
Proving Computational Ability

Mihir Bellare and Oded Goldreich

Abstract. We investigate extending the notion of a proof of knowledge
to a proof of the ability to perform some computational task. We provide
some definitions and protocols for this purpose.

Keywords: Proofs of Knowledge, Zero-Knowledge, Cryptographic Pro-
tocols.

This work was completed in August 1992, and earlier versions of it were posted
on the authors’ webpages. The current revision is intentionally minimal.

1 Introduction

We extend the idea of proving “knowledge” of a string to encompass a notion
of proving the “ability to perform some task.” Specifically, we wish to formalize
what it means to “prove the ability to compute a function f on some instance
distribution D.”

Motivation. The aforementioned notion might have many uses, and two of them
are described here. Suppose Alice possess a trapdoor, t(x), to a (publically
known) trapdoor permutation fx and wishes to identify herself to Bob, by demon-
strating ability to invert fx. The proof of ability should be zero-knowledge so to
prevent Bob from latter impersonating Alice. Admittingly, in this case Alice

can establish her identity by directly proving, in a zero-knowledge manner, her
knowledge of the trapdoor t(x) (which corresponds to the index x of fx). Still
it may be cheaper to prove ability to invert fx (e.g., by using a trivial proto-
col in which the prover inverts fx on instances chosen by the verifier). This is
particularly valid in case Alice posseses special purpose hardware, in which the
trapdoor is hard-wired, making it very easy for her to invert the function on
inputs of her choice. A second application is for a party to prove possesion of
vast computing power by conducting very difficult tasks (e.g., inverting one-way
functions).

Related work. This is an extension of our previous work on proofs of knowledge
[1] in which we try to generalize those ideas to the setting of proving computa-
tional ability. Proofs of knowledge are first mentioned in [5] and have been seeing
definitional refinements [3, 6, 2] culminating in the notions of [1, 4]. We assume
the reader is somewhat familiar with the notion.

Proofs of computational ability were first discussed by Yung [7]. We adhere to
the same basic and natural idea (namely, that computational ability of a prover is

7

certified if some extractor can use the prover as a black box to solve the problem
itself) but our approach is more general. For example whereas an assumption
on the problem hardness is made in [7] it is not made here; we consider notions
of distribution-free and distribution-dependent ability; following [1] we define
an analogue of “knowledge error”; and following [1] we avoid some weaknesses
inherited from earlier definitions of proofs of knowledge.

2 Definitions

For greater generality, we will consider relations rather than functions. By a fam-

ily of relations we mean a sequence {Rx}x∈{0,1}∗ , where Rx ⊆ {0, 1}|x| × {0, 1}∗

for each x. For simplicity we restrict our attention to polynomially bounded
families; that is, we assume there is a polynomial p such that (z, y) ∈ Rx im-
plies |z| = |x| and |y| ≤ p(|x|). Following the notation used in [1], we denote

Rx(z)
def
= { y : (z, y) ∈ Rx } and LRx

def
= { z : ∃y such that (z, y) ∈ Rx }. Prover

and verifier will interact on common input x, with the goal of the interaction
being for the prover to “convince” the verifier that he has the “ability to solve
Rx.”

We need to address the meaning of both of the phrases in quotes above. We
will first define what it means for a machine to “solve a relation” (or a family of
relations), and only next will we define what is a “proof of ability” to do so.

The standard meaning of efficiently solving a relation, S ⊆ {0, 1}∗×{0, 1}∗, is
the existence of an efficient algorithm that, on input z, outputs y ∈ S(z), called
a solution to z, if such exists. This is a notion of worst case. Instead, we adopt
a notion of average case by which we consider a probability distribution on the
inputs and require that the algorithm is efficient on the average (with respect
to the input distribution). An even more liberal notion is derived by allowing
the solver to ask for alternative inputs, which are generated according to the
same distribution (and independently of previous inputs), until it can present a
solution to any of the inputs.

Notation: Let S ⊆ {0, 1}∗ × {0, 1}∗. Then, dom(S)
def
= { z ∈ {0, 1}∗ : S(z) 6= ∅ }

is the domain of S.

Definition 2.1 (solving relations): Let S ⊆ {0, 1}∗ × {0, 1}∗ be a relation, and
D be a distribution on dom(S). Suppose t ∈ N and let M(·) be a machine.

• We say that machine M(·) solves S under D in expected t steps if, on input
(z1, z2, ..., zt), with each zi drawn independently according to D, machine M
halts within expected t steps and outputs a pair (zi, y) so that y ∈ S(zi). (The
expectation here is over the random choices of M as well as the t-product of
the distribution D.)

• We say that machine M(·) strongly solves S under D in expected t steps if,
on input z, drawn according to D, machine M halts within expected t steps
with output y ∈ S(z). (The expectation here is over the random choices of
M as well as the distribution D.)

