
Three XOR-Lemmas — An Exposition

Oded Goldreich

Abstract. We provide an exposition of three lemmas that relate general
properties of distributions over bit strings to the exclusive-or (xor) of
values of certain bit locations.

The first XOR-Lemma, commonly attributed to Umesh Vazirani (1986),
relates the statistical distance of a distribution from the uniform distri-
bution over bit strings to the maximum bias of the xor of certain bit
positions. The second XOR-Lemma, due to Umesh and Vijay Vazirani
(19th STOC, 1987), is a computational analogue of the first. It relates the
pseudorandomness of a distribution to the difficulty of predicting the xor
of bits in particular or random positions. The third Lemma, due to Gol-
dreich and Levin (21st STOC, 1989), relates the difficulty of retrieving
a string and the unpredictability of the xor of random bit positions. The
most notable XOR Lemma – that is the so-called Yao XOR Lemma – is
not discussed here.

We focus on the proofs of the aforementioned three lemma. Our exposi-
tion deviates from the original proofs, yielding proofs that are believed
to be simpler, of wider applicability, and establishing somewhat stronger
quantitative results. Credits for these improved proofs are due to several
researchers.

Keywords: Vector spaces, Kroniker and Fourier bases, pseudorandom-
ness, space-bounded computation, one-way functions, hard-core predi-
cates and functions.

An earlier version of this survey, which was first drafted in July 1991, appeared
as TR95-056 of ECCC. Section 1.6 was added in the current revision. Other than
that, the current revision is quite minimal.

Preface

Unfortunately, the TCS community does not excell in its choice of names of
various notions and phenomena. Consequently, we often find the same name
used for several different issues. The name “XOR Lemma” is indeed a good
example; at least four different technical statements are often referred to as
XOR Lemmas. Indeed, the XOR operation features in each of these lemmas, but
the actual context and contents of these lemmas vary.

The current article surveys three XOR lemmas, focusing on their proofs.
As stated in the abstract, Yao’s XOR-Lemma is not one of the XOR Lemmas
surveyed here; the interested reader is referred to [11].

2

1 The Information Theoretic XOR-Lemma

The Information Theoretic XOR-Lemma, commonly attributed to Umesh Vazi-
rani, relates two measures of the “randomness” of distributions over n-bit long
strings.

– The statistical difference from uniform; namely, the statistical difference
(variation difference) between the “target” distribution and the uniform dis-
tribution over the set of all n-bit strings.

– The maximum bias of the xor of certain bit positions; namely, the bias of
a 0-1 random variable obtained by taking the exclusive-or of certain bits in
the “target” distribution.

It is well known that the statistical difference from uniform is bounded above by
2n times the maximum bias of the xor’s. Several researchers have noticed that
the factor in the bound can be improved to

√
2n. We provide a four line proof

of this fact. We also explain the reason for the popularity of the worse bound.
As motivation to the XOR-Lemma, we point out that it has been used in

numerous works (e.g., Vazirani [20], Naor and Naor [16]). In a typical application,
one first derives an upper bound on the maxbias of the constructed distribution,
and then the XOR-Lemma is applied to infer an upper bound on the statistical
difference from the uniform distribution.

Credit: The proof presented here has appeared as an appendix in [2].

1.1 Formal Setting

Let π be a an arbitrary probability distribution over {0, 1}n and let µ denote
the uniform distribution over {0, 1}n (i.e., µ(x) = 2−n for every x ∈ {0, 1}n).

Let x = x1 · · ·xn and N
def
= 2n. The XOR-Lemma relates two “measures of

closeness” of π and µ.

– The statistical difference (“variation difference”) between π and µ; namely,

stat(π)
def
=

1

2
·
∑

x

|π(x) − µ(x)| (1)

– The “maximum bias” of the exclusive-or of certain bit positions in strings
chosen according to the distribution π; namely,

maxbias(π)
def
= max

S 6=∅
{|π({x :

⊕

i∈S
xi = 0})− π({x :

⊕

i∈S
xi = 1})|} (2)

The XOR-Lemma, commonly attributed to Umesh Vazirani [20]1, states that
stat(π) ≤ N · maxbias(π). The proof is based on viewing distributions as ele-
ments in an N -dimensional vector space and observing that the two measures

1 The special case where the maxbias is zero appears in Chor et. al. [5]

3

considered by the lemma are merely two norms taken with respect to two dif-
ferent orthogonal bases (see Section 1.2). Hence, the XOR-Lemma follows from
a (more general and quite straightforward) technical lemma that relates norms
taken with respect to different orthonormal bases (see Section 1.3). It turns out
this argument actually yields stat(π) ≤

√
N · maxbias(π), and it seems that

the previously inferior bound of [20] was due to a less careful use of the same
underlying ideas.

1.2 Preliminaries: the XOR-Lemma and vector spaces

Probability distributions over {0, 1}n are functions from {0, 1}n to the reals. Such
functions form a N -dimensional vector space. We shall consider two alternative
bases of this vector space.

The standard basis, denoted K, is the orthonormal basis defined by the
Kroniker functions; that is, the Boolean functions {kα : α ∈ {0, 1}n}, where
kα(x) = 1 if x = α. The statistical difference between two distributions equals
(half) the norm L1 of their difference taken in the above K basis.

On the other hand, the maxbias of a distribution equals the maximum Fourier

coefficient of the distribution, which in turn corresponds to the max-norm (norm
L∞) of the distribution taken in a different basis. This basis is defined by the
functions {bS : S ⊆ {1, 2, ..., n}}, where bS(x) = (−1)Σi∈Sxi . Note that bS(x) = 1
if the exclusive-or of the bits {xi : i ∈ S} is 0 and bS(x) = −1 otherwise. The
new basis is orthogonal but not orthonormal. We hence consider the normalized
basis, denoted F , consisting of the functions fS = 1√

N
· bS .

Notation: Let B be an orthonormal basis and r an integer. We denote by NB
r (v)

the norm Lr of v with respect to the basis B. Namely, NB
r (v) = (

∑

e∈B〈e, v〉r)(1/r),
where 〈e, v〉 is the absolute value of the inner product of the vectors e and
v. We denote by NB

∞(v) the limit of NB
r (v) when r → ∞ (i.e., NB

∞(v) is
maxe∈B{〈e, v〉}).

Clearly, stat(π) = 1
2 ·NK

1 (π − µ) whereas maxbias(π) =
√

N ·NF
∞(π − µ).

Following is a proof of the second equality. Let δ(x) = π(x) − µ(x). Clearly,
maxbias(µ) = 0 and hence maxbias(π) = maxbias(δ). Also

∑

x δ(x) = 0. We get

maxbias(δ) = max
S 6=∅
{|δ({x : bS(x)=1})− δ({x : bS(x)=−1})|}

= max
S 6=∅

{
∣

∣

∣

∣

∣

∑

x

bS(x) · δ(x)

∣

∣

∣

∣

∣

}

=
√

N ·max
S

{∣

∣

∣

∣

∣

∑

x

fS(x) · δ(x)

∣

∣

∣

∣

∣

}

=
√

N ·NF
∞(δ)

We now turn to the actual proof of the XOR Lemma.

4

1.3 Proof of the XOR-Lemma

The XOR-Lemma follows from the following technical lemma.

Technical Lemma: For every two orthogonal bases A and B and every vector
v, it holds that

NA
1 (v) ≤ N ·NB

∞(v). (3)

This technical lemma has a three line proof:

For every orthogonal basis A,

NA
1 (v) ≤

√
N ·NA

2 (v). (4)

For every pair of orthonormal bases A and B,

NA
2 (v) = NB

2 (v). (5)

For every orthogonal basis B,

NB
2 (v) ≤

√
N ·NB

∞(v) (6)

Indeed, the Technical Lemma (i.e., Eq. (3)) is obtained by combining Eq. (4)–(6).
Next, using this Technical Lemma, we get:

XOR-Lemma (revised): stat(π) ≤ 1
2 ·
√

N ·maxbias(π).

Proof: By the above

stat(π) =
1

2
·NK

1 (π − µ) ≤ 1

2
·N ·NF

∞(π − µ) =
1

2
·
√

N ·maxbias(π).

1.4 Discussion

The inferior bound, stat(π) ≤ N ·maxbias(π), has been derived by using one of
the following two bounds instead of our Technical Lemma:

1. NA
1 (v) ≤

√
NNB

1 (v) ≤
√

N ·NNB
∞(v).

