August 8, 2021

The following two results assert that any improvement over the brute-force algorithm for quantified derandomization of polynomial-sized circuits, for *any parametric setting of quantified derandomization*, implies that $\mathcal{NEXP} \not\subset \mathcal{P}/poly$. For small values of the parameters (i.e., a polynomial number of exceptional inputs) we can get a stronger conclusion, namely that $\mathcal{NP} \not\subset \mathcal{SIZE}[n^k]$ for any fixed $k \in \mathbb{N}$.

Specifically, recall that the brute-force algorithm for quantified derandomization evaluates the circuit over 2B(n) + 1 inputs. The results assert that solving the problem in time noticeably less than B(n) implies circuit lower bounds. As pointed out by Ryan Williams, this is a generalization of his result [Wil13], which is the special case of $B(n) = 2^n/3$. (The proofs rely on his result as well as on the extension in [MW18], and benefit from the standard relaxations of the hypothesis – the algorithm only needs to solve the one-sided error version of the problem, and may be non-deterministic.)

Definition 1 (quantified derandomization). *The* Quantified Derandomization problem with error bound B (QD_B, *in short*) *is the following promise problem:*

- 1. The set of "yes" instances $Y \subseteq \{0,1\}^*$ consists of descriptions of n-bit circuits that accept all but B(n) of their input strings.
- 2. The set of "no" instances $N \subseteq \{0,1\}^*$ consists of descriptions of n-bit circuits that reject all but B(n) of their input strings.

When the given circuit is also promised to belong to a certain restricted class of circuits denoted by C, we denote the problem by $QD_B[C]$.

Theorem 2 (beating the brute-force quantified derandomization implies circuit lower bounds). Suppose that for some $B(n) < 2^n$ and all $k \in \mathbb{N}$ there exists a non-deterministic machine M that gets as input an n-bit circuit C of size n^k , runs in time $B(n) \cdot (\log(B(n)))^{-\omega(1)}$, accepts if C accepts all its inputs, and rejects if C rejects all but at most B(n) of its inputs. Then $\mathcal{NEXP} \not\subset \mathcal{P}/poly$.

There is a slight gap between the ideal threshold result, which would assert that any improvement over $B(n) \cdot \tilde{O}(s)$ implies lower bounds (where *s* is the circuit size), and Theorem 2, which requires an improvement over B(n). This gap is immaterial when $B(n) \ge 2^{n^{\Omega(1)}}$ (e.g., as in Williams' parameter setting), whereas for $B(n) = 2^{n^{o(1)}}$ the proof below shows that the circuit size *s* is actually a fixed universal polynomial, so the gap is small (with ideal dispersers this polynomial would be near-linear in *n*).

Proof. We will rely on the result of Williams [Wil13], which asserts that if for all $k_0 \in \mathbb{N}$ there exists a non-deterministic machine solving $\mathsf{CAPP}_{1,\frac{1}{2}}$ for *m*-bit circuits of size m^{k_0} in time $2^m/m^{\omega(1)}$ then $\mathcal{NEXP} \not\subset \mathcal{P}/\mathsf{poly}$. The proof amounts to a reduction of $\mathsf{CAPP}_{1,\frac{1}{2}}$ to QD_B with B = B(n) as in the hypothesis, using a near-optimal disperserbased error-reduction computable by general circuits, from [TSUZ07].