8

Conventions: If a machine has several inputs, we may fix some of them to obtain
a machine on the remaining inputs. Likewise, for an oracle machine, we may fix
the oracle and consider the resulting machine. Specifically, suppose that the
oracle machine M(·, ·, ·) has three inputs, then MA(x, y, ·) denotes the machine
with one input whose output on input z is MA(x, y, z).

Let R = {Rx}x∈{0,1}∗ be a family of relations. We say that D = {Dx}x∈{0,1}∗

is an input distribution for R if for every x, it holds that Dx is a distribution
on dom(Rx). We are now ready to define proofs of ability to solve (repectively,
ability to strongly solve) a family of relations under a family of distributions.

Definition 2.2 (proof of ability): Let R = {Rx}x∈{0,1}∗ be a family of relations,

and D
def
= {Dx}x∈{0,1}∗ be an input distribution for R. Let κ: {0, 1}∗ → [0, 1].

We say that an interactive function, V , is a verifier of the ability to solve (resp.,
strongly solve), R under D with error κ if the following two conditions hold.

• non-triviality: There exists an interactive function P ∗ so that for all x, all
possible interactions of V with P ∗ on common input x are accepting; that
is, Pr[trP∗,V Dx (x) ∈ ACCV (x)] = 1, where trA,B(x) denotes B’s view of the
interaction with P on common input x, and ACCB(x) denotes the views that
convince B (i.e., make it accept).

• validity: There exists a constant c > 0 and a probabilistic oracle machine
K(·, ·, ·) such that for every interactive function P , every x ∈ {0, 1}∗ and
every γ∈ACCV (x), machine KPx(x, γ, ·) satisfies the following condition:

if p(x)
def
= Pr[trP,V Dx (x)∈ACCV (x)] > κ(x) then machine KPx(x, γ, ·)

solves (resp., strongly solves) Rx under Dx in an expected number of
steps bounded by

|x|c

p(x) − κ(x)

The oracle machine K is called an ability extractor (resp., strong ability ex-

tractor) under D.

Hence an ability extractor is given a sequence of instances, each independently
selected according to Dx, and is supposed to output a solution to one of these
instances within the specified (expected) time bound. A strong ability extractor
is given a single instance, selected according to Dx, and is supposed to output a
solution to this instances within the specified (expected) time bound. (In both
cases, solutions are with respect to Rx.)

Relation to proofs of knowledge. We note that proofs of knowledge (as per [1,
Def. 3.1]) are a special case of proofs of ability. To justify this claim, given a
binary relation R we define the family of relations R = {Rx} so that Rx =
{ (x, y) : (x, y) ∈ R }. Clearly, dom(Rx) is the singleton {x} if R(x) 6= ∅ and
∅ otherwise. Let Dx be the distribution on dom(Rx) which, in the former case,
assigns the entire probability mass to x (and is undefined in the latter case).
Clearly D = {Dx} is an input distribution for R. It is easy to see that if V
is a verifier of the ability to solve R under D (with error κ) then V is also a
knowledge verifer for R (with knowledge error κ).

9

On the dependence on the distribution Dx. Definition 2.2 refers to a specific
input distribution. Clearly, both the ability-verifier and the ability-extractor may
depend on this distribution, and this dependency seems inevitable. However, the
dependency on the input distribution can be “uniform” in the sense that both
verifier and extractor can be fixed machines with access to a random source that
generates the input distribution. We call such a proof of ability distribution-free.

The foregoing notion is defined as follows. Let D be a family of distributions
for some R, and let M be an (interactive and/or oracle) probabilistic machine. A
D-source augmentation of machine M is a machine that, on input x, in addition
to the standard behaviour of M can obtain elements draw independently from
distribution Dx (at the cost of reading them).

Definition 2.3 (distribution-free proof of ability): Let R = {Rx}x∈{0,1}∗ be a
family of relations, and let κ: {0, 1}∗ → [0, 1].

• We say that an interactive machine, V , is a distribution-free verifier of the

ability to solve R with error κ if for every input distribution, denoted D, for
R, the D-source augmentation of machine V constitutes a verifier of the
ability to solve R under D with error κ.

• We say that a distribution-free verifier of the ability to solve R (with error
κ) has a distribution-free ability extractor if there exists an oracle machine,
K, such that the D-source augmentation of machine K constitutes a ability
extractor under D.

A definition of a distribution-free strong ability extractor is derived analogously.

3 Examples

To demonstrate the above definitions we consider two natural examples. Both
examples refer to a familty of one-way permutations, {fx}x∈{0,1}∗ . The string x

is called the index of the permutation fx : {0, 1}|x| → {0, 1}|x|, and there exists
an efficient algorithm that, on input index x and argument y, returns the value
fx(y). We shall consider proofs of ability to invert {fx}; intuitively, such ability
requires either super-polynomial computational resources or knowledge of some
trapdoor information (in case the collection has such trapdoors).

