
Lecture Notes on Linearity (Group Homomorphism) Testing

Oded Goldreich∗

April 5, 2016

Summary: These notes present a linearity tester that, on input a description of two
groups G,H and oracle access to a function f : G → H, queries the function at three
points and satisfies the following conditions:

1. If f is a homomorphism from G to H then the tester accepts with probability 1.

2. If f is δ-far from the set of all homomorphisms from G to H, then the tester rejects
with probability at least min(0.5δ, 0.1666).

The three queries are x, y, x + y, where x and y are selected uniformly at random in G.

These notes are based on the work of Blum, Luby, and Rubinfeld [4], a work which pioneered the
study of property testing.

1 Preliminaries

Let G and H be two groups. For simplicity, we denote by + the group operation in each of these
groups. A function f : G → H is called a (group) homomorphism if for every x, y ∈ G it holds that
f(x + y) = f(x) + f(y).

One important special case of interest is when H is a finite field and G is a vector space over
this field; that is, G = Hm for some natural number m. In this case, a homomorphism f from G
to H can be presented as f(x1, ..., xm) =

∑m
i=1

cixi, where x1, ..., xm, c1, ..., cm ∈ H. In this case, f
is a linear function over Hm, which explains why testing group homomorphism is often referred to
as linearity testing.

Group homomorphisms are among the simplest and most basic classes of finite functions. They
may indeed claim the title of the most natural algebraic functions. This chapter addresses the
problem of testing whether a given function is a group homomorphism or is far from any group
homomorphism.

2 The tester

The definition of being a homomorphism is presented as a conjunction of |G|2 local conditions,
where each local condition refers to the value of the function on three points. Interestingly, this

∗Department of Computer Science, Weizmann Institute of Science, Rehovot, Israel.

1

definition is robust in the sense that the fraction of satisfied local conditions can be related to the
distance of the function from being a homomorphism. In other words, a tester for this property is
obtained by checking a single local condition that is selected at random.

Algorithm 1 (testing whether f is a homomorphism): Select uniformly x, y ∈ G, query f at the

points x, y, x + y, and accept if and only if f(x + y) = f(x) + f(y).

It is clear that this tester accepts each homomorphism with probability 1, and that each non-
homomorphism is rejected with positive probability. The non-obvious fact is that, in the latter
case, the rejection probability is linearly related to the distance of the function from the class of all
homomorphisms. We first prove a weaker lower bound on the rejection/detection probability.

Theorem 2 (a partial analysis of Algorithm 1): Algorithm 1 is a (one-sided error) proximity

oblivious tester with detection probability 3δ−6δ2, where δ denotes the distance of the given function

from being a homomorphism from G to H.

The lower-bound 3δ − 6δ2 = 3(1 − 2δ) · δ increases with δ only when δ ∈ [0, 1/4]. Furthermore,
this lower-bound is useless when δ ≥ 1/2. Thus, an alternative lower-bound is needed when δ
approaches 1/2 (or is larger than it). Such a bound is provided in Theorem 3; but, let us prove
Theorem 2 first.

Proof: Suppose that h is a homomorphism closest to f (i.e., δ = Prx∈G[f(x) 6= h(x)]). We first
observe that the rejection probability (i.e., Prx,y∈G[f(x) + f(y) 6=f(x + y)]) is lower-bounded by

Prx,y∈G[f(x) 6=h(x) ∧ f(y)=h(y) ∧ f(x + y)=h(x + y)] (1)

+Prx,y∈G[f(x)=h(x) ∧ f(y) 6=h(y) ∧ f(x + y)=h(x + y)] (2)

+Prx,y∈G[f(x)=h(x) ∧ f(y)=h(y) ∧ f(x + y) 6=h(x + y)], (3)

because these three events are disjoint, whereas f(x) + f(y) 6= f(x + y) mandates that f and h
disagree on some point in {x, y, x + y} (since h(x) + h(y) = h(x + y)).1 We lower-bound Eq. (1),
while noting that Eq. (2)&(3)) can be lower-bounded analogously.

