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Abstract

We consider the methodology for proving lower bounds on the query complexity of property
testing via communication complexity, which was put forward by Blais, Brody, and Matulef
(Computational Complexity, 2012). They provided a restricted formulation of their methodology
(via “simple combining operators”) and also hinted towards a more general formulation, which
we spell out in this paper.

A special case of the general formulation proceeds as follows: In order to derive a lower
bound on testing the property Π, one presents a mapping F of pairs of inputs (x, y) ∈ {0, 1}n+n

for a two-party communication problem Ψ to ℓ(n)-bit long inputs for Π such that (x, y) ∈ Ψ
implies F (x, y) ∈ Π and (x, y) 6∈ Ψ implies that F (x, y) is far from Π. Let fi(x, y) be the
ith bit of F (x, y), and suppose that B is an upper bound on the (deterministic) communication
complexity of each fi and that C is a lower bound on the randomized communication complexity
of Ψ. Then, testing Π requires at least C/B queries.

The foregoing formulation is generalized by considering randomized protocols (with small
error) for computing the fi’s. In contrast, the restricted formulation (via “simple combining
operators”) requires that each fi(x, y) be a function of xi and yi only, and uses B = 2 for the
straightforward computation of fi.

We show that the general formulation cannot yield significantly stronger lower bounds than
those that can be obtained by the restricted formulation. Nevertheless, we advocate the use of
the general formulation, because we believe that it is easier to work with. Following Blais et al.,
we also describe a version of the methodology for nonadaptive testers and one-way communica-
tion complexity.

An early version of this work appeared as TR13-073 of ECCC, and served as basis for [11, Sec. 7.3].
The current revision is quite minimal and presents a few expositional improvements, especially in
the introduction. Some intuitive clarifications were added in Section 7.

1 Introduction

In the last couple of decades, the area of property testing has attracted much attention (see,
e.g., [8, 21, 22]).1 Loosely speaking, property testing typically refers to sub-linear time probabilistic
algorithms for deciding whether a given object has a predetermined property or is far from any
object having this property. Such algorithms, called testers, obtain local views of the object by

1Added in revision: See also the more recent textbook [11]. In fact, the current work served as basis for [11,
Sec. 7.3].
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performing queries; that is, the object is seen as a function and the testers get oracle access to this
function (and thus may be expected to work in time that is sub-linear in the length of the object).

In 2011, Blais, Brody, and Matulef enriched the study of property testing by presenting a
connection between property testing and communication complexity [4]. Specifically, they presented
a methodology for proving lower bounds on the query complexity of property testing by relying on
lower bounds on two-party communication complexity problems.

Encountering their work [4], we were quite surprised. Firstly, this connection seems unexpected,
since property testing problems have no topology that can be naturally 2-partitioned to fit the two-
party setting of communication complexity. Nevertheless, using this methodology, the authors of [4]
were able to resolve a fair number of open problems, some of which have escaped our own attempts
in the past (cf., e.g., [4, Thms. 1.1-1.3], which resolve open problems in [10]).

While Blais, Brody, and Matulef hint towards the formulation that we will present here (see
a few lines before [4, Def. 2.3]), they preferred to present a more restricted formulation, which
is pivoted at “simple combining operators” (see [4, Def. 2.3]). Furthermore, it seems that this
restricted formulation is the one that has been disseminated in the literature.2

1.1 The current work

The main purpose of this paper is to explicitly present a more general and flexible formulation of
the foregoing methodology, and demonstrate the ease of using it (in comparison to the use of the
restricted formulation). A special case of this general formulation reads as follows:

In order to derive a lower bound on testing the property Π, present a mapping F of pairs of
inputs (x, y) ∈ {0, 1}n+n for a two-party communication problem Ψ to ℓ(n)-bit long inputs for
Π such that (x, y) ∈ Ψ implies F (x, y) ∈ Π and (x, y) 6∈ Ψ implies that F (x, y) is far from Π.
Letting fi(x, y) denote the ith bit of F (x, y), upper-bound the (deterministic) communication
complexity of each fi, and lower-bound the randomized communication complexity of Ψ. Then,
the query complexity of testing Π is lower-bounded by the ratio of the lower bound (for Ψ) over
the upper bound (for the fi’s).

More generally, one may use randomized protocols (with small error) for computing the fi’s. In
contrast, the restricted formulation of [4] requires that each fi(x, y) be a function of xi and yi only,
and uses the straightforward two-bit communication protocol for fi. Hence, using the restricted
formulation of [4] restricts the users of the methodology, since it places tighter constraints on
the choice of the two-party communication problem Ψ. This difficulty is typically overcome by
introducing auxiliary communication problems and lower-bounding their complexity by reduction
from known communication problems (cf. [4]).

In fact, we show that the restricted formulation is actually not significantly weaker than the
general one. In other words, we show that any lower bound that can be derived by the general
formulation, can also be derived (possibly with a small quantitative loss) by the restricted formu-
lation. This is done by introducing auxiliary problems and showing reductions among them. We
note that such tedious maneuvers are exactly what the general methodology spares the user from.

2Added in revision: This sentence reflects the state of affairs at the time this paper was originally written. At
that time, we noted that an “exception has been provided by the recent work of [5]: To streamline their proof, they
take a move that is analogous to ours by replacing the simple combining operators of [4, Def. 2.3] with a ‘one-bit
one-way combining operator’ (see Definition 2.4 and Lemma 2.5 in [5]).”
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Indeed, we advocate the use of the general formulation, because we believe that it is easier to
work with. This is demonstrated by using it to derive some (known and new) results regarding the
hardness of codeword testing for some codes. Furthermore, we believe that the statement of the
general formulation (of the methodology) and its proof reveals better what is actually going on.

1.2 Organization

After recalling the standard definitions (in Section 2), we provide a general formulation of the com-
munication complexity methodology for proving query complexity lower bounds on property testing
(see Theorem 3.1 in Section 3). The (relative) ease of using this methodology is demonstrated in
Section 4, and further discussed in the conclusion section (Section 8). In our opinion, these sections
are the most important parts of the current work.

In Section 7, we consider the relation between the general formulation and the restricted one
(as presented in [4]). Indeed, Theorem 7.1 (i.e., the “emulation theorem”) is the main technical
contribution of this work. Essentially, it asserts that any lower bound that can be derived by the
general formulation, can also be derived by the restricted formulation.

The methodology of proving query complexity lower bounds on property testing via reductions

from communication complexity problems can be applied in a variety of contexts. While Section 3
focuses on the most popular setting of general testers and general two-party communication proto-
cols, versions for nonadaptive testers and one-way (resp., simultaneous) communication complexity
are presented in Section 5. Other ramifications are discussed in Section 6, and a version for multi-
party communication complexity is presented in the Appendix.

2 Preliminaries

For sake of simplicity, we focus on problems that correspond to the binary representation (i.e., to
objects that are represented as sequences over a binary alphabet). We shall discuss the general
case of non-binary alphabets at a later stage (i.e., in Section 6).3

Also, our main presentation refers to finite problems that correspond to bit strings of fixed
length. One should think of these lengths as generic (or varying), and interpret the O-notation (as
well as similar notions) as hiding universal constants (which do not depend on any parameter of
the problems discussed).

We refer to the standard setting of communication complexity, and specifically to random-
ized two-party protocols in the model of shared randomness (cf. [19, Sec. 3]). We denote by
〈A(x), B(y)〉(r) the (joint) output of the two parties, when the first party uses strategy A and gets
input x, the second party uses strategy B and gets input y, and both parties have free access to the
shared randomness r. Since many of the known reductions that use the methodology of [4] actually
reduce from promise problems, we present communication problems in this more general setting.
The standard case of decision problems is obtained by using a trivial promise (i.e., P = {0, 1}2n).

Definition 2.1 (two-party communication complexity): Let Ψ = (P, S) such that P, S ⊆ {0, 1}2n,

and η ≥ 0. A two-party protocol that solves Ψ with error at most η is a pair of strategies (A,B)
such that the following holds (w.r.t. some ρ = ρ(n)):

3Jumping ahead, we note that, with respect to the general formulation, little is lost by considering only the binary
representation.
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1. If (x, y) ∈ P ∩ S, then Prr∈{0,1}ρ [〈A(x), B(y)〉(r)=1] ≥ 1− η.

2. If (x, y) ∈ P \ S, then Prr∈{0,1}ρ [〈A(x), B(y)〉(r)=0] ≥ 1− η.

The communication complexity of this protocol is the maximum number of bits exchanged between the

parties when the maximization is over all x, y ∈ {0, 1}n and r ∈ {0, 1}ρ. The η-error communication

complexity of Ψ, denoted CCη(Ψ), is the minimum communication complexity of all protocols that

solve Ψ with error at most η.

For a Boolean function f : {0, 1}2n → {0, 1}, the two-party communication problem of computing f

is the promise problem Ψf
def
= ({0, 1}2n, f−1(1)). Abusing notation, we let CCη(f) denote CCη(Ψf ).

Note that randomized complexity with zero error (i.e., η = 0) collapses to deterministic com-
plexity.4 This is one reason that we kept η as a free parameter rather than setting it to a small
constant (e.g., η = 1/3), as is the standard. Another reason for our choice is to allow greater
flexibility in our presentation. For the same reason, we take the rather unusual choice of making
the error probability explicit also in the context of property testing (where we also denote it by η).
In the next definition, as in most work on lower bounds in property testing (cf. [12, 13, 8, 22]), we
fix the proximity parameter (denoted ǫ).

Definition 2.2 (property testing): Let Π ⊆ {0, 1}ℓ, and ǫ, η > 0. An ǫ-tester with error η for Π is

a randomized oracle machine T that satisfies the following two conditions.

1. If z ∈ Π, then Pr[T z(ℓ)=1] ≥ 1− η.

2. If z ∈ {0, 1}ℓ is ǫ-far from Π, then Pr[T z(ℓ)=0] ≥ 1− η, where the distance between z and Π
is minz′∈Π{|{i ∈ [ℓ] : zi 6= z′i}|/ℓ}.

The query complexity of T is the maximum number of queries that T makes, when the maximization

is over all z ∈ {0, 1}ℓ and the coin tosses of T . The η-error query complexity of ǫ-testing Π, denoted

Qη(ǫ,Π), is the minimum query complexity of all ǫ-testers with error η for Π.

For any property Π and any η > 0, it holds that Qη(ǫ,Π) = O(Q1/3(ǫ,Π)), where the O-notation
hides a log(1/η) factor. Thus, establishing a lower bound on the ǫ-testing query complexity of Π for
any constant error, yields the same asymptotic lower bound for the (standard) error level of 1/3.
In light of this fact, we may omit the constant error from our discussion; that is, when we say the
query complexity of ǫ-testing Π we mean the 1/3-error query complexity of ǫ-testing Π. Likewise,
Q(ǫ,Π) = Q1/3(ǫ,Π)

3 The general formulation of the methodology

With the above preliminaries in place, we are ready to state the main result, which is proved by a
straightforward adaptation of the ideas of [4].

4Note that CC0(·) is different from the standard notion of zero-error randomized communication complexity, since
in the latter one considers the expected number of bits exchanged on the worst-case pair of inputs (whereas we
considered the worst-case over both the shared randomness and the pair of inputs). Note that the difference between
the expected complexity and the worst-case complexity is not very significant in the case of Θ(1)-error communication
complexity, but it is crucial in the case of zero-error.
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Theorem 3.1 (property testing lower bounds via communication complexity): Let Ψ = (P, S)
be a promise problem such that P, S ⊆ {0, 1}2n, and let Π ⊆ {0, 1}ℓ be a property, and ǫ, η > 0.
Suppose that the mapping F : {0, 1}2n → {0, 1}ℓ satisfies the following two conditions:

1. For every (x, y) ∈ P ∩ S, it holds that F (x, y) ∈ Π.

2. For every (x, y) ∈ P \ S, it holds that F (x, y) is ǫ-far from Π.

Then, Qη(ǫ,Π) ≥ CC2η(Ψ)/B, where B = maxi∈[ℓ]{CCη/n(fi)} and fi(x, y) is the ith bit of F (x, y).
Furthermore, if B = maxi∈[ℓ]{CC0(fi)}, then Qη(ǫ,Π) ≥ CCη(Ψ)/B.

