degree, and the increase in the size of the graph is merely aside-e�ect.19 In both cases, graph squaring is used in order to compensate for themodest increase in the relative eigenvalue-bound caused by the zig-zag product. Inretrospect, the second construction is the \correct" one, because it decouples threedi�erent e�ects, and uses a natural operation to obtain each of them: Increasing thesize of the graph is obtained by tensor product of graphs (which in turn increasesthe degree), the desired degree reduction is obtained by the zig-zag product (whichin turn slightly increases the relative eigenvalue-bound), and graph squaring is usedin order to reduce the relative eigenvalue-bound.Stronger bound regarding the e�ect of the zig-zag product. In the fore-going description we relied on the fact, proved in [191], that the relative eigenvalue-bound of the zig-zag product is upper-bounded by the sum of the relative eigenvalue-bounds of the two graphs (i.e., ��(G0z G) � ��(G0) + ��(G))). Actually, a strongerupper-bound is proved in [191]: It holds that ��(G0z G) � f(��(G0); ��(G))), wheref(x; y) def= (1� y2) � x2 +s� (1� y2) � x2 �2 + y2 (E.10)Indeed, f(x; y) � (1� y2) � x+ y � x + y. On the other hand, for x � 1, we havef(x; y) � (1�y2)�x2 + 1+y22 = 1� (1�y2)�(1�x)2 , which implies��(G0z G) � 1� (1� ��(G)2) � (1� ��(G0))2 : (E.11)Thus, 1� ��(G0z G) � (1� ��(G)2) � (1� ��(G0))=2, and it follows that the zig-zagproduct has a positive eigenvalue-gap if both graphs have positive eigenvalue-gaps(i.e., �(G0z G) < 1 if both �(G) < 1 and �(G0) < 1). Furthermore, if ��(G) < 1=p3then 1� ��(G0z G) > (1� ��(G0))=3. This fact plays an important role in the proofof Theorem 5.6.19We mention that this side-e�ect may actually be undesired in some applications. For example,in Section 5.2.4 we would rather not have the graph grow in size, but we can tolerate the constantsize blow-up (caused by zig-zag product with a constant-size graph).
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Appendix FSome Omitted ProofsA word of a Gentleman is better than a proof,but since you are not a Gentleman { please provide a proof.Leonid A Levin (1986)The proofs presented in this appendix were not included in the main text for avariety of reasons (e.g., they were deemed too technical and/or out-of-pace for thecorresponding location). On the other hand, since our presentation of these proofsis su�ciently di�erent from the original and/or standard presentation, we see abene�t in including these proofs in the current book.Summary: This appendix contains proofs of the following results:1. PH is reducible to #P (and in fact to �P) via randomized Karp-reductions. The proof follows the underlying ideas of Toda's orig-inal proof, but the actual presentation is quite di�erent.2. For any integral function f that satis�es f(n) 2 f2; :::; poly(n)g, itholds that IP(f) � AM(O(f)) and AM(O(f)) � AM(f). Theproofs di�er from the original proofs (provided in [111] and [23],respectively) only in secondary details, but these details seem sig-ni�cant.F.1 Proving that PH reduces to #PRecall that Theorem 6.16 asserts that PH is Cook-reducible to #P (via determin-istic reductions). Here we prove a closely related result (also due to Toda [220]),which relaxes the requirement from the reduction (allowing it to be randomized)but uses an oracle to a seemingly weaker class. The latter class is denoted �Pand is the \modulo 2 analogue" of #P. Speci�cally, a Boolean function f isin �P if there exists a function g 2 #P such that for every x it holds that625



626 APPENDIX F. SOME OMITTED PROOFSf(x) = g(x) mod 2. Equivalently, f is in �P if there exists a search problemR 2 PC such that f(x) = jR(x)j mod 2, where R(x) = fy : (x; y)2Rg. Thus, forany R 2 PC, the set �R def= fx : jR(x)j � 1 (mod 2)g is in �P. (The � symbolin the notation �P actually represents parity, which is merely addition modulo 2.Indeed, a notation such as #2P would have been more appropriate.)Theorem F.1 Every set in PH is reducible to �P via a probabilistic polynomial-time reduction. Furthermore, the reduction is via a many-to-one randomized map-ping and it fails with negligible error probability.The proof follows the underlying ideas of the original proof [220], but the actualpresentation is quite di�erent. Alternative proofs of Theorem F.1 can be foundin [136, 212].Teaching note: It is quite easy to prove a non-uniform analogue of Theorem F.1, whichasserts that AC0 circuits can be approximated by circuits consisting of an unboundedparity of conjunctions, where each conjunction has polylogarithmic fan-in. Turning thisargument into a proof of Theorem F.1 requires a careful implementation as well as usingtransitions of the type presented in Exercise 3.8. Furthermore, such a presentation tendsto obscure the conceptual steps that underly the argument.Proof Outline: The proof uses three main ingredients. The �rst ingredient isthe fact that NP is reducible to �P via a probabilistic Karp-reduction, and thatthis reduction \relativizes" (i.e., reduces NPA to �PA for any oracle A).1 Thesecond ingredient is the fact that error-reduction is available in the current context(of randomized reductions to �P), resulting in reductions that have exponentiallyvanishing error probability.2 The third ingredient is the extension of the �rstingredient to �k, which relies on Proposition 3.9 as well as on the aforementionederror-reduction. These ingredients correspond to the three main steps of the proof,which are outlined next:Step 1: Present a randomized Karp-reduction of NP to �P.Step 2: Decrease the error probability of the foregoing Karp-reduction such thatthe error probability becomes exponentially vanishing. Such a low error prob-ability is crucial as a starting point for the next step.1Indeed, the \relativization" requirement presumes that both NP and �P are each asso-ciated with a class of (standard) machines that generalizes to a class of corresponding oraclemachines (see comment at Section 3.2.2). This presumption holds for both classes, by virtueof a (deterministic polynomial-time) machine that decide membership in the corresponding rela-tion that belongs to PC. Alternatively, one may use the fact that the aforementioned reductionis \highly structured" in the sense that for some polynomial-time computable predicate  thisreduction maps x to hx; si such that for every non-empty set Sx � f0; 1gp(jxj) it holds thatPrs[jfy2Sx :  (x; s; y)gj � 1 (mod 2)] > 1=3.2We comment that such an error-reduction is not available in the context of reductions tounique solution problems. This comment is made in view of the similarity between the reductionof NP to �P and the reduction of NP to problems of unique solution.



F.1. PROVING THAT PH REDUCES TO #P 627Step 3: Prove that �2 is randomly reducible to �P by extending the reductionof Step 1 (while using Step 2). Intuitively, for any oracle A, the reductionof Step 1 o�ers a reduction of NPA to �PA, whereas a reduction of A toB having exponentially vanishing error probability allows reducing �PA to�PB (or, similarly, reduce NPA to NPB). Observing that �P�P = �P,we obtain a randomized Karp-reduction of �2 (viewed as NPNP) to �P.When completing the third step, we shall have all the ingredients needed for thegeneral case (of randomly reducing �k to �P, for any k � 2). We shall �nish theproof by sketching the extension of the case of �2 (treated in Step 3) to the generalcase of �k (for any k � 2). The actual extension is quite cumbersome, but theideas are all present in the case of �2. Furthermore, we believe that the case of �2is of signi�cant interest per se.Teaching note: The foregoing sketch of Step 3 suggests an abstract treatment thatevolves around de�nitions such as NPA and �PB . We prefer a concrete presentationthat performs Step 3 as an extension of Step 1 (while using Step 2). This is onereason for explicitly performing Step 1 (i.e., present a randomized Karp-reduction ofNP to �P). We note that Step 1 (i.e., a reduction of NP to �P) follows immediatelyfrom the NP-hardness of deciding unique solution for some relations R 2 PC (i.e.,Theorem 6.29), because the promise problem (USR; SR), where USR = fx : jR(x)j=1gand SR = fx : jR(x)j = 0g, is reducible to �R = fx : jR(x)j � 1 (mod 2)g by theidentity mapping. However, for the sake of self-containment and conceptual rightness,we present an alternative proof.Step 1: a direct proof for the case of NP. As in the proof of Theorem 6.29,we start with any R 2 PC and our goal is reducing SR = fx : jR(x)j�1g to �P by arandomized Karp-reduction.3 The standard way of obtaining such a reduction (e.g.,in [136, 178, 212, 220]) consists of just using the reduction (to \unique solution")that was presented in the proof of Theorem 6.29, but we believe that this way isconceptually wrong. Let us explain.Recall that the proof of Theorem 6.29 consists of implementing a randomizedsieve that has the following property. For any x 2 SR, with noticeable probability,a single element of R(x) passes the sieve (and this event can be detected by anoracle to a unique solution problem). Indeed, an adequate oracle in �P correctlydetects the case in which a single element of R(x) passes the sieve. However, byde�nition, this oracle correctly detects the more general case in which any oddnumber of elements of R(x) pass the sieve. Thus, insisting on a random sieve thatallows the passing of a single element of R(x) seems an over-kill (or at least isconceptually wrong). Instead, we should just apply a less stringent random sievethat, with noticeable probability, allows the passing of an odd number of elements3As in Theorem 6.29, if any search problem in PC is reducible to R via a parsimonious reduc-tion, then we can reduce SR to �R. Speci�cally, we shall show that SR is randomly reducibleto �R2, for some R2 2 PC, and a reduction of SR to �R follows (by using the parsimoniousreduction of R2 to R).