Prx,y[f(x) 6=h(x) ∧ f(y)=h(y) ∧ f(x + y)=h(x + y)]

= Prx,y[f(x) 6= h(x)] − Prx,y[f(x) 6=h(x) ∧ (f(y) 6=h(y) ∨ f(x + y) 6=h(x + y))]

≥ Prx,y[f(x) 6= h(x)]

− (Prx,y[f(x) 6=h(x) ∧ f(y) 6=h(y)] + Prx,y[f(x) 6=h(x) ∧ f(x + y) 6=h(x + y)])

= δ − δ2 − δ2

where the last equality follows since x and y are independently and uniformly distributed in G (and
ditto w.r.t x and x + y).

1
Advanced comment: Indeed, this lower bound is typically not tight, since we ignored the event in which f

and h disagree on more than one point, which may also lead to rejection. For example, if H is the two-element set
with addition modulo 2, then disagreement on three points (i.e., f(x) 6=h(x)∧ f(y) 6=h(y)∧ f(x + y) 6=h(x + y)) also
leads to rejection (since in this case f(x) + f(y) − f(x + y) = h(x) + 1 + h(y) + 1 − (h(x + y) + 1) = 1).

2

Theorem 3 (full analysis of Algorithm 1): Algorithm 1 is a (one-sided error) proximity oblivious

tester with detection probability min(0.5δ, 1/6), where δ denotes the distance of the given function

from being a homomorphism from G to H.

Proof: Let ρ denote the probability that f is rejected by the test, and suppose that ρ < 1/6 (since
otherwise we are done). We shall show that in this case f is 2ρ-close to some homomorphism (and
ρ ≥ δ/2 follows).2

The intuition underlying the proof is that the hypothesis regarding f (i.e., that it is rejected
with probability ρ < 1/6) implies that f can be modified (or “corrected”) into a homomorphism
by modifying f on relatively few values (i.e., on at most 2ρ|G| values). Specifically, the hypothesis
that Prx,y∈G[f(x)=f(x + y)− f(y)] = 1− ρ > 5/6 suggests that a “corrected” version of f that is
determined according to the most frequent value of f(x + y) − f(y), when considering all possible
choices of y ∈ G, is a homomorphism that is relatively close to f . Suppose, for illustration, that f
is obtained by selecting an arbitrary homomorphism h and corrupting it on relatively few points
(say on less than one fourth of G). Then, the corrected version of f will equal h (since for every
x ∈ G it holds that Pry∈G[f(x+ y)− f(y)=h(x+ y)−h(y)] > 1/2) and both claims hold (i.e., h is
a homomorphism that is relatively close to f). Needless to say, we cannot start with the foregoing
assumption3, but should rather start from an arbitrary f that satisfies

Prx,y∈G[f(x)=f(x + y) − f(y)] = 1 − ρ > 5/6. (4)

We now turn to the actual proof.

Define the vote of y regarding the value of f at x as φy(x)
def
= f(x + y) − f(y), and define φ(x)

as the corresponding plurality vote (with ties broken arbitrarily); that is,

φ(x)
def
= argmaxv∈H{|{y∈G : φy(x)=v}|}. (5)

We shall show that φ is 2ρ-close to f , and that φ is a homomorphism.

Claim 3.1 (closeness): The function φ is 2ρ-close to f .

Proof: This is merely an averaging argument, which counts as bad any point x such that f(x)
disagrees with at least half of the votes (regarding the value of f at x), while noting that otherwise
f agrees with φ on x. Specifically, denoting B = {x∈G : Pry∈G[f(x) 6= φy(x)] ≥ 1/2}, we get

ρ = Prx,y[f(x) 6= f(x + y) − f(y)]

= Prx,y[f(x) 6= φy(x)]

≥ Prx[x ∈ B] · min
x∈B

{Pry[f(x) 6= φy(x)]}

≥ |B|
|G| ·

1

2

which implies that |B| ≤ 2ρ · |G|. On the other hand, if x ∈ G \ B, then f(x) = φ(x) (since
Pry[f(x) = φy(x)] > 1/2, whereas φ(x) equals the most frequent vote).

