
Notes on Levin’s Theory of Average-Case

Complexity

Oded Goldreich

Abstract. In 1984, Leonid Levin initiated a theory of average-case com-
plexity. We provide an exposition of the basic definitions suggested by
Levin, and discuss some of the considerations underlying these defini-
tions.

Keywords: Average-case complexity, reductions.

This survey is rooted in the author’s (exposition and exploration) work [4],
which was partially reproduded in [1]. An early version of this survey appeared
as TR97-058 of ECCC. Some of the perspective and conclusions were revised
in light of a relatively recent work of Livne [21], but an attempt was made
to preserve the spirit of the original survey. The author’s current perspective
is better reflected in [7, Sec. 10.2] and [8], which advocate somewhat different
definitional choices (e.g., focusing on typical rather than average performace of
algorithms).

1 Introduction

The average complexity of a problem is, in many cases, a more significant mea-
sure than its worst case complexity. This has motivated the development of a
rich area in algorithmic research – the probabilistic analysis of algorithms [14,
16]. However, historically, this line of research focuses on the analysis of specific
algorithms with respect to specific, typically uniform, probability distributions.

The general question of average case complexity was addressed for the first
time by Levin [18]. Levin’s work can be viewed as the basis for a theory of
average NP-completeness, much the same way as Cook’s [2] (and Levin’s [17])
works are the basis for the theory of NP-completeness. Subsequent works [9,
22, 10, 21] have provided additional complete problems. Other basic complexity
problems, such as decision versus search, were studied in [1].

Levin’s average-case complexity theory in a nutshell. An average case complex-
ity class consists of pairs, called distributional problems. Each such pair consists
of a decision (resp., search) problem and a probability distribution on prob-

lem instances. We focus on the class DistNP
def
= 〈NP, P-computable〉, defined by

Levin [18], which is a distributional analogue of NP: It consists of NP deci-
sion problems coupled with distributions for which the accumulative measure is
polynomail-time computable. That is, P-computable is the class of distributions

2

for which there exists a polynomial time algorithm that on input x computes the
total probability of all strings y ≤ x. The easy distributional problems are those
solvable in “average polynomial-time” (a notion which surprisingly require care-
ful formulation). Reductions between distributional problems are defined in a
way guaranteeing that if Π1 is reducible to Π2 and Π2 is in average polynomial-
time, then so is Π1. Finally, it is shown that the class DistNP contains a complete
problem.

Levin’s average-case theory, revisited. Levin’s laconic presentation [18] hides the
fact that several non-trivial choices were in the development of the average-case
complexity theory. We discuss some of this choices here. Firstly, we note that our
motivation is providing a theory of efficient computation (as suggested above),
rather than a theory of infeasible computations (e.g., as in Cryptography). Recall
that a theory of useful-for-cryptography infeasible computations does exist (cf.,
[5, 6]). A key difference between these two theories is that in Cryptography we
seek problems for which one may generate instance-solution pairs such that
solving the problem given only the instance is hard. In the theory of average-case
complexity (considered below), we wish to draw the line between problems that
are easy to solve and problems that are hard to solve (on the average), but we do
not require an efficient procedure for generating hard (on the average) instances
coupled with solutions.

Secondly, one has to admit that the class DistNP (i.e., specifically, the choice
of distributions) is somewhat problematic. Indeed, P-computable distributions
seem “simple” (albeit one may reconsider this view in light of [21]), but it is
not clear if they exhaust all natural distributions. A much wider class, which
certainly contains all natural distributions, is the class, denoted P-samplable, of
all distributions having an efficient algorithm for generting instances (according
to the distribution): Arguably, the instances of any problem that we may need to
solve in real life are generated by some efficient process, and so the latter class of
distributions (i.e., P-samplable) suffices as the scope of our theory [1]. But in this
case it becomes even harder to argue that a distributional problem that refers to
(a computational problem coupled wityh) an arbitrary P-samplable distribution
is natural. Fortunately, it was showed in [13] that any distributional problem
that is complete for DistNP=〈NP, P-computable〉, is also complete with respect
to the class 〈NP, P-samplable〉. Thus, in retrospect, Levin’s choice only makes
the theory stronger: It requires to select complete distributional problems from
the restricted class 〈NP, P-computable〉, whereas hardness holds with respect to
the wider class 〈NP, P-samplable〉.

As hinted above, the definition of average polynomial-time is less straightfor-
ward than one may expect. The obvious attempt at formulation this notion leads
to fundamental problems that, in our opinion, deem it inadequate. (For a de-
tailed discussion of this point, the reader is referred to Appendix A.) We believe
that once the failure of the obvious attempt is understood, Levin’s definition
(presented below) does look a natural one.

