Finding Cycles and Trees in Sublinear Time

Artur Czumaj Oded Goldreich Dana Ron C. Seshadhri* Asaf Shapira
Christian Sohler

April 1, 2012

Abstract

We present sublinear-time (randomized) algorithms for finding simple cycles of length at
least £ > 3 and tree-minors in bounded-degree graphs. The complexity of these algorithms
is related to the distance of the graph from being Ci-minor free (resp., free from having the
corresponding tree-minor). In particular, if the graph is Q(1)-far from being cycle-free (i.e., a
constant fraction of the edges must be deleted to make the graph cycle-free), then the algorithm
finds a cycle of polylogarithmic length in time 6(\/N), where N denotes the number of vertices.
This time complexity is optimal up to polylogarithmic factors.

The foregoing results are the outcome of our study of the complexity of one-sided error
property testing algorithms in the bounded-degree graphs model. For example, we show that
cycle-freeness of N-vertex graphs can be tested with one-sided error within time complexity
O(poly(1/€)-/N), where € denotes the proximity parameter. This matches the known Q(v/N)
query lower bound for one-sided error cycle-freeness testing, and contrasts with the fact that
any minor-free property admits a two-sided error tester of query complexity that only depends
on €. We show that the same upper bound holds for testing whether the input graph has a
simple cycle of length at least k, for any £ > 3. On the other hand, for any fixed tree T, we
show that T-minor freeness has a one-sided error tester of query complexity that only depends
on the proximity parameter e.

Our algorithm for finding cycles in bounded-degree graphs extends to general graphs, where
distances are measured with respect to the actual number of edges. Such an extension is not
possible with respect to finding tree-minors in o(v/N) complexity.

Keywords: Sublinear-Time Algorithms, Property Testing, Bounded-Degree Graphs, One-Sided
vs Two-Sided Error Probability,

*Employee of Sandia National Laboratories. Sandia National Laboratories is a multi-program laboratory managed
and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S.
Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

Contents

1 Introduction

1.1 Ourmain results
1.2 The property testing connection Lo
1.3 Techniques L

1.3.1 Testing cycle-freeness

1.3.2 Testing Cy-minor freeness, forany k>3

1.3.3 Testing H-minor freeness, for any cycle-free H
1.4 Another perspective: Finding arbitrary forbidden minors.
1.5 Further reflections regarding one-sided error L.
1.6 The general (unbounded-degree) graph model
1.7 Organization

2 Preliminaries
3 Testing Cycle-Freeness
4 Testing Cy-Minor-Freeness

5 Testing Cr-Minor-Freeness, for any k£ > 4
5.1 Some basic facts regarding spots
5.2 The actual reduction

6 Proof of the Lower Bound

7 Testing Tree-Minor Freeness

7.1 A reduction of unconnected H to connected H
7.2 Testing that the graph contains no simple k-length path
7.3 Testing that the graph contains no k-star as a minor
7.4 The general case: Testing T-minor freeness for any tree 7"

7.4.1 Setting the stage

7.4.2 The procedure findo
7.5 Testing T-minor freeness for any depth-two tree "

8 The unbounded-degree graph model
8.1 Testing cycle-freeness
8.2 Testing tree-minor-freeness
8.3 Testing with adjacency queries

9 Open Problems

Bibliography

13

16
16
19

22

24
25
26
26
28
29
32
36

39
40
43
44

45

46

1 Introduction

Consider the algorithmic problem of finding a (simple) cycle in a bounded degree graph (assuming
one exists), where the aim is to find such a cycle in (randomized) sublinear time. In general, finding
a cycle in sublinear time may not be possible, since the graph may contain only cycles of length
Q(n). This may also be the case if one needs to remove a constant number of the edges of the graph
in order to make it cycle-free. But suppose one needs to remove a constant fraction of the graph’s
edges in order to make it cycle free. Can we then devise a sublinear time algorithm? One of our
results in this paper is an affirmative answer to this question. Furthermore, the running time of
that algorithm is (essentially) optimal.

1.1 Our main results

As we have mentioned above, we consider graphs of bounded degree d with N vertices. We say
that a graph is e-far from being cycle-free if one has to remove at least edN edges from G in order
to make it cycle free.! In all our results, vertex manipulation operations are counted at unit cost.
We can now formally state our first result.

Theorem 1.1 (finding cycles): There ezists a randomized algorithm that, on input an N -vertex
graph G of degree bound d that is e-far from being cycle-free, finds a simple cycle in G in expected
time O(poly(d/e) - V/N). Furthermore, the cycle found has length at most poly(¢~'dlog N).

Using the connection to one-sided error property testing (detailed in Section 1.2), we infer that
the algorithm of Theorem 1.1 is optimal; that is, no randomized o(\/N)-time algorithm can find
cycles in (bounded-degree) graphs that are Q(1)-far from being cycle-free. Furthermore, one cannot
expect to find simple cycles of length o(log V), since such may not exist (even if the graph is far
from being cycle-free). The result of Theorem 1.1 can be extended to finding a simple cycle of
length at least k, for any fixed k > 3 (where the case k = 3 is covered by Theorem 1.1).

Theorem 1.2 (finding cycles of length at least k): For every constant k > 3, there exists a
randomized algorithm that, on input an N-vertex graph G of degree bound d_that is e-far from
having no simple cycles of length at least k, finds such a cycle in expected time O(poly(dF /e)-v/N).
Furthermore, the cycle found has length at most poly(d® - e~ 'log N).

Again, the algorithm obtained is optimal in the sense discussed above.

We note that our results can be stated in terms of finding graph minors. A graph G has an
H-minor if H can be obtained from G through a series of vertex removals, edge removals, and edge
contractions. A graph G is H-minor free, if it contains no H-minor. Note that cycles of length at
least k in G correspond to Ci-minors of GG, where C} denotes the k-vertex cycle.

We next turn from finding cycles to finding tree-structures in graphs; that is, finding tree-
minors. Consider the following interesting special case. For any constant k, we want to find a
tree with at least k leaves. One of our results is a randomized algorithm that finds such trees in
expected time that is polynomially related to k and to the distance of the input graph from a graph

In some sources, being e-far from a property means that and e fraction of the function’s values should be changed
so to obtain a function that has the property. In our case, such a definition would translate to an omission of edN/2
edges, since each edge appears twice (i.e., once in each of its endpoints). Nevertheless, for sake of simplicity, we chose
to measure distance in terms of dN (rather than in terms of dN/2).

having no such trees. This problem corresponds to finding minors that are k-vertex stars. More
generally, we prove the following result.

Theorem 1.3 (finding tree minors): For any fized tree T' with k vertices, there exists a randomized
algorithm that, on input an N -vertex graph G of constant degree bound d that is e-far from being
T-minor free, finds a T-minor in expected time poly(d”), where D = k(16d/e)*+2.

We highlight the fact that finding tree minors can be done within complexity that does not depend
on the size of the graph (but rather depends only on (d, k and) €), whereas finding cycles requires
Q(V/N) time (also for constant ¢ > 0). In fact, we show that Theorem 1.3 extends to any cycle-free
graph (forest) H, and on the other hand we prove that for any H that contains a cycle finding H -
minors requires Q(v'N) queries (see Theorem 6.1).Thus, we obtain the following characterization:

Corollary 1.4 (finding graph minors, a dichotomy): Finding H-minors in a constant degree graph
that is e-far from being H-minor free can be done in complexity that only depends on € if and only
if H is cycle-free.

1.2 The property testing connection

Loosely speaking, property testing refers to sublinear time probabilistic algorithms for deciding
whether a given object has a predetermined property or is far from any object having this property
(see the surveys [Fis01, Ron10, Ron08]). Such algorithms, called testers, obtain local views of the
object by making suitable queries; that is, the object is seen as a function and the tester gets oracle
access to this function (and thus may be expected to work in time that is sublinear in the size of
the object).

Randomization is essential to natural testers (i.e., testers of natural properties that have sublin-
ear query-complexity) [GS07]. The same holds also for error probability, at least on some instances,
but the question is whether a (small) error probability must appear on all instances. In particular,
should we allow (small) error probability both on instances that have the property and on instances
that are far from having it?

Indeed, testers come in two basic flavors referring to the foregoing question: two-sided error
testers allow (small) error probability both on instances that have the property and on instances
that are far from having it, whereas one-sided error testers only allow (small) error probability on
instances that are far from having the property. That is, in one-sided error testers, any instance
that has the property is accepted with probability 1.

An important observation regarding one-sided error testers is that whenever such a tester rejects
some instance, it always has a certificate that this instance does not have the property, where this
certificate is the partial view of the instance as obtained by the tester. Indeed, in the case of one-
sided error, rejecting an instance based on a specific partial view means that there exists no instance
that has the property and is consistent with this partial view. Furthermore, in some cases (as those
addressed in the current work), this partial view contains some natural structures (e.g., a cycle or
a tree of interest).

Consider, for example, the case of testing cycle-freeness (with one-sided error). In this case,
whenever the tester rejects, its partial view must contain a cycle. Thus, any one-sided tester of

2Recall that, in any case, the basic paradigm of property testing allows arbitrary error in case the instance neither
has the property nor is far from having it.

cycle-freeness may be used for finding cycles in graphs that are far from being cycle-free. A similar
observation applies to finding T-minors, for any fixed tree T.

We mention that in most of the property testing literature, one-sided error is viewed as a sec-
ondary feature that some testers have and others may lack. The foregoing connection demonstrates
the fundamental advantage of one-sided error testers over standard (two-sided error) testers. (Other
advantages are discussed in Section 1.5.)

Lower bounds on the complexity of one-sided error testers that significantly exceeds the per-
formance guarantees of known two-sided error testers have been observed, starting with [GGR9S,
Sec. 10.1.6]. However, so far, no study has been devoted to providing a one-sided error tester of
optimal complexity, in the case where this complexity significantly exceeds that of the corresponding
two-sided error tester.

To the best of our knowledge, the text that seems closest to addressing this issue is the discussion
in [AS03, Sec. 2] that refers to the complexity of testing K ;-freeness in the adjacency matriz model
(introduced in [GGRI8]). Specifically, [AS03, Clm. 2.2] asserts a two-sided tester of K -freeness
having query complexity O(1/¢), whereas [AS03, Clm. 2.3] (combined with [GT03, Thm. 2]) asserts
that one-sided error testing of Ky ;-freeness requires Q(e~*/*) queries. As noted at the end of [AS03,
Sec. 2], this is tight up to a polynomial function (i.e., there exists two-sided tester of K, ;-freeness
having query complexity e~ = poly(e~*/4)). It is telling that [AS03, Sec. 2] leaves the complexity
of one-sided error testing undetermined (at the “polynomial slackness” level). Indeed, like other
prior works that address the complexity of one-sided error testers, their interest is in demonstrating
the gap between the complexities of two-sided and one-sided error testing, and not in determining
the latter.

