
On Probabilistic versus Deterministic Provers in

the Definition of Proofs Of Knowledge

Mihir Bellare and Oded Goldreich

Abstract. This article points out a gap between two natural formula-
tions of the concept of a proof of knowledge, and shows that in all natural
cases (e.g., NP-statements) this gap can be bridged. The aforementioned
formulations differ by whether they refer to (all possible) probabilistic or
deterministic prover strategies. Unlike in the rest of cryptography, in the
current context, the obvious transformation of probabilistic strategies
to deterministic strategies does not seem to suffice per se. The source
of trouble is “bad interaction” between the expectation operator and
other operators, which appear in the definition of a proof of knowledge
(reviewed here).

Keywords: Proof of Knowledge, Probabilistic Proof Systems, Proba-
bilism versus Determinism, Expected Running Time.

An early version of this work appeared as TR06-136 of ECCC.

1 Introduction

The concept of a “proof of knowledge” was informally introduced by Goldwasser,
Micali and Rackoff [4], and plays an important role in the design of cryptographic
schemes and protocols (see, e.g., [2, 3]). This article refers to the common for-
mulation of the aforementioned concept, which was given in [1].

Loosely speaking, the definition of a proof of knowledge requires the existence
of a “knowledge extractor” that, when given access to any strategy, outputs the
relevant information within (expected) time that inversely proportional to the
probability that the given strategy convinces the knowledge verifier. Schemati-
cally, the definition of a proof of knowledge requires something with respect to

any strategy.

The issue addressed in this article is the following. Usually, in definitions
of the aforementioned type, it does not matter whether one quantifies over all
probabilistic strategies or over all deterministic strategies. The reason is that,
usually, satisfying the more restricted definition (which refers only to all deter-
ministic strategies) immediately implies satisfying the general definition (which
refers to all probabilistic strategies). Unfortunately, this does not seem to be the
case in the current setting (of the definition of proofs of knowledge).

111

1.1 The source of trouble

In this subsection we provide a high-level description of the technical problem
addressed in this work. We re-iterate this explanation, using more precise style
after presenting the relevant definitions (in Section 2).

To clarify the source of trouble, let us first consider one of the many settings
in which the problem does not arise; specifically, we consider the setting of zero-
knowledge. In this case, the ability to simulate (in a black-box manner) any
deterministic verifier strategy, implies the ability to simulate any probabilistic
verifier strategy. The same holds also when we restrict attention to strategies
that can be implemented by polynomial-size circuits. The reason is that given
any probabilistic strategy, we may consider all residual deterministic strategies
(obtained by all possible fixing of the strategy’s coins), and obtain the desired
simulation (for the probabilistic strategy) by combining all the corresponding
simulations (i.e., of the residual deterministic strategies).

This simple argument (per se) fails when applied in the current context (of
proofs of knowledge). Indeed, we can consider all residual deterministic prover
strategies that emerge from a given probabilistic prover strategy, and we can
combine the corresponding extraction procedures, but the combined procedure
does not necessarily run in time that is inversely proportional to the probability
that this prover convinces the verifier. For example, suppose that on input x,
with probability 1

2 (over the choice of the prover’s coins), the residual prover

convinces the verifier with probability 2−|x| (where the probability here is over
the verifier’s moves), and otherwise the residual prover convinces the verifier
with probability 1. Then, in the first case extraction may run in (expected)
time related to 2|x|, whereas in the second case it runs for polynomial-time. It
follows that the extraction for the original probabilistic prover strategy runs in
(expected) time that is related to 1

2 · 2|x|. But this probabilistic prover strategy
convinces the verifier with probability exceeding 1

2 . (Thus, this extractor does
not run in time that is inversely proportional to the success probability of the
probabilistic prover strategy.)

1.2 On the importance of relating the two definitions

Needless to say, when faced with two natural definitions we wish to know whether
they are equivalent. Furthermore, we note that the two different definitions
have appeared in the literature: For example, the definition in [1] refers to any
probabilistic prover strategy, while the definition in [2, Sec. 4.7] only refers to
(arbitrary) deterministic strategies (see further discussion in Section 2). Thus,
equating the two definitions (which appear in two central texts on this subject)
becomes even more important (as it aims at eliminating a source of confusion in
the current literature).

