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Abstract

In the course of research in Computational Learning Theory, we found ourselves in need of
an error-correcting encoding scheme for which few bits in the codeword yield no information
about the plain message. Being unaware of a previous solution, we came-up with the scheme
presented here.

Clearly, a scheme as described above cannot be deterministic. Thus, we introduce a prob-
abilistic coding scheme which, in addition to the standard coding theoretic requirements, has
the feature that any constant fraction of the bits in the (randomized) codeword yields no infor-
mation about the message being encoded. This coding scheme is also used to obtain efficient
constructions for the Wire-Tap Channel Problem.

Appeared (under the title “A Probabilistic Error-Correcting Scheme”) as record 1997/005 of the
IACR Cryptology ePrint Archive, 1997. In the current revision, the introduction was intentionally
left intact, but the exposition of the main result (esp., its proof) was elaborated and made more
reader-friendly.

1 Original Introduction (dated April 1997)

We believe that the following problem may be relevant to research in Cryptography:

Provide an error-correcting encoding scheme for which few bits in the codeword yield
no information about the plain message.

Certainly, no deterministic encoding may satisfy this requirement, and so we are bound to seek
probabilistic error-correcting encoding schemes. Specifically, in addition to the standard coding
theoretic requirements (i.e., of correcting upto a certain threshold number of errors), we require that
obtaining less than a threshold number of bits in the (randomized) codeword yield no information
about the message being encoded.

Below we present such a probabilistic encoding scheme. In particular, the scheme can (always)
correct a certain constant fraction of errors, and has the property that fewer than a certain constant
fraction of bits (in the codeword) yield no information about the encoded message. Thus, using
this encoding scheme over an insecure channel tampered by an adversary who can read and modify
(only) a constant fraction of the transmitted bits, we establish correct and private communication
between the legitimate end-points.

The new coding scheme is also used to obtain efficient constructions for the Wire-Tap Channel

Problem (cf., [9]). Related work has been pointed out to us recently by Claude Crépeau. These

1



include [4, 7, 1, 3]. In particular, the seemingly stronger version of the problem, considered in
this work, was introduced by Csiszár and Körner [4]. Maurer has shown that this version of the
problem can be reduced to the original one by using bi-directional communiaction [7]. Crépeau
(private comm., April 1997) has informed us that, using the techniques in [1, 3], one may obtain
an alternative efficient solution to the Wire-Tap Channel Problem again by using bi-directional
communiaction.1

Our own motivation to study the problem had to do with Computational Learning Theory.
Indeed, the solution was introduced and used in our work on computational sample complexity [5].

2 Main Result

We focus on good error correcting codes (and encoding schemes), which are codes of constant rate
and constant relative distance. Recall that a standard (binary) (error-correcting) code of rate ρ > 0
and relative distance δ > 0 is a mapping C : {0, 1}∗ → {0, 1}∗ that satisfies |C(x)| = |x|/ρ and

minx 6=y:|x|=|y|{wt(C(x) ⊕ C(y))} ≥ δ · |C(x)|, where wt(z)
def
= |{i ∈ [|z|] : zi = 1}| is the Hamming

weight of z and α⊕ β denotes the bit-by-bit exclusive-or of the strings α and β.
We are interested in good codes that have efficient encoding and decoding algorithms, where

the latter are applicable to error rates below δ/2. That is, for some constant η ∈ (0, δ/2], we may
hope to have a decoder such that for every x and e ∈ {0, 1}|C(x)| of Hamming weight smaller than
η · |C(x)|, given a corrupted codewords G(x) ⊕ e, recovers the original message x.

The non-standard (for coding theory) aspect that we consider here is partial secrecy. Specifically,
for some constant ε > 0, any ε fraction of the bits of the codeword should yield no information
about the original message. Obviously, this is not possible with an actual code, and so we settle
for probabilistic encoding schemes as implicitly defined next.

Theorem 1 (a probabilistic error correction scheme with partial privacy): There exist constants

ρ, η, ε > 0 and a pair of probabilistic polynomial-time algorithms, denoted (E,D), such that

1. Constant Rate: |E(x)| = |x|/ρ, for all x ∈ {0, 1}∗.

2. Error Correction: for every x ∈ {0, 1}∗ and every e ∈ {0, 1}|E(x)| such that wt(e) ≤ η · |E(x)|,
it holds that

Prob(D(E(x)⊕ e) = x) = 1.

Furthermore, Algorithm D is deterministic.

3. Partial Secrecy: A substring containing ε · |E(x)| bits of E(x) yields no information on x.

That is, for I ⊆ [|α|] = {1, ..., |α|}, let αI denote the substring of α corresponding to the bits at

locations in I (i.e., for I = {i1, i2, ..., it} such that ij < ij+1, it holds that αI = αi1αi2 · · ·αit).
Then, for every n ∈ N , x, y ∈ {0, 1}n, and ε · (n/ρ)-subset I ⊆ [n/ρ], it holds that E(x)I is

distributed identically to E(y)I ; that is, for every α ∈ {0, 1}|I|,

Prob[E(x)I = α] = Prob[E(y)I = α].

