Bounds on 2-Query Codeword Testing

Eli Ben-Sasson* Oded Goldreichf Madhu Sudan?

April 3, 2003

Abstract

We present upper bounds on the size of codes that are locally testable by querying only two
input symbols. For linear codes, we show that any 2-locally testable code with minimal distance
én over a finite field F cannot have more than [F|3/® codewords. This result holds even for
testers with two-sided error. For general (non-linear) codes we obtain the exact same bounds
on the code size as a function of the minimal distance, but our bounds apply only for binary
alphabets and one-sided error testers (i.e. with perfect completeness). Our bounds are obtained
by examining the graph induced by the set of possible pairs of queries made by a codeword
tester on a given code. We also demonstrate the tightness of our upper bounds and the essential
role of certain parameters.

Keywords: Error-correcting codes, linear codes, sublinear-time algorithms, adaptivity,

“Division of Engineering and Applied Sciences, Harvard University and Laboratory for Computer Science, Mas-
sachusetts Institute of Technology, Cambridge, MA. E-mail: eliQeecs.harvard.edu. Supported by NSF grants
CCR-0133096, CCR-9877049, CCR 0205390, and NT'T' Award MIT 2001-04.

"Department of Computer Science, Weizmann Institute of Science, Rehovot, ISRAEL. E-mail:
oded@wisdom.weizmann.ac.il. Supported by the MINERVA Foundation, Germany.

fLaboratory for Computer Science, Massachusetts Institute of Technology, 200 Technology Square, Cambridge,
MA 02139. E-mail: madhu@mit.edu. Supported in part by NSF Awards CCR 9912342, CCR 0205390, and NTT
Award MIT 2001-04.

1 Introduction

Locally testable codes are error-correcting codes that admit very efficient codeword testers. Specif-
ically, using a constant number of (random) queries, non-codewords are rejected with probability
proportional to their distance from the code.

Locally testable codes arise naturally from the study of probabilistically checkable proofs, and
were explicitly defined in [3] and systematically studied in [5]. The task of testing a code locally
may also be viewed as a special case of the general task of property testing initiated by [7, 4], where
the property being tested here is that of being a codeword. In this paper we explore codes that
can be tested with constant queries.

We focus on codes C C X" that have large distance (i.e., each pair of codewords differ in at
least ©(n) coordinates) and large size (i.e., at the very least, |C| should grow with n and ||). Such
codes are known to exist. Specifically, in [5] locally testable codes are shown such that |C| = |S|*
for k = n'—°(), We highlight two of these results:

1. For ¥ = {0,1}, three queries are shown to suffice. Furthermore, these codes are linear.
2. For |3| > 2, two queries are shown to suffice.!

This raises the question of whether locally testable codes can exist also for ¥ = {0,1} and when
considering two-query testers. In this paper, we show that the answer is essentially negative; that
is, for codes of linear distance, such codes can contain only a constant number of codewords. More
general statements are provided by Theorems 3.1 and 4.1, which address linear codes over arbitrary
fields and non-linear binary codes, respectively. We also address the tightness of our upper-bounds
and the essential role of certain parameters.

Organization: In Section 2 we present the main definitions used in this paper. In Section 3 we
study linear codes that admit two-query codeword testers. In Section 4 we study general binary
codes that admit two-query codeword testers (of perfect completeness). In Section 5 we show that
our upper-bounds cease to hold already at ternary alphabets (rather than with the much larger
alphabets considered in [5] and mentioned in Item 1 above). Finally, in Section 6, we show that
perfect completeness is essential for the results regarding non-linear binary codes (presented in
Section 4).

2 Formal Setting

We consider words over an alphabet X. For w € X" and i € [n], we denote by w; the i-th symbol
of w; that is, w = wy - - - wy,.

2.1 Codes

We consider codes C C X" over a finite size alphabet ¥. The blocklength of C is n, and the size
of C is its cardinality |C|. We use normalized Hamming distance as our distance measure; that is,
for u,v € X" the distance A(u,v) is defined as the number of locations on which « and v differ,

'We comment that these codes are linear in a certain sense. Specifically, ¥ is a vector space over a field F', and
the code is a linear subspace over F' (rather than over). That is, if ¥ = F* then C C X" is a linear subspace of
F™* (but not of £™, no matter what finite field we associate with £). In the coding literature such codes are called
F-linear. Indeed, a 2-query tester for an F-linear code over & = F'* checks that the two symbols read (viewed as two
sequences over F') satisfy a linear constraint over F'.

divided by n (i.e., A(u,v) = |{i : u; # v;}|/n). The relative minimal distance of a code, denoted
6(C), is the minimal normalized Hamming distance between two distinct codewords. Formally

6(C) = min {A(u,v)}

The distance of a word w from the code, denoted A(w,C) is minyec{A(w,v)}.