3

2 Definitions and Notations

In this section we present the basic definitions underlying the theory of average-
case complexity. Most definitions originate from Levin’s work [18], but the reader
is advised to look for further explanations and motivating discussions else-
where (e.g., [14, 11, 4]). An alternative formulation, which uses probability en-
sembles (rather than a single infinite distribution) as a pivot, is presented in [7,
Sec. 10.2.1] and [8].

For sake of simplicity, we consider the standard lexicographic ordering of
binary strings, but any other efficient enumeration of strings will do.1 By writing
x < y we mean that the string x precedes y in lexicographic order, and y − 1
denotes the immediate predecessor of y. Also, we associate pairs, triples etc.
of binary strings with single binary strings in some standard manner (i.e., a
standard encoding).

Definition 1 (probability distribution functions): A distribution function µ :
{0, 1}∗ → [0, 1] is a non-decreasing function from strings to the unit interval

[0, 1] that converges to one (i.e., µ(0) ≥ 0, µ(x) ≤ µ(y) for each x < y, and

limx→∞ µ(x) = 1). The density function associated with the distribution function

µ is denoted µ′ and is defined by µ′(0) = µ(0) and µ′(x) = µ(x) − µ(x − 1) for

every x > 0.

Clearly, µ(x) =
∑

y≤x µ′(y). For notational convenience, we often describe dis-
tribution functions converging to some positive constant c 6= 1. In all the cases
where we use this convention, it is easy to normalize the distribution such that
it converges to one. An important example is the uniform distribution function
µ0 defined as µ′

0(x) = 1
|x|2 · 2−|x|. (A minor variation that does converge to 1 is

obtained by letting µ′
0(x) = 1

|x|·(|x|+1) · 2−|x|.)

Definition 2 (distributional problems): A distributional decision problem (resp.,
distributional search problem) is a pair (D, µ) (resp. (S, µ)), where D : {0, 1}∗ →
{0, 1} (resp., S ⊆ {0, 1}∗ × {0, 1}∗) and µ : {0, 1}∗ → [0, 1] is a distribution

function.

In the sequel we consider mainly decision problems. Similar formulations for
search problems can be easily derived.

2.1 Distributional-NP

Simple distributions are identified with the P-computable ones. The importance
of restricting attention to simple distributions (rather than allowing arbitrary
ones) is demonstrated in [1, Sec. 5.2].

1 An efficient enumeration of strings is a 1-1 and onto mapping of strings to integers
that can be computed and inverted in polynomial-time.

4

Definition 3 (P-computable): A distribution µ is in the class P-computable if

there is a deterministic polynomial time Turing machine that on input x outputs

the binary expansion of µ(x). (Indeed, the running time is polynomial in |x|.)

It follows that the binary expansion of µ(x) has length polynomial in |x|. A
necessary condition for distributions to be of interest is their putting noticeable
probability weight on long strings (i.e., for some polynomail, p, and sufficiently
large n the probability weight assigned to n-bit strings should be at least 1/p(n)).

Consider to the contrary the density function µ′(x)
def
= 2−3|x|. An algorithm of

running time t(x) = 2|x| will be considered to have constant on the average
running-time w.r.t this µ (since

∑

x µ′(x) · t(|x|) =
∑

n 2−n = 1).

If the distribution function µ is in P-computable, then the corresponding den-
sity function, µ′, is computable in time polynomial in |x|. The converse, however,
is false, unless P = NP (see [11]). In spite of this remark we usually present the
density function, and leave it to the reader to verify that the corresponding
distribution function is in P-computable.

We now present the class of distributional problems that corresponds to (the
traditional) class NP. Most of results in the literature refer to this class.

Definition 4 (DistNP): A distributional problem (D, µ) belongs to the class Dis-
tNP if D is an NP-predicate and µ is in P-computable. DistNP is also denoted

〈NP, P-computable〉.

A wider class of distributions, denoted P-samplable, gives rise to a wider class of
distributional NP problems, which was discussed in the Introduction: A distribu-
tion µ is in the class P-samplable if there exists a polynomial p and a probabilistic
algorithm A that outputs the string x with probability µ′(x) within p(|x|) steps.
That is, elements in a P-samplable distribution are generated in time polynomial
in their length. We comment that any P-computable distribution is P-samplable,
whereas the converse is false (provided one-way functions exist). For a detailed
discussion see [1].

2.2 Average Polynomial-Time

The following definitions, regarding average polynomial-time, may seem obscure
at first glance. Thus, it is important to point out that the naive formalizations of
the corresponding notions suffer from serious problems such as not being closed
under functional composition of algorithms, being model dependent, encoding
dependent, etc. For a more detailed discussion, see Appendix A.

Definition 5 (polynomial on the average): A function f : {0, 1}∗ → N is poly-

nomial on the average with respect to a distribution µ if there exists a constant

ǫ > 0 such that
∑

x∈{0,1}∗

µ′(x) · f(x)ǫ

|x| < ∞.

