
Oded (June 14, 2024): On the analysis of the Zig-Zag product (following Salil Vadhan)

Given a (big)D-regular graphG = (V,E), and a (small) d-regular graphH = ([D], F ), their Zig-Zag
product, denoted G⃝z H, consists of the vertex set V × [D], which is partitioned to D-vertex clouds
such that the cloud that corresponds to vertex v ∈ V is the set of vertices Cv = {(v, i) : i∈ [D]},
and edges that correspond to certain 3-step walks (on G⃝r H, as detailed next).

Actually, it is instructive to first consider the graph, denoted G⃝r H, in which copies of H
are placed on the clouds (i.e., for every v ∈ V and {i, j} ∈ F we place the intra-cloud edge
{(v, i), (v, j)}), and edges of G connect the corresponding clouds by using corresponding edges;
that is, if {u, v} ∈ E is the ith (resp., jth) edge incident at u (resp., at v), then we place the
inter-cloud edge {(u, i), (v, j)}. Note that each vertex in G⃝r H has d intra-cloud edges and a single
inter-cloud edge. Now, the edges of G⃝z H correspond to 3-step walks in G⃝r H that start with an
intra-cloud edge, then take the (only available) inter-cloud edge, and lastly take some intra-cloud
edge; that is, such a generic walk has the form (v, i)→(v, j)→(w, k)→(w, ℓ), where {i, j}, {k, ℓ} ∈ F
and {(v, j), (w, k)} is an inter-cloud edge in G⃝r H (i.e., {v, w} ∈ E is the jth edge incident at v
and the kth edge incident at w).

We shall assume that both G and H are connected and are not bipartite. In that case it is clear
that the graph G⃝r H is also connected and non-bipartite, and it can be shown that also G⃝z H
has these properties. Showing the latter is simpler when assuming that H has self-loops on each
vertex.1

Our focus is on upper-bounding the convergence rate of random walks on G⃝z H (aka second
eigenvalue of the corresponding random walk matrix) in terms of the corresponding rates of the
graphs G and H. (Recall that we refer to the eigenvalues of the corresponding normalized ad-
jacency matrices, where the normalization consists of dividing each entry by the degree of the
(regular) graph.) The following result and its proof are adapted from Salil Vadhan’s survey on
Pseudorandomness.

Theorem 1 (an analysis of the Zig-Zag product (Thm. 4.35 in Vadhan’s survey))2: Let λ(X)
denote the convergence rate of a random walk on the connected and non-bipartite graph X. Then,
(1− λ(G⃝z H)) ≥ (1− λ(G)) · (1− λ(H)2).

In other words the spectrum gap of G⃝z H is lower-bounded by in terms of the spectrum gaps of
G and H. In particular, for λ(H) ≤

√
1/2, we get (1− λ(G⃝z H)) ≥ (1− λ(G))/2, and this is the

result that is used in our presentation of the log-space UCONN algorithm (of Omer Reingold).3

We note that the proceeding version of RVW (41st FOCS, 2000) only claims that λ(G⃝z H)) ≤
λ(G)+λ(H), whereas the log-space UCONN algorithm (of Omer Reingold) requires (1−λ(G⃝z H)) =
Ω(1 − λ(G)) for a suitable fixed H that satisfies λ(H) < 1. (Specifically, for β < 1, we need a d-
regular dO(1/(1−β))-vertex graph H that satisfies λ(H) ≤ β.) We shall use the following lemma,
which is of independent interest.

1We first show that, for every v ∈ V , if (v, i) and (v, j) are neighbors in G⃝r H, then they are connected
by an even length path in G⃝z H. This follows by considering the 3-step walks (v, i)→(v, j)→(w, k)→(w, ℓ) and
(w, ℓ)→(w, k)→(v, j)→(v, j) on G⃝r H, where ℓ is an arbitrary neighbor of k in H. Next, we observe that each path
(resp., cycle) is G corresponds to a (not necessarily simple) path (resp., cycle) in G⃝z H, and that the parity of the
length of the path (resp., cycle) is preserved.

2Vadhan, Pseudorandomness, Foundations and Thrends in Theoretical Computer Sciwnce, Vol. 21 (1–3), 2012.
3Recall that 1−λ(G⃝z H) is the spectral gap of G⃝z H, whereas 1−λ(G) is the spectral gap of G. Indeed, we used

the hypothesis that λ(H) ≤
√

1/3.
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Lemma 2 (expanders “behave” like cliques (Lem. 4.19 in Vadhan’s survey)): Let G be a regular
n-vertex graph, and W be the corresponding random walk matrix (i.e., its normalized adjacency

matrix). Let J be an n-by-n matrix in which all entries equal 1/n. Letting E
def
= (W −γJ)/(1−γ),

it holds that λ(G) ≤ 1− γ if and only if ∥E∥ ≤ 1, where

∥M∥ def
= max

x∈Rn:∥x∥2=1
{∥Mx∥2} .

Note that J is the random walk matrix of the n-vertex clique (with a self-loop on each vertex).
Hence, the forward direction of Lemma 2 asserts that λ(G) ≤ 1 − γ implies that a random walk
on G is approximated by a random walk on a clique with an error term that is at most 1− γ (i.e.,
W = γJ + (1− γ)E for ∥E∥ ≤ 1).

