
Solving Tree Evaluation in o(log n · log log n) space

Oded Goldreich
Department of Computer Science

Weizmann Institute of Science, Rehovot, Israel.

December 28, 2024

Abstract

The input to the Tree Evaluation problem is a binary tree of height h in which each internal
vertex is associated with a function mapping pairs of ℓ-bit strings to ℓ-bit strings, and each leaf
is assigned an ℓ-bit string. The desired output is the value of the root, where the value of each
internal node is defined by applying the corresponding function to the value of its children.

A recent result of Cook and Mertz (ECCC, TR23-174) asserts that the Tree Evaluation
problem can be solved in space O(ℓ+h · log ℓ), where the input length is exp(Θ(h+ℓ)). Building
on our recent exposition of their result (ECCC, TR24-109), we obtain an o((h+ ℓ) · log(h+ ℓ))
space bound. Specifically, for the case of h ≥ ℓ, we shave off an Θ(log log(h+ ℓ)) factor.

The improvement is obtained by improving the procedure of Cook and Mertz for a generalized
tree evaluation problem that refers to d-ary trees. We then reduce the binary case to the d-ary
case while cutting the height of the tree by a factor of log2 d.

A preliminary version of this paper has been posted as TR24-124 of ECCC. The current version is
aimed at making the text more accessible to a wider range of readers.

The main result reported in this memo was obtained by Manuel Stoeckl, a student at Dartmouth,
half a year before us. Manuel felt that this result is a minor observation and did not find the time
to write it down. He also declined our invitation to co-author this memo.

1 Introduction

A recent result of Cook and Mertz [1] asserts that the Tree Evaluation problem can be solved in
space O(log n·log logn), where n denotes the length of the input. For the history and significance of
this problem, see [1]. In this memo we improve over their bound by shaving off a triple-logarithmic
factor. Our improvement builds upon our exposition of the Cook and Mertz result [1], which is
provided in [3].

As stated in the abstract, our improvement for the binary problem (i.e., the problem associated
with binary trees) is based on an improvement for the general case (i.e., the problem associated
with d-ary trees for d > 2). Hence, we recall the latter problem, viewing the former one as a special
case.

The input to the generalized Tree Evaluation problem, denoted TrEvdh,ℓ, is a rooted d-ary tree of
height h in which internal nodes represent arbitrary gates mapping d-tuples of ℓ-bit strings to ℓ-bit
strings, and each leaf carries an ℓ-bit string. Specifically, nodes in the tree are labelled by d-ary

sequences of length at most h such that the nodes u1, ..., ud are the d children of the node u ∈ U
def
=

1

⋃h−1
i=0 [d]

i. For every u ∈ U , the internal node u is associated with a gate fu : {0, 1}d·ℓ → {0, 1}ℓ,
and the leaf u ∈ {0, 1}h is assigned the value vu ∈ {0, 1}ℓ. Hence, the input is the description of all

|U | = dh−1
d−1 gates (i.e., all fu’s) and the values assigned to the dh leaves; that is, the length of the

input is |U | · (2dℓ · ℓ) + dh · ℓ = exp(Θ(dℓ + h log d)). The desired output is vλ such that for every
u ∈ U it holds that

vu = fu(vu1, ..., vud). (1)

The (binary) Tree Evaluation problem corresponds to the special case of d = 2; that is, TrEvh,ℓ
def
=

TrEv2h,ℓ.
Our starting point is the results of Cook and Mertz [1]. Specifically, they showed that TrEvh,ℓ

has space complexity O(ℓ+h log ℓ) [1, Thm. 15], whereas TrEvdh,ℓ has space complexity O((h+dℓ) ·
log(dℓ)) [1, Thm. 18]. Here we slightly improve over both results (in the binary case for h = Ω(ℓ)).

Our improvement for the case of d > 2 is based on generalizing the proof of [1, Thm. 15]
rather than generalizing the proof of [1, Thm. 10] (which gives a bound of O((h + ℓ) · log ℓ) for
the binary case). This generalization is facilitated by starting with the exposition of [3] rather
than with the exposition provided in [1]. Specifically, we show that TrEvdh,ℓ has space complexity
O(dℓ+ h · log(dℓ)).

Our improvement for the binary case is rooted in the fact that, for h = ω(ℓ/ log ℓ), the space
complexity is dominated by h log ℓ. Hence, reducing the height of the tree at the cost of increasing
its arity and using our improvement for the later case, we show that TrEvh,ℓ has space complexity

O((h+ ℓ) · log ℓ
log log ℓ). Recalling that the length of the input is exponential in Θ(h+ ℓ), this gives the

claimed triple-logarithmic factor improvement.

Organization. In Section 2 we present our improvement for the d-ary case, for d > 2, whereas
in Section 3 we present the iimprovement for the binary case. The two sections can be read
independently of one another.