The first inequality is proved similarly to the proof of our Technical Lemma
(i.e., using NB

2 (v) ≤ NB
1 (v) instead of Eq. (6)). The second inequality is

trivial. Each of the two inequalities is tight, but their combination is wasteful.
2. NA

1 (v) ≤ N ·NA
∞(v) ≤ N ·

√
NNB

∞(v).
The second inequality is proved similarly to the proof of our Technical
Lemma (i.e., using NA

∞(v) ≤NA
2 (v) instead of Eq. (4)). The first inequality

is trivial. Again, each of the inequalities is tight, but their combination is
wasteful.

5

1.5 Variants

Using small variations on the foregoing argument, we obtain the following vari-
ants of the XOR-Lemma:

1. maxx∈{0,1}n{|π(x)− µ(x)|} ≤ maxbias(π).

2. stat(π) ≤
√

∑

S 6=∅ biasS(π)2, where biasS(π) =
∑

x bS(x) · π(x).

Proof: The first claim follows by using NA
∞(v) ≤ NA

2 (v) (instead of NA
1 (v) ≤√

N ·NA
2 (v)), and obtaining NK

∞(π − µ) ≤
√

N ·NF
∞(π − µ). The second claim

follows by using NA
1 (v) ≤

√
N ·NB

2 (v) and NF
2 (π − µ) =

√

∑

S 6=∅ biasS(π)2. In

both parts we also use bias∅(π − µ) = 0.

1.6 Generalization to GF(p), for any prime p

The entire treatment can be generalized to distributions over GF(p)n, for any

prime p. In this case, we redefine N
def
= pn, and let stat(π) denote the statistical

difference between π and the uniform distribution over GF(p)n (cf. Eq. (1)).
Letting ω denote the pth root of unity, we generalize Eq. (2) to

maxbias(π)
def
= max

β∈GF(p)n\{0}n

∣

∣

∣

∣

∣

∣

∑

e∈GF(p)

ωe · π
({

x :
∑

i∈[n]βixi ≡ e (mod p)
})

∣

∣

∣

∣

∣

∣

.

The Fourier basis is generalized analogously: The new basic consists of the func-
tions {bβ : β ∈ GF(p)n}, where bβ(x) = ωΣi∈[n]βixi . The normalized basis,
denoted F , consists of the functions fβ = N−1/2 · bβ.

Note that, in the case of p = 2, these definitions coincides with the definitions
presented before. By following exactly the same manipulations as in the case of
p = 2, we obtain the following generalization.

The XOR-Lemma, generalized to GF(p): Let π be an arbitrary distribution
over GF(p)n, and let µ denote the uniform distribution over GF(p)n. Then

1. stat(π) ≤ 1
2 ·
√

N ·maxbias(π).
2. maxx∈{0,1}n{|π(x)− µ(x)|} ≤ maxbias(π).

3. stat(π) ≤ 1
2 ·

√

∑

S 6=∅ biasS(π)2, where biasS(π) =
∑

x bS(x) · π(x).

2 The Computational XOR-Lemma

We provide an exposition of the computational XOR-Lemma. By computational
XOR-Lemma we refer to the assertion that a distribution on “short” strings
is pseudorandom if and only if the xor of any of its bits is unpredictable. This
Lemma was first proved by Umesh and Vijay Vazirani. The proof we present here
is taken from the paper of Goldreich and Levin. We demonstrate the applicability
of the computational XOR-Lemma by using it to construct pseudorandom gen-
erators with linear expansion factor that are “secure” against small (yet linear)
bounded space machines.

6

2.1 Introduction

This section is concerned the relation between two types of computationally re-
stricted tests of randomness. To be more precise, we are concerned with the pseu-
dorandomness of a random variable Y given some partial information represented
by an related random variable X . For sake of simplicity we write X = f(R) and
Y = g(R) where f and g are fixed functions and R is a random variable uni-
formly distributed on strings of some length. Throughout this section, we assume
that f and g are polynomial-time computable.

Tests of the first type are algorithms that, on input a pair (x, y), output a
single bit. We consider the probability that the test outputs 1 given that x = f(r)
and y = g(r) where r is selected uniformly and compare it to the probability that
the test outputs 1 given that x = f(r) as before and y is selected (independently
and) uniformly among the strings of length |g(r)|. We call the absolute value of
the difference between these two probabilities the distinguishing gap of the test.

Tests of the second type are algorithms that, on input a string f(r), output a
single bit. The output is supposed to be the inner-product (mod 2) of the string
g(r) with some fixed string β (which is not all-zero). We consider the probability
that the algorithm outputs the correct value given that r is selected uniformly.
We call the absolute value of the difference between the success probability and
the failure probability, the advantage of the algorithm. Note that the inner-
product (mod 2) of g(r) and β equals the exclusive-or of the bits in g(r) that are
located in positions corresponding to the 1 bits of β. Hence, tests of the second
type try to predict the xor of bits in g(r) that are in specified bit locations.

Vazirani and Vazirani [22] proved that if the tests are restricted to run in
probabilistic polynomial-time and the length of g(r) is logarithmic in the length
of f(r), then the two types of tests are equivalent in the following sense: There
exists a test of the first type with a non-negligible distinguishing gap if and
only if there exists a test of the second type with a non-negligible advantage2.
A different proof has appeared in Goldreich and Levin [10]. The interesting
direction is, of course, the assertion that if there exists a test of the first type
with a non-negligible distinguishing gap, then there exists a test of the second
type with a non-negligible advantage3. This assertion is hereafter referred to as
the computational xor-lemma.

The purpose of this section is to present a clear proof of the computational
xor-lemma and to point out its applicability to other resource bounded machines.
Our presentation follows the proof presented in [10], where all obvious details
are omitted. Hence, the only advantage of our presentation is in its redundancy
(w.r.t [10]).

2 A function µ : N → R is non-negligible if there exists a polynomial p such that for
all sufficiently large n we have µ(n) > 1/p(n).

3 The opposite direction follows by noting that a test of a second type can be easily
converted into a test of the first type: Just run the predicting algorithm and compare
its outcome with the actual xor of the corresponding bits.

7

2.2 Proving the Computational XOR-Lemma

The proof proceeds via the counterpositive. That is, we show how to transform
any test that distinguishes pairs (f(r), g(r)) from pairs (f(r), y), where r and y
are independently and uniformly distributed (among strings of adequate length),
into a predictor of the xor of some bits of g(r) from f(r) such that the complexity
of the predictor and its advantage are related to the complexity and distinshiong
gap of the original tester. Actually, the construction yields a predictor that has
a related advantage w.r.t a random subset of bits positions (rather than w.r.t
some subset). The construction of the predictor and its analysis are captured by
the following Technical Lemma.

In the following technical lemma, we present a particular algorithm, denoted
G, that (given f(r)) tries to predict a specified xor of the bits of g(r). The
predictor G uses as subroutine a test, T , that (on input f(r) and y) distinguishes
a random y from y = g(r). In particular, on input x and a subset S, the predictor
selects y at random, runs the test T on inputs x and y, and output

⊕

i∈Syi if
T (x, y) = 1 and the complement bit otherwise. The following lemma, lower
bounds the advantage of the predictor G in terms of the distinguishing gap of
the test T .

Technical Lemma (the core of the Computational XOR-Lemma): Let
f and g be arbitrary functions each mapping strings of the same length to strings
of the same length. Let T be an algorithm (of the first type). Denote

p
def
= Pr[T (f(r), g(r)) = 1] (7)

and

q
def
= Pr[T (f(r), y) = 1], (8)

where the probability is taken over all possible choices of r ∈ {0, 1}m and y ∈
{0, 1}|g(r)| with uniform probability distribution. Let G be an algorithm that, on
input β and x, selects y uniformly in {0, 1}|β|, and outputs T (x, y)⊕1⊕(y, β)2,
where (y, β)2 is the inner product modulo 2 of y and β. Then,

Pr[G(β, f(r)) = (g(r), β)2] =
1

2
+

p− q

2|β| − 1 ,
(9)

where the probability is taken over all possible choices of r ∈ {0, 1}m and β ∈
{0, 1}|g(r)| \ {0}|g(r)| with uniform probability distribution.

A full proof of the Technical Lemma is presented in Section 2.3. Before turning
to that proof, we show that this lemma implies the Computational XOR-Lemma.
This demonstration is immediate by the following two comments.

