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Summary. Contemplating the recently announced 1-local expanders of Viola and Wigderson,
one may observe that weaker constructs that use logarithmic degree are well-known (e.g., the
hypercube). Likewise, one may easily obtain a 4-regular N -vertex graph with spectral gap that is
Ω(1/ log2 N), and similarly a O(1)-regular N -vertex graph with spectral gap 1/Õ(log N). Following
this line of thought, we formulate a natural problem regarding “coordinated random walks” (CRW),
and observe that (1) any solution to the CRW problem yields 1-local expanders, and (2) that any
constant-size expanding set of generators for the symmetric group yields a solution to the CRW
problem. This yields an arguably simpler construction and a more intuitive analysis than the one
used by Viola and Wigderson. Lastly, a modest and natural generalization of the CRW problem is
equivalent to the problem of constructing 1-local expanders.

1 The original statement

A function f : {0, 1}n → {0, 1}n is called t-local if each bit in its output depends on at most t bits
in its input. Throughout this note, we view n as varying. We study the following recent result of
Viola and Wigderson [5].

Theorem 1 (1-local expanders [5]): There exists a constant d and a set of d explicit 1-local bi-

jections, {f1, ..., fd : {0, 1}n → {0, 1}n}n∈N, such that the 2d-regular 2n-vertex graph in which

x ∈ {0, 1}n is connected to the vertex set {fσ
i (x) : i ∈ [d], σ ∈ {±1}} is an expander.

Note that each fi is determined by a permutation on the bit locations π(i) : [n] → [n], called the
relocation, and an offset s(i) ∈ {0, 1} such that fi(x1 · · · xn) = (xπ(i)(1) · · · xπ(i)(n)) ⊕ s(i).

Recall that the (normalized) second eigenvalue of a regular graph represents the rate at which a
random walk on the graph converges to the uniform distribution (hereafter called the convergence
rate). In an expander this rate is a constant smaller than 1, whereas in a general (regular) N -vertex
graph the rate is upper-bounded by 1 − 1

poly(N) .

2 Initial thoughts

Obtaining a 1-local expander requires using both the offsets (i.e., s(i)’s) and the relocation permu-
tations, because without the offsets the fi’s maintain the Hamming weight of the vertex (and so
the 2n-vertex graph is not even connected), whereas without the permutations the 2n-vertex graph
decomposes into even smaller connected components (i.e., each of size 2d).

Note that using d = 2 with f1(x) = sh(x) and f2(x) = sh(x) ⊕ 0n−11, where sh(x1 · · · xn) =
(x2 · · · xnx1) is a shift that corresponds to the permutation π(i) = (i + 1 mod n) + 1, yields a
2n-vertex graph with second eigenvalue 1 − Ω(1/n2), since taking a (lazy) random walk of length
O(t · n2) on this graph yields a distribution that is 2−t-close to uniform.1 Note that this rate of

1The latter assertion is based on the fact that during such a walk, with probability at least 1−2−t, each position in
the original string appeared at the rightmost position at some time during the walk (and at that time the corresponding
value is randomized). To see this consider the binary (over {±1}) sequence of decisions describing whether to apply
sh or sh

−1 in each of the (non-lazy) random steps, and note that each block of O(n2) symbols has absolute value of
at least 2n with probability at least 1/2. Hence, looking at t partial sums that correspond to the endpoints of such t
disjoint blocks, we conclude that the probability that all these partial sums are in the interval [−n, n] is at most 2−t.
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convergence is bounded away from 1 by the reciprocal of a polylogarithmic function in the size of
the graph; specifically, we have rate 1 − Ω(1/ log2 N) for N -vertex graphs.

The foregoing argument refers implicitly to a (lazy) random walk on the n-vertex cycle, which
represents the shift relocation permutation used in the 1-local 2n-vertex graph that consists of the
relocation permutation sh and the offset 0n−11. In general, we shall be discussing two graphs:
The 2n-vertex graph with transitions that are 1-local, and an n-vertex graph that describes the
relocation permutations used in the 1-local graph. (For simplicity, we shall focus on the case that
the 1-local graph uses a single non-zero offset.)