The function l(x) = f(x)ǫ is linear on the average w.r.t. µ.

5

Thus, a function is polynomial on the average if it is bounded by a polynomial

in a function that is linear on the average. In fact, the basic definition is that
of a function that is linear on the average (cf. [1]). The notion of polynomial on
the average is the basis of the complexity class of distributional problems that
are solvable in time that is polynomial on the average.

Definition 6 (Average-P): A distributional problem (D, µ) is in the class Average-
P if there exists an algorithm A solving D, so that the running time of A is

polynomial on the average with respect to the distribution µ.

We view the classes Average-P and DistNP as the average-case analogue of P
and NP (respectively). We mention that if EXP 6= NEXP (i.e., DTime(2O(n)) 6=
NTime(2O(n))), then Average-P does not contain all of DistNP (see [1]).

2.3 Reducibility Between Distributional Problems

We now present definitions of (average polynomial time) reductions of one dis-
tributional problem to another. Intuitively, such a reduction should be efficiently
computable, yield a valid result and “preserve” the probability distribution. The
purpose of the last requirement is to ensure that the reduction does not map
very likely instances of the first problem to rare instances of the second prob-
lem. Otherwise, having a polynomial time on the average algorithm for the sec-
ond distributional problem does not necessarily yield such an algorithm for the
first distributional problem. Following is a definition of randomized Turing re-
ductions. Definitions of deterministic and many-to-one reductions can be easily
derived as special cases.

Definition 7 (randomized reductions): We say that the probabilistic oracle Tur-

ing machine M randomly reduces the distributional problem (D1, µ1) to the dis-

tributional problem (D2, µ2) if the following three conditions hold.

Efficiency: Machine M is polynomial time on the average, where the average is

taken over the distribution µ1 and the internal coin tosses of M ; that is,

letting tM (x, r) denote the running time of M on input x and internal coin

tosses r, we require that there exists ǫ > 0 such that

∑

x,r

µ′
1(x)µ′

0(r) ·
tM (x, r)ǫ

|x| < ∞,

where µ0 is the uniform distribution.

Validity: For every x ∈ {0, 1}∗,

Pr[MD2(x) = D1(x)] ≥ 2

3

where MD2(x) is the random variable (determined by M ’s internal coin

tosses) that denotes the output of the oracle machine M on input x and

access to oracle for D2.

6

Domination: There exists a constant c > 0 such that for every y ∈ {0, 1}∗ it

holds that

µ′
2(y) ≥ 1

|y|c ·
∑

x∈{0,1}∗

AskM (x, y) · µ′
1(x)

where AskM (x, y) is the probability (taken over M ’s internal coin tosses) that

machine M asks query y on input x.

In the special case of deterministic Turing reductions the value of MD2(x) is
fully determined by x (rather than being a random variable) and AskM (x, y) is
either 0 or 1 (rather than being any arbitrary rational in [0, 1]). In the case of
a many-to-one deterministic reduction, for every x, there exists a unique y such
that AskM (x, y) = 1 holds.

Proposition: If (D1, µ1) is deterministically (resp., randomly) reducible to

(D2, µ2) and (D2, µ2) is solvable by a deterministic (resp., randomized) algo-

rithm of running time that is polynomial on the average, then so is (D1, µ1).

Proof: Given any reduction of (D1, µ1) to (D2, µ2) we consider the distribution
µI of the queries of the reduction on random instances distributed according to
µ1; that is,

µI(y)
def
=

∑

x∈{0,1}∗

AskM (x, y) · µ′
1(x).

We next decouple the original reduction to a reduction of (D1, µ1) to (D2, µI)
(via the original transformation) and a reduction by the identity transformation
of (D2, µI) to (D2, µ2). (Note that each of these reductions satisfies Definition 7.)
Thus, it suffices to establish the proposition for each of these two reductions.

1. Considering the reduction of (D1, µ1) to (D2, µI), we note that when this
reduction is invoked on inputs distributed according to µ1, it makes queries
that are distributed according to µI . Thus, if (D2, µI) is solvable in polynomial-
time on the avearge, then so is (D1, µ1).

