
Bounds on 2-Query Codeword TestingEli Ben-Sasson� Oded Goldreichy Madhu SudanzApril 3, 2003AbstractWe present upper bounds on the size of codes that are locally testable by querying only twoinput symbols. For linear codes, we show that any 2-locally testable code with minimal distance�n over a �nite �eld F cannot have more than jFj3=� codewords. This result holds even fortesters with two-sided error. For general (non-linear) codes we obtain the exact same boundson the code size as a function of the minimal distance, but our bounds apply only for binaryalphabets and one-sided error testers (i.e. with perfect completeness). Our bounds are obtainedby examining the graph induced by the set of possible pairs of queries made by a codewordtester on a given code. We also demonstrate the tightness of our upper bounds and the essentialrole of certain parameters.Keywords: Error-correcting codes, linear codes, sublinear-time algorithms, adaptivity,

�Division of Engineering and Applied Sciences, Harvard University and Laboratory for Computer Science, Mas-sachusetts Institute of Technology, Cambridge, MA. E-mail: eli@eecs.harvard.edu. Supported by NSF grantsCCR-0133096, CCR-9877049, CCR 0205390, and NTT Award MIT 2001-04.yDepartment of Computer Science, Weizmann Institute of Science, Rehovot, Israel. E-mail:oded@wisdom.weizmann.ac.il. Supported by the MINERVA Foundation, Germany.zLaboratory for Computer Science, Massachusetts Institute of Technology, 200 Technology Square, Cambridge,MA 02139. E-mail: madhu@mit.edu. Supported in part by NSF Awards CCR 9912342, CCR 0205390, and NTTAward MIT 2001-04.

1 IntroductionLocally testable codes are error-correcting codes that admit very e�cient codeword testers. Specif-ically, using a constant number of (random) queries, non-codewords are rejected with probabilityproportional to their distance from the code.Locally testable codes arise naturally from the study of probabilistically checkable proofs, andwere explicitly de�ned in [3] and systematically studied in [5]. The task of testing a code locallymay also be viewed as a special case of the general task of property testing initiated by [7, 4], wherethe property being tested here is that of being a codeword. In this paper we explore codes thatcan be tested with constant queries.We focus on codes C � �n that have large distance (i.e., each pair of codewords di�er in atleast
(n) coordinates) and large size (i.e., at the very least, jCj should grow with n and j�j). Suchcodes are known to exist. Speci�cally, in [5] locally testable codes are shown such that jCj = j�jkfor k = n1�o(1). We highlight two of these results:1. For � = f0; 1g, three queries are shown to su�ce. Furthermore, these codes are linear.2. For j�j > 2, two queries are shown to su�ce.1This raises the question of whether locally testable codes can exist also for � = f0; 1g and whenconsidering two-query testers. In this paper, we show that the answer is essentially negative; thatis, for codes of linear distance, such codes can contain only a constant number of codewords. Moregeneral statements are provided by Theorems 3.1 and 4.1, which address linear codes over arbitrary�elds and non-linear binary codes, respectively. We also address the tightness of our upper-boundsand the essential role of certain parameters.Organization: In Section 2 we present the main de�nitions used in this paper. In Section 3 westudy linear codes that admit two-query codeword testers. In Section 4 we study general binarycodes that admit two-query codeword testers (of perfect completeness). In Section 5 we show thatour upper-bounds cease to hold already at ternary alphabets (rather than with the much largeralphabets considered in [5] and mentioned in Item 1 above). Finally, in Section 6, we show thatperfect completeness is essential for the results regarding non-linear binary codes (presented inSection 4).2 Formal SettingWe consider words over an alphabet �. For w 2 �n and i 2 [n], we denote by wi the i-th symbolof w; that is, w = w1 � � �wn.2.1 CodesWe consider codes C � �n over a �nite size alphabet �. The blocklength of C is n, and the sizeof C is its cardinality jCj. We use normalized Hamming distance as our distance measure; that is,for u; v 2 �n the distance �(u; v) is de�ned as the number of locations on which u and v di�er,1We comment that these codes are linear in a certain sense. Speci�cally, � is a vector space over a �eld F , andthe code is a linear subspace over F (rather than over �). That is, if � = F ` then C � �n is a linear subspace ofFn�` (but not of �n, no matter what �nite �eld we associate with �). In the coding literature such codes are calledF -linear. Indeed, a 2-query tester for an F -linear code over � = F ` checks that the two symbols read (viewed as twosequences over F) satisfy a linear constraint over F . 1

