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Abstract. We consider two basic computational problems regarding
discrete probability distributions: (1) approximating the statistical dif-
ference (aka variation distance) between two given distributions, and (2)
approximating the entropy of a given distribution. Both problems are
considered in two different settings. In the first setting the approxima-
tion algorithm is only given samples from the distributions in question,
whereas in the second setting the algorithm is given the “code” of a
sampling device (for the distributions in question).
We survey the know results regarding both settings, noting that they are
fundamentally different: The first setting is concerned with the number
of samples required for determining the quantity in question, and is thus
essentially information theoretic. In the second setting the quantities in
question are determined by the input, and the question is merely one
of computational complexity. The focus of this survey is actually on the
latter setting. In particular, the survey includes proof sketches of three
central results regarding the latter setting, where one of these proofs has
only appeared before in the second author’s PhD Thesis.
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1 Introduction

We consider two basic computational problems regarding discrete probability
distributions:

1. Computing (or rather approximating) the statistical difference (aka variation
distance) between two given distributions.

2. Computing (or rather approximating) the entropy of a given distribution.

The foregoing informal phrases avoid the question of representation; that is, how
are the distributions given to the algorithms. Both computational problems are
quite trivial in the case that the distributions are explicitly given to the algorithm
(i.e., by a list of all elements in the support of the distribution coupled with the
probability mass assigned to them). Very good additive approximations can be
obtained also in the case that the algorithm is given sufficiently many samples
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(drawn independently) from the distribution, where “sufficiently many” means
linear in the size of the distribution’s support. For example, given N/poly(ǫ)
samples from a distribution that has support size (at most) N , one can estimate
the distribution’s entropy up-to an additive deviation of ǫ (w.v.h.p.). The same
number of samples suffices for approximating the statistical distance between
two such distributions (again, up to an additive deviation of ǫ, w.v.h.p.).

The question is whether such approximations (or even weaker ones) can be
obtained based on significantly less samples. At the very least, we are inter-
ested in algorithms that take o(N) samples (i.e., a “sub-linear” (in the support
size) number of samples). In Section 3, we survey what is known regarding this
question. The bottom-line is that weak approximations of both quantities can
be obtained using Ne samples, for some e < 1, but nothing significant can be
achieved with No(1) samples.

We note that the foregoing question is essentially an information-theoretical
one; that is, the question refers to the number of samples required to make some
estimations regarding the distribution(s). In contrast, in Section 4, we consider
a purely computational-complexity problem: We consider algorithms that are
given the “code” of a sampling device (for the distributions in question). We
stress that such a device fully determines the distribution (from an information-
theoretic point of view), and the issue is what quantities can be efficiently com-
puted based on this description of the distribution. Note that the algorithm may,
of course, use the sampling device in order to generate samples. However, the
algorithm is not confined to this usage of the sampling device and may try to
analyze the device in other ways (e.g., try to “reverse-engineer” it).

To be concrete, the sampling device is represented by a circuit C : {0, 1}m →
{0, 1}n, which can be used to generate samples by feeding it with a uniformly
selected m-bit long string. Alternatively, one may say that C is an implicit
representation of a distribution over {0, 1}n, obtained by feeding C with a uni-
formly selected m-bit long string. Typically, the circuit’s size is polynomial in
n, whereas the distribution defined by it can have support size 2n. Thus, when
we consider the aforementioned computational problems in terms of the circuit
size, polynomial-time algorithms correspond to algorithms that run in time that
may be poly-logarithmic in the size of the support. We stress that, in this model,
the algorithm has full information regarding the distribution in question, but it
does not have enough time to use this information in a straightforward way (i.e.,
feed the circuit with all possible inputs). The question is whether the algorithm
can obtain approximations to the aforementioned quantities within time that is
polynomial in the size of the circuit. In Section 4, we survey what is known re-
garding this question. The bottom-line is that the complexity of approximating
each of the foregoing computational problems is complete (under polynomial-
time reductions) for the complexity class SZK ⊆ AM∩coAM, which is conjec-
tured to extend beyond BPP (i.e., probabilistic polynomial-time). In particular,
under the widely believed conjecture that the Discrete Logarithm Problem is
intractable, it follows that the approximation versions of each of the foregoing
computational problems are intractable. It is also known that the two types of
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computational problems are actually computationally equivalent; that is, each
is efficiently reducible to the other.

Organization: In Section 3 we briefly survey the known results regarding sampling-
based algorithms (i.e., algorithms that only get samples from the distributions
in question). In Section 4 we survey the known results regarding the second set-
ting; that is, we consider algorithms that are given as input a full description of
a sampling device for the distributions in question. In Section 5 we present the
main ideas underlying the proofs of the three theorems stated in Section 4. One
of these proofs has only appeared before in the second author’s PhD Thesis [22].
Sections 4 and 5 are actually the main part of this survey.

2 Preliminaries

Traditionally, (discrete) probability distributions are represented by the list of
probabilities assigned to the various elements in their range (or potential sup-
port). That is, a distribution is presented by a sequence (p1, ..., pN ) of non-
negative numbers (which sum-up to one) such that pi represents the probability
mass that is assigned to the ith element, denoted ei. Without loss of generality,

we may assume that {ei : i = 1, ..., N} = [N ]
def
= {1, ..., N}.

