Oded (July 26, 2024): HDX — from local expansion to global expansion

My own interest in high-dimensional expanders (HDX) is quite limited. In particular, my interest
is restricted to the two-dimensional case, which I view as referring to d-regular expander graphs in
which the subgraph induces by the d neighbors of each vertex induce an expander (i.e., a d-vertex
graph with a normalized second eignenvalue that is bounded away from 1). I find the result of
Izhar Oppenheim that asserts that a strong enough version of the latter (“local”) condition implies
the former (“global” expansion) condition very interesting.! The following exposition follows an
oral explanation by Irit Dinur.

For a d-regular graph G = ([n], E), we consider the stochastic matrix M that represents a random
walk on this graph; that is, the (i,7)™ entry of M equals 1/d if {i, j} € E and equals 0 otherwise.
Letting Ay > Ay > -+ > )\, denote the eingenvalues of M, which are all in [-1,+1].

For A € (0,1), We say that G is an A-expander if |\;| < A for every i € {2,...,n}. Recall that
in such a case G is connected and non-bipartite (i.e., Ao < 1 and A\, > —1), and that A\ = 1 is
associated with the uniform eigenvector. We shall survey a proof of the following result, which
arised in the context of the study of high dimensional expanders (HDX).

Theorem 1 (local expansion implies gloabl expansion): Let G = (V, E) be a connected regular
graph and X\ € (0,0.5). Suppose that for every v € V, the subgraph of G induced by the neighbors of
v is a (regular) A-expander. Furthermore, suppose that each of these subgraphs has the same number
of edges and that each edge appears in the same number of subgraphs. Then, G is a ﬁ—ezpander.

Proof: We upper-bound each of the eigenvalues of M by considering the corresponding eigenvector;
that is, for v < 1, we consider f:V — R such that M f (viewed as a vector) equals « - f. We first
note that

Expyuyen () - £(0)] = W — 1B, (1)

Using the furthermore hypothesis, we observe that a different way of selecting a random edge
consists of (uniformly) selecting a random vertex w € V and (uniformly) selecting a random edge
in the subgraph induced by the neighbours of w. Thus, denoting by E,, the set of edges in the
subgraph of G induced by the neighbors of w, we have

.
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Letting I'(w) denote the set of nerighbours of w in G and f,, : I'(w) — R denote the restriction of

f to T'(w), we apply the Expander Mixing Lemma (Lemma 2) to the inner expectation in Eq. (2),
and obtain (for every w € V)

1113 = Expuey |Expypyen, () f0)]] - (2)
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EXp{u,v}EEw [fw(u) - fu(v)] < EXpu,veF(w) [fw(u) - fw(v)] + A T (w)]
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!This result is a special case of Theorem 1.4 in Oppenheim’s paper “Local Spectral Expansion Approach to High
Dimensional Expanders Part I: Descent of Spectral Gaps” (Discrete Comput. Geom., Vol. 59.2, pages 293-330, 2018).
There is a typo in the statement of Theorem 1.4: The hypothesis is that X is (), k)-local-expander. We ignore &
and note that Opperheim’s A corresponds to our 1 — A (since he consideres the normalized Laplacian of the graph
whereas we consider the normalized adjacency matrix).



where f,, | denotes the projection of f,, on the subspace orthogonal to the all-1 vector. Now, we
rewrite Eq. (3) as follows
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Bxpryuyen, [f(w) - f(0)] < Expyerqlfu(@)]® + (4)

Next, we shall use the following two observations:

L || fu, o II* = I fwll® = | fu, I?, where f,,); denotes the projection of f,, in direction (1,1,...,1).

2. || fu )P = Xoerqw) ExPucr(u)fu(w)]?, because f,(v) = Expyepw)lfu(u)] for every v €
I(w).

Combining these observations with Eq. (4), we get
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Expuaicn, () - F0)] < Expuer fu(w)]? + ( —Exp[wa) (5)

Next, rearranging Eq. (5), and combining it with Eq. (2) we get
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’V| Hf”? = ( )‘) : EXpwEV [Expuel"(w) [fw(u)]Q] +A- EXprV [

We now analyze the two terms that appear in Eq. (6).

The first term (equiv., Exp,cy[Expy yerw)[fuw(u) - fu(v)]]). A key observation is that the dis-
tribution of (u,v) that results by selecting uniformly w € V and u,v € I'(w) equals to the
distribution of (u,v) obtained by selecting uniformly u € V, w € I'(u) and v € I'(w). Equiva-
lently, once u is selected, the vertex v is determined by taking a two-step random walk from

u. Hence,
EXpwEV EXpu,vEF(w) [f(u) ’ f('l))]:| = EXpuEV f(u) ’ EXpwEF(u),vEF(w) [f(’l))]
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where the last equality is due to M f = v - f.

The second term (i.e., Exp, ¢y [lllf(wH ]) Here we observe that >, e > er(w) {12”((;;))7 =Y ev f

1. Hence, Bxp,cy [Hel] = 11712/,

Plugging the derived equalities into Eq. (6), we get
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which means that v < (1 — ) -2 + A. Using A < 1, this simplies to v < (1 4+ 7) - A, and implies
v < A/(1=X). The theorem follows. W




Appendix: A general form of the Expander Mixing Lemma

For any function f : V' — R, we denote by f|| the projection of f in direction (1,1,...,1), and by
f1 the projection on the orthogonal subspace.

Lemma 2 (Expander Mixing Lemma, general form): Let G = (V, E) be a reqular \-expander, then
for every two functions g, h : V. — R it holds that

(gL, h1)l

[Bxbuuen [9(00 - h(0)] = Bxpyaey fa(w) - Ao < A+ 152

In the popular case of Boolean functions, using (g1 ,h1) < {(g,h) < ||g||-||h]| and letting A = g~1(1)
and B = g~ !(1), we get

[{(a,b) € Ax B:{ab} € E}| |A-|Bl| _ | VIAl-|B|
B V2 V]

Proof: Viewing functions as vectors, we use the notation M f and note that (M f)(u) = Exp,cp()lf(v)],
where T'(u) is the set of neighbors of u in G. Hence,

Exppusen [9(u) - h()] = Expuey lo(u) - (MB)(w) ®)
(g, Mh)
v ®)

Recalling that (g, h) = (g, b)) + (g1, h1), we get
(g, Mh) = (g, hyp) + (g, (Mh)1) (10)

and note that [(g1, (Mh)1)| < A[(gr,h1)|. Using > oy f1(v) = 0, we note that f||(u) = Exp[f)] =
Exp[f] for every u € V, and (g, b)) = [V'| - Exp[g] - Exp[h] follows. Hence, Eq. (10) implies

(9. M) — V|- Explg] - Exp[h]| < - [{g.,ho)]. (1)

Combining Eq. (8) & (9) with Eq. (11), we get

Expyvyer [9(w) - h(v)] = Expyey[g(u)] 'EvaeV[h(U)]‘ <A (gL, h)l/IV],

and the lemma follows. W