2 On the Generalized Tree Evaluation Problem

In this section we present our improvement for the space complexity of TrEvdh,ℓ, for d > 2.

A suggested warm-up. The exponsition of this section builds on our exposition [3] of the
aforementioned result of Cook and Mertz [1]. In fact, we skip the motivating discussion (provided
in [3]) and proceed directly to the actual technical presentation. Hence, our exposition [3] is a
good warm-up for the current section; in particular, we suggest reading [3, Sec. 2], which focuses
on proving [1, Thm. 10] (and maybe also [3, Sec. 3], which yields a proof of [1, Thm. 15]). We
warn that the exposition of [3], which we shall follow, refers to a model of global storage, which is
spelled-out in [3, Sec. 4] (following [2, Sec. 5.2.4.2]).1

Following [1], as presented in [3], rather than recursively computing values in the input tree,
we shall compute values in a corresponding tree in which the input functions (i.e., the fu’s) are
replaced by their low-degree extensions. We shall use univariate interpolation in order to obtain a

1Loosey speaking, this model abandon the paradigm of “good programming” under which a recursive call uses a
different work space than the execution that calls it. Instead, it uses the same global storage for both executions,
whereas only a much smaller work space will be allocated to each recursive level as its local storage.

2

value that corresponds to a given node in the tree based on several values associated with each of
its children.

Low degree extensions and interpolation. In analogy to [3, Sec. 3], we associate {0, 1}ℓ with
[dk]k (equiv., {0, 1}d·ℓ with [dk]d·k), and consider functions that desribe the individual elements in
the outputs of the fu’s. Specifically, for every u ∈ U and i ∈ [k] (and every x(1), ..., x(d) ∈ [dk]k),
let fu,i(x

(1), ..., x(d)) ∈ [dk] equal the ith symbol of fu(x
(1), ..., x(d)) ∈ [dk]k (i.e., fu(x

(1), ..., x(d)) =
(fu,i(x

(1), ..., x(d)), ..., fu,i(x
(1), ..., x(d)))). We use a finite field, denoted K, of size poly(dk) that is

greater than m = d · k2 (assume that [dk] ⊂ K), and consider low degree extensions of the fu,i’s.

Specifically, for each u ∈ U and i ∈ [k], we let f̂u,i : Kd·k → K be a d · k-variate polynomial of

individual degree k − 1 over K that extends fu,i : [dk]
dk → [dk].2 Note that f̂u,i has total degree

dk · (k − 1) < m, whereas its input length (i.e., log2 |Kdk|) equals log2(poly(dk)
dk) = O(dℓ). The

punchline is that, for every v1, ..., vd ∈ Kk, we can obtain the value of f̂u,i(v1, ..., vd) by univariate

polynomial interpolation from the values of f̂u,i(jx̂
(1) + v1, ..., jx̂

(d) + vd) for all j ∈ [m] ⊂ K, where
j · (z1, ..., zk) ∈ Kk equals (jz1, ..., jzk).

Note, however, that a naive implementation of the foregoing interpolation involves operating on
these m values (after storing them in memory). Fortunately, the interpolation formula is a linear
combination of these m values, and so we need not store these values but can rather operate on them
on-the-fly (while only storing the partial linear combination computed so far). Specifically, we let
cj be the coefficient of f̂u,i(jx̂

(1) + v1, ..., jx̂
(d) + vd) used to obtain f̂u,i(0x̂

(1) + v1, ..., 0x̂
(d) + vd);

that is,

f̂u,i(v1, ..., vd) =
∑
j∈[m]

cj · f̂u,i(jx̂(1) + v1, ..., jx̂
(d) + vd). (2)

Then, we shall compute the r.h.s of Eq. (2) in m iterations such that in each iteration we obtain
and add the current term to the partial sum computed so far.

Our recursive algorithm. For sake of simplicity, we first assume that we have oracle access to
the function F : U × [k]×Kdk → K defined by

F (u, i, x̂(1), ..., x̂(d))
def
= f̂u,i(x̂

(1), ..., x̂(d)). (3)

The global memory that we use will hold d + 1 elements of Kk (each being a k-sequence over K),
denoted x̂(1), ..., x̂(d) and ẑ, as well as a sequence (over [d]) of length at most h, denoted u. Now,
suppose that we have a procedure that, for any u ∈ U , σ ∈ [d] and τ ∈ {0, 1}, when invoked with
(uσ, τ, x̂(1), ..., x̂(d), ẑ) on the global memory, returns (uσ, x̂(1), ..., x̂(d), ẑ+(−1)τ · vuσ) on the global
memory, where vuσ ∈ [dk]k ⊂ Kk is recursively defined as in Eq. (1).3 The procedure that we detail

2Indeed, for simplicity, we assume that K is of prime cardinality. In general, for S ⊂ K, the low degree extension
of f : St → S is given by f̂ : Kt → K such that

f̂(x1, ..., xt) =
∑

a1,...,at∈S

∏
i∈[t]

χai(xi)

 · f(a1, ..., at),

where χa(x)
def
=

∏
b∈S\{a}(x− b)/(a− b) is a degree |S| − 1 univariate polynomial.