Wishing to use shorter random walks in the rate-convergence analysis, consider the case that
the n-vertex graph is a O(1)-regular expander graph. In this case, a (lazy) random walk of length
O(t · n log n) on the n-vertex graph visits all vertices with probability at least 1 − 2−t (since its
cover time is O(n log n) and we have t “covering attempts”).2 It follows that the corresponding
1-local 2n-vertex graph has second eigenvalue 1− (1/n log n), since taking a (lazy) random walk of
length O(t ·n log n) on the 1-local graph yields a distribution that is 2−t-close to uniform (which, in
turn, follows from the fact that each position in the original n-bit string is mapped to the rightmost
position at some time).

There is no hope of getting a constant-degree 2n-vertex expander when using only offsets of
Hamming weight o(n). This is the case because the probability that a walk of length t on any
regular n-vertex graph misses a set of o(n) vertices is at least (1 − o(1))t = exp(−o(t)).3 In that
case, there exists a position in the original n-bit string (i.e., in the name of the vertex of the 1-local
2n-vertex graph) that is not moved to an active location where it may be randomized, where the
active locations refer to the 1-entries in the offsets.4 Using also offsets of Hamming weight n− o(n)
does not help, since this is equivalent to adding the all-ones offset, which merely complements the
vertex name in the 2n-vertex graph.5 In view of the above, we must use at least one offset that has
Hamming weight in [Ω(n), n − Ω(n)]. We shall first consider the case of using a single offset that
has weight approximately n/2.

3 A sufficient condition

Taking t = Θ(n) random steps, consider the t-by-n Boolean matrix describing the activity status
of the location to which each of the initial positions is moved during the t steps; that is, the

2The cover time bound was established in [1, 2, 4].
3Note that here we seek a lower bound on the probability of missing the set S (equiv., staying in S = [n] \ S),

whereas the common focus is on good upper bounds (which exists when the graph is an expander). Letting d denote
the degree of the n-vertex graph, we observe that there are at most d · |S| edges incident at S, and the worst case
is that their other endpoints are distributed evenly among the vertices in S (because otherwise, conditioning on not
leaving S biases the distribution towards vertices that have more neighbors in S (equiv., less neighbors in S)). Hence,

the probability that the random walk never leaves S is at least (1 − d|S|

d·|S|
)t, whereas in our case |S| = (1 − o(1)) · n.

4This rules out not only the line of thinking used above, but also the possibility that the 2n-vertex graph is an
expander. To see this consider a random walk that starts at the vertex 0n and suppose that with probability at least
η = exp(−o(t))/n this walk does not randomize position i. (We stress that randomized bit positions are reset to 1
with probability exactly 1/2, whereas non-randomized positions maintain the value 0.) So in the final vertex of the
walk, this (i.e., ith) bit position will be 0 with probability at least (1 − η) · 0.5, which means that the final vertex is
η-far from uniform.

5In that case, with similar probability, there are two positions in the original string that are not moved through
an active location (which implies that their final values are identical). To see this, follow the argument in Footnote 3,
while noting that the probability that one of the two coordinated random walks does not stay in S is only doubled.
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(i, j)th entry in the matrix indicate whether or not, in the ith step of the fixed random walk being
considered, the jth initial location is mapped to an active location (i.e., a 1-entry in the offset being
used). Using an n-vertex expander, we observe that (w.v.h.p.) each column in this random matrix
has approximately t/2 1-entries, but what we need is that (w.v.h.p.) this matrix has rank n.

Note that the matrix that corresponds to a random walk describes n coordinated walks on an
n-vertex graph, each starting at a different vertex of the graph and all proceeding according to
the same sequence of (random) choices. When this matrix has full rank, the t random choices of
whether or not the non-zero offset is applied at each of the t steps correspond to a random linear
combination of the t rows of the matrix, which yields a uniformly distributed n-bit long string. In
this case, the corresponding random walk on the 2n-vertex graph yields a uniform distribution (since
the latter n-bit string is added to the initial vertex in the walk yielding a uniform distribution on
the vertices of the 2n-vertex graph, regardless of the effect of the relocation permutations).6 Hence,
the question we consider is the following.

