
On the Locally Testable Code of Dinur et al. (2021)

Oded Goldreich

December 19, 2024

Abstract

This text provides a high-level description of the locally testable code constructed by Dinur,
Evra, Livne, Lubotzky, and Mozes (ECCC, TR21-151). In particular, the group theoretic aspects
are abstracted as much as possible.

A preliminary version of this paper has been posted as TR21-175 of ECCC. The current version is
aimed at making the text more accessible to a wider range of readers.

1 The Result

Loosely speaking, a locally testable code is an error correcting code that has a constant-query
proximity oblivious tester (see [8, Sec. 1.3.3] and [8, Chap. 13]). That is, the tester accepts each
codeword with probability 1 and rejects each non-codeword with probability that is related to its
distance from the code. The current survey provides a high-level description of the locally testable
code of constant rate (and constant relative distance) that was constructed by Dinur, Evra, Livne,
Lubotzky, and Mozes [7].

The question of whether locally testable codes of constant rate (and constant relative distance)
exist was on the table ever since Dinur’s seminal work [6]: Her gap amplification technique, which
yielded an alternative proof of the PCP Theorem [6], also provided a locally testable code (LTC)
of 1/polylog rate as a “by product” (see [8, Sec. 13.3.3]).1 I would not say that this question was
on the table before [6], because even a 1/polylog rate was not seen on the horizon. Prior to [6], we
were still making slow progress at much lower rates (i.e., even rate n−o(1), for block-length n, was
not known).

In any case, inspired by prior studies of High-Dimensional Expanders, but actually stepping
away from them, the work of Dinur et al. [7] provides a LTC of constant rate, where here and
above I refer to the regime of constant number of queries (as opposed to prior work that achieved
constant rate with a quasi-polylogarithmic number of queries [8, Sec. 13.4.3]) and take constant
relative distance for granted.

Needless to say, the work of Dinur et al. [7] challenges the two-regimes perspective (i.e., the
constant query regime vs the constant rate regime) as well as the possibility that there is a trade-off
between the level of locality (i.e., number of queries) and the rate of the code.

We stress that the result of Dinur et al. [7] refers to the strongest used notion of locally testable
codes (cf. [8, Sec. 13.2]). Specifically, it is required that the tester always accepts any codeword,

1This is obtained by applying the gap amplification technique to the PCP system of [5], improving over prior work
of [9, 4].

1

and that any non-codeword is rejected with probability that is proportional to its distance from
the code. Needless to say, things are stated in asymptotic terms, where n is viewed as a varying
parameter, but all other parameters (i.e., rate, relative distance, and the number of queries made
by the tester) are all constants.

Definition 1.1 (LTC, for this text, loosely stated): The code C ⊂ {0, 1}n has rate log2 |C|
n and

(relative) distance minx ̸=y∈C{∆(x, y)}, where ∆(x, y) = |{i ∈ [n] : xi ̸= yi}|/n. We say that C is
locally testable if there exists an oracle machine, T , that makes a constant number of queries and
satisfies the following two conditions:

1. For every x ∈ C, it holds that Pr[T x(n)=1] = 1.

2. For every x ∈ {0, 1}n\C, it holds that Pr[T x(n) ̸=1] = Ω(∆C(x)), where ∆C(x) = miny∈C{∆(x, y)}.

In this case, we say that C is a locally testable code.

In terms of property testing, a tester as in Definition 1.1 constitutes a proximity oblivious tester
with linear detection probability for the property C [8, Def. 1.7]. The main result of Dinur et al. [7]
is thus stated as follow.

Theorem 1.2 (LTCs exist and can be explicitly constructed): For any n, there exists a locally
testable code C ⊂ {0, 1}n of constant rate and constant relative distance. Furthermore, C is a linear
subspace, and a basis for it can be found in poly(n)-time.

It follows that C has an efficient encoding algorithm (a bijection mapping Ω(n)-bit strings to
codewords of C). It also has an efficient decoding (with errors) algorithm; but this (only) follows
from the proof provided in [7]. The presentation in [7] only supports n’s in a “linearly dense” set
(i.e., ni+1 − ni = O(ni), where nj is the jth smallest integer in the set), but this can be fixed by
padding.