628 APPENDIX F. SOME OMITTED PROOFSof R(x). The adequate tool for such a random sieve is a small-bias generator (seeSection 8.5.2).Indeed, we randomly reduce SR to �P by sieving potential solutions via a small-bias generator. Intuitively, we randomly map x to hx; si, where s is a random seedfor such a generator, and y is considered a solution to the instance hx; si if andonly if y 2 R(x) and the yth bit of G(s) equals 1. (Indeed, if jR(x)j � 1 then, withprobability approximately 1/2, the instance hx; si has an odd number of solutions,whereas if jR(x)j = 0 then hx; si has no solutions.) Speci�cally, we use a stronglye�cient generator (see x8.5.2.1), denoted G : f0; 1gk ! f0; 1g`(k), where G(Uk) hasbias at most 1=6 and `(k) = exp(
(k)). That is, given a seed s 2 f0; 1gk and indexi 2 [`(k)], we can produce the ith bit of G(s), denoted G(s; i), in polynomial-time.Assuming, without loss of generality, that R(x) � f0; 1gp(jxj) for some polynomialp, we consider the relationR2 def= f(hx; si; y) : (x; y)2R ^G(s; y)=1g (F.1)where y 2 f0; 1gp(jxj) � [2p(jxj)] and s 2 f0; 1gO(jyj) such that `(jsj) = 2jyj. Inother words, R2(hx; si) = fy : y 2 R(x) ^ G(s; y) = 1g. Then, for every x 2SR, with probability at least 1=3, a uniformly selected s 2 f0; 1gO(jyj) satis�esjR2(hx; si)j � 1 (mod 2), whereas for every x 62 SR and every s 2 f0; 1gO(jyj) itholds that jR2(hx; si)j = 0. A key observation is that R2 2 PC (and thus �R2 isin �P). Thus, deciding membership in SR is randomly reducible to �R2 (by themany-to-one randomized mapping of x to hx; si, where s is uniformly selected inf0; 1gO(p(jxj))). Since the foregoing holds for any R 2 PC, it follows that NP isreducible to �P via randomized Karp-reductions.Dealing with coNP. We may Cook-reduce coNP to NP and thus prove thatcoNP is randomly reducible to �P, but we wish to highlight the fact that arandomized Karp-reduction will also do. Starting with the reduction presented forthe case of sets in NP , we note that for S 2 coNP (i.e., S = fx : R(x)= ;g) weobtain a relation R2 such that x 2 S is indicated by jR2(hx; �i)j � 0 (mod 2). Wewish to ip the parity such that x 2 S will be indicated by jR2(hx; �i)j � 1 (mod 2),and this can be done by augmenting the relation R2 with a single dummy solutionper each x. For example, we may rede�ne R2(hx; si) as f0y : y 2 R2(hx; si)g [f10p(jxj)g. Indeed, we have just demonstrated and used the fact that �P is closedunder complementation.We note that dealing with the cases of NP and coNP is of interest only becausewe reduced these classes to �P rather than to #P . In contrast, even a reductionof �2 to #P is of interest, and thus the reduction of �2 to �P (presented inStep 3) is interesting. This reduction relies heavily on the fact that error-reductionis applicable to the context of randomized Karp-reductions to �P.Step 2: error reduction. An important observation, towards the core of theproof, is that it is possible to drastically decrease the (one-sided) error probabilityin randomized Karp-reductions to �P. Speci�cally, let R2 be as in Eq. (F.1) and



F.1. PROVING THAT PH REDUCES TO #P 629t be any polynomial. Then, a binary relation R(t)2 that satis�esjR(t)2 (hx; s1; :::; st(jxj)i)j = 1 + t(jxj)Yi=1 (1 + jR2(hx; sii)j) (F.2)o�ers such an error-reduction, because jR(t)2 (hx; s1; :::; st(jxj)i)j is odd if and only iffor some i 2 [t(jxj)] it holds that jR2(hx; sii)j is odd. Thus,Prs1;:::;st(jxj) [jR(t)2 (hx; s1; :::; st(jxj)i)j � 0 (mod 2)]= Prs[jR2(hx; si)j � 0 (mod 2)]t(jxj)where s; s1; ::::; st(jxj) are uniformly and independently distributed in f0; 1gO(p(jxj))(and p is such that R(x) � f0; 1gp(jxj)). This means that the one-sided errorprobability of a randomized reduction of SR to �R2 (which maps x to hx; si) canbe drastically decreased by reducing SR to �R(t)2 , where the reduction maps x tohx; s1; :::; st(jxj)i. Speci�cally, an error probability of " (e.g., " = 2=3) in the casethat we desire an \odd outcome" (i.e., x 2 SR) is decreased to error probability"t, whereas the zero error probability in the case of a desired \even outcome" (i.e.,x 2 SR) is preserved.A key question is whether �R(t)2 is in �P; that is, whether R(t)2 (as postulated inEq. (F.2)) can be implemented in PC. The answer is positive, and this can be shownby using a Cartesian product construction (and adding some dummy solutions).For example, let R(t)2 (hx; s1; :::; st(jxj)i) consists of tuples h�0; y1; :::; yt(jxj)i such thateither �0 = 1 and y1 = � � � = yt(jxj) = 0p(jxj)+1 or �0 = 0 and for every i 2 [t(jxj)]it holds that yi 2 (f0g�R2(hx; sii))[f10p(jxj)g (i.e., either yi = 10p(jxj) or yi = 0y0iand y0i 2 R2(hx; sii)).We wish to stress that, when starting with R2 as in Eq. (F.1), the forgoingprocess of error-reduction can be used for obtaining error probability that is upper-bounded by exp(�q(jxj)) for any desired polynomial q. The importance of thiscomment will become clear shortly.Step 3: the case of �2. With the foregoing preliminaries, we are now ready tohandle the case of S 2 �2. By Proposition 3.9, there exists a polynomial p and aset S0 2 �1 = coNP such that S = fx : 9y 2 f0; 1gp(jxj) s.t. (x; y) 2 S0g. UsingS0 2 coNP , we apply the forgoing reduction of S0 to �P as well as an adequateerror-reduction that yields an upper-bound of " � 2�p(jxj) on the error probability,where " � 1=7 is unspeci�ed at this point. (For the case of �2 the setting " = 1=7will do, but for the dealing with �k we will need a much smaller value of " > 0.)Thus, for an adequate polynomial t (i.e., t(n+p(n)) = O(p(n) log(1="))), we obtaina relation R(t)2 2 PC such that the following holds: for every x and y2f0; 1gp(jxj) ,with probability at least 1� " � 2�p(jxj) over the random choice of s02f0; 1gpoly(jxj),it holds that x0 def= (x; y)2S0 if and only if jR(t)2 (hx0; s0i)j is odd.44Recall that js0j = t(jx0j) � O(p0(jx0j)), where R0(x0) � f0; 1gp0(jx0j) is the \witness-relation"corresponding to S0 (i.e., x0 2 S0 if and only if R0(x0) = f0; 1gp0(jx0j)). Thus, R2(hx0; s0i) �



630 APPENDIX F. SOME OMITTED PROOFSUsing a union bound (over all possible y 2 f0; 1gp(jxj)), it follows that, withprobability at least 1�" over the choice of s0, it holds that x 2 S if and only if thereexists a y such that jR(t)2 (h(x; y); s0i)j is odd. Now, as in the treatment of NP , wewish to reduce the latter \existential problem" to �P. That is, we wish to de�ne arelation R3 2 PC such that for a randomly selected s the value jR3(hx; s; s0i)j mod 2provides an indication to whether or not x 2 S (by indicating whether or not thereexists a y such that jR(t)2 (h(x; y); s0i)j is odd). Analogously to Eq. (F.1), considerthe binary relationI3 def= n(hx; s; s0i; y) : jR(t)2 (h(x; y); s0ij � 1(mod 2) ^G(s; y)=1o: (F.3)In other words, I3(hx; s; s0i) = fy : jR(t)2 (h(x; y); s0ij � 1(mod 2) ^ G(s; y) = 1g.Indeed, if x 2 S then, with probability at least 1�" over the random choice of s0 andprobability at least 1=3 over the random choice of s, it holds that jI3(hx; s; s0i)j isodd, whereas for every x 62 S and every choice of s it holds that Prs0 [jI3(hx; s; s0i)j =0] � 1 � ".5 Note that, for " � 1=7, it follows that for every x 2 S we havePrs;s0 [jI3(hx; s; s0i)j � 1 (mod 2)] � (1 � ")=3 � 2=7, whereas for every x 62 Swe have Prs;s0 [jI3(hx; s; s0i)j � 1 (mod 2)] � " � 1=7. Thus, jI3(hx; �; �i)j mod 2provides a randomized indication to whether or not x 2 S, but it is not clearwhether I3 is in PC (and in fact I3 is likely not to be in PC). The key observationis that there exists R3 2 PC such that �R3 = �I3. Speci�cally, considerR3 def= n(hx; s; s0i; hy; zi) : (h(x; y); s0i; z)2R(t)2 ^G(s; y)=1o; (F.4)where hy; zi 2 f0; 1gp(jxj) � f0; 1gpoly(jxj). (That is, hy; zi is in R3(hx; s; s0i) if(h(x; y); s0i; z)2R(t)2 and G(s; y) = 1.) Clearly R3 2 PC, and so it is left to showthat jR3(hx; s; s0i)j � jI3(hx; s; s0i)j (mod 2). The claim follows by letting �y;z(resp., �y) indicate the event (h(x; y); s0i; z) 2 R(t)2 (resp., the event G(s; y) = 1),noting that jR3(hx; s; s0i)j mod 2 � �y;z(�y;z ^ �y)jI3(hx; s; s0i)j mod 2 � �y((�z�y;z) ^ �y)f0; 1gp0(jx0j)+1 and R(t)2 (hx0; s0i) is a subset of f0; 1g1+t(jx0j)�(p0(jx0j)+2). Note that (since westarted with S0 2 coNP) the error probability occurs on no-instances of S0, whereas yes-instancesare always accepted. However, to simplify the exposition, we allow possible errors also on yes-instances of S0. This does not matter because we will anyhow have an error probability onyes-instances of S (see Footnote 5).5In continuation to Footnote 4, we note that actually, if x 2 S then there exists a y such that(x; y) 2 S0 and consequently for every choice of s0 it holds that jR(t)2 (h(x; y); s0i)j is odd (becausethe reduction from S0 2 coNP to �P has zero error on yes-instances). Thus, for every x 2 S ands0, with probability at least 1=3 over the random choice of s, it holds that jI3(hx; s; s0i)j is odd(because the reduction from S 2 NPS0 to �PS0 has non-zero error on yes-instances). On theother hand, if x 62 S then Prs0 [(8y) jR(t)2 (h(x; y); s0i)j � 0 (mod 2)] � 1� " (because for every y itholds that (x; y) 62 S0 and the reduction from coNP to �P has non-zero error on no-instances).Thus, for every x 62 S and s, it holds that Prs0 [jI3(hx; s; s0i)j = 0] � 1� " (because the reductionfrom S 2 NPS0 to �PS0 has zero error on no-instances). To sum-up, the combined reduction hastwo-sided error, because each of the two reductions introduces an error in a di�erent direction.



F.2. PROVING THAT IP(F ) � AM(O(F )) � AM(F ) 631and using the equivalence of the two corresponding Boolean expressions. Thus, S israndomly Karp-reducible to �R3 2 �P (by the many-to-one randomized mappingof x to hx; s; s0i, where (s; s0) is uniformly selected in f0; 1gO(p(jxj))�f0; 1gpoly(jxj)).Since this holds for any S 2 �2, we conclude that �2 is randomly Karp-reducibleto �P .Again, error-reduction may be applied to this reduction (of �2 to �P) suchthat the resulting reduction can be used for dealing with �3 (viewed as NP�2). Atechnical di�culty arises since the foregoing reduction has two-sided error proba-bility, where one type (or \side") of error is due to the error in the reduction ofS0 2 coNP to �R(t)2 (which occurs on no-instances of S0) and the second type(or \side") of error is due to the (new) reduction of S to �R3 (and occurs on theyes-instances of S). However, the error probability in the �rst reduction is (or canbe made) very small and thus can be ignored when applying error-reduction to thesecond reduction. See following comments.The general case. First note that, as in the case of coNP , we can obtaina similar reduction (to �P) for sets in �2 = co�2. It remains to extend thetreatment of �2 to �k, for every k � 2. Indeed, we show how to reduce �k to�P by using a reduction of �k�1 (or rather �k�1) to �P . Speci�cally, S 2 �kis treated by considering a polynomial p and a set S0 2 �k�1 such that S = fx :9y 2 f0; 1gp(jxj) s.t. (x; y) 2 S0g. Relying on the treatment of �k�1, we use arelation R(tk)k such that, with overwhelmingly high probability over the choice ofs0, the value jR(tk)k (h(x; y); s0i)j mod 2 indicates whether or not (x; y) 2 S0. Usingthe ideas underlies the treatment of NP (and �2) we check whether there existsy 2 f0; 1gp(jxj) such that jR(tk)k (h(x; y); s0i)j � 1 (mod 2). This yields a relationRk+1 such that for random s; s0 the value jRk+1(hx; s; s0i)j mod 2 indicates whetheror not x 2 S. Finally, we apply error reduction, while ignoring the probability thats0 is bad, and obtain the desired relation R(tk+1)k+1 .We comment that the foregoing inductive process should be implemented withsome care. Speci�cally, if we wish to upper-bound the error probability in thereduction (of S) to �R(tk+1)k+1 by "k+1, then the error probability in the reduction(of S0) to �R(tk)k should be upper-bounded by "k � "k+1 �2�p(jxj) (and tk should beset accordingly). Thus, the proof that PH is randomly reducible to �P actuallyproceed \top down" (at least partially); that is, starting with an arbitrary S 2 �k,we �rst determine the auxiliary sets (as per Proposition 3.9) as well as the error-bounds that should be proved for the reductions of these sets (which reside in lowerlevels of PH), and only then we establish the existence of such reductions. Indeed,this latter (and main) step is done \bottom up" using the reduction (to �P) ofthe set in the ith level when reducing (to �P) the set in the i+ 1st level.F.2 Proving that IP(f) � AM(O(f)) � AM(f)Using the notations presented in x9.1.4.3, we restate two results mentioned there.



632 APPENDIX F. SOME OMITTED PROOFSTheorem F.2 (round-e�cient emulation of IP by AM): Let f : N!N be apolynomially bounded function. Then IP(f) � AM(f + 3).We comment that, in light of the following linear speed-up in round-complexity forAM, it su�ces to establish IP(f) � AM(O(f)).Theorem F.3 (linear speed-up forAM): Let f : N!N be a polynomially boundedfunction. Then AM(2f) � AM(f + 1).Combining these two theorems, we obtain a linear speed-up for IP ; that is, for anypolynomially bounded f : N ! (N n f1g), it holds that IP(O(f)) � AM(f) �IP(f). In this appendix we prove both theorems.Note: The proof of Theorem F.2 relies on the fact that, for every f , error-reduction is possible for IP(f). Speci�cally, error-reduction can be obtained viaparallel repetitions (see [90, Apdx. C.1]). We mention that error-reduction (in thecontext of AM(f)) is implicit also in the proof of Theorem F.3 (and is explicit inthe original proof of [23]).F.2.1 Emulating general interactive proofs by AM-gamesIn this section we prove Theorem F.2. Our proof di�ers from the original proof ofGoldwasser and Sipser [111] only in the conceptualization and implementation ofthe iterative emulation process.F.2.1.1 OverviewOur aim is to transform a general interactive proof system (P; V ) into a public-coin interactive proof system for the same set. Suppose, without loss of generality,that P constitutes an optimal prover with respect to V (i.e., P maximizes theacceptance probability of V on any input). Then, for any yes-instance x, the setAx of coin sequences that make V accept when interacting with this optimal provercontains all possible outcomes, whereas for a no-instance x (of equal length) the setAx is signi�cantly smaller. The basic idea is having a public-coin system in which,on common input x, the prover proves to the veri�er that the said set Ax is big.Such a proof system can be constructed using ideas as in the case of approximatecounting (see the proof of Theorem 6.27), while replacing the NP-oracle with aprover that is required to prove the correctness of its answers. Implementing thisidea requires taking a closer look at the set of coin sequences that make V acceptan input.A very restricted case. Let us �rst demonstrate the implementation of theforegoing approach by considering a restricted type of two-message interactive proofsystems. Recall that in a two-message interactive proof system the veri�er, denotedV , sends a single message (based on the common input and its internal coin tosses)to which the prover, denoted P , responds with a single message and then V decides