Example 1: Consider a verifier that, on common input x, sends the prover
a single uniformly selected string v ∈ {0, 1}|x|, and accepts if and only if the
prover answers with the inverse of v under fx (i.e., with y satisfying fx(y) = v).
We show (below) that the foregoing verifier is an ability-verifier for inverting fx

under the uniform distribution.

Example 2: Consider a verifier that, on common input x ∈ {0, 1}n (n ∈ N),
sends the prover 2n uniformly and indepedently selected strings, v1, ..., v2n ∈
{0, 1}n, and accepts if and only if the prover answers with the inverse of each of
these vi’s under fx (i.e., with y1, ..., y2n satisfying fx(yi) = vi, for every i). We

10

show (below) that the foregoing verifier is a strong ability-verifier for inverting
fx on at least one out of 2|x| of uniformly selected instances.

Proposition 3.1 The program described in Example 1 is an ability-verifier (with
error zero) for solving R = {Rx} under D = {Dx}, where

• Rx = {(v, y) : v = fx(y)};
• Dx is uniform over the set of all strings of length |x|.

Furthermore, if the verifier in Example 1, selects v according to an arbitrary
distribution Dx, then the system described constitutes a distribution-free proof of
ability.

Proof sketch: We present here only the case of uniform distribution, and focus
on the validity condition. Consider an arbitrary, fixed prover, and let px denote
the probability that the verifier is convinced by this prover on common input
x. Here the probability space is over all choices of both the verifier and prover.
Assume, without loss of generality, that px > 2−|x|, otherwise the extractor
satisfies the requirement merely by exhaustive search. Also, we may assume
that the ability-extractor “knows” px since it may estimate px in expected time
poly(|x|)/px by repeated experiments. Let qx(v) denote the probability that the
verifier is convinced conditioned on the event that it chose and sent v to the
prover. Here the probability distribution is merely over the prover’s random
coins (in case it is probabilistic). Let Vx(i) be the set of v’s for which qx(v) is
greater than 2−i and smaller/equal to 2−i+1. Clearly, there exists an i ≤ |x| such
that

|Vx(i)|

2|x|
>

px · 2i

n .
(1)

We are now ready to present the ability-extractor. Formally speaking, the ex-
tractor gets as input an index, x, and a sequence of independently and uniformly
selected |x|-bit long strings, and its task is to invert fx on one of them. However,
to simplify the exposition, we prefer to think of these strings as being chosen by

the extractor. Hence, on input x, the extractor executes m
def
= ⌈log2(1/px)⌉ copies

of the following procedure, each with a different value of i ∈ {1, ..., m}. The ith

copy consists of uniformly and independently selecting M
def
= poly(n)/(px · 2i)

values, v1, ..., vM ∈ {0, 1}n, and executing the following sub-procedure on each of
them. The sub-procedure with value vj invokes the prover’s program (as oracle),
on input x and message vj , for poly(n) ·2i times, each time checking whether the
prover’s answer is the inverse of vj under fx. Once a positive answer is obtained,
the extractor halts with the corresponding value-inverse pair.

The extractor’s expected running-time is bounded above by

m
∑

i=1

poly(n)

px · 2i
·
(

poly(n) · 2i
)

=
poly(n)

px .

To evaluate the performace of the above extractor, consider the ith copy, where i
satisfies Equation (1). With overwhelmingly high probability (i.e., greater than

11

1 − 2−n), one of the vj ’s chosen in this copy satisfies qx(vj) ≥ 2−i. In this
case, with overwhelmingly high probability, the extractor inverts fx on this vj .
The exponentially small error probabilities can be eliminated by running an
exhaustive search algorithm (for inverting fx) in parallel to the entire algorithm
described above. The proposition follows.

Proposition 3.2 The program described in Example 2 is a strong ability-verifier
(with error zero) for solving R = {Rx} under D = {Dx}, where

• Rx = {(v1, ..., v2|x|, y) : ∃i s.t. vi = fx(y)};
• Dx is uniform over the set of strings of length 2|x|2.

Proof sketch: As in the proof of Proposition 3.1, we consider an arbitrary fixed
prover and let px denote the probability that the verifier is convinced on common
input x. As before, we may assume that px > 2−|x| and that the ability-extractor

has a good estimate of px. Let n
def
= |x|, and consider an 2n-dimentional table

in which the dimensions correspond to the 2n values chosen by the verifier. The
(v1, ..., v2n)-entry in the table equals the probability that the prover convinces
the verifier (i.e., successfuly inverts fx on v1 through v2n) conditioned on the
event that the verifier sent message (v1, ..., v2n) to the prover. The probability
here is merely on the prover’s random choices. As in the proof of Proposition 3.1,
we consider a partition of these probabilities to clusters of similar magnitude. It

follows that there exists an i < 2n such that at least a px,i
def
= px · 2i/2n fraction

of the entries have value greater than 2−i. We call these entries admisible. It
follows that there exists a dimention k such that at least a 2n

√

px,i/2 > 1

2
fraction

of the rows in the kth dimention contain at least px,i/2n admisible entries. We
call such a (i, k) pair good.

