
Proximity Oblivious Testing and the Role of

Invariances

Oded Goldreich and Tali Kaufman

Abstract. We present a general notion of properties that are character-
ized by local conditions that are invariant under a sufficiently rich class
of symmetries. Our framework generalizes two popular models of testing
graph properties as well as the algebraic invariances studied by Kauf-
man and Sudan (STOC’08). Our focus is on the case that the property
is characterized by a constant number of local conditions and a rich set
of invariances.
We show that, in the aforementioned models of testing graph properties,
characterization by such invariant local conditions is closely related to
proximity oblivious testing (as defined by Goldreich and Ron, STOC’09).
In contrast to this relation, we show that, in general, characterization by
invariant local conditions is neither necessary nor sufficient for proxim-
ity oblivious testing. Furthermore, we show that easy testability is not

guaranteed even when the property is characterized by local conditions
that are invariant under a 1-transitive group of permutations.

Keywords: Property Testing, Graph Properties, Locally Testable Codes,
Sparse Linear Codes, The Long-Code

A version of this work appeared as TR10-058 of ECCC.

1 Introduction

In the last couple of decades, the area of property testing has attracted much at-
tention (see, e.g., a couple of recent surveys [15, 16]). Loosely speaking, property
testing typically refers to sub-linear time probabilistic algorithms for deciding
whether a given object has a predetermined property or is far from any object
having this property. Such algorithms, called testers, obtain local views of the
object by making adequate queries; that is, the object is seen as a function and
the testers get oracle access to this function (and thus may be expected to work
in time that is sub-linear in the length of the object).

While a host of fascinating results and techniques has emerged, the desire
for a comprehensive understanding of what makes some properties easy to test
(while others are hard to test) is far from being satisfied.1 Two general ap-
proaches that seem to have a potential of addressing the question (of “what
makes testing possible”) were suggested recently.

1 This assertion is not meant to undermine significant successes of several characteri-
zation projects, most notably the result of [1].

175

1. Restricting attention to the class of proximity oblivious testers, which are
constant-query testers that reject any object with probability proportional
(but not necessarily linearly proportional) to its distance from the predeter-
mined property. Indeed, the characterization of proximity oblivious testers,
in two central models of graph properties, obtained in [9], seems to answer
the foregoing question: graph properties have proximity oblivious testers if
and only if they can be characterized in terms of adequate local conditions.2

2. But even before [9], an approach based on adequately invariant local condi-
tions was put forward in [13]. It was shown that in the context of testing
algebraic properties, a sufficient condition for testability (which in fact yields
proximity oblivious testers) is that the property can be characterized in terms
of local conditions that are invariant in an adequate sense.

Thus, these two approaches have a very similar flavor, but they are very different
at the actual details. On the one hand, the definition of proximity oblivious testers
does not refer to any structure of the underlying domain of functions, and the
local conditions in the two graph models do not refer explicitly to any invariance.
However, invariance under relabeling of the graph’s vertices is implicit in the
entire study of graph properties (since the latter are defined in terms of such
invariance). On the other hand, the linear invariances considered in [13] presume
that the functions’ domain can be associated with some vector space and that
the properties are invariant under linear transformations of this vector space.

Thus, the first task that we undertake is providing a definition of a general
notion of “characterization by invariant local conditions”, where at the very min-
imum this general definition should unify the notions underlying [9, 13]. Such a
definition is presented in Section 2. Loosley speaking, a property P is character-
ized by invariant local conditions if P is charaterized by a set C of local conditions
(i.e., f ∈ P iff f satisfies all conditions in C) and C is generated by a constant
number of local conditions coupled with a set of actions that preserves P (i.e.,
the invariances).

Given such a definition, a natural conjecture that arises, hereafter referred to
as the invariance conjecture, is that a property has a constant-query proximity-
oblivious tester if and only if it can be characterized by invariant local conditions.
This conjecture is rigorously formulated within our definitional framework (see
Section 2.2) and the current work is devoted to its study. The main results of
our study may be stated informally as follows:

1. The invariance conjecture holds in the context of testing graph properties in
the dense graph model (see Theorem 3.1).

2. The invariance conjecture holds in the context of testing graph properties
in the bounded-degree graph model if and only if all local properties are
non-propagating (see Theorem 3.1 and Open Problem 5.8 in [9]).

3. In general, the invariance conjecture fails in both directions.

2 We warn the the picture is actually not that clean, because in the case of the
bounded-degree model the notion of adequacy includes some technical condition,
termed non-propagation.

176

(a) Characterization by invariant local conditions is not necessary for prox-
imity oblivious testing. This is demonstrated both by linear properties
(see Theorem 5.1) and by the dictatorship property (see Theorem 5.2).

(b) Characterization by invariant local conditions is not sufficient for prox-
imity oblivious testing (see Theorem 5.3). This is demonstrated by the
property called Eulerian orientation (which refers to the orientation of
the edges of a cyclic grid, cf. [6]).

Thus, there are natural settings in which the invariance conjecture holds, but
there are also natural settings in which it fails (in each of the possible directions).

The technical angle. Items 1 and 2 are established by relying on corresponding
results of [9], while our contribution is in observing that the local conditions
stated in [9] (in terms of subgraph freeness) coincide with local conditions that
are invariant under graph isomorphisms. Actually, to rule out characterizations
by other possible invariances (i.e., invariances other than graph isomorphism),
we also use the canonization technique of [10, Thm. 2]. In the two examples of
Item 3a we rely on the fact that these properties were shown to have (proximity
oblivious) testers in [12] and [3], respectively. Thus, in both these cases, our con-
tribution is showing that these properties cannot be characterized by invariant
local conditions. In Item 3b we rely on a lower bound established in [6] (re-
garding testing Eulerian orientations of cyclic grids), and our contribution is in
observing that this property can be characterized by invariant local conditions.

We mention that the property used towards establishing Item 3b is invariant
under a 1-transitive3 permutation group. Thus, even such an invariance feature
does not guarantee easy testability (i.e., a standard tester of query complexity
that only depends on the proximity parameter). Furthermore, this holds even
when all local conditions are generated by a single local condition (closed under
the said invariance).

Terminology. Throughout the text, when we say proximity oblivious testing we
actually mean proximity oblivious testing in a constant number of queries. The
definition of proximity oblivious testing appears in the appendix.