The main result in [4] refers to a mapping F such that each fi(x, y) is a function of the ith bit of x
and the ith bit of y (i.e., xi and yi). Indeed, in that case, ℓ = n and B = 2 (by the straightforward
protocol in which the two parties exchange the relevant bits (i.e., xi and yi)).

Proof: Given an ǫ-tester with error η for Π and communication protocols for the fi’s, we present
a two-party protocol for solving Ψ. The key idea is that, using their shared randomness, the two
parties (holding x and y, respectively) can emulate the execution of the ǫ-tester, while providing
it with virtual access to F (x, y). Specifically, when the tester queries the ith bit of the oracle, the
parties provide it with the value of fi(x, y) by first executing the corresponding communication
protocol. Details follow.

The protocol for Ψ: On local input x (resp., y) and shared randomness r = (r0, r1, ..., rℓ) ∈
({0, 1}∗)ℓ+1, the first (resp., second) party invokes the ǫ-tester on randomness r0, and answers
the tester’s queries by interacting with the other party. That is, each of the two parties invokes a
local copy of the tester’s program, but both copies are invoked on the same randomness, and are
fed with identical answers to their (identical) queries. When the tester issues a query i ∈ [ℓ], the
parties compute the value of fi(x, y) by using the corresponding communication protocol, with ri

as its shared randomness, and feed fi(x, y) to (their local copy of) the tester. Specifically, denoting
the latter protocol (i.e., pair of strategies) by (Ai, Bi), the parties answer with 〈Ai(x), Bi(y)〉(ri).
When the tester halts, each party outputs the output it has obtained from (its local copy of) the
tester.

Turning to the analysis of this protocol, we note that the two local executions of the tester are
identical, since they are fed with the same randomness and the same answers (to the same queries).
The total number of bits exchanged by the two parties is at most B times the query complexity of
ǫ-tester; that is, the communication complexity of this protocol is at most B · q, where q denotes
the query complexity of the ǫ-tester.

Let us consider first the furthermore clause; that is, assume that B = maxi∈[ℓ]{CC0(fi)}. In this
case, the parties always provide the ǫ-tester, denoted T , with the correct answers to its queries.
Now, if (x, y) ∈ P ∩ S, then F (x, y) ∈ Π, which implies that Pr[TF (x,y)(ℓ) = 1] ≥ 1 − η, which
in turn implies that the parties output 1 with probability at least 1 − η. On the other hand, if
(x, y) ∈ P \ S, then F (x, y) is ǫ-far from Π, which implies that Pr[TF (x,y)(ℓ) = 0] ≥ 1 − η, which
in turn implies that the parties output 0 with probability at least 1 − η. Hence, in this case (and
assuming that T has query complexity Qη(ǫ,Π)), we get CCη(Ψ) ≤ B · Qη(ǫ,Π).

Turning to the main claim, we may assume that q ≤ n, since otherwise we can just use the
trivial communication protocol for Ψ (which has complexity n). Recall that if (x, y) ∈ P ∩ S, then
Pr[TF (x,y)(ℓ)=1] ≥ 1− η. However, the emulation of T is given access to bits that are each correct
only with probability 1− (η/n), and hence the probability that the protocol outputs 1 is at least
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1 − η − q · (η/n) ≥ 1 − 2η. On the other hand, if (x, y) ∈ P \ S, then Pr[TF (x,y)(ℓ) = 0] ≥ 1 − η.
Taking account of the errors in computing the fi’s, we conclude that the probability that the
protocol outputs 0 in this case is at least 1− 2η. The claim follows.

Corollary 3.2 (a special case of Theorem 3.1): Let Ψ = (P, S), Π, ǫ, η > 0, F , and the fi’s

be as in Theorem 3.1. Suppose that each fi(x, y) either depends on at most one bit of x (and
possibly some bits of y) or depends on at most one bit of y (and possibly some bits of x). Then,

Qη(ǫ,Π) ≥ CCη(Ψ)/2.

Proof: In this case CC0(fi) ≤ 2 for each i ∈ [ℓ], by letting the holder of the missing bit communicate
it to the other party, who responses with the value of fi. The claim follows by the furthermore
clause of Theorem 3.1.

Corollary 3.3 (the special case of “simple combining operator” [4]): Let Ψ = (P, S), Π, ǫ, η > 0,
F , and the fi’s be as in Corollary 3.2. Suppose that each fi(x, y) depends only on the ith bit of x
and the ith bit of y. Then, Qη(ǫ,Π) ≥ CCη(Ψ)/2.

Corollary 3.3, which is a special case of Corollary 3.2, is stated merely for sake of reference. We note
that the methodology as presented in [4] is slightly more general than Corollary 3.3, since it refers
to sequences over an arbitrary alphabet Σ (rather than to bit strings).5 For further discussion, see
Section 6.

4 Application to codeword testing

The applications presented in this section are (of course) negative ones: They are families of codes
for which codeword testing is extremely hard. Such families were known before (cf., e.g., [3]).6 The
following results can also be proved by using the restricted methodology as presented in [4] and
Corollary 3.3 (see discussion following the proof of Theorem 4.1), but we believe that deriving them
via the general methodology (i.e., using either Corollary 3.2 or Theorem 3.1) is simpler. Recall
that the rate of a code C : {0, 1}n → {0, 1}ℓ is n/ℓ, and its relative distance is d/ℓ such that every
two different codewords differ on at least d positions (i.e., for every x, y ∈ {0, 1}n such that x 6= y.
it holds that C(x) and C(y) disagree on at least d positions).

Theorem 4.1 (on the hardness of testing codewords in some codes): Let {Ψn = (Pn, Sn)}n∈N be

a family of communication problems such that Pn, Sn ⊆ {0, 1}
2n and for some constant η > 0 it

holds that CCη(Ψn) = Ω(n). Let {Cn : {0, 1}n → {0, 1}ℓ(n)}n∈N be a family of codes of constant

relative distance. Then, for some constant ǫ > 0, the query complexity of ǫ-testing the property

Π = {Πn}n∈N, where

Πn
def
= {Cn(x)Cn(y) : (x, y) ∈ Pn ∩ Sn}, (1)

is Ω(n). That is, Q(ǫ,Πn) = Ω(n).

5In that case, fi : Σ2n → Σ, and simple combining operators correspond to the case that each fi(x, y) depends
only on the ith symbol of x and the ith symbol of y. The assertion then is that Qη(ǫ, Π) ≥ CCη(Ψ)/2⌈log2 |Σ|⌉.

6In contrast, for locally testable codes (cf., e.g., [14, 9]), codeword testing is very easy.
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The property Π is quite artificial; it consists of the encoding of the input pairs (in Pn ∩ Sn) under
a code (of constant relative distance) that is applied to each input separately. The reduction
merely creates distance between pairs in Pn ∩ Sn and pairs in Pn \ Sn. Indeed, the elements of Π
are codewords of a code C ′ that has constant relative distance; that is, each (x, y) ∈ Pn ∩ Sn is
encoded by C ′

n(xy) = Cn(x)Cn(y). Also note that if C has constant rate, then so does C ′, beacuse
log2 |Pn ∩Sn| ≥ CCη(Ψn) = Ω(n). In any case, Theorem 4.1 asserts that, for the code C ′, codeword
testing requires Ω(n) queries. Recall that such codes were known before (cf., e.g., [3]), but the code
C ′ is definitely different (alas not necessarily more appealing).7 We believe that most readers will
find Theorem 4.2 more appealing than Theorem 4.1.

Proof: We invoke Corollary 3.2 while using F (x, y) = Cn(x)Cn(y) and noting that each bit in
F (x, y) either depends only on bits of x or depends only on bits of y. By Eq. (1), for every
(x, y) ∈ Pn ∩ Sn it holds that F (x, y) is in Πn. On the other hand, if (x, y) ∈ Pn \ Sn, then by
the distance of C it holds that F (x, y) is Ω(1)-far from Π. Specifically, if the relative distance
of C is δ, then F (x, y) must be δ/2-far from Πn (since at least one of the two codewords in
F (x, y) must be replaced). Indeed, Corollary 3.2 (“only”) implies Qη(δ/2,Πn) = Ω(n), but using
Q(δ/2,Πn) = Q1/3(δ/2,Πn) = Ω(Qη(δ/2,Πn)/ log(1/η)), we are done.

An alternative proof of Theorem 4.1. As stated up-front, Theorem 4.1 can be proved by
applying the communication complexity methodology as formulated in [4] (cf. Corollary 3.3). In
order to do this, we need to introduce an auxiliary communication complexity problem, which is
related to Ψ. Specifically, let Ψ′

n = (P ′
n, S′

n) be such that

P ′
n

def
= {(Cn(x)0ℓ(n), 0ℓ(n)Cn(y)) : (x, y) ∈ Pn}

S′
n

def
= {(Cn(x)0ℓ(n), 0ℓ(n)Cn(y)) : (x, y) ∈ Sn}.

(That is, x is replaced by Cn(x)0ℓ, whereas y is replaced by 0ℓCn(y).) First, note that CCη(Ψ
′
n) ≥

CCη(Ψn), since a communication protocol for Ψ is obtained by a straightforward emulation of any
communication protocol for Ψ′. Next, we shall reduce the communication problem Ψ′

n to δ/2-

testing Π, by using F ′(u, v)
def
= u⊕ v, where ⊕ denotes the bit-by-bit XOR of strings (which indeed

is a simple combining operator). Indeed, for every (u, v) ∈ P ′
n it holds that u = Cn(x)0ℓ(n) and

v = 0ℓ(n)Cn(y) for some x, y ∈ {0, 1}n, and so F ′(u, v) = u ⊕ v = Cn(x)Cn(y), which equals
the value of F (x, y) as defined in the proof of Theorem 4.1. Since F ′ falls within the restricted
framework of [4] (cf. Corollary 3.3), by their result Qη(δ/2,Πn) ≥ CCη(Ψ

′
n)/2. A similar comment

applies also to the following result.

Theorem 4.2 (more on the hardness of testing codewords in some codes): Let {Cn : {0, 1}n →
{0, 1}ℓ(n)}n∈N be a family of linear codes (i.e., Cn(x ⊕ y) = Cn(x) ⊕ Cn(y)) of constant relative

distance. Let wt(z) denote the Hamming weight of z; that is, wt(z) = |{i∈ [|z|] : zi =1}|. Then, for

some constant ǫ > 0 and any function k : N→ N such that k(n) is even and k(n) < n/2, the query

complexity of ǫ-testing the property

Πn
def
= {Cn(z) : z∈{0, 1}n ∧ wt(z)=k(n)} (2)

7The non-appealing aspect of C′ is that it encodes each of the two parts of the message separately. The appealing
aspect is that these two parts can be nicely related; for example, consider (Pn, Sn) = ({0, 1}2n, f−1(1)) such that
f : {0, 1}2n → {0, 1} is the inner product (mod 2), and use the communication complexity lower bound of [7].

7



is Ω(k(n)). That is, Q(ǫ,Πn) = Ω(k(n)).