2Hence, either ρ ≥ 1/6 or ρ ≥ δ/2, which implies ρ ≥ min(0.5δ, 1/6) as claimed.
3The gap between the foregoing illustration and the actual proof is reflected in the fact that the illustration refers

to δ < 1/4, whereas the actual proof uses ρ < 1/6.

3

Recall that φ(x) was defined to equal the most frequent vote (i.e., the most frequent φy(x) over
all possible y ∈ G). Hence, φ(x) occurs with frequency at least 1/|H|. Actually, we just saw (in
the proof of Claim 3.1) that on at least 1 − 2ρ of the x’s it holds that φ(x) is the majority value.
We next show that φ(x) is much more frequent: it occurs in a strong majority (for all x’s).

Teaching note: The rest of the analysis is easier to verify in the case of Abelian groups,

since in this case one does not need to be careful about the order of summations.

Claim 3.2 (strong majority): For every x ∈ G, it holds that Pry[φy(x) = φ(x)] ≥ 1 − 2ρ.

Proof: Fixing x, we consider the random variable Zx = Zx(y)
def
= f(x+y)−f(y), while noting that

φ(x) was defined as the most frequent value that this random variable assumes. We shall show
that the collision probability of Zx (i.e.,

∑

v Pr[Zx = v]2) is high, and it will follow that Zx must
assume a single value (indeed φ(x)) with high probability.

Recalling that the collision probability of a random variable equals the probability that two
independent copies of it assume the same value, we observe that the collision probability of Zx

equals
Pry1,y2

[Zx(y1) = Zx(y2)] = Pry1,y2
[f(x + y1) − f(y1) = f(x + y2) − f(y2)]. (6)

Call a pair (y1, y2) good if both f(y1)+f(−y1 +y2) = f(y2) and f(x+y1)+f(−y1 +y2) = f(x+y2)
hold. (Note that y1 +(−y1 +y2) = y2 and (x+y1)+ (−y1 +y2) = (x+y2).) Now, on the one hand,
a random pair is good with probability at least 1 − 2ρ, since

Pry1,y2
[f(y1) + f(−y1 + y2) = f(y1 + (−y1 + y2))] = 1 − ρ

and
Pry1,y2

[f(x + y1) + f(−y1 + y2) = f((x + y1) + (−y1 + y2))] = 1 − ρ,

where the equalities rely on the fact that the pair (y1,−y1 + y2) (resp., the pair (x + y1,−y1 + y2))
is uniformly distributed in G2 when (y1, y2) is uniformly distributed in G2. On the other hand, for
a good (y1, y2), it holds that Zx(y1) = Zx(y2), since

Zx(y2) = f(x + y2) − f(y2)

= (f(x + y1) + f(−y1 + y2)) − (f(y1) + f(−y1 + y2))

= f(x + y1) − f(y1) = Zx(y1).

It follows that the collision probability of Zx is lower-bounded by 1−2ρ. Observing that
∑

v Pr[Zx =
v]2 ≤ maxv{Pr[Zx = v]}, it follows that Pr[Zx = φ(x)] ≥ 1 − 2ρ, since φ(x) is the most frequent
value assigned to Zx.

Claim 3.3 (φ is a homomorphism): For every x, y ∈ G, it holds that φ(x) + φ(y) = φ(x + y).

Proof: Fixing any x, y ∈ G, we prove that φ(x)+φ(y) = φ(x+y) holds by considering the somewhat

fictitious expression px,y
def
= Prr∈G[φ(x) + φ(y) 6= φ(x + y)], and showing that px,y < 1 (and hence

4

φ(x) + φ(y) 6= φ(x + y) is false).4 We prove that px,y < 1, by showing that

px,y ≤ Prr

φ(x) 6=f(x + r) − f(r)
∨ φ(y) 6=f(r) − f(−y + r)
∨ φ(x + y) 6=f(x + r) − f(−y + r)

 (7)

and observing that equality in all three cases implies that φ(x)+φ(y) = (f(x+ r)−f(r))+ (f(r)−
f(−y + r)) = f(x + r)− f(−y + r) = φ(x + y). Using Claim 3.2 (and some variable substitutions),
we upper-bound the probability of each of the three events in Eq. (7) holds by 2ρ < 1/3. Details
follow.