1. Algorithm G has almost the same complexities as T , with the exception that
G must toss few more coins (to select β). Hence, G is randomized even in
case T is deterministic.

8

2. Clearly, there exists a non-zero string β for which Pr[G(β, f(r))=(g(r), β)2] ≥
1
2 + p−q

2|β|−1
, where the probability is taken over all possible choices of r ∈

{0, 1}m with uniform probability distribution. A string β with approximately
such a performance can be found by sampling a string β and evaluating the
performance of algorithm G with β as its first input. This requires ability to
compute the functions f and g on many randomly selected instances (and
collect the statistics). One should verify that this added complexity can be
afforded. On the other hand, one should note that finding an appropriate β
(i.e. on which G has almost the average advantage) may not be required (see
the first remark below).

The following Computational XOR-Lemma follows as an immediate corollary to
the Technical Lemma.

Computational XOR-Lemma: Let C be a class of randomized (or non-
uniform) algorithms, such that C is closed under sequential application of al-
gorithms and contains an algorithm for computing |g(r)| from f(r). Suppose
that every algorithm in the class C, given f(r), can predict the xor of a (given)
random subset of the bits of g(r) with (average) success probability at most 1

2 +ǫ.
Then, for every algorithm, T , in the class C it holds that

|Pr[T (f(r), g(r)) = 1]− Pr[T (f(r), y) = 1]| < 2|g(r)| · ǫ

where r is selected uniformly in {0, 1}m, the string y is selected uniformly and
independently in {0, 1}|g(r)|.

Remarks. As motivation to the Computational XOR-Lemma, we point out
that it has been used in numerous works (e.g., Vazirani and Vazirani [22], Gol-
dreich and Levin [10]). Another application of the Computational XOR-Lemma
is presented in Section 2.4. In a typical application, the pseudorandomness of
a short string is proved by showing that every xor of its bits is unpredictable
(and using the Computational XOR-Lemma to argue that this suffices). Since it
is typically the case that one can prove that the xor of a (given) random non-
empty subset of the bits is unpredictable, the Computational XOR-Lemma can
be used directly without finding an appropriate β (as suggested by a previous
remark).

In case there are no computational restrictions on the tests, a stronger state-
ment known as the XOR-Lemma can be proved: The statistical difference from
uniform does not exceed

√
2|g(r)| times the maximum bias of a non-empty subset

(see Sectioon 1).

2.3 Proof of the Technical Lemma

Our goal here is to evaluate the success probability of algorithm G. In the follow-
ing analysis we denote Prx[P (x, y)] the probability that P (x, y) holds when x is
distributed according to a distribution to be understood from the context, and y

9

is fixed. In the case that the predicate P depends on the test T , the probability
will be taken also over the internal coin tosses of T . Hence, the coin tosses of T
are implicit in the notation. In contrast, the additional coin tosses of G, namely
the string y, are explicit in the notation. Hence, we rewrite

p = Prr[T (f(r), g(r)) = 1]

q = Prr,y[T (f(r), y) = 1]

Recall that r is distributed uniformly on {0, 1}m, whereas y is distributed uni-

formly on {0, 1}|g(r)|. In the following analysis β is selected uniformly in B
def
=

{0, 1}|g(r)| − 0|g(r)|. Our aim is to evaluate Prr,β,y[G(β, f(r)) = (g(r), β)2].
We start by fixing any r ∈ {0, 1}m and evaluating Prβ,y[G(β, f(r)) = (g(r), β)2].

We define ≡β (resp., 6≡β) such that y≡βz hold iff (y, β)2 = (z, β)2 (resp., y 6≡βz

iff (y, β)2 6= (z, β)2). We let n
def
= |g(r)|.

By the definition of G (i.e., G(β, f(r) = T (x, y)⊕1⊕(y, β)2, where y ∈ {0, 1}|β|
is uniformly selected by G) and elementary manipulations, we get

sr
def
= Prβ,y[G(β, f(r)) = (g(r), β)2]

=
∑

β∈B

1

|B| · Pry[G(β, f(r)) = (g(r), β)2]

=
1

|B| ·
∑

β∈B

Pry[T (β, f(r)) = 1⊕(β, y)2⊕(g(r), β)2]

=
1

2|B| ·
∑

β∈B

Pry[T (f(r), y) = 1|y≡βg(r)]

+
1

2|B| ·
∑

β∈B

Pry[T (f(r), y) = 0|y 6≡βg(r)]

=
1

2
+

1

2|B| ·
∑

β∈B

Pry[T (f(r), y) = 1|y≡βg(r)]

− 1

2|B| ·
∑

β∈B

Pry[T (f(r), y) = 1|y 6≡βg(r)]

=
1

2
+

1

2|B| ·
1

2n−1
·
∑

β∈B

∑

y≡βg(r)

Pr[T (f(r), y) = 1]

− 1

2|B| ·
1

2n−1
·
∑

β∈B

∑

y 6≡βg(r)

Pr[T (f(r), y) = 1]

=
1

2
+

1

2n · |B| ·
∑

y

∑

β∈B s.t. y≡βg(r)

Pr[T (f(r), y) = 1]

− 1

2n · |B| ·
∑

y

∑

β∈B s.t. y 6≡βg(r)

Pr[T (f(r), y) = 1]

10

Recall that B = {0, 1}n − 0n. Now, if y 6= g(r) then the number of β ∈ B for
which y 6≡βg(r) is 2n−1 (and the number of β ∈ B for which y≡βg(r) is 2n−1−1).
On the other hand, if y = g(r), then all β ∈ B satisfy y≡βg(r). Hence, we get

sr −
1

2
=

1

2n|B| ·
∑

y 6=g(r)

(

(2n−1 − 1) · Pr[T (f(r), y)=1]− 2n−1 · Pr[T (f(r), y)=1]
)

+
1

2n|B| · |B| · Pr[T (f(r), g(r))=1]

= − 1

2n|B| ·
∑

y 6=g(r)

Pr[T (f(r), y)=1] +
1

2n|B| · |B| · Pr[T (f(r), g(r))=1]

= − 1

|B| ·
∑

y

1

2n
· Pr[T (f(r), y)=1]

+
1

2n|B| · (|B|+ 1) · Pr[T (f(r), g(r))=1]

= − 1

|B| · Pry[T (f(r), y)=1] +
1

|B| · Pr[T (f(r), g(r))=1]

Hence, for every r

Prβ,y[G(β, f(r))=(g(r), β)2] =
1

2
+

Pr[T (f(r), g(r))=1] − Pry[T (f(r), y)=1]

|B|

and so we have for uniformly chosen r

Prr,β,y[G(β, f(r))=(g(r), β)2] =
1

2
+

Prr[T (f(r), g(r))=1]− Prr,y[T (f(r), y)=1]

|B|

and the lemma follows.

2.4 Application to pseudorandom generators for bounded space

We apply the Computational XOR-Lemma to the construction of pseudoran-
dom generators with linear stretching that withstands tests of linearly bounded
space. Namely, on input a random string of length n, the generator outputs a
pseudorandom string of length cn withstanding tests of space en (where e > 0
is a constant depending on the constant c > 1). An alternative construction is
immediate from the techniques presented by Nisan in [17].4 A third alternative
construction was suggested by Noam Nisan (private communication) based on
the ideas in [3].

The tests (or predictors) that we consider are non-uniform bounded-space
machines with one-way access to the input (i.e., the string that they test). Hence,
these machines can be represented by finite automata. By an s(n)-space bounded

4 Use a constant number of hash functions.

11

machine we mean a finite automata with 2s(n) states that is given an input of
length n. For sake of simplicity, we sometimes discuss randomized automata.
Clearly, randomness can be eliminated by introducing “more” non-uniformity.

Following is an overview of our construction. We begin by presenting a gen-
erator that extends seeds of length n into strings of length cn withstanding tests
of space en, for a specific value of c > 1 (and e > 0). This generator is based on
three observations:

1. Given two vectors, their inner-product mod 2 is unpredictable by machines
of space significantly smaller than the length of these vectors.

2. With respect to such machines, the exclusive-or of bits resulting from the
inner-product mod 2 of one vector and non-cyclic shifts of a second vector is
also unpredictable. This holds because a machine predicting this exclusive-
or can be transformed into a machine predicting the inner product of two
vectors (cf. [10]).

3. Finally, using the computational XOR-Lemma, it follows that the bits re-
sulting from the various inner-products are indistinguishable from random
by space bounded machines.