In contrast, our work is aimed at providing one-sided error testers of (almost) optimal com-
plexity, in cases in which this complexity significantly exceed the complexity of the corresponding
two-sided error tester. For example, recall that Goldreich and Ron provided a two-sided error
tester for cycle-freeness of poly(1/e) query complexity [GR02, Thm. 4.2], where € denotes the de-
sired proximity parameter (i.e., the tester distinguishes cycle-free graphs from graphs that are e-far
from being cycle-free). In contrast, [GR02, Prop. 4.3] asserts that cycle-freeness has no one-sided
error tester that makes o(v/N) queries (even for ¢ = 1/3), where N denotes the number of vertices
in the input graph. In that context, Theorem 1.1 is equivalent to

Theorem 1.5 (one-sided error tester for cycle-freeness): Cycle-freeness of constant degree N -
vertex graphs can be tested with one-sided error within time complexity O(poly(d/e) - vV N). Fur-
thermore, whenever the tester rejects, it outputs a simple cycle of length poly(e tdlog N).

Indeed, by the foregoing discussion, whenever the tester asserted in Theorem 1.5 rejects, it is
the case that it explored a subgraph that is not cycle-free. Moreover, the furthermore clause of
Theorem 1.5 asserts that in this case the explored subgraph actually contains a simple cycle of
length poly(e~!dlog N). Thus, Theorem 1.5 implies Theorem 1.1. Similarly, Theorem 1.5 extends
to testing Cy-minor freeness, for any k > 3, which in turn is equivalent to Theorem 1.2. And,
similarly, Theorem 1.3 is equivalent to the existence of a tester for T-minor freeness of query
complexity that only depends on the proximity parameter, for any tree T

1.3 Techniques

As stated at the end of Section 1.1, all our results are obtained via the study of the complexity of
one-sided error testers for the corresponding properties.

Our testers for C-minor freeness are all obtained by local reductions. Specifically, our cycle-
freeness (i.e., Cs-minor freeness) tester is obtained by a randomized reduction to testing bipar-
titeness, whereas our Cj-minor freeness tester is obtained by a deterministic reduction to testing
cycle-freeness.

1.3.1 Testing cycle-freeness

We mention that the two-sided error cycle-freeness tester of [GR02]| does not even try to find a
simple cycle. It just estimates the number of edges in the graph and rejects if this estimate exceed
the number of edges that correspond to any forest that spans the set of connected components of
the graph.® We also mention that as observed by Bollobas and Thomason [BT97, Thm. 5], a “girth
versus edge-density” lower bound implies that any graph G = ([N], E) that is e-far from being
cycle-free (and hence contains N +(eN) edges) must have a simple cycle of length O(log N +1/¢).
The problem, however, is finding such a cycle in sublinear time.

Our one-sided error tester of cycle-freeness finds a cycle in the original graph by randomly
reducing this problem to the problem of finding an odd-length cycle in an auxiliary graph. Specif-
ically, the input graph G = ([V], E) is randomly transformed into an auxiliary graph such that
each edge e € E is replaced, with probability 1/2 by a 2-vertex path (with an auxiliary vertex),
and remains intact otherwise. Thus, with probability 1/2, each cycle in G is transformed into an
odd-length cycle. Furthermore, we show that if G is e-far from being cycle-free, then (w.h.p.) the
resulting graph is Q(e)-far from being bipartite.

A crucial feature of the foregoing randomized reduction is that it is local in the sense that each
operation on the transformed graph can be implemented by a constant number of operations on the
original graph. Thus, we can emulate the execution of a bipartite tester (i.e., the one of [GR99])
on the transformed graph. This allows us to establish Theorem 1.5.

1.3.2 Testing Cy-minor freeness, for any k > 3

Recall that the set of Ci-minor-free graphs coincides with the set of graphs that have no simple
cycle of length at least k. Theorem 1.2 is proved by a (local) reduction of testing Cj-minor-freeness
to testing cycle-freeness. For example, in the case of k = 4 we replace each triangle by a 3-vertex
star; that is, we omit the original edges of this triangle, and introduce an auxiliary vertex that
is connected to the three corresponding vertices. We then prove that if the original graph is Cy-
minor-free then the resulting graph is cycle-free, whereas if the original graph is e-far from being
Cy-minor-free then the resulting graph is Q(e)-far from being cycle-free.

For larger values of k, a more sophisticated local replacement is used; that is, replacing all small
cycles by auxiliary vertices will not do. To illustrate the difficulty of dealing with & > 4, note that,
unlike in the case k = 4, a Cy-minor free graph may contain cycles of length smaller than k& that
share some common edges, and so the simple replacement will not yield a cycle-free graph.

3Note that any cycle-free graph is a forest, and if the number of trees in this forest is ¢, then the difference between
the number of vertices and the number of edges in the graph equals t. The two-sided error tester of [GR02] estimates
the number of edges and the number of connected components in the graph, and conducts the adequate computation.
The number of connected components is estimated by the number of connected components that have O(1/¢) vertices,
whereas the latter number is approximated by exploring the neighborhood of a few randomly selected vertices.

1.3.3 Testing H-minor freeness, for any cycle-free H

The main challenge for this problem is testing T-minor freeness, where 7' is an arbitrary tree. The
simple case in which T is a k-vertex star, for some k > 2, provides a good illustration to the
underlying main idea. In this case we may select a random vertex and start a Breadth First Search
(BFS) at this vertex, stopping whenever either we encounter a layer with at least k vertices or we
explored more than 4k /e layers (or we explored the entire connected component). In the first case,
we found a desired minor and can safely reject, whereas in the second case we found a set of at least
4k /e vertices that is separated from the rest of the graph by less than dk edges. Thus, if the graph
G = ([N], E) contains at least (1 —¢/4) - N start vertices that do not lead the algorithm to reject,
then G can be decomposed to connected components that are each T-minor free by omitting at
most edN/2 edges (i.e., the edges that are incident at the eN/4 exceptional vertices and the edges
of the aforementioned small cuts).

The case of a general tree 1" is much more complex, but the governing principle remains a tight
relation between having few start vertices that contain a T-minor at their vicinity and the ability
to decompose the graph to connected components with few edges between them. This relation is
captured by the following result, which may be of independent interest.

Theorem 1.6 (“local expansion” and tree minors): For every d and k there exists an r = r(d, k)
such that if the r-neighborhood of a vertex s in a graph of degree bound d does not contain a T-minor
of some tree T with at most k wvertices, then this neighborhood contains a set S that is separated
from the rest of the graph by less than ed|S|/4 edges.

In other words, if all “sub-neighborhoods” of the r-neighborhood of s are “expanding” (i.e., are not
separated from the rest by small cuts), then this r-neighborhood contains a T-minor of every tree T'
with at most k vertices. (We mention that the problem of finding small trees in locally expanding
graphs has been studied before (cf., e.g. [FP87]). However, our Theorem 1.6 seems incomparable,
since we seek specific tree minors rather than specific trees, whereas our expansion condition is
very weak.)

Finally, we reduce finding H-minors, where H is an arbitrary cycle-free graph (i.e., a forest),
to finding disjoint tree minors. Again, the reduction is local, and in this case it is almost straight-
forward, where the subtlety is related to the fact that we refer to one-sided error. Specifically, if
H consists of the connected components Hi, ..., H,,, then it does not necessarily hold that G is
H-minor free if and only if G is H;-minor free for all ¢ € [m]. Still, this is “almost true” and so a
small modification of the straightforward reduction will do.

1.4 Another perspective: Finding arbitrary forbidden minors

Our results may be viewed as progress in resolving an open problem, posed by Benjamini, Schramm,
and Shapira [BSS08], that refers to one-sided error testing of H-minor-freeness, for any finite graph
H (or even a finite family of such graphs). Specifically, Benjamini et al. [BSS08] proved that, for
any H, the property of being H-minor-free can be tested within query complexity that only depends
on the proximity parameter,® when allowing two-sided error. They conjectured that for any non-
forest H, there exists an H-minor-freeness tester with query complexity O(\/N). Viewed from that

1The query complexity obtained in [BSS08] is triple-exponential in 1/e. The complexity was improved to expo-
nential in 1/e [HKNOOQ9].

perspective, our results prove the aforementioned conjecture in the special case of H = CY, for
every k > 3.

We note that finding cycles seems the “hard” part of finding minors; that is, cycles are the
source of the Q(v/N) query lower bound. Specifically, recall that [GR02, Prop. 4.3] establishes
an Q(V'N) query lower bound for any algorithm that finds Cs-minors (or, in other words, a one-
sided property tester for cycle-freeness). In [BSS08] it was suggested that this lower bound can be
deduced by adapting the lower bound argument from [GR02]. We present a proof of this fact, thus
establishing an Q(v/N) query lower bound for any algorithm that finds minors that contain cycles.
Recall that this stands in contrast to Theorem 1.3 (which asserts that finding cycle-free minors can
be done in a number of queries that is independent of the size of the graph).

A wider perspective on finding forbidden minors. The first result dealing with graph
minors is the well known Kuratowski-Wagner theorem [Kur30, Wag37] that states that any non-
planar graph contains a K5 or K33 minor. Consider a property P such that if G € P, then, for
any minor H of G, it holds that H € P. Such a property is minor-closed. It was conjectured by
Wagner that for any minor-closed property P, there is a finite set of graphs Hp such that G € P if
and only if G is H-minor free, for all H € Hp. Robertson and Seymour had a long series of papers,
which culminated in the proof of this conjecture [RS04], called the Graph-Minor Theorem. From
an algorithmic perspective, one of the milestones in this series was a polynomial time algorithm
that checked H-minor freeness, for any (constant-size) graph H [RS95]. (We will use a recent
improvement on that by Kawarabayashi, Kobayashi, and Reed [KKR12], which gives a quadratic
time algorithm for this problem.)

It is natural to consider a sublinear variant of the above algorithmic question; that is, given
a graph G that is far from being minor-free, and we find an H-minor by looking at a sublinear
portion of the graph? An affirmative answer would, in particular, imply that such a graph contains
sublinear sized H-minors, which is an interesting combinatorial conjecture. Needless to say, this
paper provides an affirmative answer in the special case that H is a cycle.