Note that Πn is a code; actually, it is a sub-code of the (linear) code C. In the special case that C
is the Hadamard code, the property Πn is k(n)-linearity; that is, the codewords of the Hadamard
code corresponds to linear functions (from GF(2)n to GF(2)) and the codewords of Πn are k(n)-
linear (i.e., they are linear functions that depend on exactly k(n) variables). This special case of
Theorem 4.2 was proved in [4]. Interestingly, Theorem 4.2 reveals that the underlying phenomenon
is that Πn consists of the encoding, under a linear code, of all strings of a fixed Hamming weight.
(The linearity of the code Cn implies that the ith bit of Cn(x⊕ y) is determined by the ith bits of
Cn(x) and Cn(y).)

Proof: We reduce from the communication problem Set Disjointness, while using Theorem 3.1.

Specifically, we consider the k/2-disjointness problem, denoted {DISJ
(k)
n = (Pn, Sn)}n∈N, where

Pn, Sn ⊆ {0, 1}
2n such that (x, y) ∈ Pn if wt(x) = wt(y) = k(n)/2, and (x, y) ∈ Sn if (the

“intersection” set) I(x, y)
def
= {i ∈ [n] : xi = yi = 1} is empty. Thus, for every (x, y) ∈ Pn, it holds

that wt(x⊕ y) = k(n)− 2 · |I(x, y)|. We use F (x, y) = Cn(x⊕ y) and note that (by the linearity of
C) the ith bit of Cn(x⊕ y) = Cn(x)⊕Cn(y) can be computed by exchanging the ith bits of Cn(x)
and Cn(y).

Note that if (x, y) ∈ Pn∩Sn then F (x, y) ∈ Πn, since wt(x⊕y) = k(n), whereas if (x, y) ∈ Pn\Sn

then F (x, y) is Ω(1)-far from Πn, since wt(x ⊕ y) < k(n) (and C has constant relative distance).

The claimed lower bound follows by combining the celebrated result CC1/3(DISJ
(k)
n ) = Ω(k(n)),

which is implicit in [16] (see also [4, Lem. 2.6]), with Theorem 3.1.

Digest. While both Theorems 4.1 and 4.2 can be proved by applying the restricted methodology
of [4] (cf. Corollary 3.3) after introducing suitable auxiliary communication complexity problems,
our proofs avoid the introduction of such auxiliary problems. Instead, our proofs are based on
the existence of simple protocols for exchanging bits in the encoding of the inputs under error
correcting codes. Although these bits may depend on a linear number of bits in the original input,
each party can compute the relevant bit by itself. Indeed, exactly the same computations take place
when using the restricted methodology of [4] (cf. Corollary 3.3), but there these computations take
place in the reduction of the original communication problem to an auxiliary one (which must
be introduced in order to use the restricted methodology). When using the general methodology,
the foregoing computation take place in the communication protocols that demonstrate that each
bit in F (x, y) has low communication complexity, and this demonstration is performed without
introducing any auxiliary problem. We stress that the issue is not with these simple computations,
but rather with whether the lower bound proof requires the (explicit) introduction of auxiliary
communication problems.

5 Nonadaptive testers and one-way communication

Following [4], we also present a version of the method that relates the complexity of nonadaptive
testers to the communication complexity of one-way protocols.

One-way communication complexity. In one-way communication protocols the first party
sends a single message to the second party, who is the only party that produces an output. Thus,
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it is natural to denote the outcome of such a protocol by B(y, r,A(x, r)), where A and B are the
algorithms employed by the two parties (and x, y, r are the private inputs and the shared random-
ness, respectively, as in Definition 2.1). For Ψ = (P, S) as in Definition 2.1, the η-error one-way

communication complexity of Ψ, denoted ~CCη(Ψ), is the minimum communication complexity of all
one-way protocols that solve Ψ with error at most η.

Nonadaptive testers. A nonadaptive oracle machine is one that determines all its queries based
solely on its explicit input and its internal coin tosses, as opposed to a general (adaptive) oracle
machine that may select its queries based also on the answers to prior queries. The η-error non-

adaptive query complexity of ǫ-testing Π, denoted Qna
η (ǫ,Π), is the minimum query complexity of all

nonadaptive ǫ-testers with error η for Π.

Theorem 5.1 (Theorem 3.1, revised for nonadaptive testers vs one-way communication): Let

Ψ = (P, S), Π, ǫ, η > 0, F , and the fi’s be as in Theorem 3.1. Then, Qna
η (ǫ,Π) ≥ ~CC2η(Ψ)/B, where

B = maxi∈[ℓ]{ ~CCη/n(fi)}. Furthermore, if B = maxi∈[ℓ]{ ~CC0(fi)}, then Qna
η (ǫ,Π) ≥ ~CCη(Ψ)/B.

Again, the main result in [4] uses a mapping F such that each fi(x, y) is a function of the ith bits
of x and y. Indeed, in that case, ℓ = n and B = 1, by the straightforward one-way protocol in
which the first party sends the relevant bit (i.e., xi) to the second party. (The recent work of [5]
refers to the general case of B = 1.)

Proof: We merely adapt the proof of Theorem 3.1: Given a nonadaptive ǫ-tester with error η
for Π and one-way communication protocols for the fi’s, we present a one-way protocol for solving
Ψ. Using their shared randomness, each of the two parties determines the (nonadaptive) queries
of the tester, and the first party communicates to the second party the information it needs in
order to determine the oracle’s answers to the tester. Specifically, if position i is included in the
set of nonadaptive queries, then the first party employs the one-way communication protocol for
fi, which results in sending a message that allows the second party to determine fi(x, y). Using
these answers, the second party obtains the verdict of the tester, and outputs it. (Indeed, only the
second party invokes the decision-making module of the tester and obtains its verdict.)8 The rest
of the analysis proceeds as in the proof of Theorem 3.1, under the obvious modifications.

Nonadaptive testers and simultaneous communication complexity. David Woodruff sug-
gested to replace one-way communication in Theorem 5.1 by simultaneous communication. The
model of simultaneous communication protocols consists of three parties such that only two parties
obtain inputs, whereas (only) the third party (called the referee) produces the output. Communi-
cation is unidirectional from each of the two input-holding parties to the referee: Based on its own
local input (and the shared randomness), each party sends a (single) message to the referee, who

8Formally, a nonadaptive tester T consists of a pair of algorithms, Q and D, which use the same randomness,
such that Q determines the tester’s query and D its decision given the corresponding answers; that is, T z(r) =
D(r, zi1 , ..., ziq ), where (i1, ..., iq) = Q(r). In our one-way communication protocol each of the two parties locally
determines (i1, ..., iq) = Q(r0), then, for each j ∈ [q], the first party sends to the second party the message required for
the computation of fij

(x, y), and finally (after computing all the fij
(x, y)’s) the second party invokes D and outputs

D(r0, fi1(x, y), ..., fiq (x, y)).
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then produces the output (based also on the joint randomness).9 Thus, it is natural to denote the
outcome of such a protocol by R(r,A(x, r), B(y, r)), where A and B are the algorithms employed
by the two input-holding parties and R is the algorithm employed by the referee. For Ψ = (P, S)
as in Definition 2.1, the η-error simultaneous communication complexity of Ψ, denoted C̈Cη(Ψ), is the
minimum communication complexity of all simultaneous protocols that solve Ψ with error at most
η. Note that ~CCη(Ψ) ≤ C̈Cη(Ψ), since the second party (in the one-way communication model) can
emulate the referee (of the simultaneous communication model).

Theorem 5.2 (Theorem 3.1, revised for nonadaptive testers vs simultaneous communication): Let

Ψ = (P, S), Π, ǫ, η > 0, F , and the fi’s be as in Theorem 3.1. Then, Qna
η (ǫ,Π) ≥ C̈C2η(Ψ)/B, where

B = maxi∈[ℓ]{C̈Cη/n(fi)}. Furthermore, if B = maxi∈[ℓ]{C̈C0(fi)}, then Qna
η (ǫ,Π) ≥ C̈Cη(Ψ)/B.

Strictly speaking, Theorem 5.2 is not stronger than Theorem 5.1, but we do expect it to be more
useful (since the possibility of C̈Cη(Ψ) ≫ ~CCη(Ψ) seems more promising than the potential cost of
C̈Cη(fi) ≥ ~CCη(fi)).

Proof: We merely adapt the proof of Theorem 5.1, replacing one-way protocols by simultaneous
ones. Given a nonadaptive ǫ-tester with error η for Π and simultaneous communication protocols
for the fi’s, we present a simultaneous protocol for solving Ψ. Again, using their shared randomness,
each of the three parties determines the (nonadaptive) queries of the tester, and each of the two
input-holding parties communicates to the referee the information it needs in order to determine
the oracle’s answers to the tester. Specifically, if position i is included in the set of nonadaptive
queries, then each input-holding party employs the simultaneous communication protocol for fi,
which results in sending a message to the referee, who upon receiving these two messages (and
having determined i) determines the value of fi(x, y). (Indeed, only the referee invokes the decision-
making module of the tester, feeds it with all the answers it has determined, and obtains its verdict.)
The rest of the analysis proceeds as in the proofs of Theorems 3.1 and 5.1, under the obvious
modifications.

6 Ramifications: one-sided error and non-binary alphabets

In this section, we briefly comment on two ramifications, which have appeared in [4].

6.1 One-sided error versions

One-sided error testers are testers that are allowed no error when the object has the property; that
is, if T is a one-sided error tester for Π, then for every z ∈ Π it holds that Pr[T z(ℓ) = 1] = 1.
(Error probability is only allowed in the case that z 6∈ Π.) Deriving lower bounds for such testers
via the communication complexity methodology requires referring to the corresponding one-sided
error version of communication complexity. That is, we shall consider communication protocols for
(P, S) such that for every (x, y) ∈ P ∩ S it holds that Prr∈{0,1}ρ [〈A(x), B(y)〉(r) = 1] = 1. In this

9It is crucial that the two input-holding parties have access to the same shared randomness, since they cannot
communicate with one another. In contrast, it is less essential that the referee also has access to this shared random-
ness, since one of the input-holding parties can send it along while relying on the fact that the randomness can be
made logarithmic in the input length (cf. [19, Thm. 3.14]).
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case we may only use zero-error communication protocols for computing the fi’s.
10 For sake of

clarity, we state the (main) corresponding result.

Theorem 6.1 (Theorem 3.1, revised for one-sided error): Let Ψ = (P, S), Π, ǫ, η > 0, F , and the

fi’s be as in Theorem 3.1. Then, the one-sided η-error query complexity of ǫ-testing Π is at least

1/B times the one-sided η-error communication complexity of Ψ, where B = maxi∈[ℓ]{CC0(fi)}.

By one-sided η-error query (resp., communication) complexity, we mean the complexity of one-sided
error testers (resp., protocols) that have error probability at most η on the “no-instances”.

6.2 Non-binary alphabets

So far, our treatment of the subject-matter referred to computational problems over binary strings.
Clearly, any computational problem over other alphabets can be restated via binary alphabets, but
sometimes the former formulation is more appealing. This holds, in particular, for property testing
problems. Examples include testing low-degree polynomials (cf. [23]), testing graph properties in
the bounded-degree model (cf. [13]), and testing monotonicity over general range (cf. [6]). Thus, we
may consider properties and communication problems that refer to sequences over some alphabet
Σ, rather that over a binary alphabet. The problem, however, is that the communication protocols
themselves need not respect the “integrity of the alphabet” (i.e., messages are arbitrary functions
of the input, regardless of the alphabet in which the latter is encoded). (Things are, of course,
different in the context of property testing: The tester’s queries must respect the input format.)