divided by n (i.e., �(u; v) = jfi : ui 6= vigj=n). The relative minimal distance of a code, denoted�(C), is the minimal normalized Hamming distance between two distinct codewords. Formally�(C) = minu6=v2Cf�(u; v)gThe distance of a word w from the code, denoted �(w; C) is minv2Cf�(w; v)g.A code is called redundant if its projection on some coordinate is constant (i.e., there existsi 2 f1; : : : ; ng such that for any two codewords w;w0 it holds that wi = w0i). A redundant code canbe projected on all non-redundant coordinates, yielding a code with the same size and distance,but smaller blocklength. Thus, w.l.o.g., we assume all codes to be non-redundant.Typically (in this paper) � is a �nite �eld F and we view Fn as a vector space over F. Inparticular, for u; v 2 Fn the of the two is hv; ui = Pni=1 vi � ui (all arithmetic operations are inF). The weight of v 2 Fn , denoted wt(v), is the number of non-zero elements in v. In this case�(u; v) = wt(u� v)=n.2.2 Testers and testsBy a codeword tester (or simply tester) with query complexity q, completeness c and soundness s (forthe code C � �n) we mean a randomized oracle machine that given oracle access to w 2 �n (viewedas a function w : f1; : : : ; ng ! �) satis�es the following three conditions:� Query Complexity q: The tester makes at most q queries to w.� Completeness: For any w 2 C, given oracle access to w the tester accepts with probability atleast c.� Soundness: For any w that is at relative distance at least �(C)=3 from C, given oracle accessto w, the tester accepts with probability at most s.2If C has a codeword tester with query complexity q, completeness c and soundness s we say C is[q; c; s]-locally testable.A deterministic test (or simply test) with query complexity q is a deterministic oracle machinethat given oracle access to w 2 �n makes at most q queries to w, and outputs 1 (= accept) or 0 (=reject). Any (randomized) tester can be described as a distribution over deterministic tests, andwe adopt this view throughout the text.A (deterministic) test is called adaptive if its queries depend on previous answers of the oracle,and otherwise it is called non-adaptive. A test has perfect completeness if it accepts all codewords.Both notions extend to (randomized) testers. Alternatively, we say that a tester is non-adaptive(resp., has perfect completeness) if all the deterministic tests that it uses are non-adaptive (resp.,have perfect completeness resp.), and otherwise it is adaptive (resp., has non-perfect completeness).3 Linear CodesIn this section we show that [2; c; s]-locally testable linear codes with constant minimal relativedistance must have very small size. Throughout this section F is a �nite �eld of size jFj. A codeC � Fn is called linear if it is a linear subspace of Fn . The main result of this section is the following.2We have set the detection radius of the tester at third its distance (i.e., for any w whose distance from C is atleast 13 � �(C) the test rejects with probability at least s). As will be evident from the proofs, our results hold for anyradius less than half the distance. 2

Theorem 3.1 Let C � Fn be a [2; c; s]-locally testable linear code with minimal relative distance �.If c > s then jCj � jFj3=�We start by pointing out that, when considering testers for linear codes, the tester can be assumedto be non-adaptive and with perfect completeness. This holds by the following result of [2].Theorem 3.2 [2]: If a linear code (over any �nite �eld) is [q; c; s]-locally testable using an adaptivetester, then it is [q; 1; 1 � (c� s)]-locally testable using a non-adaptive tester.Notice that if we start o� with a tester having completeness greater than soundness (c > s),then the resulting non-adaptive, perfect-completeness tester (guaranteed by Theorem 3.2) willhave soundness strictly less than 1. Thus, in order to prove Theorem 3.1 it su�ces to show thefollowing.Theorem 3.3 Let C � Fn be a [2; 1; s]-locally testable linear code, with s < 1, and let the minimalrelative distance be �. Then: jCj � jFj3=�In the rest of the section we prove Theorem 3.3. The proof idea is as follows. Each possibletest of query complexity 2 and perfect completeness imposes a constraint on the code, because allcodewords must pass the test. Thus, we view the n codeword coordinates as variables and theset of tests as inducing constraints on these variables (i.e., codewords correspond to assignments(to the variables) that satisfy all these constraints). Since the code is linear, each test imposes alinear constraint on the pair of variables queried by it. (A linear constraint on the variables x; yhas the form ax + by = 0 for some �xed a; b 2 F). We will show that in a code of large distance,these constraints induce very few satisfying assignments. Speci�cally, we look at the graph inwhich the vertices are the (n) codeword-coordinates (or variables) and edges connect two verticesthat share a test. The main observation is that in any codeword, the value of all variables in aconnected component are determined by the value of any one variable in the component; that is,the assignment to a single variable determines the assignment to the whole component. By perfectcompleteness, any word that satis�es all constraints in all connected components will pass all tests.Hence there cannot be many variables in small connected components, for then we could �nd aword that is far from the code and yet is accepted with probability 1. But this means that the codeis essentially determined by the (small number of) large connected components, and hence the sizeof the code is small. We now give the details, starting with a brief discussion of dual codes whichis followed by the proof.3.1 Linearity Tests and Dual CodesRecall that C � Fn is linear i� for all u; v 2 C we have u + v 2 C. In this case �(C) =minw2Cfwt(w)=ng. As pointed out in [6], codeword tests for linear codes are intimately relatedto the \dual" of the code. For a linear code C, the dual code C? is de�ned as the subspace of Fnorthogonal to C, i.e. C? = fv : v ? Cgwhere v ? C i� for all u 2 C, v ? u (recall v ? u i� hv; ui = 0).The support of a vector v, denoted Supp(v), is the set of indices of non-zero entries. Similarly,the support of a test T is the set of indices it queries. Notice that a non-adaptive test with query3