1.5 Further reflections regarding one-sided error

The relative power of two-sided versus one-sided error randomized decision procedures has been the
focus of considerable study in many settings, including in the context of property testing. Indeed,
in any setting, one-sided error procedures offer the advantage of never rejecting yes-instances.
However, as we already saw in Section 1.2, this advantage has a special appeal in the context
of property testing, since it yields algorithms for very efficiently finding some desired structures
(whenever the graph is far from being “free of them”). Additional benefits of one-sided error testers
are discussed next.

Firstly, we note that property testing is asymmetric in nature: It refers to distinguishing ob-
jects that perfectly satisfy a predetermined property from objects that are far from satisfying this
property. Indeed, property testing is a relaxation of the original decision task (which refers to
distinguishing objects that satisfy the property from objects that do not satisfy it), where the
relaxation is applied to one type of instances but not to the other. In this context, it is natural
to apply the probabilistic relaxation also to one type of instances (i.e., the far-away instances) but
not to the other.

Secondly, we note that one of the main applications of property testers is their potential use as
a preliminary “fast but crude” decision step, which when coupled with an exact (but slow) decision

procedure yields a procedure that is always correct and often very fast. That is, we envision using
a property tester as a “sieve” that rejects “on the spot” (i.e., “fast”) very bad instances (i.e.,
those that are far from satisfying this property), while passing the rest of the instances for further
examination. In such a context, we can afford passing very bad instances for further examination
(since all this means is a waste of time), but we cannot afford not passing a good instance.

Lastly, we consider the relationship between property testing and local structures in the tested
property. Intuitively, the existence of a property tester means that a global structure (i.e., dis-
tance of the object to the property) is reflected in (or co-related with) a local structure (i.e., the
part of the object being probed by the tester). In the general case (of two-sided error), this co-
relation is statistical, whereas in the case of one-sided error this correlation is actually a (“robust”)
characterization.

The last aspect is particularly clear in the current study. Firstly, the notion of local structure
is most appealing in the bounded-degree model, where it refers to graph neighborhoods. Secondly,
the different types of local structures underlying the two-sided and one-sided error testers is most
striking in the case of cycle-freeness. The two-sided error tester of [GR02] relies on the fact that
distance from cycle-freeness in connected graphs is reflected by the difference between the number
of edges and the number of vertices, whereas these numbers can be estimated (with two-sided
error) by sampling the graph’s vertices. Note that such estimates cannot yield a characterization
(let alone a robust one) of the cycle-free graphs. In contrast, our one-sided error tester relies on the
fact that distance from cycle-freeness is reflected in the density of short simple cycles in the graph,
whereas such cycles can be found by an appropriate randomized exploration of the graph. Indeed,
this yields a (robust) characterization of the set of cycle-free graphs (i.e., a graph is cycle-free if and
only if it contains no simple cycle, and the farther the graph is from being cycle-free the shorter
and more abundant these cycles are).

1.6 The general (unbounded-degree) graph model

Although our upper bounds (e.g., Theorem 1.1) state the dependence of the complexities on the
degree bound, d, so far we thought of d as being a constant (or at least as being extremely small in
comparison to N). Indeed, an upper bound as stated in Theorem 1.1 (i.e., an arbitrary polynomial
dependence on d) is not meaningful, when d = N (or even d = v/N). Nevertheless, it is possible
to obtain a better result than stated in Theorem 1.1 — specifically, eliminate the dependence on d.
That is, there exists a randomized algorithm that, on input an N-vertex graph G of degree bound d
that is e-far from being cycle-free, finds a simple cycle (of length poly(e~tlog N)) in G in expected
time O(poly(1/e) - V'N).

The foregoing algorithm can be extended to the general graphs model (i.e., the model in [PR02]),
where distances are measured with respect to the actual number of edges (see Section 8).° This
follows by an alternative presentation of the basic randomized reduction, which may be viewed
as reducing cycle-freeness to a generalization of 2-colorability. In this generalization, edges of the
graph are labeled by either eq or neq, and a legal 2-coloring (of the vertices) is one in which every
two vertices that are connected by an edge labeled eq (resp. neq) are assigned the same color

5Algorithms in this model use the same type of incidence queries as in the main (bounded-degree) model we
consider. The difference is that a graph G = ([NV], E) is said to be e-far from H-minor-freeness if 2¢|E| edges (rather
than edN edges) must be removed from G in order to obtain an H-minor-free subgraph. The point is that the number
of edges is related to the average degree of G rather than to its degree (upper) bound, which may be significantly
smaller. Thus, distances under this model are possibly larger, and thus the testing requirement is possibly harder.

(resp., opposite colors). We observe that the (one-sided error) Bipartite testers of [GR99, KKR04]
extend to this generalization of 2-colorability.

We mention that analogous extensions do not work for testing Cj-minor freeness, for k > 3,
nor for testing tree-minor-freeness. In fact, in the general graph model, it is not possible to find
tree-minors (or even test tree-minor freeness with two-sided error) by using o(v/N) queries.

1.7 Organization

Section 2 contains a formal statement of the relevant definitions and terminology. The testers of
Ci-minor freeness are presented in Sections 3-5. Our first result (i.e., the one-sided error tester
of cycle-freeness) is presented in Section 3. The reduction of testing Cj-minor freeness to testing
cycle-freeness is presented in Section 5, but Section 4 provides an adequate warm-up by treating
the case of k = 4.

In Section 6, we prove the lower bound claimed in [BSS08] regarding the query complexity of
one-sided error testing H-minor freeness, when H contains a cycle. In contrast, in Section 7 we
consider the case that H is cycle-free, and present the improved testers for H-minor freeness in this
case (i.e., when H is a forest).

Finally, in Section 8 we consider the unbounded-degree model, discussed in Section 1.6, and in
Section 9 we compile a list of open problems that are scattered throughout the paper.

2 Preliminaries

This work refers mainly to the bounded-degree model (introduced in [GR02]). The only exception
is Section 8, where we consider the unbounded-degree model, also discussed in Section 1.6. The
bounded-degree model refers to a fixed degree bound, denoted d, where a tester is given oracle
access to an N-vertex graph G = ([N], E) of maximum degree d. Specifically, for any v € [N] and
1 < i < d, the tester can ask for the ™" neighbor of vertex v. If v has less than i neighbors, then
the answer returned is 0 (and no assumption is made on the order of the neighbors of any vertex).

Definition 2.1 (testers in the bounded-degree model): Let d € N be fized and 11 be a property of
graphs with mazimum degree at most d. We denote the restriction of 11 to N-vertex graphs by Il.
A randomized oracle machine T is called a tester for 11 if the following two conditions hold:

1. For every N € N and € € [0,1], on input (N,€) and when given oracle access to any G € Iy
the machine T accepts with probability at least 2/3; that is, Pr[T%(N,€) = 1] > 2/3.

2. For every N € N and e € [0,1], and every N -vertex graph G that is e-far from Iy, it holds that
Pr[T%(N,e) = 1] < 1/3, where G = ([N], E) is e-far from Ty if for every G' = ([N], E") € Tl
it holds that the symmetric difference of E and E' contains more than € - dN elements.

In case the first condition holds with probability 1, we say that T has one-sided error. Otherwise,
we say that T has two-sided error.

Throughout our study, the degree bound d is a constant, and sometimes O/Omega-notions hide
a dependence on d. The query and time complexities of testers are stated as functions of the
graph size, N, and the proximity parameter, e. When discussing time complexity, basic vertex-
manipulation operations are counted at unit cost. We may assume without loss of generality that

d > 3, where in order to obtain a result for d = 2, we can simply run the algorithm with d = 3 and
a proximity parameter of 2¢/3 (and for d = 1 all problems become trivial).

Notation. For a graph G = ([N], E), we denote the set of neighbors of v € [N] (in G) by I'g(v);
that is, I'g(v) = {u€[N] : {u,v} € E}.

Terminology. By a cycle in a graph G = ([IV], E') we mean a sequence of vertices (vy, ..., v, V1)
such that v; = vy and for every ¢ € [t] it holds that {v;,v;11} € F; that is, (u,v,w,v,u) (or even
(u,v,u)) is considered a cycle. A simple cycle is a cycle as above in which t > 3 and |{v; : i € [t]}| = t.

A useful bound. For any positive integer a and fraction 0 < o < 1/2 we have:

(;2) < oH(a)a (1)

where Hs(a) = alog(1/a) + (1 —) log(1/(1 — «)) is the binary entropy function.

3 Testing Cycle-Freeness

As stated in the introduction, we reduce testing cycle-freeness to testing bipartiteness. Recall that
we consider bounded-degree graphs, where the degree bound d is assumed to be a constant (for
the general case, see Section 8). The reduction is randomized and local so that operations in the
resulting graph are easily implemented via operations in the original graph. Wishing to avoid a
general definition of (randomized) local reductions, we explicitly present the tester obtained by it.

For a fixed graph G = ([N],E) and function 7 : E — {1,2}, we denote by G, the graph
obtained from G by replacing each edge e € FE such that 7(e) = 2 by a 2-edge path (with an
auxiliary intermediate vertex). Each edge e € E such that 7(e) = 1 remains an edge in G,. That
is, the graph G, = (V;, E;) is defined as follows:

V. £ [N]U{ac:e€ EAT(e) =2} (2)
E, = {e:eec ENnT(e) =1} U{{u,ac},{ae,v}:e={u,v} € EAnT(e) =2} (3)

Note that |V;| < (d+1)- N and that G, preserves the degree bound, d. We first establish the next
lemma concerning features of the transformation from G to G, and later turn to discuss the tester
in detail.

Lemma 3.1 (analysis of the randomized transformation):
1. If G is cycle-free, then, for every choice of T : E — {1,2}, the graph G is bipartite.

2. If G is not cycle-free, then, with probability at least 1/2 over the random choice of T : E —
{1,2}, the graph G is not bipartite.

3. There exist universal constants ¢y > 1 and ca,c3 > 0 such that, for every e > c¢1/(dN), if G
is e-far from being cycle free, then, with probability at least 1 —exp(—coedN) over the random
choice of T : E — {1,2}, the graph G, is c3 - €/2d-far from being bipartite.

Proof: The first item follows from the fact that if G is cycle-free, then, for every 7: E — {1,2},
the graph G is also cycle-free, and thus bipartite. The second item follows by observing that any
cycle in G is transformed with probability 1/2 to an odd-length cycle in G;. Turning to the last
item, we consider an arbitrary graph G that is not cycle-free. Denoting by A the actual number
of edges (not its fraction) that should be omitted from G in order to obtain a cycle-free graph,
we shall show the following. For A that is at least some constant (i.e., A > ¢;), with probability
1 —exp(—2(A)), the number of edges that should be omitted from G, in order to obtain a bipartite
graph is Q(A). (Note that the second item in the lemma holds for any A > 1, which may be below
this constant.)

