
Oded (July 26, 2024): HDX – from local expansion to global expansion

My own interest in high-dimensional expanders (HDX) is quite limited. In particular, my interest
is restricted to the two-dimensional case, which I view as referring to d-regular expander graphs in
which the subgraph induces by the d neighbors of each vertex induce an expander (i.e., a d-vertex
graph with a normalized second eignenvalue that is bounded away from 1). I find the result of
Izhar Oppenheim that asserts that a strong enough version of the latter (“local”) condition implies
the former (“global” expansion) condition very interesting.1 The following exposition follows an
oral explanation by Irit Dinur.

For a d-regular graph G = ([n], E), we consider the stochastic matrix M that represents a random
walk on this graph; that is, the (i, j)th entry of M equals 1/d if {i, j} ∈ E and equals 0 otherwise.
Letting λ1 ≥ λ2 ≥ · · · ≥ λn denote the eingenvalues of M , which are all in [−1,+1].

For λ ∈ (0, 1), We say that G is an λ-expander if |λi| ≤ λ for every i ∈ {2, ..., n}. Recall that
in such a case G is connected and non-bipartite (i.e., λ2 < 1 and λn > −1), and that λ1 = 1 is
associated with the uniform eigenvector. We shall survey a proof of the following result, which
arised in the context of the study of high dimensional expanders (HDX).

Theorem 1 (local expansion implies gloabl expansion): Let G = (V,E) be a connected regular
graph and λ ∈ (0, 0.5). Suppose that for every v ∈ V , the subgraph of G induced by the neighbors of
v is a (regular) λ-expander. Furthermore, suppose that each of these subgraphs has the same number
of edges and that each edge appears in the same number of subgraphs. Then, G is a λ

1−λ -expander.

Proof: We upper-bound each of the eigenvalues ofM by considering the corresponding eigenvector;
that is, for γ < 1, we consider f : V → R such that Mf (viewed as a vector) equals γ · f . We first
note that

Exp{u,v}∈E [f(u) · f(v)] = ⟨f,Mf⟩
|V |

=
γ

|V |
· ∥f∥22. (1)

Using the furthermore hypothesis, we observe that a different way of selecting a random edge
consists of (uniformly) selecting a random vertex w ∈ V and (uniformly) selecting a random edge
in the subgraph induced by the neighbours of w. Thus, denoting by Ew the set of edges in the
subgraph of G induced by the neighbors of w, we have

γ

|V |
· ∥f∥22 = Expw∈V

[
Exp{u,v}∈Ew

[f(u) · f(v)]
]
. (2)

Letting Γ(w) denote the set of nerighbours of w in G and fw : Γ(w) → R denote the restriction of
f to Γ(w), we apply the Expander Mixing Lemma (Lemma 2) to the inner expectation in Eq. (2),
and obtain (for every w ∈ V )

Exp{u,v}∈Ew
[fw(u) · fw(v)] ≤ Expu,v∈Γ(w) [fw(u) · fw(v)] + λ ·

|⟨fw,⊥, fw,⊥⟩|
|Γ(w)|

(3)

1This result is a special case of Theorem 1.4 in Oppenheim’s paper “Local Spectral Expansion Approach to High
Dimensional Expanders Part I: Descent of Spectral Gaps” (Discrete Comput. Geom., Vol. 59.2, pages 293–330, 2018).
There is a typo in the statement of Theorem 1.4: The hypothesis is that X is (λ, κ)-local-expander. We ignore κ
and note that Opperheim’s λ corresponds to our 1 − λ (since he consideres the normalized Laplacian of the graph
whereas we consider the normalized adjacency matrix).
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where fw,⊥ denotes the projection of fw on the subspace orthogonal to the all-1 vector. Now, we
rewrite Eq. (3) as follows

Exp{u,v}∈Ew
[f(u) · f(v)] ≤ Expu∈Γ(w)[fw(u)]

2 + λ ·
∥fw,⊥∥2

|Γ(w)|
(4)

Next, we shall use the following two observations:

1. ∥fw,⊥∥2 = ∥fw∥2 − ∥fw,||∥2, where fw,|| denotes the projection of fw in direction (1, 1, ..., 1).

2. ∥fw,||∥2 =
∑

v∈Γ(w) Expu∈Γ(w)[fw(u)]
2, because fw,||(v) = Expu∈Γ(w)[fw(u)] for every v ∈

Γ(w).