In this survey, we prefer to represent probability distributions by correspond-
ing random variables that represent an element selected according to the distri-
bution in question. That is, for a sequence (p1, ..., pN ) as above, we consider a
random variable X ∈ [N ] such that pi = Pr[X = ei], and identify the random
variable X with the probability distribution that assigns to ei the probability
mass Pr[X =ei].

The statistical difference (or variation distance) between the distributions (or
the random variables) X and Y is defined as

∆(X, Y )
def
=

1

2
·
∑

e

|Pr[X =e]−Pr[Y =e]| = max
S

{Pr[X ∈ S]−Pr[Y ∈ S]} (1)

We say that X and Y are δ-close if ∆(X, Y ) ≤ δ and that they are δ-far if
∆(X, Y ) ≥ δ. Note that X and Y are identical if and only if they are 0-close,
and are disjoint (or have disjoint support) if and only if they are 1-far.

The entropy of a distribution (or random variables) X is defined as

H(X)
def
=

∑

e

Pr[X =e] · log2(1/Pr[X =e]) . (2)

The entropy of a distribution is always non-negative and is zero if and only if
the distribution is concentrated on a single element. In general, a distribution
that has support size N has entropy at most log2 N .
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3 Sampling-based algorithms

In this section we consider algorithms that approximate quantities related to
distributions solely on the basis of samples of the relevant distributions. We refer
to such algorithms as sampling-based algorithms, and consider such algorithms
for approximating the distance between pairs of distributions and approximating
the entropy of a distribution. We denote by N an upper bound on the size of
the support of these distributions, and focus on algorithms that obtain o(N)
samples.

We review the known results regarding the relationship between the number
of samples and the quality of the approximation. In other words, we consider
the sample complexity of these approximation problems.

3.1 Approximating the distance between distributions

The study of sampling-based algorithms for approximating the statistical dis-
tance between distributions was initiated by Batu et. al. [6]. They show that
Θ(N1/2) samples are necessary and sufficient in order to distinguish a pair of
identical distributions from a pair of disjoint distributions (i.e., to distinguish
the case that the two distributions are 0-close from the case that they are 1-
far), where N is an upper bound on the support of the distribution. Regarding
the more general problem of distinguishing pairs of identical distributions from
pairs of distributions that are δ-far, Batu et. al. [6] showed that Õ(N2/3δ−4)
samples suffice, and claimed that Ω(N2/3) samples are necessary. The latter
claim was proved by P. Valiant [25]. Regarding the even more general problem
of approximating the statistical distance between distributions, it was shown
by P. Valiant [25] that N1−o(1) samples are required. That is, for every fixed
0 < δ1 < δ2 < 1, it is the case that N1−o(1) samples are required in order to
distinguish distribution-pairs that are δ1-close from distribution-pairs that are
δ2-far apart.

Our conclusion is that in order to obtain any meaningful information re-
garding the distance between two distributions (in this model), one must obtain
Ω(N1/2) samples. Furtherthmore, while O(N2/3) samples suffice for distinguish-
ing identical distribution-pairs from distribution-pairs that are far apart (say
0.1-far), in the general case N1−o(1) samples are required in order to approx-
imate (up to any constant additive term) the statistical distance between two
distributions (of support size N).

3.2 Approximating the entropy of a distribution

Batu et. al. [4] considered the problem of approximating the entropy of a dis-
tribution based on samples from it; that is, they considered sampling-based
algorithms for this task. They presented an algorithm that, for any γ > 1, using
Õ(N1/γ) samples of a distribution that has entropy Ω(γ) provides a γ-factor
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approximation of its entropy. We comment that some lower-bound on the en-
tropy is necessary for obtaining any approximation-factor based on samples.1 On
the other hand, also in the case that the entropy is lower-bounded (as in Foot-
note 1 or even more), a constant factor approximation of the entropy requires
NΩ(1) samples (i.e., a γ-factor approximation requires Ω(N (1/γ)−o(1)) samples;
see [25]).

Our conclusion is that, except in pathological cases (of distributions having
very small entropy), the sample complexity of obtaining a γ-factor approximation
of the entropy of a distribution is N (1/γ)±o(1), where N is an upper bound on
the support of the distribution.

Additive error approximation. The foregoing discussion refers to multiplicative
error approximation. Recent work by G. Valiant and P. Valiant [23, 24] refers to
additive error approximations and shows that Θ(n/ log n) samples are necessary
and sufficient in such a case.

3.3 Additional comments

A general framework for analyzing the sample complexity of various computa-
tional problems regarding distributions was recently provided by P. Valiant [25].
Indeed, some of the aforementioned lower-bounds are derived using this frame-
work. Furthermore, this framework may be applied to other natural measures of
distance between distributions.

Some of the aforementioned results can be cast naturally within the formalism
of property testing (cf. [20, 12, 9]). For example, one may consider the property
of two distributions being identical, and the task of accepting pairs having the
property and rejecting pairs that are far from having the property according to
a natural distance measure (cf. [9]).