2. Considering the reduction (by the identity transformation) of (D2, µI) to
(D2, µ2), it suffices to show that if t : {0, 1}∗ → N is polynomial on the

average w.r.t µ2, then t is polynomial on the average w.r.t µI .
By the hypothesis regarding t and µ2, for some for ǫ > 0, it holds that
∑

y µ′
2(y) t(y)ǫ

|y| = O(1), whereas by the hypothesis that µ2 dominates µI it

holds that µ′
I(y) ≤ |y|cµ′

2(y) (for all y). Let G
def
= {y : t(y) ≤ |y|2c/ǫ}, and

split the sum
∑

y µ′
I(y) t(y)ǫ/2c

|y| according to whether y ∈ G or not. The sum
∑

y∈G µ′
I(y) t(y)ǫ/2c

|y| is upper bounded by 1 (by using t(y)ǫ/2c ≤ |y| for y ∈ G);

whereas

∑

y 6∈G

µ′
I(y)

t(y)ǫ/2c

|y| ≤
∑

y 6∈G

|y|cµ′
2(y)

t(y)ǫ/2

|y|

7

≤
∑

y 6∈G

t(y)ǫ/2µ′
2(y)

t(y)ǫ/2

|y|

=
∑

y 6∈G

µ′
2(y)

t(y)ǫ

|y|
= O(1)

where the first inequality uses µ′
I ≤ |y|cµ′

2(y) and the second inequality uses
|y|c ≤ t(y)ǫ/2 (for y 6∈ G).

The proposition follows. ⊓⊔

We also mention that reductions are transitive in the special case in which
they are honest; that is, on input x they ask queries of length at least |x|ǫ, for
some constant ǫ > 0. All known reductions have this property. Finally, we spell
out the resulting definition of DistNP-completeness.

Definition 8 (DistNP-completeness): A distributional problem Π is DistNP-

complete if Π ∈ DistNP and every problem in DistNP is reducible to Π.

We shall actually use the most restricted notion of a reduction; that is, unless
stated otherwise, all the reductions we discuss are deterministic many-to-one
reductions.

2.4 A Generic DistNP Complete Problem

The following distributional version of Bounded Halting, denoted ΠBH = (BH, µBH),
is known to be DistNP-complete (see Section 3).

Definition 9 (distributional Bounded Halting): The distributional problem ΠBH =
(BH, µBH) consists of the following

– Decision: BH(M, x, 1k) = 1 iff there exists a computation of the non-deterministic

machine M on input x that halts within k steps.

– Distribution: The distribution µBH is defined in terms of its density function

µ′
BH(M, x, 1k)

def
=

1

|M |2 · 2|M|
· 1

|x|2 · 2|x| ·
1

k2

Note that µ′
BH is very different from the uniform distribution on binary strings

(e.g., consider relatively large k), but this seems fair since part of its input is
not binary. Nevertheless, as noted by Levin, one can obtain a variant of ΠBH

that refers to the uniform distribution and is DistNP-complete with respect
to randomized reduction. Specifically, we replace the unary time bound by a
string of equal length, and assign each such string the same probability (see [7,
§10.2.1.3] or [8, Sec. 2.3]).

8

3 DistNP-completeness of ΠBH

The proof, presented here, is due to Guretich [9]. (An alternative proof is implied
by Levin’s original paper [18].)

Perspective. In the traditional theory of NP-completeness, the mere existence of
complete problems is almost immediate. For example, it is extremely simple to
show that the Bounded Halting problem is NP-complete. Recall that Bounded

Halting (BH) is defined over triples (M, x, 1k), where M is a non-deterministic
machine, x is a binary string and k is an integer (given in unary). The decision
problem is to determine whether there exists a computation of M on input x
that halts within k steps. Clearly, Bounded Halting is in NP (here its crucial
that k is given in unary). Let D be an arbitrary NP problem, and let MD be
the non-deterministic machine solving it in time PD(n) on inputs of length n,
where PD is a fixed polynomial. Then, the reduction of D to BH consists of the
transformation x → (MD, x, 1PD(|x|)).

In the case of distributional-NP an analogous theorem is much harder to
prove. The difficulty is that we have to reduce all DistNP problems (i.e., pairs
consisting of decision problems and simple distributions) to one single distribu-
tional problem (i.e., Bounded Halting with a single simple distribution). If we
apply reductions as above (and consider the induced probability distributions),
then we will end up with many distributional versions of Bounded Halting. Fur-
thermore the corresponding distribution functions will be very different and will
not necessarily dominate one another. Instead, one should reduce a distributional
problem, (D, µ), with an arbitrary P-computable distribution to a distributional
problem with a fixed (P-computable) distribution (e.g. ΠBH). The difficulty in
doing so is that the reduction should have the domination property.

Consider, for example, an attempt to reduce each problem in DistNP to
ΠBH by using the standard transformation of D to BH (sketched above). This
transformation fails when applied to distributional problems in which the distri-
bution of (infinitely many) strings is much higher than the distribution assigned
to them by the uniform distribution. In such cases, the standard reduction maps
an instance x having probability mass µ′(x) ≫ 2−|x| to a triple (MD, x, 1PD(|x|))
with much lighter probability mass (since µ′

BH(MD, x, 1PD(|x|)) < 2−|x|). This
violates the domination condition, and thus an alternative reduction is required.