complexity q has support size q. For v; u 2 Fn we say that v covers u if Supp(v) � Supp(u). Atest is called trivial if it always accepts. Elementary linear algebra gives the following claim.Proposition 3.4 The support of any non-trivial perfect-completeness test for C covers an elementof C? n f0ng.Clearly one can assume that all tests used by a tester are non-trivial. We also assume C? hasno element of weight 1, because otherwise C is redundant. Since we consider only testers that maketwo queries, it follows that all tests they use have support size exactly two.3.2 Upper Bounds on Code SizeBy the above discussion (i.e., end of Section 3.1), we may assume (w.l.o.g.) that the [2; 1; s]-testerfor C is described by a distribution overC?2 def= fv 2 C? : wt(v) = 2gThe test corresponding to v 2 C?2 refers to the orthogonality of v and the oracle w; that is, the testaccepts w if v ? w and rejects otherwise.3 We now look at C?2 and bound the size of (C?2)?. Ourtheorem will follow because C � (C?2)?.The set C?2 gives rise to a natural graph, denoted GC . The vertex set of GC is V (GC) = f1; : : : ; ngand (i; j) 2 E(GC) i� there exists vij 2 C?2 with Supp(vij) = fi; jg.The key observation is that, for any edge (i; j) 2 E(GC) there is some cij 2 F n f0g such thatfor any w 2 C it holds that wi = cij � wj . To see this, notice the constraint corresponding to (i; j)can be written as aijwi + bijwj = 0, where aij ; bij 2 F n f0g (if either aij or bij are 0 then vij hassupport size one, meaning C is redundant). So, by transitivity, the value of w on all variables inthe connected component of i, is determined by wi. (Moreover, all these values are non-zero i�wi 6= 0.) Assuming that the number of connected components is k, this implies that there can beat most jFjk di�erent codewords (because there are only k degrees of freedom corresponding to thesettings (of all variables) in each of the k components). To derive the desired bound we partitionthe components into big and small ones, and bound the number of codewords as a function of thenumber of big components (while showing that the small components do not matter).Let C1; : : : ; Ck be the connected components of GC. We call a component small if its cardinalityis less than �n=3. Without loss of generality, let C1; : : : Cs be all the small components, and letS = Ssi=1Ci denote their union.Claim 3.5 jSj � 2�n=3.Proof: Otherwise there exists I � f1; : : : ; sg such that�n=3 �Xi2I jCij < 2�n=3For every i 2 I, we consider a vector wi 2 (C?2)? with Supp(wi) = Ci. To see that such a vectorexist, set an arbitrary coordinate of Ci to 1 (which is possible because the code is not redundent) andforce non-zero values to all other coordinates in Ci (by virtue of the above discussion). Furthermore,note that this leaves all coordinates out of Ci unset, and that the resulting wi satisfy all tests in3Notice that since wt(v) = 2 such a test amounts to two queries into w.4

C?2 (where the test that correspond to the edges in Ci are sati�ed by our setting of the non-zerovalues, whereas all other tests refer to vertices out of Ci and are satis�ed by zero values). Now,de�ne w =Pi2I wi. By de�nition, we have Supp(w) = S, and �n=3 � wt(w) < 2�n=3 follows bythe hypothesis. Hence, �(w; C) � �=3.On the other hand, w is orthogonal to C?2 . To see this, consider any v 2 C?. If Supp(v) � Ci,for some i 2 I, then the \view v has of w" (i.e. the values of the coordinates v queries) is identicalto the view v has of the codeword wi, and so hv; wi = hv; wii = 0. Otherwise (i.e., Supp(v) hasempty intersection with S), by de�nition v \sees" only zeros, and so hv; wi = 0.We conclude w is �3 -far from C, yet it passes all possible tests of query complexity two. Thiscontradicts the soundness condition, and the claim follows.Proof (of Theorem 3.3): Assume for the sake of contradiction thatjCj > jFj3=�Recall that (by the \key observation") the values of all variables in a connected component aredetermined by the value of a single variable in this component. Since there are at most 3=�large connected components in GC (because each has cardinality at least �n=3), the contradictionhypothesis implies that there exist two codewords x 6= y that agree on all variables that residein the large connected components. Indeed, these two codewords x 6= y, may di�er on variablesthat reside in the small connected components (i.e., variables in S), but Claim 3.5 says that thereare few such variables (i.e.. jSj � 2�n=3). By linearity x � y 2 C (but x � y 6= 0n), and so0 < wt(x� y) � jSj < �n. We have reached a contradiction (because C has distance �), andTheorem 3.3 follows.3.3 Tightness of the Upper BoundWe remark that our upper bound is quite tight. For any � < 1, consider the following code Cn � Fnformed by taking 1=� elements of F and repeating each one of them �n times. Thus, a codeword inCn is formed of 1=� blocks, each block of the form e�n for some e 2 F (here ek means k repetitionsof e).Proposition 3.6 Cn is a linear [2; 1; 1� 2�3jFj]-locally testable code with minimal relative distance �and size jFj1=� .For instance, taking F = GF (2), the soundness parameter in the proposition is 1� �=3.Proof: The linearity, distance and size of Cn are self-evident. Consider the following naturaltester for Cn: Select a random block, read two random elements in it, and accept i� the two areequal. This tester has perfect completeness and query complexity 2. As to the soundness, letk = 1=� and write v 2 Fn as (v(1); : : : ; v(k)), where v(i) is the i-th block of v (i.e., jv(i)j = �n). TheHamming distance of v from Cn is the sum of the Hamming distances of the individual blocks v(i)from the code B = fe�n : e 2 Fg.Suppose v has relative distance at least �=3 from Cn. Let �i denote the relative distance of v(i)from B. Then, 1kPki=1 �i � �=3 (and �i � 1� 1jFj). The acceptance probability of the tester equals1k kXi=1 ��2i + (1� �i)2� = 1� 2k kXi=1(1� �i) � �i5