Given this state of affairs, it seems that we gain little by a general treatment. Instead, when
studying a property that refer to object that are encoded as sequences over Σ, we may consider
their encoding as binary strings (which means that we lose a factor of log2 |Σ| in the query lower
bounds that we derive (see below)). When using the trivial encoding, we also lose in the value of
the proximity parameter for which the lower bound hold, but this loss may be reduced to a constant
by using encoding via a good error correcting code. Details follow.

Suppose that we wish to establish a lower bound for ǫ-testing a property Π of objects that are
encoded as sequences over Σ, and suppose that we have a reduction F from some communication
problem to testing Π ⊆ Σℓ. Then, we may consider the corresponding binary property Π′ (i.e.,
Π′ = {(C(z1), ..., C(zℓ)) : (z1, ..., zℓ) ∈ Π}, where C : Σ → {0, 1}O(log |Σ|) is a good code), and the
corresponding reduction F ′ (which encodes the F -values under this C). Now, if F (x, y) ∈ Π then
F ′(x, y) ∈ Π′, whereas if F (x, y) is ǫ-far from Π then F ′(x, y) is ǫ′-far from Π′, where ǫ′ = Ω(ǫ).
Hence, we derive a lower bound on Q(ǫ′,Π′), which yields a lower bound on Q(ǫ′,Π); that is,
Q(ǫ′,Π) ≥ Q(ǫ′,Π′)/O(log |Σ|).

We stress that the foregoing discussion refers to the general formulation as presented in Theo-
rem 3.1. In contrast, in the context of the special case of Corollary 3.3 (as presented in [4]) there
is a benefit in directly treating arbitrary alphabet (as indeed done in [4]), since this allows for a
less restricted notion of simple combining operators. Recall that the formulation in [4] requires
that each symbol in F (x, y) can be computed as a function of the corresponding symbols of x and
y. When we view F (x, y) as a binary string, this means that the ith bit of F (x, y) is a function
of xi and yi only. But if we view F (x, y) as a sequence over Σ (or as binary strings partitioned
into O(log |Σ|)-bit long blocks), then this means that each bit in the description of the ith symbol

10The point is that in this case we cannot afford any error, regardless of the value of fi(x, y).
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(resp., ith block) of F (x, y) may depend on all bits in the description of the ith symbol of x and the
ith symbol of y (resp., on all bits in the ith blocks of x and y).

7 On emulating the general formulation by the restricted one

In this section we show that the restricted formulation of [4] (via simple combination operators,
cf. Corollary 3.3) can emulate the general formulation as captured by Theorem 3.1. The emulations
we present come at the cost of some degradation in the parameters obtained, but this degradation
is relatively small. Furthermore, as will become apparent throughout our proof, the degradation
is even smaller in some special cases. In fact, we find it useful to present the proof by going from
special cases to more general cases.

Before stating our most general result (i.e., Theorem 7.1), we make a couple of tedious com-
ments. First, we assume for simplicity that η ≥ ǫ. While this seems the most relevant case (e.g.,
typically one considers η = 1/3), the result generalizes to arbitrary η > 0 (while replacing some
log(1/ǫ) factors by log(1/η) factors). Second, we restrict ourselves to ǫ′ = Ω̃(1/n), and note that
the case of ǫ′ ∈ (0, Ω̃(1/n)] is uninteresting (in light of the application of Theorem 7.1).11 Lastly, we
stress that the constants hidden in the Õ-notation are universal constants, which are independent
of all the parameters that appear in the statement of the result.

Theorem 7.1 (emulating Theorem 3.1 via simple combining operators): Let Ψ = (P, S), Π ⊆
{0, 1}ℓ, η ≥ ǫ > 0, F : {0, 1}2n → {0, 1}ℓ, and the fi’s be as in Theorem 3.1.12 Suppose that

B = maxi∈[ℓ]{CCη/n(fi)}, which implies Qη(ǫ,Π) ≥ CC2η(Ψ)/B (by the main part of Theorem 3.1).
Then, there exists a communication problem Ψ′ = (P ′, S′) such that CCη(Ψ

′) ≥ CCη(Ψ) and a

property Π′ such that

Qη(ǫ
′,Π) ≥

Qη(ǫ
′/2,Π′)− Õ(B/ǫ′)

Õ(B) · log(Qη(ǫ′/2,Π′)/η)

(for every ǫ′ = Ω̃(1/n)), whereas Ψ′ and Π′ are related as follows:

1. For every (u, v) ∈ P ′ ∩ S′, it holds that u⊕ v ∈ Π′.

2. For every (u, v) ∈ P ′ \ S′, it holds that u⊕ v is Ω(ǫ)-far from Π′.

This means that whenever Qη(ǫ,Π) ≥ CC2η(Ψ)/B is established by Theorem 3.1, when using

B = maxi∈[ℓ]{CCη/n(fi)}, we can (roughly) establish Qη(Ω(ǫ),Π) = Ω̃(CCη(Ψ))/B by using the
formulation as presented in [4] (cf. Corollary 3.3). This alternative derivation uses the mapping
F ′(u, v) = u⊕ v, and proceeded as follows:

Qη(Ω(ǫ),Π) ≥
Qη(Ω(ǫ),Π′)− Õ(B/ǫ)

Õ(B) · log(Qη(Ω(ǫ),Π′)/η)

11In that application, we derive a lower bound on Qη(Ω(ǫ), Π). This lower bound is smaller than CCη(Ψ)− eO(1/ǫ),
which in turn is negative in the case of ǫ ≤ poly(log n)/n.

12Recall that this means that Ψ = (P, S) is a promise problem such that P, S ⊆ {0, 1}2n, that Π ⊆ {0, 1}ℓ is a
property, and that the mapping F : {0, 1}2n → {0, 1}ℓ satisfies the following two conditions:

1. For every (x, y) ∈ P ∩ S, it holds that F (x, y) ∈ Π.

2. For every (x, y) ∈ P \ S, it holds that F (x, y) is ǫ-far from Π.

Lastly, fi(x, y) denotes the ith bit of F (x, y).
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≥
CCη(Ψ

′)− Õ(B/ǫ)

Õ(B) · log(CCη(Ψ′)/η)

≥
CCη(Ψ)− Õ(B/ǫ)

Õ(B) · log(CCη(Ψ)/η)

where the first and third inequalities use Theorem 7.1, the second inequality is by [4] (cf. Corol-
lary 3.3).13 The lower bound derived this way is quantitatively inferior to the one derived by
Theorem 3.1. In particular, in the denominator B is replaced by Õ(B) · log CCη(Ψ), and the lower
bound refers to a smaller value of the proximity parameter (i.e., Ω(ǫ) rather than ǫ). However, when
we aim at large values of CC2η(Ψ)/B, the loss of factors of the form of log CC2η(Ψ) (and log B) seems

relatively small. In any case, the additive loss of Õ(B/ǫ) in the numerator is typically insignificant,
since we typically aim at much higher lower bounds.

Organization of the proof. Theorem 7.1 is proved in three steps. We shall start with the special
case in which each fi can be expressed as di(gi(x), hi(y)), where |gi(x)|, |hi(y)| ≤ B/2. Indeed, in
this case CC0(fi) ≤ B, via the straightforward protocol in which the parties exchange gi(x) and
hi(y).14 We shall then move to the special case where CC0(fi) ≤ B (i.e., the case of arbitrary
deterministic protocols), and end with the general case (i.e., CCη/n(fi) ≤ B).

In each step, we shall introduce an auxiliary communication problem Ψ′ and an auxiliary prop-
erty Π′, and establish three relations of the type asserted in the theorem: (1) a relation between the
communication complexity problems (i.e., Ψ′ and Ψ), (2) a relation between the property testing
problems (i.e., Π′ and Π), and (3) a relation between the auxiliary problems (i.e., Ψ′ and Π′).

7.1 Step 1: A syntactic special case

We start by considering the special case in which for every i ∈ [ℓ] it holds that fi(x, y) =
di(gi(x), hi(y)), where |gi(x)|, |hi(y)| ≤ B/2 and di :

⋃
j,k≤B/2{0, 1}

j+k → {0, 1}, which implies
Qη(ǫ,Π) ≥ CCη(Ψ)/B (by the furthermore clause of Theorem 3.1). This special case will provide a
good warm-up to the general case. In this case we shall prove

Proposition 7.2 (warm-up): Let Ψ = (P, S), Π ⊆ {0, 1}ℓ, η ≥ ǫ > 0, F : {0, 1}2n → {0, 1}ℓ, and

the fi’s be as in Theorem 3.1, and suppose hat fi(x, y) = di(gi(x), hi(y)), where |gi(x)|, |hi(y)| ≤ B/2
Then, there exists a communication problem Ψ′ = (P ′, S′) such that CCη(Ψ

′) ≥ CCη(Ψ) and a

property Π′ such that Qη(ǫ
′,Π) ≥ Qη(ǫ

′,Π′)/B, whereas Ψ′ and Π′ are related as follows:

1. For every (u, v) ∈ P ′ ∩ S′, it holds that u⊕ v ∈ Π′.

2. For every (u, v) ∈ P ′ \ S′, it holds that u⊕ v is ǫ/B-far from Π′.

This means that whenever Qη(ǫ,Π) ≥ CCη(Ψ)/B is established by Theorem 3.1, when using fi’s
of the above form, we can establish Qη(ǫ/B,Π) ≥ CCη(Ψ)/2B by using the restricted formulation
via simple combining operators as presented in [4] (cf. Corollary 3.3). Note that there is some

13We also use the fact that x ≥ y implies x−β
log(x/η)

≥ y−β
O(log(y/η))

, provided that x≫ β and x≫ exp(Ω(1/η)), which

we may assume (since otherwise the last bound is useless).
14Actually, CC0(fi) ≤ (B/2) + 1, via the straightforward protocol in which the first party sends v ← gi(x) to the

second party, who replies with di(v, hi(y)).
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degradation in the parameters also in this special case: The main issue is not that B is replaced
by 2B, but rather than the lower bound refers to a smaller value of the proximity parameter (i.e.,
ǫ/B rather than ǫ). We shall address this issue when discussing the general case (in Section 7.3).

Proof: We start with a few simplifying assumptions, which hold without loss of generality up to
some degradation in some parameters.

1. F is non-shrinking (i.e., ℓ ≥ 2ℓ); actually, ℓ ≥ n suffices for our purposes.

Otherwise, for m
def
= ⌈n/ℓ⌉, consider the property Π(m) def

= {zm : z ∈ Π} and the mapping
(x, y) 7→ F (x, y)m, which satisfy the conditions of the theorem (and of the current case).
Lower bounds on the query complexity of testing Π(m) imply similar bounds for Π, because
Qη(2ǫ,Π

(m)) ≤ Qη(ǫ,Π)+O(ǫ−1 log(1/η)), because we can test Π(m) by combining a tester for
Π and a repetition test.15

2. The mappings x 7→ (g1(x), ..., gℓ(x)) and y 7→ (h1(y), ..., hℓ(y)) are one-to-one.

Replying on the first assumption (i.e., n ≤ ℓ), for each i ∈ [n], we append xi to gi(x); that is,
we redefine gi(x)← gi(x)xi. Ditto for yi and hi(y).

3. For each i ∈ [ℓ], it holds that |gi(x)| = |hi(y)| = B/2. Furthermore, not all B/2-bit long
strings are in the image of gi, and ditto for hi.

We use a standard encoding of
⋃

j∈[B′]{0, 1}
i by (B′ + 1)-bit long strings (e.g., encoding the

string s by s10B′−|s|). Again, this means redefining gi’s and hi’s.

4. For each i ∈ [ℓ], the predicate di : {0, 1}B → {0, 1} is onto.

Using the assumption that not all B/2-bit long strings are in the image of gi and ditto for hi,
we can modify di on a pair that is not in the image of (hi, gi) without affecting the conditions
of the theorem (and of the current case).