Contents and Organization. As stated upfront, our presentation focuses on the high-level
aspects of the work of Dinur et al. [7], while trying to abstract the group theoretic aspects. The
construction is presented in Section 2, and its analysis is discussed in Section 3. Brief comments
appear in Section 4.

2 The Construction

The construction may be viewed as a generalization of the expander codes of [13], and specifically
as a “convolution” of two expander codes (see [14]). However, the common presentation, which
we follow, views the new codes as arising from the superposition of two (related) expander graphs
that is coupled with a tensor code that constrains assignments of bits to 4-cycles in the resulting
graph. Indeed, as hinted above, the two expander graphs are related so that their superposition
forms 4-cycles in the resulting graphs, where each such 4-cycle consists of two edges of one graph
that are interleaved with two edges of the other graph. The foregoing ingredients are outlined in
Section 2.1, whereas their combination is outlined in Section 2.2.

2

2.1 The Ingredients

For a sufficiently large constant d, we use two d-regular (expander) graphs, G′ and G′′, on the
same vertex set V . These graphs are represented by their incidence functions g′i, g

′′
i : V → V

(for i ∈ [d]) such that g′i(v) (resp., g
′′
i (v)) denotes the ith neighbor of v in the first (resp., second)

graph.2 Furthermore, we assume that these functions are actually bijections. Indeed, each of these
graphs is an expander in the sense that its second eigenvalue (i.e., random-walk convergence rate)
is sufficiently small (as a function of other parameters). Moreover, we require:

1. The neighborhoods of a vertex in the two graphs are disjoint; that is, for every v ∈ V and
i, j ∈ [d], it holds that g′i(v) ̸= g′′j (v).

2. Symmetry of the incidence functions; that is, for every i ∈ [d] there exists j ∈ [d] such that
g′j(g

′
i(v)) = v holds for all v ∈ V . Without loss of generality, we may assume that g′2i−1 is the

inverse of g′2i; that is, g
′
2i−1(g

′
2i(v)) = v. Ditto for g′′i .

3. Two interleaving steps form a 4-cycle in G′ ∪ G′′: For every v ∈ V and i, j ∈ [d], it holds
that g′′j (g

′
i(v)) = g′i(g

′′
j (v)). Hence, (v, g′i(v), g

′′
j (g

′
i(v)), g

′′
j (v), v) forms a 4-cycle in the graph

G = (V,E) that is formed by superimposing G′ and G′′ (i.e., E = (V,E′ ∪ E′′), where
G′ = (V,E′) and G′′ = (V,E′′)). We denote this set of (ordered) 4-cycles by Q; that is,

Q
def
= {(v, g′i(v), g′′j (g′i(v)), g′′j (v), v) : v∈V & i, j∈ [d]}. (1)

Note: Although there may be other 4-cycles in the graph G, in the sequel, whenever we refer
to 4-cycles, we mean the 4-cycles in Q only.

Indeed, the last requirement appears hardest to meet. Dinur et al. [7] achieve it by using left
and right multiplication (in a non-Abelian group). Specifically, they use Cayley graphs over the
vertex-set (group) V , with adequate generator-sets A = {ai : i ∈ [d]} and B = {bi : i ∈ [d]}, and
let g′i(v) = ai · v and g′′i (v) = v · bi.

Base codes: We also use constant-size linear codes C ′, C ′′ ⊂ {0, 1}d of rate r0 > 7/8 and relative
distance δ0 > λ, where λ > 0 is an upper bound on the (normalized) second eigenvalue of each of
the graphs. Furthermore, we pick these codes so that their tensoring yields a relatively “robust”
tensor code (see [7, Def. 2.8 & Lem. 2.9]).3

2.2 The Constructed Code and Its Tester

For a function f : Q → {0, 1}, we denote by fv its restriction to the set of 4-cycles that are “rooted”

at the vertex v ∈ V ; that is, 4-cycles that have the form cv,i,j
def
= (v, g′i(v), g