A code is called redundant if its projection on some coordinate is constant (i.e., there exists
i € {1,...,n} such that for any two codewords w,w’ it holds that w; = w}). A redundant code can
be projected on all non-redundant coordinates, yielding a code with the same size and distance,
but smaller blocklength. Thus, w.l.o.g., we assume all codes to be non-redundant.

Typically (in this paper) ¥ is a finite field F and we view F" as a vector space over F. In
particular, for u,v € F" the of the two is (v,u) = > ", v; - u; (all arithmetic operations are in
[F). The weight of v € F", denoted wt(v), is the number of non-zero elements in v. In this case

Au,v) = wt(u — v)/n.

2.2 Testers and tests

By a codeword tester (or simply tester) with query complexity ¢, completeness ¢ and soundness s (for
the code C C X") we mean a randomized oracle machine that given oracle access to w € X" (viewed
as a function w: {1,...,n} —) satisfies the following three conditions:

e Query Complexity g: The tester makes at most ¢ queries to w.

e Completeness: For any w € C, given oracle access to w the tester accepts with probability at
least c.

e Soundness: For any w that is at relative distance at least 6(C)/3 from C, given oracle access
to w, the tester accepts with probability at most s.?

If C has a codeword tester with query complexity ¢, completeness ¢ and soundness s we say C is
[g, ¢, s]-locally testable.

A deterministic test (or simply test) with query complexity ¢ is a deterministic oracle machine
that given oracle access to w € ™ makes at most ¢ queries to w, and outputs 1 (= accept) or 0 (=
reject). Any (randomized) tester can be described as a distribution over deterministic tests, and
we adopt this view throughout the text.

A (deterministic) test is called adaptive if its queries depend on previous answers of the oracle,
and otherwise it is called non-adaptive. A test has perfect completeness if it accepts all codewords.
Both notions extend to (randomized) testers. Alternatively, we say that a tester is non-adaptive
(resp., has perfect completeness) if all the deterministic tests that it uses are non-adaptive (resp.,
have perfect completeness resp.), and otherwise it is adaptive (resp., has non-perfect completeness).

3 Linear Codes

In this section we show that [2,¢, s]-locally testable linear codes with constant minimal relative
distance must have very small size. Throughout this section F is a finite field of size |F|. A code
C C F" is called linear if it is a linear subspace of F". The main result of this section is the following.

2We have set the detection radius of the tester at third its distance (i.e., for any w whose distance from C is at
least % - 6(C) the test rejects with probability at least s). As will be evident from the proofs, our results hold for any
radius less than half the distance.

Theorem 3.1 Let C C F" be a [2,c, s|-locally testable linear code with minimal relative distance 6.
If ¢ > s then
c] < [F*/?

We start by pointing out that, when considering testers for linear codes, the tester can be assumed
to be non-adaptive and with perfect completeness. This holds by the following result of [2].

Theorem 3.2 [2]: If a linear code (over any finite field) is [q, ¢, s]-locally testable using an adaptive
tester, then it is [q,1,1 — (¢ — s)]-locally testable using a non-adaptive tester.

Notice that if we start off with a tester having completeness greater than soundness (¢ > s),
then the resulting non-adaptive, perfect-completeness tester (guaranteed by Theorem 3.2) will
have soundness strictly less than 1. Thus, in order to prove Theorem 3.1 it suffices to show the
following.