F.2. PROVING THAT IP(F ) � AM(O(F )) � AM(F ) 633whether to accept or reject the input. We further restrict our attention by assumingthat each possible message of V is equally likely and that the number of possibleV -messages is easy to determine from the input. Thus, on input x, the veri�er Vtosses ` = `(jxj) coins and sends one out of N = N(x) possible messages. Note thatif x is a yes-instance then for each possible V -message there exists a P -response thatis accepted by the 2`=N corresponding coin sequences of V (i.e., the coin sequencesthat lead V to send this V -message). On the other hand, if x is a no-instancethen, in expectation, for a uniformly selected V -message, the optimal P -responseis accepted by a signi�cantly smaller number of corresponding coin sequences. Wenow show how such an interactive proof system can be emulated by a public-coinsystem.In the public-coin system, on input x, the prover will attempt to prove thatfor each possible V -message (in the original system) there exists a response (bythe original prover) that is accepted by 2`=N corresponding coin sequences of V .Recall that N = N(x) and ` = `(jxj) are easily determined by both parties, andso if the foregoing claim holds then x must be a yes-instance. The new interactionitself proceeds as follows: First, the veri�er selects uniformly a coin sequence forV , denoted r, and sends it to the prover. The coin sequence r determines a V -message, denoted �. Next, the prover sends back an adequate P -message, denoted�, and interactively proves to the veri�er that � would have been accepted by2`=N possible coin sequences of V that correspond to the V -message � (i.e., �should be accepted not only by r but rather by the 2`=N coin sequences of V thatcorrespond to the V -message �). The latter interactive proof follows the idea ofthe proof of Theorem 6.27: The veri�er applies a random sieve that lets only a(2`=N)�1 fraction of the elements pass, and the prover shows that some adequatesequence of V -coins has passed this sieve (by merely presenting such a sequence).6We stress that the foregoing interaction (and in particular the random sieve) canbe implemented in the public-coin model.Waiving one restriction. Next, we waive the restriction that the number ofpossible V -messages is easy to determine from the input, but still assume thatall possible V -messages are equally likely. In this case, the prover should providethe number N of possible V -messages and should prove that indeed there exist atleast N possible V -messages (and that, as in the prior case, for each V -messagethere exists a P -response that is accepted by 2`=N corresponding coin sequencesof V ). That is, the prover should prove that for at least N possible V -messagesthere exists a P -response that is accepted by 2`=N corresponding coin sequencesof V . This calls for a double (or rather nested) application of the aforementioned\lower-bound" protocol. That is, �rst the parties apply a random sieve to the setof possible V -messages such that only a N�1 fraction of these messages pass, andnext the parties apply a random sieve to the set coin sequences that �t a passingV -message such that only a (2`=N)�1 fraction of these sequences pass.6Indeed, the veri�er can easily check whether a coin sequence r0 passes the sieve as well as �tsthe initial message � and would have made V accept when the prover responds with � (i.e., Vwould have accepted the input, on coins r0, when receiving the prover message �).



634 APPENDIX F. SOME OMITTED PROOFSThe general case of IP(2). Treating general two-message interactive proofs re-quires waiving also the restriction that all possible V -messages are equally likely. Inthis case, the prover may cluster the V -messages into few (say `) clusters such thatthe messages in each cluster are sent (by V ) with roughly the same probability (say,up to a factor of two). Then, focusing on the cluster having the largest probabilityweight, the prover can proceed as in the previous case (i.e., send i and claim thatthere are 2`=` possible V -messages that are each supported by 2i coin sequences).This has a potential of cutting the probabilistic gap between yes-instances andno-instances by a factor related to the number of clusters times the approximationlevel within clusters (e.g., a factor of O(`))7, but this loss is negligible in comparisonto the initial gap (which can be obtained via error-reduction).Dealing with all levels of IP. So far, we only dealt with two-message systems(i.e., IP(2)). We shall see that the general case of IP(f) can be dealt by recursion(or rather by iterations), where each level of recursion (resp., each iteration) isanalogous to the (general) case of IP(2). Recall that our treatment of the caseof IP(2) boils down to selecting a random V -message, �, and having the proversend a P -response, �, and prove that � is acceptable by many V -coins. In otherwords, the prover should prove that in the conditional probability space de�nedby a V -message �, the original veri�er V accepts with high probability. In thegeneral case (of IP(f)), the latter claim refers to the probability of accepting inthe residual interaction, which consists of f � 2 messages, and thus the very sameprotocol can be applied iteratively (until we get to the last message, which is dealtas in the case of IP(2)). The only problem is that, in the residual interactions, itmay not be easy for the veri�er to select a random V -message (as done in the veryrestricted case). However, as already done when waiving the �rst restriction, thethe veri�er can be assisted by the prover, while making sure that it is not beingfooled by the prover. This process is made explicit in xF.2.1.2, where we de�ne anadequate notion of a \random selection" protocol (which need to be implemented inthe public-coin model). For simplicity, we may consider the problem of uniformlyselecting a sequence of coins in the corresponding (residual) probability space,because such a sequence determines the desired random V -message.F.2.1.2 Random selectionVarious types of \random selection" protocols have appeared in the literature (see,e.g., [227, Sec. 6.4]). The common theme in these protocols is that they allowfor a probabilistic polynomial-time player (called the veri�er) to sample a set,denoted S � f0; 1g`, while being assisted by a second player (called the prover)that is powerful but not trustworthy. These nicknames �t the common conventionsregarding interactive proofs and are further justi�ed by the typical applications ofsuch protocols as subroutines within an interactive proof system (where indeed the7The loss is due to the fact that the distribution of (probability) weights may not be identicalon all instances. For example, in one case (e.g., of some yes-instance) all clusters may have equalweight, and thus a corresponding factor is lost, while in another case (e.g., of some no-instance)all the probability mass may be concentrated in a single cluster.



F.2. PROVING THAT IP(F ) � AM(O(F )) � AM(F ) 635�rst party is played by the higher-level veri�er while the second party is played bythe higher-level prover). The various types of random selection protocols di�er bywhat is known about the set S and what is required from the protocol.Here we will assume that the veri�er is given a parameter N , which is supposedto equal jSj, and the performance guarantee of the protocol will be meaningfulonly for sets of size at most N . We seek a constant-round (preferably two-message)public-coin protocol (for this setting) such that the following two conditions hold,with respect to a security parameter " � 1=poly(`).1. If both players follow the protocol and N = jSj then the veri�er's output is"-close to the uniform distribution over S. Furthermore, the veri�er alwaysoutputs an element of S.2. For any set S0 � f0; 1g` if the veri�er follows the protocol then, no matterhow the prover behaves, the veri�er's output resides in S0 with probabilityat most poly(`=") � (jS0j=N).Indeed, the second property is meaningful only for sets S0 having size that is (sig-ni�cantly) smaller than N . We shall be using such a protocol while setting " to bea constant (say, " = 1=2).A three-message public-coin protocol that satis�es the foregoing properties canbe obtained by using the ideas that underly Construction 6.32. Speci�cally, weset m = max(0; log2N � O(log `=")) in order to guarantee that if jSj = N then,with overwhelmingly high probability, each of the 2m cells de�ned by a uniformlyselected hashing function contains (1� ") � jSj=2m elements of S. In the protocol,the prover arbitrarily selects a good hashing function (i.e., one de�ning such a goodpartition of S) and sends it to the veri�er, which answers with a uniformly selectedcell, to which the prover responds with a uniformly selected element of S that residesin this cell.8We stress that the foregoing protocol is indeed in the public-coin model, andcomment that the fact that it uses three messages rather than two will have aminor e�ect on our application (see xF.2.1.3). Indeed, this protocol satis�es thetwo foregoing properties. In particular, the second property follows because forevery possible hashing function, the fraction of cells containing an element of S0 isat most jS0j=2m, which is upper-bounded by poly(`=") � jS0j=N .8We mention that the foregoing protocol is but one out of several possible implementations ofthe ideas that underly Construction 6.32. Firstly, note that an alternative implementation maydesignate the task of selecting a hashing function to the veri�er, who may do so by selecting afunction at random. Although this seems more natural, it actually o�ers no advantage with respectto the \soundness-like" property (i.e., the second property). Furthermore, in this case, it mayhappen (rarely) that the hashing function selected by the veri�er is not good, and consequentlythe furthermore clause of the �rst property (i.e., requiring that the output always resides inS) is not satis�ed. Secondly, recall that in the foregoing protocol the last step consists of theprover selecting a random element of S that resides in the selected (by the veri�er) cell. Analternative implementation may replace this step by two steps such that �rst the prover sends alist of (1� ") �N=2m elements (of S) that resides in the said cell, and then the veri�er outputs auniformly selected element of this list. This alternative yields an improvement in the \soundness-like" property (i.e., the veri�er's output resides in S0 with probability at most (jS0j=N) + "), butrequires an additional message (which we prefer to avoid, although this not that crucial).