� 1� 2kjFj kXi=1 �i� 1� 2�3jFjwhere the �rst inequality is due to �i � 1� 1jFj . Thus, the soundness parameter is as claimed.4 Non-Linear CodesIn this section we provide upper bounds on the code size of arbitrary (i.e., possibly non-linear) 2-locally testable codes. Our bounds apply only to binary codes and testers with perfect completeness,and with good reason: There exist good 2-testable binary codes with non-perfect completeness (seeSection 6) and there exist good 2-testable codes with perfect completeness over ternary alphabets(see Section 5). Our main result is:Theorem 4.1 If C � f0; 1gn is a [2; 1; s]-locally testable code with minimal relative distance � ands < 1, then jCj � 23=�The proof (presented below) generalizes that of the binary linear case (binary means F = GF (2)),with some necessary modi�cations, which we brie
y outline now. In the binary linear case a testquerying xi and xj forces xi = xj for all codewords (this is the only possible linear constraint ofsize two over GF2). In that case, the set of all tests corresponds to an undirected graph in whicheach connected component forces all variables to have the same value. In the non-linear case a test(adaptive or non-adaptive) corresponds to a 2-CNF. (Recall that in both cases we deal with perfectcompleteness testers.) The set of all tests (which is itself a 2-CNF) corresponds to a directed graphof constraints on codewords, where the constraint xi _ xj translates to the pair of directed edges�xi ! xj and �xj ! xi. In the resulting directed graph, a strongly connected component takes therole played by the connected component in the linear case. Namely, for any codeword, all variablesin a strongly connected component are �xed by the value of a single variable in the component. Asin the linear case, we use the properties of the code and its tester (i.e., the code's large distanceand the fact that the tester rejects any word that is far from the code with non-zero probability)to show that the weight of the small strongly connected components is small. Hence, the code isdetermined by a small number of large connected components.Proof of Theorem 4.1Again, we view the n codeword coordinates as variables and the set of tests (which are 2-CNFs) asinducing constraints on these variables. Let F be the conjunction of all non-trivial deterministictests that are used by a 2-query tester that has perfect completeness with respect to C. We look atthe satisfying assignments of F , and use this to bound the size of C. If F includes a clause of size1 then C is redundant. Thus, assuming non-redundancy of C implies that F is can be representedby a 2-CNF in which each clause has exactly two literals.We examine the following directed graph GF . The vertex set of GF is the set of literalsfx1; �x1 : : : ; xn; �xng. For each clause (`_ `0) 2 F we introduce in GF one directed edge from �̀ to `0,and one from �̀0 to `. We use the notation `; `0 to indicate the existence of a directed path from6

` to `0 in GF . We use the notation w(`) to denote the value of literal ` under assignment w to theunderlying variables. Identifying True with 1 and False with 0, we haveClaim 4.2 (folklore): The following two conditions are equivalent1. The assignment w satis�es F .2. For every directed edge `; `0 it holds that w(`) � w(`0).A strongly connected component in a directed graph G is a maximal set of vertices C � V (G) suchthat for any v; v0 2 C it holds that v ; v0. For two strongly connected components C and C 0 inG, we say C ; C 0 i� there exist v 2 C and v0 2 C 0 such that v ; v0. (Indeed, this happens i� forall v 2 C; v0 2 C 0 it holds that v ; v0.)By Claim 4.2, w satis�es all constraints corresponding to edges of a strongly connected com-ponent C i� w(`) = w(`0) for all `; `0 2 C. So, any satisfying assignment w either sets to 1 allliterals in C, or sets them all to 0. In the �rst case we say that w(C) = 1 and in the latter we sayw(C) = 0.Let L be the set of literals belonging to large strongly-connected components, where a componentis called large i� its cardinality is at least �n=3. Consider an arbitrary assignment �0 to the variablesof L that can be extended to a satisfying assignment (to F). In particular, �0 does not falsify anyclause of F (i.e., no clause of F is set to 0 by �0). A literal ` 62 L is said to be forced by �0 if thereexists `0 2 L such that `0 ; ` and �0(`0) = 1. This is because any satisfying assignment to F thatextends �0 must set ` to 1 (since for such an assignment � it must holds that �(`) � �(`0) = 1.Indeed, the complementary literal (i.e., �̀) is forced to 0. Let � be the closure of �0 obtained by(iteratively) �xing all forced literals to the value 1 (and their complementary literals to 0). Byde�nition, � does not falsify F . Let S� be the set of un�xed variables under �.Claim 4.3 For any closure � of an assignment that satis�es L, it holds that jS�j � 2�n=3.Proof: Otherwise, let C1; : : : ; Ck be a topological ordering of the un�xed strongly connectedcomponents comprising S�, where the ordering is according to ; (as de�ned above). (Indeed, thedigraph de�ned on the Ci's by ; is acyclic.) For j = 0; : : : ; k, let v(j) be the assignment extending� de�ned by: v(j)(Ci) = � 0 i � j1 i > jBy Claim 4.2, each assignment v(j) satis�es F . Since C is 2-locally testable with soundness s < 1,each word that is at distance at least �=3 from C must falsify some clause in F . But since v(j)satis�es F , it must be that v(j) is within distance �=3 from some codeword, denoted w(j). Bythe constradiction hypothesis, we have �(v(0); v(k)) = jS�j=n > 2�=3, which implies w(0) 6= w(k)(because �(v(0); v(k)) � �(v(0); w(0)) + �(w(0); w(k)) + �(w(k); v(k)), which is upper-bounded by2 � (�=3) + �(w(0); w(k))). It follows that�(v(k); w(0)) � �(w(k); w(0))��(w(k); v(k)) � � � (�=3) = 2�=3On the other hand, recall that �(v(0); w(0)) � �=3. Since, for each j, it holds that �(v(j); v(j+1)) <�=3 (because jCj j < �n=3), there must be j 2 f0; 1; : : : ; kg such that �=3 � �(v(j); w(0)) � 2�=3.For this j, it holds that �(v(j); C) � �=3. But v(j) satis�es F and so it is accepted by the testerwith probability 1, in contradiction to the soundness condition.7