Related work. Batu et. al. [5] have considered the task of approximating the dis-
tance between a fixed distribution and a second distribution for which one only
obtains samples.2 They present an algorithm that, for a parameter δ, determines
whether the two distributions are µ(N)·δ3-close or δ-far based on Õ(N1/2δ−O(1))

samples, where µ(N) = Õ(1/
√

N). This matches a lower bound of Ω(
√

N) sam-
ples requires to distinguish the case that the distribution is uniform over [N ]
from the case that it is (say) 0.1-far from being uniform. Batu et. al. [4] consid-
ered the problem of approximating the entropy of a distribution also in a model
in which the algorithm has access to an “evaluation oracle” instead or in addi-
tion to the samples, where the evaluation oracle is defined to answer the query x
with the probability mass assigned to x.

1 Consider, for example, the family of distributions (parameterized by ǫ > 0) having
support size 2, assigning probability ǫ to one element and 1 − ǫ to the other.

2 Alternatively, the first distribution may be given explicitly (as input to the algo-
rithm), which in this case has running time linear in N .
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4 Algorithms that are given a sampling device

In this section we consider algorithms that are given a succinct description of the
distributions in question. That is, the algorithm is given a “sampling device” (in
the form of a circuit) and is supposed to approximate a quantity that refers to
the distribution defined by this sampling device. A sampling device is actually
an algorithm, and the distribution defined by it is the output distribution of the
device when fed with a random input of adequate length. For concreteness, for
a feasibility parameter n, we consider poly(n)-size circuits that map poly(n)-bit
long inputs to n-bit long outputs. Note that such circuits define a distribution
over {0, 1}n, which may contain N = 2n elements. In other words, a distribution
over {0, 1}n is represented by a corresponding (poly(n)-size) sampling device
(or circuit), which typically means that we use a succinct representation of the
distribution.

We consider algorithms that are given such a representation (i.e., a circuit) as
input, and need to approximate some quantities of the represented distribution.
Indeed, one thing that such an algorithm can do is evaluate the circuit on inputs
of its choice, and in particular on uniformly selected inputs. Thus, the algorithm
can certainly produce samples of the distribution, where these samples are in-
deed of the type used in Section 3. However, the algorithm is not confined to
operating in that way, and it may try to “reverse engineer” the circuit in order
to learn more about the distribution (than by merely observing random samples
generated according to the distribution). Needless to say, we don’t really be-
lieve that “reverse engineering” can help to answer the computational problems
considered here, still we cannot rule out this possibility.

We stress that unlike in Section 3, the algorithm gets full information of the
distribution. That is, from an information theoretic point of view, the sampling
device (or circuit) determines the distribution, and thus determines its entropy
and its distance from another distribution. The question is how much time is
required in order to compute these quantities from the information that fully-
determines them. In the rest of this section we associate the sampling circuits
with the distributions generated by them. That is, we associate the circuit C
with the distribution it outputs when fed with a uniformly selected input.

We study the complexity of approximation problems by defining correspond-
ing promise problems (cf. [7]), where the latter are pairs of disjoint sets (cf. [10]).
A promise problem (A, B) consists of distinguishing between inputs in A and
inputs in B, where inputs out of A ∪ B are ignored (or one is “promised” that
the input is in A ∪ B).

We briefly recall the standard definitions of reductions, when applied to
promise problems. The promise problem (A1, B1) is Karp-reducible to (A2, B2)
if there exists a polynomial-time computible function f such that if x ∈ A1

(resp., x ∈ B1) then f(x) ∈ A2 (resp., f(x) ∈ B2). More generally, (A1, B1) is
Cook-reducible (or just reducible) to (A2, B2) if there exists a polynomial-time
oracle machine M that on input x ∈ A1 (resp., x ∈ B1) and oracle access to
(A2, B2), outputs 1 (resp., 0), where query q to the oracle (A2, B2) is answered
arbitrarily in case q 6∈ A2 ∪ B2. Two problems are said to be computationally
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equivalent (resp., computationally equivalent under Karp-reductions) if each is
Cook-reducible (resp., Karp-reducible) to the other.

4.1 Approximating the distance between distributions

We consider promise problems that take as input a pair of circuits and re-
fer to the statistical difference between the two corresponding distributions
(generated by the two circuits). For (threshold) functions c, f : N → [0, 1],
where c ≤ f , the promise problem GapSDc,f = (Closec, Farf ) is defined such
that (C1, C2) ∈ Closec if ∆(C1, C2) ≤ c(|C1| + |C2|) and (C1, C2) ∈ Farf

if ∆(C1, C2) > f(|C1| + |C2|). In particular, we focus on promise problem

GapSD
def
= GapSD

1

3
, 2
3 . Interestingly, the complexity of this gap problem, which cap-

tures a moderately good approximation requirement, is computationally equiv-
alent to a very crude approximation requirement. That is, the former problem
is Karp-reducible to the latter:

Theorem 1 ([21], see proof sketch in Section 5.1:) There exists a Karp-reduction

of GapSD
1

3
, 2

3 to GapSDǫ,1−ǫ, where ǫ(n) = 2−n. More generally, for every polynomial-

time computible c, f : N → [0, 1] such that c(n) < f(n)2 − (1/poly(n)) it holds

that GapSDc,f is Karp-reducible to GapSDǫ,1−ǫ.

