
The Theory of Computing: A Sienti� PerspetiveOded Goldreih� Avi WigdersonyWritten May 1996, augmented June 2001, revised August 2009AbstratWe provide an assessment of the Theory of Computing (TOC), as a fundamental sienti�disipline, highlighting the following points:� TOC is the siene of omputation. It seeks to understand omputational phenomena, beit natural, man-made or imaginative.� Researh in TOC has been extremely suessful and produtive in the few deades ofits existene, with ontinuously growing momentum. This researh has revolutionizedthe understanding of omputation and has deep sienti� and philosophial onsequenes,whih will be further reognized in the future. Moreover, this researh and its dissemi-nation through eduation and interation has been responsible for enormous tehnologialprogress.Contents1 Introdution 11.1 Culture, Siene and Tehnology : 11.2 Individual sienti� disiplines : 22 On the fundamental nature of TOC and its suess so far 23 On the impat of TOC on Tehnology 54 On the impat of TOC on other sienes 75 Four onrete topis of investigation in TOC 85.1 One-way funtions (do they exist?) : 95.2 Solving problems versus verifying solutions : 95.3 Computational View of Phenomena and Conepts : : : : : : : : : : : : : : : : : : : 115.4 The Searh for More EÆient Proedures : 13
�Department of Computer Siene and Applied Mathematis, Weizmann Institute of Siene, Rehovot, Israel.E-mail: oded�wisdom.weizmann.a.ilyInstitute for Advaned Study, Prineton, NJ. E-mail: avi�ias.edu

1 IntrodutionThe revolutionary impat of Computing Tehnology on our soiety does not neessarily failitatethe appreiation of the intelletual ontents of the Theory of Computing (TOC). Typially, peopleare so overwhelmed by the wonders of the omputing tehnology that they fail to wonder aboutthe theory underlying it. Furthermore, they tend not to think of omputing in general termsbut rather in the onrete terms in whih they have lastly enountered it. Consequently, theintelletual ontents of the Theory of Computing is rarely ommuniated and rarely understood(by non-speialists).Our aim is to help to redeem this sour state of a�airs and try to ommuniate the intelletualontents of the Theory of Computing. But before doing so, we expliitly state the philosophialbeliefs that underly our view of siene in general.1.1 Culture, Siene, and TehnologyThe searh for truth and beauty is the essene of ivilization. Sine the Renaissane, the searhfor truth takes the form of (or is alled) Siene. Tehnology is an important by-produt of thesienti� progress, not its raison d'etre. Furthermore, philosophial reasoning as well as experieneshow that tehnology is best served by a free sienti� proess; that is, a sienti� proess whihevolves aording to its own intrinsi logi and is not harnessed to the immediate tehnologialneeds. Suh free sienti� proess evolves by formulating and addressing intermediate goals whihare aimed at narrowing the gap between the ultimate goals of the disipline and the understandingahieved so far.It is ironi that as the ontribution of siene to tehnology beomes wide-spread, a populardemand arises to have more. Namely, the suess of siene and in partiular the bene�ts of itstehnologial by-produts auses the populae to turn against siene (in the form of demandsthat siene deliver even more onsumable ommodities). Still, one has to oppose these demands.Siene is to maintain its autonomy whih is orrelated to its suess. In the long run, this is alsothe best way to serve tehnology.Tehnology evolves mostly via applied sientists and engineers who use the sienti� knowledgethey have aquired and their own reative fores to the development of spei� appliations. Con-trary to popular beliefs, the most important ontributions of siene to tehnology do not stemfrom the harnessing of sientists to engineering tasks, but rather from the fat that sientists in-strut and enrih the thinking of these engineers. The eduation of engineers does not redue tothe aquisition of information. Its more important features are the development of oneptualiza-tion and problem-solving abilities. The oneptual frameworks of the disipline are o�ered to thestudent and the better these frameworks are the better an engineer he/she may beome. This formof eduation is most e�etive when done by good sientists who enjoy the freedom to pursue theirown researh interests.It is important to note that the nature of the proess by whih siene e�ets tehnology makesit very hard for the laymen, and sometimes even the expert, to trae a tehnologial breakthroughto its sienti� origins. Almost always these breakthroughs depend on the oneptual sienti�framework and very often they utilize spei� disoveries whih were onsidered totally impratialat the time of disovery (e.g., omplex numbers and eletriity).
1