Our proof is nearly complete. As in the proof of Theorem 3.3, assume for the sake of contra-diction that jCj > 2�=3In this case, there must be two distinct codewords w 6= u that agree on all large connected compo-nents. Let �0 be the restriction of w to the variables of the large connected components. That is,�0 agrees with w and with u on the assignment to all variables in L and is un�xed otherwise. Let �be the closure of �0 (obtained by forcing as above). Note that w and u are satisfying assignmentsto F that agree on �0, so they also must agree on � (which is forced by �0). Thus, by Claim 4.30 < �(u;w) � jS�j=n < �This contradicts the hypothesis that the minimal distance of C is �, and the theorem follows.5 Ternary AlphabetsIn this section we show that our general upper-bound (i.e., Theorem 4.1) ceases to hold already atternary alphabets. That is, we present (non-linear) ternary codes admitting two-query testers. Wealso show that, in contrast to Theorem 3.1 (which refers to linear codes), there exist good GF (2)-linear codes over the alphabet f0; 1g2 that admit two-query testers.4 The latter construction ispostponed to Section 5.4, and we �rst focus on the construction of ternary codes.5.1 OutlineIn this section we present [2; 1; s]-locally testable codes, over ternary alphabets, that have lineardistance5 and non-trivial rate. We start with a good linear [3; 1; s]-locally testable code C � f0; 1gnover the binary alphabet (cf. [5]), where each test is de�ned by a parity constraint over threevariables. We replace each parity by the four clauses that encode it as a 3-CNF, where the variablescorrespond to the bits of the alleged codeword. Let F be the set of all clauses used by our testerfor C. We think of C as the set of satisfying assignments to F . Our new ternary code C0 is formedby appending to each codeword w 2 C a list L 2 f0; 1; 2gF , which for each clause C 2 F speci�esthe literal satisfying C under the assignment w. Our new tester T 0 for C0 selects a random clausefrom F , reads the index of the purported satisfying literal, and veri�es that w indeed assigns tothis literal the value that satis�es C. This naive strategy faces a couple of problems that we brie
ydiscuss and show how to solve.� The most obvious problem is that (as de�ned above) C0 has distance 1. The reason is that,for any w 2 C, there are many lists L 2 f0; 1; 2gF such that (w;L) 2 C0, and some of theselists di�er only in one location. Speci�cally, if w satis�es more than one of the literals of aclause C 2 F (which is the case for any w 2 C and some of C 2 F), then we can choose toput in our list (at the position corresponding to C) the index of any of these literals.This problem is resolved by enforcing a unique list Lw for each w 2 C; speci�cally, we requirethat, for each clause, the list includes the smallest index of a satis�able literal in the clause.Furthermore, we enforce the use of this unique list by augmenting the tester such that it4Recall that GF (2)-linear codes over the alphabet f0; 1g2 are di�erent from linear codes over f0; 1g2. See discus-sions in Footnote 1 and in Section 5.4.5To get meaningful results on local testability one must assume large minimal distance. Otherwise, the trivialcode C = f0; 1gn has rate 1 and is [0; 1; 0]-locally testable.8

sometimes emulates the basic tester (outlined above) and otherwise veri�es the uniquenessproperty. Speci�cally, the new tester sometimes checks that the purported literal satis�es theclause, and sometimes checks that a literal with a smaller index does not satisfy this clause.� A second obvious problem is that the blocklength of the new code is likely to be dominatedby the size of the appended list, whereas the distance might be as small as that of the originalcode (here we refer to the non-relative distance). Indeed, for C � f0; 1gn, the tester for Cmight use as many as �n3� distinct tests (and thus we may have jF j = �(n3)). While C hasgood minimal distance, we have no similar guarantee on the distance between unique lists ofdistinct codewords in C. For all we know there might be two distinct words in C that sharethe same unique list. Thus, we might end up with a code of blocklength � n3 and minimal(absolute) distance �n. There is not much hope for showing the local testability of such acode, because changing �n=3 symbols in the unique list of a codeword w will hardly be noticedby our tester.This problem is easily resolved by repeating each bit of the original code su�ciently manytimes (i.e., �(jF j=n) repetitions will do). Indeed, we have to check that the correspondingpart of the new codeword is of the right format; that is, we sometimes check that two randomcopies of the same bit-location hold the same value.To improve the rate6 of the new code (i.e., maintain the rate of the original code), we will�rst modify the given tester so that it only uses O(n) (rather than O(n3)) distinct tests.We comment that an alternative approach towards resolving the second problem may capitalize onthe fact that the unique valid lists associated with codewords of the original code must be far apartfrom one another. This fact can be proved by observing that a random test (of the original tester)is likely to read di�erent values from the two codewords, and thus some of the corresponding fourclauses are (uniquely) satis�ed by literals of di�erent index.5.2 Uniform TestersOur starting point is the following construction of [5], which gives linear locally testable codes overthe binary alphabet with linear distance and pretty good rate. In what follows, it will be convenientto use a tester with detection radius �=4 (where � is the minimal distance of the code), so we statethe theorem with this additional property.Theorem 5.1 [5, Prop. 5.9]: There exist constants 1 > s; � > 0 such that for arbitrarily largeintegers n there exist linear [3; 1; s]-locally testable codes Cn � f0; 1gn, with relative minimal distanceat least � and size jCnj = 2n= exp(log0:51 n). Moreover, there exists a tester T for this code, such thatany word that is (at least) �=4-far from C is accepted by T with probability at most s (and words inC are accepted with probability 1).Recall that a tester is a distribution over tests. Our �rst observation is that this distribution canbe assumed to be uniform over a set of O(n) tests, in which case we say that tester is uniform. Thisfact was established in [5, Prop. 5.8]. (Actually, as in our case, [5, Prop. 5.8] was established as apreparatory step towards establishing [5, Prop. 5.9].) From now on we assume the tester for the[3; 1; s]-locally testable code Cn � f0; 1gn is uniform and the number of tests m is linear in n.6The rate of C � f0; 1gn is de�ned as (log2 jCj)=n. 9