Using a trivial reduction in the other direction, we conclude that for every c, f :
N → [0, 1] such that c(n) ≥ 2−n, c(n) < f(n)2−(1/poly(n)) and f(n) ≥ 1−2−n,

the problems GapSDc,f and GapSD = GapSD
1

3
, 2

3 are computationally equivalent

(under Karp reductions). This equivalence is useful in determining the complex-
ity of GapSD (as well as all these GapSDc,f ’s). Sahai and Vadhan [21] showed that
any promise problem having a statistical zero-knowledge proof system is Karp-

reducible to GapSD
1

2p2
, 1

p , for some polynomial p, and that GapSDǫ,1−ǫ (where
ǫ(n) = 2−n) has a statistical zero-knowledge proof system. Denoting the class of
promise problem having statistical zero-knowledge proof systems by SZK, we
have:

Theorem 2 [21]: The promise problem GapSD is SZK-complete (under Karp-
reductions).

Recall that SZK contains some promise problems (e.g., one equivalent to Dis-
crete Logarithm Problems) that are widely believed not to be in BPP (cf. [13]).
On the other hand, SZK ⊆ AM∩ coAM (cf. [11, 1]), which in turn is quite low
in the Polynomial-Time Hierarchy.

We comment that GapSD = (Close, Far) is Karp-reducible to its complement

(Far, Close) [21]; that is, there is a Karp-reduction that maps pairs (C1, C2) to
pairs (C′

1, C
′
2) such that if ∆(C1, C2) ≤ 1/3 then ∆(C′

1, C
′
2) > 2/3 whereas if

∆(C1, C2) > 2/3 then ∆(C′
1, C

′
2) ≤ 1/3.
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4.2 Approximating the entropy of a distribution

We consider two computational problems related to approximating the entropy
of a distribution. The first problem is captured by promise problems that take as
input a circuit and a value and refers to the relation between the entropy of (the
distribution generated by) the circuit and the given value. For a (slackness) func-
tion s : N → R, where s > 0, the promise problem GapEnts = (Smallers, Larger)
is defined such that (C, v) ∈ Smallers if H(C) ≤ v− s(|C|) and (C, v) ∈ Larger

if H(C) ≥ v. In particular, we focus on promise problem GapEnt
def
= GapEnt1

(which refers to approximating the entropy up to an additive error of 1). It is
easy to see that, for every polynomial p and for every ǫ > 0 and ℓ(n) = n1−ǫ(n),
the problems GapEnt1/p, GapEnt1 and GapEntℓ are computational equivalent
(under Karp reductions).3

We also consider promise problems that take as input a pair of circuits and
refer to the relation between the entropies of the corresponding distributions
(generated by the two circuits). For a (slackness) function s : N → R, where s >
0, the promise problem GapCmprEnts = (Smallers, Largers) is defined such that
(C1, C2) ∈ Smallers if H(C1) ≤ H(C2) − s(|C1| + |C2|) and (C1, C2) ∈ Largers

if H(C1) ≥ H(C2) + s(|C1| + |C2|). In particular, we focus on promise problem

GapCmprEnt
def
= GapCmprEnt1, and note that it is computationally equivalent

(under Karp reductions) to GapCmprEnt1/p and GapCmprEntℓ (where p and ℓ are
as above). Two easy observations follow:

Observation 1: The problems GapEnt and GapCmprEnt are computationally

equivalent (under Cook reductions). Specifically, GapEnt is Karp-reducible
to GapCmprEnt, whereas GapCmprEnt is Cook-reducible to GapEnt.

For example, one may use a Karp-reduction that maps an instance (C, v) of
GapEnt to the intance (C, Cv−0.5) of GapCmprEnt1/3 such that Cv−0.5 is a
standard circuit that generates some distribution of entropy (approximately)
v − 0.5. For the other direction, consider an oracle machine that decides
intances of GapCmprEnt by using queries to GapEnt1/3 in order to determine
the entropy of each of the two input distributions (up to an additive error
of 1/3).

Observation 2: The problem GapCmprEnt = (Smaller, Larger) is Karp-reducible

to its complement (Larger, Smaller); e.g., by the reduction that maps (C1, C2)
to (C2, C1).

It is not know whether or not GapCmprEnt is Karp-reducible to GapEnt and
whether or not GapEnt is Karp-reducible to its complement. In fact, both ques-
tions are equivalent (cf. [16]), and we conjecture that the answer (to both of
them) is negative. It turns out that all these computational problems (regarding
entropy) are computationally equivalent to the computational problems regard-
ing statistical distance:

3 The tighter (additive) approximation is reduced to the looser one by combining
sufficiently many copies of the circuit.
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Theorem 3 ([17], see proof sketch in Section 5.3:) The promise problems GapCmprEnt

and GapSD are computationally equivalent under Karp reductions.

Combining Theorem 3 and Observation 2, it follows that GapSD = (Close, Far)
is Karp-reducible to its complement (Far, Close). We comment that this result
(which was already stated at the end of Subsection 4.1) was originally proved
in [21] without using the equivalence of GapSD and GapCmprEnt (i.e., without
using Theorem 3).

4.3 Additional comments

We comment that the promise problems GapSD, GapEnt and GapCmprEnt were
originally introduced as tools in the study of statistical zero-knowledge.4 Con-
sequently, the original presentations (cf. [21, 17, 16]) focus on the derivation and
presentation of results regarding statistical zero-knowledge, and the relation be-
tween the promise problems themselves is sometimes only implicit (and is typi-
cally not at the main focus). In fact, redeeming this state of affairs has been our
initial motivation for writing the current survey.