1.2 Individual sienti� disiplinesThe sienti� disiplines are de�ned by the questions they address. For example, the formative ques-tions of Biology refer to (strutural and operational) properties of living beings, those of Chemistryrefer to (strutural and operational) properties of (natural and arti�ial) substanes, and those ofPhysis refer to (motion and interation) properties of matter and energy. (Jumping ahead, weidentify the formative questions of the Theory of Computation as referring to general properties ofomputation be it natural, man-made, or imaginary.)The importane of a disipline is determined by the nature of its formative questions. Themore fundamental these questions are the more important the disipline is. Eduated laymen andertainly sientists an usually assess how fundamental major sienti� questions are.The suess of a disipline is measured by the progress it ahieves on its own formative questions.To measure the amount of progress one has to understand the questions and the state of knowledgeof the disipline with respet to these questions. This usually requires the understanding of experts,but an be onveyed to sientists of other disiplines.Neither the importane nor the suess of a sienti� disipline an be measured by the impatof its urrent disoveries on tehnology (or on other disiplines). If the disipline is indeed importantand suessful suh impats are likely to follow. However, rarely will this impat be linearly relatedto the sienti� progress in the disipline.Individual sienti� disiplines do not exist in a vauum. The healthy evolution of a sienti�disipline is sensitive to sienti�ally relevant inputs from other disiplines as well as tehnologialdevelopments. We wish to stress that the inuene of these inputs is determined by the disiplinesinternal logi and inherent goals and that suh inuenes are vastly di�erent from non-inherentsuggestions (e.g., that in order to inrease funding and/or employment opportunities the disiplineshould pursue alternative diretions).2 On the Fundamental Nature of TOC and its Suess so farThe Nature of EÆient Computation and its natural as well as surprising derivatives, is the forma-tive question of the Theory of Computing (TOC). We onsider this question to be one of the mostfundamental sienti� questions ever asked. Unfortunately, the fundamental status of this questionis usually disregarded due to its immediate tehnologial impat.We feel that both the fundamental nature of the questions of the Theory of Computing and thesuess of our ommunity in engaging these questions (up to this very day) are evident. To be onthe safe side, here is some evidene.An exellent demonstration of the the fundamental nature of TOC is provided by the impat ofNP-ompleteness on other sienes. Papadimitriou lists about 20 diverse sienti� disiplines thatwere unsuessfully struggling with some of their internal questions and ame to reognize theirintrinsi omplexity when realizing that these questions are, in some form, NP-omplete. Aordingto his bibliographi searh, NP-ompleteness is mentioned as a keyword in about 6,000 sienti�artiles per year. How many sienti� notions have had suh impat?More generally, TOC has established a diret relationship between strutural and omputationalomplexity. EÆient algorithms are disovered almost only if tangible mathematial struture ex-ists. This onnetion has already bene�ted mathematial progress in many areas suh as NumberTheory, Algebra, Group Theory and Combinatoris, where on one hand a need for eÆient al-gorithms existed, and on the other hand the searh for them has generated strutural results ofindependent interest. 2

Atually, we tend to forget the revolution in problem-solving introdued by the TOC treatmentof algorithms. This revolution onsists of the expliit introdution of the onept of an algorithmand the measures for its eÆieny, the emphasis on data representation and organization, thegeneral tehniques for reating algorithms for lasses of problems, and the notion of redutionsbetween problems. Needless to mention the impat of all these on omputer pratie, but we wishto stress the impat on any kind of problem solving.The TOC has drastially hanged the pereption of knowledge and information. Spei�ally,the TOC stresses that di�erent representations of the same information may not be e�etivelyequivalent; that is, it may be infeasible to move from one representation to the other (although atransformation does exist). In this new world, publily available information may be unintelegible.All of Modern Cryptography is based on this Arhimedes' point, and its sienti� and tehnologialimpat are well known. Here we wish to suggest that this revolution applies not only to omputersystems but to any aspet of human interation in whih privay and fault-tolerane are importantonerns.The TOC has introdued totally novel ways of understanding and using randomness. Theprobabilisti algorithms developed within the TOC use randomness in many varied sophistiatedways. The appliability of randomized proedures for solving tasks from di�erent domains suh asnumber theory, optimization and distributed omputing is amazing. Moreover, the growing studyof derandomization has lead to derivation of better deterministi algorithms from probabilisti ones.Combining randomness and interation lead TOC to reate and suessfully investigate fasi-nating onepts suh as interative proofs, zero-knowledge proofs and Probabilistially ChekableProofs (PCP). Eah of these onepts introdues a deep and fruitful revolution in the understandingof the notion of a proof, one of the most fundamental notions of ivilization. Furthermore, theserevolutions bore fruits that reahed far beyond the realm of proof systems. For example, work onPCP lead to the �rst breakthrough in the understanding of the hardness of approximation. Thisis but one inredible demonstration of the how probabilisti thinking leads (very indiretly andnon-trivially) to fundamental understanding of totally non-random phenomena.In addition, ombining randomness and omplexity, TOC has generated meaningful notionsof pseudorandomness. Computational hardness yields pseudorandom generators: using \one-way"funtions, randomness an be \strethed" in an almost unlimited way as far as eÆient observationsare onerned. This yields the stunning (to most sientists) onlusion that if their Monte-Carloalgorithm (estimating perhaps a numerial integral or simulating a physial proess) behaved dif-ferently on sequenes produed by suh generator, than on genuine random sequenes, then theyhave disovered an eÆient fatoring algorithm! Totally di�erent pseudorandom generators thatTOC disovered an fool any spae limited algorithm. Sine all standard statistial tests have suhimplementations, this is great news to Statistiians, Physiists, and most Soial Sientists whouse suh tests on everyday basis. Namely, the results of all their experiments are guaranteed tohold even if they replae all their random hoies by pseudorandom hoies produed by from tinyrandom seed.TOC has gained onsiderable understanding of organizing work on huge systems of many om-ponents. The study of parallel algorithms resulted in amazing ways to get around \inherentlysequential" tasks. Subdividing work to smaller hunks in eÆient and balaned ways is takingplae not only in omputer systems but in many organizations, and the insights gained by TOC areavail to them too. A di�erent kind of parallel omputing arises in settings where the information isdistributed among the omponents of the system. TOC studies of suh distributed environmentsresulting in models and methods of onsisteny, reovery, knowledge, synhrony and deision mak-ing, are relevant not only to (distributed) omputer systems but also to eonomis and other soial3