In addition to the foregoing generic and abstract motivation, there is also a
concrete motivation to our study. It is typically easier to deal with determinis-
tic strategies than with probabilistic ones, and thus relating the two definitions

112

yields a useful methodology (i.e., demonstrating the “proof of knowledge” prop-
erty with respect to deterministic strategies and deriving it for free with respect
to probabilistic strategies). For example, we note that in [1, Apdx E] the “proof
of knowledge” property (of the Graph Isomorphism protocol) is only demon-
strated with respect to deterministic strategies, and this demonstration does
not seem to extend to probabilistic strategies.1

Let us stress that in many applications the relevant prover strategies are in
fact probabilistic. This is the case whenever proof-of-knowledge are the end goal
(or close to it as in identification schemes), because in these cases the prover
strategy represents an arbitrary adversarial behavior.2

1.3 Our result

We show that the aforementioned gap (between the two natural formulations of
the concept of a proof of knowledge), can be bridged in all natural cases (e.g.,
for NP-statements). The basic idea is that, instead of using (in the extraction)
a single residual deterministic prover (derived by fixing random coins to the
original probabilistic strategy), we employ numerous such residual deterministic
strategies. Specifically, we invoke in parallel many executions of the knowledge-
extractor (for deterministic strategies), and provide each of these invocations
oracle access to a different residual deterministic strategy. These parallel exe-
cutions are emulated in a specific manner (as detailed in Section 3) in order to
ensure the desired extraction property.

2 Formal Setting

Let us start by recalling the definitional schema that underlies the two definitions
that we study. Generalizing the treatment in [1] and [2, Sec. 4.7.1], we shall
refer to an arbitrary class of potential (prover) strategies, denoted S. Indeed,
the treatment of [1] is obtained by letting S be the class of all (probabilistic)
strategies, whereas the treatment of [2, Sec. 4.7.1] is obtained by letting S be
the class of all deterministic strategies.

1 It seems that the authors of [1] overlooked this point. They either did not notice that
the argument is restricted to deterministic strategies or assumed that the demonstra-
tion can be easily extended to probabilistic strategies. We mention that the argument
presented in [1, Apdx E] applies to any three-move Arthur-Merlin protocol for NP
that has the following strong soundness property: Given any two accepting tran-
scripts (for the same input) that start with the same Merlin message but differ on
Arthur’s message, one can efficiently find a corresponding NP-witness.

2 In contrast, in other applications, where proofs-of-knowledge are used as a tool (and
the corresponding knowledge-extractor is used by some simulator), it suffices to
consider deterministic prover strategies (because these are derived from residual
deterministic strategies that are derived in the course of the security analysis).

113

2.1 Preliminaries

We first recall the basic setting, which consists of strategies (for parties in pro-
tocols) and a formulation of potential knowledge.

Strategies. Loosely speaking, deterministic strategies are functions that specify
the next message to be sent by a party, based on its private input (which is
hardwired in them) and as a function of the messages it has received so far.
General (probabilistic) strategies are similar, except that the next message may
also depend on a random input that is presented to these strategies. Formally, a
(probabilistic) strategy σ is a function from {0, 1}∗×{0, 1}∗ to {0, 1}∗ such that
σ(ω, γ) denotes the message to be sent by the corresponding party given that
its random input equals ω, and the sequence of messages received so far equals
γ. Note that the strategy depends also on private inputs of the corresponding
party, to which the outside world has no direct access. (These private inputs are
hardwired in σ and do not appear explicitly in our notation.)

For a probabilistic strategy σ, we often consider residual deterministic strate-
gies of the form σω = σ(ω) obtained by fixing the value of the random input to
ω (i.e., σω(γ) = σ(ω, γ)).

The two perceptions of strategies. Strategies will be used both as oracles and as
specifying the actions of interactive machines. Specifically, we mean the follow-
ing:

– When we discuss the interaction between parties on a common input, we
incorporate this common input in each of the two strategies. The interaction
of a strategy σ with a strategy σ′ is the sequence of messages exchanged
between the residual deterministic strategies σω and σ′

ω′ , where ω and ω′

are uniformly distributed. This sequence equals α1, β1, α2, β2, ... such that
αi+1 = σ(ω, (β1, ..., βi)) and βi = σ′(ω′, (α1, ..., αi)).