′′
j (g

′
i(v)), g

′′
j (v), v) for

some i, j ∈ [d]. Indeed, letting Qv = {cv,i,j : i, j ∈ [d]}, the function fv : Qv → {0, 1}d×d is viewed
as a d-by-d Boolean matrix in which the (i, j)th entry equals f(v, g′i(v), g

′′
j (g

′
i(v)), g

′′
j (v), v). The

new code, denoted C, consists of all Boolean functions f : Q → {0, 1} whose fv-restrictions are
codewords of the tensor code C ′ ⊗ C ′′, where C ′ ⊗ C ′′ is the set of all d-by-d matrices whose rows
are codewords of C ′ and columns are codewords of C ′′. That is,

2For simplicity, we use the same degree in both graphs and the same bound on the second eigenvalue.
3In Dinur et al. [7], the base codes are denoted CA and CB , and they are shown to exists in [7, Lem. 5.1].

3

C
def
= {f : Q → {0, 1} | (∀v ∈ V) fv ∈ C ′ ⊗ C ′′}. (2)

The tester is the natural one; that is, it selects one condition at random and checks it. Specifically,
given oracle access to f : Q → {0, 1}, the tester select uniformly v ∈ V , retrieves the d-by-d matrix
fv = (f(v, g′i(v), g

′′
j (g

′
i(v)), g

′′
j (v), v))i,j∈[d] by querying f on all 4-cycles in Qv, and accepts if and

only if fv is a codeword of C ′ ⊗ C ′′.

Comment: In the foregoing presentation each 4-cycle is represented four times (since each of its
vertices can be used as the “start vertex” (or “root”)).4 In contrast, in [7], the four representa-
tions are identified so that the value on each of them is obtained from the value on a canonical
representation of the relevant 4-cycle.5

3 The Analysis (Flavor Only)

The analysis of the rate and distance of the code C follows the analysis of the expander codes of [13],
but the real issue is analyzing the foregoing tester. (In contrast, recall that generic expander codes
are not locally testable.)

Rate. Recalling that the code C is a linear subspace, we lower-bound its dimension by 1
4 · |V | ·

d2 − |V | · 2d · (d − r0 · d), where 1
4 compensates for the four representations of each 4-cycle and

2d · (d− r0 · d) is an upper bound on the number of linear constraints imposed on each fv (i.e., 2d
is the number of rows and columns in each matrix Qv, and d− r0 ·d is the co-dimension of the base
codes). Hence, we obtain a rate of at least 1

4 − 2 · (1 − r0), which is a positive constant provided
that r0 > 7/8.

Distance. Since the code is linear, we lower-bound the weight of its non-zero codewords. For
any f ∈ C and each i ∈ [d], let f (i) : E′′ → {0, 1} be a function on the edges of G′′ such that
f (i)({v, g′′j (v)}) = f(cv,i,j), which is well-defined by the folding (see Footnote 5). Now, assuming
that f(cv∗,i∗,j∗) = 1 for some v∗, i∗, j∗, it follows (by the distance of C ′) that, for at least for a δ0
fraction of the i ∈ [d], it holds that the ith row of fv∗ is not an all-zero codeword (of C ′′). Hence,
for at least a δ0 fraction of the i ∈ [d], the function f (i) is non-zero. Considering only the graph
G′′ (and the based code C ′′), we apply the analysis of expander codes to f (i) (see [7, Lem. 4.4],
which reduces to [7, Lem. 2.1]). It follows that a non-zero f (i) must have relative weight at least
a δ0 · (δ0 − λ), where λ upper-bounds the second (normalized) eigenvalue of G′′. Recalling that at
least a δ0 fraction of the f (i)’s are non-zero, we conclude that the relative weight of non-codewords
of C is at least a δ20 · (δ0 − λ).

Local testability – take 1. How come the new code is locally testable whereas expander codes
are not? As observed by numerous experts, generic expander codes (as generic LDPC codes) are
defined in terms of a low-density parity-check matrix, which (generically) may be of full rank. In

4The other three representation of cv,i,j = (v, g′i(v), g
′′
j (g

′
i(v)), g

′′
j (v), v) are cg′i(v),i′,j , cg′′j (g′i(v)),i

′,j′ and cg′′j (v),i,j′ ,

where g′i′ is the inverse of g′i and g′′j′ is the inverse of g′′j .
5This operation is called folding [3]; it replaces a potential auxiliary test (which queries the four representations)

that enforces all four representation to hold the same value.