Theorem 3.3 Let C CF" be a (2,1, s|-locally testable linear code, with s < 1, and let the minimal
relative distance be 6. Then:
C| < [FP*/°

In the rest of the section we prove Theorem 3.3. The proof idea is as follows. Each possible
test of query complexity 2 and perfect completeness imposes a constraint on the code, because all
codewords must pass the test. Thus, we view the n codeword coordinates as variables and the
set of tests as inducing constraints on these variables (i.e., codewords correspond to assignments
(to the variables) that satisfy all these constraints). Since the code is linear, each test imposes a
linear constraint on the pair of variables queried by it. (A linear constraint on the variables x,y
has the form az + by = 0 for some fixed a,b € F). We will show that in a code of large distance,
these constraints induce very few satisfying assignments. Specifically, we look at the graph in
which the vertices are the (n) codeword-coordinates (or variables) and edges connect two vertices
that share a test. The main observation is that in any codeword, the value of all variables in a
connected component are determined by the value of any one variable in the component; that is,
the assignment to a single variable determines the assignment to the whole component. By perfect
completeness, any word that satisfies all constraints in all connected components will pass all tests.
Hence there cannot be many variables in small connected components, for then we could find a
word that is far from the code and yet is accepted with probability 1. But this means that the code
is essentially determined by the (small number of) large connected components, and hence the size
of the code is small. We now give the details, starting with a brief discussion of dual codes which
is followed by the proof.

3.1 Linearity Tests and Dual Codes

Recall that C C F" is linear iff for all w,v € C we have u +v € C. In this case §(C) =
mingec{wt(w)/n}. As pointed out in [6], codeword tests for linear codes are intimately related
to the “dual” of the code. For a linear code C, the dual code C* is defined as the subspace of F”

orthogonal to C, i.e.
Ct={v:vlC}

where v L C iff for all w € C, v L u (recall v L u iff (v,u) =0).
The support of a vector v, denoted Supp(v), is the set of indices of non-zero entries. Similarly,
the support of a test 7" is the set of indices it queries. Notice that a non-adaptive test with query

complexity ¢ has support size q. For v,u € " we say that v covers u if Supp(v) O Supp(u). A
test is called trivial if it always accepts. Elementary linear algebra gives the following claim.

Proposition 3.4 The support of any non-trivial perfect-completeness test for C covers an element

of C+\ {0"}.

Clearly one can assume that all tests used by a tester are non-trivial. We also assume C* has
no element of weight 1, because otherwise C is redundant. Since we consider only testers that make
two queries, it follows that all tests they use have support size exactly two.

3.2 Upper Bounds on Code Size

By the above discussion (i.e., end of Section 3.1), we may assume (w.l.o.g.) that the [2,1, s]-tester
for C is described by a distribution over

C & (vect:wtv) =2}

The test corresponding to v € C2L refers to the orthogonality of v and the oracle w; that is, the test
accepts w if v L w and rejects otherwise.> We now look at C5- and bound the size of (C3)*. Our
theorem will follow because C C (C5-)*.

The set Cy- gives rise to a natural graph, denoted G¢. The vertex set of G¢ is V(Ge) = {1,...,n}
and (i,j) € E(Gc) iff there exists v;; € C3 with Supp(v;;) = {4, 5}

The key observation is that, for any edge (¢,7) € E(G¢) there is some ¢;; € '\ {0} such that
for any w € C it holds that w; = ¢;; - w;. To see this, notice the constraint corresponding to (3, 7)
can be written as a;;w; + bjjw; = 0, where a;;,b;; € F'\ {0} (if either a;; or b;; are 0 then v;; has
support size one, meaning C is redundant). So, by transitivity, the value of w on all variables in
the connected component of i, is determined by w;. (Moreover, all these values are non-zero iff
w; # 0.) Assuming that the number of connected components is k, this implies that there can be
at most |F|¥ different codewords (because there are only k degrees of freedom corresponding to the
settings (of all variables) in each of the & components). To derive the desired bound we partition
the components into big and small ones, and bound the number of codewords as a function of the
number of big components (while showing that the small components do not matter).

Let C4,...,Cy be the connected components of G¢. We call a component small if its cardinality
is less than én/3. Without loss of generality, let Cp,...Cs be all the small components, and let
S =J;_, C;i denote their union.

Claim 3.5 |S| < 26n/3.
Proof: Otherwise there exists I C {1,...,s} such that

n/3 <> |Cy| < 26n/3
el

For every i € I, we consider a vector w’ € (C5-)* with Supp(w’) = C;. To see that such a vector
exist, set an arbitrary coordinate of C; to 1 (which is possible because the code is not redundent) and
force non-zero values to all other coordinates in C; (by virtue of the above discussion). Furthermore,
note that this leaves all coordinates out of C; unset, and that the resulting w® satisfy all tests in

*Notice that since wt(v) = 2 such a test amounts to two queries into w.

