
Valiant’s Polynomial-Size Monotone Formula for Majority

Oded Goldreich

July 11, 2011

Summary: This text provides an exposition of Valiant’s proof of the existence of
polynomial-size monotone formula for Majority. The exposition follows the main prin-
ciples of Valiant’s proof, but deviates from it in some details.

While it is easy to construct quasi-polynomial-size monotone formulae for majority (by relying on
divide-and-conquer approaches)1, it is less obvious how to construct polynomial-size formulae (let
alone monotone ones; cf. [4] and the references there-in).

Notation. Suppose, for simplicity that n is odd, and consider the majority function MAJ :
{0, 1}n → {0, 1} defined as MAJ(x) = 1 if wt(x) > n/2 and MAJ(x) = 0 otherwise, where wt(x) =
{i ∈ [n] : xi = 1} denotes the Hamming weight of x = x1 · · · xn.

Theorem 1 There exist polynomial-size monotone formulae for computing majority.

The existence of polynomial-size (monotone) formulae is known to be equivalent to the existence of
logarithmic-depth (monotone) circuits of bounded fan-in.2 Anyhow, we shall prove the existence of
logarithmic-depth monotone formulae (of bounded fan-in) for majority. Actually, two radically dif-
ferent proofs are known: The first proof uses a rather complicated construction of sorting networks
of logarithmic depth [1, 2].3 The second proof, presented below, uses the probabilistic method.

Proof: We prove the existence of logarithmic-depth monotone formulae (of bounded fan-in) for
majority. The proof proceeds in two main steps. The first step consists of reducing the worst-case
problem (i.e., of computing MAJ on all inputs) to an average-case problem, denoted Π, where the
point of the reduction is that it seems easier to cope with random inputs (than with all possible
inputs). Specifically, we shall use a (simple) randomized reduction of the computation of MAJ(x)
to the computation of Π(R(x)), where R(x) denotes the output of the reduction on input x. The
key observation is that if the error probability is sufficiently low (i.e., lower than 2−|x|), then this
randomized reduction yields a non-uniform reduction that is correct on all inputs. (Hence the
existence of such a non-uniform reduction is proved by using the probabilistic method.) Next
(i.e., in the second step), we show that a very simple (monotone) formula suffices for solving Π on
random instances. Finally, composing the (monotone) reduction with the latter formula, we obtain
the desired (monotone) formula.

1One way is using the recursion THt(x
′x′′) = ∨

t
i=0(THi(x

′) ∧ THt−i(x
′′), where THt(z) = 1 iff wt(z) ≥ t. Using

MAJ(x) = TH|x|/2(x), this yields a size recursion of the form S(n) = O(n) · S(n/2), which solves to S(n) = O(n)log2 n.
2One direction is almost trivial, for the other direction see [3].
3Sorting networks may be viewed as Boolean circuits with bit-comparison gates (a.k.a comperators), where each

comperator is a (2-bit) sorting device. Observe that a comparator can be implemented by a small monotone circuit
(i.e., comp(x, y) = (min(x, y), max(x, y)) = ((x ∧ y), (x ∨ y))), and that the middle bit of the sorted sequence equals
the majority value.

1

We start with the randomized reduction. Specifically, given an n-bit long input x = x1 · · · xn, we
consider a sequence of independent identically distributed 0-1 random variables R(x) = (y1, ..., ym)
such that for every j ∈ [m] an index i ∈ [n] is selected uniformly and yj is set to xi. Thus,
Pr[yi = 1] = wt(x)/n. Now, let F : {0, 1}m → {0, 1} be an arbitrary function. The key observation
is captured by the following fact.

Fact 1.1 If, for every x ∈ {0, 1}n, it holds that Pr[F (R(x)) = MAJ(x)] > 1− 2−n, then there exists

a choice of coin tosses ω for the random process R such that for every x ∈ {0, 1}n it holds that

F (Rω(x)) = MAJ(x), where Rω denotes the deterministic function obtained by fixing the coins of R
to ω. Furthermore, for every fixed ω, the function Rω just projects its input bits to fixed locations

in its output sequence.