Organization. In Section 2 we provide a definitional framework that captures the
foregoing discussion. In particular, this framework includes a general definition
of the notion of characterizations by invariant local conditions and a formal
statement of the invariance conjecture. In Section 3 we show the the invariance
conjecture holds in the context of testing graph properties in the dense graph
model, and in Section 4 we present an analogous conditional (or partial) result
for the bounded-degree graph model. The failure of the invariance conjecture is
demonstrated in Section 5, and possible conclusions are discussed in Section 6.

3 A permutation group G over D is called 1-transitive if for every e, e′ ∈ D there exists
a π ∈ G such that π(e) = e′.

177

2 General Framework

For simplicity, we consider properties of finite functions defined over a finite
domain D and having a finite range R, whereas an asymptotic treatment re-
quires considering properties that are infinite sequences of such properties (i.e.,
a sequence of the type (Pn)n∈N where Pn is a set of functions from Dn to Rn).
Still, we shall just write P, D,R, and (in order for our asymptotic statements
to make sense) one should think of Pn, Dn, Rn. In particular, when we say that
some quantity is a “constant”, we actually think of D as growing (along with P
and possibly R), while the said quantity remains fixed. Thus, in the rest of our
presentation, D and R should be considered as generic sets having a variable
size, although they will be often omitted from definitions and notations.

The simplified form of the invariant condition. We start by outlining a simplified
version of the condition that we seek, regarding a property P (of functions D →
R):

1. P is closed under the action of some permutation group G, which is defined
over D, and

2. P has a characterization via a constant number of “generic” constraints of
constant size such that a function f is in P iff all actual constraints obtained
by having G act on the generic constraints are satisfied.

In other words, P can be characterized by a set of constraints that are generated
by some permutation group G acting on a constant number of constant-size
constraints.

We stress that the foregoing permutation group G is chosen arbitrarily, and
may depend on P (and not only on a natural class of properties to which P
belongs). Thus, if P is a graph property, then G need not be the group that
preserves all graph properties (i.e., the vertex-relabeling group), but rather may
be any group that extend the vertex-relabeling group. For example, if P is the
property of having more edges than non-edges, then the group may be the sym-
metric group of all (unordered) vertex pairs, which in particular contains the
vertex-relabeling group as a subgroup.

2.1 Characterization by generated constraints

We now generalize and clarify the above discussion. First we need to define
what we mean by a constraint. A constraint will be a pair consisting of domain
elements and a Boolean predicate applied to the corresponding values, and it is
satisfied by a function f if applying the predicate to the f -values at the specified
locations yields the Boolean value 1 (representing true).

Definition 2.1 (constraints): A constraint is a pair ((e1, ..., ec), φ) such that
e1, ..., ec are distinct elements in D, and φ : Rc → {0, 1} is an arbitrary predicate.
We say that the foregoing is a constraint of arity c (or a c-constraint). A function
f : D → R is said to satisfy the foregoing constraint if φ(f(e1), ..., f(ec)) = 1.

178

Note that at this point the predicate φ may depend on the sequence of ele-
ments (e1, ..., ec). Such a dependence will not exist in the case that a large set
of constraints is generated based on few constraints (as in Definition 2.3).

The next notion is of characterization by a set of constraints. A property P
of functions is characterized by a set of constraints if f is in P if and only f
satisfies all constraints in the set.

Definition 2.2 (characterization by constraints): Let C be a set of constraints
and P be a property. We say that P is characterized by C if for every f : D → R
it holds that f ∈ P if and only if f satisfies each constraint in C.

Next, we consider the set of constraints generated by the combination of (1) a
fixed set of constraints, (2) a group of permutations over D, and (3) a group of
permutations over R. For starters, the reader is advised to think of the second
group as of the trivial group containing only the identity permutation. In general,
we shall consider a subset of the set of all pairs consisting of a permutation as
in (2) and a permutation as in (3).

Definition 2.3 (generated constraints): Let C be a finite set of c-constraints,
and M be a set of pairs consisting of a permutation over D and a permutation
over R (i.e., for any (π, µ) ∈ M it holds that π is a permutation of D and
µ is a permutation R). The set of constraints generated by C and M , denoted
CONS(C,M), is defined by

CONS(C,M)
def
= {((π(e1), ..., π(ec)), φ ◦ µ−1) : ((e1, ..., ec), φ)∈C , (π, µ)∈M}

(1)
where φ ◦ µ−1(v1, ..., vc) denotes φ(µ−1(v1), ..., µ

−1(vc)).

Note that saying that f satisfies ((π(e1), ..., π(ec)), φ ◦ µ−1) means that

(φ ◦ µ−1)(f(π(e1)), ..., f(π(ec))) = φ(µ−1(f(π(e1))), ..., µ
−1(f(π(ec)))) = 1,

which means that µ−1 ◦ f ◦ π satisfies the constraint ((e1, ..., ec), φ). Regarding
the use of µ−1 ◦f ◦π rather than µ◦f ◦π, see discussion following Definition 2.5.

Notation: As in Definition 2.3, it will be convenient to generalize functions to
sequences over their domain. That is, for any function F defined over some
set S, and for any e1, ..., et ∈ S, we denote the sequence (F (e1), ..., F (et)) by
F (e1, ..., et). Throughout the text, id will be used to denote the identity permu-
tation, where the domain is understood from the context.

2.2 The invariance condition

Returning to the condition outlined initially, let us now formulate it as follows.
We consider a group of pairs (π, µ) such that π is a permutation overD and µ is a
permutation over R with a group operation that corresponds to component-wise
composition of permutations (i.e., (π1, µ1) ⊙ (π2, µ2) = (π1 ◦ π2, µ1 ◦ µ2), where

179

⊙ denotes the group operation). We call such a group a group of permutation

pairs, and note that it need not be a direct product of a group of permutation
over D and a group of permutations over R.

Definition 2.4 (the invariance condition): A property P satisfies the invariance

condition if there exists a constant, denoted c, a finite set of c-constraints, de-
noted C, and a group, denoted M , of permutation pairs over D × R such that
P is characterized by CONS(C,M). In this case, we also say that P satisfies the

invariance condition w.r.t M .

Recall that the group operation ⊙ of M satisfies (π1, µ1) ⊙ (π2, µ2) = (π1 ◦
π2, µ1 ◦ µ2), where ◦ denotes composition of permutations. Thus, M induces a
permutation group over D (as well as one over R), but M is not necessarily their
direct product (e.g., for D = R, it may be that M = {(π, π) : π ∈ G}, where G
is a permutation group over D).