The foregoing steps are detailed in Section 2.4.1. Next, in Section 2.4.2, we use
this generator to construct, for every k > 1, a generator extending seeds of length
n into strings of length ck · n withstanding tests of space (e/3)k · n.

2.4.1 A construction for a specific expansion constant. The constants
c1, ǫ1, c0, ǫ0 in the following construction and analysis will be determined in
course of the analysis. In particular, c0 = 1

4 , ǫ0 = 1
6 , c1 = 1 + c0

3 , and ǫ1 = ǫ0
3 ,

will do.

Construction 1: Using the notation pj(r1r2 · · · r2n)
def
= rjrj+1 · · · rj+n−1 and

b(x, s)
def
=

∑n
i=1 xisi mod 2, consider the function g :{0, 1}3n→{0, 1}c0n defined

by g(x, r) = b(x, p1(r)) · · · b(x, pc0n(r)). Finally, consider the generator

g1(x, r) = (x, r, g(x, r)). (10)

This generator expands seeds of length 3n into strings of length 3n+c0n = c1 ·3n.
Clearly, the function g can be computed by an n-space machine. The robustness
of the generator against ǫ0n-space machines follows from the following three
claims.

Claim 1.1: Let A be an automaton with q states, and x, y be uniformly and
independently selected in {0, 1}n. Then

Prx,y[A(x, y) = b(x, y)] ≤ 1

2
+

√

2q

2n
.

12

Proof (adapted from [3]): By Lindsey Lemma (see [6, P. 88]), for every X, Y ⊆
{0, 1}n, it holds that

∣

∣

∣

∣

∣

∣

∑

x∈X,y∈Y

b(x, y)

|X | · |Y | −
1

2

∣

∣

∣

∣

∣

∣

≤
√

2n

|X | · |Y |
.

(11)

Consider a partition of the set of all possible x’s according to the state in which
the automaton is after reading x (i.e., the first half of its input), and denote the
resulting sets X1, X2, ..., Xq. Note that for every x1, x2 ∈ Xj and every y, we
have A(x1, y) = A(x2, y). For each Xi, let Y σ

i denote the sets of y’s for which
A(x, y) = σ given that x ∈ Xi. It follows that

∆
def
=

∣

∣

∣

∣

Prx,y[A(x, y) = b(x, y)]− 1

2

∣

∣

∣

∣

=

q
∑

i=1

∑

σ∈{0,1}
Prx,y[x∈Xi ∧ y∈Y σ

i] ·
∣

∣

∣

∣

{(x, y)∈Xi × Y σ
i : b(x, y) = σ}

|Xi| · |Y σ
i |

− 1

2

∣

∣

∣

∣

≤
q

∑

i=1

∑

σ∈{0,1}
Prx,y[x∈Xi ∧ y∈Y σ

i] ·
√

2n

|Xi| · |Y σ
i |

= 2−3n/2 ·
q

∑

i=1

∑

σ∈{0,1}

√

|Xi| · |Y σ
i |

≤ 2−3n/2 ·
√

2q · 2n

where the first inequality is due to Eq. (11) and the second inequality is due to
(a special case of) the Cauchy-Schwartz Inequality.5 The claim follows. ⊓⊔

Claim 1.2: Let S ⊆ {1, 2, ..., m}, where m < n. Suppose that automaton AS

has q states and let

p
def
= Prx,r

[

AS(x, r) =
⊕

i∈S
b(x, pi(r))

]

where the probability is taken over all random choices of x ∈ {0, 1}n and r ∈
{0, 1}2n. Then, there exists an automaton A with q · 22m states satisfying

Prx,y[A(x, y) = b(x, y)] ≥ p

where the probability is taken over all random choices of x, y ∈ {0, 1}n.

Proof (adapted from [10]): Following is a construction of a randomized au-
tomaton A (randomization can be eliminated via non-uniformity). On input
x, y, the predictor A produces a random string r ∈ {0, 1}2|y| satisfying yi =

5 Specifically, we use
Pm

j=1

√
ai ≤

q

m ·
Pm

j=1
ai.

13

∑

j∈S ri+j−1 mod 2, for every i ≤ n. This is done by setting the bits of r in in-

creasing order such that rk is randomly selected if either k < t
def
= max(S) or k ≥

t+n, and rk is set to yk−t+1−
∑

j∈S\{t} rk−t+j mod 2 for k = t, t+1, ..., t+n−1.

Hence,
⊕

j∈Spj(r) = y, where
⊕

j∈Svj denotes the bit-by-bit exclusive or of the
vectors vj (where j ∈ S). The predictor A runs AS(x, r) and obtains a prediction
for

⊕

j∈Sb(x, pj(r)) = b(x,
⊕

j∈Spj(r)) = b(x, y). The predictor uses at most 2m
more space than GS (for storing r), and the claim follows. ⊓⊔

Claim 1.3: For every automaton, T , with q states

|Pr[T (x, r, g(x, r)) = 1]− Pr[T (x, r, y) = 1]| < 2|g(r)| ·
√

2q · 22c0n

2n

where (x, r) is selected uniformly in {0, 1}n+2n, the string y is selected uniformly
in {0, 1}|g(x,r)|.

Proof: Immediate by combining Claims 1.1 and 1.2 with the Computational
XOR-Lemma. ⊓⊔
Setting c0 = 1

4 and ǫ1 = 1
6 , we conclude that any ǫ1n-space bounded machine

can distinguish g1(x, r) (where xr ∈ {0, 1}3n) from a uniformly chosen string
of length (3 + c0)n with gap at most 2−ǫ1n. Hence, for constants c1 = 1 + 1

12
and e1 = 1

18 , we have a generator extending strings of length n to strings of
length c1n so that no ǫ1n-space bounded machine can distinguish g1(s) (where
s = (x, r) ∈ {0, 1}n) from a uniformly chosen string of length c1n with gap
greater than 2−ǫ1n. We say that g1 has expansion factor c1 and security constant

e1.

2.4.2 Construction for any expansion constant. To achieve larger ex-
pansion we apply the generator again on small blocks of its output. This idea
is taken from [9], but its usage in our context is restricted since in lower level
the generator will be applied to shorter strings (and not to strings of the same
length as done in [9]). The fact that in lower levels the generator is applied to
shorter strings plays a key role in the proof that the resulting generator is indeed
pseudorandom with respect to appropriate space-bounded machines.

In the sequel we show how to convert generators with expansion factor c into
generators with expansion factor c2. Larger expansion factors are obtained by
repeated application of the construction.

Construction 2: Let g be a generator with expansion factor c and security
constant e. We construct a generator g2 with expansion factor c2 and security

constant e2

3 as follows: g2(s) = g(r1) · · · g(rt), where r1 · · · rt = g(s) such that
|rj | = e

2 · |s| (for all 1≤j≤ t) and t = 2c/e.

To prove that the generator g2 has security e2

3 we consider a hybrid distribu-
tion H that results by selecting at random a string of length cn, partitioning it

14

into t blocks (each of length e
2n), and applying the generator g to each of them.

First we show that H is hard to distinguish from random strings of length c2n.
Next, we show that H is hard to distinguish from the strings that g2 generates
on input a random seed of length n.

Claim 2.1 (indistinguishability of H and the uniform distribution): Suppose

that the automaton T has q states. Let pH
def
= Prs1···st

[T (g(s1) · · · g(st)) = 1] and

pR
def
= Prr1···rt

[T (r1 · · · rt) = 1], where the probability is taken over all random
choices of s1, ..., st ∈ {0, 1} e

2n and r1, ..., rt ∈ {0, 1} ce
2 n. Then, there exists an

automaton T ′ with q states satisfying

|Prs[T
′(g(s)) = 1]− Prr[T

′(r) = 1]| ≥ |pH − pR|
t

where the probability is taken over all random choices of s ∈ {0, 1} e
2n and r ∈

{0, 1} ce
2 n. Hence, if q ≤ e2

2 n, then |pR − pH | < 1
2 · 2−

e2

3 n.