sienes.The organization and availability of information was always a major part of ivilization, and inpartiular siene and tehnology depend on it. The models and solutions developed by TOC forsuh problems not only resulted in omputer systems that would do it for people, but in the veryway people and institutions have to think about information. The amazing new abilities to handlehuge masses of data inrease, rather than derease, the human deisions on what they want to bestored, what aess patterns they want to allow and disallow, what should be retrieved quikly andwhat an take longer, et. The theoretial understanding enables to formalize their demands, andenable programmers (who should understand the algorithms and data strutures as well) either tosatisfy these demands or to explain why they are impossible to ahieve.Likewise, some of TOC's insights to performane analysis, the minimizing and balaning ofseveral resoures, are of universal appliability. One example is the notion (and tehniques) ofompetitive analysis, whose appliations range from operating systems to information ompres-sion (Lempel-Ziv) to emergeny servies to stok-market investments. More generally, asymptotianalysis has taught us that struture is often revealed at the limit. The adversarial point of viewdeveloped for worst ase analysis (both of inputs to algorithms and behavior of distributed systems)has taught us a similar lesson: struture is often revealed under the worse irumstanes and maybe obsured by unjusti�ed assumptions on \typial behavior". Suh struture often leads to better(in every respet) theoretial and pratial solutions.Finally, let us mention that that many inter-disiplinary sienti� ativities involve and fur-ther seek the partiipation of TOC members. These inlude the di�erent \neuroomputational"groups (enompassing brain models, learning, and neural networks, involving physiists, biologists,psyhologists) and \rational behavior" groups (enompassing eonomy, eology, evolution, ompe-tition, and deision making, involving eonomists, statistiians, psyhologists and mathematiians).They want TOC to be there sine they have reognized the universal value of the problems TOCdeals with and the understanding TOC has obtained so far, and in partiular their relevane tothese areas.Clearly, lak of spae, time and knowledge prevents us from going on. Still, the massive listabove illustrates the fundamental nature of our endevours from the sienti� point of view. Butthey are fundamental also from two other important viewpoints. One is the philosophial viewpoint,whih has dealt with many of the notions and questions above for enturies, and whih reeives afresh, radially di�erent perspetive (namely the omputational one) from TOC. As an exampleonsider the question of P vs. NP vs. CoNP. Some tend to think of it is a mere tehnial questionand miss its deep philosophial signi�ane: Understanding the relation between the diÆulty ofsolving a problem to the diÆulty of verifying the orretness of the solution, to the diÆulty ofproving that no solution exists. Additional examples are the TOC pereptions of the notion of aproof, its view of randomness, and its emphasis on the importane of spei� representations. Theseond viewpoint is the potential ontribution of TOC to the general eduation and enrihment ofhumanity. Many notions, problems and even some of the solutions TOC has produed are availablefor understanding (in nontrivial levels) by laymen. We have suessfully tried to explain some ofthem to elementary shool kids (and indeed we foresee some of them taught and used as teahingparadigms in grade and high shool). Few sienes (whih existed for many enturies) an ompeteon these grounds with what TOC ahieved in a few deades.To summarize, this setion illustrated the fundamental importane of TOC as well as its suess.As for the latter point, let us stress that the ahievements skethed above are more or less equallyspread over the last 30 years, and many are very reent. Indeed, the rate of progress done by TOCin these years is astonishing and there is no inherent reason for this progress to stop.4

3 On the Impat of TOC on TehnologyWhile we rejeted tehnologial impat as a measure of importane and progress of a sienti�disipline, the enormous impat of TOC researh on tehnology should not be made a seret. Weare far from experts regarding this impat, still there are a few points that even we an tell. We hopeand believe that a muh better treatment will be given in the future by more quali�ed olleagues.The most important impat of TOC on Computer Siene and Tehnology stems from thefundamental goals of TOC. In its endevour to understand the nature of omputation, TOC reatedgeneral abilities to oneptualize, model, unify, solve and analyze omputational mediums andproblems. The e�ets of this understanding are present in essentially every working system andalgorithm on earth. Without them the omputer revolution, whih has hanged life on this planet ina fundamental way and will ontinue to e�et it at inreasing speed, would simply not be possible!Indeed, they are the very reason that theory ourses are mandatory for all undergraduates inomputer siene departments. They are the reason that most applied omputer siene oursesare not a mere olletion of ad-ho triks and are thus suitable to be taught in universities. Theyare the reason that the originators of tehnologial breakthroughs, as well as all engineers andprogrammers, an atually think, talk, present and evaluate their ideas. Some ritis may say thatthese understandings were ahieved long ago, and there is no need for further \re�nements". Thisis ontradited by many tehnologial advanes whih have resulted (and will ontinue to result)from reent developments of suh understandings regarding, for example, parallel, distributed,interative, seure and fault-tolerant omputation. Many suh developments were ahieved byspeial interest groups within TOC, who took on to study in depth suh models and algorithms.Their speialized onferenes, whih are a relatively reent phenomena, often enjoy the ativepartiipation of more applied sientists, who have both easy aess to this knowledge as well as aforum to inuene its diretion.It is ruial to reognize and ommuniate the fat that most of this understanding resulted notfrom attempts of solve a onrete problem under partiular tehnologial onstraints. Rather, itame from generalizing the problems and abstrating away unneessary tehnologial details to thepoint that enables �nding strutures and onnetions to other knowledge. Only then ould appliedsientists and engineers, who had both the theoretial understanding as well as the mastership ofthe spei�s of the tehnologial task, fuse them together to a suessful pratial objet. The valueof this approah has many examples, and we disuss only one.By far the largest impat omputers had on humanity is the Internet. Here are a few key theoret-ial developements, mostly done muh before the internet was even oneieved, that were absolutelyessential to its deployment and suess (but by no means underut the enormous ontribution ofthe pratial side of CS and the Industry to the Internet revolution).� Cryptography is the key to people trusting the internet, for their privay, and their abilityto ondut a variety of transations seurely. In brief, Cryptography guarantees the hugeeonomi potential of e-ommere on the Internet.� Distributed Computation is the key for the various protools and algorithms making surepakets are routed quikly and reliably. In brief, it delivers the e�ieny of ommuniationon the Internet.� Algorithms and Data Struture drive the fantasti speed of information proessing and re-trieval. In brief, they deliver searh, whih is the main ativity on the Internet.In general, one should advoate the value of abstrations whih address some fundamentalaspets of an important problem (even if they seem not to address all aspets), and warn against5