636 APPENDIX F. SOME OMITTED PROOFSF.2.1.3 The iterated partition protocolUsing the random selection protocol of xF.2.1.2, we now present a public-coinemulation of an arbitrary interactive proof system, (P; V ). We start with somenotations.Fixing any input x to (P; V ), we denote by t = t(jxj) the number of pairsof messages exchanged in the corresponding interaction, while assuming that theveri�er takes the �rst move in (P; V ).9 We denote by ` = `(jxj) the number of coinstossed by V , and assume that ` > t. Recall that we assume that P is an optimalprover (with respect to V ), and that (without loss of generality) P is deterministic.Let us denote by hP; V (r)i(x) the full transcript of the interaction of P and Von input x, when V uses coins r; that is, hP; V (r)i(x) = (�1; �1; :::; �t; �t; �) if� = V (x; r; �1; :::; �t) 2 f0; 1g is V 's �nal verdict and for every i = 1; :::; t it holdsthat �i = V (x; r; �1; :::; �i�1) and �i = P (x; �1; :::; �i). For any partial transcriptending with a P-message,  = (�1; �1; :::; �i�1; �i�1), we denote by ACCx() theset of coin sequences that are consistent with the partial transcript  and lead Vto accept x when interacting with P ; that is, r 2 ACCx() if and only if for some0 2 f0; 1g2(t�i)�poly(jxj) it holds that hP; V (r)i(x) = (�1; �1; :::; �i�1; �i�1; 0; 1).The same notation is also used for a partial transcript ending with a V-message;that is, r 2 ACCx(�1; �1; :::; �i) if and only if hP; V (r)i(x) = (�1; �1; :::; �i; 0; 1)for some 0.Motivation. By suitable error reduction, we may assume that (P; V ) has sound-ness error � = �(jxj) that is smaller than poly(`)�t. Thus, for any yes-instance x itholds that jACCx(�)j = 2`, whereas for any no-instance x it holds that jACCx(�)j �� � 2`. Indeed, the gap between the initial set sizes is huge, and we can maintain agap between the sizes of the corresponding residual sets (i.e., ACCx(�1; �1; :::; �i))provided that we lose at most a factor of poly(`) per each round. The key ob-servations is that, for any partial transcript  = (�1; �1; :::; �i�1; �i�1), it holdsthat jACCx()j =X� jACCx(; �)j; (F.5)whereas jACCx(; �)j = max�fjACCx(; �; �)jg. Clearly, we can prove that jACCx(; �)jis big by providing an adequate � and proving that jACCx(; �; �)j is big. Likewise,proving that jACCx()j is big reduces to proving that the sumP� jACCx(; �)j isbig. The problem is that this sum may contain exponentially many terms, and so wecannot even a�ord reading the value of each of these terms.10 As hinted in xF.2.1.1,we may cluster these terms into ` clusters, such that the jth cluster contains sets ofcardinality approximately 2j (i.e., �'s such that 2j � jACCx(; �)j < 2j+1). Oneof these clusters must account for a 1=2` fraction of the claimed size of jACCx()j,9We note if the prover takes the �rst move in (P;V ) then its �rst message can be emulatedwith no cost (in the number of rounds).10Furthermore, we cannot a�ord verifying more than a single claim regarding the value of oneof these terms, because examining at least two values per round will yield an exponential blow-up(i.e., time complexity that is exponential in the number of rounds).



F.2. PROVING THAT IP(F ) � AM(O(F )) � AM(F ) 637and so we focus on this cluster; that is, the prover we construct will identify a suit-able j (i.e., such that there are at least jACCx()j=2` elements in the sets of thejth cluster), and prove that there are at least N = jACCx()j=(2` � 2j+1) sets (i.e.,ACCx(; �)'s) each of size at least 2j . Note that this establishes that jACCx()jis bigger than N � 2j = jACCx()j=O(`), which means that we lost a factor of O(`)of the size of ACCx(). But as stated previously, we may a�ord such a lost.Before we turn to the actual protocol, let us discuss the method of proving thatthat there are at least N sets (i.e., ACCx(; �)'s) each of size at least 2j . Thisclaim is proved by employing the random selection protocol (while setting the sizeparameter to N) with the goal of selecting such a set (or rather its index �). Ifindeed N such sets exists then the �rst property of the protocol guarantees thatsuch a set is always chosen, and we will proceed to the next iteration with this set,which has size at least 2j (and so we should be able to establish a correspondinglower-bound there). Thus, entering the current iteration with a valid claim, weproceed to the next iteration with a new valid claim. On the other hand, supposethat jACCx()j � N �2j . Then, the second property of the protocol implies11 that,with probability at least 1 � (1=3t), the selected � is such that jACCx(; �)j <poly(`) � jACCx()j=N � 2j , whereas at the next iteration we will need to provethat the selected set has size at least 2j . Thus, entering the current iteration witha false claim that is wrong by a factor F � poly(`), with probability at least1� (1=3t), we proceed to the next iteration with a false claim that is wrong by afactor of at least F=poly(`).We note that, although the foregoing motivational discussion refers to provinglower-bounds on various set sizes, the actual implementation refers to randomlyselecting elements in such sets. If the sets are smaller than claimed, the selectedelements are likely to reside outside these sets, which will be eventually detected.Construction F.4 (the actual protocol). On common input x, the 2t-messageinteraction of P and V is \quasi-emulated" in t iterations, where t = t(jxj). Theith iteration starts with a partial transcript i�1 = (�1; �1; :::; �i�1; �i�1) and aclaimed bound Mi�1, where in the �rst iteration 0 is the empty sequence andM0 = 2`. The ith iteration proceeds as follows.1. The prover determines an index j such that the cluster Cj = f� : 2j �jACCx(i�1; �)j < 2j+1g has size at least N def= Mi�1=(2j+2`), and sends jto the veri�er. Note that if jACCx(i�1)j �Mi�1 then such a j exists.2. The prover invokes the random selection protocol with size parameter N inorder to select � 2 Cj , where for simplicity we assume that Cj � f0; 1g`.Recall that this public-coin protocol involves three messages with the �rst andlast message being sent by the prover. Let us denote the outcome of thisprotocol by �i.11For a loss factor L = poly(`), consider the set S0 = f� : jACCx(; �)j � L � jACCx()j=Ng.Then jS0j � N=L, and it follows that an element in S0 is selected with probability at mostpoly(`)=L, which is upper-bounded by 1=3t when using a suitable choice of L.



638 APPENDIX F. SOME OMITTED PROOFS3. The prover determines �i such that ACCx(i�1; �i; �i) = ACCx(i�1; �i) andsends �i to the veri�er.Towards the next iterationMi  2j and i = (�1; �1; :::; �i; �i) � (i�1; �i; �i).After the last iteration,12 the prover invokes the random selection protocol with sizeparameter N = Mt in order to select r 2 ACCx(�1; �1; :::; �t; �t). Upon obtain-ing this r, the veri�er accepts if and only if V (x; r; �1; :::; �t) = 1 and for everyi = 1; :::; t it holds that �i = V (x; r; �1; :::; �i�1), where the �i's and �i's are asdetermined in the foregoing iterations.Note that the three steps of each iteration involve a single message by the (public-coin) veri�er, and thus the foregoing protocol can be implemented using 2t + 3messages.Clearly, if x is a yes-instance then the prover can make the veri�er acceptwith probability one (because an adequately large cluster exists at each iteration,and the random selection protocol guarantees that the selected �i will reside in thiscluster).13 On the other hand, if x is a no-instance then by using the low soundnesserror of (P; V ) we can establish the soundness of Construction F.4. This is provedin the following claim, which refers to a polynomial p that is su�ciently large.Proposition F.5 Suppose that jACCx(�)j < �t+1 � 2`, where � = 1=p(`). Then,the veri�er of Construction F.4 accepts x with probability smaller than 1=2.Proof Sketch: We �rst prove that, for every i = 1; :::; t, if jACCx(i�1)j <�t+1�(i�1)�Mi�1 then, with probability at least 1�(1=3t), it holds that jACCx(i)j <�t+1�i �Mi. Fixing any i, let j be the value selected by the prover in Step 1 ofiteration i, and de�ne S0 = f� : jACCx(i�1; �)j � �t+1�i � 2jg. ThenjS0j � �t+1�i2j � jACCx(i�1)j < �t+1�(i�1) �Mi�1;where the second inequality represents the claim's hypothesis. LettingN =Mi�1=(2j+2`)(as in Step 1 of this iteration), it follows that jS0j < 4`� �N . By the second prop-erty of the random selection protocol (invoked in Step 2 of this iteration with sizeparameter N), it follows thatPr[�i 2 S0] � poly(`) � jS0jN � poly(`) � �;which is smaller than 1=3t (provided that the polynomial p that determines � =1=p(`) is su�ciently large). Thus, with probability at least 1� (1=3t), it holds thatjACCx(i�1; �i)j < �t+1�i �2j . The claim regarding jACCx(i)j follows by recallingthat Mi = 2j (in Step 3) and that for every � it holds that jACCx(i�1; �i; �)j �jACCx(i�1; �i)j.12Alternatively, we may modify (P; V ) by adding a last V -message in which V sends its internalcoin tosses (i.e., r). In this case, the additional invocation of the random selection protocol occursas a special case of handling the added t + 1st iteration.13Thus, at the last invocation of the random selection protocol, the veri�er always obtainsr 2 ACCx(t) and accepts.