Proof: We start with a few simple observations. Letting u = (1/n, ...., 1/n)⊥ denote the uniform
(distribution) vector, it follows that

Eu =
Wu− γJu

1− γ
=

u− γu

1− γ
= u.

On the other hand, if the vector v is orthognal to u, then Jv = 0 and Ev = Wv/(1 − γ) is also
orthogonal to u.

Now, assuming λ(G) ≤ 1 − γ for any v that is orthogonal to the uniform vector u, we get
∥Ev∥ ≤ ∥v∥ (because ∥Wv∥ ≤ λ(G) · ∥v∥). Hence, decomposing any vector x to its uniform and
orthognal components, denoted x∥ and x⊥ respectively, we get

∥Ex∥22 = ∥E(x∥ + x⊥∥22
= ∥Ex∥∥22 + ∥Ex⊥∥22
≤ ∥x∥∥22 + ∥x⊥∥22

which equals ∥x∥. On the other hand, ifW = γJ+(1−γ)E such that ∥E∥ ≤ 1, then for every v ∈ Rn

that is orthogonal to the uniform vector u, it holds that ∥Wv∥ = γJv+(1−γ)Ev ≤ 0+(1−γ)∥v∥,
which implies λ(G) ≤ 1− γ.

Proof of Theorem 1

We denote the random walk matrices of G, H and G⃝z H by WG, WH and WG⃝z H respectively.
Letting M denote the matching (in G⃝z H) defined by the inter-cloud edges, we have

WG⃝z H = (In ⊗WH)M(In ⊗WH) (1)

where In is the n-by-n identity matrix and A ⊗ B denotes the tensor product of matrices (i.e., in
the resulting matrix each entry of value σ in the matrix A is replaced by a copy of σ · B). Hence,
In ⊗WH describes a random intra-cloud random step, whereas M describes an inter-cloud step.

Letting h denote the number of vertices in H and using Lemma 2, we get WH = (1 − λ(H)) ·
Jh + λ(H) · E such that ∥EH∥ ≤ 1, where Jh is an h-by-h matrix in which all entries equal 1/h.
Hence,

In ⊗WH = (1− λ(H)) · In ⊗ Jh + λ(H) · In ⊗ EH (2)
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Combining Eq. (1) and Eq. (2), we get

WG⃝z H = (1− λ(H))2 · (In ⊗ Jh)M(In ⊗ Jh) (3)

+ (1− λ(H)) · λ(H) · (In ⊗ Jh)M(In ⊗ EH) (4)

+ (1− λ(H)) · λ(H) · (In ⊗ EH)M(In ⊗ Jh) (5)

+ λ(H)2 · (In ⊗ EH)M(In ⊗ EH) (6)

The following two facts can be readily verified.

1. The matrix product in each of the three last lines (i.e., Eq. (4), Eq. (5), and Eq. (6)) has
norm at most 1.

This uses ∥EH∥ ≤ 1 as well as ∥A⊗B∥ = min(∥A∥, ∥B∥) and ∥AB∥ = ∥A∥ · ∥B∥.
Using also ∥A+B∥ ≤ ∥A∥+ ∥B∥, it follows that the norm of the matrix given by the sum of
these three rows is at most 2 · (1− λ(H)) · λ(H) + λ(H)2, which equals 1− (1− λ(H))2.

2. The matrix product in the first line (i.e., (In⊗Jh)M(In⊗Jh)) equals WG⊗Jh. It follows that,
for every vector v that is orthogonal to the uniform vector, it holds that ∥((In ⊗ Jh)M(In ⊗
Jh))v∥2, which equals ∥(WG ⊗ Jh)v∥2, is upper-bounded by λ(G) · ∥v∥2.
To see that (In⊗Jh)M(In⊗Jh) = WG⊗Jh, we first observe that WG⊗Jh = WG⃝z K+

h
, where

K+
h is the h-vertex clique augmented by self-loops (and WG⃝z K+

h
is the random walk matrix

of the graph G⃝z K+
h ). This can be seen by considering the n2 disjoint h-by-h submatrices

that cover each of these nh-by-nh matrices; specifically, such a submatrix is an all-1/h matrix
if and only if it corresponds to an edge of G.

Next, we show that (In ⊗ Jh)M(In ⊗ Jh) = WG⃝z K+
h

by considering the action of these

matrices on each nh-long unit vector (equiv., the distribution obtained by starting in any
vertex (u, i) and taking a random step on either graphs). Specifically, the random step
described by (In ⊗ Jh)M(In ⊗ Jh) maps (u, i) to the uniform distribution on the uth cloud,
then maps it to specific vertex in a random cloud that neighbors the uth cloud, and finally
maps it to the uniform distribution in the latter cloud. But this is exactly the distribution
obtained by starting at (u, i) and taking a random step on the graph G⃝z K+

h . (Indeed,
(In ⊗ Jh)M(In ⊗ Jh) = WG⃝z K+

h
is analogous to Eq. (1).)

Using these two observations, for every vector v that is orthogonal to the uniform vector, we have

∥WG⃝z Hv∥
∥v∥2

≤ (1− λ(H))2 · λ(G) + (1− (1− λ(H))2)

= 1− (1− λ(H))2 · (1− λ(G))

and the claim follows (i.e., 1− λ(G⃝z H))2 ≥ (1− λ(H))2 · (1− λ(G))).

3