the shortsightedness aptured by dismissing suh abstrations as irrelevant. The study of suhan abstration is more likely to yield fundamental insights than the study of the \real problem"(assuming suh a reature exists { atually there is never one real problem but rather many di�erentrelated real problems and what these have in ommon may well be the dismissed abstration).Only later will people, with a onrete appliation and tehnology in mind, be able to �ne-tunethe theoretial understanding to their needs. (This in itself may require signi�ant researh andimplementation, that was and is taking plae by omputer sientists and engineers, and whihresulted in so many suessful tehnologial developments.)It is equally important to reognize and ommuniate that it was the freedom and time givento TOC researhers to pursue these general diretions, in real attempt to understand novel om-putational media, that resulted in suh progress { quite often in surprising and unexpeted ways.One an illustrate the point above by numerous examples. We prefer to give two very reentexamples whose tehnologial and pratial e�ets are imminent and yet to ome. So far their\pratiality" is demonstrated by a major leap in the algorithmi understanding of major problems.This leap is rooted in developments of omplexity theory whih, at �rst and for a long time, seemedtotally irrelevant to the latter or any other algorithmi task. Suh leaps are frequent in our �eld,and are due to the freedom of pursuing sienti� intuition, as well as to the strong ommuniationand information exhange between the various subareas of our �eld.� The Eulidean TSP Algorithm. A few years ago Sanjeev Arora announed a polynomialtime approximation sheme for the Traveling Salesman Problem (and a host of other ombi-natorial optimization problems) in the plane. The problem itself was a major objet of studyin our �eld for deades. The failed attempts to �nd suh approximation sheme resulted infundamental ontributions to NP-ompleteness, probabilisti analysis, approximation algo-rithms and mathematial programming. It also resulted in enormous e�orts to understandthe relative power of various heuristis.The tehniques present in the algorithm of Arora were available deades ago! Why was itonly found now? While this is a soure of speulations, Arora himself tells how he ameabout it. The algorithm arose from his attempts to generalize the inapproximability resultsof metri TSP to Eulidean TSP, attempts whih revealed to him the extra strutures of theEulidean ase. These attempts were based on the surprising onnetion of PCP proofs tohardness of approximation. In turn, these \mysterious" proofs arised from abstrat results likeMIP=NEXP (relating \learly impratial" omplexity lasses). Moreover, the MIP modelof multi-prover interative proofs was suggested by Sha� Goldwasser as a generalization ofinterative proofs (themselves the outome of amazing developments). Needless to say thatGoldwasser did not think of approximation algorithms when she suggested the new model.� EÆient Error Corretion. Again, a few years ago Dan Spielman disovered a linear-rateode whih has asymptotially optimal (i.e., linear time) enoding and deoding algorithms.This entral problem of ommuniation, that originated with Shannon half a entury ago,has attrated the best minds in Information Theory, Mathematis, Eletrial Engineeringand Computer Siene, and has resulted in beautiful and important theory. Still, this majorproblem, resolved by Spielman, was beyond reah.The onstrution of Spielman losely mimis the onstrution of a superonentrator. Thisobjet was not available to most sientists working on this problem, and Spielman learnedabout it from Complexity Theory. The superonentrator was invented in TOC, by Valiant, inhis attempts at one of the quintiential impratial problems { proving iruit lower bounds.6

Failing to do that, Valiant turned to an even more impratial problem { to show that this par-tiular attempts will neessarily fail! Here he was suessful. He (noonstrutively) exhibitedthe existene of expanders, and used them as building bloks of linear size superonentrators.A deep and beautiful mathematial theory developed, motivated by the expliit and eÆientonstrution of expanders, whih e�eted diverse areas of TOC. More to the point of thissubsetion, indiretly and through muh further work, derivatives of the study of expandersbeame extremely relevant to tehnologial development onerning ommuniation networksand protools for a variety of parallel and distributed arhitetures.The amazing sienti� onsequenes and the surprising pratial impliations whih sprouted (andwill ontinue to grow) from the totally abstrat and impratial proposals of Goldwasser and Valiantin the examples above, well illustrate the rihness and unity of our �eld. Suh onnetions seem tobe more ommon in TCS than in other �elds.4 On the Impat of TOC on Other SienesIn the short time of its existene, TOC has had an unpreedented e�et on other sienes. Thishas taken at least three forms.� Algorithms. Many sienes use heavy omputation for their researh, mainly for simulationand analysis. The advanes in fundamental algorithms in TOC, on data strutures and gen-eral tehniques are essential for them to understand, so as to optimize their omputationalresoures. The impat of these on the rate of progress in these sienes annot be under-estimated. Moreover, sometimes suh disiplines generate a partiular type of problems forwhih the general algorithmi knowledge does not suÆe. In some ases where these problemsraised suÆient sienti� interest (perhaps lukily timed with internal developments), TOCwas quik to pik up and study its natural omputational struture. Two suh superb exam-ples are the great advanes TOC has made in understanding and analyzing random walks,so often at the base of simulations in Physis, and its ontributions to number theoreti andalgebrai algorithms. Finally, the suess of the Human Genome Projet, was partially basedon algorithmi progress on problems related to sequening and other omputational biologyindued problems of massive information proessing. Muh more essential will algorithms befor the real hallenge of understanding the struture and funtion of genes and proteins.� Natural Computational Models. Nature omputes! While this was observed long beforeomputer siene existed, TOC supplied the mehanisms to model, disuss and explain thesephenomena. A reent hallenge direted by TOC towards Physis is whether a QuantumComputer an be built? But even without the demonstration of the exessive power of theQuantum Computer model (e.g., Shor's polynomial-time Quantum algorithm for fatoring),we speulate that omplexity may be the right way of thinking about deoherene of a quan-tum mehanial system. The brain is another omputational devie whose understandingseems to be extremely far, but to whih our unique ontributions in neural networks andomputational learning are providing important stimulation. Valiant's book \Ciruits of theMind" is the �rst serious attempt in any of the sienes studying the brain to relate the whatwe know of the \hardware" in our brain, to the omputational omplexity of the \funtions"it manages to perform. Understanding the omplexity of ognitive tasks, and our ability toperform them is a great hallenge to TOC.7