F.2. PROVING THAT IP(F ) � AM(O(F )) � AM(F ) 639Using the hypothesis jACCx(0)j < �t+1 �M0 and the foregoing claim, it followsthat, with probability at least 2=3, the execution of the aforementioned t iterationsyields values t andMt such that jACCx(t)j < � �Mt. In this case, the last invoca-tion of the random selection protocol (invoked with size parameterMt) produces anelement of ACCx(t) with probability at most poly(`) � � < 1=6, and otherwise theveri�er rejects (because the conditions that the veri�er checks regarding the outputr of the random selection protocol are logically equivalent to r 2 ACCx(t)). Theproposition follows.F.2.2 Linear speed-up for AMIn this section we prove Theorem F.3. Our proof di�ers from the original proof ofBabai and Moran [23] in the way we analyze the basic switch (of MA to AM).We adopt the standard terminology of public-coin (a.k.a Arthur-Merlin) inter-active proof systems, where the veri�er is called Arthur and the prover is calledMerlin. More importantly, we view the execution of such a proof system, on any�xed common input x, as a (full-information) game (indexed by x) between anhonest Arthur and powerful Merlin. These parties alternate in taking moves suchthat Arthur takes random moves and Merlin takes optimal moves with respect toa �xed (polynomial-time computable) predicate vx that is evaluated on the fulltranscript of the game's execution. We stress that (in contrast to general inter-active proof systems), each of Arthur's moves is uniformly distributed in a set ofpossible values that is predetermined independently of prior moves (e.g., the setf0; 1g`(jxj)). The value of the game is de�ned as the expected value of an executionof the game, where the expectation is taken over Arthur's moves (and Merlin'smoves are assumed to be optimal).We shall assume, without loss of generality, that all messages of Arthur areof the same length, denoted ` = `(jxj). Similarly, each of Merlin's messages is oflength m = m(jxj).Recall that AM = AM(2) denotes a two-message system in which Arthurmoves �rst and does not toss coins after receiving Merlin's answer, whereasMA =AM(1) denotes a one-message system in which Merlin sends a single message andArthur tosses additional coins after receiving this message. Thus, both AM andMA are viewed as two-move games, and di�er in the order in which the two partiestake these moves. As we shall shortly see (in xF.2.2.1), the \MA order" can beemulated by the \AM order" (i.e.,MA � AM). This fact will be the basis of the\round speed-up" transformation (presented in xF.2.2.2).F.2.2.1 The basic switch (from MA to AM)The basic idea is transforming an MA-game (i.e., a two-move game in which Merlinmoves �rst and Arthur follows) into an AM-game (in which Arthur moves �rst andMerlin follows). In the original game (on input x), �rst Merlin sends a message� 2 f0; 1gm, then Arthur responds with a random � 2 f0; 1g`, and Arthur's verdict(i.e., the value of this execution of the game) is given by vx(�; �) 2 f0; 1g. In thenew game (see Figure F.1), the order of these moves will be switched, but to limit



640 APPENDIX F. SOME OMITTED PROOFSMerlin's potential gain from the switch we require it to provide a single answerthat should \�t" several random messages of Arthur. That is, for a parameter t tobe speci�ed, �rst Arthur send a random sequence (�(1); :::; �(t)) 2 f0; 1gt�`, thenMerlin responds with a string � 2 f0; 1gm, and Arthur accepts if and only if forevery i 2 f1; :::tg it holds that vx(�; �(i)) = 1 (i.e., the value of this transcript ofthe new game is de�ned asQti=1 vx(�; �(i))). Intuitively, Merlin gets the advantageof choosing its move after seeing Arthur's move(s), but Merlin's choice must �t thet choices of Arthur's move, which leaves Merlin with little gain (if t is su�cientlylarge).
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The value of the transcript (�; �) of the original MA-game is givenby vx(�; �), whereas the value of the transcript ((�(1); :::; �(t)); �) ofthe new AM-game is given by Qti=1 vx(�; �(i)).Figure F.1: The transformation of an MA-game into an AM-game.Recall that the value, v0x, of the transcript (�; �) of the new game, where � =(�(1); :::; �(t)), is de�ned as Qti=1 vx(�; �(i)). Thus, the value of the new game isde�ned as E� "max� ( tYi=1 vx(�; �(i)))#; (F.6)which is upper-bounded byE� "max� (1t tXi=1 vx(�; �(i)))#: (F.7)Note that the upper-bound provided in Eq. (F.7) is tight in the case that the valueof the original MA-game equals one (i.e., if x is a yes-instance), and that in this casethe value of the new game is one (because in this case there exists a move � suchthat vx(�; �) = 1 holds for every �). However, the interesting case, where Merlinmay gain something by the switch, is when the value of the original MA-game isstrictly smaller than one (i.e., when x is a no-instance). The main observation isthat, for a suitable choice of t, it is highly improbable that Merlin's gain from theswitch is signi�cant.Recall that in the original MA-game Merlin selects � obliviously of Arthur'schoice of �, and thus Merlin's \pro�t" (i.e., the value of the game) is representedby max�fE�(vx(�; �))g. In the new AM-game, Merlin selects � based on the



F.2. PROVING THAT IP(F ) � AM(O(F )) � AM(F ) 641sequence � chosen by Arthur, and we have upper-bounded its \pro�t" (in the newAM-game) by Eq. (F.7). Merlin's gain from the switch is thus the excess pro�t (ofthe new AM-game as compared to the original MA-game). We upper-bound theprobability that Merlin's gain from the switch exceeds a parameter, denoted �, asfollows.px;� def= Pr(�(1);:::;�(t)) "max� (1t � tXi=1 vx(�; �(i))) > max� fE�(vx(�; �))g+ �#� Pr(�(1);:::;�(t)) "9�2f0; 1gm s.t. �����1t � tXi=1 vx(�; �(i))� E�(vx(�; �))����� > �#� 2m � exp(�
(�2 � t));where the last inequality is due to combining the Union Bound with the Cherno�Bound. Denoting by Vx = max�fE�(vx(�; �))g the value of the original game,we upper-bound Eq. (F.7) by px;� + Vx + �. Using t = O((m + k)=�2) we havepx;� � 2�k, and thusV 0x def= E� "max� (1t tXi=1 vx(�; �(i)))# � max� fE�(vx(�; �))g+ � + 2�k: (F.8)Needless to say, Eq. (F.7) is lower-bounded by Vx (since Merlin may just use theoptimal move of the MA-game). In particular, using � = 2�k = 1=8 and assumingthat Vx � 1=4, we obtain V 0x < 1=2. Thus, starting from an MA proof system forsome set, we obtain an AM proof system for the same set; that is, we just provedthatMA � AM.Extension. We note that the foregoing transformation as well as its analysisdoes not refer to the fact that vx(�; �) is e�ciently computable from (�; �). Fur-thermore, the analysis remain valid for arbitrary vx(�; �) 2 [0; 1], because for anyv1; :::; vt 2 [0; 1] it holds that Qti=1 vi � (Qti=1 vi)1=t � Pti=1 vi=t. Thus, we mayapply the foregoing transformation to any two consecutive Merlin-Arthur movesin any public-coin interactive proof, provided that all the subsequent moves areperformed in t copies, where each copy corresponds to a di�erent �(i) used in theswitch. That is, if the jth move is by Merlin then we can switch the players in thej and j+1 moves, by letting Arthur take the jth move, sending (�(1); :::; �(t)), fol-lowed by Merlin's move, answering �. Subsequent moves will be played in t copiessuch that the ith copy corresponds to the moves �(i) and �. The value of the newgame may increase by at most 2�k + � < 1=4, and so we obtain an \equivalent"game with the two steps switched. Schematically, acting on the middle MA (in-dicated in bold font), we can replace [AM]j1AMA[MA]j2 by [AM]j1AAM[MA]j2 ,which in turn allows the collapse of two consecutive A-moves (and two consec-utive M-moves if j2 � 1). In particular (using only the case j1 = 0), we getA[MA]j+1 = A[MA]j = � � � = AMA = AM. Thus, for any constant f , we getAM(f) = AM(2).



642 APPENDIX F. SOME OMITTED PROOFSWe stress that the foregoing switching process can be applied only a constantnumber of times, because each time we apply the switch the length of messagesincreases by a factor of t = 
(m). Thus, a di�erent approach is required to dealwith a non-constant number of messages (i.e., unbounded function f).F.2.2.2 The augmented switch (from [MAMA]j to [AMA]jA)Sequential applications of the \MA-to-AM switch" allows for reducing the numberof rounds by any additive constant. However, each time this switch is applied,all subsequent moves are performed t times (in parallel). That is, the \MA-to-AM switch" splits the rest of the game to t independent copies, and thus thisswitch cannot be performed more than a constant number of times. Fortunately,Eq. (F.7) suggests a way of shrinking the game back to a single copy: just haveArthur select i 2 [t] uniformly and have the parties continue with the ith copy.14 Inorder to avoid introducing an Arthur-Merlin alternation, the extra move of Arthuris postpone to after the following move of Merlin (see Figure F.2). Schematically(indicating the action by bold font), we replace MAMA by AMMAA=AMA(rather than replacing MAMA by AMAMA and obtaining no reduction in thenumber of move-alternations).
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The value of the transcript (�1; �1; �2; �2) of the original MAMA-game is given by vx(�1; �1; �2; �2), whereas the value of the tran-script ((�(1)1 ; :::; �(t)1 ); (�1; �(1)2 ; :::; �(t)2 ); (i; �2)) of the new AMA-gameis given by vx(�1; �(i)1 ; �(i)2 ; �2).Figure F.2: The transformation of MAMA into AMA.The value of game obtained via the aforementioned augmented switch is givenby Eq. (F.7), which can be written asE�(1);:::;�(t) [max� fEi2[t](vx(�; �(i)))g];14Indeed, the relaxed form of Eq. (F.7) plays a crucial role here (in contrast to Eq. (F.6)).