We start by considering the case that the graph G is connected. We later address the case in
which G contains more than one connected component. We may assume without loss of generality
that G has no vertices of degree 1, since removing such vertices maintains the value of A (i.e., the
absolute distance from being cycle-free) as well as (the distribution of) the number of edges that
have to be removed to make GG, bipartite. We also observe that except in the case that G is a
simple cycle, which is covered by the second item in the lemma, we may assume that there are
no vertices of degree 2. This is true since we can contract paths that only contain intermediate
vertices of degree 2 to a single edge, while again preserving A as well as (the distribution of) the
number of edges that have to be removed to make G, bipartite. The latter assertion follows from
the fact that the distribution of the parity of the path-lengths in G, is maintained (i.e., both the
original path and the contracted path in G, have odd/even length with probability 1/2). We also
mention that the contracted graph G may contain self-loops and parallel edges, but the rest of the
argument holds in this case too. We stress that the contracted graph is merely a mental experiment
for proving the current lemma.

In light of the foregoing, we consider a connected graph G = ([N], E'), which may have self-loops
and parallel edges, in which each vertex has degree at least 3. It follows that A = |E| — (N —1) >
N/2. We shall prove that, with high probability over the choice of 7, for some constant ¢z > 0,
more than cg - A = czedN edges must be omitted from the graph G in order to obtain a bipartite
graph. Since the number of vertices in G is upper bounded by (d + 1)N (and its degree bound is
d), we get that G- is at least (cze/2d)-far from bipartite, since d(cgfll])vN > 9.

For each E' C E of size c3A, let G/ denotes the subgraph of G, obtained by applying the
foregoing randomized reduction to the graph G’ = ([N], E'\ E’) rather than to G = ([N], E). We
consider the probability that G’ is bipartite. Note that G, is at (absolute) distance at most c3A
from being bipartite if and only if there exists a set E’ of size c3A such that G/, is bipartite. Thus,
the probability that G is at distance at most c3A from being bipartite is given by

p def Pr;[3E’ C E such that |E'| = ¢3A and G is bipartite]

< Z Pr[G. is bipartite]
E'CE:|E'|=c3A

< E|) 9N=1 o—(E|-csA)

IN

CgA

where the second inequality is due to considering all possible 2-partitions of [N], and noting that for
each edge e in E'\ E' and each 2-partition 7, with probability 1/2 over the choice of 7(e) € {1,2},
the partition 7 is inconsistent with the value of 7(e). (In such a case we say that e violates the
2-partition m.) Specifically, if 7(u) = 7(v) and 7({u,v}) = 1, then the edge {u,v} violates the

10

2-partition 7, and ditto if m(u) # m(v) and 7({u,v}) = 2. Note that the hypothesis that G is
(connected and is) at (absolute) distance A from being cycle-free implies that |E| = (V — 1) + A.
Now, substituting |E| by (N — 1) + A, using A > N/2 and Equation (1) we get

P < N—1—|—A '2—(A—03A)
B c3A

3A
. —(1—63)A
< <03 A) 2

< 2H2(303)-3A—(1—03)A

which vanishes exponentially in A provided that ¢35 > 0 is a sufficiently small constant.

It remains to address the case in which G is not connected. Let C1,...,C; be the connected
components of G where t > 1. For each 1 <1 < t, let N; be the number of vertices in C;, and let
A; be the number of edges that should be removed from C; in order to make it cycle-free. Thus,
Z’;Zl N; = N and Z’;Zl A; = A. Let 7; be the restriction of 7 to the edges in Cj, let C; » be the
graph obtained by applying the transformation defined by 7; to Cj, and let A; ; be the number of
edges that should be removed from C; to make it bipartite.

By applying the argument detailed above to each C; separately, we get that Pr[A; ; < ec3A;] <
2748 (for constants 0 < c3,¢4 < 1). We would like to infer that

DA< Y A <exp (—Q (Z m)) = exp(—Q(A)) (4)
=1 =1 =1

for some constant 4. To this end, for each C; we define m; = ¢3A; independent 0/1 random
variables, X;1,...,Xjm,, such that Pr[X;; = 1] = 2-c1/¢3 Observe that Pr[zgn:il Xij <myl =1
and Pr[37" X;; = 0] = 27¢4Ai This implies that Pr[>7% Xij < B8] > Pr[A;; <] for every
threshold 3, which means that the random variables Z;”;l X;; and A;, can be coupled (i.e.,
defined over the same sample space) such that the value of the first is always upper bounded by
the value of the second. Hence, in order to prove Equation (4), it suffices to bound the probability
that S¢_, Yot Xij <y S A = ¢4A. But since these (3'_, m; = c3A) random variables are
independent, we can apply a multiplicative Chernoff bound, which gives us that the probability
that >°0_ S Xi i < hA for ¢ = c3- 27/~ (ie., half the expected value of the sum), is

exp(—Q(A)). M

Pr

The Tester For Cycle-Freeness. The tester emulates the execution of the bipartiteness testing
algorithm [GR99] on G, by performing queries to G. We next state the main theorem proved
in [GR99].

Theorem 3.2 [GR99] There exist an algorithm Test-Bipartite for testing bipartiteness of bounded-

degree graphs whose query complexity and running time are poly((log N)/€) - \/ﬁ where N denotes
the number of vertices in the graph and € is the given proximity parameter. The algorithm uniformly
selects random vertices and performs random walks from them. Whenever the algorithm rejects a
graph it outputs a certificate to the non-bipartiteness of the graph in form of an odd-length cycle of
length poly (e~ log N).

11

As stated in Theorem 3.2, algorithm Test-Bipartite performs two types of operations: (1) selecting
a vertex uniformly at random, and (2) taking random walks by querying vertices on their neigh-
bors.% Thus the execution of the cycle-freeness tester boils down to emulating these operations, as
described next.

Algorithm 3.3 (the cycle-freeness tester): Given input graph G = ([N], E), the tester selects
uniformly at random a function 7 : E — {1,2} and invokes Test-Bipartite on the graph G, with
the proximity parameter set to cse/2d (where cg is the constant from the last item in Lemma 3.1),
emulating its operations as follows.”

1. If Test-Bipartite wishes to select a random vertex in G, then the tester first selects uniformly
a vertex v € [N]. It then outputs v with probability 1/(d + 1), and if v is not output, then
it selects each neighbor of v with probability 1/(2(d + 1)) and outputs ag, .y if T({u,v}) = 2,
where u denotes the selected neighbor.

Indeed, the foregoing process outputs a vertex in G, with probability at least 1/(d+1), and in
case no vertex is output, the procedure is repeated (up to O(log N) times).

2. If Test-Bipartite queries for the itt neighbor of vertex v € [N] C V;, then the tester queries for
the ith neighbor of v in G, and answers accordingly. Specifically, if the answer to this query
was u (i.e., u is the i*" neighbor of v in G), then u is given to Test-Bipartite if 7({u,v}) = 1
and otherwise ay, ,\ s given. (If the answer was 0, indicating that v has less than ¢ neighbors,
then 0 is returned as answer to Test-Bipartite.)

Finally, if Test-Bipartite queries for the i™™ neighbor of a vertex Afuwy Such that u < v, then
the tester answer with w if i = 1, with v if i = 2, and with 0 if i > 2.

When Test-Bipartite halts, the current tester halts with the same verdict.

Furthermore, if Test-Bipartite provides an odd-length cycle in G, then we can easily obtain a
corresponding cycle in G' (by contracting the 2-vertex paths that appear on it into single edges).

Note that in each iteration of the process detailed in Step 1, each vertex of G, (regardless if it
is an original vertex of G or an auxiliary vertex) is output with probability exactly % . ﬁ (and
with probability 1 — |V, |- % . ﬁ no vertex is output), Thus, conditioned on a vertex being selected
in Step 1 (which happens with very high probability since the process is repeated sufficiently many
times), Step 1 implements a uniform random selection of vertices in G.

Conclusion. Combining Lemma 3.1 with Theorem 3.2 we conclude that Algorithm 3.3 is a one-
sided error tester for cycle-freeness. Its complexity is O(poly(d/e) - v/ N) and if it rejects the graph
G then it outputs a cycle of length poly(¢~'dlog N). This establishes Theorem 1.5.

SActually, Test-Bipartite requires also a rough estimate of the number of vertices in the graph, since such an
estimate is used to determine a couple of parameters (i.e., the number of random walks performed and their length).
It is clear that our reduction provides such an estimate, since |V;| = O(N).

" Actually, the function 7 : E — {1,2} is selected on-the-fly; that is, whenever the tester needs the value of 7 on
some edge in F, it retrieves it from its memory in case it was determined already and selects it at random (and stores
it for future use) otherwise.

12

4 Testing Cy-Minor-Freeness

As a warm-up towards testing Ci-minor-freeness, for any k > 3, we present the treatment of the
special case of k = 4. We actually reduce the task of testing Cy-minor-freeness to the task of
testing Cs-minor-freeness. Loosely speaking, the reduction replaces each triangle {u,v,w} in the
input graph by an auxiliary vertex (denoted 57 {um’w}) that is connected to the corresponding three

vertices. The reduction is summarized in the following construction.

Construction 4.1 (the reduction): Given a graph G = ([N], E) (of max degree d), we (locally)
construct the auziliary graph G' = ([N]JUT, E') such that T contains the vertex Y tuo) (referred

to as a “triangle” vertex) if and only if {u,v}, {v,w},{w,u} € E and

E'=|E\ U e | | o{tevp,m} Viww €T} (5)

u,v,w:v{u,v,w}ET

Specifically, the set of neighbors of v € [N] in G', denoted T'ci(v), consists of the following elements
of [NJUT.

1. Neighbors of v in G that do not reside in G on a triangle together with v; that is, u € T'g(v)
is in Tgr(v) if and only if Tg(u) NTg(v) = 0.

2. Fach triangle that contains v in G; that is, \S is in Ter(v) if and only if u,w € T'g(v)

and {w,u} € E.

}

The set of neighbors of \S € T equals {u,v,w}. Noting that d + (g) < d?, we view G’ as a

}
graph of mazimal degree d*.

For an illustration of Construction 4.1 see Figure 1. Note that given any v € [N], we can easily

G G G

Figure 1: An illustration for Construction 4.1. On the left, G is C4-minor free, and indeed G’ is cycle-free;
while on the right, G is not Cy-minor free, and G’ contains cycles (but no cycles of length 3 (triangles).)

determine its neighbors in G’ by checking the foregoing conditions. Similarly, for every u,v,w,
we can easily determine whether 7 (w00} is in G'. Lastly, note that we can select a vertex of G’

uniformly by using the following procedure.