� Universality of TOC notions. As pointed out in Setion 2, the unique omputationalpoint of view of TOC and its oneptual derivatives, has resulted in surprising impat onintrinsi studies of other disiplines. NP ompleteness, disovered over 20 years ago, has hada sweeping e�et. But our view on other notions suh as randomness, pseudorandomness,interation and approximation is only beginning to take e�et.It should be reiterated that the disoveries above has made a fundamental impat on these sienes,and have lead them to reassess their points of view on some basi intrinsi questions and pursuenovel researh diretions. We wish to stress that, having sound tradition and self esteem, thesesienes were not (and ould not have been) fored to pursue these novel diretions by TOCor anyone else. Their hoie was based on their sienti� understanding of their intrinsi goals.Similarly, the interest of TOC in these problems arose from the understanding of TOC researhersthat these problems are relevane to the goal of understanding omputation. The amazing suessof this impat and the high and growing regard to TOC in these sienes, again, stems from theintelletual freedom in whih these interations arose. Again, even a small fration of these e�etsjusti�ed the investment so far in TOC.5 Four Conrete Topis of Investigation in TOCAs stated in Setion 2, the Theory of Computing aims at understanding general properties of om-puting, be it natural, man-made, or imaginary. Most importantly, it aims to understand the natureof eÆient omputation. Following are teasers for four onrete topis, whih are disussed at greaterlength in the rest of this setion.1. One key question is whih funtions an be eÆiently omputed? For example, it is (relatively)easy to multiply integers, but it seems hard to take the produt and fator it into its primeomponents. In general, it seems that there are one-way omputations, or put di�erently one-way funtions: Suh funtions are easy to evaluate but hard to invert. Do one-way funtionsexist? We don't know, though we believe they do exist, and an relate this belief to otherimportant questions.2. A related question is that of the omparable diÆulty of solving problems versus verifying thevalidity of solutions. We believe that some problems are muh harder to solve than to verifythe validity of a solution for them. However, we don't know this to be a fat either. Still,we know of many problems that are hard to solve, provided that the above belief is indeedvalid. For eah of these problems, an eÆient solving method would imply an eÆient solvingmethod for eah problem for whih verifying validity of solution is easy.3. The Theory of Computing provides a new viewpoint on old phenomena and onepts. Forexample, a omputational approah to randomness leads to the onlusion that randomnessan be expanded almost arbitrarily. Likewise, a omputational approah to proofs leads tothe onlusion that obtaining a proof to a statement may not teah you anything beyond thevalidity of the statement.4. The Theory of Computing is also onerned with �nding the most eÆient methods forsolving spei� problems. To demonstrate this line of researh we mention the existene of amethod for multiplying numbers that is muh more eÆient than the simple method learnedin elementary shool. 8

In this setion we provide some details for these four topis. We stress that these four topis aremerely a small sample of the variety of topis that TOC deals with. The following exposition isaimed at laymen, and we hope that it an be understood by suh.Before embarking, we point out that the hoie of representation of objets plays a key rolein the theory of omputing. If you are to talk of multiplying numbers, you should speify inwhat form these numbers are represented. The natural hoie, whih the Theory of Computing(essentially) adopts, is that a (natural) number is represented as a sequene of deimal digits.(Atually, the ommon onvention is to represent numbers as sequenes of binary digits, but thedi�erene between the two onventions is immaterial.)5.1 One-way funtions (do they exist?)We onsider funtions that map natural numbers to natural numbers. To simply the disussion,we onsider only funtions that are one-to-one (i.e., never map two di�erent numbers to the samenumber) and preserve the magnitude of numbers (i.e., the number of digits in the representationis preserved when applying the funtion).A funtion is alled one-way if it is (relatively) easy to evaluate but hard to invert. For example,onsider the funtion that maps pairs of prime numbers to their produt. The elementary methodfor multiplying numbers demonstrates that it is relatively easy to evaluate this funtion. (By theway, more eÆient methods for multipliation are known; see Setion 5.4.) However, we do notknow of an eÆient method for inverting the above funtion; that is, for going from the produtbak to the prime fators. In fat, the problem of fatoring numbers is believed to be hard.To get some feeling for the plausibility of the belief that fatoring numbers is fundamentallymore diÆult than multiplying them, think of the task of multiplying two 4-digit numbers (forexample, 5381 and 6673). Certainly, you an do this using a pen and paper within a ouple ofminutes. But how about �nding the prime fators of a 8-digit number (for example, 51855637)?Any one-way funtion an be inverted by trying all possible inverses, but suh an exhaustivesearh is not eÆient: To invert the funtion on a 100-digit number, an exhaustive searh will take10100 operations (whih will take more time than the age of the universe even using the fastestpossible omputer ever to be built). For some funtions, there are more eÆient ways of invertingthe funtion (for example, onsider the funtion that maps an integer to its suessor { that is, Nis mapped to N + 1). The question is whether every funtion that is easy to evaluate is also easyto invert. Our belief is that the answer is negative; that is, there are funtions (alled one-way)that are easy to evaluate but hard to invert. In ase our belief is wrong this would mean that anyproess an be reversed within an e�ort that is proportional to the e�ort invested in arrying itthrough. Analogies from many disiplines suggest that this annot be true in general. That is,while some proesses may be easy to reverse, there are proesses that are hard to reverse.Trying to prove that one-way funtions do exist is indeed within the agenda of the Theory ofComputing and so is exploring the onsequenes of assuming that one-way funtions exist. Forexample, it turns out that \Cryptography" is possible if and only if one-way funtions exist (seemore below).5.2 Solving problems versus verifying solutionsWhen we say a \problem" we mean a general type of a problem for whih they are many instanes.For example, onsider the problem of �nding a number that (stritly) divides a given number. Inthis ase the instanes are numbers and eah instane may have several solutions (for example, 385is an instane and 5, 7 and 11 are all solutions (i.e., non-trivial divisors)). There may be instanes9