F.2. PROVING THAT IP(F ) � AM(O(F )) � AM(F ) 643which in turn is upper-bounded (in Eq. (F.8)) by max�fE�(vx(�; �))g + � + 2�k.As in xF.2.2.1, the argument applies to any two consecutive Merlin-Arthur movesin any public-coin interactive proof. Recall that in order to avoid the introduc-tion of an extra Arthur move, we actually postpone the last move of Arthur toafter the next move of Merlin. Thus, we may apply the augmented switch to the�rst two moves in any block of four consecutive moves that start with a Merlinmove, transforming the schematic sequence MAMA into AMMAA=AMA (see Fig-ure F.2). The key point is that the moves that take place after the said block,remain intact. Hence, we may apply the augmented \MA-to-AM switch" (whichis actually an \MAMA-to-AMA switch") concurrently to disjoint segments of thegame. Schematically, we can replace [MAMA]j by [AMA]j = A[MA]j . Note thatMerlin's gain from each such switch is upper-bounded by � + 2�k, but selectingt = eO(f(jxj)2 �m(jxj)) = poly(jxj) allows to upper-bound the total gain by a con-stant (using, say, � = 2�k = 1=8f(jxj)). We thus obtain AM(4f) � AM(2f + 1),and Theorem F.3 follows.
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Appendix GSome ComputationalProblemsAlthough we view speci�c (natural) computational problems as secondary to (nat-ural) complexity classes, we do use the former for clari�cation and illustration ofthe latter. This appendix provides de�nitions of such computational problems,grouped according to the type of objects to which they refer (e.g., graphs, Booleanformula, etc.).We start by addressing the central issue of the representation of the variousobjects that are referred to in the aforementioned computational problems. Thegeneral principle is that elements of all sets are \compactly" represented as binarystrings (without much redundancy). For example, the elements of a �nite set S(e.g., the set of vertices in a graph or the set of variables appearing in a Booleanformula) will be represented as binary strings of length log2 jSj.G.1 GraphsGraph theory has long become recognized as one of the moreuseful mathematical subjects for the computer science student tomaster. The approach which is natural in computer science is thealgorithmic one; our interest is not so much in existence proofs orenumeration techniques, as it is in �nding e�cient algorithms forsolving relevant problems, or alternatively showing evidence thatno such algorithms exist. Although algorithmic graph theory wasstarted by Euler, if not earlier, its development in the last tenyears has been dramatic and revolutionary.Shimon Even, Graph Algorithms [71]A simple graph G= (V;E) consists of a �nite set of vertices V and a �nite set ofedges E, where each edge is an unordered pair of vertices; that is, E � ffu; vg :645



646 APPENDIX G. SOME COMPUTATIONAL PROBLEMSu; v2V ^u 6=vg. This formalism does not allow self-loops and parallel edges, whichare allowed in general (i.e., non-simple) graphs, where E is a multi-set that maycontain (in addition to two-element subsets of V also) singletons (i.e., self-loops).The vertex u is called an end-point of the edge fu; vg, and the edge fu; vg is saidto be incident at v. In such a case we say that u and v are adjacent in the graph,and that u is a neighbor of v. The degree of a vertex in G is de�ned as the numberof edges that are incident at this vertex.We will consider various sub-structures of graphs, the simplest one being paths.A path in a graph G=(V;E) is a sequence of vertices (v0; :::; v`) such that for everyi 2 [`] def= f1; :::; `g it holds that vi�1 and vi are adjacent in G. Such a path is saidto have length `. A simple path is a path in which each vertex appears at mostonce, which implies that the longest possible simple path in G has length jV j � 1.The graph is called connected if there exists a path between each pair of verticesin it.A cycle is a path in which the last vertex equals the �rst one (i.e., v` = v0).The cycle (v0; :::; v`) is called simple if ` > 2 and jfv0; :::; v`gj = ` (i.e., if vi = vjthen i � j (mod `), and the cycle (u; v; u) is not considered simple). A graph iscalled acyclic (or a forest) if it has no simple cycles, and if it is also connected thenit is called a tree. Note that G=(V;E) is a tree if and only if it is connected andjEj = jV j � 1, and that there is a unique simple path between each pair of verticesin a tree.A subgraph of the graph G=(V;E) is any graph G0=(V 0; E0) satisfying V 0 � Vand E0 � E. Note that a simple cycle in G is a connected subgraph of G in whicheach vertex has degree exactly two. An induced subgraph of the graph G=(V;E)is any subgraph G0=(V 0; E0) that contain all edges of E that are contained in V 0.In such a case, we say that G0 is the subgraph induced by V 0.Directed graphs. We will also consider (simple) directed graphs (a.k.a digraphs),where edges are ordered pairs of vertices. In this case the set of edges is a subsetof V � V n f(v; v) : v 2 V g, and the edges (u; v) and (v; u) are called anti-parallel.General (i.e., non-simple) directed graphs are de�ned analogously. The edge (u; v)is viewed as going from u to v, and thus is called an outgoing edge of u (resp.,incoming edge of v). The out-degree (resp., in-degree) of a vertex is the number ofits outgoing edges (resp., incoming edges). Directed paths and the related objectsare de�ned analogously; for example, v0; :::; v` is a directed path if for every i 2 [`]it holds that (vi�1; vi) is a directed edge (which is directed from vi�1 to vi). It iscommon to consider also a pair of anti-parallel edges as a simple directed cycle.A directed acyclic graph (DAG) is a digraph that has no directed cycles. EveryDAG has at least one vertex having out-degree (resp., in-degree) zero, called a sink(resp., a source). A simple directed acyclic graph G = (V;E) is called an inward(resp., outward) directed tree if jEj = jV j � 1 and there exists a unique vertex,called the root, having out-degree (resp., in-degree) zero. Note that each vertexin an inward (resp., outward) directed tree can reach the root (resp., is reachablefrom the root) by a unique directed path.11Note that in any DAG, there is a directed path from each vertex v to some sink (resp., from



G.1. GRAPHS 647Representation. Graphs are commonly represented by their adjacency matrixand/or their incidence lists. The adjacency matrix of a simple graph G=(V;E) is ajV j-by-jV j Boolean matrix in which the (i; j)-th entry equals 1 if and only if i andj are adjacent in G. The incidence list representation of G consists of jV j sequencessuch that the ith sequence is an ordered list of the set of edges incident at vertex i.Computational problems. Simple computational problems regarding graphsinclude determining whether a given graph is connected (and/or acyclic) and �nd-ing shortest paths in a given graph. Another simple problem is determining whethera given graph is bipartite, where a graph G=(V;E) is bipartite (or 2-colorable) ifthere exists a 2-coloring of its vertices that does not assign neighboring vertices thesame color. All these problems are easily solvable by BFS.Moving to more complicated tasks that are still solvable in polynomial-time, wemention the problem of �nding a perfect matching (or a maximum matching) in agiven graph, where a matching is a subgraph in which all vertices have degree 1, aperfect matching is a matching that contains all the graph's vertices, and a maximummatching is a matching of maximum cardinality (among all matching of the saidgraph).Turning to seemingly hard problems, we mention that the problem of deter-mining whether a given graph is 3-colorable (i.e., G3C) is NP-complete. A fewadditional NP-complete problems follow.� A Hamiltonian path (resp., Hamiltonian cycle) in the graph G = (V;E) is asimple path (resp., cycle) that passes through all the vertices of G. Such apath (resp., cycle) has length jV j�1 (resp., jV j). The problem is to determinewhether a given graph contains a Hamiltonian path (resp., cycle).� An independent set (resp., clique) of the graph G=(V;E) is a set of verticesV 0 � V such that the subgraph induced by V 0 contains no edges (resp.,contains all possible edges). The problem is to determine whether a givengraph has an independent set (resp., a clique) of a given size.A vertex cover of the graph G=(V;E) is a set of vertices V 0 � V such thateach edge in E has at least one end-point in V 0. Note that V 0 is a vertexcover of G if and only if V n V 0 is an independent set of V .A natural computational problem which is believed to be neither in P nor NP-complete is the graph isomorphism problem. The input consists of two graphs,G1=(V1; E1) and G2=(V2; E2), and the question is whether there exist a 1-1 andonto mapping � : V1 ! V2 such that fu; vg is in E1 if and only if f�(u); �(v)g is inE2. (Such a mapping is called an isomorphism.)some source to each vertex v). In an inward (resp., outward) directed tree this sink (resp., source)must be unique. The condition jEj = jV j � 1 enforces the uniqueness of these paths, because(combined with the reachability condition) it implies that the underlying graph (obtained bydisregarding the orientation of the edges) is a tree.