The invariance condition and covering the domain. We confine our discussion
to the case that the domain contains only elements that are influential w.r.t the
property P; that is, for every e ∈ D, there exists f1 ∈ P and f0 6∈ P such that
f1(x) = f0(x) for every x ∈ D \ {e}. Observe that if property P satisfies the
invariance condition w.r.t M , then M induces a transitive permutation group
on a constant fraction of D. This follows because the permutation group (over
D) induced by M must map a constant number of elements (i.e., those appearing
in the constraint set C) to all elements of D.

The main question. We ask what is the relation between satisfying the invariance
condition and having a proximity oblivious tester (of constant-query complex-
ity). One natural conjecture, hereafter referred to as the invariance conjecture, is
that a property satisfies the invariance condition if and only if it has a proxim-
ity oblivious tester. Weaker forms of this conjecture refer to its validity within
various models of property testing. This leads us to ask what are “models of
property testing”.

2.3 Models of property testing

Natural model of property testing can be defined by specifying the domain and
range of functions (i.e., D and R) as well as closure features of the properties
in the model.4 We elaborate below (and mention that this view was elaborated
independent by Sudan [18]).

For example, the model of testing graph properties in the adjacency matrix
representation, introduced in [7], refers to D =

(

[N]
2

)

and R = {0, 1} as well as to
the permutation group overD that is defined by all relabeling of [N]. Specifically,

an N -vertex graph is represented by the Boolean function g :
(

[N]
2

)

→ {0, 1}

4 In addition, one may consider sub-models that are obtained by requiring the func-
tions in such a model to satisfy some auxiliary properties.

180

such that g({u, v}) = 1 if and only if u and v are adjacent in the graph. Here
an adequate closure feature gives rise to graph properties, where P is a graph
property if, for every such function g, and every permutation ψ over [N], it holds

that g ∈ P iff gψ ∈ P, where gψ({u, v})
def
= g({ψ(u), ψ(v)}).

In general, closure features are defined by groups of pairs of permutations,
just as those in Definition 2.4.

Definition 2.5 (closure features): Let M be as in Definition 2.4. We say that
a property P is closed under M if, for every (π, µ) ∈ M , it holds that f ∈ P if
and only if µ ◦ f ◦ π−1 ∈ P.

Note that µ ◦ f ◦ π−1 (rather than µ ◦ f ◦ π) is indeed the natural choice, since f
maps D to R whereas the new function f ′ = µ ◦ f ◦ π−1 is meant to map π(D)
to µ(R); thus, when f ′ is applied to e′ = π(e) this results in first recovering e,
next applying f , and finally applying µ.

Definition 2.6 (closure-based models of property testing): The model of M
consists of the class of all properties that are closed under M .

For example, the model of testing graph properties in the adjacency matrix
representation corresponds to the set M that equals all pairs (π, id) such that
there exists a permutation ψ over [N] such that π({u, v}) = {ψ(u), ψ(v)} (for

all {u, v} ∈ D =
(

[N]
2

)

). As we shall see, not all “common models of property
testing” can be reduced to Definition 2.6, but nevertheless Definition 2.6 is a good
starting point; that is, various models can be naturally defined as subclasses of
the class of all properties that are closed under some group M (where typically
in such cases the subclass are characterized by a set of constraints that are
generated as in Definition 2.3).5

We observe that closure under M is a necessary condition for satisfying the
invariance condition with respect to M .

Proposition 2.7 If P satisfies the invariance condition w.r.t M , then P is
closed under M .

Proof: For any f ∈ P and (π0, µ0) ∈ M , consider f ′ def
= µ0 ◦ f ◦ π−1

0 .
We shall show that f ∈ P if and only if f ′ ∈ P. Suppose that P is charac-
terized by CONS(C,M), and consider an arbitrary constraint in CONS(C,M).
By definition (of being generated from (C,M)), this constraint has the form
(π(e1), ..., π(ec)), φ ◦ µ−1), where ((e1, ..., ec), φ) ∈ C and (π, µ) ∈ M . Our aim
is to show that f ′ satisfies this constraint if and only if f satisfies some related
constraint in CONS(C,M), where the two constraints are related via (π0, µ0).

5 Indeed, an alternative formulation of the model of testing graph properties in the
adjacency matrix representation is obtained by starting from D = [N]× [N] and M
that equals all pairs (π, id) such that π(u, v) = (ψ(u), ψ(v)), for some permutation
ψ over [N] (and all (u, v) ∈ D = [N]× [N]). In such a case, we consider the subclass
of symmetric function (i.e., functions g such that g(u, v) = g(v, u) for all (u, v)∈D).

181

We start by looking at the value of (φ ◦ µ−1)(f ′(π(e1)), ..., f
′(π(ec))), which

we shorthand as (φ ◦ µ−1)(f ′(π(e1, ..., ec))). Plugging-in the definition of f ′,
what we now look at is (φ ◦ µ−1)((µ0 ◦ f ◦ π−1

0)(π(e1, ..., ec))), which may be
written as φ(µ−1 ◦µ0 ◦ f ◦π

−1
0 ◦π(e1, ..., ec)), which in turn equals φ((µ−1 ◦µ0)◦

f ◦ (π−1
0 ◦ π)(e1, ..., ec)). That is, we consider whether f satisfies the constraint

((π−1
0 ◦π)(e1, ..., ec), φ◦(µ−1◦µ0)), which can be written as ((π−1

0 ◦π)(e1, ..., ec), φ◦
(µ−1

0 ◦ µ)−1). But this constraint is in CONS(C,M), since it is generated from
((e1, ..., ec), φ) ∈ C by using the pair (π−1

0 ◦ π, µ−1
0 ◦ µ) ∈ M . Thus, f ′ satisfies

the constraint generated (from ((e1, ..., ec), φ)) by (π−1
0 ◦π, µ−1

0 ◦µ) if and only if f
satisfies the constraint generated (from it) by (π, µ). It follows that f ′ satisfies all
constraints in CONS(C,M) if and only if f satisfies all constraints in CONS(C,M).