The key to the alternative reduction is an (efficiently computable) encod-
ing of strings taken from an arbitrary polynomial-time computable distribution
by strings that have comparable probability mass under a fixed distribution
(i.e., the uniform one). Specifically, this encoding will map x into a codeword
of length that is at most the logarithm of 1/µ′(x), which means that under the
uniform distribution the codeword of x has probability weight approximately

µ′(x). Accordingly, the reduction will map x to a triple (MD,µ, x′, 1|x|
O(1)

), where
|x′| < log2(1/µ′(x))+O(1), and MD,µ is a non-deterministic Turing machine that
first retrieves x from x′, and then applies the standard non-deterministic ma-
chine (i.e., MD) of the problem D. Such a reduction will be shown to satisfy all

9

three conditions (i.e. efficiency, validity, and domination). Thus, instead of forc-
ing the structure of the original distribution µ on the target distribution µBH ,
the reduction will incorporate the structure of µ into the the reduced instance
(i.e., in MD,µ). The following technical lemma is the basis of the reduction.

Coding Lemma: Let µ be a polynomial-time computable distribution function.

Then there exist a coding function Cµ satisfying the following three conditions.

Compression: For every x, it holds that

|Cµ(x)| ≤ min

{

|x|, log2

1

µ′(x)

}

+ 1.

Efficient Encoding: The function Cµ is computable in polynomial-time.
Unique Decoding: The function Cµ is one-to-one (i.e., Cµ(x) = Cµ(x′) implies

x = x′).

Proof: The function Cµ is defined as follows. If µ′(x) ≤ 2−|x|, then Cµ(x) = 0x
(i.e., in this case x serves as its own encoding). Otherwise, if µ′(x) > 2−|x|, then
Cµ(x) = 1z, where z is the longest common prefix of the binary expansions of
µ(x−1) and µ(x); that is, if µ(x−1) and µ(x) have binary expansions 0.σ1σ2 · · ·
and 0.τ1τ2 · · ·, respectively, then z = σ1 · · ·σℓ such that σ1 · · ·σℓ = τ1 · · · τℓ

whereas σℓ+1 = 0 and τℓ+1 = 1 (e.g., if µ(1010) = 0.10000 and µ(1011) =
0.10101111, then Cµ(1011) = 1z with z = 10). Consequently, 0.z1 is in the
interval (µ(x − 1), µ(x)]; that is, µ(x − 1) < 0.z1 ≤ µ(x).

We now verify that Cµ satisfies the conditions of the lemma. We start with
the compression condition. Clearly, if µ′(x) ≤ 2−|x|, then |Cµ(x)| = 1+ |x| ≤ 1+
log2(1/µ′(x)). On the other hand, suppose that µ′(x) > 2−|x| and let z = z1 · · · zℓ

be as above (i.e., the longest common prefix of the binary expansions of µ(x−1)
and µ(x)). Then,

µ′(x) = µ(x) − µ(x − 1) ≤

ℓ
∑

i=1

2−izi +

poly(|x|)
∑

i=ℓ+1

2−i

 −
ℓ

∑

i=1

2−izi < 2−|z|

and |z| ≤ log2(1/µ′(x)) follows. Thus, |Cµ(x)| ≤ 1+ log2(1/µ′(x)) in both cases,
and if log2(1/µ′(x)) ≥ |x| (i.e., µ′(x) ≤ 2−|x|), then |Cµ(x)| = |x|+1. Clearly, Cµ

can be computed in polynomial-time (by computing µ(x−1) and µ(x)). Finally,
note that Cµ is one-to-one by considering the two cases (i.e., Cµ(x) = 0x and
Cµ(x) = 1z), while using the fact that µ(x − 1) < 0.z1 ≤ µ(x) (in the second
case). ⊓⊔

Towards the reduction. For every distributional problem (D, µ) in DistNP, we
introduce a non-deterministic machine MD,µ that will be used in the following
reduction of (D, µ) to ΠBH = (BH, µBH) such that all instances (of D) are
mapped to triples with first element MD,µ. The description of this machine,
MD,µ, refers to the aforementioned coding function Cµ (as well as to the non-
deterministic machine MD associated with D). On input y = Cµ(x), machine

10

MD,µ computes D(x), by first retrieving x from Cµ(x) (e.g., guess and verify),
and next running the non-deterministic polynomial-time machine (i.e., MD) that
solves D.

The reduction itself. An instance x (of D) is mapped by the reduction to the

triple (MD,µ, Cµ(x), 1P (|x|)), where P (n)
def
= PD(n)+PC(n)+n such that PD(n)

is a polynomial bounding the running time of MD on (acceptable) inputs of
length n, and PC(n) is a polynomial bounding the running time of an algorithm
for encoding inputs (of length n).

Proposition: The foregoing mapping constitutes a reduction of (D, µ) to (BH, µBH).

Proof: We verify the three requirements from a reduction.