(Here the probabilistic method is used to infer the existence of ω such that F ◦Rω = MAJ, based on
Prω[(∀x∈{0, 1}n) F (Rω(x))=MAJ(x)] > 0.) Note that, by the furthermore-clause, F ◦Rω preserves
the complexity and monotonicity of F .

Regarding the feasibility of the hypothesis of Fact 1.1 (i.e., Pr[F (R(x)) = MAJ(x)] > 1 − 2−n

for every x), consider the case that m = Θ(n3) and F = MAJ. (This is merely a sanity check; we
cannot afford using this F , because this would reduce the problem to itself on longer input length.)
In this case, for every x it holds that

Pr[MAJ(R(x)) = MAJ(x)] > Pr

[∣

∣

∣

∣

wt(R(x))

m
−

wt(x)

n

∣

∣

∣

∣

<
1

2n

]

,

(1)

which indeed is at least 1 − 2−n (by Chernoff bound).
We now turn to the second step, which consists of presenting a monotone formula F of O(log n)

depth. Generalizing the foregoing hypothesis, we wish F to satisfy the following condition: If

Y1, ..., Ym are independent identically distributed 0-1 random variables such that for some b it holds

that Pr[Y1 = b] ≥ 0.5+1/2n, then Pr[F (Y1, ..., Ym) = b] > 1− 2−n. (For simplicity, we assume that
m is a power of three.)

The construction uses a full ternary tree of depth ℓ = log3 m, where internal vertices compute the
majority of their three children. Specifically, let MAJ3 denote the three-variable majority function.
Then, F1(z1, z2, z3) = MAJ3(z1, z2, z3) and for every i ≥ 1

Fi+1(z1, ..., z3i+1) = MAJ3(Fi(z1, ..., z3i), Fi(z3i+1, ..., z3i+3i), Fi(z2·3i+1, ..., z3i+1)). (2)

Finally, we let F (z1, ..., zm) = Fℓ(z1, ..., zm).
The intuition is that each level in F amplifies the bias of the corresponding random variables

(i.e., functions of Y1, ..., Ym) towards the majority value. This amplification is due to the amplifi-
action property of MAJ3, which is stated next.

Fact 1.2 Let Z1, Z2, Z3 be three independent identically distributed 0-1 random variables, and let

p
def
= Pr[Z1 =1]. Then:

1. p′
def
= Pr[MAJ3(Z1, Z2, Z3)=1] = 3(1 − p)p2 + p3.

2. Letting δ
def
= p − 0.5, it holds that p′ = 0.5 + (1.5 − 2δ2) · δ.

3. p′ < 3p2.

2

The three parts of the foregoing fact follow by straightforward calculations.4

The second part of Fact 1.2 asserts that if p = 0.5 + δ > 0.5 and δ ≤ δ0 < 0.5, then p′ ≥
0.5 + (1.5 − 2δ2

0) · δ, which means that the bias (i.e., p− 0.5) increases by a multiplicative factor in
each iteration (until it exceeds δ0). (Note that we assumed p ≥ 0.5+1/2n, but similar considerations
hold for p ≤ 0.5 − 1/2n.)5 This means that we can increase the bias from its initial level of at
least 1/2n to any constant level of δ0 < 1/2, by using ℓ1 = c1 · log2(2δ0n) iterations of MAJ3, where
c1 = 1/ log2(1.5 − 2δ2

0).
The best result is obtained by using an arbitrary small δ0 > 0. In this case, we may use

c1 ≈ 1/ log2(1.5) ≈ 1.70951129. Using ℓ2 = O(1) additional iterations, we may increase the bias
from δ0 to, say, 0.4.