3 The Invariance Conjecture holds in the Dense Graph

Model

We prove the invariance conjecture holds in the special case of graph properties
in the adjacency matrix representation model (a.k.a the dense graph model).
Recall that in the adjacency matrix model, an N -vertex graph is represented by
the (symmetric) Boolean function g : [N]× [N] → {0, 1} such that g(u, v) = 1 if
and only if u and v are adjacent in the graph.

We rely on a recent result of [9], which states that (in this model) P has a
proximity oblivious tester if and only if it is a subgraph-freeness property. We
next observe that being a subgraph-freeness property is equivalent to satisfying
invariance condition with respect to the canonical set, where a setM is canonical if
M = M ′×{id} such that M ′ is the group of permutations over vertex-pairs that
is induced by vertex-relabeling. (Indeed, the canonical set is the very set that
defines the current model; see Section 2.3). So it is left to show that P satisfies
the invariance condition if and only if P satisfies the invariance condition with
respect to the canonical set. We thus get

Theorem 3.1 Suppose that P is a set of Boolean functions over the set of un-
ordered pairs over [N] such that P is closed under relabeling of the base set (i.e.,
P is a graph property that refers to the adjacency representation of graphs).
Then, P has a proximity oblivious tester if and only if P satisfies the invariance
condition. Furthermore, if P satisfies the invariance condition, then it satisfies
this condition with the canonical set.

Proof: The key observation is that, in this model, a property satisfies the in-
variance condition with respect to the canonical set if and only if it is a subgraph-
freeness property, where throughout this proof subgraph-freeness means not hav-
ing certain induced graphs (which are specified in a forbidden set). The backward
direction (i.e., from subgraph-freeness to the invariance condition) follows by ob-
serving that every subgraph-freeness property satisfies the invariance condition
with respect to the canonical set, because it can be generated by the predicate

182

that forbids certain unlabeled graphs (e.g., not having F = ([n], EF) as an in-
duced subgraph is captured by the constraint (({1, 2}, .., {1, n}, ..., {n−1, n}), φ)
such that φ(a1,2, ..., an−1,n) = 1 if and only if F is not represented by (ai,j)i,j).
In proving the other direction (i.e., from the invariance condition to subgraph-
freeness), observe that the “base” constraints may be viewed as a predicate on
an unlabeled induced subgraph; that is, the constraint (({i1, j1}, .., {ic, jc}), φ)
can be viewed as forbidding all induced subgraphs that are consistent with some
(aik,jk)k∈[c] such that φ(ai1,j1 , ..., aic,jc) = 0.

Another important observation is that if P satisfies the invariance condition
then it does so with the canonical pair. This observation is proven as follows.
Let P be characterized by CONS(C,M), where M is not necessarily the canoni-
cal set. Then, we view CONS(C,M) (or rather the uniform distribution over it)
as a ((possibly “weak”) non-adaptive) tester with one-sided error; that is, this
tester always accepts any graph in P and its error probability (on no-instances)
is strictly less than 1 (i.e., it accepts graphs that are not in P with probabil-
ity is at most 1 − |CONS(C,M)|−1). Applying [10, Thm. 2], we obtain a tester
with similar one-sided error that only inspects the graph induced by a random
constant-size vertex-set. (Indeed, the transformation in [10, Thm. 2] preserves
the detection probability no matter how small it is.) The latter tester gives rise
to a characterization of P that can be generated by the decision predicate of
this tester coupled with the the group of vertex-relabeling; that is, P satisfies
the invariance condition with the canonical set.

The current theorem now follows by combining the two foregoing observa-
tions with [9, Thm. 4.7]. Specifically, by [9, Thm. 4.7], P has a proximity oblivious
tester, if and only if it is a subgraph freeness property, By the first observation,
P is a subgraph freeness property if and only if P satisfies the invariance condi-
tion with the canonical set, whereas (by the second observation) P satisfies the
invariance condition if and only if P satisfies the invariance condition with the
canonical set.

4 The Invariance Conjecture in the Bounded-Degree

Graph Model

The next natural challenge is proving a result analogous to Theorem 3.1 for
the bounded-degree graph model (introduced in [8]). Unfortunately, only a par-
tial result is established here, because of a difficulty that arises in [9, Sec. 5]
(regarding “non-propagation”), to be discussed below.

But first, we have to address a more basic difficulty that refers to fitting the
bounded-degree graph model within our framework (i.e., Section 2.3). Recall
that the standard presentation of the bounded-degree model represents a N -
vertex graph of maximum degree d by a function g : [N] × [d] → {0, 1, ..., N}
such that g(v, i) = u ∈ [N] if u is the ith neighbor of v and g(v, i) = 0 if v has
less than i neighbors. This creates technical difficulties, which can be resolved

183

in various ways.6 The solution adopted here is to modify the representation of
the bounded-degree graph model such that N -vertex graphs are represented by
functions from [N] to subsets of [N]. Specifically, such a graph is represented
by a function g : [N] → 2[N] such that g(v) is the set of neighbors of vertex
v. Furthermore, we are only interested in functions g that described undirected
graphs, which means that g : [N] → 2[N] should satisfy u ∈ g(v) iff v ∈ g(u) (for
every u, v ∈ [N]).

Theorem 4.1 Suppose that P is a set of functions from [N] to {S ⊂ [N] : |S|≤
d} that corresponds to undirected graph properties; in particular, P is closed
under the following canonical set M0 defined by (π, µ) ∈ M0 if and only if π is
a permutation over [N] and µ acts analogously on sets (i.e., µ(S) = {π(v) : v ∈
S}).7 Then:

1. If P has a proximity oblivious tester, then it satisfies the invariance condition.
2. If P satisfies the invariance condition, then it satisfies it with respect to the

canonical set, and it follows that P is a generalized subgraph freeness property
(as defined in [9, Def. 5.1]).

Recall that by [9, Sec. 5], if P is a generalized subgraph freeness property that
is non-propagating, then P has a proximity oblivious tester. But it is unknown
whether each generalized subgraph freeness property is non-propagating. (We
note that this difficulty holds even with respect to properties that satisfies the
invariance condition with respect to the canonical set.)8

Proof: As in the dense graph model (i.e., Theorem 3.1), the key observation is
that a property in this model satisfies the invariance condition with respect to
the canonical set if and only if it is a generalized subgraph-freeness property (as
defined in [9, Def. 5.1]). Thus, Part (1) follows immediately from [9, Thm. 5.5],
and the point is proving Part (2).9

6 The problem is that here it is important to follow the standard convention of allowing
the neighbors of each vertex to appear in arbitrary order (as this will happen under
relabeling of vertex names), but this must allow us to permute over [d] without
distinguishing vertices from the 0-symbol. One possibility is to give up the standard
convention by which the vertices appear first and 0-symbols appear at the end of
the list. We choose a different alternative.