5.3 Ternary Code Construction and AnalysisRecall that C def= Cn � f0; 1gn is a (binary) linear [3; 1; s]-locally testable code over the binaryalphabet that has a uniform tester over a set of m = cn tests, where each test is a parity check ofthree variables (corresponding to locations in the codeword). Following the discussion in Section 3.1,we replace each such parity test by the four corresponding clauses (each of size 3), and let F denotethe resulting sequence of m clauses. We view an element v 2 f0; 1gn as an assignment to the CNFF . The perfect completeness of the tester means every w 2 Cn is a satisfying assignment of F .Now, for some constant integer c0 > c (to be determined), we consider the following code.Construction 5.2 (Our Ternary Code): Let C0 � (f0; 1gn)c0 � f1; 2; 3g4m, viewed as a subset off0; 1; 2gc0n+cn, be the set of all pairs of the form ((v(1); : : : ; v(c0)); (`1; : : : ; `4m)) for which there existsw 2 C such that the following two conditions holds1. (v(1); : : : ; v(c0)) is a repetitive encoding of w; that is, for i = 1; :::; c0, it holds that v(i) = w.2. (`1; : : : ; `4m) indicates the lexicographically �rst sequence of literals that satis�es F ; that is,for every j = 1; ::; 4m, it holds that the `j-th literal of Cj satis�es this clause whereas forevery i < `j the i-th literal of this clause does not satisfy it.Recall that m = cn.Note that the absolute distance of C0 is lower-bounded by c0 times the absolute distance of C. Thus,the relative distance �(C0) is lower bounded by c0 � �(C) � n=(c0n+ cn), which in turn is greater than�(C)=2 (because c0 > c). In fact, we can achieve �(C0) � (1�
) � �(C) for any
 > 0, by selecting c0to be a su�ciently large constant. Under this setting, C0 maintains the asymptotic rate of C up toa constant factor, becauselog3 jC0jc0n+ cn = 1(c0 + c) log2 3 � log2 jCjn > 12(c0 + c) � 1exp(log0:51 n)and the loss of a factor of 2(c0 + c) in the rate is not signi�cant.Construction 5.3 (Our tester T 0((v(1); : : : ; v(c0)); (`1; : : : ; `4m))): We assume, for simplicity, that(v(1); : : : ; v(c0)) 2 f0; 1gc0n and (`1; : : : ; `4m) 2 f1; 2; 3g4m. This assumption can be enforced by anadequate translation.1. With probability 1=2, perform a random test of proper repetitive encoding of a binary string.That is, we check if a random variable is assigned the same boolean value by two randomcopies. Speci�cally, select uniformly copies i1; i2 2 [c0] and a variable j 2 [n], and accept ifand only if the j-th symbol of v(i1) equals the j-th symbol of v(i2) and this symbol is in f0; 1g.2. With probability 1=2, perform a random test of lexicographically-�rst satisfaction. That is,we check if a random variable in a random clause is assigned (in a random copy) a valuethat is consistent with the lexicographically-�rst satisfying variable as indicated by the list.Speci�cally, uniformly select a clause j1 2 [m], a position in it j2 2 [3], and a copy i 2 [c0], letidx(j1; j2) 2 [n] be the index of the variable that appears as the j2-th variable in Cj1 , obtainthe value v v(i)idx(j1;j2) 2 f0; 1g and the indicator ` `j1 2 [3], and accept if and only if thefollowing holds 10