Proof: For every 0≤ i≤ t, define

pi
def
= Prr1···risi+1···st

[T (r1 · · · ri g(si+1) · · · g(st)) = 1],

where the probability is taken over all random choices of r1, ..., ri ∈ {0, 1} ce
2 n

and si+1, ..., st ∈ {0, 1} e
2n. Namely, pi is the probability that T outputs 1 on

input taken from a hybrid distribution consisting of i “random” blocks and t− i
“pseudorandom” blocks. Clearly, p0 = pH whereas pt = pR, and there exists

0 ≤ i ≤ t − 1 such that |pi − pi+1| ≥ |p0−pt|
t . The test T ′ is obtained from

T as follows. Fix a sequence r1, ..., ri ∈ {0, 1} ce
2 n and si+2, ..., st ∈ {0, 1} e

2n

maximizing the distinguishing gap between the ith and i + 1st hybrids. The
starting state of test T ′ is the state to which T arrives on input r1, ..., ri. The
accepting states (i.e. states with output 1) of test T ′ are the state from which
T reaches its accepting state when reading the string si+2, ..., st. Clearly, T ′ has
at most q states and distinguishes r ∈ {0, 1} ce

2 n from g(s) (for s ∈ {0, 1} e
2n)

with gap at least |pH−pR|
t . Using the security hypothesis for g, it follows that

|pR − pH | < t · 2−e· e
2n < 1

22−
e2

3 n (for all sufficiently large n). The claim follows.
⊓⊔
Note that the test constructed in the proof of Claim 2.1 examines strings of
length c · e

2n.

Claim 2.2 (indistinguishability of H and the output of g2): Suppose that

the automaton T has q states and let pG
def
= Prs[T (g2(s)) = 1] and pH

def
=

Prr1···rt
[T (g(r1) · · · g(rt)) = 1], where the probability is taken over all random

choices of s ∈ {0, 1}n and r1, ..., rt ∈ {0, 1} e
2n. Then, there exists an automaton

T ′ with q · 2 e
2n states satisfying |Prs(T

′(g(s)) = 1)−Prr(T
′(r) = 1)| ≥ pG − pH,

where the probability is taken over all random choices of s ∈ {0, 1}n and r ∈
{0, 1}cn. Hence, if q ≤ e

2n, then |pG − pH | < 1
22−

e2

3 n.

15

Proof: The test T ′ is obtained from T as follows. On input α ∈ {0, 1}cn (either
random or pseudorandom), the test T ′ breaks α into t blocks, α1, ..., αt, each of
length e

2n. Then T ′ computes β = β1 · · ·βt so that βi = g(αi), and applies T
to the string β. (T ′ accepts α iff T accepts β.) If α is taken from the uniform
distribution, then the resulting β is distributed according to H . On the other
hand, if α is taken as the output of g on random seed s, then β = g2(s). The test
T ′ distinguishes the above cases with gap ≥ |pH − pG|, and can be implemented
using q·2 e

2n states. Using the security hypothesis for g, it follows that |pG − pH | <
2−en < 1

22−
e2

3 n. The claim follows. ⊓⊔
Note that the test constructed in the proof of Claim 2.2 evaluates g on strings
of length e

2n. Combining Claims 2.1 and 2.2, we conclude that the generator g2

has security constant e2

3 .

3 A Hard-Core Predicate for all One-Way Functions

A theorem of Goldreich and Levin [10] relates the following two computational
tasks (regarding the function f). The first task is inverting a function f ; that
is, given y, find an x so that f(x) = y. The second task is predicting, with non-
negligible advatage, the exclusive-or of a subset of the bits of x when only given
f(x). More precisely, it has been proved that if f cannot be efficiently inverted,
then given f(x) and r it is infeasible to predict the inner-product mod 2 of x and
r better than obvious.

We present an alternative proof to the original proof as appeared in [10]. The
new proof, due to Charlie Rackoff, has two main advantages over the original
one: It is simpler to explain and it provides better security (i.e., a more efficient
reduction of inverting f to predicting the inner-product). The new proof was
inspired by the proof in [1]. (We mention that the original proof provides a
better starting point for the generalization presented in [12].)

3.1 Introduction

One-way functions are fundamental to many aspects of theory of computation.
Loosely speaking, one-way are those functions that are easy to evaluate but hard
to invert. However, many applications such as pseudorandom generators (see [4,
23] and [7, Chap. 3]) and secure encryption (see [13] and [8, Chap. 5]) require
that the function has a “hard-core” predicate b. This value b(x) should be easy
to evaluate on input x, but hard to guess (with a noticeable correlation) when
given only the value of f(x). Intuitively, the hard-core predicate “concentrates”
the one-wayness of the function in a strong sense. A natural question of practical
and theoretical importance is whether every one-way function has a hard-core
predicate. Prior to [10] only partial answers have been given:

1. Blum and Micali [4] proved that if the discrete exponentiation function is
one-way, then it has a hard-core predicate.6 Analogous results for the RSA

6 This result was generalized to all Abelian groups in [14].

16

and Rabin functions (i.e. raising to a power and squaring modulo an integer,
respectively) were obtained by Alexi, Chor, Goldreich, and Schnorr [1].

2. Yao [23] claimed that any one-way function f can be used to construct
another one-way function f∗ that has a hard-core predicate. The function
f∗ partitions its input into many shorter inputs and applies f to each of
them in parallel (i.e., f∗(x1 . . . xk3) = f(x1) . . . f(xk3), where |xi| = k). This
claim was proved in [15] (see also [11]).

The drawback of the first set of results is that they are based on a particular
intractability assumption (e.g. the hardness of the discrete logarithm problem).
The second result constructs a predicate with security not bounded by a constant
power of the security of f .

Goldreich and Levin [10] resolved the foregoing question by providing essen-
tially every one-way function with a hard-core predicate (see Theorem 3 below).
More specifically, for any time limit s (e.g. s(n) = n, or s(n) = 2

√
n), the follow-

ing tasks are equivalent for probabilistic algorithms running in time s(|x|)O(1):

1. Given f(x) find x for at least a fraction s(|x|)−O(1) of the x’s.
2. Given f(x) and p, |p|= |x|, guess the Boolean inner-product of x and p with

a correlation (i.e. the difference between the success and failure probabilities)
of s(|x|)−O(1).

We mention that, for any polynomial time computable f and b, the smallest
(within a polynomial) such s exists and is called the security of f and b, respec-
tively. The security is a constructible function, can be computed by trying all
small guessing algorithms, and is assumed to grow very fast (at least n1/o(1)).

3.2 Definitions

Loosely speaking, a polynomial-time function f is called one-way if any efficient
algorithm can invert it only with negligible success probability. A polynomial-
time predicate b is called a hard-core of a function f if all efficient algorithm,
given f(x), can guess b(x) only with success probability that is negligibly better
than half.

To simplify our exposition, we associate efficiency with polynomial-time and
negligible functions as such decreasing smaller than 1/poly(n). By Un we denote
a random variable uniformly distributed over {0, 1}n. For simplicity we consider
only length preserving functions (i.e., |f(x)| = |x| for every x).

Definition 1 (one-way function): A one-way function, f , is a polynomial-time
computable function such that for every probabilistic polynomial-time algorithm
A′, every polynomial p(·), and all sufficiently large n it holds that

Pr [f(A′(Yn))=Yn] <
1

2
+

1

p(n)

where Yn = f(Un).

17

Definition 2 (hard-core predicate): A polynomial-time computable predicate b :
{0, 1}∗ → {0, 1} is called a hard-core of a function f if for every probabilistic
polynomial-time algorithm A′, every polynomial p(·), and all sufficiently large n
it holds that

Pr [A′(f(Un))=b(Un)] <
1

2
+

1

p(n)

3.3 The main result and its proof

The following result asserts that every one-way function has a closely related
variant that has a hard-core predicate. The closely related variant (i.e., f ′ below)
is obtained by padding the original function (i.e., f), and the security of f ′ is
closely related to the security of f . Furthermore, the same hard-core predicate
is used for all these variants (and is thus “universal” for them).

Theorem 3 (inner product mod 2 is an almost universal hard-core): Let f be

an arbitrary one-way function, and let g be defined by f ′(x, r)
def
= (f(x), r), where

|x|= |r|. Let b(x, r) denote the inner-product mod 2 of the binary vectors x and
r. Then, the predicate b is a hard-core of the function g.

In other words, the theorem states that if f is one-way, then it is infeasible to
guess the exclusive-or of a random subset of the bits of x when given f(x) and the
subset itself. We point out that f ′ maintains properties of f such as being length-
preserving and being one-to-one. Furthermore, an analogous statement holds for
collections of one-way functions with/without trapdoor etc. [7, Sec. 2.4].