We now turn to the construction of Ψ′ and Π′. First, we define Ψ′ = (P ′, S′) such that

P ′ def
= {(g1(x) · · · gℓ(x)0ℓB/2, 0ℓB/2h1(y) · · · hℓ(y)) : (x, y) ∈ P} (3)

S′ def
= {(g1(x) · · · gℓ(x)0ℓB/2, 0ℓB/2h1(y) · · · hℓ(y)) : (x, y) ∈ S}. (4)

Note that CCη(Ψ) ≤ CCη(Ψ
′), since a protocol for Ψ can proceed by emulating the protocol for Ψ′.

Specifically, on input x the first party computes g1(x) · · · gℓ(x)0ℓB/2, and likewise the second party
computes 0ℓB/2h1(y) · · ·hℓ(y). By the one-to-one feature of these mappings (i.e., Assumption 2),
the answer obtained for Ψ′ is valid for Ψ.

Next, we introduce the property Π′ ⊆ {0, 1}Bℓ. For every a1, ..., aℓ, b1, ..., bℓ ∈ {0, 1}
B/2 the

string a1 · · · aℓb1 · · · bℓ is in Π′ if and only if it holds that d1(a1, b1) · · · dℓ(aℓ, bℓ) ∈ Π. That is:

Π′ def
= {a1 · · · aℓb1 · · · bℓ : d1(a1, b1) · · · dℓ(aℓ, bℓ) ∈ Π}. (5)

Claim 7.2.1 (relating Π′ to Π): Let Π′ be as in Eq. (5). Then, Qη(ǫ
′,Π′) ≤ B · Qη(ǫ

′,Π).

15Note that if a string is ǫ-far from Π(m), then either the first block is ǫ-far from Π, or the other blocks are ǫ-far
from a repetition of the first block. In the first case the original tester rejects (w.p. at least 1− η), and in the second
case the repetition test rejects (w.p. at least 1− η).
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Proof: Basically, an ǫ′-tester for Π′ can just emulate the execution of an ǫ′-tester for Π while
answering each query i ∈ [ℓ] by reading the two corresponding B/2-bit long blocks in its oracle.
Specifically, using an ǫ′-tester T for Π, we construct an tester for Π′ that emulates the virtual
oracle d1(a1, b1) · · · dℓ(aℓ, bℓ) for T by accessing its own oracle a1 · · · aℓb1 · · · bℓ (i.e., query i ∈ [ℓ] in
answered by reading ai and bi). Hence, each query of T is answered by making 2 · (B/2) oracle
queries. Now, if a1 · · · aℓb1 · · · bℓ ∈ Π′, then it must be that d1(a1, b1) · · · dℓ(aℓ, bℓ) ∈ Π, and so our
tester accepts (with probability at least 1− η). On the other hand, if a1 · · · aℓb1 · · · bℓ is ǫ′-far from
Π′, then d1(a1, b1) · · · dℓ(aℓ, bℓ) is ǫ′-far from Π, because otherwise it suffices to change less than ǫℓ
of the (ai, bi)-pairs in order to obtain a string in Π′ (where here we use the hypothesis that di is
onto (i.e. Assumption 4)). The claim follows.

Finally, consider F ′ : {0, 1}2·Bℓ → {0, 1}Bℓ such that F ′(u, v) = u⊕ v.

Claim 7.2.2 (relating Ψ′ to Π′): Let Ψ′ be as in Eq. (3) & (4) and Π′ be as in Eq. (5). Then:

1. For every (u, v) ∈ P ′ ∩ S′ it holds that F ′(u, v) ∈ Π′.

2. For every (u, v) ∈ P ′ \ S′ it holds that F ′(u, v) is ǫ/B-far from Π′.

Proof: The key observation is that for every (u, v) ∈ P ′, it holds that u = u′0ℓB/2 and v = 0ℓB/2v′,
and so F ′(u, v) = u ⊕ v = u′v′. Furthermore, in that case there exists (x, y) ∈ P such that
u′ = g1(x) · · · gℓ(x) and v′ = h1(y) · · · hℓ(y). Using the hypothesis that the mapping (x, y)→ (u, v)
is one-to-one (i.e., Assumption 2), we infer that this (x, y) is unique.

Now, if (u, v) ∈ P ′ ∩ S′, then the aforementioned (x, y) must be in P ∩ S, and it follows that
F (x, y) ∈ Π (by the hypothesis of Theorem 3.1 regarding F (reproduced in Footnote 12)). It follows
that F ′(u, v) = u′v′ ∈ Π′, because u′v′ = g1(x) · · · gℓ(x)h1(y) · · · hℓ(y), whereas for each i ∈ [ℓ] it
holds that di(gi(x), hi(y)) is the ith bit in F (x, y).

Having established Item 1, we turn to Item 2: We observe that if (u, v) ∈ P ′ \ S′, then the
aforementioned (x, y) must be in P \S, and it follows that F (x, y) is ǫ-far from Π (by the theorem’s
hypothesis regarding F ). In this case, F ′(u, v) = g1(x) · · · gℓ(x)h1(y) · · · hℓ(y) such that for each
i ∈ [ℓ] it holds that di(gi(x), hi(y)) is the ith bit in F (x, y). Given that F (x, y) is ǫ-far from Π (i.e.,
F (x, y) differs in at least ǫℓ positions from any ℓ-bit string in Π), it follows that for at least ǫℓ of
the i ∈ [ℓ] at least one of the corresponding strings (i.e., gi(x) and hi(y)) must be modified to place
the Bℓ-bit long string in Π′. Hence, F ′(u, v) is (ǫℓ/Bℓ)-far from Π′.

Combining Claims 7.2.1 and 7.2.2, this completes the proof of the current proposition (i.e., the
special case in which the fi’s are of the form di(gi(x), hi(y))).

Digest. We have established Theorem 7.1 for the special case of fi’s of the form di(gi(x), hi(y)).
This was done by introducing an auxiliary communication protocol in which the input pair (x, y)
is replaced by (g1(x) · · · gℓ(x)0ℓB/2, 0ℓB2/h1(y) · · · hℓ(y)), where the padding was done so that the
bib-by-bit XOR of the two inputs results in g1(x) · · · gℓ(x)h1(y) · · · hℓ(y)). The latter format allows
for locally computing F (x, y) = di(g1(x), h1(y)) · · · dℓ(gℓ(x), hℓ(y)) in the sense that each bit in
F (x, y) can be computed by accessing B of the bits in g1(x) · · · gℓ(x)h1(y) · · · hℓ(y)) (i.e., the ith bit
is determined by gi(x) and hi(y)). The overhead of the argument is that the proximity parameter
(for which a testing lower bound could be inferred) was cut by a factor of B.

In the general case, we shall replace the gi(x)’s (resp., hi(y)’s) by descriptions of residual
strategies for the first (resp., second) in the guaranteed low complexity protocols for computing the
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fi’s, where the residual strategies refer to a fixed value of x (resp., y). In the case of deterministic
protocols of complexity B (to be treated in Section 7.2), such strategies will have exp(B)-length, and
the overhead will be accordingly. Things will become worse when handling randomized strategies
(in Section 7.3), but using locally testable and decodable codes will resolve the issue.

7.2 Step 2: The case of deterministic protocols

We now turn to the more general case of Theorem 7.1 in which the bound B is guaranteed by
arbitrary deterministic protocols (i.e., B = maxi∈[ℓ]{CC0(fi)}).

Proposition 7.3 (the deterministic case): Let Ψ = (P, S), Π ⊆ {0, 1}ℓ, η ≥ ǫ > 0, F : {0, 1}2n →
{0, 1}ℓ, and the fi’s be as in Theorem 3.1, and suppose that B = maxi∈[ℓ]{CC0(fi)}. Then, there

exists a communication problem Ψ′ = (P ′, S′) such that CCη(Ψ
′) ≥ CCη(Ψ) and a property Π′ such

that Qη(ǫ
′,Π) ≥ Qη(ǫ

′,Π′)/B, whereas Ψ′ and Π′ are related as follows:

1. For every (u, v) ∈ P ′ ∩ S′, it holds that u⊕ v ∈ Π′.

2. For every (u, v) ∈ P ′ \ S′, it holds that u⊕ v is ǫ/2B-far from Π′.

This means that whenever Qη(ǫ,Π) ≥ CCη(Ψ)/B is established by Theorem 3.1, when using B =
maxi∈[ℓ]{CC0(fi)}, we can establish Qη(ǫ/2

B ,Π) ≥ CCη(Ψ)/2B by using the formulation as presented
in [4] (cf. Corollary 3.3). Again, the parameters of the derived lower bound are somewhat weaker:
The main issue is not that B is replaced by 2B, but rather than the lower bound refers to a
smaller value of the proximity parameter (i.e., ǫ/2B rather than ǫ). The decrease in the value of
the proximity parameter is far more acute than in Section 7.1. In particular, when B > log2 ℓ,
the alternative derivation only yields a result that refers to the query complexity of exact decision
(since the value of the proximity parameter is smaller than 1/ℓ, where ℓ is the input length). This
deficiency can be fixed by an idea that is presented in the treatment of the general case, which
will follow (see Section 7.3).16 But here we focus on the construction of Ψ′ and Π′ that satisfy the
foregoing (somewhat deficient) claim.

Proof: By the hypothesis, for every i ∈ [ℓ], there exists a deterministic two-party protocol of
communication complexity at most B for computing fi. Let Ai and Bi denote the corresponding
strategies of the two parties, and let Ax

i = Ai(x) and By
i = Bi(y) denote the residual strategies for

local inputs x and y, respectively. That is, Ax
i (γ) denotes the answer of the first party, holding

input x, to a message-sequence γ sent by the second party (ditto for By
i ).17

We make the simplifying assumption that the mappings x 7→ (Ax
1 , ..., Ax

ℓ ) and y 7→ (By
1 , ..., By

ℓ )
are one-to-one, where the justification is that Ax

i may start by sending xi (and ditto for By
i , with

ℓ ≥ n justified as in Section 7.1). Let 〈Ax
i 〉 (resp., 〈By

i 〉) denote a canonical 2B−1-bit long description
of the strategy Ax

i (resp., By
i ) such that the value of Ax

i (γ) (resp., By
i (γ)) appears in a specific bit

location in 〈Ax
i 〉 (resp., 〈By

i 〉), where this location only depends on γ. Now, define Ψ′ = (P ′, S′)

16Specifically, we refer to the use of the encoding of the parties’ strategies by suitable error correcting codes.
17It is standard to assume that the parties interact by sending single-bit messages and that the first party starts.

In such a case, Ax
i will be defined for strings of length at most (B − 1)/2, including the empty string, while By

i will
be defined for

S

j∈[B/2]{0, 1}j . In general, the situation may be more complex, but in all cases the length of the

description of each of the two strategies is at most 2B−1.
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such that

P ′ def
= {(〈Ax

1〉 · · · 〈A
x
ℓ 〉0

2B−1ℓ, 02B−1ℓ〈By
1 〉 · · · 〈B

y
ℓ 〉) : (x, y) ∈ P} (6)

S′ def
= {(〈Ax

1〉 · · · 〈A
x
ℓ 〉0

2B−1ℓ, 02B−1ℓ〈By
1 〉 · · · 〈B

y
ℓ 〉) : (x, y) ∈ S}. (7)

Note that CCη(Ψ) ≤ CCη(Ψ
′), since a protocol for Ψ can proceed by emulating the protocol for Ψ′.

Specifically, on input x the first party computes 〈Ax
1〉 · · · 〈A

x
ℓ 〉0

2B−1ℓ, and likewise the second party

computes 〈By
1 〉 · · · 〈B

y
ℓ 〉0

2B−1ℓ. By the one-to-one feature of these mappings (see above), the answer
obtained for Ψ′ is valid for Ψ.