C5- (where the test that correspond to the edges in C; are satified by our setting of the non-zero
values, whereas all other tests refer to vertices out of C; and are satisfied by zero values). Now,
define w = Y_,c; w'. By definition, we have Supp(w) = S, and 6n/3 < wt(w) < 26n/3 follows by
the hypothesis. Hence, A(w,C) > §/3.

On the other hand, w is orthogonal to Cy. To see this, consider any v € C*. If Supp(v) C C;,
for some ¢ € I, then the “view v has of w” (i.e. the values of the coordinates v queries) is identical
to the view v has of the codeword w’, and so (v, w) = (v,w") = 0. Otherwise (i.e., Supp(v) has
empty intersection with S), by definition v “sees” only zeros, and so (v, w) = 0.

We conclude w is g—far from C, yet it passes all possible tests of query complexity two. This
contradicts the soundness condition, and the claim follows. L]

Proof (of Theorem 3.3): Assume for the sake of contradiction that
c| > E>/°

Recall that (by the “key observation”) the values of all variables in a connected component are
determined by the value of a single variable in this component. Since there are at most 3/6
large connected components in G¢ (because each has cardinality at least én/3), the contradiction
hypothesis implies that there exist two codewords x # y that agree on all variables that reside
in the large connected components. Indeed, these two codewords « # y, may differ on variables
that reside in the small connected components (i.e., variables in S), but Claim 3.5 says that there
are few such variables (i.e.. |S| < 26m/3). By linearity x —y € C (but z —y # 0"), and so
0 < wt(z —y) < |S| < én. We have reached a contradiction (because C has distance ¢), and
Theorem 3.3 follows. |

3.3 Tightness of the Upper Bound

We remark that our upper bound is quite tight. For any ¢ < 1, consider the following code C,, C F"
formed by taking 1/6 elements of F and repeating each one of them én times. Thus, a codeword in
C,, is formed of 1/¢ blocks, each block of the form €™ for some e € F (here e means k repetitions
of e).

Proposition 3.6 C, is a linear [2,1,1 — %]—loeally testable code with minimal relative distance 6
and size |F|'/¢.

For instance, taking F = GF(2), the soundness parameter in the proposition is 1 — §/3.

Proof: The linearity, distance and size of C, are self-evident. Counsider the following natural
tester for C,: Select a random block, read two random elements in it, and accept iff the two are
equal. This tester has perfect completeness and query complexity 2. As to the soundness, let
k =1/6 and write v € F* as (v, ... v®)), where v(®) is the i-th block of v (i.e., |[v®)| = én). The
Hamming distance of v from C, is the sum of the Hamming distances of the individual blocks v(*)
from the code B = {¢®" : e € F}.

Suppose v has relative distance at least §/3 from C,. Let 6; denote the relative distance of v(®
from B. Then, % Zle 6; > 6/3 (and 6, <1 — ﬁ) The acceptance probability of the tester equals

k

IS @2 = 1

=1

k
> (1—=6)-6;
=1

El V)

= k|]F| Z‘S

<1 2
D

where the first inequality is due to ¢; <1 — ﬁ. Thus, the soundness parameter is as claimed. [

4 Non-Linear Codes

In this section we provide upper bounds on the code size of arbitrary (i.e., possibly non-linear) 2-
locally testable codes. Our bounds apply only to binary codes and testers with perfect completeness,
and with good reason: There exist good 2-testable binary codes with non-perfect completeness (see
Section 6) and there exist good 2-testable codes with perfect completeness over ternary alphabets
(see Section 5). Our main result is:

Theorem 4.1 IfC C {0,1}" is a [2,1, s|-locally testable code with minimal relative distance 6 and
s <1, then
|C| < 23/6

The proof (presented below) generalizes that of the binary linear case (binary means F = GF(2)),
with some necessary modifications, which we briefly outline now. In the binary linear case a test
querying x; and x; forces x; = x; for all codewords (this is the only possible linear constraint of
size two over GF2). In that case, the set of all tests corresponds to an undirected graph in which
each connected component forces all variables to have the same value. In the non-linear case a test
(adaptive or non-adaptive) corresponds to a 2-CNF. (Recall that in both cases we deal with perfect
completeness testers.) The set of all tests (which is itself a 2-CNF') corresponds to a directed graph
of constraints on codewords, where the constraint x; V z; translates to the pair of directed edges
Z; — xj and T; — x;. In the resulting directed graph, a strongly connected component takes the
role played by the connected component in the linear case. Namely, for any codeword, all variables
in a strongly connected component are fixed by the value of a single variable in the component. As
in the linear case, we use the properties of the code and its tester (i.e., the code’s large distance
and the fact that the tester rejects any word that is far from the code with non-zero probability)
to show that the weight of the small strongly connected components is small. Hence, the code is
determined by a small number of large connected components.