We are given a circuit $C_0: \{0,1\}^m \to \{0,1\}$ of size m^{k_0} that either accepts all its inputs, or rejects all but at most $2^m/2$ of its inputs. We will use the disperser

Disp: $\{0,1\}^n \times \{0,1\}^\ell \to \{0,1\}^m$ from [TSUZ07, Theorem 1.4] for error-reduction, instantiated with input length *n* such that $m = \log(B(n))$ (i.e., $n = B^{-1}(2^m)$), error $\epsilon = .01$, min-entropy $k = \log(B(n))$, and seed length $O(\log(n))$. Then, the circuit $C: \{0,1\}^n \to \{0,1\}$ defined by $C(z) = \bigwedge_{s \in \{0,1\}^\ell} C_0(\text{Disp}(z,s))$ satisfies the following:

- 1. The circuit size is $2^{\ell} \cdot T_{\mathsf{Disp}}(n) \cdot m^{k_0} \leq n^{k_0+c}$, where T_{Disp} is the polynomial time complexity of Disp and $c \in \mathbb{N}$ is a universal constant.
- 2. If C_0 accepts all its inputs then *C* accepts all of its inputs, and if C_0 rejects all but at most $2^m/2$ of its inputs then *C* rejects all but at most B(n) of its inputs.

Using the hypothesized non-deterministic machine for QD_B we can distinguish between the two latter cases in time $B(n) \cdot (\log(B(n)))^{-\omega(1)} = 2^m / m^{\omega(1)}$.

Theorem 3 (beating the brute-force quantified derandomization for B(n) = poly(n)implies stronger circuit lower bounds). There exists a universal constant $c \in \mathbb{N}$ such that the following holds. Suppose that for some B(n) = poly(n) there exists $\epsilon > 0$ and a nondeterministic machine M that gets as input an n-bit circuit C of size n^c , runs in time $B(n)^{1-\epsilon}$, accepts if C accepts all its inputs, and rejects if C rejects all but at most B(n) of its inputs. Then, for all $k \in \mathbb{N}$ it holds that $\mathcal{NP} \not\subset SIZE[n^k]$.

Proof. The proof is similar to the proof of Theorem 2, except that we use the result of Murray and Williams [MW18] instead of that of [Wil13]: They proved that if for some $\delta \in (0, 1)$ there exists a non-deterministic machine solving $\text{CAPP}_{1,\frac{1}{2}}$ for *m*-bit circuits of size $2^{\delta \cdot m}$ in time $2^{(1-\delta) \cdot m}$, then for all $k \in \mathbb{N}$ it holds that $\mathcal{NP} \not\subset \mathcal{SIZE}[n^k]$.

Let $B(n) = n^a$ and let $\delta = \delta(\epsilon, a)$ be sufficiently small. We are given a circuit $C_0: \{0,1\}^m \to \{0,1\}$ of size $2^{\delta \cdot m}$, and we reduce its error using the disperser of [TSUZ07] with the same parameters as in the proof of Theorem 2 (i.e., $n = B^{-1}(2^m)$, min-entropy $\log(B(n))$, small constant error, and seed length $O(\log(n))$). The resulting circuit *C* is of size $2^{\ell} \cdot n^{k_1} \cdot 2^{\delta \cdot m}$, which is bounded by n^c for a universal $c > k_1$ (since $m = \log(B(n)) = a \cdot \log(n)$ and $\delta = \delta(\epsilon, a) > 0$ is sufficiently small). The hypothesized algorithm for QD_B of *C* runs in time $B(n)^{1-\epsilon} = 2^{(1-\epsilon) \cdot m} < 2^{(1-\delta) \cdot m}$, where the inequality relies on $\delta > 0$ being sufficiently small.

References

- [MW18] Cody Murray and Ryan Williams. "Circuit Lower Bounds for Nondeterministic Quasi-Polytime: An Easy Witness Lemma for NP and NQP". In: *Proc. 50th Annual ACM Symposium on Theory of Computing (STOC).* 2018.
- [TSUZ07] Amnon Ta-Shma, Christopher Umans, and David Zuckerman. "Lossless condensers, unbalanced expanders, and extractors". In: *Combinatorica* 27.2 (2007), pp. 213–240.
- [Wil13] Ryan Williams. "Improving Exhaustive Search Implies Superpolynomial Lower Bounds". In: *SIAM Journal of Computing* 42.3 (2013), pp. 1218–1244.