Let (α, β) be a pair of residual strategies (as considered above) for a two-party communication
protocol. We say that (α, β) produce the bit σ if emulating the interaction between these strate-
gies yields the (joint) outcome σ. The emulation proceeds by determining the first message sent
according to α, then determining the response according to β, and so on.

Next, we introduce the property Π′ ⊆ {0, 1}2
B ℓ. For every a1, ..., aℓ, b1, ..., bℓ ∈ {0, 1}

2B−1
the

string a1 · · · aℓb1 · · · bℓ is in Π′ if and only if for every i ∈ [ℓ] it holds that (ai, bi) describes a pair
of strategies that produce the output bit wi and w = w1 · · ·wℓ ∈ Π. Denoting the bit produced by
these descriptions by P(ai, bi), we have

Π′ def
= {a1 · · · aℓb1 · · · bℓ : P(a1, b1) · · · P(aℓ, bℓ) ∈ Π}. (8)

(Note the similarity to Eq. (5). Likewise, the following two claims are similar to the claims made
in Section 7.1, and their proofs amount to natural extensions of the arguments made there.)

Claim 7.3.1 (relating Π′ to Π): Let Π′ be as in Eq. (8). Then, Qη(ǫ
′,Π′) ≤ B · Qη(ǫ

′,Π).

Proof: Using an ǫ′-tester T for Π, we construct an ǫ′-tester for Π′ by emulating the execution of T .
Specifically, if T makes the query i ∈ [ℓ], then we access the ith pair of strategies included in our
own oracle, denoted z (i.e., for z = a1 · · · aℓb1 · · · bℓ, this means accessing ai and bi). By making B
queries to these strategies, we emulate the computation of the ith bit in a virtual ℓ-bit string tested
by T (i.e., the string P(a1, b1) · · · P(aℓ, bℓ)). Specifically, we need only determine the value of the
B bits that are exchanged in the interaction between the strategies ai and bi, rather than the full
description of ai and bi. (Recall that each of these communicated bits appears as an explicit bit in
the corresponding full description of the strategy.)

Note that when given oracle access to z = a1 · · · aℓb1 · · · bℓ, we emulate a computation of T by
providing it with oracle access to the virtual string P(a1, b1) · · · P(aℓ, bℓ). Now, if z ∈ Π′, then (by
definition) the corresponding virtual string is in Π. On the other hand, if z is ǫ′-far from Π′, then
the virtual string must be ǫ′-far from Π, because otherwise it suffices to modify less than ǫ′ℓ pairs
of strategies in order to produce a string in Π (which contradicts the hypothesis that z is ǫ′-far
from Π′).18

Finally, consider F ′ : {0, 1}2
B+1ℓ → {0, 1}2

B ℓ such that F ′(u, v) = u⊕ v.

Claim 7.3.2 (relating Ψ′ to Π′): Let Ψ′ be as in Eq. (6) & (7) and Π′ be as in Eq. (8). Then:

1. For every (u, v) ∈ P ′ ∩ S′ it holds that F ′(u, v) ∈ Π′.

18This uses the fact that P : {0, 1}2
B

→ {0, 1} is onto.
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2. For every (u, v) ∈ P ′ \ S′ it holds that F ′(u, v) is ǫ/2B-far from Π′.

Proof: As in the proof of Claim 7.2.2, for every (u, v) ∈ P ′ it holds that u = u′02B−1ℓ and

v = 02B−1ℓv′, and so F ′(u, v) = u ⊕ v = u′v′. Also, in this case, there exists a unique (x, y) ∈ P
such that u′ = 〈Ax

1〉 · · · 〈A
x
ℓ 〉 and v′ = 〈By

1 〉 · · · 〈B
y
ℓ 〉.

If (u, v) ∈ P ′ ∩ S′, then the aforementioned (x, y) must be in P ∩ S, and it follows that
F (x, y) ∈ Π (by the hypothesis of Theorem 3.1 regarding F (reproduced in Footnote 12)). It
follows that F ′(u, v) = u′v′ ∈ Π′, because u′ = 〈Ax

1〉 · · · 〈A
x
ℓ 〉 and v′ = 〈By

1 〉 · · · 〈B
y
ℓ 〉, whereas for

each i ∈ [ℓ] it holds that Ax
i and By

i produce the ith bit in F (x, y) ∈ Π.
Having established Item 1, we turn to Item 2: If (u, v) ∈ P ′ \S′, then the aforementioned (x, y)

must be in P \S, and it follows that F (x, y) is ǫ-far from Π (by the theorem’s hypothesis regarding
F ). In this case F ′(u, v) = 〈Ax

1〉 · · · 〈A
x
ℓ 〉〈B

y
1 〉 · · · 〈B

y
ℓ 〉, where for each i ∈ [ℓ] it holds that Ax

i and
By

i produce the ith bit in F (x, y). Given that F (x, y) is ǫ-far from Π (i.e., F (x, y) differs in at least
ǫℓ positions from any ℓ-bit string in Π), it follows that for at least ǫℓ of the i ∈ [ℓ] at least one of
the corresponding strategies (i.e., Ax

i and By
i ) must be modified to place the 2Bℓ-bit long string in

Π′. Hence, F ′(u, v) is (ǫℓ/2Bℓ)-far from Π′.

Combining Claims 7.3.1 and 7.3.2, this completes the proof of the current proposition.

7.3 Step 3: The general case

Finally, we turn to the general case in which the bound B is guaranteed by arbitrary (randomized)
protocols. That is, here we are only guaranteed that B = maxi∈[ℓ]{CCη/n(fi)}, which means that
we have to deal with randomized protocols (of error probability at most η/n).

The basic idea is to proceed as in Section 7.2, while using descriptions of residual randomized
strategies, where a description of a residual randomized strategy consists of a sequence of descrip-
tions of the corresponding residual deterministic strategies. This raises a difficulty, because not
all possible descriptions (i.e., sequences) correspond to legitimate residual randomized strategies
(since the descriptions may correspond to strategies that have higher (than η/n) error probabil-
ity).19 Hence, some additional tests will be required when reducing the ǫ′-testing of the (modified)
auxiliary property Π′ to the ǫ′-testing of the (original) property Π. Specifically, we shall test that
at least a 1− η/n fraction of the pairs in the sequence produce the same bit.

Given the fact that additional tests are used, we seize the opportunity to also address a deficiency
we have neglected in Sections 7.1 and 7.2: the fact that we derived lower bounds for testing Π with
smaller proximity parameters (i.e., ǫ/B and ǫ/2B , respectively). Our solution is to encode the
aforementioned descriptions using an error correcting code that is locally testable (cf. [14, Def. 2.2])
and locally decodable (cf. [17]).

• Local decodability (i.e., decoding each bit in the messahge based on a constant number of
queries to the possibly corrupted codeword) is essential for the emulation of the tester of the
original property by a tester for the auxiliary property, because the original property refers
to strings that appear in encoded form in the auxiliary property.

19The issue is not the specific low level of error, but rather that we have to bound the error away from 1/2 so that
we can effectively determine what bit is produced (with probability higher than 1/2) by a pair of residual randomized
strategies.
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• Local testability (i.e., codeword testing) is essential for the testing of the modified Π′, because
this property contains certain sequences of codewords.

Lastly, it is important that this code has constant relative distance, but its rate does not matter,
and so we may just use the Hadamard code. We shall denote this code by C, and denote its
relative distance by δC . With these preliminaries in place, we are ready to prove the general case
of Theorem 7.1.

Proposition 7.4 (Theorem 7.1, restated): Let Ψ = (P, S), Π ⊆ {0, 1}ℓ, η ≥ ǫ > 0, F : {0, 1}2n →
{0, 1}ℓ, and the fi’s be as in Theorem 3.1, and suppose that B = maxi∈[ℓ]{CCη/n(fi)}. Then, there

exists a communication problem Ψ′ = (P ′, S′) such that CCη(Ψ
′) ≥ CCη(Ψ) and a property Π′ such

that Qη(ǫ
′,Π) ≥

Qη(ǫ′/2,Π′)− eO(B/ǫ′)
eO(B)·log(Qη(ǫ′/2,Π′)/η)

(for every ǫ′ = Ω̃(1/n)), whereas Ψ′ and Π′ are related as

follows:

1. For every (u, v) ∈ P ′ ∩ S′, it holds that u⊕ v ∈ Π′.

2. For every (u, v) ∈ P ′ \ S′, it holds that u⊕ v is Ω(ǫ)-far from Π′.

Proof: For starters, by the hypothesis, for every i ∈ [ℓ], there exists a randomized two-party
protocol of communication complexity at most B for computing fi (with error probability at most
η/n). This protocol is in the shared randomness model, and we denote by ρ the length of the
random string in use.20 Let Ai and Bi denote the corresponding strategies of the two parties, and
let Ax

i,r = Ai(x; r) and By
i,r = Bi(y; r) denote the residual strategies for local inputs x and y and

shared randomness r ∈ {0, 1}ρ. That is, Ax
i,r(γ) denotes the answer of the first party, holding input

x and viewing the shared randomness r, to a message-sequence γ sent by the second party (ditto
for By

i,r).

Let 〈Ax
i,r〉 (resp., 〈By

i,r〉) denote a canonical 2B−1-bit long description of the strategy Ax
i,r (resp.,

By
i,r), and let 〈Ax

i 〉 (resp., 〈By
i 〉) denote the 2ρ-long sequence of corresponding codewords (under

the code C); that is, 〈Ax
i 〉

def
= (C(〈Ax

i,0ρ〉), ..., C(〈Ax
i,1ρ〉)) and 〈By

i 〉
def
= (C(〈By

i,0ρ〉), ..., C(〈By
i,1ρ〉)).

Hence L
def
= |〈Ax

i 〉| = 2ρ · nC , where nC = |C(12B−1
)| denotes the length of the codewords in

C. We make the simplifying assumption (with justifications as in Section 7.2) that the mappings
x 7→ (〈Ax

1〉, ..., 〈A
x
ℓ 〉) and y 7→ (〈By

1 〉, ..., 〈B
y
ℓ 〉) are one-to-one. We define Ψ′ = (P ′, S′) such that

P ′ def
= {(〈Ax

1〉 · · · 〈A
x
ℓ 〉0

ℓ·L, 0ℓ·L〈By
1 〉 · · · 〈B

y
ℓ 〉) : (x, y) ∈ P} (9)

S′ def
= {(〈Ax

1〉 · · · 〈A
x
ℓ 〉0

ℓ·L, 0ℓ·L〈By
1 〉 · · · 〈B

y
ℓ 〉) : (x, y) ∈ S}. (10)

Note that CCη(Ψ) ≤ CCη(Ψ
′), since a protocol for Ψ can proceed by emulating the protocol for Ψ′

(very much as in Section 7.2).
As in Section 7.2, we say that the (residual) deterministic strategies α and β produce the bit

σ = P(α, β) if emulating the interaction between these strategies yields the (joint) outcome σ. We
say that a sequence of such pairs safely produce the bit σ if at least a 1−η/n fraction of the pairs in
the sequence produce this bit; that is, SP((α0ρ , β0ρ), ..., (α1ρ , β1ρ)) = σ if |{r ∈ {0, 1}ρ : P(αr, βr) =
σ}| ≥ (1− η/n) · 2ρ.