The bottom-line of the foregoing results is that many of the approximation
versions of the two problems (i.e., approximating the distance between distri-
butions and approximating their entropy) are computationally-equivalent. The
exceptional versions that are not known to be equivalent to the other versions
refer to too small gaps (which may yield even harder versions). Whereas in the
case of approximating the entropy the definition of “too small gaps” is a natural
one, it is somewhat artificial in the case of GapSDc,f where we require c < f2.
An interesting open problem is to determine the complexity of GapSDc,f in the
case that c > f2 (but c < f , of course)5; that is, is this problem computationally
equivalent to GapSD or is it strictly harder?

An alternative perspective on the current section is that it concerns only
probability distributions that have a succinct representation, where such a rep-
resentation is one allowing to efficiently obtain samples from the distribution.
Specifically, for a feasibility parameter n, we consider probability distributions
over {0, 1}n. The support of such a distribution may contain 2n elements, while
we consider algorithms operating in poly(n)-time. Thus, such algorithms cannot
read an explicit representation of the distribution (in the form of a sequence of
length 2n), and hence the distribution is given to it in a succinct representation.
Specifically, we have considered algorithms that are given a sampling device,
which is a poly(n)-size circuit that when feed with a random input output a
sample that is distributed according to the distribution. We have considered
the complexity of estimating various quantities of distributions given by such a
succinct representation.

4 For more details regarding statistical zero-knowledge see either [21, 15, 17, 16] or [22].
5 The above formulation refers to constant c and f . For c, f : N → [0, 1], we have to

require that c(n) < f(n) − (1/p(n)) for some polynomial p.
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5 Proof sketches for the three theorems

In this section we outline the main ideas used in the proofs of the three theorems
stated in Section 4. Theorem 2 is the only one that refers to statistical zero-
knowledge and its proof is the only one that assumes any familiarity with zero-
knowledge. The other two proofs are based merely on elementary results from
probability theory and probabilistic analysis.

As in Section 4, we associate the sampling circuits with the distributions
generated by them. That is, we associate the circuit C with the distribution it
outputs when fed with a uniformly selected input.

5.1 Proof sketch for Theorem 1

Theorem 1 was proven by Sahai and Vadhan [21], and here we provide an outline

of their proof. Recall that the theorem claims a Karp-reduction of GapSD
1

3
, 2

3 (or
any adequate GapSDc,f ) to GapSDǫ,1−ǫ, where ǫ(n) = 2−n. This reduction (called
the Polarization Lemma in [21]) has the interesting effect of “polarizing the
situation”: pairs of distributions that are somewhat close (e.g., are at most at
distance 1/3 apart) are mapped to pairs of almost identical distributions (i.e.,
having negligible distance between them), whereas pairs of distributions that
are somewhat far apart (e.g., at distance at least 2/3) are mapped to pairs
of distributions that are very different (e.g., have distance negligiblly close to
1). The “polarizing” reduction is obtained by composing three Karp-reductions,
which in turn are of two types. These two types of Karp-reductions (among
GapSDc,f problems) are described next, starting with the simpler one.

The Direct Product reduction: This reduction increases both bounds in the defi-
nition of GapSDc,f (but not in a tight manner). For any (polynomial) t, we reduce

GapSDc,f to GapSDt·c,1−2 exp(−t·f2/2) by constructing circuits that generate t sam-
ples of each of the corresponding input distributions. That is, we map the circuit

pair (C1, C2) to (C′
1, C

′
2), where C′

i(r1, ..., rt)
def
= (Ci(r1), ..., Ci(rt)). Clearly, the

statistical distance between the distributions grows by at most a factor of t. On
the other hand, it can be shown that if two distributions are at distance δ then
the statistical difference between their t-products is at least 1− 2 exp(−t · δ2/2).
(Indeed, it is not true that the statistical difference between the t-products is
exactly t · δ, the latter is merely an upper bound on the former.)6

6 The lower bound of 1 − 2 exp(−t · δ2/2) can be proved by referring to the second

definition in Eq. (1). Specifically, for an adequate set S, it holds that p
def
= Prr[C1(r) ∈

S] = Prr[C2(r) ∈ S]−δ. Thus, C′
1 (resp., C′

2) is expected to have t ·p (resp., t ·(p+δ)
elements in S. By applying a Chernoff Bound, we note that with probability at least
1− exp(−t · δ2/2), the output of C′

1 (resp., C′
2) will have less than t · (p + δ

2
) (resp.,

more than t · (p + δ

2
)) elements in S. This yields a set S′ that demonstrates the

claimed lower bound on the statistical difference between C′
1 and C′

2.
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The XOR reduction: This reduction decreases both bounds (in a tight manner).

For any (polynomial) t, we reduce GapSDc,f to GapSDct,ft

by mapping the circuit
pair (C0, C1) to (C′

0, C
′
1), where

C′

i(b1, ..., bt−1, r1, ..., rt−1, rt)
def
=

(
Cb1(r1), ..., Cbt−1

(rt−1), Ci+
Pt−1

j=1
bj mod 2(rt)

)
.