Recall that Claim 3.2 asserts that for every z ∈ G it holds that Prs[φ(z) = f(z + s) − f(s)] ≥
1 − 2ρ. It follows that

Prr[φ(x) 6=f(x + r) − f(r)] ≤ 2ρ

Prr[φ(y) 6=f(r) − f(−y + r)] = Prs[φ(y) 6=f(y + s) − f(s)] ≤ 2ρ

Prr[φ(x + y) 6=f(x + r) − f(−y + r)] = Prs[φ(x + y) 6= f(x + y + s) − f(s)] ≤ 2ρ

where in both equalities we use s = −y + r (equiv., r = y + s). Hence, px,y ≤ 3 · 2ρ < 1, and the
claim follows.

Combining Claim 3.1 and 3.3, the theorem follows.

Digest. The proof of Theorem 3, which provides an analysis of Algorithm 1, is based on the
self-correction paradigm (cf. [4]). In general, this paradigm refers to functions f for which the value
of f at any fixed point x can be reconstructed based on the values of f at few random points. We
stress that each of these points is uniformly distributed in the function’s domain, but they are not
independent of one another. For example, in the proof of Theorem 3, we use the fact that, when f
is close to a linear function f ′, the value of f ′(x) can be reconstructed from φy(x) = f(x+y)−f(y),
where y is uniformly distributed in G. (Note that, in this case, x + y is uniformly distributed in
G, but x + y depends on y, since x is fixed.) Specifically, if f is ǫ-close to the linear function f ′,
then Pry∈G[f ′(x) = φy(x)] ≥ 1 − 2ǫ for every x ∈ G. We note that here self-correction is only
used in the analysis of an algorithm (see the proof of Claim 3.2), whereas in other cases (see, e.g.,
testing the long-code [3]) it is used in the algorithm itself. Furthermore, self-correction is used for
reducing worst-case to average-case (see, e.g., [6, Sec. 7.1.3] and [6, Sec. 7.2.1.1]), and some of these
applications predate the emergence of property testing.

3 Chapter notes

Fixing groups G and H, for every f : G → H, we denote by δG,H(f) the distance of f from
the set of homomorophisms, and by ρG,H(f) the probability that Algorithm 1 rejects f . Recall
that Theorem 2 asserts that ρG,H(f) ≥ 3δG,H(f) − 6δG,H(f)2, whereas Theorem 3 asserts that
ρG,H(f) ≥ min(0.5δG,H(f), 1/6). These are not the best bounds known. In particular, it is known

4Indeed, the definition of px,y is fictitious, since the event φ(x) + φ(y) 6= φ(x + y) does not depend on r. In
particular, px,y ∈ {0, 1}. An alternative presentation starts with the event Ex,y,r captured by Eq. (7) and deduces
from the existence of r ∈ G that satisfies ¬Ex,y,r that φ(x) + φ(y) = (f(x + r) − f(r)) + (f(r) − f(−y + r)) =
f(x + r) − f(−y + r) = φ(x + y).

5

that ρG,H(f) ≥ 2/9 for every f such that δG,H(f) ≥ 1/4 (see [2, 4]). Hence, for every f it holds that
ρG,H(f) ≥ β(δG,H(f)), where

β(x)
def
=

{

3x − 6x2 if x ≤ τ
2/9 if x ≥ τ

(8)

and τ = 0.25+
√

33/36 ≈ 0.41 is the positive root of 3x−6x2 = 2/9 (cf. [2]). This bound is depicted
in Figure 1. Surprisingly enough, for some groups G and H, the bound ρG,H(f) ≥ β(δG,H(f)) is tight
in the sense that for every v ∈ [0, 5/16] there exists f such that δG,H(f) ≈ v and ρG,H(f) = β(v) =
3δG,H(f) − 6δG,H(f)2 (cf. [2]). Hence, in these groups, the decrease of β in [1/4, 5/16] represent
the actual behavior of the tester: The detection probability of Algorithm 1 does not necessarily
increase with the distance of the function from being homomorphic.

distance

rejection prob.

