
Oded (July 22, 2021): Matrix Multiplication in the Congested Clique Model

Assuming that multiplication of n-by-n matrices can be performed by a bilinear program that uses
nω multiplications, we present an O(n1−

2
ω )-round matrix multiplication algorithm for the congested

clique model (with n vertices/processors). Specifically, we abstract the presentation of [1, Sec. 2],
which relies on the routing scheme of [2] and on prior parallel algorithms for matrix multiplication.1

We first present an algorithm that is based on the straightforward bilinear program for computing
matrix multiplication, and next present an algorithm that uses any bilinear program. Needless
to say, the first algorithm (presented in Section 2), can be derived as a special case of the second
algorithm (presented in Section 3), but the derived presentation is different. In retrospect, although
the first algorithm is derived more directly from the bilinear program, the second algorithm is not
more complex (although it does use another conceptual insight).

1 On bilinear programs for matrix multiplication

A general bilinear program for computing the product, denoted P = (pi,j)i,j∈[d], of two d-by-d
matrices, denoted S = (si,j)i,j∈[d] and T = (ti,j)i,j∈[d], has the form

pi,j =
∑

w∈[m]

γ
(w)
i,j

 ∑
u,v∈[d]

α(w)
u,v su,v

 ·
 ∑

u,v∈[d]

β(w)
u,v tu,v

 (1)

where the α
(w)
u,v , β

(w)
u,v , γ

(w)
i,j ’s are scalars and m = m(d) is the number of multiplications used.

The salient feature of matrix multiplication, which we use in this memo, is that the foregoing
equation (i.e., Eq. (1)) holds also when applied to a partition of n-by-n matrices to d2 submatrices,
which is each a n/d-by-n/d matrix. That is, we consider a partition of the n row (resp., columns)
to d blocks, each holding n/d consecutive rows (resp., columns), and let Si,j (resp., Ti,j and Pi,j)
be the (i, j)th submatrix of S (resp., T and P ). Then, for every i, j ∈ [d], we have

Pi,j =
∑

w∈[m]

γ
(w)
i,j

 ∑
u,v∈[d]

α(w)
u,v Su,v

 ·
 ∑

u,v∈[d]

β(w)
u,v Tu,v

 (2)

where here m = m(d) is a function of d. Note that this holds for any d that divides n.

2 Using the straightforward bilinear program

The straightforward program uses m(d) = d3 and has the form

Pi,j =
∑
k∈[d]

Si,k · Tk,j (3)

for every i, j ∈ [d]. Recall that Si,j , Ti,j and Pi,j are n/d-by-n/d matrices. We shall set d = n1/3

and so have m(d) = n. We next decompose Eq. (3) as follows.

1We are not clear about the credits, and leave to others the task of sorting them out.
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(i) P
(k)
i,j = Si,kTk,j for every i, j, k ∈ [d], and

(ii) Pi,j =
∑

k∈[d] P
(k)
i,j for every i, j ∈ [d].

Now, given that d = n1/3, it is most natural to compute (i) by assigning a vertex/processor to
each triplet (i, j, k) ∈ [d]3. Each such processor has to obtain 2 · (n/d)2 = 2n4/3 bits of the 2n2-
bit input, which is initially distributed “uniformly”/regularly among the n processors (such that
each processor holds n entries of each matrix). The key (and yet simple) observation is that the
distribution pattern required for performing (i) is regular; that is, each bit is required by an equal
number of processors. Hence, the routing scheme theorem holds, and O(n4/3/n) rounds suffice.

Turning to the computation of (ii), note that there are d2 computations, and each requires d
matrices (each having (n/d)2 = n4/3 entries). So we can just partition each such computation
among d processors (i.e., we do d3 sub-computations, each referring to (n/d)2/d = n entries in a
generic n-by-n matrix). Again, each processor needs d ·n bits specifically, the bits in the d matrices
that correspond to the entries handled by this processor. Since this is a regular/uniform partition,
we can use the routing scheme again.