Problem 2 (a property of coordinated random walks): Let d = O(1). For a d-regular n-vertex

graph, an integer t = Ω(n), and a set T ⊆ [n], consider a random sequence (σ1, ..., σt) ∈ [d]t and the

n corresponding coordinate random walks (CRW) such that the jth walk starts at vertex j and moves

in the ith step to the σth
i neighbor of the current vertex. Now, consider a t-by-n Boolean matrix

such that the (i, j)th entry indicates whether the jth walk passed in T in its ith step; that is, letting

gσ(v) denote the σth neighbor of vertex v, then the (i, j)th is 1 if and only if gσi
(· · · (gσ1(j) · · ·)) ∈ T .

The desired CRW property is that this random matrix has full rank with probability 1− exp(−Ω(t)),
and the question is for which graphs and which sets T ’s does this hold?

We have already noted that for this property to hold, the set T must have size in [Ω(n), n−Ω(n)].
We now note that using an arbitrary expander graph and an arbitrary set T of any predetermined
size (e.g., |T | ≈ n/2) will not do: For example, consider an n-vertex expander that consists of two
n/2-vertex expanders that are connected by a matching, and let T be the set of vertices in one of
these two expanders. Then, correlated walks on this graph (w.r.t this T ) always yields a Boolean
matrix of rank at most two, since the coordinated walks that start at vertices in T (resp., in [n]\T )
always move together to T or to [n] \ T .

4 Known constructions that satisfy the CRW property

Recall that Kassabov’s result [3], which is used in [5], asserts that the symmetric group has an
explicit generating set that is expanding and of constant size.7 We shall show that using this set of
permutations (i.e., as our set of relocating permutations) with the offset 1n′

0n−n′
such that n′ ≈ n/2

is odd (e.g., odd n′ ∈ {⌊n/2⌋, ⌊n/2⌋ + 1}) yields an n-vertex graph that satisfies the coordinated
random walks property (of Problem 2). This yields an alternative proof of Theorem 1.

Consider a random t-by-n Boolean matrix that corresponds to coordinated random walks (from
all possible start vertices) on the n-vertex graph (wrt the foregoing offset). We shall show that, for
every non-empty set I ⊆ [n], with probability at least 1− 2−3n, the sum of columns in position I is
non-zero. For I = [n] this follows from the fact that n′ is odd. Otherwise (i.e., for I ⊂ [n]), we shall

6That is, fixing a random walk on the 2n-vertex graph, we observe that if the matrix that corresponds to this walk
has full rank, then the final vertex in the walk is uniformly distributed in {0, 1}n.

7Indeed, this refers to a third graph, which is the corresponding Cayley graph with n! vertices (i.e., the vertices
are all the possible permutations over [n]).
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prove the claim by using the correspondance between random walks on the n-vertex graph and
random walks on the set of all permutations moving according to the selected generators.8 (That
is, selecting the σth neighbor in the random walk on the n-vertex graph corresponds to selecting
the σth generating permutation (and moving by composing it).)

In our argument, we shall refer to two sets of permutations over [n] (viewed as n-long sequences
over [n] with distinct elements):

• The set B of sequences such that locations I hold an odd number of elements of [n′]; that is,
(e1, ..., en) ∈ B if |{i ∈ I : ei ∈ [n′]}| is odd. Observe that B has density approximately half
within the set of all n! sequences.9

Note that the coordinated random walks on the n-vertex graph yield a Boolean matrix such
that the sum of columns in position I is zero if and only if the corresponding walk on the set
of n! permutations does not pass through states in B.

• The set S of sequences such that the first n′ locations hold all elements of [n′]; that is,

(e1, ..., en) ∈ S if {i ∈ [n′] : ei} = [n′]. Observe that S has density approximately (n′!)2

n! , which
is approximately 2−n.

Note that the Boolean matrix that represents a random walk on the n-vertex graph equals (up
to a permutation of its columns) the matrix that represents the same walk on any isomopric
copy of that graph that leaves [n′] invariant (i.e., rather than walking on an n-vertex graph
G, we walk on π(G), where π : [n] → [n] is a permutation such that π(j) ∈ [n′] for every
j ∈ [n′]). Hence, we may analyze the corresponding walk (on the set of n! permutations) that
starts at a state that is uniformly distributed in S.