4

that case, removing a single parity-check from the matrix yield a larger code that may still have
large distance. But then the resulting code contains codewords that are far from the original code,
although they violate a single linear constraint of the original code. Hence, the natural tester that
checks a single linear constraint (in the original matrix) fails poorly.

In contrast, the tester associated with the new code C selects at random a set of highly depen-
dent linear constraints, which are associated with a (random) vertex, such that the sets associated
with different choices (i.e., vertices) have significant pairwise intersections. Specifically, for every
two neighboring vertices, u and v, the inspected d-by-d matrices (i.e., fu and fv) share the d entries
that correspond to the edge {u, v}. Hence, violating a single constraint (of C) leads to violating
many other (different) constraints. In particular, dropping few constraints from the low-density
parity-check matrix that corresponds to C leaves the code invariant.

Needless to say, the foregoing is extremely far from establishing the local testability of C. It
merely asserts that C passes a sanity check that the expander codes fail.

Local testability – take 2. As is often the case in property testing (cf. [12, Chap. 3]), the analysis
of the foregoing tester uses a self-correction process (in order to establish the contrapositive).
Specifically, Dinur et al. [7] present a decoding algorithm and prove that if the natural tester (which
selects a random vertex v ∈ V and accepts if and only if fv ∈ C ′ ⊗ C ′′) rejects f with probability
η, then the decoding algorithm finds a codeword (of C) that is O(η)-close to f .6 It follows (by the
contrapositive) that each f : Q → {0, 1} is rejected by the natural test with probability that is
lower-bounded by a constant fraction of f ’s distance from C.

The key issue, of course, is to design and analyze a decoding algorithm that satisfies the foregoing
condition. That is, given any f : Q → {0, 1}, the decoder must find a codeword of C that is
O(η(f))-close to f , where η(f) is the probability that the natural tester rejects f . A natural idea
is to iteratively modify f such that in each iteration we select an arbitrary 4-cycle c and reset f(c)
such that it satisfies a majority of the checks that look at it (i.e., f(c) = σ if c is assigned σ in
a majority of the d-by-d matrices fv that contain c).7 The decoding process terminates when no
addition modification is possible (i.e., where for each c ∈ Q the value of f(c) equals the majority
value assigned to c by the relevant fv’s).

The foregoing decoder is analogous to the one used for decoding expander codes. It seems that
this candidate decoder works well (i.e., correctly decodes f) in the case that f is close to C, but
the intended application of this decoder is showing that every f is O(η(f))-close to C (by showing
that, on any input f , the decoder finds a codeword that is O(η(f))-close to f).8 We stress that it
may be that the foregoing decoder works well on any input f (i.e., it always finds a codeword that
is O(η(f))-close to f), but this is currently unknown.

Local testability – take 3. In light of the foregoing, a different approach to decoding is taken.
The following decoding algorithm is based on the agreement testing paradigm, which arose with the

6The actual constant in the O-notation is 4(2d + 1), and the claim holds provided that λ ≤ α · δ0, where α > 0
depends on the “robustness” parameter of the tensor code C′ ⊗ C′′.

7That is, we consider all fv’s such that Qv∋c (i.e., c = cv,i,j for some i, j ∈ [d]).
8Hence, the foregoing is insufficient for two reasons. Most importantly, we need the decoder to work on any input

f , and not only on inputs that are close to C; that is, the closeness to C is the desired conclusion, and can not be
the hypothesis. Furthermore, even in case f is o(1)-close to C, which implies that η(f) = o(d2) = o(1), we need to
upper-bound f ’s distance to C in terms of η(f); that is, we seek a quantitative result (i.e., O(η(f)-closeness) not
merely a qualitative result (e.g., if η(f) = o(1), then f is o(1)-close to C).