648 APPENDIX G. SOME COMPUTATIONAL PROBLEMSG.2 Boolean FormulaeIn x1.2.4.3, Boolean formulae are de�ned as a special case of Boolean circuits(x1.2.4.1). Here we take the more traditional approach, and de�ne Boolean for-mulae as structured sequences over an alphabet consisting of variable names andvarious connectives. It is most convenient to de�ne Boolean formulae recursivelyas follows:� A variable is a Boolean formula.� If �1; :::; �t are Boolean formulae and  is a t-ary Boolean operation then (�1; :::; �t) is a Boolean formula.Typically, we consider three Boolean operations: the unary operation of negation(denoted neg or :), and the (bounded or unbounded) conjunction and disjunction(denoted ^ and _, respectively). Furthermore, the convention is to shorthand :(�)by :�, and to write (^ti=1�i) or (�1^� � �^�t) instead of ^(�1; :::; �t), and similarlyfor _.Two important special cases of Boolean formulae are CNF and DNF formulae.A CNF formula is a conjunction of disjunctions of variables and/or their negation;that is, ^ti=1�i is a CNF if each �i has the form (_tij=1�i;j), where each �i;j is eithera variable or a negation of a variable (and is called a literal). If for every i it holdsthat ti � 3 then we say that the formula is a 3CNF. Similarly, DNF formulae arede�ned as disjunctions of conjunctions of literals.The value of a Boolean formula under a truth assignment to its variables isde�ned recursively along its structure. For example, ^ti=1�i has the value trueunder an assignment � if and only if every �i has the value true under � . We saythat a formula � is satis�able if there exists a truth assignment � to its variablessuch that the value of � under � is true.The set of satis�able CNF (resp., 3CNF) formulae is denoted SAT (resp., 3SAT),and the problem of deciding membership in it is NP-complete. The set of tau-tologies (i.e., formula that have the value true under any assignment) is coNP-complete, even when restricted to 3DNF formulae.Quanti�ed Boolean Formulae. In contrast to the foregoing that refers to un-quanti�ed Boolean formulae, a quanti�ed Boolean formula is a formula augmentedwith quanti�ers that refer to each variable appearing in it. That is, if � is a for-mula in the Boolean variables x1; :::; xn and Q1; :::; Qn are Boolean quanti�ers (i.e.,each Qi is either 9 or 8) then Q1 x1 � � �Qn xn �(x1; :::; xn) is a quanti�ed Booleanformula. A k-alternating quanti�ed Boolean formula is a quanti�ed Boolean for-mula with up to k alternating sequences of existential and universal quanti�ers,starting with an existential quanti�er. For example, 9x19x28x3�(x1; x2; x3) is a 2-alternating quanti�ed Boolean formula. (We say that a quanti�ed Boolean formulais satis�able if it evaluates to true.)The set of satis�able k-alternating quanti�ed Boolean formulae is denoted kQBFand is �k-complete, whereas the set of all satis�able quanti�ed Boolean formulaeis denoted QBF and is PSPACE-complete.



G.3. FINITE FIELDS, POLYNOMIALS AND VECTOR SPACES 649The foregoing de�nition refers to the canonical form of quanti�ed Boolean for-mulae, in which all the quanti�ers appear at the leftmost side of the formula.A more general de�nition allows each variable to be quanti�ed at an arbitraryplace to the left of its leftmost occurrence in the formula (e.g., (8x1)(9x2) (x1 =x2) ^ (9x3)(x3 = x1)). Note that such generalized formulae (used in the proof ofTheorems 5.15 and 9.4) can be transformed to the canonical form by \pulling" allquanti�ers to the left of the formula (e.g., 8x19x29x3 ((x1 = x2) ^ (x3 = x1))).G.3 Finite Fields, Polynomials and Vector SpacesVarious algebraic objects, computational problems and techniques play an impor-tant role in complexity theory. The most dominant such objects are �nite �elds aswell as vector spaces and polynomials over such �elds.Finite Fields. We denote by GF(q) the �nite �eld of q elements and note thatq may be either a prime or a prime power. In the �rst case, GF(q) is viewedas consisting of the elements f0; :::; q � 1g with addition and multiplication beingde�ned modulo q. Indeed, GF(2) is an important special case. In the case thatq = pe, where p is a prime and e > 1, the standard representation of GF(pe)refers to an irreducible polynomial of degree e over GF(p). Speci�cally, if f isan irreducible polynomial of degree e over GF(p) then GF(pe) can be representedas the set of polynomials of degree at most e � 1 over GF(p) with addition andmultiplication de�ned modulo the polynomial f .We mention that �nding representations of large �nite �elds is a non-trivialcomputational problem, where in both cases we seek an e�cient algorithm that�nds a representation (i.e., either a large prime or an irreducible polynomial) intime that is polynomial in the length of the representation. In the case of a �eldof prime cardinality, this calls for generating a prime number of adequate size,which can be done e�ciently by a randomized algorithm (while a correspondingdeterministic algorithm is not known). In the case of GF(pe), where p is a primeand e > 1, we need to �nd an irreducible polynomial of degree e over GF(p).Again, this task is e�ciently solvable by a randomized algorithm (see [24]), buta corresponding deterministic algorithm is not known for the general case (i.e.,for arbitrary prime p and e > 1). Fortunately, for e = 2 � 3e0 (with e0 being aninteger), the polynomial xe + xe=2 +1 is irreducible over GF(2), which means that�nding a representation of GF(2e) is easy in this case. Thus, there exists a stronglyexplicit construction of an in�nite family of �nite �elds (i.e., fGF(2e)ge2L, whereL = f2 � 3e0 : "0 2 Ng).Polynomials and Vector Spaces. The set of degree d� 1 polynomials over a�nite �eld F (of cardinality at least d) forms a d-dimensional vector space over F(e.g., consider the basis f1; x; :::; xd�1g). Indeed, the standard representation of thisvector space refers to the basis 1; x; :::; xd�1, and (when referring to this basis) thepolynomial Pd�1i=0 cixi is represented as the vector (c0; c1; :::; cd�1). An alternative



650 APPENDIX G. SOME COMPUTATIONAL PROBLEMSbasis is obtained by considering the evaluation at d distinct points �1; :::; �d 2 F ;that is, the degree d � 1 polynomial p is represented by the sequence of values(p(�1); :::; p(�d)). Needless to say, moving between such representations (i.e., rep-resentations with respect to di�erent bases) amounts to applying an adequate lineartransformation; that is, for p(x) =Pd�1i=0 cixi, we have0BBB@ p(�1)p(�2)...p(�d) 1CCCA = 0BBB@ 1 �1 � � � �d�111 �2 � � � �d�12... ... � � � ...1 �d � � � �d�1d 1CCCA0BBB@ c0c1...cd�1 1CCCA (G.1)where the (full rank) matrix in Eq. (G.1) is called a Vandermonde matrix. Theforegoing transformation (or rather its inverse) is closely related to the task ofpolynomial interpolation (i.e., given the values of a degree d � 1 polynomial at dpoints, �nd the polynomial itself).G.4 The Determinant and the PermanentRecall that the permanent of an n-by-n matrix M = (ai;j) is de�ned as the sumP�Qni=1 ai;�(j) taken over all permutations � of the set f1; :::; ng. This is relatedto the de�nition of the determinant in which the same sum is used except thatsome elements are negated; that is, the determinant of M = (ai;j) is de�ned asP�(�1)�(�)Qni=1 ai;�(j), where �(�) = 1 if � is an even permutation (i.e., can beexpressed by an even number of transpositions) and �(�) = �1 otherwise.The corresponding computational problems (i.e., computing the determinantor permanent of a given matrix) seem to have vastly di�erent complexities. Thedeterminant can be computed in polynomial-time; moreover, it can be computedin uniform NC2. In contrast, computing the permanent is #P-complete, even inthe special case of matrices with entries in f0; 1g (see Theorem 6.20).G.5 Primes and Composite NumbersA prime is a natural number that is not divisible by any natural number other thanitself and 1. A natural number that is not a prime is called composite, and its primefactorization is the set of primes that divide it; that is, if N =Qti=1 P eii , where thePi's are distinct primes (greater than 1) and ei � 1, then fPi : i = 1; :::; tg is theprime factorization of N . (If t = 1 then N is a prime power.)Two famous computational problems, identi�ed by Gauss as fundamental ones,are testing primality (i.e., given a natural number, determine whether it is prime orcomposite) and factoring composite integers (i.e., given a composite number, �nd itsprime factorization). Needless to say, in both cases, the input is presented in binaryrepresentation. Although testing primality is reducible to integer factorization,the problems seem to have di�erent complexities: While testing primality is in P(see [3] (and x6.1.2.2 showing that the problem is in BPP)), it is conjectured that



G.5. PRIMES AND COMPOSITE NUMBERS 651factoring composite integers is intractable. In fact, many popular candidates forvarious cryptographic systems are based on this conjecture.Extracting modular square roots. Two related computational problems areextracting (modular) square roots with respect to prime and composite moduli.Speci�cally, a quadratic residue modulo a prime P is an integer s such that thereexists an integer r satisfying s � r2 (mod P ). The corresponding search problem(i.e., given such P and s, �nd r) can be solved in probabilistic polynomial-time(see Exercise 6.16). The corresponding problem for composite moduli is compu-tationally equivalent to factoring (see [183]); furthermore, extracting square rootsmodulo N is easily reducible to factoring N , and factoring N is randomly reducibleto extracting square roots modulo N (even in a typical-case sense). We mentionthat even the problem of deciding whether or not a given integer has a modularsquare root modulo a given composite is conjectured to be hard (but is not knownto be computationally equivalent to factoring).
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