Furthermore, E(x)I is uniformly distributed over {0, 1}|I|.

1Added in revision: Note that, in contrast, our solution uses uni-directional communication. On the other hand,
our solution holds only for a limited range of parameters; see discussion at the end of Section 3.
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In addition, on input x, algorithm E uses O(|x|) coin tosses.

Items 1 and 2 are standard requirements of coding theory, first met by Justesen [6]. What is
non-standard in Theorem 1 is Item 3. Indeed, Item 3 is impossible if one insists that the encoding
algorithm (i.e., E) is deterministic.

Proof: The key idea is to encode the information by first augmenting it with a sufficiently long
random padding, and then encoding the result using a good error correcting code (i.e., one of
constant rate and constant relative distance).

To demonstrate this idea, consider an 2n-by-m matrix M defining a good (linear) error-
correction code. That is, the string z ∈ {0, 1}2n is encoded by z · M . Further suppose that
the submatrix defined by the last n rows of M and any ε ·m of its columns is of full-rank (i.e., rank
ε ·m). Then, we define the following probabilistic encoding, E, of strings of length n. To encode
x ∈ {0, 1}n, we first select y ∈ {0, 1}n uniformly at random, let z = xy and output E(x) = z ·M .

Clearly, the error-correction features of M are inherited by E. To see that the secrecy require-
ment holds consider any sequence of ε ·m bits in E(x). The contents of these bit locations is the
product of z by the corresponding columns in M ; that is, z ·M ′ = x ·A + y ·B, where M ′ denotes
the submatrix corresponding to these columns in M , and A (resp., B) is the matrix resulting by
taking the first (resp., last) n rows of M ′. By hypothesis B is full rank, which implies that y ·B is
uniformly distributed. Hence, z ·M ′ is uniformly distributed (regardless of x).

We stress that the foregoing argument relies on the hypothesis that the submatrix defined by

the last n rows of M and any ε ·m of its columns is of full-rank. Let us call such a matrix nice.
So what is missing is a construction of a good linear code that is generated by a nice matrix and
has an efficient decoding algorithm. Such a construction can be obtained by mimicking Justesen’s
construction [6]. Basically, we construct inner and outer encoding schemes, which correspond to
the inner and outer codes used in [6], and apply composition (and analyze it) analogously. The
encoding schemes that we use satisfy the error correction and secrecy requirements of the theorem,
and we show that the composed scheme satisfies these requirements too, which establishes the
theorem.

Justesen’s Code. Recall that Justesen’s Code is obtained by composing two codes: An outer linear
code over a large alphabet is composed with an inner binary linear code that is used to encode
single symbols of the large alphabet. The outer code is the Reed-Solomon Code; that is, the n-bit
long message is encoded by viewing it as the coefficients of a polynomial of degree t − 1 over a
field with ≈ 3t elements, where n ≈ t log2(3t), and letting the codeword consists of the values of
this polynomial at all field elements. Using the Berlekamp-Welch Algorithm [2], one can efficiently
retrieve the information from a codeword provided that at most t of the symbols (i.e., the values
of the polynomial at t field elements) were corrupted.

Our outer encoding. We obtain a variation of this outer-code as follows: Given x ∈ {0, 1}n, we pick
a minimal t ∈ N such that 2n < t log2(3t), and view x as a sequence of t

2 elements in GF(3t).2 We
uniformly select y ∈ {0, 1}n and view it as another sequence of t

2 elements in GF(3t). We consider
the degree t − 1 polynomial defined by these t elements, where x corresponds to the high-order
coefficients and y to the low-order ones. Clearly, we preserve the error-correcting features of the
original outer code. Furthermore, any t/2 symbols of the codeword yield no information about
x. To see this, note that the values of these t/2 locations are obtained by multiplying a t-by-t/2

2Here we assume that 3t is a prime power. Actually, we use the first power of 2 that is greater than 3t. Clearly,
this inaccuracy has a negligible effect on the construction.
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Vandermonde with the coefficients of the polynomial. We can rewrite the product as the sum of two
products the first being the product of a t/2-by-t/2 Vandermonde with the low order coefficients.
Thus, a uniform distribution on these coefficients (represented by y) yields a uniformly distributed
result (regardless of x). (In other words, the generating matrix of the corresponding linear code is
nice.) Hence, we have obtained a randomized outer-encoding that satisfies both the error-correction
and secrecy requirements of the theorem, but this is encoding is over the alphabet GF(3t).