5

proof composition paradigm of PCPs [2, 1]. The foregoing paradigm links the agreement probability
of partial assignments to suitable intersecting subsets of the domain (i.e., “local agreement”) to
the existence of a global function that approximately fits these partial assignments (i.e., “global
agreement”). This paradigm will be applied here to the d-by-d matrices that correspond to the
various Qv’s (for v ∈ V), where Qv and Qu intersect if v neighbors u. Specifically, d-by-d matrices
that correspond to neighboring vertices have a common row (or column)9, and the agreement test
will be applied (as a mental experiment) to these pairs of matrices.

Actually, given f : Q → {0, 1}, the agreement testing paradigm will be applied to the d-by-d
matrices that correspond to the codewords of C ′ ⊗ C ′′ that are closest to the matrices fv : Qv →
{0, 1}d×d (for all v ∈ V). We note that the disagreement probability (between the foregoing pairs
of codewords) is at most twice η(f); see [7, Eq. (4.5)]. (That is, letting wv ∈ {0, 1}d×d be the
codeword of C ′ ⊗ C ′′ that is closest to fv, the value defined next (in Eq. (3)) is upper-bounded by
2 · η(f).)

In general, for every w = (wv)v∈V ∈ ({0, 1}d×d)|V |, we define the local disagreement of w as
the probability that the pair of matrices that correspond to a random edge agree on the row (or
column) that corresponds to the 4-cycles that contain this edge. That is, we consider

D(w)
def
= Pre={u,v}∈E [wu|e ̸= wv|e] (3)

where wu|e (resp., wv|e) denotes the restriction of wu (resp., wv) to the row (or column) that
corresponds to the 4-cycles that contain the edge e (i.e., the 4-cycles in Qu∩Qv, where {u, v} = e).
(Recall that E is the edge-set of the graph defined in Section 2.1.)

Decoding is done in iterations such that in each iteration we pick an arbitrary vertex v and
modify the current wv so to minimize D(w) subject to the new wv being in C ′ ⊗ C ′′; that is, wv is
replaced by w′ ∈ C ′ ⊗ C ′′ if w′ minimizes Pre={u,v}∈E [wu|e ̸= w′|e] (over all C ′ ⊗ C ′′). Initially, on
input f : Q → {0, 1}, for every v ∈ V , we let wv be a codeword of C ′ ⊗ C ′′ that is closest to fv,
and the decoder halts when no modification is possible (i.e., no modification decreases the value
of D). Note that if D is decreased by the modification, then D decreases by at least 1/|E| units.
At termination, either D(w) > 0, which is considered a failure, or D(w) = 0, which implies that w
corresponds to a codeword of C (i.e., there exists f ′ ∈ C such that wv = f ′

v for every v ∈ V).
Indeed, the main result of [7, Sec. 4] is that this decoder works well, which yields the desired

LTC, once a suitable graph is constructed (in [7, Sec. 5]). Specifically, Dinur et al. [7] proved

Theorem 3.1 (the foregoing decoder works well [7, Prop. 4.7&4.8]): Let f : Q → {0, 1} and

η(f)
def
= Prv∈V [fv ̸∈ C ′ ⊗ C ′′]. For some universal constant η0 > 0 (i.e., η0 = (Ω(δ0) − λ)/2d),

if η(f) < η0, then the foregoing decoder never fails but rather outputs a codeword of C that is at
distance at most O(d) · η(f) from f .

In particular, [7, Prop. 4.8] asserts that if η(f) < η0, then the decoder does not fail, whereas [7,
Prop. 4.7] asserts that in this case the output (codeword of C) is O(d) ·η(f)-closet to f .10 Needless
to say, if η(f) ≥ η0, then the claim holds triviality (since every f is O(η0)-close to C).

Theorem 3.2 (construction of suitable graphs, follows from [7, Lem. 5.2]): For every λ > 0, there
exists a constant d such that, for every n ∈ N, a pair of Θ(n)-vertex graphs as in Section 2.1 can

9In contrast, in the case of expander codes, neighboring vertices have only a single edge in common.
10In [7, Prop. 4.7] the constant factor is 4 · (2d + 1), but our presentation is a bit different (i.e., we use all four

representations of each 4-cycle) and this may affect the constant.