As stated in Section 3.1, the proof of the foregoing Theorem 3 establishes
a tight relation between the security of the one-way functions and the security
of the corresponding hard-core predicate. This fact is one major advantage of
Theorem 3 over Yao’s aforementioned construction [23].

3.3.1 The proof’s basic strategy. The proof uses a “reducibility argument”
(see [7, Sec. 2.3.3]). Specifically, we assume (for contradiction) the existence of
an efficient algorithm predicting the inner-product with advantage that is not
negligible, and derive an algorithm that inverts f with related (i.e. not negligible)
success probability. This contradicts the hypothesis that f is a one-way function.
Thus, we show that inverting the function f is reduced to predicting b(x, r) from
(f(x), r).

Let G be a (probabilistic polynomial-time) algorithm that on input f(x) and
r tries to predict the inner-product (mod 2) of x and r. Denote by εG(n) the
(overall) advantage of algorithm G in predicting b(x, r) from f(x) and r, where
x and r are uniformly chosen in {0, 1}n. That is,

εG(n)
def
= Pr [G(f(Xn), Rn) = b(Xn, Rn)]− 1

2
, (12)

where here and in the sequel Xn and Rn denote two independent random vari-
ables, each uniformly distributed over {0, 1}n. Assuming, towards the contradic-
tion, that b is not a hard-core of f ′ means that exists an efficient algorithm G,

18

a polynomial p(·) and an infinite set N so that for every n ∈ N it holds that
εG(n) > 1

p(n) . We restrict our attention to this algorithm G and to n’s in this

set N . In the sequel we shorthand εG by ε.

Our first observation is that, on at least an ε(n)
2 fraction of the x’s of length

n, algorithm G has an ε(n)
2 advantage in predicting b(x, Rn) from f(x) and Rn.

Namely,

Claim 3.1: There exists a set Sn ⊆ {0, 1}n of cardinality at least ε(n)
2 · 2n such

that for every x ∈Sn, it holds that

s(x)
def
= Pr[G(f(x), Rn)=b(x, Rn)] ≥ 1

2
+

ε(n)

2
, (13)

where here the probability is taken over all possible values of Rn and all internal
coin tosses of algorithm G, whereas x is fixed.

Proof: The observation follows by an averaging argument. Namely, write Exp[s(Xn)] =
1
2 + ε(n), and apply Markov Inequality. ⊓⊔

In the sequel we restrict our attention to x’s in Sn. We will show an efficient
algorithm that on every input y, with y = f(x) and x ∈ Sn, finds x with very
high probability. Contradiction to the one-wayness of f will follow by noting

that Pr[Un∈Sn] ≥ ε(n)
2 .

Recall that b(x, r) =
∑n

i=1 xiri mod 2, where xi (resp., ri) dentoes the ith

bit of x (resp., r). We highlight the fact that b(x, r)⊕b(x, s) = b(x, r⊕s), which
follows by

∑n
i=1 xiri +

∑n
i=1 xisi ≡

∑n
i=1 xi(ri⊕+ si) (mod 2).

3.3.2 A motivating discussion. Consider a fixed x ∈ Sn. By definition

s(x) ≥ 1
2 + ε(n)

2 > 1
2 + 1

2p(n) . Suppose, for a moment, that s(x) > 3
4 + 1

2p(n) .

In this case (i.e., of s(x) > 3
4 + 1

poly(|x|)) retrieving x from f(x) is quite easy. To

retrieve the ith bit of x, denoted xi, we randomly select r ∈ {0, 1}n, and compute
G(f(x), r) and G(f(x), r⊕ei), where ei is an n-dimensional binary vector with
1 in the ith component and 0 in all the others, and v⊕u denotes the addition
mod 2 of the binary vectors v and u. Clearly, if both G(f(x), r) = b(x, r) and
G(f(x), r⊕ei) = b(x, r⊕ei), then

G(f(x), r)⊕G(f(x), r⊕ei) = b(x, r)⊕b(x, r⊕ei)

= b(x, ei)

= xi

(since b(x, r)⊕b(x, s) = b(x, r⊕s)). The probability that both equalities hold (i.e.,
both G(f(x), r)= b(x, r) and G(f(x), r⊕ei)= b(x, r⊕ei)) is at least 1 − 2 · (1

4−
1

poly(|x|)) = 1
2 − 1

poly(|x|) . Hence, repeating the above procedure sufficiently many

times and ruling by majority, we retrieve xi with very high probability. Similarly,
we can retrieve all the bits of x, and hence invert f on f(x). However, the

19

entire analysis was conducted under (the unjustifiable) assumption that s(x) >
3
4 + 1

2p(|x|) , whereas we only know that s(x) > 1
2 + 1

2p(|x|) .

The problem with the above procedure is that it doubles the original error
probability of algorithm G on inputs of form (x, ·). Under the unrealistic as-
sumption, that the G’s error on such inputs is significantly smaller than 1

4 , the
“error-doubling” phenomenon raises no problems. However, in general (and even
in the special case where G’s error is exactly 1

4) the above procedure is unlikely
to invert f . Note that the error probability of G can not be decreased by re-
peating G several times (e.g., G may always answer correctly on three quarters
of the inputs, and always err on the remaining quarter). What is required is an
alternative way of using the algorithm G, a way that does not double the original
error probability of G.

The key idea is to generate the r’s in a way that requires applying algorithm
G only once per each r (and xi), instead of twice. The good news is that the
error probability is no longer doubled, since we only need to use G to get an
“estimate” of b(x, r⊕ei). The bad news is that we still need to know b(x, r), and
it is not clear how we can know b(x, r) without applying G. The answer is that
we can guess b(x, r) by ourselves. This is fine if we only need to guess b(x, r)
for one r (or logarithmically in |x| many r’s), but the problem is that we need
to know (and hence guess) b(x, r) for polynomially many r’s. An obvious way
of guessing these b(x, r)’s yields an exponentially vanishing success probability.
The solution is to generate these polynomially many r’s so that, on one hand
they are “sufficiently random” whereas on the other hand we can guess all the
b(x, r)’s with non-negligible success probability. Specifically, generating the r’s
in a particular pairwise independent manner will satisfy both (seemingly contra-
dictory) requirements. We stress that in case we are successful (in our guesses
for the b(x, r)’s), we can retrieve x with high probability. Hence, we retrieve x
with non-negligible probability.

A word about the way in which the pairwise independent r’s are generated
(and the corresponding b(x, r)’s are guessed) is indeed in place. To generate

m = poly(n) many r’s, we uniformly (and independently) select l
def
= log2(m +

1) strings in {0, 1}n. Let us denote these strings by s1, ..., sl. We then guess
b(x, s1) through b(x, sl). Let use denote these guesses, which are uniformly (and
independently) chosen in {0, 1}, by σ1 through σl. Hence, the probability that
all our guesses for the b(x, si)’s are correct is 2−l = 1

poly(n) . The different r’s

correspond to the different non-empty subsets of {1, 2, ..., l}; that is, for every

(non-empty) J ⊆ {1, 2, ..., l}, we set rJ def
=

⊕

j∈Jsj . The reader can easily verify

that the rJ ’s are pairwise independent and each is uniformly distributed in
{0, 1}n (see details below). The key observation is that

b(x, rJ) = b(x,
⊕

j∈J
sj) =

⊕

j∈J
b(x, sj). (14)

Hence, our guess for the b(x, rJ)’s is
⊕

j∈Jσj , and with non-negligible probability
all our guesses are correct.

20

3.3.3 Back to the formal argument. Following is a formal description of
the inverting algorithm, denoted A. We assume, for simplicity that f is length
preserving (yet this assumption is not essential). On input y (supposedly in the

range of f), algorithm A sets n
def
= |y|, and l

def
= ⌈log2(2n · p(n)2 +1)⌉, where p(·)

is the polynomial guaranteed above (i.e., ǫ(n) > 1
p(n) for the infinitely many n’s

in N). Algorithm A uniformly and independently select s1, ..., sl ∈ {0, 1}n, and
σ1, ..., σl ∈ {0, 1}. It then computes, for every non-empty set J ⊆ {1, 2, ..., l}, a
string rJ ←⊕

j∈Jsj and a bit ρJ ←⊕

j∈Jσj . Next, for every i∈{1, ..., n} and

every non-empty J ⊆ {1, .., l}, algorithm A computes zJ
i ← ρJ⊕G(y, rJ⊕ei).