That is, the two output circuits (i.e., the C′
i’s) select samples from the two

input distributions (respresented by the Ci’s), and differ only in the parity of
the number samples taken from the (say) first input distribution. Specifically, C′

0

(resp., C′
1) takes an even (resp., odd) number of samples from C1. It can be shown

that if two input distributions are at distance δ then the statistical difference
between the constructed (output) distributions is exactly δt. (Intuitively, a single
sample drawn for one of the two input distributions corresponds to a “weak”
encryption of a bit, whereas a sample drawn from one of the output circuits
corresponds to encrypting a bit by applying “weak” encryptions to a random
sequence of bits that have the desired parity. The “weakness” of the resulting
encryption decays exponentially with t; cf. [26].)7

We now turn to the actual reduction of GapSD
1

3
, 2

3 (or any adequate GapSDc,f )
to GapSDǫ,1−ǫ, where ǫ(n) = 2−n. This reduction is composed of the following
three reductions:

1. A Karp-reduction of GapSD
1

3
, 2

3 (or any GapSDc,f such that c(n) < f(n)2 −
1

poly(n) ) to some GapSDc′,f ′

such that f ′(n) >
√

8n · c′(n).

Specifically, for an adequate parameter t, we use the XOR reduction and get
c′ = ct and f ′ = f t, which satisfies the desired condition (regarding c′ and
f ′) provided that c < f2 (or actually c(n) < (8n)−t/2 · f(n)2). In particular,
for c = 1/3 and f = 2/3, we set t = O(log n) and reduce GapSDc,f to

GapSDc′,f ′

, where c′(n)
def
= ct = 1/poly(n) and f ′(n)

def
= f t = (f2/c)t/2 ·ct/2 >√

8n · c′(n). In general, we set t = poly(n) such that (f(n)2/c(n))t/2 ≥ 8n,

which is possible because f(n)2

c(n) > 1 + 1
p(n) for some positive polynomial p.

2. A Karp-reduction of a GapSDc′,f ′

(with c′ and f ′ as obtained in Step 1) to
GapSDc′′,f ′′

, where c′′(n) = 1/4 and f ′′(n) ≥ 1 − 2 exp(−n).
Specifically, for an adequate parameter t (i.e., t = 1/4c′(n)), we use the

Direct Product reduction and get c′′(n)
def
= t · c′(n) = 1/4 and f ′′(n)

def
=

1− 2 exp(−t · f ′(n)2/2). Using the hypothesis f ′(n) ≥
√

8n · c′(n), it follows
that f ′′(n) = 1 − 2 exp(−f ′(n)2/8c′(n)) ≥ 1 − 2 exp(−n),

3. A Karp-reduction of a GapSDc′′,f ′′

(with c′′ and f ′′ as obtained in Step 2) to
GapSDǫ,1−ǫ, where ǫ(n) = 2−n.
Specifically, we apply the XOR reduction again, but this time with t = n/2,
and use (1/4)t = 2−n = ǫ(n) and (1 − 2 exp(−n))t > 1 − 2−n = 1 − ǫ(n).

7 Alternatively, consider the following problem. For pairs of random variables, (X0, X1)
and (Y0, Y1), we define a new pair of random variables, (Z0, Z1), such that Zi =
(Xb, Yi⊕b), where b ∈ {0, 1} is uniformly distributed. Using the first definition in
Eq. (1) and expanding the expression for ∆(Z0, Z1), one can show that ∆(Z0, Z1) =
∆(X0, X1) · ∆(Y0, Y1). The general claim (stated above) follows by induction on t.
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Combining the above three reductions, we obtain a Karp-reduction of GapSD
1

3
, 2

3

(or any GapSDc,f such that c(n) < f(n)2 − 1
poly(n) ) to GapSDǫ,1−ǫ, where ǫ(n) =

2−n.

On the use of the condition c < f2 in the current reduction: Note that in
Step 2 we have assumed that f ′(n) ≥

√
8n · c′, where (by Step 1) f ′ = f t

and c′ = ct. It follows that we must have f(n)t ≥ (8n)t/2 · (
√

c(n))t, and in
particular f(n)2 > c(n). As discussed in Section 4.3, it is an open problem
whether or not there exists an alternative reduction that uses a more relaxed
condition (regarding c and f).

5.2 Proof sketch for Theorem 2

Theorem 2 was also proven by Sahai and Vadhan [21], and here we sketch the
ideas underlying their proof. The proof consists of two parts: (1) showing that
GapSD has a statistical zero-knowledge proof system, and (2) showing that any
problem in SZK is Karp-reducible to GapSD. We try to present the proof ideas
while assuming only a superficial familiarity with the notion of statistical zero-
knowledge proof systems. A reader that does not feel comfortable with this
assumption is invited to skip the current subsection.

The problem GapSD has a statistical zero-knowledge proof system: Using Theo-
rem 1, it suffices to show such a proof system for GapSDǫ,1−ǫ, where ǫ(n) = 2−n.
Actually, we present such a proof system for the complement problem (i.e.,
(Far1−ǫ, Closeǫ)), and rely on the (highly non-trivial) fact that GapSD is re-
ducible to its complement.8 Employing the same idea as in [18, 14], the verifier
selects one of the input distributions at random and presents the prover with a
random sample generated according to this distribution. The verifier accepts if
and only if the prover correctly identifies the distribution from which the sample
was taken. Observe that if the input distributions are far apart then the prover
can answer correctly with very high probability. On the other hand, if the input
distributions are very close then the prover cannot guess the correct answer with
probability significantly larger than 1/2. This establishes that the protocol is an
interactive proof (and thus that GapSD is in coAM). It can be shown that this
protocol is actually statistical zero-knowledge, intuitively because the verifier
learns nothing from the prover’s correct answer which is a priori known to to
the verifier (in case the two distributions are far apart).

