
On (Valiant’s) Polynomial-Size Monotone Formula for Majority

Oded Goldreich

August 18, 2019

Abstract

This exposition provides a proof of the existence of polynomial-size monotone formula for
Majority. The exposition follows the main principles of Valiant’s proof (J. Algorithms, 1984),
but deviates from it in some details. Specifically, we show that, with high probability,i a full
ternary tree of depth 2.71 log

2
n computes the majority of n values when assigning each leaf of

the tree is assigned at random one of the n values.

This is a drastic revision of a text that was posted on the author’s web-site in May 2011.1 The
original text was somewhat laconic, and the current revision was aimed to be more reader friendly.

1 The statement

It is easy to construct quasi-polynomial-size monotone formulae for majority by relying on divide-
and-conquer approaches: For example, consider the recursion THt(x

′x′′) = ∨t
i=0(THi(x

′)∧THt−i(x
′′)),

where THt(z) = 1 if and only if wt(z) ≥ t (see notion below). Using MAJ(x) = TH|x|/2(x), this yields

a size recursion of the form S(n) = O(n) · S(n/2), which solves to S(n) = O(n)log2 n.
It is less obvious how to construct polynomial-size formulae (let alone monotone ones; cf. [5]

and the references there-in). This exposition presents a variant of Valiant’s classic proof of the
existence of such formulae [5].

Theorem 1 (the classic theorem): There exist polynomial-size monotone formulae for computing

majority.

The existence of polynomial-size (monotone) formulae is known to be equivalent to the existence
of logarithmic-depth (monotone) circuits of bounded fan-in.2 Hence, we shall focus on proving the
existence of logarithmic-depth monotone formulae (of bounded fan-in) for majority.

We note that two radically different proofs are known for Theorem 1: The first proof uses the
rather complicated construction of sorting networks of logarithmic depth [1, 3].3 The second proof,
presented below, uses the probabilistic method. Specifically, it combines a random projection of the
n input bits to m = poly(n) locations, and applying a simple formula to the resulting m-bit long
string. Valiant’s original proof uses a full binary tree with alternating and and or gates, whereas
we shall use a full ternary tree with 3-way majority gates.

1See http://www.wisdom.weizmann.ac.il/∼oded/PDF/mono-maj.pdf
2One direction is almost trivial, for the other direction see [4].
3Sorting networks may be viewed as Boolean circuits with bit-comparison gates (a.k.a comperators), where each

comperator is a (2-bit) sorting device. Observe that a comparator can be implemented by a monotone circuit (i.e.,
comp(x, y) = (min(x, y), max(x, y)) = ((x ∧ y), (x ∨ y))), and that the middle bit of the sorted sequence equals the
majority value of the original sequence.

1

Notation. Suppose, for simplicity that n is odd, and consider the majority function MAJ :
{0, 1}n → {0, 1} defined as MAJ(x) = 1 if wt(x) > n/2 and MAJ(x) = 0 otherwise, where wt(x) =
|{i ∈ [n] : xi = 1}| denotes the Hamming weight of x = x1 · · · xn.

2 The proof

We prove the existence of logarithmic-depth monotone formulae (of bounded fan-in) for majority
in two steps.

1. The first step consists of reducing the worst-case problem (i.e., of computing MAJ on all
inputs) to the average-case problem of computing MAJ (on longer inputs), where the point
of the reduction is that it seems easier to cope with random inputs (than with all possible
inputs). Specifically, we shall use a (simple) randomized reduction of the computation of
MAJ(x) to the computation of MAJ(R(x)), where R(x) denotes the output of the reduction on
input x. The key observation is that if the error probability (of the average case solver on
R(x)) is sufficiently low (i.e., lower than 2−|x|), then this randomized reduction yields a non-
uniform reduction that is correct on all inputs. (Hence the existence of such a non-uniform
reduction is proved by using the probabilistic method.)

2. In the second step, we show that a very simple (monotone) formula suffices for solving MAJ

on the average (w.r.t the distribution R(x)). Specifically, we shall use formulae obtained by
iterating the three-way majority function; that is, the resulting formula isessentially a ternary
tree of logarithmic depth with (3-way) majority gates in internal nodes and distinct variables
in the leaves. A Boolean formula is obtained by a straightforward implementation of the
three-way majority gates by depth-three formulae (of fan-in two)

Composing the (monotone) reduction with the latter formulae, we obtain the desired (monotone)
formulae. Since the randomized reduction is merely a randomized projection (i.e., each output
bit is assigned at random one of the input bits), the complexity of the final formulae equals the
complexity of the formulae constructed in the second step.