– When using σ as an oracle, the oracle machine may issue arbitrary queries,
which need not be consistent with the way that σ interact with any inter-
active machine. In particular, these queries may relate to different values of
random input ω, all chosen at the discretion of the oracle machine.

The second item represents a relaxation of the common interpretation of the
definition of using a probabilistic strategy as an oracle oracle, and thus a short
discussion is in place. The common interpretation of this notion is that the user
(i.e., the oracle machines) is given oracle access to a (single) residual determinis-
tic strategy (i.e., σω) that is obtained from σ by fixing a uniformly distributed ω.
In fact, all prior constructions of knowledge extractors used this interpretation.
We believe, however, that the more liberal interpration suggested above (i.e., by
which the user is given oracle access to σ itself) is consistent with the simulation
paradigm and is adequate in all reasonable applications. Actually, the knowledge
extractor constructed in this work refers to an intermediate interpretation (of
using a probabilistic strategy σ as an oracle). By this interpretation the oracle

114

machine may is given access to several residual deterministic strategies (i.e., sev-
eral σω’s) that are derived from the same probabilistic strategy by the selection
of independently and uniformly distributed values of the random input ω.

The relevant knoweledge. We capture the relevant knowledge by a binary relation
R ⊆ {0, 1}∗ × {0, 1}∗ such that, on common input x, the “claimed knowledge”

refers to knowledge of a string in R(x)
def
= {y : (x, y) ∈ R}. The archetypical

case is of NP-relations; that is, relations R that are polynomially bounded (i.e.,
(x, y) ∈ R implies |y| ≤ poly(|x|)) and are polynomial time recognizable (i.e.,
there exists a polynomial-time algorithm A such that A(x, y) = 1 if and only if
(x, y)∈R). We denote by SR the set of strings for which a “claim of knowledge”

is not bluntly wrong; that is, SR
def
= {x : R(x) 6= ∅}.

2.2 The actual definitions

Our focus will be on the validity condition of the following definition, but for
sake of completeness we state also the non-triviality condition.

Definition 1 (schema for defining proofs of knowledge): Let R be a binary re-

lation, and κ : {0, 1}∗ → [0, 1]. We say that an interactive machine V is a

knowledge verifier for the relation R with respect to a class of strategies S (and
knowledge error κ) if the following two conditions hold.

Non-triviality: For every x ∈ SR, there exists a strategy σ ∈ S such that the

verifier V always accepts when interacting with σ on common input x.

Validity (with error κ): There exists a probabilistic oracle machine K and a poly-

nomial q such that, for every strategy σ ∈ S and every x, machine K satisfies

the following condition:

If when interacting with σ, on common input x, the verifier V accepts

with probability px > κ(x), then on input x when given oracle access

to σ machine K outputs a string in R(x) within an expected number

of steps upper-bounded by

q(|x|)

px − κ(x) .

(1)

Note that the value of px depends on V , the strategy σ, and the

common input x. The probability space to which px refers is that

of all possible coin tosses of the strategies V and σ. Likewise, the

probability space underlying Eq. (1) consists of all possible coin tosses

of the machine K and the strategy σ.

The oracle machine K is called a (universal) knowledge extractor, and κ is called

the knowledge error function.

In particular, it follows that x 6∈ SR implies px ≤ κ(x). We stress that, on
input x and when given oracle access to a strategy σ that convinces V to accept

115

x with probability exceeding κ(x), the knowledge extractor always outputs a
string in R(x); that is, in this case, Pr[Kσ(x) 6∈ R(x)] = 0. However, when the
said probability does not exceed κ(x), all bets are off. Nevertheless, if R is an
NP-relation then we may assume, without loss of generality, that for every x and
every σ it holds that Pr[Kσ(x) 6∈ (R(x) ∪ {⊥})] = 0, where ⊥ indicates halting
without output. We now turn to the definitions studied in this article.

Definition 2 (the two definitions):

Following Definition 3.1 in [1]: We say that V is a knowledge verifier for the re-
lation R with knowledge error κ if Definition 1 holds with S being the set of

all possible (probabilistic) strategies.

Following Definition 4.7.2 in [2]: We say that V is a restricted knowledge verifier
for the relation R with knowledge error κ if Definition 1 holds with S being

the set of all possible deterministic strategies.