Any problem in SZK is Karp-reducible to GapSD: We rely on Okamoto’s Theo-
rem by which any problem in SZK has a public-coin statistical zero-knowledge
proof system. (We comment that an alternative proof of that theorem has sub-
sequently appeared in [17].) We consider an arbitrary (public-coin) statistical

8 As mentioned in Section 4, this fact follows by combining Theorem 3 with Obser-
vation 2. An alternative proof of the fact that GapSD is reducible to its complement
was given in [21]. (Actually this alternative proof was discovered before Theorem 3.)



25

zero-knowledge proof system. Following Fortnow [11], we observe a discrepency
between the behavior of the simulator on yes-instances versus no-instances:

– In case the input is a yes-instance, the simulator outputs transcripts that are
very similar to those in the real interaction. In particular, these trascripts
are accepting and the verifier’s behavior in them is as in a real interac-
tion. In particular, resorting to the public-coin condition, this means that
the verifier’s messages in the simulation are (almost) uniformly distributed
independently of prior messages.

– In case the input is a no-instance, the simulator must output either reject-
ing transcripts or transcripts in which the verifier’s behavior is significantly
different from the verifier’s behavior in a real interaction. In particular, the
only way the simulator can produce accepting transcripts is by producing
transcripts in which the verifier’s messages are not “random enough” (i.e.,
they depend, in a noticeable way, on previous messages).

Thus assuming, without loss of generality, that the simulator only produces
accepting transcripts, we consider two types of distributions. The first type of the
distributions is obtained by truncating a random simulator-produced transcript
at a random “location” (after some verifier message), whereas the second type
is obtained by doing the same while replacing the last verifier message by a
random one. Note that both distributions can be implemented by polynomial-
size circuits that depend on the input to the proof system being analyzed (and
that these two circuits can be constructed in polynomial-time given the said
input). The key observation is that if the input is a yes-instance then the two
corresponding distributions will be very close, whereas if the input is a no-
instance then there will be a noticeable distance between the two corresponding
distributions. Thus, we reduced any problem having a (public-coin) statistical
zero-knowledge proof system to GapSDµ,ν , where µ is a negligible function and
ν(n) is a noticeable function.9 The proof is completed by using Theorem 1 (while
noting that µ(n) < ν(n)2 − (1/poly(n))).

5.3 Proof sketch for Theorem 3

Theorem 3 was proven by Goldreich and Vadhan [21], by showing that GapCmprEnt
is SZK-complete (under Karp-reductions) and invoking Theorem 2 (which shows
the same for GapSD). Here we follow a more direct proof, which has appeared
in Vadhan’s PhD Thesis [22]. The proof consists of two parts: (1) showing that
GapSD is Karp-reducible to GapCmprEnt, and (2) showing that GapCmprEnt is
Karp-reducible to GapSD.

Reducing GapSD to GapCmprEnt: Using Theorem 1, it suffices to reduce GapSDǫ,1−ǫ

to GapCmprEnt, for ǫ(n) = 2−n. Actually, we will reduce GapSDǫ,1−ǫ to a related

9 A function µ : N → [0, 1] is called negligible if µ(n) < 1/p(n) for every positive
polynomial p and all sufficiently large n. A function ν : N → [0, 1] is called noticeable

if ν(n) > 1/p(n) for some positive polynomial p and all sufficiently large n.
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problem, denoted GapCmprEnt′, that refers to distinguishing pairs of distribu-
tions that have approximately the same entropy from pairs in which the first
distribution has (say half a unit of) more entropy.10 We reduce GapSDǫ,1−ǫ to

GapCmprEnt′ by mapping the circuit pair (C0, C1) to (C′
1, C

′
2), where C′

1(r, s, b)
def
=

(Cs(r), b) and C′
2(r, s, b)

def
= (Cs(r), s). That is, C2 outputs a sample of one of

the input distributions along with the “selection bit” s used to determine the
input distribution being sampled, whereas C1 outputs such a sample along with
an independently distributed random bit (denoted b). Clearly, the entropy of C′

1

is always v + 1, where v
def
= H(C0)+H(C1)

2 . Now, if the two input distributions are
very far apart then the selection bit s will be determined by the sample and so
the entropy of C′

2 will be approximately v, which is significantly smaller than
H(C′

1). On the other hand, if the two input distributions are very close then
(even conditioned on the sampled selected) the selection bit s will be almost
random and so H(C′

2) ≈ v + 1, which is approximately the same as H(C′
1).