3The variable/parameter τ allows us to either add or subtract the value vuσ. In our recursive calls, we shall need
both options.

3

next will achieve an analogous effect on (u, τ, x̂(1), ..., x̂(d), ẑ), where the point is that this procedure
uses the same global memory as the procedure that it calls (while using only a small abount of local
memory). In fact, we describe a recursive procedure that, on input of the form (u, ·, · · ·), makes
calls regarding inputs of the form (uσ, ·, · · ·) for every σ ∈ [d].

Algorithm 1 (the recursive procedure): Let the vu’s be recursively defined as in Eq. (1). Then, on
input (u, τ, x̂(1), ..., x̂(d), ẑ) ∈ U×{0, 1}×K(d+1)k, placed on its global memory, the procedure returns
(u, x̂(1), ..., x̂(d), ẑ + (−1)τvu), on its global memory, where vu = fu(vu1, ..., vud). The recursive
procedure does so by proceeding in m iterations.4

(In iteration j ∈ [m], for each i ∈ [k], we shall increment the current value of the ith element of ẑ
by (−1)τ · cj · f̂u,i(jx̂(1) + vu1, ..., jx̂

(d) + vud), while maintaining (u, x̂(1), ..., x̂(d)) intact.)5

The jth iteration proceeds as follows.

1. Proceeding in d sub-steps (corresponding to all σ ∈ [d]), in the σth sub-step we place jx̂(σ) in
the last block (of the global memory) and make a recursive call aimed at increamenting it by
vuσ. That is, for σ = 1, ..., d, by making a recursive call with the global memory containing
the sequence (uσ, 0, ŷ(1), ..., ŷ(σ−1), x̂(σ+1), ..., x̂(d), ẑ, jx̂(σ)), we update the global memory to

(uσ, ŷ(1), ..., ŷ(σ−1), x̂(σ+1), ..., x̂(d), ẑ, ŷ(σ)), where ŷ(σ)
def
= jx̂(σ) + vuσ.

(Once these d sub-steps are completed, the global memory contains the sequence (u, ŷ(1), ..., ŷ(d), ẑ),
where ŷ(σ) = jx̂(σ) + vuσ for every σ ∈ [d].)

2. For each i ∈ [k], letting ẑi denote the ith element of ẑ ∈ Kk, compute ẑi + (−1)τ · cj ·
F (u, i, ŷ(1),, ŷ(d)) by making an oracle call to F , and update the value of ẑi accordingly.
Note that in the ith sub-step only the ith element of the sequence ẑ is updated (whereas
multiplication by cj is performed so to fit Eq. (2)).

3. Analogously to Step 1, for σ = 1, ..., d, by making a recursive call with the global mem-
ory containing (uσ, 1, x̂(1), ..., x̂(σ−1), ŷ(σ+1), ..., ŷ(d), ẑ, ŷ(σ)), we update the global memory to
(uσ, x̂(1), ..., x̂(σ−1), ŷ(σ+1), ..., ŷ(d), ẑ, jx̂(σ)), since ŷ(σ) − vuσ = jx̂(σ).

4. Re-arrange the global memory to contain (u, x̂(1), ..., x̂(d), ẑ), while noting that each ẑi got
incremented by (−1)τ · cj · f̂u,i(jx̂(1) + vu1, ..., jx̂

(d) + vud).

Using Eq. (2), we note that (after the m iterations) the value of each ẑi equals the initial value plus
(−1)τ · f̂u,i(vu1, ..., vud).

The correctness of Algorithm 1 follows from Eq. (2), and when invoked on input (λ, 0, 0d·ℓ, 0ℓ) it

returns (λ, 0d·ℓ, vλ). Letting h̃
def
= h log2 d, Algorithm 1 uses a global memory of length h̃+O(1) +

(d+1+ o(1)) · log2 |K|k = h̃+O(dk · log(dk)) = h̃+O(dℓ), where the o(1) · log2 |K|k+O(log d) term
accounts for the space complexity of various manipulations (including maintaining the counters
i ∈ [k] and σ ∈ [d]), and a local memory of length log2m = O(log dℓ), which is used only for
recording j ∈ [m].