The two definitions differ only in the scope of strategies considered: [1, Def. 3.1]
refers to all possible (probabilistic) strategies, whereas [2, Def. 4.7.2] refers only
to all possible deterministic strategies.3 Nevertheless, we show that in all natural
cases (e.g., NP-relations) the restricted definition implies the general one.

2.3 Our result

Before stating this result formally, let us point out why it is not as obvious as
analogous results regarding related definitions.4 Suppose that V is a restricted

knowledge-verifier (with knowledge error κ = 0) and let K be the correspond-
ing knowledge extractor. Given a probabilistic strategy σ, the straightforward
attempt to extract knowledge from σ consists of invoking K while providing it
with oracle access to the residual deterministic strategy σω , where ω is uniformly
distributed. The problem is that the probability that σω convinces V , denoted
p(ω), may deviate arbitrarily from the probability that σ convinces V , denoted
p. That is, the random variable p(ω) may behave arbitrarily subject (only) to
the condition p = Eω[p(ω)] (and, of course, p(ω) ∈ [0, 1]). This, in turn, implies
that the expected running-time of Kσω (taken also over the random choice of
ω) is not necessarily inversely proportional to p. For example, it may be that
Pr[p(ω) = 2−n] = 1/2 and Prω[p(ω) = 1] = 1/2, and in this case the expected
running-time of Kσω may be 2n while Eω[p(ω)] > 1/2. Indeed, in general, it

3 Unfortunately, these facts are not perfectly clear in the original texts: The formu-
lation of [1, Def. 3.1] refers to all possible “interactive functions”, yet the latter
are defined in [1, Def. 2.1] as arbitrary probabilistic strategies. The formulation of
[2, Def. 4.7.2] refers to all residual deterministic strategies that can be obtained by
fixing the random input of some probabilistic strategy, but in retrospect the latter
condition is a red herring (and does not help in extending this definition to the
general case of [1, Def. 3.1]).

4 Recall that simulation-security with respect to arbitrary (polynomial-size) deter-
ministic adversaries typically implies simulation-security with respect to arbitrary
probabilistic (polynomial-time) adversaries.

116

does not necessarily hold that Eω[1/p(ω)] ≤ poly(n) ·Eω [p(ω)]. Nevertheless, we
prove the following.

Theorem 3 (main result): Let V be a restricted knowledge verifier for R with

knowledge error κ, where the length of the binary expansion of κ(x) is polynomial

in |x|. Suppose that the corresponding knowledge extractor, K, never outputs a

wrong answer; that is, for every x and σ, it holds that Pr[Kσ(x) 6∈ R(x)∪{⊥}] =
0, where ⊥ indicates halting without output. Then, V is a knowledge verifier for

R with knowledge error κ.

Theorem 3 asserts that, under the additional assumptions regarding κ and K,
the restricted definition (i.e., [2, Def. 4.7.2]) implies the general definition (i.e., [1,
Def. 3.1]). As illustrated by the forgoing discussion, the corresponding knowledge
extractor (for [1, Def. 3.1]) is not K (or the minor modification of K discussed
above). We note that the two additional assumptions (regarding κ and K) can
be easily met in case that R is an NP-relation. Details follows.

Recall that if R is an NP-relation, then we can check the output of K, and
thus (on input x) we can always avoid outputting a string that is not in R(x).
This eliminates the additional assumption regarding K. As for the additional
condition regarding κ, it can always be enforced by possiblly increasing κ a
little; that is, by resetting κ(x) to ⌈2q(|x|) · κ(x)⌉/2q(|x|), where q is an arbitrary
polynomial. Furthermore, in the case that R is an NP-relation, we may reset

κ(x) to κ′(x)
def
= ⌊2q(|x|) · κ(x)⌋/2q(|x|), for a sufficiently large polynomial q (by

taking advantage of the fact that, for any x ∈ SR, a string in R(x) can be found
in time exp(q(|x|))).5

3 Proof of Theorem 3

Recall that the source of trouble is that for a uniformly distributed value of
the random input, the success probability of the corresponding residual deter-
ministic strategy (w.r.t convincing V) may be very different from the success
probability of the original probabilistic strategy. This may lead to overwhelm-
ingly long runs of the knowledge extractor (i.e., runs that contribute to the total
expected running-time more than we can allow). The basic idea is to truncate
such overwhelmingly long runs, and rely on the existence (in sufficient probabil-
ity measure) of runs that are not overwhelmingly long.