1. Select uniformly v € [N].

2. Select one of the following two instructions at random with equal probability.

13

(a) (Generating a vertex of G):
Output v with probability d—2.

(b) (Generating a triangle):
Query all neighbors of v to obtain I'¢(v). and select uniformly u,w € T'¢(v) such that
u# w. If {u,w} € E, then output Y tuo) with probability p, = d=2 - (‘Faz(”)‘)/?).

In all the other cases, there is no output.

Thus, this process outputs each vertex of G with probability N=1-0.5-d~2 = d=2/2N, and outputs
each Y tuwwy € T with probability > N-1.05. (‘Fcéx”) -pe = d2/2N. Since there are at
least N vertices in G’, the probability that the process does not output any vertex in G’ is at most
(1—d~2). If we repeat the process ©(log N) times (recall that d is assumed to be a constant), then
the probability that we get no output is 1/poly(/N). Since the total size of the sample needed is
o(N), by a union bound, the probability that this occurs at any step of the algorithm, is negligible,
and this can be accounted for in the one-sided error probability by letting the algorithm accept in
case sampling fails.

ze{u,v,w}

Algorithm 4.2 (the Cy-minor-freeness tester): Given input graph G = ([N], E), the tester emu-
lates the execution of Algorithm 3.3 on the graph G' = ([INJUT, E') as defined in Construction 4.1.
In the emulation, vertices of G' are selected at random and their neighbors are explored on the fly,
as detailed above.

The analysis of Algorithm 4.2 reduces to an analysis of Construction 4.1.
Claim 4.3 If G is Cy-minor-free, then G’ is cycle-free.

Proof: We first give a high-level idea of the proof and then give a detailed argument. By the
hypothesis, the only simple cycles in G are triangles, and they are replaced in G’ by stars centered at
auxiliary vertices. Specifically, the triangle {u, v, w} (i.e., the edges {u, v}, {v,w}, {w,u}) is replaced
by a star-tree centered at v/ (w00} and having the leaves u, v, w. Note that this replacement can
form no simple cycles in G’, because the simple paths in G’ correspond to simple paths in G (where
the sub-path v— V{uﬂ)’w} —w corresponds to the edge v—w).

The corresponding detailed argument proceeds as follows. Assume, contrary to the claim, that
there exists a simple cycle ¢/ = v1—wv9—---—vy—v;411 = vy in G'. Consider replacing each length-2
subpath u—7<7 (wwey Y in ¢’ by the edge (in G) between u and w (where this edge exists because
u and w belong to a common triangle and u # w). Since, by construction of G’, there are no
edges in G’ between triangle vertices, this way we obtain a cycle in GG, which we denote by 1. We
next show that ¢ is a simple cycle of length greater than 3, and we reach a contradiction to the
hypothesis that G is Cy-minor-free.

We first verify that the length of 1) is greater than 2. This is true because otherwise, the cycle 1)’
is either of the form UV gy WU OF it is of the form U Viwa) Y Vieway W In the
first case ¢’ contains an edge {w,u} of a triangle in G, which is not possible by construction of G'.
In the second case, since 9 is simple (so that x1 # x3), there is a simple 4-cycle u—x1—w—2o—u
in G (contradicting the hypothesis that G is Cy-minor-free). It follows that ¢ is a simple cycle and
it remains to verify that its length is greater than 3.

14

Suppose that the length of ¢ is 3, that is, ¢ = u—w—v—u is a triangle in G. It follows that none
of the edges {u,w},{w,v}, {v,u} belong to G’ and therefore, ¢’ = u—

——

v{u,w,ml} e v{w,v,xg}

(s} W where the triangles are distinct and hence at least one of them does not equal

Y fwww} But this implies that there exists a simple 4-cycle in G (contradicting the hypothesis that
G is Cy-minor-free). W

Claim 4.4 If G is e-far from being Cy-minor-free, then G’ is Q(€)-far from being cycle-free, where
the Omega-notation hides a polynomial in 1/d.

Proof: Suppose that G’ is d-close to being cycle-free, where the distance refers to the degree
bound of G/, which is d? as well as the number of vertices in G’ which is N + |T'|. Let R’ be a
set of at most & - d - (N + |T|) edges such that removing R’ from G’ yields a cycle-free graph,
(INJUT,E"\ R). Let R C E be a set of edges that consists of (1) all edges of E that are in R/,
and (2) each edge {u,v} € E such that {u, v{u,v,w}} is in R’. Hence, |R| < 2|R'| < §-d*N, where

we use |T| < (g) - N. We next prove that removing R from G yields a graph that is C4-minor-free,
and it follows that G is 2d3é-close to being Cy-minor-free.

Assume, contrary to the claim, that for some t > 4 there exists a simple cycle vi—uwvg—- - - — V—1
in the resulting graph (i.e., in the graph ([N], E\R)). We consider the corresponding (not necessarily
simple) cycle in the graph ([N]UT, E’'\ R):

Case 1: If the edge {v;,viy1} € E'\ R is not a part of any triangle in G, then {v;,v;41} € E'\ R/,
because {v;,v;11} is an edge of G’ and it cannot be in R’ (since this would imply that
{vi,viy1} € R). In this case, we just use the edge {v;,v;y1} on the cycle in the graph
(INJUT,E"\ R').

Case 2: If the edge {v;,vi+1} € E\ R is part of a triangle v;, v;iy1, w (in G), then {v;, Y fvi i w}} €

E'\R" and {v;11, YV tosiin w}} € E'\ R/, because both pairs are edges of G’ and cannot be in R’

(since this would imply that {v;, v;4+1} € R). In this case, we replace the edge {v;,viy1} € E\R

by the length-two-path v;— Vi) Vit (in the graph ([NJUT,E"\ R)).

Observe that the “triangle” vertices used in Case (2) need not be distinct, but they can collide

only when they refer to three consecutive vertices on the original t-cycle (i.e., if 7 (oo} =

(03050103} for i < j, then v; = v;41 must hold, and wy = vj;1 = viyo follows). Such collisions can
be eliminated at the cost of omitting a single “non-triangle” vertex (i.e., the path v;/—=</ (0s.0541.0112)

—wvjy9 is replaced by the path v;— <y —ji42). Thus, we derive a

V41— v{vi,vwhvwz} {vi,vit1,vig2}
simple cycle of length at least ¢ > 4 in the graph ([N]UT, E'\ R’) (since we have a “triangle” vertex
per each omitted “non-triangle” vertex). This contradicts the hypothesis that ([NJUT, E'\ R') is

cycle-free, and so the claim follows. W

Conclusion. Combining Claims 4.3 and 4.4 with Theorem 1.5 and the fact that the number of
vertices in G” is linear in N (for constant d), we conclude that there exists a one-sided error tester
of complexity O(poly(1/e) - V/N) for Cy-minor-freeness.

15

5 Testing C.--Minor-Freeness, for any k£ > 4

In this section we show that, for any k > 4, the task of testing Ci-minor-freeness reduces to the
task of testing Cs-minor-freeness. The reduction extends the ideas underlying the reduction of
testing Cy-minor-freeness to testing Cs-minor-freeness (as presented in Section 4).

The basic idea of the reduction is replacing simple cycles that have length smaller than k£ by
stars. Actually, we replace certain subgraphs that contain such cycles by stars. We start by defining
the class of (induced) subgraphs that we intend to replace by stars. These subgraphs (or rather
their vertex sets) will be called spots. Below, the term 2-connectivity means 2-vertex connectivity;
that is, a graph is called 2-connected if every two vertices in the graph can be connected by two
vertex-disjoint paths.

Definition 5.1 (spots): A set S C [N] is called a k-spot of the graph G = ([N], E) if the following
three conditions hold:

1. The subgraph induced by S, denoted Gg, contains no simple cycle of length at least k; that is,
Gg is Cx-minor-free.

2. The subgraph induced by S is 2-connected and |S| > 3.

3. For every u,v € S such that u # v, either u and v are not connected by any path that is

external to Gg or the length of every such external path is at least ¢(k) ok, Here, by a path

external to Gg we mean a path that does not use any edge that is incident to a vertex in S
with the exception of the endpoints u and v (i.e., all intermediate vertices of the path belong

to [N]\ S).

For example, every 4-spot of G induces a triangle in G, whereas the set of possible subgraphs induced
by 5-spots of G consists of the following graphs: the 4-cycle (i.e., Cy), the 4-cycle augmented by
a chord, the 4-clique (i.e., K4), and the graphs Kj, and Kén for every n > 3, where Kén is the
graph Kj,, augmented by a single edge that connects the two vertices on the small side.® (Indeed,
in Section 4 we essentially used a relaxed notion of a 4-spot in which the third condition was not
required.)

5.1 Some basic facts regarding spots

Since k is fixed throughout the rest of our discussion, we may omit it from the notations and refer
to k-spots as spots. A few basic properties of spots are listed below.

Claim 5.2 If S is a k-spot of G, then the diameter of Gg is smaller than k/2.

It follows from the claim that for every k-spot S where k > 4,

k/2
S| < > dh < 2d¥? < @ (6)
=0

8Recall that K, denotes the complete bipartite graph with m vertices on one side and n vertices on the other
side; that is, Km,n = ([m +n],{{i,m +j} : i€[m],j€[n]}).

16

(since d > 3).”

Proof: Assume, contrary to the claim that the diameter of Gg is at least k/2 and consider u,v € S
such that the distance between u and v in Gg is at least k/2. Since Gg is 2-connected, there exists
a simple cycle in Gg that passes through both v and v, and it follows that this cycle has length at
least k, which contradicts the hypothesis that Gg is Cg-minor-free. W

Note that, for any spot S and every three distinct vertices u, v, w € S, the subgraph Gg contains
a simple path that goes from u to v via w. This holds by the very fact that Gg is 2-connected (i.e.,
the second condition in Definition 5.1). By Claim 5.2 the length of this path is less than d*~'. As
we shall show next, a much better bound follows by using the fact that Gg is Ci-minor-free (i.e.,
the first condition in Definition 5.1),

Claim 5.3 For every k-spot S and distinct vertices u,v,w € S, the subgraph Gg contains a simple
path of length at most 2k — 1 that goes from u to v via w.

Figure 2: An illustration for the proof of Claim 5.3. The jotted line is the path between u and v that passes
through w.