Our inner encoding. Next, we obtain an analogue of the inner code used in Justesen’s construction.

Here, the aim is to encode information of length ℓ
def
= log2(3t) (i.e., the representation of an element

in GF(3t)) using codewords of length O(ℓ). Hence, we do not need an efficient decoding algorithm,
since Maximum Likelihood Decoding via exhaustive search is affordable (because 2ℓ = O(t) =
O(n)). Furthermore, any code that can be specified by O(log n) many bits will do (since we can try
and check all possibilities in poly(n)-time), which means that we can use a randomized argument
provided that it utilizes only O(log n) random bits. For example, we may use a linear code specified
by a (random) 2ℓ-by-4ℓ Toeplitz matrix.3 Using a probabilistic argument one can show that, with
positive probability, a random 2ℓ-by-4ℓ Toeplitz matrix is as required in the motivating discussion
(i.e., it generates a good code and is nice (i.e., its rows generate a code of distance Ω(ℓ) and the
submatrix induced by any Ω(ℓ) columns and the last ℓ rows is of full rank)).4 In the rest of the
discussion, we fix such a nice Toeplitz matrix. We shall use it to randomly encode ℓ-bit strings
(i.e., elements of GF(3t)) by applying the matrix to a random 2ℓ-bit long padding of the ℓ-bit
long input. Hence, we obtain a randomized inner-code that satisfies both the error-correction and
secrecy requirements of the theorem.

The composition. We now get to the final step in mimicking Justesen’s construction: the composition
of the two codes. That is, we have outer and inner encoding schemes that satisfy both the error-
correction and secrecy requirements of the theorem, and we need to show that their composition
satisfies these features too. Let us first spell out what this composition is.

Recall that we want to encode x ∈ {0, 1}n, which is viewed as x ∈ GF(3t)t/2, where n ≈
(t/2) log2(3t). Applying the outer encoding scheme, with randomization y ∈ {0, 1}n, we obtain a
3t-long sequence over GF(3t), denoted x1, ..., x3t. (Specifically, the Reed-Solomon code is applied
to the 2n-bit long string xy, viewed as a t-long sequence over GF(3t), resulting in the sequence
(x1, ..., x3t) ∈ GF(3t)3t.) Next, applying the inner encoding scheme to each of the xi’s, viewed as
an ℓ-bit long string, we obatina a 3ℓ-long seqiuence of 4ℓ-bit inner codewords. That is, using the
inner code (i.e., the Toeplitz matrix) and additional 3t random ℓ-bit strings, denoted y1, ..., y3t, we
encode each of the above xi’s by a 4ℓ-bit long string that is the result the multiplying the Toeplitz
matrix with the vector xiyi. Hence, letting M denote the fixed 2ℓ-by-4ℓ Toeplitz matrix and
C : GF(3t)t → GF(3t)3t denote the Reed-Solomon code, we have E(x) = (x1y1 ·M, ..., x3ty3t ·M),
where (x1, ..., x3t) ← C(xy) and y, y1, ..., y3t are uniformly and independently distributed in the
relevant domains (i.e., y ∈ {0, 1}n and y1, ..., y3t ∈ {0, 1}

ℓ).
Clearly, E preserves the error-correcting features of Justesen’s construction [6], and the rate

3A Toeplitz matrix, T = (ti,j), satisfies ti,j = ti+1,j+1, for every i, j.
4The proof uses the fact that any (non-zero) linear combination of rows (or columns) in a random Toeplitz matrix

is uniformly distributed. The first condition is proved by observing that the probability that a non-zero combination

of the rows of the 2ℓ-by-4ℓ matrix has Hamming weight smaller than ℓ′ is upper-bounded by (22ℓ
−1)·

Pℓ′−1
i=0

`

4ℓ

i

´

·2−4ℓ,
which is o(1) for some ℓ′ = Ω(ℓ). The second condition is proved by observing that the probability that there exist

ℓ′′ columns that yield a submatrix (of the last ℓ rows) that is not full rank is upper-bounded by
`

4ℓ

ℓ′′

´

· (2ℓ′′
− 1) · 2−ℓ,

which is o(1) for some ℓ′′ = Ω(ℓ).
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also remains constant (although cut by a factor of 4). The secrecy condition is proved analogously
to the way in which the error correction feature is established in [6], where the analogy is between
revealed codeword bits and corrupted codeword bits. Specifically, xi remains secret if few bits in
it are revealed, whereas the relatively few xi’s that cannot be guaranteed to remain secret do not
harm the secrecy of x. Details follow.

Establishing the secrecy of E. We consider the partition of the codeword into consecutive 4ℓ-bit long
subsequences corresponding to the codewords of the inner code. Given a set I of locations (as in the
secrecy requirement), we consider the relative locations in each subsequence, denoting the induced
locations in the ith subsequence by Ii. We classify the subsequences into two categories depending
on whether or not the size of the induced Ii is above the secrecy threshold for the inner-encoding.
By a counting argument, only a small fraction of the subsequences have Ii’s above the threshold.