The formula used in the second step is more intuitive than the one used by Valiant, which in turn
also requires a slightly less natural randomized reduction; for details, see Section 3. Furthermore,
our construction was instrumental for the subsequent work of Cohen et. al. [2].

2.1 The randomized reduction

Given an n-bit long input x = x1 · · · xn, we consider a sequence of m = poly(n) independent
identically distributed 0-1 random variables R(x) = (y1, ..., ym) such that Pr[yj = 1] = wt(x)/n for
each j ∈ [m]. In other words, for each j ∈ [m], an index ij ∈ [n] is selected uniformly at random
(independently of all other choices) and yj is set to xij .

Note that, for m = Ω(n3), the following holds for every x ∈ {0, 1}n:

Pr[MAJ(R(x)) = MAJ(x)] > Pr

[
∣

∣

∣

∣

wt(R(x))

m
−

wt(x)

n

∣

∣

∣

∣

<
1

2n

]

,

(1)

which is greater than 1 − 2−n (by Chernoff bound). By itself, Eq. (1) is useless, since we have
reduced the computation of an n-way majority to the computation of an Ω(n3)-way majority. But

2

the point is that this is a worst-case to average-case reduction, and the average-case problem seems
easier to solve; that is, we need to compute majority of typical sequences and need not worry about
pathological ones. Note, however, that here average-case means being correct with probability
greater than 1 − 2−n; we cannot afford straightforward error-reduction since it involves taking
majority...

Before looking for a formula that computes majority in the foregoing average-case sense, let
us see that having such a formula suffices. Indeed, let F : {0, 1}m → {0, 1} be an arbitrary
function that computes majority in the foregoing strong average-case sense. (Assuming that 0 <
Pr[F (R(x)) 6= MAJ(x)] < 2−n, it must be that m > n).

Fact 2 (trivial derandomization): Let R : {0, 1}n → {0, 1}m be a randomized process and F :
{0, 1}m → {0, 1} be a function. Suppose that, for every x ∈ {0, 1}n, it holds that Pr[F (R(x)) =
MAJ(x)] > 1 − 2−n. Then, there exists a choice of coin tosses ω for the random process R such

that for every x ∈ {0, 1}n it holds that F (Rω(x)) = MAJ(x), where Rω denotes the residual function

obtained by fixing the coins of R to ω.

Turning back to the specific process R defined before, note that, for every fixed ω, the residual
function Rω just projects its input bits to fixed locations in its output sequence (i.e., letting ω =
(i1, ..., im) ∈ [n]m, it holds that Rω(x1x2 · · · xn) = xi1xi2 · · · xim). Hence, F ◦Rω preserves the depth
(resp., size) complexity and monotonicity of F .

Proof: Using Pr[F (R(x)) 6=MAJ(x)] < 2−n (for every x), and applying a union bound, we get

Prω[∃x∈{0, 1}n F (Rω(x)) 6=MAJ(x)] < 1,

and it follows that there exists ω such that F (Rω(x))=MAJ(x) holds for every x∈{0, 1}n.

Digest: The probabilistic method is used to infer the existence of ω such that F ◦ Rω = MAJ,
based on Prω[(∀x∈{0, 1}n) F (Rω(x))=MAJ(x)] > 0.

2.2 Solving the average-case problem

We now turn to the second step, which consists of presenting a monotone formula F of logarithmic
depth that satisfies the hypothesis of Fact 2 (w.r.t the simple process R defined above). Generalizing
the foregoing hypothesis, we wish F to satisfy the following condition: If Y1, ..., Ym are independent

identically distributed 0-1 random variables such that for some b ∈ {0, 1} it holds that Pr[Y1 =b] ≥
0.5 + 1/2n, then Pr[F (Y1, ..., Ym)=b] > 1 − 2−n.

The construction uses a full ternary tree of depth ℓ = log3 m, where internal vertices compute the
majority of their three children. (For simplicity, we assume that m is a power of three.) Specifically,
let MAJ3 denote the three-variable majority function, and define F1(z1, z2, z3) = MAJ3(z1, z2, z3) and

Fi+1(z1, ..., z3i+1)
def
= MAJ3(Fi(z1, ..., z3i), Fi(z3i+1, ..., z3i+3i), Fi(z2·3i+1, ..., z3i+1)). (2)

for every i ≥ 1. Finally, we let F (z1, ..., zm) = Fℓ(z1, ..., zm).
The intuition is that each level in F increases the bias of the corresponding random variables

(which are functions of Y1, ..., Ym) towards the majority value; that is, the probability that an
internal vertex in the corresponding ternary tree evaluates to to b (where Pr[Y1 =b] > 0.5 for every
j ∈ [m]), increases when going up the tree (i.e., away from the leaves). This effect is due to the
bias-increasing property of MAJ3, which is stated next.