– The transformation can be computed in polynomial-time.

(Indeed, we rely on the fact that Cµ is polynomial-time computable.)

– By construction of MD,µ it follows that D(x) = 1 if and only if there exists a
computation of machine MD,µ that on input Cµ(x) halts outputting 1 within
P (|x|) steps.

(Recall that, on input Cµ(x), machine MD,µ non-deterministically guesses x,
verifies in PC(|x|) steps that x is encoded by Cµ(x), and non-deterministically
“computes” D(x).)

– To see that the distribution induced by the reduction is dominated by the
distribution µBH , we first recall that the transformation x → Cµ(x) is one-to-
one. It suffices to consider instances of BH which have a preimage under the
reduction (since instances with no preimage satisfy the condition trivially).
All these instances are triples with first element MD,µ. By the definition of
µBH

µ′
BH(MD,µ, Cµ(x), 1P (|x|)) = c · 1

P (|x|)2 · 1

|Cµ(x)|2 · 2|Cµ(x)|
(1)

where c = 1

|MD,µ|2·2|MD,µ| is a constant depending only on (D, µ).

By virtue of the Coding Lemma it holds that

µ′(x) ≤ 2 · 2−|Cµ(x)|. (2)

Combing Eq. (1) and (2), we get

µ′
BH(MD,µ, Cµ(x), 1P (|x|)) ≥ c · 1

P (|x|)2 · 1

|Cµ(x)|2 · µ′(x)

2

>
c

2 · |MD,µ, Cµ(x), 1P (|x|)|2 · µ′(x).

The proposition follows. ⊓⊔

11

4 Conclusions

In general, a theory of average case complexity should provide

1. a specification of a broad class of interesting distributional problems;
2. a definition capturing the subclass of (distributional) problems that are easy

on the average;
3. notions of reducibility that allow to infer the easiness of one (distributional)

problem from the easiness of another;
4. and, of course, results...

It seems that the theory of average case complexity, initiated by Levin and
further developed in [9, 22, 1, 13, 21], satisfies these expectations to some extent.
Following is my evaluation regarding its “performance” with respect to each of
the above.

1. The scope of the theory, originally restricted to P-computable distributions,
has been significantly extended to cover all P-sampleable distributions (as
suggested in [1]). The key result here is by Impagliazzo and Levin [13] whow
proved that every language which is 〈NP, P-computable〉-complete is also
〈NP, P-samplable〉-complete. This important result makes the theory of av-
erage case very robust: It allows to reduce distributional problems from an
utmost wide class to distributional problems with very restricted/simple type
of distributions.
Till Livne’s result [21], my feeling was that the set of P-computable distri-
butions may be too restricted in the sense that it may not allow to present
DistNP-complete problems that refer to most natural NP decision problems.
However, Livne showed that all natural NP decision problems do have distri-
butional versions that are DistNP-complete, alas these versions turned out
to be somewaht unnatural (i.e., the distribution does not seem simple and/or
natural).2

2. The definition of average polynomial-time does seem strange at first glance,
but it seems that it (or a similar alternative) does captures the intuitive
meaning of “easy on the average”.
We mention that an alternative notion that refers to the typical running
time rather than the average of (a quantity that is polynomially related to)
the running time is considered in [7, Sec. 10.2.1] and [8]. Specifically, we may
say that f : {0, 1}∗ → N is typically polynomial with respect to a distribution
µ if there exists a positive polynomial p such that, for every polynomial q,
it holds that

∑

x∈{0,1}∗:f(x)>p(|x|)

q(|x|) · µ′(x) < ∞.

3. The notions of reducibility are both natural and adequate.

2 For a discussion of the notion of a natural problem, the interested reader is referred
to Appendix B.

12

4. Results did follow, but here indeed much more is expected. Currently, quite
natural DistNP-complete problems are known for the following areas: Com-
putability (e.g., Bounded-Halting) [9], Combinatorics (e.g., Tiling [18] and a
generalization of graph coloring [22]), Formal Languages (cf., [9, 4]), and Al-
gebra (e.g., of matrix groups [10]). Furthermore, the aforementioned result
of Livne [21] asserts that all natural NP problems have DistNP-complete
versions. However, the challenge of finding a really natural distributional
problem (e.g., subset sum with uniform distribution) that is complete in
DistNP has not been met so far. It seems that what is still lacking are tech-
niques for design of “distribution preserving” reductions.

In addition to their central role in the theory of average-case complexity, reduc-
tions that preserve uniform (or very simple) instance distribution are of general
interest. Such reductions, unlike most known reductions used in the theory of
NP-completeness, cannot map all instances to some “pathological” subcase.

Levin views the results in his paper [18] as an indication that all P-computable
distributions are in fact related (or similar). Additional support to this statment
is provided by his latter work [20].