Proof of Theorem 4.1

Again, we view the n codeword coordinates as variables and the set of tests (which are 2-CNF's) as
inducing constraints on these variables. Let F be the conjunction of all non-trivial deterministic
tests that are used by a 2-query tester that has perfect completeness with respect to C. We look at
the satisfying assignments of F, and use this to bound the size of C. If F includes a clause of size
1 then C is redundant. Thus, assuming non-redundancy of C implies that F is can be represented
by a 2-CNF in which each clause has exactly two literals.

We examine the following directed graph Gxz. The vertex set of Gx is the set of literals
{21,Z1 ..., 20, Ty }. For each clause (£V {') € F we introduce in G one directed edge from £ to £,
and one from ¢’ to £. We use the notation £~ ¢’ to indicate the existence of a directed path from

¢ to ¢ in Gr. We use the notation w(f) to denote the value of literal ¢ under assignment w to the
underlying variables. Identifying True with 1 and False with 0, we have

Claim 4.2 (folklore): The following two conditions are equivalent
1. The assignment w satisfies F.

2. For every directed edge { ~ (' it holds that w({) < w({").

A strongly connected component in a directed graph G is a maximal set of vertices C C V(G) such
that for any v,v’ € C it holds that v ~» v’. For two strongly connected components C and C’ in
G, we say C ~ C' iff there exist v € C and v’ € C' such that v ~ v’. (Indeed, this happens iff for
all v € C,v' € C' it holds that v~ v'.)

By Claim 4.2, w satisfies all constraints corresponding to edges of a strongly connected com-
ponent C iff w(¢) = w(l’) for all ¢, € C. So, any satisfying assignment w either sets to 1 all
literals in C, or sets them all to 0. In the first case we say that w(C) =1 and in the latter we say
w(C) = 0.

Let L be the set of literals belonging to large strongly-connected components, where a component
is called large iff its cardinality is at least én/3. Consider an arbitrary assignment p’ to the variables
of L that can be extended to a satisfying assignment (to F). In particular, p’ does not falsify any
clause of F (i.e., no clause of F is set to 0 by p'). A literal £ ¢ L is said to be forced by p’ if there
exists ¢ € L such that ¢/ ~ ¢ and p/(¢') = 1. This is because any satisfying assignment to F that
extends p’ must set £ to 1 (since for such an assignment p it must holds that p(f) > p(¢') = 1.
Indeed, the complementary literal (i.e., £) is forced to 0. Let p be the closure of p’ obtained by
(iteratively) fixing all forced literals to the value 1 (and their complementary literals to 0). By
definition, p does not falsify F. Let S, be the set of unfixed variables under p.

Claim 4.3 For any closure p of an assignment that satisfies L, it holds that |S,| < 26n/3.

Proof: Otherwise, let Cy,...,Cy be a topological ordering of the unfixed strongly connected
components comprising S,, where the ordering is according to ~+ (as defined above). (Indeed, the
digraph defined on the C;’s by ~ is acyclic.) For j =0,...,k, let v\ be the assignment extending
p defined by:
: 0 i<j

U(J)(Cz) = { 1 i>j
By Claim 4.2, each assignment v\/) satisfies F. Since C is 2-locally testable with soundness s < 1,
each word that is at distance at least 6/3 from C must falsify some clause in F. But since v()
satisfies F, it must be that vU) is within distance §/3 from some codeword, denoted w'). By
the constradiction hypothesis, we have A(v(®) v(*¥)) = |S,|/n > 26/3, which implies w©® £ k)
(because A(v(® v®)) < AW w®) + A(w®, w®) + A(w®), v*)), which is upper-bounded by
2-(6/3) + A(w®, w®)). It follows that

AR w®) > A(w® w®) — Aw® v*)) > 6§ — (§/3) = 26/3

On the other hand, recall that A(v(9,w(®)) < §/3. Since, for each j, it holds that A(v@),vU+1) <
§/3 (because |C;| < 6n/3), there must be j € {0,1,...,k} such that §/3 < A(v(),w(®)) < 26/3.
For this 7, it holds that A(v\¥),C) > §/3. But vU) satisfies F and so it is accepted by the tester
with probability 1, in contradiction to the soundness condition. L]