6

be constructed in poly(n)-time. In particular, each graph is d-regular and its second (normalized)
eigenvalue is at most λ. Furthermore, incidence queries regarding each of the graphs can be answered
in poly(log n)-time.

(The foregoing is simplified form of [7, Lem. 5.2]: The original version asserts such graphs for any
d that is a multiple of some d0 ∈ N, and use this fact in order to present suitable base codes (see [7,
Lem. 5.1]).)11

On the proof of Theorem 3.1. The easy part (proved in [7, Prop. 4.7]) is showing that if the
decoder does not fail, then the codeword f ′ that it outputs is O(η(f))-close to f . Letting winit

(resp., wfin) denote the initial (resp., final) value of w, observe that ∆(f, f ′) ≤ |V init|+|V fin|
|V | , where

V init = {v∈V :winit
v ̸= fv} and V fin = {v∈V :wfin

v ̸= winit
v }. Next, note that |V init| ≤ η(f) · |V |

(since fv ∈ C ′ ⊗ C ′′ implies winit
v = fv) and |V fin| ≤ D(winit) · |E| (since each modification step

decreases D by at least 1/|E|), whereas D(winit) ≤ 2η(f) (since {u, v} contributes to D(winit) only
if either fu ̸∈ C ′ ⊗ C ′′ or fv ̸∈ C ′ ⊗ C ′′)12 and |E| = d · |V |. Hence, ∆(f, f ′) ≤ η(f) + 2η(f) · d.

The more difficulty part (proved in [7, Prop. 4.8]) is showing that the decoder may fail only when
η(f) ≥ η0. It is actually shown that if the algorithm fails (i.e., D(wfin) > 0), then D(wfin) ≥ 2η0
must hold, which implies η(f) ≥ η0. (Recall that wfin is stable in the sense that D cannot be
decreased by any modification to wfin.)

At a very high level, the foregoing claim is proved as follows. First, it is proved (in [7, Clm. 4.10])
that if some edge e contributes to D(wfin) (per the r.h.s of Eq. (3)), then a constant fraction of the
edges that participate in 4-cycles that contain e also contribute to this count (i.e, to D(wfin)). This
means that disagreements are propagated locally; that is, disagreement propagates from a single
edge to many edges in the various 4-cycles that contain this edge. Next, using the robustness of the
tensor code C ′ ⊗ C ′′ (and the stability of wfin), it is proved (in [7, Clm. 4.11]) that disagreements
on edges that are incident at a vertex v translate to a proportional number of disagreements on the
edges that are in 4-cycles that contain vertex v but are not incident to it. Finally, the expansion
properties of the graphs are used in order to prove (in [7, Clm. 4.12 & Lem. 4.13]) that these local
disagreements translate to global ones; that is, if there are many disagreements in the 4-cycles that
touch a vertex, then there are many disagreements globally (i.e., in the entire graph). This means
that D(wfin) > 0 implies D(wfin) = Ω(1).

On the proof of Theorem 3.2. One may indeed wonder whether there exist pairs of graphs
satisfying the conditions stated in Section 2.1. The cue is using left and right multiplication (in
a non-Abelian group); specificaly, Dinur et al. [7, Lem. 5.2] use Cayley graphs over the vertex-set
(group) V , with generator-sets A = {ai : i ∈ [d]} and B = {bi : i ∈ [d]}, and let g′i(v) = ai · v and
g′′i (v) = v · bi. Hence, g′i ◦ g′′j = g′′j ◦ g′i, whereas guaranteeing that g′i(v) ̸= g′′j (v) holds (for all v ∈ V
and i, j ∈ [d]) does not seem problematic (yet, it is far from trivial, since we need these graphs to
be expanders (see [7, Sec. 6])).

11The point is that they used a result that requires d to be a multiple of some given d0. We believe that this is
not really necessary. Alternatively, obtaining d that is a multiple of d0 is quite trivial if one does not aim at optimal
expansion (i.e., Ramanujan graphs), which is immaterial for the current application.

12Otherwise, winit
u = fu and winit

v = fv, which contradicts the hypothesis regarding {u, v}. Note, however, that
the same vertex may contribute to 2d edges. Hence, we have D(winit) · |E| ≤ 2d · η(f) · |V |.