Acknowledgements

I’m very grateful to Leonid Levin for many inspiring discussions. Special thanks
also to Noam Livne for reconfiguring my views regarding P-computable distri-
butions.

Appendix A: Failure of a Naive Formulation

When asked to motivate his definition of average polynomial-time, Leonid Levin
replies, non-deterministically, in one of the following three ways:

1. “This is the natural definition”.
2. “This definition is not important for the results in my paper; only the defini-

tions of reduction and completeness matter (and even they can be modified
in many ways while preserving the results)”.

3. “Any definition that makes sense is either equivalent or weaker”.

For further elaboration on the first argument the reader is referred to Leonid
Levin. The second argument is, off course, technically correct but unsatisfactory.
We will need a definition of “easy on the average” when motivating the notion
of a reduction and developing useful relaxations of it. The third argument is
a thesis, which should be interpreted along Wittgenstein’s suggestion to the
teacher: “say nothing and restrict yourself to pointing out errors in the students’
attempts to say something”. We will follow this line of argument here by showing
that the definition that seems natural to an average computer scientist suffers
from serious problems and should be rejected.

13

Definition X (naive formulation of the notion of easy on the average): A dis-

tributional problem (D, µ) is polynomial-time on the average if there exists an

algorithm A solving D (i.e., on input x outputs D(x)) such that the running time

of algorithm A, denoted tA, satisfies

∃c > 0 ∀n
∑

x∈{0,1}n

µ′
n(x) · tA(x) < nc (3)

where µ′
n(x) is the conditional probability that x occurs given that an n-bit string

occurs (i.e., µ′
n(x) = µ′(x)/

∑

y∈{0,1}n µ′(y)).

The main problem with Definition X. The problem that we consider most upset-
ting is that Definition X is not robust under functional composition of algorithms.
Namely, if the distributional problem A can be solved in average polynomial-time
given access to an oracle for B, and problem B can be solved in polynomial-time,
then it does not follow that the distributional problem A can be solved in average
polynomial-time.

For example, consider the uniform probability distribution (on inputs of each
length) and an oracle Turing machine M that solves A when given access to
oracle B. Suppose that M runs for 2

n
2 steps on 2

n
2 of the inputs of length n,

and n2 steps on all other inputs of length n. Furthermore, supposed that when
M makes t steps, it asks a single query of length

√
t. Note that machine M

is polynomial-time on the average. But now suppose that the algorithm for B
has cubic running-time. The reader can verify that, although M itself (when
given access to the oracle B) is polynomial-time on the average, combining M
with the cubic running-time algorithm for B does not yield an algorithm that is
polynomial-time on the average according to Definition X. It is easy to see that
this problem does not arise when using the definition presented in Section 2.

The source of the above problem with Definition X is the fact that the def-
inition of polynomial-on-the-average that underlies it is not closed under appli-
cation of polynomials. Namely, if t : {0, 1}∗ → N is polynomial on the average
(according to Eq. (3)), with respect to some distribution, it does not follow that
also t2(·) is polynomial on the average (with respect to the same distribution).

The foregoing technical problem is also the source of the following problem,
which Levin considers most upsetting: Definition X is not machine independent.
This is the case because some of the simulations of one computational model
on another square the running time (e.g., the simulation of two-tape Turing
machines on a one-tape Turing machine, or the simulation of a RAM (Random
Access Machine) on a Turing machine).

Having pointed out several weaknesses of Definition X, let us also doubt
its “clear intuitive advantage” over the definition presented in Section 2. Defini-
tion X is derived from the formulation of worst case polynomial-time algorithms,
which requires that ∃c > 0 ∀n such that

∀x ∈ {0, 1}n tA(x) < nc. (4)

Definition X was derived by applying the expectation operator to the Eq. (4), But
why not make a very simple algebraic manipulation of Eq. (4) before applying

14

the expectation operator? How about taking the c-th root of both sides and
dividing by n; indeed, this yields that ∃c > 0 ∀n it holds that

∀x ∈ {0, 1}n tA(x)
1
c

n
< 1. (5)

But now, applying the expectation operator to the Eq. (5) leads to the definition
presented in Section 2...

We conclude that both Definition X and the definition presented in Section
2 are obtained by applying the expectation operator to a worst-case inequality,
where the two base inequalities (i.e., Eq. (4) and Eq. (5)) are easily related to one
another. From this perspective it is hard to argue (a priori) that one application
is more natural than another. However, a posteriori, it becomes evident that
the definition presented in Section 2 demonstrates a better understanding of the
effect of the expectation operator with respect to complexity measures.

Summary: Robustness under functional composition as well as machine indepen-
dence seems to be essential for a coherent theory. These are among the primary
reasons for the acceptability of P as capturing problems that can be solved effi-
ciently. In going from worst case analysis to average case analysis we should not
and would not like to lose these properties.