7 Recall that we also assume that for every g ∈ P it holds that u ∈ g(v) iff v ∈ g(u)
(for every u, v ∈ [N]). We note that this extra property is easy to test.

8 In fact, the negative example in [9, Prop. 5.4] can arise in our context. Specifi-
cally, consider the set of constraints generated by the constraint ((1, 2), φ) such that
φ(S1, S2) = 1 iff both (1) |{i ∈ {1, 2} : Si = ∅}| 6= 1 and (2) |S1| ∈ {0} ∪ {2i − 1 :
i ∈ N}. (Indeed, condition (1) mandates that if the graph contains an isolated ver-
tex then it contains no edges, whereas condition (2) mandates that all non-isolated
vertices have odd degree.)

9 The point (i.e., Part (2)) is showing that if P satisfies the invariance condition, then it
satisfies it with respect to the canonical set. We mention that the transformation from
the possibly adaptive character of a proximity oblivious tester to the non-adaptive
character of the invariance condition (equivalently, generalized subgraph-freeness) is
performed in [9, Thm. 5.5].

184

Suppose that P is characterized by CONS(C,M). Viewing the uniform distri-
bution over CONS(C,M) as a (very weak) one-sided error non-adaptive tester,
we apply a “canonicalization” procedure that is analogous to [10, Thm. 2], and
obtain a (very weak) tester that inspects the neighborhoods of c randomly dis-
tributed vertices. This yields a characterization of P by CONS({((1, ..., c), φ)},M0),
where φ is this tester’s decision predicate. So we are done.

5 The Invariance Conjecture Fails in Some Cases

We show that, in general, the invariance condition is neither necessary nor suf-
ficient for the existence of proximity oblivious testers (POTs).

5.1 The Invariance Condition is not necessary for POT

We present two examples (i.e., properties) that demonstrate that satisfying the
invariance condition is not necessary for having a proximity oblivious tester.
Both examples are based on sparse linear codes that have (proximity oblivious)
codeword tests (i.e., these codes are locally testable). In both cases, the key
observation is that satisfying the invariance condition with respect to M (as in
Definition 2.4) requires that M is “rich enough” since the domain permutations
should map a fixed number of elements to all the domain elements. On the other
hand, Proposition 2.7 requires that the property be closed under M , whereas
this is shown to be impossible in both examples. In the first example, presented
next, the property will be shown to be closed only under the trivial pair (id, id).

Theorem 5.1 There exists a property, denoted P, of Boolean functions such
that P has a proximity oblivious tester but does not satisfies the invariance con-
dition. Furthermore, P is a linear property; that is, if f1, f2 ∈ P then f1+f2 ∈ P,
where (f1 + f2)(x) = f1(x) ⊕ f2(x) for every x.

Proof: We consider a random linear property of dimension ℓ = O(log n). That
is, for uniformly selected functions g1, ..., gℓ : [n] → {0, 1}, we consider the
property Pn = {

∑

i∈I gi : I ⊆ [ℓ]}. Actually, we repeat this selection for every
value of n, obtaining the property P = (Pn)n∈N. It was shown in [12] that, with
high probability over these random choices, the property P has a POT. We shall
show that, with high probability over these random choices, the property P does
not satisfy the invariance condition.

The key observation is that satisfying the invariance condition with respect
to M (as in Definition 2.4) requires that M is non-trivial (i.e., contains a non-
trivial pair), because otherwise Pn is characterized by a fixed (i.e., independent
of n) number of constraints (which is highly improbable for random gi’s). On
the other hand, Proposition 2.7 requires that Pn be closed under M , which is
highly improbable when M is non-trivial. Specifically, we will show that with
high probability (over the choice of Pn), for every non-trivial (π, µ), there exists
f ∈ Pn such that µ ◦ f ◦ π−1 6∈ P. We distinguish two cases: (1) the case that

185

π is not the identity permutation but µ is the identity permutation, and (2) the
case that µ is not the identity permutation (which implies that µ(b) = 1 − b for
every b ∈ {0, 1}).

Claim 5.1.1 Let π be a permutation such that m
def
= |{i∈ [n] : π(i) 6= i}| > 0.

Then, for a random Pn, the probability that {f ◦ π : f ∈ Pn} = Pn is less than
2−mℓ/4.

Note that the number of permutations that satisfy the hypothesis is smaller than
(

n
m

)

· (m!) < 2m log
2
n. Thus, the aggregated probability for the aforementioned

Case (1) is a small constant (i.e.,
∑

m>0 2−m·((ℓ/4)−log
2
n) is smaller than, say,

0.01).

Proof: As a warm-up we upper bound the probability that g ◦ π = g, where
g : [n] → {0, 1} is uniformly distributed. For g◦π = g to hold, g must be constant
on each cycle of π. Denoting the number of cycles by c ≤ m/2, it follows that
Prg[g ◦ π = g] = 2−m+c ≤ 2−m/2. The argument extends to the case that we
wish g ◦ π = g + f to hold for an arbitrary fixed f and a random g. Specifically,
consider a cycle of π, denoted i1, ..., it. Then, Prg[(∀j∈ [t− 1]) g(ij+1) = g(ij) +
f(ij)] = 2−(t−1). It is even easier to prove that Prg[g ◦ π = f] ≤ 2−m/2, since
actually Prg[g ◦π = f] = 2−n. We now turn to upper-bound the probability that
{f ◦ π : f ∈ Pn} = Pn, by upper-bounding

Prg1,...,gℓ
[(∀i∈ [ℓ]) gi ◦ π ∈ Pn] = Prg1,...,gℓ

∀i∈ [ℓ] ∃Ii ⊆ [ℓ] s.t. gi ◦ π =
∑

j∈Ii

gj

≤
∑

I1,...,Iℓ⊆[ℓ]

Prg1,...,gℓ

∀i∈ [ℓ] gi ◦ π =
∑

j∈Ii

gj

 (2)