7

4 Concluding Comments

An interesting feature of the locally testable code of Dinur et al. [7] is that it is the first known LTC
of subquadratic block-length that comes in a single-step construction, which (in particular) does
not utilize any PCP machinery.13 (We mention that the LTCs of Meir [10] and Viderman [15, 16]
also avoids PCP machinery, but these constructions proceed in several steps, which mimic various
ideas of PCP constructions.)

I was told that Panteleev and Kalachev [11] have, independently but later, also proved Theo-
rem 1.2.14 Their construction seems (essentially) identical to the one of Dinur et al. [7], but their
analysis seems somewhat different.

References

[1] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy. Proof
Verification and Intractability of Approximation Problems. JACM, Vol. 45, pages 501–555,
1998. Extended abstract in 33rd FOCS, 1992.

[2] Sanjeev Arora and Shmuel Safra. Probabilistic Checkable Proofs: A New Characterization
of NP. JACM, Vol. 45, pages 70–122, 1998. Extended abstract in 33rd FOCS, 1992.

[3] Mihir Bellare, Oded Goldreich, and Madhu Sudan. Free Bits, PCPs and Non-Approximability –
Towards Tight Results. SICOMP, Vol. 27, No. 3, pages 804–915, 1998. Extended abstract in
36th FOCS, 1995.

[4] Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan. and Salil Vadhan. Robust
PCPs of Proximity, Shorter PCPs, and Applications to Coding. SICOMP, Vol. 36 (4), pages
889–974, 2006. Extended abstract in 36th STOC, 2004.

[5] Eli Ben-Sasson and Madhu Sudan. Simple PCPs with Poly-log Rate and Query Complexity.
In 37th STOC, pages 266–275, 2005.

[6] Irit Dinur. The PCP Theorem by Gap Amplification. JACM, Vol. 54 (3), Art. 12, 2007.
Extended absract in 38th STOC, 2006.

[7] Irit Dinur, Shai Evra, Ron Livne, Alex Lubotzky, and Shahar Mozes. Locally Testable Codes
with Constant Rate, Distance, and Locality. ECCC, TR21-151, 2021.

[8] Oded Goldreich. Introduction to Property Testing. Cambridge University Press, 2017.

[9] Oded Goldreich and Madhu Sudan. Locally testable codes and PCPs of almost-linear length.
JACM, Vol. 53 (4), pages 558–655, 2006. Extended abstract in 43rd FOCS, 2002.

[10] Or Meir. Combinatorial Construction of Locally Testable Codes. SICOMP, Vol. 39 (2), pages
491–544, 2009. Extended abstract in 40th STOC, 2008.

13An explicit LTC of almost quadratic block-length that does not utilize any PCP machinery follows by starting
from a suitable low-degree test and using alphabet reduction; see [8, Sec. 13.3.2.1].

14The result of Dinur etal [7] was publicly announced in September 2021.

8

[11] Pavel Panteleev and Gleb Kalachev. Asymptotically Good Quantum and Locally Testable
Classical LDPC Codes. arXiv:2111.03654[cs.IT], November 2021.

[12] Dana Ron. Algorithmic and analysis techniques in property testing. Foundations and Trends
in Theoretical Computer Science, Vol. 5, pages 73–205, 2010.

[13] Michael Sipser and Daniel Spielman. Expander codes. IEEE Trans. Inf. Theory, Vol. 42 (6),
pages 1710–1722, 1996. Preliminary version in 35th FOCS, 1994.

[14] Shiri Sivan. The Rate and Structure of Square Codes. MSc Thesis, Weizmann Institute of
Science, January 2024.

[15] Michael Viderman. Strong LTCs with Inverse Poly-Log Rate and Constant Soundness. In 54th
FOCS, pages 330–339, 2013.

[16] Michael Viderman. Explicit Strong LTCs with Inverse Poly-Log Rate and Constant Soundness.
In 22nd RANDOM, LIPIcs (Vol. 116), pages 58:1–58:14, 2018.

9

	The Result
	The Construction
	The Ingredients
	The Constructed Code and Its Tester

	The Analysis (Flavor Only)
	Concluding Comments