that have no solution (for example the number 17 has no non-trivial divisors). It is easy to verifythe validity of solutions to instanes of the problem we are disussing here: Given two numbers Nand M it is easy to test if M divides N . However, it seems hard to solve this problem for giveninstanes: Reall that we believe that it is hard to fator numbers into their prime omponents.Thus, if we ould always (easily) �nd a divisor of a given number, then we ould fator. (Thislaim is not immediate: you may need to apply the divisor-�nding method several times, but nottoo many times...)In general, a problem onsists of a set of instanes, eah having a (possibly empty) set ofsolutions. With respet to suh a problem we onsider two omputational tasks:Finding solutions: given an instane of the problem, �nd a valid solution or indiate that nosuh solution exists (if this is indeed the ase).Verifying solutions: given an instane of the problem along with a andidate solution, determinewhether the andidate is indeed a legitimate solution to the given instane.The big question of the Theory of Computing is what is the relation between the diÆulty (oromplexity) of the above two tasks. Spei�ally, whether for eah problem for whih the veri�ationtask is easy also the �nding task is easy. This question is known as the \P vsNP" question: Looselyspeaking, P stands for the lass of problems for whih �nding solutions is easy, NP stands for thelass of problems for whih veri�ation is easy, and the question is whether P ontains everythingin NP .Another Example. Suppose you are given a set of Quadrati equations and are asked to �nd0-1 values for the variables suh that all equations are satis�ed. For example, onsider the systemx1x2 � x3 = 0x1x3 � x1x4 + x3x4 = 1x1x4 � x2x3 + x1x3 = 0You may easily verify that the setting x1 = x2 = x3 = 1 and x4 = 0 satis�es all requirements, but itwould have taken you more e�ort to �nd suh a setting by yourself. In general, the veri�ation taskis easy (you just substitute variables by their values and do a little arithmetis), whereas the solvingtask (i.e., �nding a 0-1 setting satisfying all equations) seems hard. Note that there is an obvious(but ineÆient!) way of solving the problem: just trying all possible solutions. But this is notfeasible if you have a system with many (say 100) variables. The question is whether there existsan eÆient way of solving the above problem. We believe that no suh eÆient method exists.Furthermore, we an show that an eÆient method of �nding solutions to Quadrati equationsas above would yield an eÆient method for solving any problem in NP (that is, it would yieldthat P = NP). Indeed, the latter statement is interesting and surprising: the fate of the \P vsNP" question depends on whether it is easy to solve Quadrati equations. Thus, we say thatsolving Quadrati equations is NP-omplete (see below). In partiular, it follows that the abilityto eÆiently solve Quadrati equations implies the ability to eÆiently fator integers (althoughthere seem to be no apparent relation between the two problems).On the belief that P does not ontain all NP. Reall that we do not know whether for eahproblem for whih the veri�ation task is easy also the solving task is easy. That is, we do not knowwhether NP = P or not. We do, however, believe that there are problems for whih veri�ation is10