Our proof is nearly complete. As in the proof of Theorem 3.3, assume for the sake of contra-
diction that
ic| > 2%/3

In this case, there must be two distinct codewords w # w that agree on all large connected compo-
nents. Let p’ be the restriction of w to the variables of the large connected components. That is,
p' agrees with w and with u on the assignment to all variables in L and is unfixed otherwise. Let p
be the closure of p' (obtained by forcing as above). Note that w and u are satisfying assignments
to F that agree on p, so they also must agree on p (which is forced by p’). Thus, by Claim 4.3

0 < Au,w) < |S,]/n <6

This contradicts the hypothesis that the minimal distance of C is 6, and the theorem follows. |

5 Ternary Alphabets

In this section we show that our general upper-bound (i.e., Theorem 4.1) ceases to hold already at
ternary alphabets. That is, we present (non-linear) ternary codes admitting two-query testers. We
also show that, in contrast to Theorem 3.1 (which refers to linear codes), there exist good GF(2)-
linear codes over the alphabet {0,1}? that admit two-query testers. The latter construction is
postponed to Section 5.4, and we first focus on the construction of ternary codes.

5.1 Outline

In this section we present [2,1, s]-locally testable codes, over ternary alphabets, that have linear
distance® and non-trivial rate. We start with a good linear [3, 1, s]-locally testable code C C {0,1}"
over the binary alphabet (cf. [5]), where each test is defined by a parity constraint over three
variables. We replace each parity by the four clauses that encode it as a 3-CNF, where the variables
correspond to the bits of the alleged codeword. Let F' be the set of all clauses used by our tester
for C. We think of C as the set of satisfying assignments to F. Our new ternary code C’ is formed
by appending to each codeword w € C a list L € {0,1,2}*, which for each clause C' € F specifies
the literal satisfying C' under the assignment w. Our new tester 7' for C’ selects a random clause
from F, reads the index of the purported satisfying literal, and verifies that w indeed assigns to
this literal the value that satisfies C'. This naive strategy faces a couple of problems that we briefly
discuss and show how to solve.

e The most obvious problem is that (as defined above) C’ has distance 1. The reason is that,
for any w € C, there are many lists L € {0,1,2}* such that (w,L) € C’, and some of these
lists differ only in one location. Specifically, if w satisfies more than one of the literals of a
clause C' € F' (which is the case for any w € C and some of C € F'), then we can choose to
put in our list (at the position corresponding to C') the index of any of these literals.

This problem is resolved by enforcing a unique list L,, for each w € C; specifically, we require
that, for each clause, the list includes the smallest index of a satisfiable literal in the clause.
Furthermore, we enforce the use of this unique list by augmenting the tester such that it

*Recall that G F(2)-linear codes over the alphabet {0,1}? are different from linear codes over {0,1}>. See discus-
sions in Footnote 1 and in Section 5.4.

®To get meaningful results on local testability one must assume large minimal distance. Otherwise, the trivial
code C = {0,1}" has rate 1 and is [0, 1, 0]-locally testable.

sometimes emulates the basic tester (outlined above) and otherwise verifies the uniqueness
property. Specifically, the new tester sometimes checks that the purported literal satisfies the
clause, and sometimes checks that a literal with a smaller index does not satisfy this clause.

e A second obvious problem is that the blocklength of the new code is likely to be dominated
by the size of the appended list, whereas the distance might be as small as that of the original
code (here we refer to the non-relative distance). Indeed, for C C {0,1}", the tester for C
might use as many as () distinct tests (and thus we may have |F| = ©(n?)). While C has
good minimal distance, we have no similar guarantee on the distance between unique lists of
distinct codewords in C. For all we know there might be two distinct words in C that share
the same unique list. Thus, we might end up with a code of blocklength ~ n3 and minimal
(absolute) distance én. There is not much hope for showing the local testability of such a
code, because changing én/3 symbols in the unique list of a codeword w will hardly be noticed
by our tester.

This problem is easily resolved by repeating each bit of the original code sufficiently many
times (i.e., ©(|F|/n) repetitions will do). Indeed, we have to check that the corresponding
part of the new codeword is of the right format; that is, we sometimes check that two random
copies of the same bit-location hold the same value.

To improve the rate® of the new code (i.e., maintain the rate of the original code), we will
first modify the given tester so that it only uses O(n) (rather than O(n?)) distinct tests.