20Indeed, we may assume (w.l.o.g., cf. [19, Thm. 3.14]) that ρ
def
= O(log n/η), but this is not needed for our

argument.
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Next, we introduce the property Π′ ⊆ {0, 1}2ℓL. Loosely speaking, Π′ will contain sequences
of C-codewords that each encode ℓ sequences of pairs such that the ith sequence safely produces
the ith bit of an ℓ-bit string in Π. Namely, for every sequence (a1, ..., aℓ, b1, ..., bℓ) such that ai =

(ai,0ρ , ..., ai,1ρ) ∈ {0, 1}2
ρ ·2B−1

and bi = (bi,0ρ , ..., bi,1ρ) ∈ {0, 1}2
ρ ·2B−1

, the corresponding 2ℓ · L-bit
long string c1 · · · c2ℓ is in Π′ if and only if the following conditions hold:

1. For every i ∈ [ℓ], it holds that ci = C(ai,0ρ) · · ·C(ai,1ρ) and cℓ+i = C(bi,0ρ) · · ·C(bi,1ρ).

2. For every i ∈ [ℓ], the sequence of pairs (ai,r, bi,r)r∈{0,1}ρ safely produce a bit wi such that
w1 · · ·wℓ ∈ Π.

That is:

Π′ def
=





c1,0ρ · · · c2ℓ,1ρ :

∃a1,0ρ , ..., aℓ,1ρ , b1,0ρ , ..., bℓ,1ρ ∈{0, 1}2
B−1

s.t.
(1) ∀i∈ [ℓ]∀r∈{0, 1}ρ

C(ai,r)=ci,r ∧C(bi,r)=cℓ+i,r

(2) ∃w1 · · ·wℓ∈Π ∀i∈ [ℓ]
SP((ai,0ρ , bi,0ρ), ..., (ai,1ρ , bi,1ρ)) = wi





,

(11)

Claim 7.4.1 (relating Π′ to Π): Let Π′ be as in Eq. (11). For every η ≥ ǫ′ = Ω̃(1/n) it holds

that Qη(ǫ
′,Π′) = Õ(B/ǫ′)+ Õ(B ·Qη(ǫ

′/2,Π)), where the polylogarithmic factor hidden in the second

Õ-notation is O(log(B · Qη(ǫ
′/2,Π)/η)) · log B).

Proof: Unlike the proofs of Claims 7.2.1 and 7.3.1, here ǫ′-testing Π′ does not reduce to merely
emulating an ǫ′-tester for Π, because here strings in Π′ have additional structure – they are sequences
of codewords that encode pairs (of residual randomized strategies) that safely produce some bits.
Thus, in addition to emulating an ǫ′/2-tester for Π, we would also perform codeword tests and
consistency (i.e., “safe production”) tests. We start by describing these new testing activities,

while recalling that nC = |C(12B−1
)| denote the length of the codewords in C.

On input z = (c1, ..., c2ℓ·2ρ), with each ci ∈ {0, 1}
nC , we first check that this sequence is ǫ′/4-

close to a sequence of codewords of C. This can be done at a cost of Õ(1/ǫ′) queries, by selecting,
for each j ∈ [⌈log2(8/ǫ

′)⌉], a random sample of O(2j log(1/ǫ′)) indices I ⊆ [2ℓ · 2ρ] and performing
an 2j−3ǫ′-test (with error probability poly(ǫ′)) on ci for each i ∈ I. (Note that Levin’s Economical
Work Investment [11, Sec. 8.2.4] is employed here and below in order to obtain query complexity
Õ(1/ǫ′) rather than Õ(1/ǫ′)2.)21 The (strong) local testablity of the code C asserts that ǫ′′-testing
its codewords with error probability 2−k can be done by using O(k/ǫ′′) queries.

Let a1,0ρ , ..., aℓ,1ρ , b1,0ρ , ..., bℓ,1ρ ∈ {0, 1}2
B−1

be such that C(a1,0ρ) · · ·C(aℓ,1ρ)C(b1,0ρ) · · ·C(bℓ,1ρ)
is closest to z. We now check that the sequence of ai,r’s and bi,r’s is ǫ′/4-close to a sequence that
safely produces ℓ bits (i.e., one bit per each value of i ∈ [ℓ]), by selecting a sample of i’s, taking a
sample of r’s for each i, and checking that the pairs (ai,r, bi,r) produce the same value for each such
i. (That is, for each j ∈ [⌈log2(8/ǫ

′)⌉], we select a random sample of O(2j log(1/ǫ′)) indices I ⊆ [ℓ]
and take a sample of O(1/(2jǫ′)) choices of r ∈ {0, 1}ρ for each i ∈ I.)22

The aforementioned checking is performed while employing local decodability of the relevant
bits (in the description of the strategy). We use local decodability with error probability poly(ǫ′/B)

21Indeed, the straightforward method is to select a random sample of O(1/ǫ′) indices I ⊆ [2ℓ · 2ρ] and performing
an (ǫ′/4)-test (with error probability poly(ǫ′)) on ci for each i ∈ I .

22Since ǫ′ = eΩ(1/n), we do not expect to see pairs that produces the opposite value, which is quite rare (i.e.,
appears in at most a η/n fraction of the pairs).
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(which is guaranteed to work up to relative distance δC/3, where δC denotes the relative distance
of the code C). Furthermore, each of these invocations of the local decodability procedure will also
run an (δC/3)-tester for C-codewords (again, with error probability poly(ǫ′/B)), and the tester (for
Π′) will reject whenever any invocation of the codeword tester rejects. Hence, each pair (i, r) that
we check generates O(B log(B/ǫ′)) queries, whereas we check Õ(1/ǫ′) such pairs.

Finally, we get to emulate the execution of the ǫ′/2-tester for Π, denoted T . Specifically, if
T makes the query i ∈ [ℓ], then we access the ith pair of sequences (which is typically close to
(C(ai,r))r∈{0,1}ρ and (C(bi,r))r∈{0,1}ρ), and try to recover the answer by self-correction with error
probability η/O(Bq), where q is the query complexity of T . This self-correction procedure combines
a self-correction for the bit produced by the pairs (ai,r, (bi,r)r∈{0,1}ρ , which in turn relies on local
decodability of the relevant bits in the descriptions of the sampled (ai,r, bi,r)-pairs. We also check
whether these sequences are 1/4-close to safely produce this answer (bit), and each such check is
also performed with error probability η/O(Bq). This means that each query of T is emulated by
using O(B · log(Bq/η) · log B) queries, since we use the codeword tester and decoder with error
probability 1/O(B) (while using constant proximity parameter in the testing).

If z ∈ Π′, then (by definition, cf. Eq. (11)) the string z is a concatenation of codewords that
encode pairs that safely produce the bits of some w ∈ Π. Noting that when T is invoked, all its
queries are answered (with high probability) by the corresponding bits of this w, it follows that our
tester accepts (with high probability).23 On the other hand, if z is ǫ′-far from Π′, then at least one
of the following cases must hold:

1. Either z is ǫ′/4-far from a sequence of C-codewords;

2. or z is C-decodable to a sequence (a1,0ρ , ..., aℓ,1ρ , b1,0ρ , ..., bℓ,1ρ) that is ǫ′/4-far from safely
producing bits of some ℓ-bit long;

3. or the string w that the foregoing sequence (safely) produces is ǫ′/2-far from Π.

As argued next, in each of these cases, we reject with high probability. For Case 1 this follows
from the various codeword tests that are performed, since in this case there exists an integer
j ∈ [⌈log2(4/ǫ

′)⌉] such that at least a 1/O(2j log(1/ǫ′)) fraction of the (nC-bit long) blocks are
2j−3ǫ′-far from the code C. Assuming that Case 1 does not hold, we consider the foregoing sequence
(a1,0ρ , ..., aℓ,1ρ , b1,0ρ , ..., bℓ,1ρ), and what happens when Case 2 holds. In this case, with very high
probability, we either detect pairs (ai,r, bi,r) and (ai,r′ , bi,r′) that produce different values (via the
self-correction) or detect corresponding blocks that are δC/3-far from the code C. Finally, assuming
that Cases 1 and 2 do not hold, we consider the foregoing ℓ-bit string w that the said sequence
produces. In this case, we either detect a problem when emulating T (i.e., indices i ∈ [ℓ] that
correspond to bits that are 1/4-far from being safely produced, or blocks that are δC/3-far from
C-codewords) or we complete an emulation of Tw, which rejects (with high probability). The claim
follows.

Finally, consider F ′ : {0, 1}4ℓL → {0, 1}2ℓL such that F ′(u, v) = u⊕ v.

Claim 7.4.2 (relating Ψ′ to Π′): Let Ψ′ be as in Eq. (9) & (10) and Π′ be as in Eq. (11). Then:

23Note that we may also reject, with very small probability, due to encoutering pairs that produce different values
(within a sequence of pairs that safely produces a value). But since the fraction of exceptional pairs is at most η/n,
this event occurs with very small probability..
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1. For every (u, v) ∈ P ′ ∩ S′ it holds that F ′(u, v) ∈ Π′.

2. For every (u, v) ∈ P ′ \ S′ it holds that F ′(u, v) is Ω(ǫ)-far from Π′.

Proof: As in the proofs of Claims 7.2.2 and 7.3.2, for every (u, v) ∈ P ′ it holds that u = u′0ℓL and
v = 0ℓLv′, and so F ′(u, v) = u⊕ v = u′v′. Also, in that case there exists a unique (x, y) ∈ P such
that u′ = 〈Ax

1〉 · · · 〈A
x
ℓ 〉 and v′ = 〈By

1 〉 · · · 〈B
y
ℓ 〉.

If (u, v) ∈ P ′ ∩ S′, then the aforementioned (x, y) must be in P ∩ S, and it follows that
F (x, y) ∈ Π (by the hypothesis of Theorem 3.1 regarding F (reproduced in Footnote 12)). It
follows that F ′(u, v) = u′v′ ∈ Π′, because for each i ∈ [ℓ] it holds that 〈Ax

i 〉 and 〈By
i 〉 encode a

sequence of pairs that safely produce the ith bit in F (x, y) ∈ Π.
Having established Item 1, we turn to Item 2: If (u, v) ∈ P ′ \S′, then the aforementioned (x, y)

must be in P \S, and it follows that F (x, y) is ǫ-far from Π (by the theorem’s hypothesis regarding
F ). In this case, for each i ∈ [ℓ], it holds that 〈Ax

i 〉 and 〈By
i 〉 encode a sequence of pairs that safely

produce the ith bit in F (x, y). Given that F (x, y) is ǫ-far from Π (i.e., F (x, y) differs in at least ǫℓ
positions from any ℓ-bit string in Π), it follows that for at least ǫℓ of the i ∈ [ℓ] either 〈Ax

i 〉 or 〈By
i 〉

should be modified such that the encoded sequences safely produce a different value for the ith bit.
Recalling that each of the above is a sequence of 2ρ codewords and that a vast majority of the
C-decodable pairs produce the current value (of this bit), it follows that we need to change more
than half of these codewords. Since the code C has (constant) relative distance δC , this means that
we need to change at least 2ρ−1 · δCnC = Ω(L) bits per each such i, which implies that F ′(u, v) is
Ω(ǫℓL/2ℓL)-far from Π′. The claim follows.

Combining Claims 7.4.1 and 7.4.2, this completes the proof of the proposition.

Comment: The proof of Proposition 7.3 can be carried out for B = maxi∈[ℓ]{CC1/3(fi)}, at

the cost of an additive overhead of Õ(B/(ǫ′)2) (rather than Õ(B/ǫ′)) in Claim 7.4.1. In light of
this fact, it seems fair to reconsider the comparison made right after stating Theorem 7.1. In
this case (i.e., starting with B = maxi∈[ℓ]{CC1/3(fi)}), applying Theorem 3.1 requires performing
error-reduction first (i.e., use CCη/n(fi) = O(CC1/3(fi) · log(n/η))). Actually, for C = CC2η(Ψ),
we can use CCη/C(fi) = O(CC1/3(fi) · log(C/η)), since the proof of Theorem 3.1 holds also for
B = maxi∈[ℓ]{CCη/C(fi)}. In this case, for every fixed η > 0, we get Qη(ǫ,Π) ≥ C/O(B log C) by
using the general formulation, which is closer to the rough bound24 of Qη(Ω(ǫ),Π) ≥ C/O(B log BC)
that we get by the restricted formulation.