For the typical (i.e., relatively small) Ii’s, we use the secrecy feature of the inner-encoding, and
infer that no information is revealed about the corresponding xi’s. Hence, the only information
about x that may be present in E(x) is present in the non-typical subsequences (i.e., those associated
with large Ii’s). Using the secrecy feature of the outer-encoding, we conclude that these few
subsequences (or even the corresponding xi’s themselves) yield no information about x. The secrecy
condition of the composed encoding follows.

3 An Efficient Wire-Tap Channel Encoding Scheme

The Wire-Tap Channel Problem, introduced by Wyner [9], generalized the standard setting of a
Binary Symmetric Channel. Recall that a Binary Symmetric Channel with crossover probability p,
denoted BSCp, is a randomized process which represents transmission over a noisy channel in which
each bit is flipped with probability p (independently of the rest). Thus, for a string α ∈ {0, 1}n,
the random variable BSCp(α) equals β ∈ {0, 1}n with probability pd · (1 − p)n−d, where d is the
Hamming distance between α and β (i.e., the number of bits on which they differ). In the Wire-

Tap Channel Problem there are two (independent) noisy channels from the sender: one representing
the transmission to the legitimate receiver, and the other representing information obtained by an
adversary tapping the legitimate transmission line and incurring some noise as well. In Wyner’s
work [9] the wire-tap channel introduces additional noise on top of the legitimate channel (and
so may be thought of as taking place at the receiver’s side). Here we consider a seemingly more
difficult setting (introduced in [4]) in which the wire-tap channel is applied to the original packet
being transmitted (and so may be thought of as taking place at the sender’s side).

Wyner studied the information theoretic facet of the problem [9], analogously to Shannon’s
pioneering work on communication [8]. Below we consider the computational aspect of the problem
for the special case of very noisy tapping-channel.

Theorem 2 (efficient wire-tap channel encoding): Let (E,D) be a coding scheme as in Theorem 1

and let BSCp(α) be a random process which represents the transmission of a string α over a Binary

Symmetric Channel with crossover probability p.5 Then:

1. Error Correction: Decoding succeeds with overwhelmingly high probability. That is, for every

x ∈ {0, 1}∗,
Prob[D(BSCη

2
(E(x))) = x] = 1− exp(−Ω(|x|)).

5Recall that the crossover probability is the probability that a bit is complemented in the transmission process.
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2. Secrecy: The wire-tapper gains no significant information. That is, for every x ∈ {0, 1}∗

∑

α∈{0,1}|E(x)|

∣

∣

∣

Prob[BSC 1
2
− ε

4
(E(x)) = α] − 2−|E(x)|

∣

∣

∣

is exponentially vanishing in |x|.

Proof: Let η and ε be the constants associated with the error-correction and secrecy guaran-
tees of E. Item 1 follows by observing that, with overwhelmingly high probability, the channel
complements less than a η fraction of the bits of the codeword. Item 2 follows by representing
BSC(1−γ)/2(α) as a two-stage process: In the first stage each bit of α is set (to its current value)
with probability γ, independently of the other bits. In the second stage each bit which was not set
in the first stage, is assigned a uniformly chosen value in {0, 1}. Next, letting γ = ε/2, we observe
that, with overwhelmingly high probability, at most 2 · γ|E(x)| = ε · |E(x)| bits were set in the first
stage. Suppose we are in this case. Then, applying Item 3 of Theorem 1, the bits set in Stage 1
are uniformly distributed regardless of x, and due to Stage 2 the unset bits are also random.

Discussion: As mentioned above, the setting considered in Theorem 2 is actually due to Csiszár
and Körner [4]. Clearly, a solution cannot exist unless the channel of Item 1 is more reliable than the
one of Item 2. A special case of the results in [4] is that a solution always exists when the channel
of Item 1 is more reliable than the one of Item 2. However, the latter result is non-constructive.
In contrast, the result of Theorem 2 is constructive and efficient, but it requires a significant gap
between the reliability of the two channels. In particular, the crossover probability of the channel
in Item 1 (denoted η

2 ) is typically very small (i.e., of the order of 0.01); whereas the crossover
probability of the channel in Item 2 (denoted 1

2 −
ε
4 ) is typically very close to 1/2 (i.e., of the order

of 0.49).
Crépeau (private comm., April 1997) has informed us that alternative solutions, which utilize

bi-directional communication, may be obtained by using the techniques in [7, 1, 3]. We stress
that when using bi-directional communication one can cope with an arbitrary pair of channels
(and specifically the channel in the secrecy condition may be more reliable than the channel in the
error-correcting condition) – see [7].
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