Proof: We just take a closer look at the standard proof that the fact that a graph is 2-connected
implies the existence of a u—- - - —w—- - -—v path (for every three vertices u, v, w in the graph). For an
illustration of the argument that follows, see Figure 2. The proof starts by considering two different
vertex-disjoint u—---—w paths, and an arbitrary path between v and w. In the current case (i.e.,
by Ci-minor-freeness), we may assume that the total length of the first two paths is smaller than
k. Similarly, without loss of generality, the length of the third path is smaller than k. Proceeding
as in the standard proof, we ask whether the third path (i.e., the v—---—w path) intersects both
the u—---—w paths. If the answer is negative, then we are done (as we obtain the desired simple
path by concatenating the path v—---—w to the w—---—u path that does not intersect it).
Otherwise, let be the “closest to v” vertex on the path v—---—w that appear on either of
the u—---—w paths; that is, z is on one of the u—---—w paths and the sub-path v—---—z (of the
path v—---—w) contains no vertex from either the u—---—w paths. Note that x = v is possible (but

9We mention that there may exists spots of size d*=V/2 Consider, for example, a graph that consists of two
copies of a depth (d — 1)-ary tree of depth (k — 1)/2 such that each vertex in one tree is connected to its mirror
vertex in the second tree. To see that this graph is Ck-minor-free, consider the correspondence between cycles on this
graphs and traversals of parts of the original tree, and note that simple cycles correspond to traversals in which each
edge is used at most twice. Since such traversals have length at most twice the depth of the tree, the claim follows.

17

x = w is not), and assume, w.l.o.g., that x resides on the first u—---—w path. Then, consider the
path obtained by combining the following three path segments: (1) the segment v—---—x of the
path v—---—w, (2) the segment z—---—w of the first u—---—w path, and (3) the second u—---—w
path. Note that the total length of this path is at most 2(k — 1) (i.e., the total length of the three
paths), and that the three segment do not intersect (since the v—---—x segment does not intersect
the x—- - - —w segment nor the u—---—w path by the choice of). W

Sh S,

N

b\

| =

Y

>
<D

Figure 3: An illustration for the proof of Claim 5.4.

Claim 5.4 If Sy # Sy are k-spots of G, then |S1 N Sy| < 1.

Proof: Assume, contrary to the claim that |S; N Sy| < 1 for two k-spots S # S3. Consider
(w.lo.g.)) u,v € S; N Sy such that u # v and w € Sy \ S; (as in Figure 3). By Claim 5.3, the
subgraph Gg, contains a simple path of length at most 2k — 1 that goes from u to v via w. Let u/
(resp., v') be the last (resp., first) vertex of S; that appears on this path before reaching w (resp.,
after leaving w). Then, we get a simple path (in G) from v’ € Sy to v/ € Sy \ {v} such that this
path contains only intermediate vertices of S \ Si. Recalling that this path has length at most
2k — 1, we reach a contradiction to the hypothesis that S is a k-spot (specifically to the third
condition of Definition 5.1). WM
As a corollary of Claim 5.4 we get:

Corollary 5.5 FEvery vertex v may belong to at most |I'(v)|/2 spots and hence the number of spots
in a graph G is upper-bounded by the number of edges in G.

Proof: The second part of the corollary follows directly from the first, and so we only need to
establish the first part. Since by the definition of a spot, it must contain at least 3 vertices, every
spot S that contains a vertex v must also contain at least two of v’s neighbors. However, by
Claim 5.4, spots that contain v may not share any other vertex. W

Claim 5.6 FEach simple cycle in any Cy-minor-free graph G is a subset of some k-spot of G.

Proof: Consider the following iterative process of constructing a spot S that contains the afore-
mentioned cycle. Initially, we set S to equal the set of vertices that reside on this cycle. Clearly,
this set S satisfies the first two conditions of the definition of a spot (i.e., Definition 5.1), which
is an invariant that we shall maintain throughout the iterative process. The process ends once all
three conditions are satisfied. Since the size of the spot increases in each iteration, the process must
eventually end. Thus, at the start of each iteration of the process we have a set S that satisfies
the first two conditions in Definition 5.1 but does not satisfy the third condition. That is, there

18

exists a simple path external to S that connects two of its vertices u,v € S. Adding this path to
S we obtain a new set that satisfies Condition 1 (since G is Ci-minor-free). To see that the new
set satisfies Condition 2, we need to show that there exist two disjoint paths between each pair of
vertices that are not both in S. For an illustration of the argument that follows, see Figure 4.

S

w
1 wq

w2

Figure 4: An illustration for the proof of Claim 5.6.

In the case that wy and wy are both new vertices (which reside on the aforementioned S-external
path), we connect them by the direct path that resides outside of S as well as by a simple path
that (without loss of generality) connects wy to u (via the external path), connects v and v via S,
and connects v and ws (via the external path). In the case that w; is new but we € S, we use
the external path to connect wy to u and v, respectively, and use the fact that there are vertex
disjoint paths in Gg that connect u and v to we. Thus the new set satisfies the first two conditions
in Definition 5.1, as desired. W

5.2 The actual reduction
Using these facts, we are ready to present our reduction.

Construction 5.7 (the reduction): Given a graph G = ([N], E) (of max degree d), we (locally)
construct the auziliary graph G' = ([N]JU{(S) : S€S}, E') such that S is the set of all spots of G

and
E = (E\ (U {fu.v} : u,ng})) U {{v, (S : S e S,UES}. (7)
SeS

Specifically, the set of neighbors of v € [N] in G', denoted T'ci(v), consists of the following elements
of [NJU{(S) : SeS}.
1. Neighbors of v in G that do not reside in any spot together with v; that is, u € T'g(v) is in
L (v) if and only if {u,v} is not a subset of any S € S.

2. Each spot that contains v in G; that is, (S) is in Tg/(v) if and only if S € S and v € S.

For any S € S, the set of neighbors of (S) in G’ equals S. Recalling that by Equation (6) each
S € S has size at most d*~1, we view G’ as a graph of mazimal degree d*~1.

Observe that the set of spots that contain a vertex v € [N] is determined by the (k + ¢(k))-
neighborhood of v in G, where the t-neighborhood of v contains all vertices that are at distance at
most ¢t from v. Thus, we can determine the set of neighbors of each vertex in G’. We note that
the process of determining the spots that contain a vertex may fail if a cycle of length at least k
is encountered. In such a case the algorithm can clearly reject. Lastly, note that we can select a
vertex of G’ uniformly by using the following procedure.

19

1. Select uniformly v € [N].
2. Select one of the following two instructions at random with equal probability.

(a) (Generating a vertex of G):
Output v with probability 1/d.
(b) (Generating a spot):
Select uniformly a spot S that contain v (i.e., S € S,), and output (S) with probability

pu(S) = %, where S, % {S €S8 :ve S} (Recall that by Corollary 5.4, |S,| < d/2, so

that p,(S) < 1).

In all the other cases, there is no output.

Thus, this process output each vertex of G with probability N=1-0.5-d~! = 1/(2dN), and outputs
each spot (S) € S with probability >, g N7+ 0.5+ |Sy[™1 - py(S) = 1/(2dN).

Algorithm 5.8 (the Ci-minor-freeness tester): Given input graph G = ([N], E), the tester em-
ulates the execution of Algorithm 3.3 on the graph G’ as defined in Construction 5.7. In the
emulation, vertices of G' are selected at random and their neighbors are being explored on the fly,
as detailed above.

The analysis of Algorithm 5.8 reduces to an analysis of Construction 5.7.
Claim 5.9 (yes-instances): If G is Cix-minor-free, then G’ is cycle-free.

Proof: Suppose, contrary to the claim, that v;—wvy—- - - —v;—w1 is a simple cycle in G’. We consider
two cases.

Case 1: All v;’s are vertices of G. In this case, the edges {v;, v;11} in G’ must be edges of G (since
the only edges in G’ that are not edges in G are incident to spot-vertices). On the other hand
t < k must hold, because G is Cjp-minor-free. But this yields a contradiction, because, by
Claim 5.6, the set {v; : i € [t]} must be a subset of some spot of S, which means that none
of the edges {v;,v;1+1} may exist in G'.

Case 2: Some v; represents a spot of G. Let v; = (S), for some S € S. By the definition of the
neighborhood relations in G’ we have that v;11,v;_1 € S. Now, consider a minimal sub-path
of viy1,...,v,01,...,v;—1 that starts in a vertex of S, denoted u, and ends in a vertex of S,
denoted v. That is, we consider a sub-path that starts and ends in vertices of S, but has no
intermediate vertices in S. This sub-path (in G’) cannot consist of a single edge (because the
edge {u,v} C S cannot appear in G’), it cannot contain the vertex (S) (because (S) already
appears as v;), and it cannot be a path of length 2 that goes through another spot (because,
by Claim 5.4, no other spot may contain both u and v). Since this path may not contain
intermediate vertices in S, and since spot-vertices cannot be adjacent in G’, it follows that
this path must contain a vertex w € [N]\ S. That is, we get a path in G’ that goes from u
to v via w, without passing through any vertex in S.

We now obtain a corresponding path in G; that is, a path in G that goes from u to v via
w, without passing through any vertex in S. This is done by replacing any length-2 subpath

20

u'—(S")—' (in G’) by a sub-path v/~ --—v" (in G) that does not pass through S, where the
latter path exists by the fact that v’,v" € S" are connected by vertex-disjoint paths (internal
to S’) such that their intersection with S contains at most a single vertex (see Claim 5.4).
It follows that G itself contains a path between u and v that passes through w and does not
pass through S, where u,v € S but w ¢ S. Thus, G itself contains a simple (non-edge) path
between u and v that does not pass through S (i.e., an external path). By the third condition
in Definition 5.1, the length of this external path is at least ¢(k) > k, but this contradicts
the hypothesis that G is Cg-minor-free (because u and v are connected in Gg and ¢(k) > k,
yielding a simple cycle of length at least k).

The claim follows. W

Claim 5.10 (no-instances): If G is e-far from being Cy-minor-free, then G’ is Q(e)-far from being
cycle-free, where the Omega-notation hides a d=* factor.

Proof: Suppose that G’ is §-close to being cycle-free, where the distance refers to the degree bound
of G', which is d*~!. Recall that by Corollary 5.5 |S| < |E| < dN/2. Let R’ be a set of at most
§-d*Y(N+|S|) < §-d*N edges such that removing R’ from G’ yields a cycle-free graph. Let R C E
be a set of edges that consists of (1) all edges of E that are in R’, and (2) each edge {v,w} € F
such that {v, (S)} is in R’. Hence, |R| < d|R'| < & - d***N. We next prove that removing R from
G yields a graph that is Cj-minor-free, and it follows that G is d - d*-close to being C-minor-free.

Suppose, contrary to the claim, that for ¢ > k there exists a simple cycle v;—wvo—- -+ — v—1 in
the resulting graph (i.e., in the graph ([IV], E'\ R)). We first show that there exists a corresponding
(not necessarily simple) cycle in E’ \ R’. Specifically, for each {v;,v;11} € E'\ R, we consider two
cases.