Using a composition lemma akin [2, Lem. 5.10], it follows that the general Tree Evaluation
problem (with parameters h, ℓ and d) can be solved in space O(dℓ + h log d) + h · log(dℓ)) =

4The following description is for the case of u ∈ U . In case u ∈ [d]h, we may just obtain vu from the input oracle
(e.g., augment F such that F (u) = vu).

5Recall that, by Eq. (2),
∑

j∈[m] cj · f̂u,i(jx̂
(1) + vu1, ..., jx̂

(d) + vud) equals f̂u,i(vu1, ..., vud).

4

O(dℓ + h · log(dℓ)), when using oracle access to F . Observing that F can be evaluated in linear
space (i.e., space linear in h + dℓ)6 and using a naive composition (see [3, Sec. 5] for details), it
follows that

Theorem 2 (an intermediate result, generalization of [1, Thm. 15]): The space complexity of
TrEvdh,ℓ is O(dℓ+ h · log(dℓ)).

Theorem 2 improves over the O((dℓ+h) · log(dℓ)) bound given in [1, Thm. 18] and meets the bound
for d = 2 given in [1, Thm. 15].

3 On the (Binary) Tree Evaluation Problem

In this section we present our improvement for the space complexity of TrEvh,ℓ. All that is used
from Section 2 is the statement of Theorem 2.

Towards improving the bound for the binary case. The bound provided by Theorem 2

suggest that it may be worthwhile to reduce TrEvh,ℓ to TrEv2
h′

h/h′,ℓ by replacing binary subtrees

of height h′ by 2h
′
-ary functions. The point is that space complexity of TrEv2

h′

h/h′,ℓ is O(2h
′ · ℓ +

(h/h′) · log(2h′
ℓ)), which equals O(h + 2h

′ · ℓ + (h/h′) · log ℓ). Recalling that the input to TrEvh,ℓ

has length exp(Θ(h+ ℓ)), we infer that the complexity of TrEvh,ℓ is O((h+ ℓ) · (2h′
+ log ℓ

h′)), which

is O((h+ ℓ) · log ℓ
log log ℓ) when using h′ = 0.99 log2 log ℓ.

Reducing TrEvh,ℓ to TrEv2
h′

h/h′,ℓ. The reduction maps the binary functions fu : {0, 1}2ℓ → {0, 1}ℓ

associated with all u ∈ U
def
=

⋃h−1
i=0 {0, 1}i to functions f ′

u′ : {0, 1}2
h′ℓ → {0, 1}ℓ associated with all

u′ ∈ U ′ def
=

⋃(h/h′)−1
j=0 [2h

′
]j . Specifically, for every u′ ∈ [2h

′
]j ⊂ U ′ viewed as an (h′ · j)-bit long

string (for some j ∈ {0, 1, ..., (h/h′) − 1}), we define f ′
u′ as the result of a computation on the

binary sub-tree of height h′ that is rooted at u′ (i.e., the internal node reachable by the path u′′

from u′ uses the function fu′u′′). By [1, Thm. 15], the space complexity of computing each of these
functions is O(ℓ + h′ · log ℓ), which is evidently dominated by O(2h

′ · ℓ). Hence, composing this

reduction with the algorithm asserted in Theorem 2 (as applied to TrEv2
h′

h/h′,ℓ), we obtain

Theorem 3 (the main result): For every h′ ∈ [h], the space complexity of TrEvh,ℓ is O(h + 2h
′ ·

ℓ+ (h/h′) · log ℓ). In particular, the space complexity of TrEvh,ℓ is O((h+ ℓ) · log ℓ
log log ℓ).

Letting n = exp(Θ(h + ℓ)) denote the length of the input to TrEvh,ℓ, we get a space bound of

O(logn·log lognlog log logn).
Recall that the upper bound provided by [1, Thm. 15] is O(ℓ + h · log ℓ), which is optimal for

h = O(ℓ/ log ℓ). Focusing on h = Ω(ℓ), we observe that in this case Theorem 3 improves over [1,
Thm. 15].

6Recall that computing F calls for computing the corresponding f̂u,i, which is a multi-linear extension of fu,i. As

for computing f̂u,i, it requires obtaining all values of fu,i (cf. [3, Sec. 5]).

5

Acknowledgments

I am grateful to James Cook and Ian Mertz for notifying me of the fact that Manuel Stoeckl
obtained the main result of this memo half a year before me.

References

[1] James Cook and Ian Mertz. Tree Evaluation is in Space O(log n · log log n). ECCC, TR23-174,
2023.

[2] Oded Goldreich. Computational Complexity: A Conceptual Perspective. Cambridge University
Press, 2008.

[3] Oded Goldreich. On the Cook-Mertz Tree Evaluation procedure. ECCC, TR24-109, 2024.

6

	Introduction
	On the Generalized Tree Evaluation Problem
	On the (Binary) Tree Evaluation Problem