We are now ready to present the strong ability-extractor. The extractor gets
as input an index, x, and a uniformly chosen 2|x|2-long string v = (v1, ..., v2n),
where vj ∈ {0, 1}n and n= |x|. The extractor is suppose to find a solution to v,
and this amounts to inverting fx on one of the vj ’s. To this end the extractor ex-
ecutes 8n3 copies of the following procedure, each with a different triples (i, k, j),
where 1≤ i, k, j≤ 2n. The (i, k, j)th copy of the procedure tries to invert fx on
vj , using the parameters i and k. Specifically, the (i, k, j)th copy consists of re-
peatedly invoking the sub-procedure Ai,k on input vj , for at most ⌊poly(n)/px,i⌋
times (where px,i = px · 2i/2n). On input v, the sub-procedure Ai,k proceeds as
follows.

1. Selects uniformly 2n strings of length n each. These strings are denoted
u1, ..., u2n;

2. Invokes the (oracle to the) prover poly(n) · 2i times, each time with input x
and verifier’s message (u1, ..., uk−1, v, uk+1, ..., u2n). The message consist of
the sequence selected at Step 1, except that uk is replaced by v.

3. If in one of these invocations, the prover answers with a 2n-tuple (y1, ..., y2n)
such that fx(yk) = v, then the extractor halts with output (v, yk).

Clearly, the expected running-time of the foregoing extractor is at most
∑2n

i=1
poly(|x|)2i/px,i =

poly(|x|)/px. To evaluate the performance of this extractor, consider a good pair

12

(i, k). By definition of a good pair, it follows that at least one half of the rows

in the kth direction contain at least ρx,i
def
= px · 2i/(2n)2 entries on which the

prover convinces the verifier with probability at least 2−i. Let us denote the
set of n-bit strings corresponding to these rows by Sx,k. It follows that for ev-
ery v ∈ Sx,k, the sub-procedure Ai,k inverts fx on v with probability at least
ρx,i − 2−n. Hence, when invoking Ai,x on v ∈ Sx,k for poly(n)/ρx,i times, with
overwhelming probability (i.e., probability greater than 1 − 2−n), we invert fx

on v. The final observarion is that, since |Sx,k| ≥
1

2
· 2n, the probability that

none of 2n indepedently and uniformly selected n-bit strings hits Sx,k is expo-
nentially vanishing (i.e., smaller than 2−n). As in the proof of Proposition 3.1,
this exponentially small error can be elliminated. It follows that the extractor
strongly solve Rx under Dx.

Acknowledgements

Work done while the first author was at the IBM T.J. Watson Research Center
(New York), and the second author was at the Techion (Israel).

References

1. M. Bellare and O. Goldreich, “On Defining Proofs of Knowledge,” Advances in

Cryptology – Crypto 92 Proceedings, Lecture Notes in Computer Science Vol. 740,
Springer-Verlag, E. Brickell, ed., 1992.

2. G. Brassard, C. Crépeau, S. Laplante and C. Léger, “Computationally Convincing
Proofs of Knowledge,” Proc. of the 8th STACS, 1991.

3. U. Feige, A. Fiat, and A. Shamir, “Zero-Knowledge Proofs of Identity”, Journal

of Cryptology, Vol. 1, 1988, pp. 77-94.
4. U. Feige, and A. Shamir, “Witness Indistinguishability and Witness Hiding Pro-

tocols,” Proceedings of the Twenty Second Annual Symposium on the Theory of

Computing, ACM, 1990, pp 416-426.
5. S. Goldwasser, S. Micali, and C. Rackoff, “The Knowledge Complexity of Inter-

active Proof Systems”, SIAM J. on Computing, Vol. 18, No. 1, 1989, pp. 186-208.
(Preliminary version in the 17th STOC, 1985.)

6. M. Tompa and H. Woll, “Random Self-Reducibility and Zero-Knowledge Inter-
active Proofs of Possession of Information,” University of California (San Diego)
Computer Science and Engineering Dept. Technical Report Number CS92-244
(June 1992). (Preliminary version in the 27th FOCS, 1987, pp. 472-482.)

7. M. Yung, “Zero-knowledge proofs of computational power,” Advances in Cryp-

tology – Eurocrypt 89 Proceedings, Lecture Notes in Computer Science Vol. 434,
Springer-Verlag, J-J. Quisquater, J. Vandewille, ed., 1989.