We break the sum in Eq. (2) into two parts, separating the single term that
corresponds to (I1, ..., Iℓ) = ({1}, ..., {ℓ}) from all other terms. The contribution
of the first term to Eq. (2) is upper-bounded by (2−m/2)ℓ, because Prg1,...,gℓ

[∀i∈

[ℓ] gi ◦ π = gi] equals
∏ℓ
i=1 Prgi

[gi ◦ π = gi]. For each other term corresponding
to (I1, ..., Iℓ) 6= ({1}, ..., {ℓ}), we pick an arbitrary i such that Ii 6= {i}, and note
that Prg1,...,gℓ

[gi◦π =
∑

j∈Ii
gj] equals 2−n, since gi is uniformly distributed even

when fixing the value of
∑

j∈Ii
gj . Furthermore, this assertion holds even if we

only select gi and fi =
∑

j∈Ii
gj at random (where in case Ii = ∅ we mean setting

fi ≡ 0). We now consider an iterative process starting with i1 = i, such that at
the first step we select uniformly gi1 and fi1 =

∑

j∈Ii1

gj . Recall that we have

Prgi1
,fi1

[gi1 ◦ π = fi1] = 2−n. For k = 2, ..., ℓ/2, at the kth step we set ik such
that gik is independent of gi1 , ..., gik−1

and fi1 , ..., fik−1
(where fi =

∑

j∈Ii
gj),

and uniformly select gik and fik (unless fik was already determined in which
case it is left unchanged). Note that such a ik exists as long as k ≤ ℓ/2, but Iik
need not be different than {ik}. Then, the probability that gik ◦ π =

∑

j∈Ii
k

gj ,

conditioned on the values of gi1 , ..., gik−1
and fi1 , ..., fik−1

, is at most 2−m/2,

186

where the probability is taken merely over the choice of gik (and possibly fik).
Thus, the contribution of this generic term to Eq. (2) is upper-bounded by
2−n · (2−m/2)(ℓ/2)−1. Using the union bound, we upper-bound the contribution
of all these (2ℓ)ℓ − 1 terms by

2ℓ
2

· 2−(n−(m/2)) · (2−m/2)ℓ/2, (3)

which is upper-bounded by 2−(mℓ/4)−1 (because 2ℓ
2

· 2−(n−(m/2)) < 1/2). The
claim follows (because 2−mℓ/2 < 2−(mℓ/4)−1). ⊓⊔

Claim 5.1.2 Let µ(b) = 1−b. Then, for a random Pn, the probability that there
exists a permutation π such that {µ ◦ f ◦ π−1 : f ∈ Pn} = Pn is negligible as a
function of n (i.e., is vanishes faster than any polynomial fraction (in n)).

Proof: It suffices to show that, while the all-zero function is in Pn, with very
high probability the constant-one function is not in Pn. This is the case because,
with overwhelmingly high probability, for every non-empty I ⊆ [ℓ] it holds that
|{j ∈ [n] :

∑

i∈I gi(j) = 1}| is in (1 ± o(1)) · n/2. ⊓⊔

Combining Claims 5.1.1 and 5.1.2, we conclude that with high constant proba-
bility P is not closed under any non-trivial pair. Recalling the initial discussion,
the theorem follows.

Testing the Long-Code (a.k.a dictatorship tests). We refer to the property P =
(Pn), where for n = 2ℓ, it holds that f : {0, 1}ℓ → {0, 1} is in Pn if and
only if there exists i ∈ [ℓ] such that f(σ1 · · ·σℓ) = σi. Such a function f is a
dictatorship (determined by bit i) and can be viewed as the ith codeword in the
long-code (i.e., the long-code encoding of i). Note that this property is closed
under the pair (π, id), where π is a permutation π over {0, 1}ℓ, if and only if
there exists a permutation φ over [ℓ] such that π(σ1 · · ·σℓ) = σφ(1) · · ·σφ(ℓ). (An
analogous consideration applies to pairs (π, flip), where flip(σ) = 1 − σ for
every σ ∈ {0, 1}.) We shall show that these are the only pairs under which the
dictatorship property is closed, and it will follow that the dictatorship property
violates the invariance condition.

Theorem 5.2 The dictatorship property violates the invariance condition, al-
though it has a proximity oblivious tester.

Proof: The fact that the dictatorship property has a proximity oblivious tester
is established in [3, 14].10 We shall show that this property violates the invariance
condition because it is not closed under pairs (π, µ) unless π either preserves the
(Hamming) weight of the strings or preserves this weight under flipping.

Indeed, the notion of (Hamming) weight is pivotal to this proof, where the
weight of a string α ∈ {0, 1}ℓ, denoted wt(α), is defined as the number of bit

positions that contain a one (i.e., wt(σ1 · · ·σℓ)
def
= |{i ∈ [ℓ] : σi = 1}|). We first

10 The longcode test of [3] only refers to the case that ℓ is a power of 2.

187

claim that if Pn is closed under (π, µ) then wt(π(α)) equals either wt(α) or
ℓ− wt(α) for every α ∈ {0, 1}ℓ. (These two cases correspond to whether µ = id

or µ = flip (i.e., µ(σ) = 1 − σ).)
Suppose that π maps some ℓ-bit string α to a string β that has a different

weight (i.e., wt(β) 6= wt(α)). Then, |{f ∈ Pn : f(α) = 1}| = wt(α), because
for every f ∈ Pn there exists a different i ∈ [ℓ] such that f(σ1 · · ·σℓ) = σi.
Similarly, |{f ◦ π : f ∈ Pn ∧ (f ◦ π)(α) = 1}| = wt(β), since (f ◦ π)(α) = f(β).
Using wt(α) 6= wt(β), we infer that Pn 6= {f ◦ π : f ∈ Pn}, since each set
contains a different number of functions that evaluated to 1 at the point α. This
handles the case of µ = id, and the case of µ = flip is handled similarly (i.e.,
if π maps some ℓ-bit string α to a string β such that wt(β) 6= ℓ − wt(α), then
Pn 6= {µ ◦ f ◦ π : f ∈ Pn}).

Having established the above, we note that if P had satisfied the invariance
condition then the corresponding M would have mapped a fixed number of
elements to all domain elements. But this fixed number of domain elements (i.e.,
ℓ-bit long strings) have a fixed number of weights, whereas (by Proposition 2.7
and the above) the set M may only contain pairs (π, µ) such that π preserves
(or “complements”) the weight of strings. This contradicts the requirement that
all ℓ+ 1 different weights must be covered by the generated constraints, and the
theorem follows.