(a) In case j2 = `, we accept if and only if the i2-th literal in Cj1 is satis�ed when assigningv to the corresponding variable.(b) In case j2 < `, we accept if and only if the i2-th literal in Cj1 is not satis�ed whenassigning v to the corresponding variable.(c) In case j2 > `, we always accept.Notice that T 0 has query complexity 2 (and is non-adaptive). It is also easy to see that it hasperfect completeness. It is left to analyze the soundness of T 0.Lemma 5.4 For some constant s0 < 1 the following holds. For every ((v(1); : : : ; v(c0)); (`1; : : : ; `4m))that is at relative distance at least �(C0)=3 from C0, the tester T 0 accepts ((v(1); : : : ; v(c0)); (`1; : : : ; `4m))with probability at most s0.Proof: In the following proof we refer to distances of various strings from three di�erent codes,having di�erent blocklength. Thus, it will be less confusing to refer to absolute distnaces (ratherthan to relative ones). Thus, throughout this proof, we always make reference also to absolutedistance.We consider two cases with respect to the distance of (v(1); : : : ; v(c0)) from the repetition code.For some � > 0 (to be determined below), the easy case is when (v(1); : : : ; v(c0)) is �-far from beinga repetitive encoding of any binary string (i.e., (v(1); : : : ; v(c0)) 2 f0; 1gc0n is at distance at least�c0n from the repetition code). In this case, by virtue of the �rst sub-tester of T 0, the sequence((v(1); : : : ; v(c0)); (`1; : : : ; `4m)) is rejected with constant probability.Otherwise, (v(1); : : : ; v(c0)) is �-close to such a repetitive encoding of some string w 2 f0; 1gn(i.e., (v(1); : : : ; v(c0)) 2 f0; 1gc0n is at distance at most �c0n from wc0 (i.e., w repeated C 0 times)).This means that at least half of the v(i)'s are at distance at most 2�n from w. On the other hand,since (`1; : : : ; `4m) accounts for 4cn locations in the code C0 and ((v(1); : : : ; v(c0)); (`1; : : : ; `4m)) isat distance at least d def= �(C0)3 � (c0n+ 4cn) from C0, it follows that (v(1); : : : ; v(c0)) is at distance atleast d � 4cn from some repetitive encoding of a codeword of C. Thus, by the triangle inequality,the distance of w from C must be at leastminu2Cfdist((v(1); : : : ; v(c0)); uc0)g � dist((v(1); : : : ; v(c0)); wc0)c0� d� 4cn� �c0nc0> ��(C0)3 � 4cc0 � �� � n (1)We take c0 large enough and � small enough, so that Eq. (1) is greater than (�(C)4 +2�) �n. Recallingthat at least half of the v(i)'s are at distnace at most 2�n from w, it follows that these v(i)'s areat distance at least (�(C)=4) � n from C. Recall that, in case j2 = ` (which occurs with probability1=3), the second subtester of T 0 emulates the codeword tester of C on a randomly chosen v(i). Withprobability at least one half, such a random v(i) will be at least (�(C)=4)� from C, and hence thetest rejects with some constant probability. The lemma follows.Remark 5.5 We did not use the fact that the tester T 0 checks whether the list (`1; : : : ; `4m) is thelexicographically-�rst suitable one in our soundness analysis. The reason for adding these tests isaesthetic: it ensures that all non-codewords are rejected by T 0 with positive probability. Thus, astring is in C0 if and only if it is accepted by T 0 with probability 1.11

Combining the above, we obtain:Theorem 5.6 For some � > 0, s < 1 and arbitrary large n's, there exist [2; 1; s]-locally testableternary codes C0n � f0; 1; 2gn with minimal relative distance � and jC0nj > 2n1�o(1) .5.4 GF (2)-Linear Codes over f0; 1g2The notion of GF (2)-linearity used here refers to viewing f0; 1g2 as a vector space (of dimension 2)over the two-element �eld GF (2), and requires the codewords (viewed as sequences over GF (2))to satisfy linear constraints over GF (2). Thus, the codeword tester checks that the symbols read(viewed as 2-sequences over GF (2)) satisfy a linear constraint over GF (2). (Indeed, this is thenotion discussed in Footnote 1.)We brie
y sketch how to obtain [2; s; 1]-locally testable codes over the four symbol alphabetf0; 1g2 that are GF (2)-linear, have linear distance and non-trivial rate. This improves over acorresponding result of [5] that achieves similar features for much larger alphabet (i.e., the alphabetsize grows with the blocklength, n).Our starting point is the binary code Cn given by Theorem 5.1, assuming a uniform tester Tover m = cn tests, where each test is a parity of three bits. We view this code as a code C0n over� = f0; 1g2, say, by encoding each bit b by the symbol 0b. Our new code, denoted C00n, is formedby taking a repetitive encoding of a word w 2 C0n (using c0 � c copies, as in Section 5.3) andappending to it the assignment Aw 2 (f0; 1g2)m to the �rst two variables in each test. Clearly, C00nis GF (2)-linear. Furthermore, as in Section 5.3, the distances in the new code are dominated bythese in the old code and thus the code's distance and rate are as desired. We now turn to thenew codeword tester: Essentially this tester checks that the �rst part properly encodes some binarystring and that the auxiliary part matches the �rst part (and the parity conditions). That is, oninput ((v(1); : : : ; v(c0)); A), the tester proceeds as follows:1. With probability 1=2, it performs a random test of proper repetitive encoding of a binarystring. That is, it selects i1; i2 2 [c0] and j 2 [n] at random, and accepts if and only if thej-th symbol of v(i1) equals the j-th symbol of v(i2) and this symbol is in f00; 01g.2. With probability 1=2, it performs a random test of consistency and parity. That is, it selectan original test j 2 [m] and an index i 2 [3] at random, and checks whether the j-th symbolof A matches the value of a random copy of the i-th variable of the j-th original test. Lettingidxi(j) 2 [n] denote the index of the variable that appears as the i-th variable of the j-thoriginal test, we consider two cases:(a) In case i 2 f1; 2g, we compare the i-th coordinate of the j-th symbol of A with thesecond coordinate of the idxi(j)-th entry in v(i2), where i2 is uniformly selected in [c0].(b) In case i = 3, we compare the sum of the two coordinates of the j-th symbol of A withthe second coordinate of the idxi(j)-th entry in v(i2), where again i2 is uniformly selectedin [c0].Thus, the �rst sub-tester enforces that (v(1); : : : ; v(c0)) is close to a proper encoding of a binarystring, whereas the second sub-tester enforces consistency of (v(1); : : : ; v(c0)) and A (by the �rstcase) as well as emulates the original tester T (by the second case). Notice that all tests performedare homogeneous equalities over GF (2), so we get:Theorem 5.7 For some � > 0, s < 1 and arbitrary large n's, there exists a [2; 1; s]-locally testableGF (2)-linear codes C00n � (f0; 1g2)n with minimal relative distance � and jC00nj > 2n1�o(1) .12