easy and yet solving is hard (that is NP 6= P). This belief is based not only on the intuition thatsolving is generally harder than verifying validity of solutions, but also by a variety of problems (inNP) for whih many people failed to �nd eÆient solution-�nding proedures.NP-ompleteness. There are many problems (the foreging example is merely one of them)for whih we know that an eÆient way of �nding solutions for the problem would yield suheÆient solutions for any problem in NP . Thus, eah of the former problems, alled NP-omplete,enompasses the fate of all NP . If an NP-omplete problem an be solved eÆiently, then anyproblem in NP an be solved eÆiently (that NP = P). However, our belief that NP 6= P impliesthat no NP-omplete problem has an eÆient solution-�nding proedure. Thus, NP-ompletenessof a problem is taken as strong evidene that it annot be solved eÆiently.Indeed NP-ompleteness is extensively used as an indiation of the omplexity of problems.One you are faed with a partiular problem that you need to solve and one you have failed todevise eÆient solution-�nding proedure, you may want to know if your failure is due to yourown lak of ideas or to the intrinsi diÆulty of the problem at hand. Proving that the problemis NP-omplete does provide an indiation that your failure is due to something more fundamentalthan your lak of ideas. This is indeed omforting, but what should you do if you still need asolution? In suh a ase, having realized that the problem at hand is NP-omplete, you should seekrelaxations of it, whih are good enough for the appliation at hand, and try to obtain an eÆientproedure for solving suh a relaxed problem. The relaxation an take the form of restriting theset of possible instanes or broadening the set of admissible solutions. For example, if you only needto �nd 0-1 solutions to a set of linear equations, then you should not worry that �nding solutionsto Quadrati equations is NP-omplete: An eÆient method for the speial ase of linear equationsdoes exist! In this ase the relaxed problem restrits the set of instanes of the original problem. Adi�erent example refers to the ase that you may be happy with a 0-1 setting that satis�es at leasthalf of the given Quadrati equations, and rely on the fat that an eÆient method for �nding suhsettings exists. In this ase the relaxed problem broadens the set of admissible solutions. Thus,NP-ompleteness told you to look for a good enough relaxation of the problem, and it an be usedas a justi�ation for not solving the original problem. This justi�ation is espeially of value ifsolving the original problem would have been better.5.3 Computational view of phenomena and oneptsIn this subsetion we desribe two ases in whih a omputational perspetive on lassial notionssuh as randomness and proofs leads to fasinating insights and extremely useful onsequenes.Pseudorandomness. Adopting a omputational view of randomness, we all a distribution pseu-dorandom if it is infeasible to distinguish between examples drawn from this distribution and exam-ples drawn from a truly random distribution. We note that two distributions may be very di�erentand yet it may be infeasible to tell them apart. In suh a ase, we onsider the di�erene betweenthem as \non-important" (sine nobody an note it within his lifetime, as noting the di�erenerequires an infeasible omputation). Thus, our omputational view of randomness is behavioristi(it asks how does randomness look to us) rather than being ontologial (asking what is the esseneof randomness).Our distintion between the true (statistial) di�erene and the di�erene that is feasible toobserve relies on the notion of feasible (or eÆient) omputation. Indeed, the meaningfulness andappliability of the foregoing approah to (pseudo)randomness depends on the notion of eÆient11

omputation. More importantly, this notion suggests the possibility of disussing pseudorandomgenerators. These are eÆient (deterministi) proedures that one fed with a short random seed,output a muh longer sequene that is pseudorandom. Thus, pseudorandom generators \strethrandomness": taking a short random seed, they produe a muh longer sequene that annot betold apart from a truly long random sequene. To be spei�, if you want to produe a 1,000,000long sequene of random looking digits, it may suÆe for you to randomly selet 1000 digits andstreth them using an eÆient (deterministi) program into a sequene of 1,000,000 digits. Notethat the generated sequene is not truly random, yet it looks so to any (omputationally-bounded)observer. Sine in real-life we are all omputationally-bounded, this type of pseudorandomnesssuÆes for all our purposes.Pseudorandom generators an be onstruted provided that one-way funtions exist. Atually,this suÆient ondition is also a neessary one. Thus, a tight onnetion is made between omputa-tional diÆulty (of inverting some funtions) and random behavior. Spei�ally, if omputationaldiÆulty does exist in a meaningful sense, then randomness an be expanded very drastially andso there ould be no meaningful measure for the \amount" of randomness. In partiular, littlerandomness may give rise to huge random phenomena and onstruts. For example, given 1000randomly seleted digits it is possible to eÆiently implement a random funtion that assigns arandom-looking 1000 digit number to every 1000 digit argument. By this we mean that queryingthis funtion for its value at, say 1,000,000 plaes of your hoie, you will not be able to distinguishthe funtion from a truly random one.An appliation to Cryptography: Pseudorandom generators yield a solution to the problemof seurely ommuniating over an inseure (that is, possibly wire-tapped) hannel. Essentially,this is the ase sine any pseudorandom generator yields a (private-key) enryption sheme. Suh asheme onsists of two proedures, one for enoding and one for deoding. Both proedures utilize aseret key that is assumed to be seleted and shared by the ommuniating parties. Before sendinga message, the sender enrypts it using the shared key, obtaining a so-alled iphertext. Only theiphertext is sent over the inseure hannel, but a wire-tapper who does not know the key sharedby the legitimate parties annot make any sense of it. One the iphertext reahes the legitimatereeiver, he/she an read the original message by derypting the iphertext using the shared key.Now let us see how to use a pseudorandom generator to establish suh an enryption sheme. Thekey shared by the legitimate parties will serve as a seed to the pseudorandom generator (and thus itis important that the key be seleted at random). Messages to be sent are represented as sequenesof digits. To send a spei� digit seretly, the sender uses the next (unused so far) digit of thepseudorandom sequene (generated by the pseudorandom generator using the key as seed). Saythat the message digit is x and the pseudorandom digit is y, then the orresponding digit of theiphertext will be the least signi�ant digit of x+ y (for example, if x = 4 and y = 7 we send 1 andif x = 6 and y = 2 we send 8). Deryption is done analogously. Say we have reeived the digit zand urrently use the pseudorandom digit y, then we ompute z � y and add 10 to it in ase it isnegative: for example, if z = 1 and y = 7 we retrieve x = (1 � 7) + 10 = 4 and if z = 8 and y = 2we retrieve x = (8� 2) = 6.Zero-Knowledge. Do proofs teah us anything beyond the validity of the assertion? Our dailylife (and espeially our shool years) tell us that the answer is positive. Typially, when onviningus of the validity of some fat, the prover (that is, the person onvining us) tell us things we didnot know. Adopting a omputational view of proofs, we may introdue a meaningful and appealingsetting in whih there exist proofs that yield nothing beyond the validity of the laim they aresupposed to vouh for. Suh proofs are alled zero-knowledge sine they tell us nothing we did not12