5 This fact allows for handing the case that the probability that σ convinces V to
accept x (i.e., px) is very close to κ(x) in the sense that px − κ′(x) is significantly
larger than px−κ(x). We first note that in this case px < κ(x)+2−q(|x|) (as otherwise
px − κ(x) ≥ 2−q(|x|) and px − κ′(x) < px − κ(x) + 2−q(|x|)

≤ 2 · (px − κ(x))). Thus,
in this case (where (px − κ(x))−1 < 2q(|x|)), we can afford running the standard
exhaustive search algorithm (which runs in time 2q(|x|)) in parallel to the given
knowledge extractor. On the other hand, if px − κ′(x) = O(px − κ(x)), then (px −

κ(x))−1 = O((px − κ′(x))−1). Thus, given an knowledge extractor of error κ, we
obtain a knowledge extractor of error κ′.

117

Let us illustrate this idea by referring to the foregoing example, where Pr[p(ω) =
2−n] = 1/2 and Pr[p(ω) = 1] = 1/2 (and κ = 0).6 In this case, p = Eω[p(ω)] >
1/2, and so our extraction procedure should run in expected polynomial-time.
Thus, we invoke K providing it with oracle access to σω , where ω is uniformly
distributed among all possible random inputs, and truncate the execution after
a polynomial number of steps has elapsed. If an output was obtained in this ex-
ecution attempt, then we output it, otherwise we repeat the experiment again.
Note that, with probability 1/2, the residual strategy σω satisfies p(ω) = 1, in
which case Kσω is expected to halt in polynomial-time with the desired output.
Otherwise (i.e., p(ω) = 2−n), the (truncated) execution of Kσω may be useless,
but it will not cause much harm (since it is suspended after a polynomial number
of steps).

In the foregoing example we relied on a good a priori knowledge of the
distribution of p(ω), which may not be available in general. Thus, in general,
we shall employ a somewhat more sophisticated argument. Following is a rough
sketch of the general argument, where we still assume for simplicity that κ = 0.
One key observation is that there exists an integer i such that Prω[p(ω) ≈ 2−i] is
linearly related to 2i · p (where p = Eω[p(ω)]). We do not know this i and so we
run, in parallel, numerous processes one per each of the relevant values of i. In the
ith process (i.e., the one related to the value i), we repeatedly attempt extraction
with deterministic residual provers (derived by random fixings of ω), but truncate
each attempt after poly(n) · 2i steps. Thus, for the correct value of i, the ith

relevant process will succeed in extraction within the allowed expected number
of steps (i.e., it is expected to make poly(n)/(2i · p) attempts, each running for
poly(n) · 2i steps, and thus the total expected running time is poly(n)/p).

We now turn to a rigorous description of the actual knowledge extractor
for probabilistic strategies. We fix an arbitrary x ∈ SR, but omit it from most
subsequent notations. Fixing an arbitrary randomized strategy σ, we consider
an arbitrary choice of the strategy’s coins, ω, and denote the residual strategy
by σω . In the rest, we will refer to selecting such ω’s and providing oracle access
to the corresponding σω, but we need not select these ω’s ourselves; it suffices to
have the ability of providing oracle access to numerous random and independent
“incarnations” of σ that correspond to such choices of ω’s.

Let p(ω) denote the probability that verifier accepts when interacting with
σω , on common input x. By the hypothesis, if p(ω) > κ(x), then the knowledge
extractor K, given oracle to σω, outputs a string in R(x) in expected time
q(|x|)/(p(ω)−κ(x)), where q is a fixed (universal) polynomial. As before, we let
p = Eω [p(ω)], and assume, without loss of generality, that p > κ(x) (because
otherwise noting is required). In addition, let κ = κ(x) and let ℓ = poly(|x|)
denote an upper-bound on the length of the random input used by V on common

input x. It follows that for every choice of ω (which determines a residual strategy
σω) it holds that 2ℓ · p(ω) is an integer (because the relevant probability space
is uniformly distributed over 2ℓ possibilities). Recalling that κ has a binary

6 Throughout the text, n denotes the length of the common input x, which we often
omit from the notation.

118

expansion of length poly(|x|), we assume, without loss of generality, that 2ℓ · κ
is also an integer. It follows that if p(ω) ≤ κ + 2−ℓ−1, then p(ω) ≤ κ.