5.2 The Invariance Condition is not sufficient for POT

We next demonstrate that the invariance condition does not suffice for obtaining
a proximity oblivious tester. Actually, this example also shows that the invari-
ance condition does not suffice for the standard definition of testing (with query
complexity that only depends on the proximity parameter).

Theorem 5.3 There exists a property, denoted P, of Boolean functions such
that P satisfies the invariance condition but has no proximity oblivious tester.
Furthermore, the invariant condition holds with respect to a single linear con-
straint that refer to four domain elements, and a group of domain permutations
that is 1-transitive. Moreover, P cannot be tested (in the standard sense) within
query complexity that only depends on the proximity parameter.

Proof: We use a lower bound of [6] that refers to the query complexity of test-
ing Eulerian orientations of fixed (and highly regular) bounded-degree graphs.
Specifically, [6, Thm. 9.14] proves an Ω(log ℓ) query lower bound on the com-
plexity of testing whether the orientation of an ℓ-by-ℓ cyclic grid is Eulerian. It
follows that this property has no POT, while we shall see that it satisfies the
invariance condition.

We represent the orientation of the ℓ-by-ℓ cyclic grid by two functions h, v :
Zℓ×Zℓ → {0, 1} such that h(i, j) represents the orientation of the horizontal edge
between the vertices (i, j) and (i, j+1), whereas v(i, j) represents the orientation
of the vertical edge between the vertices (i, j) and (i+1, j), and the arithmetics
is of Zℓ (i.e., modulo ℓ). Specifically, h(i, j) = 1 (resp., v(i, j) = 1) indicates an

188

orientation from (i, j) to (i, j + 1) (resp., (i + 1, j)). (Needless to say, we can
pack both functions in a single function; for example, f(1, i, j) = h(i, j) and
f(0, i, j) = v(i, j).)

The key observation is that the Eulerian orientation property can be charac-
terized by 4-constraints that are generated from a single constraint. Specifically,
this property is characterized by the set of 4-constraints {h(i, j) + v(i, j) =
h(i, j − 1) + v(i − 1, j) : i, j ∈ Zℓ}, where the constraint h(i, j) + v(i, j) =
h(i, j − 1) + v(i − 1, j) mandates that exactly two of the four edges of vertex
(i, j) are oriented outwards. Finally, note that this set of constraints is gener-
ated by the single constraint h(1, 1) + v(1, 1) = h(1, 0) + v(0, 1) and the set of
mappings {(πr,s, id)}, where πr,s(i, j) = (i+ r, j + s). The main claim follows.

The only part of the furthermore claim that requires elaboration is the claim
that the group of domain permutations is 1-transitive. To show this we explicitly
consider the packing of the aforementioned two functions in a single function
f : {0, 1} × Zℓ × Zℓ → {0, 1} such that f(1, i, j) = h(i, j) and f(0, i, j) = v(i, j).
We redefine the domain permutations πr,s such that πr,s(σ, i, j) = (σ, i+r, j+s)
and introduce an auxiliary permutation π′ such that π′(σ, i, j) = (1 − σ, j, i).
Observe that a generic constraint (now written as f(1, i, j)+f(0, i, j) = f(1, i, j−
1)+f(0, i−1, j)) is preserved under the auxiliary permutation π′. The full claim
now follows.

6 Conclusions

While the invariance conjecture holds in two natural models of testing graph
properties, it was shown to fail in other settings. These failures, described in
Section 5, are of three different types.

1. As shown in Theorem 5.1, proximity oblivious testers exist also for properties
that are only closed under the identity mapping. That is, a strong notion of
testability is achievable also in the absence of any invariants.

2. As shown in Theorem 5.2, the existence of proximity oblivious testers for
properties that do not satisfy the invariance condition is not confined to
unnatural properties and/or to properties that lack any invariance.

3. As shown in Theorem 5.3, the invariance condition does not imply the ex-
istence of a standard tester of query complexity that only depends on the
proximity parameter. (Note that the non-existence of such testers implies the
non-existence of proximity oblivious testers.) Furthermore, this holds even
if the invariance condition holds with respect to a group of domain permu-
tations that is 1-transitive and the set of local conditions is generated by a
single (linear) condition (closed under this permutation group).

Our feeling is that the fact that the invariance condition is not necessary for
proximity oblivious testing is less surprising than the fact that the former is
insufficient for the latter. Giving up on the necessity part, we wonder whether
a reasonable strengthening of the invariance condition may suffice for proximity
oblivious testing.

189

A natural direction to consider is imposing additional restrictions on the
group of domain permutations. As indicated by Theorem 5.3, requiring this
group to be 1-transitive does not suffice, and so one is tempted to require this
group to be 2-transitive11 (as indeed suggested in [11] w.r.t standard testing).12

Recalling that if P is closed under a 2-transitive group (over the domain) then
P is self-correctable (and thus consists of functions that are pairwise far apart),
one may also wonder about only requiring 1-transitivity but restricting attention
to properties that consists of functions that are pairwise far apart. We mention
that the property used in the proof of Theorem 5.3 contains functions that are
close to one another.

Actually, restricting attention to properties that are closed under a 1-transitive
group of domain permutations, we may return to the question of necessity and
ask whether the existence of proximity oblivious testers in this case implies the
invariance condition. Note that our proof of Theorems 5.1 and 5.2 relies on the
fact that the corresponding group is not 1-transitive (e.g., in the first case the
group action is trivial and in the second case it has a non-constant number of
orbits).

An alternative perspective. We mention that Sudan’s perspective on the role of
invariance (cf. [18, 19]) is different from the one studied in this work. In par-
ticular, Sudan suggests to view the role invariance as a theme (or a technique,
akin to others surveyed in [16, 19]), which is indeed surveyed in [19, Sec. 5].
From this perspective, Sudan [19, Sec. 6] views our work as pointing out inher-
ent limitations on the applicability of the “theme of invariances”, and concludes
that “despite the limitations, invariances have signifficant unifying power (even
if they do not explain everything).”

Acknowledgments

We are grateful to Dana Ron for useful discussions.

References

1. N. Alon, E. Fischer, I. Newman, and A. Shapira. A Combinatorial Character-
ization of the Testable Graph Properties: It’s All About Regularity. In 38th

STOC, pages 251–260, 2006.
2. N. Alon and A. Shapira. A Characterization of Easily Testable Induced Sub-

graphs. Combinatorics Probability and Computing, 15:791–805, 2006.