Now, by the expansion property of the generating set for the symmetric group, we have that a
t-step random walk that starts in uniformly distributed state in S passes via B with probability at
least 1 − exp(−Ω(t − O(n))), where the first O(n) steps are taken for convergence to the uniform
distribution and the remaining steps are used for hitting B. Hence, the corresponding t-by-n
Boolean matrix has full rank with probability at least 1 − 2n · exp(−Ω(t) + O(n)). (Formally, for
each I, we consider the corresponding BI , and observe that a random walk that starts at a state
that is uniformly distributed in S avoids none of the BI ’s corresponds to a Boolean matrix that
is full rank, and that the probability that the complementary event occurs (i.e., there exists an I
such that the random walk avoids BI) is upper bounded by a union bound on all BI ’s.)

Theorem 3 (a partial answer to Problem 2): Let Π = {πi : i ∈ [d]} be a generating set of the

symmetric group of n elements and suppose that Π is expanding. Consider an n-vertex graph such

that, for every j ∈ [d] and σ ∈ {0, 1}, the (2j−σ)th neighbor of i ∈ [n] is πσ
j (i). Then, this n-vertex

graph combined with any set T of odd size n′ ≈ n/2 satisfies the coordinated random walks property.

8That is, we use the correspondance between random walks on the n-vertex graph and random walks on the
n!-vertex Cayley graph.

9This can be shown by considering, w.l.o.g., the case of |I | ≤ n/2 (or else consider [n] \ I). Consider a process of
randomly assigning distinct elements to the location in I , and focus on the last assignment in that process. W.v.h.p.,
before this last assignment, these |I | − 1 < n/2 ≈ n′ locations were assigned approximately an equal number of
elements from [n′] and from [n′ + 1, n], which means that n′ − (1 ± o(1)) · |I |/2 = (1 ± o(1)) · (n − |I |)/2 elements
from each type remain for the last assignment. This means that the parity of elements from [n′] is flipped at the last
step with probability (1 ± o(1))/2 ≈ 1/2.
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5 A sufficient and necessary condition

Turning back to Problem 2, we note that the following generalization suffices for obtaining a 1-local
expander (with 2n vertices).

Problem 4 (a relaxed property of coordinated random walks): Let d, c = O(1). For a d-regular

n-vertex graph, an integer t = O(n), and c sets T1, ..., Tc ⊆ [n], consider a random sequence

(σ1, ..., σt) ∈ [d]t and the n corresponding coordinate random walks such that the jth walk starts at

vertex j and moves in the ith step to the σth
i neighbor of the current vertex. Now, consider another

random sequence (τ1, ..., τt) ∈ [c]t, and a t-by-n Boolean matrix such that the (i, j)th entry indicates

whether the jth walk passed in Tτi
in its ith step. For which graphs and which sequences of sets

(T1, ..., Tc)’s does this random matrix have full rank with probability 1 − exp(−Ω(t))?

On the other hand, we note that any 1-local 2n-vertex expander yields a positive solution to
Problem 4: Firstly, note that w.l.o.g., we may consider a 1-local graph in which each of the O(1)
offsets is coupled with each of the O(1) relocation permutations. A random walk on this 2n-vertex
expander yields a matrix as in Problem 4. Now, if a t-step random walk yields a distribution that
is exp(−Ω(t))-close to uniform (and t = Ω(n) is large enough), then the corresponding matrix must
have full rank with probability at least 1 − exp(−Ω(t)). This claim is shown as follows.

Let η denote the probability that the said matrix does not have full rank. Then, with probability
η′ that is at least 2−n · η over the choices of the relocation permutations, some linear dependency
appears between the n positions in the name of the final vertex, whereas in the remaining walks this
dependence does not appear. (That is, we consider the probability distribution over the Boolean
matrices, while permuting each matrix according to the final vertex (reached in the walks on the n-
vertex graph), and consider a linear dependency among the columns of the resulting random matrix
that holds with probability at least 2−n · η.) Hence, this linear dependency holds for the name of
the final vertex of a random walk on the 2n-vertex graph with probability at least (1− η′) · 0.5+ η′,
which means that the distribution of the final vertex is η′-far from the uniform distribution. The
claim follows, since η′ ≤ exp(−Ω(t)) implies η ≤ 2n · exp(−Ω(t)) = exp(−Ω(t)) for sufficiently large
t = O(n).
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