We consider a partition of (κ + 2−ℓ−1, κ + 1] into ℓ + 1 intervals such that
the ith interval is Ii = (κ + 2−i, κ +2−i+1]. We claim that there exists i ∈ [ℓ +1]
such that

Prω [p(ω) ∈ Ii] ≥
2i · (p − κ)

4(ℓ + 1) .

(2)

This claim follows, because otherwise we derive a contradiction as follows (where
in the first inequality we use the fact that p(ω) ≤ κ + 2−ℓ−1 implies p(ω) ≤ κ):

Eω[p(ω)] ≤ Prω[p(ω) ≤ κ + 2−ℓ−1] · κ +

ℓ+1
∑

i=1

Prω[p(ω) ∈ Ii] · (κ + 2−i+1)

= κ +

ℓ+1
∑

i=1

Prω[p(ω) ∈ Ii] · 2
−i+1

< κ +

ℓ+1
∑

i=1

2i · (p − κ)

4(ℓ + 1)
· 2−i+1

= κ +
p − κ

2

where the second inequality uses the contradiction hypothesis (by which Eq. (2)
is violated for every i ∈ [ℓ + 1]). Recalling that p = Eω [p(ω)], we obtain p <
κ + (p − κ)/2, which contradicts the hypothesis p > κ.

The new extraction procedure consists of running ℓ + 1 processes in parallel.
The ith process successively invokes time-bounded executions of the knowledge
extractor K, providing each such invocation with oracle access to a random
and independent incarnation of σ (i.e., residual strategies σω for uniformly and
independently ditrsibuted values of ω). The time-bound used in the ith process is
2·q(|x|)·2i, where the q is the polynomial guaranteed for K. Thus, if p(ω) ≥ κ+2i

then, with probability at least 1/2, it holds that Kσω(x) halts in 2 · q(|x|) · 2i

steps (because the expected number of steps is q(|x|) · 2i). Once any of these
ℓ +1 processes outputs some string y, the entire parallel-process terminates and
y is used as output.

Recall that by the theorem’s hypothesis, whenever K outputs a string y it
is the case that y ∈ R(x). Thus, we confine ourselves to analyzing the expected
running-time of the foregoing extraction process. Considering an arbitrary value
i that satisfies Eq. (2), we observe that the ith process succeed after making an

expected number of 2 ·
(

2i·(p−κ)
4(ℓ+1)

)−1

trials. Thus, the overall time spent by the

new extractor has expectation

(ℓ + 1) ·
2 · 4(ℓ + 1)

2i · (p − κ)
· (2 · q(|x|) · 2i) =

O(ℓ2 · q(|x|))

p − κ
=

poly(|x|)

p − κ

and the theorem follows.

119

4 Concluding Remarks

We have established the equivalence of [1, Def. 3.1] and [2, Def. 4.7.2] while
relying on the following three (reasonable) conventions (or assumptions):

1. We assumed that the pharse “given oracle access to a probabilistic strategy
σ” means ability to query several (rather than one) residual deterministic
strategies of the form σω, where the ω’s are uniformly and independently
distributed.

2. We assumed that the knowledge-extractor never outputs a wrong string (i.e.,
a string not in R(x)), regardless of which input x and which strategy σ it is
given access to.

3. We assumed that the knowledge error function κ is nice in the sense that,
for every x, the binary expansion of κ(x) has length polynomial in |x|.

We believe that these assumptions do not impair the applicability of our result.
Still we wonder whether (some of) these assumptions can be eliminated.

References

1. M. Bellare and O. Goldreich. On Defining Proofs of Knowledge. In Crypto92,
Springer-Verlag Lecture Notes in Computer Science (Vol. 740), pages 390–420.

2. O. Goldreich. Foundation of Cryptography – Basic Tools. Cambridge Univer-
sity Press, 2001.

3. O. Goldreich. Foundation of Cryptography – Basic Applications. Cambridge
University Press, 2004.

4. S. Goldwasser, S. Micali and C. Rackoff. The Knowledge Complexity of Inter-
active Proof Systems. SIAM Journal on Computing, Vol. 18, pages 186–208,
1989. Preliminary version in 17th STOC, 1985.