3

Fact 3 (three-way majority amplifies bias): Let Z1, Z2, Z3 be three independent identically dis-

tributed 0-1 random variables, and let p
def
= Pr[Z1 =1]. Then:

1. p′
def
= Pr[MAJ3(Z1, Z2, Z3)=1] = 3 · (1 − p) · p2 + p3.

2. Letting δ
def
= p − 0.5, it holds that p′ = 0.5 + (1.5 − 2δ2) · δ.

3. p′ < 3p2.

We stress that the three parts hold for every p ∈ [0, 1], but we shall use Part 2 with p > 0.5 and
use Part 3 with p ≪ 0.5. Note that Part 2 implies that if p ∈ (0.5, 1), then p′ > 0.5 + δ = p.

Proof: The three parts follow by straightforward calculations. Specifically, Part 1 merely gives the
expression for Pr[Z1 +Z2 +Z3∈{2, 3}], and the other parts merely manipulate this expression (e.g.,
for Part 2 we use p′ = (3−2p) ·p2 = (3−1−2δ) · (0.25+ δ + δ2), which implies p′ = 0.5+1.5δ−2δ3,
and for Part 3 we use p′ < 3 · (1 − p) · p2 + 3 · p3 = 3p2).

Analyzing Fℓ(Y1, ..., Ym) using Fact 3. Fact 3 asserts that MAJ3 increases the bias of (indepen-
dent and identically distributed) 0-1 random variables towards the majority value. The question is
how fast does the bias (i.e., p − 0.5) tend to the extreme (i.e., 0.5) when the foregoing process is
iterated. Applying Part 2 to the majority value, we see that as long as p is bounded away from 1
the value p − 0.5 increases by a constant factor. This will be useful towards increasing p from a
value slightly above 0.5 (i.e., p = 0.5 + 1/2n) to a constant value in (0.5, 1). At this point Part 3
becomes handy, provided that we apply it to the minority value. Doing so we drastically reduce
the probability of the minority value (essentially squaring it). Details follow.

Part 2 of Fact 3 implies that if p = 0.5+ δ > 0.5 and δ ≤ δ0 < 0.5, then p′ ≥ 0.5+(1.5−2δ2
0) · δ,

which means that the bias (i.e., p − 0.5) increases by a multiplicative factor in each iteration
(until it exceeds δ0). (Note that we assumed p ≥ 0.5 + 1/2n, but similar considerations hold for
p ≤ 0.5 − 1/2n.)4 This means that we can increase the bias (i.e., p − 0.5) from its initial level of
at least 1/2n to any constant level of δ0 < 1/2, by using ℓ1 = ⌈c1 · log2(2δ0n)⌉ iterations of MAJ3,
where c1 = 1/ log2(1.5 − 2δ2

0).5

The best result is obtained by using an arbitrary small δ0 > 0. In this case, we may use
c1 ≈ 1/ log2(1.5) ≈ 1.70951129. Using ℓ2 = O(1) additional iterations (and Part 2), we may
increase the bias from δ0 to any larger constant that is smaller than 0.5. Specifically, we shall
increase the bias to 0.4 (using ℓ2 = ⌈log1.18(0.4/δ0)⌉).

At this point, we use Part 3 of Fact 3, while considering the probability for a wrong majority
value. In each such iteration, this probability is reduced from a current value of 1 − p to less than
3 · (1−p)2. Thus, using ℓ3 = ⌈log2 n⌉ additional iterations, the probability of a wrong value reduces

from 1 − (0.5 + 0.4) < 1/6 to 32ℓ3−1 · (1/6)2
ℓ3 < 2−2ℓ3 ≤ 2−n.

Conclusion. Letting ℓ = ℓ1 + ℓ2 + ℓ3 < 2.71 log2 n and m = 3ℓ, we obtain a formula F = Fℓ on
m variables that, given R(x), computes MAJ(x) with overwhelmingly high probability. That is:

4One way to see this is to define p = Pr[Z1 = 0].
5Suppose that i iterations are necessary and sufficient for reducing the bias from 1/2n to δ0. Then, (1.5 − 2δ2

0)i
·

(1/2n) ≥ δ0 holds, which solves to i ≥ log1.5−2δ2

0

(2δ0n). Hence, we may use the minimal such i ∈ N.