Combining these observations with Eq. (4), we get

Exp{u,v}∈Ew
[f(u) · f(v)] ≤ Expu∈Γ(w)[fw(u)]

2 + λ ·
(
∥fw∥2

|Γ(w)|
− Exp[fw]

2

)
(5)

Next, rearranging Eq. (5), and combining it with Eq. (2) we get

γ

|V |
· ∥f∥22 ≤ (1− λ) · Expw∈V

[
Expu∈Γ(w)[fw(u)]

2
]
+ λ · Expw∈V

[
∥fw∥2

|Γ(w)|

]
(6)

We now analyze the two terms that appear in Eq. (6).

The first term (equiv., Expw∈V [Expu,v∈Γ(w)[fw(u) · fw(v)]]). A key observation is that the dis-
tribution of (u, v) that results by selecting uniformly w ∈ V and u, v ∈ Γ(w) equals to the
distribution of (u, v) obtained by selecting uniformly u ∈ V , w ∈ Γ(u) and v ∈ Γ(w). Equiva-
lently, once u is selected, the vertex v is determined by taking a two-step random walk from
u. Hence,

Expw∈V

[
Expu,v∈Γ(w) [f(u) · f(v)]

]
= Expu∈V

[
f(u) · Expw∈Γ(u),v∈Γ(w) [f(v)]

]
=

⟨f,M2f⟩
|V |

=
γ2

|V |
· ∥f∥2

where the last equality is due to Mf = γ · f .

The second term (i.e., Expw∈V

[
∥fw∥2
|Γ(w)|

]
). Here we observe that

∑
w∈V

∑
v∈Γ(w)

fw(v)2

|Γ(w)| =
∑

v∈V f(v)2 =

∥f∥2. Hence, Expw∈V

[
∥fw∥2
|Γ(w)|

]
= ∥f∥2/|V |.

Plugging the derived equalities into Eq. (6), we get

γ

|V |
· ∥f∥22 ≤ (1− λ) · γ2

|V |
· ∥f∥2 + λ · ∥f∥

2

|V |
(7)

which means that γ ≤ (1 − λ) · γ2 + λ. Using λ < 1, this simplies to γ ≤ (1 + γ) · λ, and implies
γ ≤ λ/(1− λ). The theorem follows.
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Appendix: A general form of the Expander Mixing Lemma

For any function f : V → R, we denote by f|| the projection of f in direction (1, 1, ..., 1), and by
f⊥ the projection on the orthogonal subspace.

Lemma 2 (Expander Mixing Lemma, general form): Let G = (V,E) be a regular λ-expander, then
for every two functions g, h : V → R it holds that∣∣∣Exp{u,v}∈E [g(u) · h(v)]− Expu,v∈V [g(u) · h(v)]

∣∣∣ ≤ λ · |⟨g⊥, h⊥⟩|
|V |

In the popular case of Boolean functions, using ⟨g⊥, h⊥⟩ ≤ ⟨g, h⟩ ≤ ∥g∥·∥h∥ and letting A = g−1(1)
and B = g−1(1), we get∣∣∣∣ |{(a, b) ∈ A×B : {a, b} ∈ E}|

|E|
− |A| · |B|

|V |2

∣∣∣∣ ≤ λ ·
√
|A| · |B|
|V |

Proof: Viewing functions as vectors, we use the notationMf and note that (Mf)(u) = Expv∈Γ(u)[f(v)],
where Γ(u) is the set of neighbors of u in G. Hence,

Exp{u,v}∈E [g(u) · h(v)] = Expu∈V [g(u) · ((Mh)(u)] (8)

=
⟨g,Mh⟩

|V |
(9)

Recalling that ⟨g, h⟩ = ⟨g||, h||⟩+ ⟨g⊥, h⊥⟩, we get

⟨g,Mh⟩ = ⟨g||, h||⟩+ ⟨g⊥, (Mh)⊥⟩ (10)

and note that |⟨g⊥, (Mh)⊥⟩| ≤ λ·|⟨g⊥, h⊥⟩|. Using
∑

v∈V f⊥(v) = 0, we note that f||(u) = Exp[f||] =
Exp[f ] for every u ∈ V , and ⟨g||, h||⟩ = |V | · Exp[g] · Exp[h] follows. Hence, Eq. (10) implies∣∣∣⟨g,Mh⟩ − |V | · Exp[g] · Exp[h]

∣∣∣ ≤ λ · |⟨g⊥, h⊥⟩|. (11)

Combining Eq. (8)& (9) with Eq. (11), we get∣∣∣Exp{u,v}∈E [g(u) · h(v)]− Expu∈V [g(u)] · Expv∈V [h(v)]
∣∣∣ ≤ λ · |⟨g⊥, h⊥⟩|/|V |,

and the lemma follows.
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