6 Non-Perfect Completeness for Binary CodesIn this section, we show that perfect completeness is essential for Theorem 4.1 (i.e., the upper-boundregarding non-linear binary codes admitting two-query testers).We brie
y sketch how to obtain [2; s; c]-locally testable codes over the binary alphabet withlinear distance and non-trivial rate. Indeed, by Theorem 4.1, we can only achieve this for c < 1.Since this construction and the problems it faces are very similar to the ternary codes of the previoussection, we only sketch the main ideas and point to the di�erences between the two constructions,leaving the implementation details to the interested reader.Our starting point is the code C given by Theorem 5.1, assuming a uniform tester T over m = cntests, where each test is a parity of three bits. Using the 2-CNF parity gadget of [1], we replaceeach such parity test by a 2-CNF with 12 clauses having four auxiliary variables that are dedicatedto this 2-CNF. The resulting 2-CNF gadget has the following properties:1. There exists no assignment that satis�es all 12 clauses of the resulting 2-CNF.2. Every satisfying assignment to the three original variables can be extended to an assignmentthat satis�es 11 out of the 12 clauses of the resulting 2-CNF.3. For every assignment to the three original variables that does not satisfy the parity condition,and for every assignment of the auxiliary variables, at most 10 out of the 12 clauses (of theresulting 2-CNF) are satis�ed.Our new binary code C00 is formed by taking a repetitive encoding of a word w 2 Cn (using c0 � ccopies, as in the previous section) and appending to it an assignment Aw 2 f0; 1g4m to the set ofauxiliary variables. (Recall, each of the m test is allocated 4 di�erent auxiliary variables, and Aw isan assignment to these 4m variables.) The latter assignment (i.e., Aw) will be the lexicographically�rst among all assignments that satisfy 11 out of 12 of the clauses in each resulting 2-CNF gadget.As in the ternary case, the original code will dominate distances in the new code (by virtue ofsu�cient repetitions). We do not bother to check that the assignment provided to the auxiliaryvariables is the one being lexicographically-�rst. (Actually, we do not know whether such a checkcan be implemented.) This will have the e�ect that some elements not in the code (yet extremelyclose to it) will be accepted with probability that is as high as the acceptance probability of somecodewords. Although somewhat unpleasing (see Remark 5.5), this does not contradict the de�nitionof a locally testable code. Note that, since we are dealing here with 2-CNFs (rather than 3-CNFs),it is straightforward to test (by two queries) whether a random clause is satis�able (by the providedassignment). Thus, the new codeword test operates as follows, on input ((v(1); : : : ; v(c0)); A):1. With probability 1=2, it performs a random test of proper repetitive encoding of a binarystring. That is, it selects i1; i2 2 [c0] and j 2 [n] at random, and accepts if and only if thej-th bit of v(i1) equals the j-th bit of v(i2).2. With probability 1=2, it performs a random test of satisfaction. That is, it selects a 2-clausej 2 [12m] at random, determines the indices of the two variables that appear in the j-thclause and checks whether their assignment satis�es the clause. Note that the assignmentof an original variable is obtained by looking at random at one of its copies provided in(v(1); : : : ; v(c0)), whereas the assignment of an auxiliary variables is obtained from A.Note that C00 is binary, non-linear, and essentially preserves the distance and rate of C. The abovetester has query complexity 2 (and is non-adaptive). It can be shown that it has completeness11=12, and soundness error (11 � �)=12, for some constant � > 0. We get:13

Theorem 6.1 For some � > 0, s < c = 11=12 and arbitrary large n's, there exists a [2; c; s]-locallytestable binary codes C00n � f0; 1gn with minimal relative distance � and jC00nj > 2n1�o(1) .References[1] M. Bellare, O. Goldreich and M. Sudan. Free Bits, PCPs and Non-Approximability { TowardsTight Results. SIAM Journal on Computing, Vol. 27, No. 3, pages 804{915, 1998.[2] E. Ben-Sasson, P. Harsha, S. Raskhodnikova. Some 3-CNF Properties are Hard to Test. In 35thSTOC, 2003.[3] K. Friedl and M. Sudan. Some Improvements to Total Degree Tests. In Proc. ISTCS, pages190-198, 1995.[4] O. Goldreich, S. Goldwasser, D. Ron. Property Testing and its connection to Learning andApproximation. Journal of the ACM, 45(4):653{750, July 1998.[5] O. Goldreich and M. Sudan. Locally Testable Codes and PCPs of Almost-Linear Length. In43rd FOCS, pages 13{22, 2002.[6] M. Kiwi. Probabilistically Checkable Proofs and the Testing of Hadamard-like Codes. Ph.D.Thesis, MIT, 1996.[7] R. Rubinfeld and M. Sudan. Robust characterization of polynomials with applications to pro-gram testing. SICOMP, Vol. 25(2), pages 252{271, 1996.

14