11 A permutation group G over D is called 2-transitive if for every (e1, e2), (e
′

1, e
′

2) ∈
`

D

2

´

there exists a π ∈ G such that π(e1) = e′1 and π(e2) = e′2.
12 Recall that here we refer to a set of local conditions that is generated by a constant

number of local condition (closed under a 2-transitive permutation group). In con-
trast, Ben-Sasson et al. [4] have recently shown that a set of local conditions that is
generated by a non-constant number of local condition (closed under a 2-transitive
permutation group) can yield a non-testable property.

190

3. M. Bellare, O. Goldreich, and M. Sudan. Free bits, PCPs and non-
approximability – towards tight results. SIAM Journal on Computing,
27(3):804–915, 1998.

4. E. Ben-Sasson, G. Maatouk, A. Shpilka, and M. Sudan. Symmetric LDPC
codes are not necessarily locally testable. ECCC, TR10-199, 2010.

5. M. Blum, M. Luby and R. Rubinfeld. Self-Testing/Correcting with Applica-
tions to Numerical Problems. JCSS, Vol. 47, No. 3, pages 549–595, 1993.

6. E. Fischer, O. Lachish, A. Matsliah, I. Newman, and O. Yahalom. On the
query complexity of testing orientations for being Eulerian. Full version avail-
able from URL http://www.cs.technion.ac.il/∼oyahalom. To appear in
ACM Trans. on Algorithms. Extended abstract in the proceedings of 12th

RANDOM, LNCS 5171, pages 402–415, 2008.
7. O. Goldreich, S. Goldwasser, and D. Ron. Property testing and its connection

to learning and approximation. Journal of the ACM, pages 653–750, July
1998.

8. O. Goldreich and D. Ron. Property Testing in Bounded Degree Graphs. Al-

gorithmica, Vol. 32 (2), pages 302–343, 2002.
9. O. Goldreich and D. Ron. On Proximity Oblivious Testing. ECCC, TR08-041,

2008. Also in the proceedings of the 41st STOC, 2009.
10. O. Goldreich and L. Trevisan. Three theorems regarding testing graph prop-

erties. Random Structures and Algorithms, Vol. 23 (1), pages 23–57, August
2003.

11. E. Grigorescu, T. Kaufman, and M. Sudan. 2-Transitivity is Insufficient for
Local Testability. In 23rd CCC, pages 259–267, 2008.

12. T. Kaufman and M. Sudan. Sparse Random Linear Codes are Locally Testable
and Decodable. In the proceedings of the 48th FOCS, pages 590–600, 2007.

13. T. Kaufman and M. Sudan. Algebraic Property Testing: The Role of Invari-
ances. In 40th STOC, pages 403–412, 2008.

14. M. Parnas, D. Ron, and A. Samorodnitsky. Testing basic boolean formulae.
SIAM Journal on Discrete Math, 16(1):20–46, 2002.

15. D. Ron. Property Testing: A Learning Theory Perspective. Foundations and

Trends in Machine Learning, Vol. 1 (3), pages 307–402, 2008.
16. D. Ron. Algorithmic and Analysis Techniques in Property Testing. Founda-

tions and Trends in TCS, to appear.
17. R. Rubinfeld and M. Sudan. Robust characterization of polynomials with

applications to program testing. SIAM Journal on Computing, 25(2), pages
252–271, 1996.

18. M. Sudan. Invariance in Property Testing. ECCC, TR10-051, 2010.
19. M. Sudan. Testing Linear Properties: Some General Themes. ECCC, TR11-

005, 2011.

Appendix: Property Testing and Proximity Oblivious

Testers

We first recall the standard definition of property testing.

Definition A.1 (property tester): Let P =
⋃

n∈N
Pn, where Pn contains func-

tions defined over the domain Dn. A tester for a property P is a probabilistic
oracle machine T that satisfies the following two conditions:

191

1. The tester accepts each f ∈ P with probability at least 2/3; that is, for every
n ∈ N and f ∈ Pn (and every ǫ > 0), it holds that Pr[T f(n, ǫ)=1] ≥ 2/3.

2. Given ǫ > 0 and oracle access to any f that is ǫ-far from P, the tester
rejects with probability at least 2/3; that is, for every ǫ > 0 and n ∈ N, if
f : Dn → Rn is ǫ-far from Pn, then Pr[T f(n, ǫ)=0] ≥ 2/3, where g is ǫ-far
from Pn if, for every g ∈ Pn, it holds that |{e ∈ Dn : f(e) 6= g(e)}| > ǫ · n.

If the tester accepts every function in P with probability 1, then we say that it has
one-sided error; that is, T has one-sided error if for every f ∈ P and every ǫ > 0,
it holds that Pr[T f(n, ǫ)=1] = 1. A tester is called non-adaptive if it determines
all its queries based solely on its internal coin tosses (and the parameters n and
ǫ); otherwise it is called adaptive.

The query complexity of a tester is measured in terms of the size parameter,
n, and the proximity parameter, ǫ. In this paper we focus on the case that the
complexity only depends on ǫ (and is independent of n).

Turning to the definition of proximity-oblivious testers, we stress that they
differ from standard testers in that they do not get a proximity parameter as
input. Consequently, assuming these testers have sublinear complexity, they can
only be expected to reject functions not in P with probability that is related
to the distance of these functions from P. This is captured by the following
definition.

Definition A.2 (proximity-oblivious tester): Let P =
⋃

n∈N
Pn be as in Defi-

nition A.1. A proximity-oblivious tester for P is a probabilistic oracle machine T
that satisfies the following two conditions:

1. The machine T accepts each function in P with probability 1; that is, for
every n ∈ N and f ∈ Pn, it holds that Pr[T f (n)=1] = 1.

2. For some (monotone) function ρ : (0, 1] → (0, 1], each function f 6∈ P is re-

jected by T with probability at least ρ(δP(f)), where δP(f)
def
= ming∈P{δ(f, g)}

and δ(f, g)
def
= Prx∈Ω[f(x) 6= g(x)].

The function ρ is called the detection probability of the tester T .

In general, the query complexity of a proximity-oblivious tester may depend on
the size parameter, n, but in this paper we focus on the case that this complexity
is constant.