Case 1: This edge is not a subset of any spot in G. In this case, {v;,v;11} € E' \ R’, because this
edge is in E’ and cannot be in R’ (or else it would have been in R). So we just use this edge
in the cycle (in E' \ R).

Case 2: This edge is a subset of a spot S in G. In this case, {v;, (S)}, {vi+1, (S)} € E'\ R/, because
both these edges are in E’ and cannot be in R’ (or else {v;,v;11} would have been in R). In
this case, we replace the edge {v;,v;+1} € E'\ R by the length-two-path v;/—(S)—uv;1.

Thus, we obtain a cycle in ([N]U{(S) : S€ S}, E'\ R’) that contains the vertices v1,...,v; € [N] as
well as (possibly) some elements in {(S) : S€ S}. Since the latter elements may appear in multiple
copies, the foregoing cycle is not necessarily simple. Note that a simple cycle in ([N]U{(S) : S€
S}, E'\ R') yields a contradiction to the hypothesis that this graph is cycle-free, and thus establishes
our claim that the graph ([N], E'\ R) is Cx-minor-free. We obtain a simple cycle, in two steps, as
follows.

First, we replace every maximal sub-path of the form v;—(S)—v;11—(S)—---—(S)—wv;, where
Jj # i (or else S contains a t-cycle for t > k), by a length-two path v;—(S)—wv;. If the resulting
cycle contains distinct spot (representative) vertices, then we are done (since we obtain a simple
cycle). Otherwise, we obtain a cycle of the form

Ur—--- 7ut17<51>7ut1+17 o 7ut1+t27<52>7ut1+t2+17 T 7ut1+t2+t37<53> e <Sm>7u1

where the u;’s are all distinct and adjacent S;’s are distinct (but non-adjacent S;’s may be identical).
Next, we consider a sub-path of the foregoing cycle such that the endpoints of this sub-path are two

21

copies of the same spot S and no other spot appears more than once on this sub-path. This sub-
path cannot have length two (because adjacent S;’s are distinct), which means that it is actually a
simple cycle, and we are done. W

Conclusion. Combining Claims 5.9 and 5.10 with Theorem 1.5 and the fact that the number
of vertices in G’ is linear in N (for constant d and k), we conclude that Algorithm 5.8 is a one-
sided error tester for Cy-minor-freeness, and its complexity is O(poly(d* /e)-+/N). This establishes
Theorem 1.2.

6 Proof of the Lower Bound

Recall that Goldreich and Ron proved a Q(\/N) query lower bound on the complexity of one-
sided error testers for cycle-freeness [GR02, Prop. 4.3]. As stated in the introduction, Benjamini,
Schramm, and Shapira [BSS08] suggested that this lower bound can be extended to testing H-minor
freeness for any H that is not a forest. This is indeed the case, as proved next.

Theorem 6.1 (lower bound for one-sided error testing of H-minor freeness, for any H that contains

cycles): For any fized H that contains a simple cycle, the query complexity of one-sided error testing
of H-minor freeness is Q(VN).

Indeed, as can been seen in the case that H is a single edge, the lower bound does not hold in case
H contains no simple cycles. A general study of testing H-minor freeness for any cycle-free H is
initiated in Section 7.

Proof: Following the proof of [GR02, Prop. 4.3], we show that for sufficiently large N, with high
probability, the random N-vertex graphs considered in [GR02, Sec. 7] are far from being H-minor
free. Once this is done, the theorem follows, since it was shown in [GR02, Sec. 7] that a probabilistic
algorithm that makes o(v/N) queries is unlikely to find a cycle in such a random graph (and this
algorithm must accept whenever it fails to see a cycle, because otherwise it will reject some H-minor
free graph with positive probability). Furthermore, it suffices to show that, for any fixed k£ and
sufficiently large N, with high probability, such a random graph is far from being Kj-minor free,
because containing a minor of Kj implies containing a minor of any k-vertex graph H.

The random graphs considered in [GR02, Sec. 7] are graphs uniformly chosen in the family
Gy (which is denoted GI¥ in [GR02]). Each (N-vertex) graph in Gy consists of the union of a
simple N-vertex (Hamiltonian) cycle and a perfect matching of these N vertices. (Indeed, each
graph in Gy is 3-regular.) Furthermore, the cycle is fixed to be (1,2,...,N,1) and so a random
graph in Gy corresponds to a random choice of a perfect matching. Our aim is to prove that,
with high probability, such a random graph is ¢/3-far from being Kj-minor free, where ¢ = 1/ck?
for a sufficiently large constant ¢ (to be determined below). We first show that any graph having
a specific property (which is stated in the conditions of the following claim) is far from being
Kj-minor free.

Claim 6.2 Suppose that the vertices of the N-vertex graph G can be partitioned into N = 2N
equal-sized sets, denoted Si,S3,...,Sg5, such that the following conditions hold:

1. The subgraph induced by each S; is connected.

22

2. For every two disjoint collections of sets, C and C', such that |C| = |C'| > N /6k, there are
at least €N 4 1 edges between vertices in U = | J;c Si and vertices in U’ = J;c e Si-

Then, removing any set of eN edges from G, yields a graph that contains an Ky-minor (i.e., G is
¢/3-far from being Kj-minor free).

Proof: We prove the claim by contradiction. Suppose that there is a subset E’ of at most eN
edges whose removal from G results in a graph, denoted G’, that is Kj-minor free. First, note that
at most €N of the sets S; can become disconnected. Thus, (1) at least N—eN=N /2 of the S;’s
induced connected subgraphs in G'. Furthermore, (2) for every U and U’ as defined in the claim,
there exists at least one edge in G’ between U and U’.

Starting with (1), assume, w.l.o.g., that for i = 1,. N def N/2 the subgraph of G’ induced
by S; is connected. We partition these sets into k equal—smed parts; that is, for 1 < i < k, let

T, = UZN/ZZ N S, and G} be the subgraph of G’ induced by T;.

We first show that for each G has a connected component that contains at least N /3k sets S,
(which are contained in T;). Let Wi, ..., W} denote the connected components of G, and suppose
towards the contradiction that each of them contains less than N /3k sets S;. Then, there exists
I C [t] such that both W = J;c; Wi and W’ = ¢y Wi contain at least N/3k = N /6k sets ...
But, then a contradiction is reached, because by (2) there must be an edge in G’ between some
vertex of W and some vertex of W’'. B

Hence, each G contain a connected component, denoted Cj, that has at least N/3k sets S,.
Applying (2) again, we infer that there must be an edge in G’ going between any two of the C;’s.
By contracting each C; to a node, we obtain a Kj-minor in G’, which contradicts the hypothesis
that G’ is K-minor free. MW

It remains to show that, with high probability, a graph G drawn from Gy satisfies the two
conditions stated in Claim 6.2. Recalling that graph G in Gy consists of a Hamiltonian cycle
augmented by a matching, we obtain the desired sets Si,...,Sg, by partitioning the Hamiltonian

cycle into N = 2eN contiguous segments, each of length 1/2e. Clearly, these S;’s satisfy the first
condition (i.e., the subgraph of G induced by each S; is connected). We shall show that the second
condition holds too, by considering all relevant sets U and U’, showing that, with probability
1 — exp(—Q(N/k?)) (over the choice of a random matching), there are Q(N/k?) > eN + 1 edges
going between U and U’, and applying a union bound.
__ Specifically, we fix two arbitrary disjoint collections of sets, C' and C’, such that |C| = |C'] =
N /6k, and consider the sets U = ;e Si and U’ = ;¢ Si. Since |U| = [U'| = (N /6k) - (1/2¢) =
N/6k, we expect the number of edges between U and U’ to be N/(36k?). Intuitively, with very high
probability (i.e., with probability 1 — exp(—Q(N/k?))), the number of edges is a constant fraction
of its expected size; in fact, this is the case as shown in Claim 6.3 (below).

Applying a union bound over all possible choices of C' and C’ (which underlie the choice of
U and U’), we infer that the second condition stated in Claim 6.2 is satisfied with probability

at least 1 — (261316/](\%@)2 -exp(—Q(N/k?)), which is lower bounded by 1 — 24V . exp(—Q(N/k?)) =
1 — exp(—Q(N/k?)), since € = 1/ck? for a sufficiently large ¢ (which is determined at this point to

make assertion hold). Thus, modulo Claim 6.3 (below), the theorem follows.

Claim 6.3 For some universal constant ¢ > 0, the following holds for all N and t. Consider
selecting a matching between N wvertices uniformly at random, and let Ty and T5 be two disjoint

23

sets of N/t vertices each. Then, with probability at least 1 — exp(—c - N/t?), over the choice of the
matching edges, there exist ¢ N/t? edges going between these sets.

Proof: A random matching can be selected in N/2 steps, where at each step we pick an arbitrary
yet-unmatched vertex v, and select, uniformly at random, another yet-unmatched vertex u to match
v to. In particular, we can start by matching the vertices in 77, and once they are all matched we
continue in an arbitrary order with the remaining unmatched vertices.

Observe that the number of steps it takes to match all vertices in T} is at least N’ © N /(2t),
and we shall lower bound the number of edges obtained between 77 and 75 (only) in the first N’
steps. Let Xi,..., Xy be 0/1 random variables, where X; = 1 if and only if the selected edge in
the " step has as its second endpoint a vertex in Tb. By the definition of the matching process,
Pr[X; = 1] = N'/(N —1). More generally, Pr[X; = 1] equals the fraction of yet-unmatched
vertices in Ty at the start of the i*" step over N —2(i — 1) — 1. Since we consider only the first
N’ steps, which means that at most half of the vertices in 75 can be matched, we have that
Pr[X; =1] > ﬁ;ﬂ > % for every i € {1,2,..., N'}. Hence, the expected value of Zf\il X;, which
is a lower bound on the expected number of edges between T} and Ty, is at least N'/2t = N/(4t?).

We would like to show that

N’ N
Pr [E X; < @] < exp(—Q(N/t?)) . (8)
i=1

Since the X;’s are not independent random variables (as the probability that X; = 1 depends
on Xq,...,X;-1), we cannot simply apply a multiplicative Chernoff bound in order to obtain
Equation (8). However, we shall define a related sequence of independent random variables that
will give us the bound in the equation.