A warm-up: reducing GapEnt to GapSD. We first reduce GapEnt to GapEntℓ,
where ℓ(n) =

√
n, by using sufficiently many samples (of the input distri-

bution): for example, we may map (C, v) to (C′, v′), where C′(r1, ..., rn) =
(C(r1), ..., C(rn)) and v′ = n · v. Next, we assume that the input distribution is
“flat”, where a distribution is called flat if it is uniform over some set (i.e., if all
elements in its support are assigned the same probability mass). We note that
by taking sufficiently many samples, we can transform each distribution to one
that is “almost flat” (in a sense that is sufficient for the rest of the proof), while
maintaining its “relative entropy” (i.e., the average entropy per output bit).
Now, suppose that we are given a pair (C, v) such that C : {0, 1}m → {0, 1}n is
flat and |H(C) − v| ≥ √

n, and we are interested in the relation between H(C)
and v. Suppose that h is a random hash function11 mapping m-bit strings to
(m−v−log2

2 n)-bit long string. Now, consider the distributions (h, C(r), h(r)) and
(h, C(r), h(r′)), where r, r′ ∈ {0, 1}m and h are uniformly selected. By the prop-
erty of the hashing function, the third part of the distribution (h, C(r), h(r′))

is almost uniform over {0, 1}m−v−log2

2
n, even when conditioning on the first

parts (specifically on h). On the other hand, the third part of the distribution
(h, C(r), h(r)) is distributed as h(r) conditioned on C(r) (i.e., h(r)|C(r)). We
note that H(r|C(r)) = m − H(C), and that the distribution r|C(r) is flat. Fur-
thermore, if H(C) ≤ v then H(r|C(r)) ≥ m − v and the distribution h(r)|C(r)

is almost uniform over {0, 1}m−v−log2

2
n, whereas if H(C) ≥ v + 2 log2

2 n then
H(r|C(r)) ≤ m − v − 2 log2

2 n and the distribution h(r)|C(r) is very far from

being uniform over {0, 1}m−v−log2

2
n. Now, recall that |H(C) − v| ≥ √

n, and ob-
serve that if H(C) < v then the distribution (h, C(r), h(r)) is almost identical to

10 Indeed, the reduction from GapCmprEnt
′ to GapCmprEnt is easy: we just increase the

gap in entropy (by repeated sampling), and move the gap location (by augmenting
the second distribution with a few random bits).

11 Formally speaking, we mean a uniformly selected function in a collection of univer-
sal2 hashing functions [8]. For example, we may select h uniformly among all affine
mappings of GF (2m) to GF (2k), for k = m − v − log2

2
n.
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the distribution (h, C(r), h(r′)), whereas if H(C) > v then (h, C(r), h(r)) is very
far from (h, C(r), h(r′)). Thus, we have reduced GapEnt to GapSD.

Reducing GapCmprEnt to GapSD: As in the warm-up, we first reduce GapCmprEnt
to GapCmprEntℓ, where ℓ(n) =

√
n, such that each of the two distributions is al-

most flat. Suppose that we are given a pair of circuits (C1, C2) such that both are
(almost) flat and |H(C1) − H(C2)| ≥

√
n, and we are interested in the question

of which circuit (or distribution represented by it) has higher entropy. Further
suppose that C1, C2 : {0, 1}m → {0, 1}n. Suppose that h is a random hash
function mapping (n + m)-bit strings to (m − log2

2 n)-bit long string. Now, con-
sider the distributions (h, C1(r1), h(C2(r2), r1)) and (h, C1(r1), h(0n, r2)), where
r1, r2 ∈ {0, 1}m and h are uniformly selected. By the property of the hash-
ing function, the third part of the distribution (h, C1(r1), h(0n, r2)) is almost

uniform over {0, 1}m−log2

2
n, even when conditioning on the first parts. On the

other hand, the third part of the distribution (h, C1(r1), h(C2(r2), r1)) is dis-

tributed as h(C2(r2), r1)|C1(r1)). We note that u
def
= H(C2(r2), r1|C1(r1)) =

H(C2) + (m − H(C1)), and that the distribution (C2(r2), r1)|C1(r1) is flat. Fur-
thermore, if u ≥ m then the distribution h(C2(r2), r1)|C1(r1)) is almost uni-

form over {0, 1}m−log2

2
n, whereas if u ≤ m − 2 log2

2 n then the distribution

h(C2(r2), r1)|C1(r1)) is very far from being uniform over {0, 1}m−log2

2
n. Now,

recall that |H(C1) − H(C2)| ≥
√

n, and observe that if H(C2) > H(C1) then
u = m + (H(C2) − H(C1)) > m, whereas if H(C2) < H(C1) then u ≤ m −√

m.
We conclose that in the first case the distribution (h, C1(r1), h(C2(r2), r1)) is
almost identical to the distribution (h, C1(r1), h(0n, r2)), whereas in the second
case (h, C1(r1), h(C2(r2), r1)) is very far from (h, C1(r1), h(0n, r2)). Thus, we
have reduced GapCmprEnt to GapSD.

6 Conclusions

In Section 4 we considered the complexity of approximating the entropy of a
distribution when given the full description of a sampling device for the distri-
bution. In contrast, the results of Section 3 can be viewed as referring to the
case that we are only given “black-box” access to such a sampling device. Thus,
the results surveys in these sections represent a potential gap between black-box
and “non-black-box” access to sampling devices. This gap may become a real
separation if SZK is contained in sub-exponential time (i.e., SZK ⊆ Dtime(f)
for some f(n) = 2o(n)). On the other hand, the hypothetical existence of “sam-
pling obfuscators” (see [3, Def. 6.2]), which means that non-black-box access
to sampling devices does not actually help, implies that SZK 6= BPP (see [3,
Prop. 6.4]).

We comment that the general study of the relation between black-box and
non-black-box algorithms has received considerable attention lately. The inter-
ested reader is referred to Barak’s PhD Thesis [2].
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