(If the n2 output bits are not partitioned as required, then we can just fix that by O(1) more
rounds. This is avoided in the presentation of [1], which just uses the adequate partition, but this
is immaterial.)

On second thought, computation (ii) may be rewritten as (ii’) P =
∑

k∈[d] P
(k), where P (k) =

(P
(k)
i,j )i,j∈[d] which suggests that it can be implemented using any n-way equi-partition of the n-by-n

matrix, where each party holding a bit of P (k) sends this bit to the designator processor.

3 Using any bilinear program

Like in the special case (of the straightforward program), we shall set d such that m(d) = n. Our
overall plan is to compute P (by decomposing Eq. (2)) as follows.

(i) For every w ∈ [n], we compute the matrix R(w) = A(w)B(w), where A(w) =
∑

u,v∈[d] α
(w)
u,v Su,v

and B(w) =
∑

u,v∈[d] α
(w)
u,v Tu,v.

(ii) For every i, j ∈ [d], we compute Pi,j =
∑

w∈[n] γ
(w)
i,j R

(w).

Assuming that we can compute all A(w)’s and B(w)’s, and that these entries are partitioned regularly
among n processors, we assign a vertex/processor to each w ∈ [n] and let it compute the product
R(w). This requires sending two n/d-by-n/d matrices to each processor, which can be done in

O( (n/d)
2

n ) = O(n/d2) rounds, using the routing scheme. However, to implement (i) we also have to

show how to compute all the A(w)’s and B(w)’s, where in each case we need to compute n different
linear combinations of the same d2 matrices, where each matrix holds (n/d)2 entries.

We can actually afford to compute n different linear combinations of n different (n/d)2-bit long

strings, by assigning to each processor (n/d)2

n = n/d2 entries (i.e., equi-partition [(n/d)2] to n parts),
and letting it compute the corresponding linear combinations. Note that providing each processors
with the n · n/d2 relevant bits can be done in O(n/d2) rounds. The foregoing also handles the
computation of (ii), which calls for computing d2 different linear combinations of some n matrices
(i.e., the R(w)’s).
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Conclusion. We have shown that Eq. (2) can be computed in O(n/d2) rounds, where d was set
such that m(d) = n (i.e., d-by-d matrix multiplication can be computed via Eq. (2) while using n
multiplications). Assuming that m(d) = dω for some ω ∈ [2, 3], we use d = n1/ω, and get round

complexity O(n1−
2
ω ). Note that ω < 2.373 yields 1− 2

ω < 0.1572.

Digest. Note that, unlike in the simple algorithm (of Section 2), the current algorithm is based
on the observation that a processor can compute several Boolean functions of the same inputs at
the same cost as computing a single Boolean function of these inputs, where the cost is the number
of rounds required to provide this processors with the relevant inputs. Equivalently, the cost of
computing a function is independent of the range of the function; it only depends on the size of its
domain.

Specifically, in Step (i) we computed n different pairs of (n/d)-by-(n/d) matrices, which all
depend on the same pair of n-by-n matrices such that each output bit depends on d2 input bits,
and then computed the product of each pair of matrices. Hence, in the first substep (of Step (i))
we partition the (n/d)2 relevant entries among n processors such that each processor is responsible
for n/d2 entries, provide each processor with the relevant 2 ·d2 ·n/d2 input bits, and let it compute
the relevant 2 · n · n/d2 output bits. In the second substep, the latter bits are redistributed so that
each processor gets a pair of (n/d)-by-(n/d) matrices, and just computes their product. The key
observation here is the first distribution of bits refer to 2n bits per processor, whereas the second
refers to 2n2/d2 bits per processor, while both distribution schemes are regular (and so can be
performed in O(1) and O(n/d2) rounds, respectively).

Likewise, in Step (ii) we computed an n-by-n matrix (i.e., d2 different (n/d)-by-(n/d) matrices)
such that each output bit depends on n input bits (which are taken from n different (n/d)-by-
(n/d) matrices). Hence, the n3/d2 bits of the n different (n/d)-by-(n/d) matrices are redistributed
(according to a regular pattern), and this is performed in O(n/d2) rounds.
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