4

Theorem 4 (majority formulae via three-way majority): For x ∈ {0, 1}n, let ℓ = 2.71 log2 n and

m = 3ℓ, and consider the random process R : {0, 1}n → {0, 1}m such that each bit in R(x) equals 1

with probability wt(x)/n, independently of all other bits. Then, Pr[MAJ(x)=Fℓ(R(x))] > 1− 2−n,

where Fℓ is as defined in Eq. (2).6

Using Fact 2, Theorem 4 yields a formula (i.e., Fℓ ◦ Rω) that computes MAJ(x) correctly on all
inputs x, but this formula uses the non-standard MAJ3-gates. Yet, a MAJ3-gate can be implemented
by a depth-three monotone formula (e.g., MAJ3(z1, z2, z3) equals (z1 ∧ z2)∨ (z2 ∧ z3)∨ (z3 ∧ z1)), and
hence we obtain a standard monotone monotone formula F ′ of depth 3ℓ < 8.13 log2 n. Recall that
if Y1, ..., Ym are independent identically distributed 0-1 random variables such that for some b it
holds that Pr[Y1 =b] ≥ 0.5 + 1/2n, then Pr[F ′(Y1, ..., Ym) 6=b] < 2−n. Thus, for every x ∈ {0, 1}n it
holds that Prω[F ′(Rω(x)) 6=MAJ(x)] < 2−n and Prω[(∀x ∈ {0, 1}n) F ′(Rω(x)) = MAJ(x)] > 0 follows.
Hence, there exists a choice of ω such that F ′ ◦ Rω computes the majority of n-bit inputs.

3 Comparison to Valiant’s proof

Interestingly, Valiant [5] obtains a somewhat smaller formula by using an iterated construction
that uses the function V (z1, z2, z3, z4) = (z1 ∨ z2) ∧ (z3 ∨ z4) as the basic building block (rather
than MAJ3). Since V is not a balanced predicate (i.e., Prz∈{0,1}4 [V (z) = 1] = 9/16), the random
process used in [5] maps the string x ∈ {0, 1}n to a sequence of independent identically distributed
0-1 random variables, (y1, ..., ym), such that for every j ∈ [m] the bit yj is set to zero with some
constant probability β (and is set to xi otherwise, where i ∈ [n] is uniformly distributed). The
value of β is chosen such that if Z1, Z2, Z3, Z4 are independent identically distributed 0-1 random

variables satisfying Pr[Z1 =1] = p
def
= (1 − β)/2, then Pr[V (Z1, Z2, Z3, Z4)=1] = p.

It turns out that V amplifies the deviation from p slightly better than MAJ3 does (w.r.t 1/2).7

More importantly, V can be implemented by a monotone formula of depth two (and fan-in two),
whereas MAJ3 requires depth three. Thus, Valiant [5] performs 2.65 log2 n iterations (rather than
2.71 log2 n iterations), and obtains a formula of depth 5.3 log2 n (rather than 8.13 log2 n).

Acknowledgments. Thanks to Alina Arbitman for her comments and suggestions regarding the
original write-up.

References

[1] M. Ajtai, J. Komlos, E. Szemerédi. An O(n log n) Sorting Network. In 15th ACM Symposium

on the Theory of Computing, pages 1–9, 1983.

[2] G. Cohen, I. Damgard, Y. Ishai, J. Kolker, P. Miltersen, R. Raz, and R. Rothblum. Efficient
Multiparty Protocols via Log-Depth Threshold Formulae. In the 33rd CRYPTO, Part 2, Lecture
Notes in Computer Science (Vol. 8043), Springer, pages 185–202, 2013.

6Actually, we have Pr[MAJ(x)=Fℓ(R(x))] > 1− 2−n−Ω(n), because we can use ℓ3 = (2.71 − c1) · log2 n − O(1) =
Ω(log n), where c1 ≈ 1/ log2(1.5) ≈ 1.70951129. (Alternatively, note that the analysis of the last ℓ3 iterations actually

yields an error probability of 32ℓ3
−1

· (0.1)2
ℓ3

< (0.3)2
ℓ3

< 2−1.7n. Furthermore, 0.1 can be replaced by any positive
constant.)

7This is surprising only if we forget that V takes four inputs rather than three.

5

[3] M.S. Paterson. Improved Sorting Networks with O(log N) Depth. Algorithmica, Vol. 5 (1),
pages 75–92, 1990.

[4] P.M. Spira. On time hardware complexity trade-offs for Boolean functions. In the 4th Hawaii

International Symposium on System Sciences, pages 525–527, 1971.

[5] L.G. Valiant. Short Monotone Formulae for the Majority Function. Journal of Algorithms,
Vol. 5 (3), pages 363–366, 1984.

6