8 Conclusions

As demonstrated in Section 4, using the general formulation provided in Theorem 3.1 frees the
user from the need to introduce auxiliary communication complexity problems as a bridge between
known communication complexity problems and property testing problems. Recall that these aux-
iliary problems are needed because it is not clear how to directly reduce the original communication
complexity problems (for which lower bounds are known) to the targeted property testing problems

24Indeed, this rough bound neglects the aforementioned additive terms, which are insignificant for constant ǫ > 0.
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when using simple combining operators (as in [4], cf. Corollary 3.3).25 In contrast, such direct re-
ductions are easy to design when using the general formulation of Theorem 3.1. This phenomenon
is not specific to the examples presented Section 4: In fact, it seem to arise in all known applications
of the communication complexity methodology (starting from [4] itself).

We believe that the simpler it is to apply a methodology, the more useful the methodology
becomes. Work should be shifted from the user (of the methodology) to the methodology itself
(or rather to the proof of its validity). We believe that this is done by moving from the restricted
formulation of [4] (cf. Corollary 3.3) to the general formulation of Theorem 3.1. The shifting of work
is evident when trying to emulate results obtained via the general formulation by the restricted
one, as done in Section 7. Indeed, we believe that the results of Section 7 demonstrate that
while the general formulation is not much more powerful (as far as the obtainable lower bounds are
concerned), it may be far easier to use (e.g., since the emulations that we found are quite imposing).
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Appendix: Generalization to Multi-Party Communication

The formulation presented in Section 3 generalizes easily to the model of multi-party communica-
tion. The treatment is quite oblivious of the details of the model; for example, it does not matter if
one considers the standard model of “input on the forehead” or to the more natural model in which
each party gets a part of the input (with no overlap). (These variations can be captured by the
promise problems that the parties wish to solve.) The exact way in which the parties communicate
is also not crucial, at least as long as the number of parties (denoted m) is small. For simplicity, we
consider here a broadcast model, where in each communication round there is a single designated
sender (determined by the transcript of the communication so far).

In light of the above, we shall consider m-party communication protocols in which the local
input of the jth party is denoted x(j). We denote by 〈A(1)(x(1)), ..., A(m)(x(m))〉(r) the (joint)
output of the m parties, when the jth party uses strategy A(j) and gets input x(j), and all parties
have free access to the shared randomness r. Considering promise problems Ψ = (P, S) such that
P, S ⊆ {0, 1}m·n, Definition 2.1 extends naturally; that is, the η-error communication complexity

of Ψ, denoted CCη(Ψ), is the minimum communication complexity of all m-protocols that solve Ψ
with error at most η.

Theorem A.1 (Theorem 3.1, generalized to m-party protocols): Let Ψ = (P, S) be a promise

problem such that P, S ⊆ {0, 1}m·n, and let Π ⊆ {0, 1}ℓ be a property, and ǫ, η > 0. Suppose that

the mapping F : {0, 1}m·n → {0, 1}ℓ satisfies the following two conditions:

1. For every (x(1), ..., x(m)) ∈ P ∩ S, it holds that F (x(1), ..., x(m)) ∈ Π.

2. For every (x(1), ..., x(m)) ∈ P \ S, it holds that F (x(1), ..., x(m)) is ǫ-far from Π.

Then, Qη(ǫ,Π) ≥ CC2η(Ψ)/B, where B = maxi∈[ℓ]{CCη/n(fi)} and fi(x
(1), ..., x(m)) is the ith bit of

F (x(1), ..., x(m)). Furthermore, if B = maxi∈[ℓ]{CC0(fi)}, then Qη(ǫ,Π) ≥ CCη(Ψ)/B.

Theorem A.1 is proved by a straightforward generalization of the proof of Theorem 3.1; that is, we
merely replace “two” by “m” (and everything goes through). We believe that this generalization
further clarifies the ideas underlying the proof of Theorem 3.1 by presenting them in a slightly more
abstract form.

Proof: The following description applies to any communication model in which all parties obtain
the output produced by the protocol. Given an ǫ-tester with error η for Π and communication
protocols for the fi’s, we present a protocol for solving Ψ. The key idea is that, using their shared
randomness, the parties (holding the inputs x(1), ..., x(m), respectively) can emulate the execution
of the ǫ-tester, while providing it with virtual access to F (x(1), ..., x(m)). Specifically, when the
tester queries the ith bit of the oracle, the parties provide it with the value of fi(x

(1), ..., x(m)) by
first executing the corresponding communication protocol. Details follow.

The protocol for Ψ proceeds as follows: On local input x(j) and shared randomness r =
(r0, r1, ..., rℓ) ∈ ({0, 1}∗)ℓ+1, the jth party invokes the ǫ-tester on randomness r0, and answers
the tester’s queries by interacting with the other parties. That is, each of the parties invokes a local
copy of the tester’s program, but all copies are invoked on the same randomness, and are fed with
identical answers to their (identical) queries. When the tester issues a query i ∈ [ℓ], the parties
compute the value of fi(x

(1), ..., x(m)) by using the corresponding communication protocol, and feed
fi(x

(1), ..., x(m)) to (their local copy of) the tester. Specifically, denoting the latter protocol (i.e.,

25



sequence of strategies) by (A
(1)
i , ..., A

(m)
i ), the parties answer with 〈A

(1)
i (x(1)), ..., A

(m)
i (x(m))〉(ri).

When the tester halts, each party outputs the output it has obtained from (its local copy of) the
tester.

We stress that the above description is oblivious to the details of the communication model,
as long as in this model all parties obtain the output produced by the protocol.26 Indeed, the
description presented in the proof of Theorem 3.1 is merely a special case (which corresponds to
the standard model of two-party computation), and the analysis of the general case (omitted here)
is identical to the analysis of the special case presented in the proof of Theorem 3.1.

On the potential usefulness of the generalization. Tom Gur has pointed out that the
generalization to multi-party communication complexity allows additional flexibility for the design
of reductions. To illustrate the point, he suggested the proof outlined below, which refers to a
multi-party communication complexity model in which parties obtain non-overlapping inputs and
communication is by individual point-to-point channels.

Theorem A.2 (a property testing (encoded) version of the frequency moment problem of [2]):27

For k(n) = n/2 and ℓ(n) = n1+o(1), let F be a finite field of size n, and C : Fk(n) → Fℓ(n) be a

F-linear code of constant relative distance, denoted δ. For any sequence x = (x1, ..., xk) ∈ Fk and

v ∈ F , let #v(x) denote the number of occurrences of v in x; that is, #v(x) = |{i ∈ [k] : xi = v}|.
For any constant c > 1, let

Π =

{
C(x) : x ∈ Fk(n) ∧

∑

v∈F

#v(x)c = k(n)

}
(12)

Π′ =

{
C(x) : x ∈ Fk(n) ∧

∑

v∈F

#v(x)c ≤ 2k(n)

}

.

(13)

Then, distinguishing inputs in Π from inputs that are δ-far from Π′ requires Ω(ℓ(n)1−(7/c)) queries.

Indeed, it follows that testing Π requires query complexity Ω(ℓ(n)1−(7/c)), but this (and, in fact,
a stronger Ω(n/ log n) lower bound) can be proved by reduction from a two-party communication
complexity problem (i.e., DISJ).28 In contrast, Theorem A.2 refers to a doubly-relaxed decision
problem, where one level of relaxation is the approximation of the norm (captured by the gap

26If only a designated subset of the parties obtains the output, then we can emulate only nonadaptive testers (as
done in Section 5).

27The following problem differs from the one in [2] in two aspects. Firstly, the computational model is different
(i.e., we consider the query complexity of property testing, whereas [2] refers to the space complexity of streaming
algorithms). Secondly, the problems are different: We consider an error-correcting encoding (i.e., C(x)) of the
information (i.e., x) to which the frequency measure is applied. We stress, however, that the lower bound is not due
to the complexity of codeword testing, since codeword testing may be easy for ℓ(n) = k(n)1+o(1) (cf., e.g., [14]).

28Indeed, this follows from the proof of Theorem A.2, when setting m = 2, which correspond to the two-party case,
and observing that no-instances are mapped to instances having norm at least mc +(t−1)m > tm = k(n). Note that
the same lower bound can be proved for Π′, by padding the inputs to DISJ with an adequate number of repetitions of
some fixed symbol. Note that these arguments rely on the fact that testing Π (or Π′) requires distinguishing codewords
that encode information (i.e., x) with a norm below some threshold from codewords that encode information with
norm just above that threshold. In contrast, Theorem A.2 refers to a relaxation that captures an approximation of
the corresponding norm, and a straightforward adaptation of the reduction from the two-party case does not seem
to work here.
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between Π and Π′) and the second is the standard property testing relaxation (captured by the
gap between Π′ and δ-far from Π′). Such doubly-relaxed problems have been often considered in
the property testing literature (cf., e.g., [20, 1]), starting with [18]. The following proof, which
adapts a proof of [2] (which in turn refers to streaming algorithms), relies on a reduction from a
multi-party communication problem. As is the case with its streaming original [2], it is not clear
whether Theorem A.2 can be proved by reduction from a two-party communication problem.

Proof: We shall use a reduction from the following multi-party communication problem, denoted
(m, t)-DISJn. In this problem, there are m parties, each holding a t-subset of [n], and the problem
is to distinguish the case that the subsets are pairwise disjoint from the case that the intersection
of all subsets is non-empty. By [2], if n ≥ 2mt − m + 1, then the communication complexity of
(m, t)-DISJn (in the point-to-point channels model) is Ω(t/m3).29

We set m = n1/c and t = n/2m (so that n = 2mt), and represent the input of the jth party by
a sequence x(j) ∈ F t. Recall that |F| = n and k(n) = n/2 = mt. Now, we let F (x(1), ..., x(m)) =
C(x(1) · · · x(m)), which equals

∑
j∈[m] C(0(j−1)tx(j)0(m−j)t) by the F-locality. Hence, each bit of

F (x(1), ..., x(m)) can be computed (in this communication model) by communicating m2 log2 n bits
(i.e., each party sends a single field elements to each of the other parties). Note that if x =
(x(1), ..., x(m)) is a yes-instance of (m, t)-DISJn then

∑
v∈F #v(x)c = mt = k(n), since each element

that occurs in x occurs in it exactly once (i.e., in one of the x(j)’s), which means that F (x(1), ..., x(m))
is in Π. On the other hand, if (x(1), ..., x(m)) is a no-instance of (m, t)-DISJn then

∑
v∈F #v(x)c >

mc = n = 2k(n), since at least one element occurs m times (i.e., in all the x(j)’s), which means
that F (x(1), ..., x(m)) is not in Π′, and so is δ-far from any codeword in Π′.

Applying Theorem A.1,30 it follows that the query complexity of the promise problem of dis-
tinguishing Π from the set of ℓ(n)-long sequences that are δ-far from Π′ is lower bounded by
Ω(t/m3)/(m2 log n), which equals Ω(n/(m6 log n)) = Ω(n1−6(1+o(1))/c). Using n = ℓ(n)1/(1+o(1)),
the claim follows.

29The result of [2] is actually stronger, since it refers to the case that the no-instances consist of subsets that have
pairwise intersections that all equal the same singleton.

30Actually, we need to generalize Theorem A.1 so that it applies to doubly-relaxed problems. Such a generalization
is straightforward.
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