Finally, algorithm A sets zi to be the majority of the zJ
i values, and outputs

z = z1 · · · zn.
(Remark: In an alternative implementation of the foregoing ideas, the in-

verting algorithm, denoted A′, tries all possible values for σ1, ..., σl, and outputs
only one of resulting strings z, with an obvious preference to a string z satisfying
f(z) = y.)

Following is a detailed analysis of the success probability of algorithm A on
inputs of the form f(x), for x ∈ Sn, where n ∈ N . We start by showing that if
the σj ’s are correct, then, with constant probability, zi = xi for all i∈{1, ..., n}.
This is proved by lower bounding the probability that the majority of the zJ

i ’s
equals xi.

Claim 3.2: For every x ∈ Sn and every i∈{1, ..., n}, it holds that

Pr

[

|{J : b(x, rJ)⊕G(f(x), rJ⊕ei) = xi}| >
1

2
· (2l − 1)

]

> 1− 1

2n

where rJ def
=

⊕

j∈Jsj and the sj’s are independently and uniformly chosen in
{0, 1}n.

Proof: For every J , define a 0-1 random variable ζJ , so that ζJ equals 1 if and
only if b(x, rJ)⊕G(f(x), rJ⊕ei) = xi. The reader can easily verify that each
rJ is uniformly distributed in {0, 1}n. It follows that each ζJ equals 1 with
probability s(x), which by x∈ Sn, is at least 1

2 + 1
2p(n) . We show that the ζJ ’s

are pairwise independent by showing that the rJ ’s are pairwise independent. For
every J 6= K we have, without loss of generality, j ∈ J and k ∈ K \ J . Hence,
for every α, β ∈ {0, 1}n, we have

Pr
[

rK =β | rJ =α
]

= Pr
[

sk =β | sj =α
]

= Pr
[

sk =β
]

= Pr
[

rK =β
]

and pairwise independence of the rJ ’s follows. Let m
def
= 2l−1. Using Chebyshev’s

Inequality, we get

Pr

[

∑

J

ζJ ≤ 1

2
·m

]

≤ Pr

[∣

∣

∣

∣

∣

∑

J

ζJ −
(

1

2
+

1

2p(n)

)

·m
∣

∣

∣

∣

∣

≥ 1

2p(n)
·m

]

21

<
Var(ζ{1})

(1
2p(n))

2 · (2n · p(n)2)

<
1
4

(1
2p(n))

2 · 2n · p(n)2

=
1

2n

The claim follows. ⊓⊔
Recall that if σj = b(x, sj), for all j’s, then ρJ = b(x, rJ) for all non-empty J ’s.
In this case z output by algorithm A equals x, with probability at least one half.
However, the first event happens with probability 2−l = 1

2n·p(n)2 independently

of the events analyzed in Claim 3.2. Hence, in case x∈Sn, algorithm A inverts
f on f(x) with probability at least 1

4p(|x|) (whereas the modified algorithm,

A′, succeeds with probability at least 1
2). Recalling that |Sn| > 1

2p(n) · 2n, we

conclude that, for every n ∈ N , algorithm A inverts f on f(Un) with probability
at least 1

8p(n)2 . Noting that A is polynomial-time (i.e., it merely invokes G for

2n · p(n)2 = poly(n) times in addition to making a polynomial amount of other
computations), a contradiction to our hypothesis that f is one-way follows. The
theorem follows.

3.3.4 Improving the efficiency of the inverting algorithm. In continua-
tion to the proof of Theorem 3, we present guidelines for a more efficient inverting
algorithm. In the sequel it will be more convenient to use the arithmetic of the
reals instead of that of the Booleans. Hence, we denote b′(x, r) = (−1)b(r,x) and
G′(y, r) = (−1)G(y,r).

1. Prove that, for every x, it holds that Exp[b′(x, r) ·G′(f(x), r + ei)] = s′(x) ·
(−1)xi , where s′(x)

def
= 2 · (s(x) − 1

2).
2. Let v be an l-dimensional Boolean vector, and let R be a uniformly chosen l-

by-n Boolean matrix. Prove that for every v 6= u ∈ {0, 1}l\{0}l it holds that
vR and uR are pairwise independent and uniformly distributed in {0, 1}n.

3. Prove that b′(x, vR) = b′(xR⊤, v), for every x ∈ {0, 1}n and v ∈ {0, 1}l.
4. Prove that, for every x ∈ Sn, with probability at least 1

2 (over the choices
of R as in Item 2), there exists σ ∈ {0, 1}l such that for every 1≤ i≤n the
sign of

∑

v∈{0,1}l b′(σ, v)G′(f(x), vR + ei)) equals the sign of (−1)xi. (Hint:

σ
def
= xR⊤.)

5. Let B be an 2l-by-2l matrix with the (σ, v)-entry being b′(σ, v), and let
gi be an 2l-dimensional vector with the vth entry equal G′(f(x), vR + ei).
Consider an inverting algorithm that computes zi ← Bgi, for all i’s, and
forms a matrix Z in which the columns are the zi’s. That is, the (σ, i)th

entry in Z is
∑

v b′(σ, v) ·G′(f(x), vR + ei). The algorithm outputs a row of
X such that applying f to it yields f(x), where X is Boolean matrix such
that its (σ, i)th entry is 1 iff the (σ, i)th entry in Z is negative.

22

(a) Evaluate the success probability of this inverting algorithm.
(b) Using the special structure of matrix B, show that the product Bgi can

be computed in time l · 2l.
Hint: B is the Sylvester matrix, which can be written recursively as

Sk =

(

Sk−1 Sk−1

Sk−1 Sk−1

)

where S0 = +1 and M means flipping the +1 entries of M to −1 and
vice versa.

3.4 Hard-Core Functions

We have just seen that every one-way function can be easily modified to have a
hard-core predicate. In other words, the result establishes one bit of information
about the preimage that is hard to approximate from the value of the function.
A stronger result may say that several bits of information about the preimage
are hard to approximate. For example, we may want to say that a specific pair
of bits is hard to approximate, in the sense that it is infeasible to guess this
pair with probability significantly larger than 1

4 . In general, a polynomial-time
function, h, is called a hard-core of a function f if no efficient algorithm can
distinguish (f(x), h(x)) from (f(x), r), where r is a random string of length
|h(x)|. We assume for simplicity that h is length regular (see below).

Definition 4 (hard-core function): Let h : {0, 1}∗ → {0, 1}∗ be a polynomial-
time computable function, satisfying |h(x)| = |h(y)| for all |x| = |y|, and let

l(n)
def
= |h(1n)|. The function h : {0, 1}∗ → {0, 1}∗ is called a hard-core of a

function f if for every probabilistic polynomial-time algorithm D′, every polyno-
mial p(·), and all sufficiently large n it holds that

∣

∣Pr [D′(f(Xn), h(Xn))=1]− Pr
[

D′(f(Xn), Rl(n))=1
]∣

∣ <
1

p(n)

where Xn and Rl(n) are two independent random variables the first uniformly

distributed over {0, 1}n and the second uniformly distributed over {0, 1}l(n).

Theorem 5 (almost universal hard-core functions): Let f be an arbitrary one-

way function, and let f2 be defined by f2(x, s)
def
= (f(x), s), where |s|=2|x|. Let

c > 0 be a constant, and l(n)
def
= ⌈c log2 n⌉. Let bi(x, s) denote the inner-product

mod 2 of the binary vectors x and (si+1, ..., si+n), where s = (s1, ..., s2n). Then

the function h(x, s)
def
= b1(x, s) · · · bl(|x|)(x, s) is a hard-core of the function f2.

The proof of the theorem follows by combining a proposition concerning the
structure of the specific function h with a general lemma concerning hard-core
functions. Loosely speaking, the proposition “reduces” the problem of approx-
imating b(x, r) given f ′(x, r) to the problem of approximating the exclusive-or

23

of any non-empty set of the bits of h(x, s) given f2(x, s), where b and f ′ are
the hard-core and the one-way function presented in Section 3.3. Since we know
that the predicate b(x, r) cannot be approximated from f ′(x, r), we conclude
that no exclusive-or of the bits of h(x, s) can be approximated from f2(x, s).
The general lemma states that, for every “logarithmically shrinking” function h
(i.e., h satisfying |h(x)| = O(log |x|)), the function h is a hard-core of a function
f if and only if the exclusive-or of any non-empty subset of the bits of h cannot
be approximated from the value of f .