know (or ould not do) if we were to believe the validity of the assertion.But �rst we should ask what is a proof. The glory assoiated with the reativity required for�nding proofs, makes us forget that it is the less glori�ed proess of veri�ation that gives proofstheir value. What makes a proof its value is the existene of an eÆient veri�ation proedure thatrejets false proofs, while admitting valid proofs. Thus, any (veri�ation) proess that has thesefeatures gives rise to a \proof system" and, in partiular, one may want to onsider interativeand randomized veri�ation proedures. Indeed, it turns out that one may be able to verify morefats by employing an interative and randomized veri�ation proedure (rather than stiking tothe traditional pereption of proofs as written texts).For example, suppose that a wine expert wishes to onvine a non-expert that two bottles ofwine are di�erent. Here is what they an do. The (non-expert) veri�er will seretly pour wine fromthe two bottles to (say) 10 di�erent glasses so that eah bottle serves 5 glasses. The veri�er willrandomly permute the glasses, but keep (seret) reord of whih bottle served whih glass. Theexpert will now be asked to tell whih 5 glasses (out of the 10) have wine that was poured thesame bottle. If the bottles are indeed di�erent (and if the expert is indeed an expert), then theexpert will have no trouble giving the right answer and so the laim will be aepted by the veri�er.However, if the two bottles are idential then there is no way of telling the 10 glasses apart and theprobability that an expert will guess orretly is quite small (it is one over �105 �).The foregoing example illustrates something of the avor of the omputational point of viewof proofs. Furthermore, it even has some zero-knowledge avor: the veri�er following the aboveproedure does not really learn anything new beyond being onvined of the validity of the laim;having poured the wine into the glasses, he learns nothing when the expert identi�es orretlywhih bottle served whih glass. In general, it has been shown that whatever an be proven via aninterative and randomized proess (as above), an also be proven in zero-knowledge.An appliation to Cryptography: Zero-knowledge proofs are not merely an intriguing notion,they are a very powerful tool in ryptography. In a typial ryptographi setting parties have seretsand are supposed to take ations based on these serets. A typial problem is to make sure thatthe ations taken are indeed orret. This an be demonstrated by revealing the serets, butzero-knowledge proofs allow to prove this fat without revealing the serets (and without revealinganything about the serets).5.4 The searh for more eÆient proeduresHow would you multiply two numbers? We guess that you would just apply the method taught atelementary shool. For example to multiply 45 by 67 you would �rst multiple 5 by 7, write the �rstdigit of the result and add the seond digit to the result of the multiple of 4 by 7. You'll write theresult in the �rst line, then at analogously with respet to multiply 45 by 6, and last you'll addthe two lines. This means that you would do 4 digit-by-digit multipliations, some shifts (\hidden"multipliations by 10, whih are indeed easy), and some additions, and the entire proess an bewritten down as an addition of the following two lines10 � (4� 7) + (5� 7)100 � (4� 6) + 10 � (5� 6)In general, to multiply two numbers x and y, represented by the digit-sequenes xn � � � x2x1 andyn � � � y2y1, respetively, you will turn out using (impliitly) the following equalityx� y = nXi=1 xi � 10i�1!� nXi=1 yi � 10i�1! = nXi=1 nXj=1(xi � yj) � 10i+j�213

whih means that you would do at least n2 basi operations (that is, digit-by-digit multipliation).There is however a faster way to multiply (large) numbers. Towards presenting an alternativemethod, let us onsider, for example, the multipliation of 45 by 67. We have45� 67 = (10 � 4 + 5)� (10 � 6 + 7)= 100 � (4� 6) + 10 � (4� 7 + 5� 6) + (5� 7)= 100 �M1 + 10 � (M3 �M1 �M2) +M2where M1 = 4 � 6, M2 = 5 � 7, and M3 = (4 + 5) � (6 + 7). The last equality does not seem to\make sense"; yet, you an easily verify that it is orret. But what have we gain by this \strange"equality? One thing is that we only do 3 multipliations (but they may be slightly more omplexsine we may need to multiply numbers smaller than 19 rather than numbers smaller than 10 (singledigits)). This seems little gain, but wait a moment before passing verdit. Suppose you want tomultiply two 4-digit numbers. You an represent eah number by a sequene of two 2-digit numbersand apply the same trik. That is1234 � 5678 = (100 � 12 + 34) � (100 � 56 + 78)= 10000 � (12� 56) + 100 � (12 � 78 + 56� 34) + (34 � 78)= 10000 �M1 + 100 � (M3 �M1 �M2) +M2where M1 = 12 � 78, M2 = 34 � 78, and M3 = (12 + 34) � (56 + 78). We may now apply thesame trik to the 3 (two-digit) multipliations we need here, and obtain a proedure involving 9\basi" multipliations. Generalizing this idea, we obtain a proedure that multiply two n-digitnumbers by doing 20n� basi operations (that is additions/multipliations of single digits), where� = log2 3 � 1:585. For n � 100 this is better than the \Elementary-Shool" proedure (whihtakes 3n2 basi operations). But atually, there are even faster proedures for multiplying twonumbers (whih do beat the \Elementary-Shool" proedure for numbers of 20 digits or more).The above example of a sophistiated omputational proedure was taken from the domain ofarithmetis, and indeed the study of eÆient proedures for arithmeti (or rather number theoreti)problems onstitutes one area of the Theory of Computation. Yet, there are dozens of other suhareas, eah foused on the study of problems arising in some other domain (e.g., graph theory,geometry, et).

14