3/8

1/4 1/2

1/4

2/9

Figure 1: The lower bounds on the rejection probability of f as a function of of distance of f from a
homomorphism, for general groups. The two solid lines show the bounds underlying β(·), whereas
the broken dashed line shows the bound min(0.5x, 1/6).

In the special case where H is the two-element field GF(2) and G = GF(2)m, Bellare et al. [2]
showed that ρG,H(f) ≥ δG,H(f) and that ρG,H(f) ≥ 45/128 for every f such that δG,H(f) ≥ 1/4.
Thus, for every f it holds that ρG,H(f) ≥ β′(δG,H(f)), where

β′(x)
def
=

3x − 6x2 if x ≤ 5/16
45/128 if x ∈ [5/16, 45/128]
x if x ≥ 45/128

(9)

(This three-segment bound is depicted in Figure 2.) Furthermore, Bellare et al. [2] showed that
the bound ρG,H(f) ≥ β′(δG,H(f)) is also tight for every value of ρG,H(f) ∈ [0, 5/16]; that is, the first
segment of the bound β′, which decreases in the interval [1/4, 5/16] represent the actual behavior
of the tester. In contrast, it is known that the bound ρG,H(f) ≥ β′(δG,H(f)) is not tight in the
interval (44.997/128, 0.5); in fact, ρG,H(f) ≥ (1 + poly(1 − 2δG,H(f)) · δG,H(f), where the extra term

6

is really tiny (see [10]).5 Still, this indicates that the known bounds used in the second and third
segments of β′ do not represent the actual behavior of the tester. Determining the exact behavior
of ρG,H(f) as a function of δG,H(f) is an open problem (even in this special case where H = GF(2)
and G = GF(2)m).

distance

rejection prob.

3/8

1/4

1/4 1/2

Figure 2: The lower bounds on the rejection probability of f as a function of of distance of f from
a homomorphism, for H = GF(2) and G = GF(2)m.

Open Problem 4 (determining the exact behavior of Algorithm 1): For any two groups G and

H, and for every x ∈ (0, 1], what is the minimum value of ρG,H(f) when taken over all f : G → H
such that δG,H(f) = x?

Note that for some groups G and H, the bound ρG,H(f) ≥ β(δG,H(f)) may not be tight even for
δG,H(f) < 5/16.

The PCP connection. We comment that the foregoing linearity test (i.e., Algorithm 1) has
played a key role in the construction of PCP systems, starting with [1]. Furthermore, a good
analysis of this test was important in some of these constructions (see, e.g., [3, 8, 9]6).

Variations. While the randomness complexity of Algorithm 1 is 2 log2 |G|, it is possible to show
that a saving of randomness is possible (i.e., log2 |G|+log log |H| bits suffice) [7].7 A computational
efficient tester was presented in [11].

A different version is considered by David et al. [5]. Referring to the special case where H =
GF(2) and G = GF(2)m, for any k ∈ [m], they consider functions f : Wk → H, where Wk is the

5The additive poly(1 − 2δG,H(f)) term is always smaller than 0.0001.
6Actually, Hastad [8, 9] relies on a good analysis of the Long Code (suggested by [3]), but such an analysis would

have been inconceivable without a good analysis of linearity tests (i.e., tests of the Hadamard code).
7This claim ignores the computational complexity of the tester. On the other hand, we note that log2(|G|/q)−O(1)

random bits are necessary for any tester that makes q queries.