At this point, we use the third part of Fact 1.2, while considering the probability for a wrong
majority value. In each such iteration, this probability is reduced from a current value of 1 − p to
less than 3(1 − p)2. Thus, using ℓ3 = log2 n additional iterations, the probability of a wrong value

reduces from 1 − (0.5 + 0.4) < 1/6 to 32ℓ3−1 · (1/6)2
ℓ3 < 2−2ℓ3 = 2−n.

Letting ℓ = ℓ1+ℓ2+ℓ3 < 2.71 log2 n and m = 3ℓ, we obtain a formula F = Fℓ on m variables, but
this formula uses the non-standard MAJ3-gates. Yet, a MAJ3-gate can be implemented by a depth-
three monotone formula (e.g., MAJ3(z1, z2, z3) equals (z1 ∧ z2) ∨ (z2 ∧ z3) ∨ (z3 ∧ z1)), and hence F
is a monotone formula of depth 3ℓ < 8.13 log2 n. Note that if Y1, ..., Ym are independent identically
distributed 0-1 random variables such that for some b it holds that Pr[Y1 = b] ≥ 0.5 + 1/2n,
then Pr[F (Y1, ..., Ym) = 1 − b] < 2−n. Thus, for every x ∈ {0, 1}n it holds that Prω[F (Rω(x)) =
1 − MAJ(x)] < 2−n and Prω[(∀x ∈ {0, 1}n) F (Rω(x)) = MAJ(x)] > 0 follows. Hence, there exists a
choice of ω such that F ◦ Rω computes the majority of n-bit inputs.

Comment. Interestingly, Valiant [4] obtains a better result by using an iterated construction
that uses the function V (z1, z2, z3, z4) = (z1 ∨ z2) ∧ (z3 ∨ z4) as the basic building block (rather
than MAJ3). Since V is not a balanced predicate (i.e., Pr[V (U4) = 1] = 9/16), the random process
used in [4] maps the string x ∈ {0, 1}n to a sequence of independent identically distributed 0-1
random variables, (y1, ..., ym), such that for every j ∈ [m] the bit yj is set to zero with some
constant probability β (and is set to xi otherwise, where i ∈ [n] is uniformly distributed). The
value of β is chosen such that if Z1, Z2, Z3, Z4 are independent identically distributed 0-1 random

variables satisfying Pr[Z1 = 1] = p
def
= (1 − β)/2, then Pr[V (Z1, Z2, Z3, Z4) = 1] = p. It turns out

that V amplifies deviation from p slightly better than MAJ3 does (w.r.t 1/2).6 More importantly,
V can be implemented by a monotone formula of depth two, whereas MAJ3 requires depth three.
Thus, Valiant [4] performs 2.65 log2 n iterations (rather than 2.71 log2 n itertations), and obtains a
formula of depth 5.3 log2 n.

4For the second part, use p′ = (3 − 2p)p2 = (3 − 1 − 2δ) · (0.25 + δ + δ2), which implies p′ = 0.5 + 1.5δ − 2δ3.
5One way to see this is to define p = Pr[Z1 = 0].
6This is surprising only if we forget that V takes four inputs rather than three.

3

Acknowledgments. Thanks to Alina Arbitman for her comments and suggestions regarding this
write-up.

References

[1] M. Ajtai, J. Komlos, E. Szemerédi. An O(n log n) Sorting Network. In 15th ACM Sym-

posium on the Theory of Computing, pages 1–9, 1983.

[2] M.S. Paterson. Improved Sorting Networks with O(log N) Depth. Algorithmica, Vol. 5 (1),
pages 75–92, 1990.

[3] P.M. Spira. On time hardware complexity trade-offs for Boolean functions. In the 4th

Hawaii International Symposium on System Sciences, pages 525–527, 1971.

[4] L.G. Valiant. Short Monotone Formulae for the Majority Function. Journal of Algorithms,
Vol. 5 (3), pages 363–366, 1984.

4