Appendix B: On the Notion of Natural Problems

Throughout this article, we made several references to the undefined notion of
a natural computational problem. While most researchers have some intuition
regarding this notion, we feel that an attempt to articulate this notion is in
place.

We comment that one should not expect to see a formal definition of intuitive
notions such as “simple” or “natural”; yet, this does not mean that we should
not try to articulate our intuition about them.

The first idea that comes to mind is to say that a problem is natural if most
researchers would say so. This empirically oriented definition seems workable,
but it leaves us wondering as to what makes some problems natural whereas
other problems are not natural; that is, why would most researchers agree on
the foregoing classification of problems?

An appealing criterion was proposed by Livne [21]: The extent to which a

computational problem is natural, with respect to some result, is proportional to

the amount of references to the said problem that are prior to the said result and

occur in a different context. Thus, for example, Satisfiability is a very natural
problem with respect to the Cook-Levin Theorem [2, 17], because this problem
was defined and studied in numerous works and in different contexts (such as
logic) prior to the Cook-Levin Theorem. To the contrary, the sequence of decision
problems constructed in the proof of the Hierarchy Theorem of [12] is definitely
unnatural, because these decision problems were first defined in this context
(let alone that they are never mentioned outside the context of the Hierarchy
Theorem).

15

References

1. S. Ben-David, B. Chor, O. Goldreich, and M. Luby, “On the Theory of Average
Case Complexity”, Journal of Computer and system Sciences, Vol. 44, No. 2, pages
193–219, 1992.

2. S.A. Cook, “The Complexity of Theorem Proving Procedures”, Proc. 3rd ACM

Symp. on Theory of Computing, pages 151–158, 1971.
3. M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the The-

ory of NP-Completeness, W.H. Freeman and Company, New York, 1979.
4. O. Goldreich. Towards a Theory of Average Case Complexity (a survey). TR-531,

Computer Science Department, Technion, Haifa, Israel, March 1988.
5. O. Goldreich. Foundation of Cryptography: Basic Tools. Cambridge University

Press, 2001.
6. O. Goldreich. Foundation of Cryptography: Basic Applications. Cambridge Uni-

versity Press, 2004.
7. O. Goldreich. Computational Complexity: A Conceptual Perspective. Cambridge

University Press, 2008.
8. O. Goldreich. Average Case Complexity, Revisited. This volume.
9. Y. Gurevich, “Complete and Incomplete Randomized NP Problems”, Proc. of the

28th IEEE Symp. on Foundation of Computer Science, pages 111–117, 1987.
10. Y. Gurevich, “Matrix Decomposition Problem is Complete for the Average Case”,

Proc. of the 31st IEEE Symp. on Foundation of Computer Science, pages 802–811,
1990.

11. Y. Gurevich and D. McCauley, “Average Case Complete Problems”, preprint, 1987.
12. J. Hartmanis and R.E. Stearns. On the Computational Complexity of of Algo-

rithms. Transactions of the AMS, Vol. 117, pages 285–306, 1965.
13. R. Impagliazzo and L.A Levin, “No Better Ways to Generate Hard NP Instances

than Picking Uniformly at Random”, Proc. of the 31st IEEE Symp. on Foundation

of Computer Science, pages 812–821, 1990.
14. D.S. Johnson, “The NP-Complete Column – an ongoing guide”, Jour. of Algo-

rithms, 1984, Vol. 4, pages 284–299.
15. R.M. Karp, “Reducibility among Combinatorial Problems”, Complexity of Com-

puter Computations, R.E. Miller and J.W. Thatcher (eds.), Plenum Press, pages
85–103, 1972.

16. R.M. Karp, “Probabilistic Analysis of Algorithms”, manuscript, 1986.
17. L.A Levin, “Universal Search Problems”, Problemy Peredaci Informacii 9, pages

115–116, 1973. Translated in problems of Information Transmission 9, pages 265–
266.

18. L.A. Levin, “Average Case Complete Problems”, SIAM Jour. of Computing,
Vol. 15, pages 285–286, 1986. Extended abstract appeared in 16th STOC, 1984.

19. L.A. Levin, “One-Way Function and Pseudorandom Generators”, Proc. 17th ACM

Symp. on Theory of Computing, pages 363–365, 1985.
20. L.A. Levin, “Homogeneous Measures and Polynomial Time Invariants”, Proc. 29th

IEEE Symp. on Foundations of Computer Science, pages 36–41, 1988.
21. N. Livne. All Natural NPC Problems Have Average-Case Complete Versions.

Computational Complexity, to appear. Preliminary version in ECCC, TR06-122,
2006.

22. R. Venkatesan and L.A Levin, “Random Instances of a Graph Coloring Problem
are Hard”, Proc. 20th ACM Symp. on Theory of Computing, pages 217–222, 1988.