7

set of m-dimensional Boolean vectors of weight k, and seek to test whether f agrees with a group
homomorphism. That is, given oracle access to a function f : Wk → H, the task is to test whether
there exists a homomorphism h : G → H such that f(x) = h(x) for every x ∈ Wk.

Yet another variant consists of testing affine homomorphisms (also known as translations of
homomorphisms). A function f : G → H is called an affine homomorphism if there exists a group
homomorphism h : G → H such that f(x) = h(x) + f(0). (An equivalent definition requires that
for every x, y ∈ G, it holds that f(x + y) = f(x) − f(0) + f(y).)8 Testing whether f is an affine

homomorphism reduces to testing whether h(x)
def
= f(x) − f(0) is a homomorphism, since if f is

ǫ-far from being an affine homomorphism then h is ǫ-far from being a homomorphism.9

References

[1] S. Arora, C. Lund, R. Motwani, M. Sudan and M. Szegedy. Proof Verification and In-
tractability of Approximation Problems. Journal of the ACM, Vol. 45, pages 501–555,
1998. Preliminary version in 33rd FOCS, 1992.

[2] M. Bellare, D. Coppersmith, J. Hastad, M.A. Kiwi, and M. Sudan. Linearity testing in
characteristic two. IEEE Transactions on Information Theory, Vol. 42(6), pages 1781–
1795, 1996.

[3] M. Bellare, O. Goldreich and M. Sudan. Free Bits, PCPs and Non-Approximability –
Towards Tight Results. SIAM Journal on Computing, Vol. 27, No. 3, pages 804–915,
1998. Extended abstract in 36th FOCS, 1995.

[4] M. Blum, M. Luby and R. Rubinfeld. Self-Testing/Correcting with Applications to Nu-
merical Problems. Journal of Computer and System Science, Vol. 47, No. 3, pages 549–595,
1993.

[5] R. David, I. Dinur, E. Goldenberg, G. Kindler, and I. Shinkar. Direct Sum Testing. In
the proceedings of the 6th ITCS, pages 327–336, 2015.

[6] O. Goldreich. Computational Complexity: A Conceptual Perspective. Cambridge Univer-
sity Press, 2008.

[7] O. Goldreich and O. Sheffet. On The Randomness Complexity of Property Testing. Com-

putational Complexity, Vol. 19 (1), pages 99–133, 2010. In 7th RANDOM, pages 341–353,
2003.

[8] J. Hastad. Clique is hard to approximate within n1−ǫ. Acta Mathematica, Vol. 182, pages
105–142, 1999. Preliminary versions in 28th STOC (1996) and 37th FOCS (1996).

[9] J. Hastad. Getting optimal in-approximability results. Journal of the ACM, Vol. 48, pages
798–859, 2001. Extended abstract in 29th STOC, 1997.

8Note that satisfying the first condition (i.e., f(x) = h(x)+f(0) for sume homomorphism h) implies that f(x+y) =
h(x + y) + f(0) = h(x) + h(y) + f(0) = f(x) − f(0) + f(y) for all x, y ∈ G. On the other hand, if f(x + y) =

f(x) − f(0) + f(y) holds for all x, y ∈ G, then defining h(x)
def
= f(x) − f(0) we get h(x + y) = f(x + y) − f(0) =

f(x) − f(0) + f(y) − f(0) = h(x) + h(y) for all x, y ∈ G.
9Suppose that h is ǫ-close to a homomorphism h′. Then, f is ǫ-close to f ′ such that f ′(x) = h′(x) + f(0), which

means that f ′ is an affine homomorphism (since f(0) = h′(0) + f(0) = f ′(0)).

8

[10] T. Kaufman, S. Litsyn, and N. Xie. Breaking the Epsilon-Soundness Bound of the Lin-
earity Test over GF(2). SIAM Journal on Computing, Vol. 39 (5), pages 1988–2003, 2010.

[11] A. Shpilka and A. Wigderson. Derandomizing Homomorphism Testing in General Groups.
SIAM Journal on Computing, Vol. 36 (4), pages 1215–1230, 2006.

9