Proposition 6 (exclusive-ors of bits of h are hard-core predicates): Let f , f2

and bi’s be as above. Let I(n) ⊆ {1, 2, ..., l(n)}, n∈N, be an arbitrary sequence of

non-empty subsets, and let bI(|x|)(x, s)
def
=

⊕

i∈I(|x|)bi(x, s). Then, for every prob-

abilistic polynomial-time algorithm A′, every polynomial p(·), and all sufficiently
large n it holds that

Pr
[

A′(I(n), f2(U3n)) = bI(n)(U3n)
]

<
1

2
+

1

p(n)

The proof is analogous to the proof of Claim 1.2 (presented in Section 2.4).
Nevertheless, we detail the proof for sake of clarity.

Proof: The proof is by a “reducibility” argument. It is shown that the problem
of approximating b(Xn, Rn) given (f(Xn), Rn) is reducible to the problem of
approximating bI(n)(Xn, S2n) given (f(Xn), S2n), where Xn, Rn and S2n are
independent random variable and the last is uniformly distributed over {0, 1}2n.
The underlying observation is that, for every |s| = 2 · |x|,

bI(x, s) =
⊕

i∈I
bi(x, s) =

⊕

i∈I
b(x, subi(s)) = b(x,

⊕

i∈I
subi(s))

where subi(s1, ..., s2n)
def
= (si+1, ..., si+n). Furthermore, the reader can verify7

that for every non-empty I ⊆ {1, ..., n}, the random variable
⊕

i∈Isubi(S2n) is
uniformly distributed over {0, 1}n, and that given a string r ∈ {0, 1}n and such a
set I one can efficiently select a string uniformly in the set {s :

⊕

i∈Isubi(s) = r}.
Now, assume to the contradiction, that there exists an efficient algorithm A′,

a polynomial p(·), and an infinite sequence of sets (i.e., I(n)’s) and n’s such that

Pr
[

A′(I(n), f2(U3n)) = bI(n)(U3n)
]

≥ 1

2
+

1

p(n)

We first observe that for n’s satisfying the above inequality we can find in prob-
abilistic polynomial time (in n) a set I satisfying

Pr [A′(I, f2(U3n)) = bI(U3n)] ≥ 1

2
+

1

2p(n)

(i.e., by going over all possible I’s and experimenting with algorithm A′ on
each of them). Of course we may be wrong in these experiments, but the error
probability can be made exponentially small.

7 Indeed, see the proof of Claim 1.2.

24

We now present an algorithm for approximating b(x, r), from y
def
= f(x) and r.

On input y and r, the algorithm first finds a set I as described above (this stage
depends only on |x|, which equals |r|). Once I is found, the algorithm uniformly
select a string s so that

⊕

i∈Isubi(s) = r, and return A′(y, s). Evaluation of the
success probability of this algorithm is left as an exercise.

Lemma 7 (Computational XOR Lemma, revisited): Let f and h be arbitrary

length regular functions, and let l(n)
def
= |h(1n)|. Let D be an algorithm. Denote

p
def
= Pr [D(f(Xn), h(Xn)) = 1] and q

def
= Pr

[

D(f(Xn), Rl(n)) = 1
]

where Xn and Rl are as above. Let G be an algorithm that on input y and S
(and l(n)), selects r uniformly in {0, 1}l(n), and outputs D(y, r)⊕1⊕(

⊕

i∈Sri),
where r = r1 · · · rl and ri ∈ {0, 1}. Then,

Pr
[

G(f(Xn), Il, l(n))=
⊕

i∈Il

(hi(Xn))
]

=
1

2
+

p− q

2l(n) − 1

where Il is a randomly chosen non-empty subset of {1, ..., l(n)} and hi(x) denotes
the ith bit of h(x).

Proof: See Section 2.

It follows that, for logarithmically shrinking h’s, the existence of an efficient
algorithm that distinguishes (with a gap that is not negligible in n) the random
variables (f(Xn), h(Xn)) and (f(Xn), Rl(n)) implies the existence of an efficient
algorithm that approximates the exclusive-or of a random non-empty subset
of the bits of h(Xn) from the value of f(Xn) with an advantage that is not
negligible.

References

1. W. Alexi, B. Chor, O. Goldreich and C.P. Schnorr, “RSA and Rabin Functions:
Certain Parts Are As Hard As the Whole”, SIAM Journ. on Computing, Vol. 17,
1988, pages 194–209. Preliminary version in 25th FOCS, 1984.

2. N. Alon, O. Goldreich, J. H̊astad, R. Peralta. Simple Constructions of Almost
k-wise Independent Random Variables. Journal of Random Structures and Algo-
rithms, Vol. 3, No. 3, pages 289–304, 1992.

3. Babai, L., N. Nisan, and M. Szegedy, “Multiparty protocols and logspace-hard
pseudorandom sequences”, 21st STOC, 1989, pages 1–11.

4. Blum, M., and Micali, S., “How to Generate Cryptographically Strong Sequences of
Pseudo-Random Bits”, SIAM Journ. on Computing, Vol. 13, 1984, pages 850–864.
Preliminary version in 23rd FOCS, 1982.

5. B. Chor, J. Friedmann, O. Goldreich, J. Hastad, S. Rudich and R. Smolansky,
“The Bit Extraction Problem or t-Resilient Functions”, Proc. of the 26th IEEE
Symp. on Foundation Of Computer Science (FOCS), 1985, pages 396–407.

6. Erdos, P., and J. Spenser, Probabilistic Methods in Combinatorics, Academic Press,
New York, 1974.

25

7. O. Goldreich. Foundation of Cryptography: Basic Tools. Cambridge University
Press, 2001.

8. O. Goldreich. Foundation of Cryptography: Basic Applications. Cambridge Uni-
versity Press, 2004.

9. O. Goldreich, S. Goldwasser, and S. Micali. How to Construct Random Functions.
Jour. of the ACM, Vol. 33, No. 4, pages 792–807, 1986.

10. Goldreich O., and L.A. Levin, “Hard-core Predicates for any One-Way Function”,
21th STOC, pages 25–32, 1989.

11. O. Goldreich, N. Nisan and A. Wigderson. On Yao’s XOR-Lemma. This volume.
See also ECCC, TR95-050, 1995.

12. O. Goldreich, R. Rubinfeld and M. Sudan. Learning polynomials with queries: the
highly noisy case. SIAM J. Discrete Math., Vol. 13 (4), pages 535–570, 2000.

13. S. Goldwasser and S. Micali. Probabilistic Encryption. JCSS, Vol. 28, No. 2, pages
270–299, 1984. Preliminary version in 14th STOC, 1982.

14. B.S. Kaliski, Jr., “Elliptic Curves and Cryptography: A Pseudorandom Bit Gen-
erator and Other Tools”, Ph.D. Thesis, LCS, MIT, 1988.

15. L.A. Levin, “One-Way Function and Pseudorandom Generators”, Combinatorica,
Vol. 7, No. 4, 1987, pages 357–363. A preliminary version in 19th STOC, 1985.

16. J. Naor and M. Naor, “Small-bias Probability Spaces: Efficient Constructions and
Applications”, 22nd STOC, 1990, pages 213–223.

17. N. Nisan, “Pseudorandom Generators for Space-Bounded Computations”, 22nd
STOC, 1990, pages 204–212.

18. M.O. Rabin, “Digitalized Signatures and Public Key Functions as Intractable as
Factoring”, MIT/LCS/TR-212, 1979.

19. R. Rivest, A. Shamir, and L. Adleman, “A Method for Obtaining Digital Signatures
and Public Key Cryptosystems”, Comm. ACM, Vol. 21, Feb. 1978, pages 120–126

20. U.V. Vazirani, Randomness, Adversaries and Computation, Ph.D. Thesis, EECS,
UC Berkeley, 1986.

21. U.V. Vazirani, “Efficiency Considerations in Using Semi-random Sources”, Proc.
19th ACM Symp. on Theory of Computing, 1987, pages 160–168.

22. U.V. Vazirani, and V.V. Vazirani, “Efficient and Secure Pseudo-Random Number
Generation”, Proc. 25th IEEE Symp. on Foundation of Computer Science, 1984,
pages 458–463.

23. Yao, A.C., “Theory and Applications of Trapdoor Functions”, Proc. of the 23rd
IEEE Symp. on Foundation of Computer Science, 1982, pages 80–91.