For every x1,...,zn € {0,1} and every i € [N'], let f(z1---x;—1) denote the probability that
X; =1 conditioned on X; = z; for every j € [i — 1] (ie., f(x1 - -2-1) =Pr[X; = 1|1 X - X1 =
x1---x;—1]). Recall that f(xy---x;-1) > 1/2t. Define random variables Y7, ..., Yy, such that Y;
depends on Xy, ..., X;_1 and Pr[Y; = 1] = % Lastly, define Z1, ..., Zys such that Z; = 1
if and only if X; = Y; = 1. Observe that for every z1,...,2,-1 € {0,1} and z1,...,2z,_1 € {0,1} it
holds that

Pr[ZZ:1|X1XZ—1:':U1:EZ—1/\Z1ZZ—IZZIZz—l]

1/2t
tl 1% 1= 21 Tin) flzr--xim1)
- 1
Y

Hence, the Z;’s are independent random variables and Zfi’l Z; < Zf\il X, always holds (since
Z; = 1 occurs only when X; = 1). Now the claim (or rather Equation (8)) follows by applying a
multiplicative Chernoff bound to the sum of the Z;’s. M

As stated above, the proof of Claim 6.3 completes the proof of the theorem. W

7 Testing Tree-Minor Freeness

As noted in Section 6, the Q(v/N) lower bound of Theorem 6.1 does not hold in the case that the
forbidden minor is a tree. This is easiest to see in the case that the forbidden minor is a single

24

edge. We show that, for any cycle-free graph H, the set of H-minor free graphs can be tested with
one-sided error with query complexity that is independent of the input graph’s size (and that only
depends on the proximity parameter and on H).

To begin, we provide a reduction of the case where H is a forest to the case where H is a tree.
Actually, this reduction works for any H (regardless of cycle-freeness) allowing to focus on the
connected components of H. Next, we turn to two special cases (which are easy to handle): the
case that H is a k-path and the case that H is a k-star. Since these cases correspond to the two
possible extremes, it is tempting to hope that all cases can be treated easily. We warn, however,
that the extreme cases have simple characterizations, which are not available in non-extreme cases.
Nevertheless, the case of stars provides some intuition towards the more complicated treatment
of general trees. Further intuition can be obtained from the case of depth-two trees, treated in
Section 7.5, where we also obtain better complexity than in the general case.

7.1 A reduction of unconnected H to connected H

Let H be a graph with connected components Hy, ..., H,. Then, essentially (but not exactly),
a graph G is H-minor free if and only if for some i € [m] the graph G is H;-minor free; in other
words, G has an H-minor if and only if for every i € [m] the graph G contains an H;-minor. The
alternative formulation reveals the small inaccuracy: it may be that the H;-minors contained in G
are not disjoint (and in such a case G' does not necessarily have an H-minor). Still, for our purposes
(of studying one-sided error testers of sublinear query complexity), this problem can be overcome
(as done next).

Indeed, we focus on one-sided error testers of sublinear query complexity. Given such testers
for H;-minor freeness, we present the following one-sided error tester for H-minor freeness.

Algorithm 7.1 (the H-minor-freeness tester for cycle-free H): On input G = ([N], E) and proz-
imity parameter €, set Go = G and proceed in m iterations, as follows. For i =1 to m,

1. Invoke the H;-minor tester on input G;_1, using error parameter 1/3m and proximity param-
eter €/2.

2. If the answer is positive then accept.

3. Otherwise, omit from G;_1 all vertices that were visited by the tester, obtaining a residual
graph G;.

If all iterations rejected, then reject.

If Algorithm 7.1 rejects, then (by the one-sided error feature of the tests) the m exploration contain
corresponding (disjoint) H;-minors, and so G contains an H-minor. Thus, Algorithm 7.1 satisfies
the one-sided error condition. On the other hand, if G is e-far from being H-minor free, then, for
every ¢ € [m], the graph G must be e-far from being H;-minor free (because otherwise G is e-close
to an H;-minor free graph, which in turn is H-minor free). Furthermore, for every i € [m], the
graph G;_1 is €/2-far from being H;-minor free, because G;_1 is obtained from G by omitting o(N)
edges (since all testers have sublinear query complexity). Thus, in each iteration ¢, with probability
at least 1 — (1/3m), the corresponding tester rejects. It follows that Algorithm 7.1 rejects G with
probability at least 2/3 (as required). We thus get the following result.

25

Proposition 7.2 Let H have connected components Hy, ..., Hy,, and suppose that H;-minor free-
ness can be tested by a one-sided error tester of query complexity q;(N,€). Suppose that ¢;(N,e€) is
monotonically non-decreasing with N. Then, H-minor freeness can be tested by a one-sided error
tester of query complexity (N, e) = O(logm) - >, ¢;(N,€/2).

(The O(logm) factor is due to error reduction that is employed on each of the testers.)

Detour. For sake of elegance, it would be nice to prove a similar reduction also for the case of
two-sided error testers. Naturally, for testing H-minor freeness with two-sided error, we may just
run all H;-minor freeness tests (with error probability parameter set to 1/3m) and accept if and
only if at least one of these tests accepted (i.e., reject if and only if all these tests rejected). Clearly,
if G is e-far from being H-minor free, then, for every i, the graph G must be e-far from being
H;-minor free (see above), and so in this case, with probability at least 2/3, all tests will reject,
and so will we. But what is missing is proving that if G is H-minor free, then the above tester
accepts with high probability. (Indeed, it is not necessarily the case that if G is H-minor free then
for some 7 it holds that G is H;-minor free).

7.2 Testing that the graph contains no simple k-length path

Here we consider the special case where H = P, where P, denotes the k-length path. Note that
a graph G is Pg-minor free if and only if G contains no simple path of length k. Thus, we just
search for such a path at random. Specifically, we select uniformly a start vertex and take a random
k-step walk, rejecting if and only if the walk corresponds to a simple path. Clearly, we never reject
a Pg-minor free graph.

Claim 7.3 If G is e-far from being a Py-minor free graph, then we reject with probability at least
€/2dF.

Thus, P,-minor freeness can be tested by a one-sided error tester of query complexity ¢ def O(d*k/€)
and time complexity O(q). We note that it may be possible to reduce the query complexity to
poly(dk/e), but an analogous improvement of the time complexity is unlikely (because finding k-
long paths in graphs is NP-Hard, when k is part of the input). We mention that, subsequent to our
initial posting of this work, Reznik [Rezl1] presented a poly(dk/e)-time algorithm for the special
case that the input graph is cycle-free.

Proof: We call a vertex v bad if there is a simple path of length k starting at v. Let p denote the
density of bad vertices in G. Then, on the one hand, we reject G with probability at least p/d*.
On the other hand, p > €/2, because omitting all bad vertices (or rather their incident edges) from
GG we obtain a graph that has no simple k-length paths. W

7.3 Testing that the graph contains no k-star as a minor

Here we consider the special case where H = T}, where T}, denotes the k-star (i.e., the (k+1)-vertex
tree that has k leaves). The key observation here is that a graph G = ([N], E) is Ty-minor free
if and only if for every set S such that Gg is connected it holds that the set S has less than k
neighbors (in [N]\ S). This implies that if for every connected set S of size at most k/e, the set S
has less than k neighbors in [N]\ S, then the graph is e-close to being T}, minor free. The reasoning

26

(which is detailed in the proof of Claim 7.5) is that if the premise of the statement (the small-cuts
condition) holds, then by removing less than k- d - (N/(k/e)) = edN edges we can partition the
graph into connected components such that each is Tjp-minor free. Another useful observation is
that searching for sets that violate the condition can be done efficiently by performing a BFS with
a bounded depth (and width) and running a polynomial-time procedure on the subgraph induced
by the BFS.

Algorithm 7.4 (the k-star-minor-freeness tester): On input G = ([N], E) and proximity parame-
ter e, proceed as follows.

1. Select uniformly a start vertex s € [N].

2. Perform a BFS starting at s and stopping as soon as either 2k /e layers were explored or a
layer with at least k vertices was encountered.

Note that it may also be that the BFS terminates before either of these conditions hold; this
can only happen if s resides in a connected component of size smaller than 2k?/e.

3. Accept if and only if the explored graph is Tj-minor free.

Clearly, Algorithm 7.4 never rejects a Tp-minor free graph. The query complexity of Algorithm 7.4
is q(k,e) = O(k%/¢) (the maximum depth of the BFS times the maximum number of vertices in
each level, assuming the degree d is a constant). By Corollary 1.2 in [KKR12], the time complexity
is of the form f(k) - O(¢?(k,¢€)) for some function f (which is not explicitly specified in [KKR12]).
Thus, all that is left is to prove the following claim.

Claim 7.5 If G is e-far from being a Ty-minor free graph, then Algorithm 7.4 rejects with proba-
bility at least €/2.

Thus, Tj-minor freeness can be tested by a one-sided error tester of query complexity O(k?/¢?) and
time complexity f(k) - O(1/€3) for some function f.

Proof: We call a vertex v bad if there exists a set S containing v such that (i) Gg is connected
and has radius at most 2k/e from v (i.e., all vertices in S are at distance at most 2k/e from v),
and (ii) the set S has at least k neighbors in G (i.e., [{u€[N]\ S : Jwe S s.t. {u,w}eE} > k).
Note that if a bad vertex is chosen in Step 1, then Algorithm 7.4 rejects in Step 3 (because either
a 2k /e-step BFS of G starting at v reaches a layer with at least k vertices, or it reaches all vertices
in the witness set S). Let p denote the fraction of bad vertices in G. By the above, Algorithm 7.4
rejects with probability at least p. We next show that G must be (p+ (¢/2))-close to Ti-minor free,
and so p > ¢€/2 follows.

Let G denote the graph obtained from G by omitting all the edges that are incident at bad
vertices. Indeed, G(©) is p-close to G. The rest of our analysis proceed in iterations. If the current
graph GU=Y ig Tj-minor free, then we are done. Otherwise, we pick an arbitrary vertex s@ that
resides in some Tj-minor. Since s is not bad, it must reside in a connected component of G~
that has radius at least 2k/e from s (because otherwise the existence of a Tj-minor containing

s contradicts the hypothesis that v is not bad). Consider an arbitrary set S0 5 s of 2k /e
vertices such that Gg(_i)l) is connected. Since s is not bad, it follows that S has less than k
neighbors (in G¢~Y). We now obtain G by omitting from GU~Y the (less than kd) edges of the

27

cut (S@,[N]\ S®), and observe that ngi) is Tj-minor free (and that S will not intersect with
any future S ()). When the process ends, we have a Tp-minor free graph. In total, we omitted at
most tk - d edges (from G(©)), where t < N/(2k/e) denotes the number of iteration. Noting that
tdk < (¢/2)dN, we conclude that G(?) is €/2-close to G and thus G is (p+ (¢/2))-close to Tj-minor

free. W

7.4 The general case: Testing T-minor freeness for any tree T’

Following is a presentation of the main result of this section: a one-sided tester for 7" minor-freeness,
where T is an arbitrary rooted t