We comment that an alternative approach towards resolving the second problem may capitalize on
the fact that the unique valid lists associated with codewords of the original code must be far apart
from one another. This fact can be proved by observing that a random test (of the original tester)
is likely to read different values from the two codewords, and thus some of the corresponding four
clauses are (uniquely) satisfied by literals of different index.

5.2 Uniform Testers

Our starting point is the following construction of [5], which gives linear locally testable codes over
the binary alphabet with linear distance and pretty good rate. In what follows, it will be convenient
to use a tester with detection radius ¢/4 (where ¢ is the minimal distance of the code), so we state
the theorem with this additional property.

Theorem 5.1 [5, Prop. 5.9]: There exist constants 1 > s,6 > 0 such that for arbitrarily large
integers n there exist linear [3, 1, s]-locally testable codes C,, C {0, 1}"™, with relative minimal distance
at least 6 and size |Cp| = gn/ exp(log”*n) Moreover, there exists a tester T for this code, such that
any word that is (at least) 6/4-far from C is accepted by T with probability at most s (and words in
C are accepted with probability 1).

Recall that a tester is a distribution over tests. Our first observation is that this distribution can
be assumed to be uniform over a set of O(n) tests, in which case we say that tester is uniform. This
fact was established in [5, Prop. 5.8]. (Actually, as in our case, [5, Prop. 5.8] was established as a
preparatory step towards establishing [5, Prop. 5.9].) From now on we assume the tester for the
[3,1, s]-locally testable code C,, C {0,1}" is uniform and the number of tests m is linear in n.

®The rate of C C {0,1}™ is defined as (log, |C|)/n.

5.3 Ternary Code Construction and Analysis

Recall that ¢ % ¢, C {0,1}™ is a (binary) linear [3,1, s|-locally testable code over the binary

alphabet that has a uniform tester over a set of m = cn tests, where each test is a parity check of
three variables (corresponding to locations in the codeword). Following the discussion in Section 3.1,
we replace each such parity test by the four corresponding clauses (each of size 3), and let F’ denote
the resulting sequence of m clauses. We view an element v € {0,1}" as an assignment to the CNF
F. The perfect completeness of the tester means every w € C, is a satisfying assignment of F.
Now, for some constant integer ¢’ > ¢ (to be determined), we consider the following code.

Construction 5.2 (Our Ternary Code): Let C' C ({0,1}")¢ x {1,2,3}*™, viewed as a subset of
{0,1,2Y¢"F be the set of all pairs of the form ((vV, ..., v(¢)), (£, .., Lay)) for which there exists
w € C such that the following two conditions holds

1. (v(l), . ,v(cl)) is a repetitive encoding of w; that is, for i = 1,...,c, it holds that v = .

2. (ly,...,Lyy) indicates the lexicographically first sequence of literals that satisfies F'; that is,
for every 5 = 1,..,4m, it holds that the {;-th literal of C; satisfies this clause whereas for
every © < {; the i-th literal of this clause does not satisfy it.

Recall that m = cn.

Note that the absolute distance of C’ is lower-bounded by ¢ times the absolute distance of C. Thus,
the relative distance §(C’) is lower bounded by ¢ - §(C) - n/(¢'n 4 ¢n), which in turn is greater than
6(C)/2 (because ¢ > ¢). In fact, we can achieve 6(C') > (1 —) - 6(C) for any v > 0, by selecting ¢/
to be a sufficiently large constant. Under this setting, C' maintains the asymptotic rate of C up to
a constant factor, because

logg [C'| 1 log, |C] S 1 1
dn+cen (d +c)logy3 n 2(¢ +¢) exp(log®ln)

and the loss of a factor of 2(¢/ + ¢) in the rate is not significant.

Construction 5.3 (Our tester 77((v(V, ... v, (01,... lam))): We assume, for simplicity, that
(M, .., 0)) € {0,1}™ and (L1,...,4un) € {1,2,3Y*™. This assumption can be enforced by an
adequate translation.

1. With probability 1/2, perform a random test of proper repetitive encoding of a binary string.
That 1s, we check if a random wvariable is assigned the same boolean value by two random
copies. Specifically, select uniformly copies i1,i9 € [¢/] and a variable j € [n|, and accept if
and only if the j-th symbol of v") equals the j-th symbol of v(*2) and this symbol is in {0,1}.

2. With probability 1/2, perform a random test of lexicographically-first satisfaction. That is,
we check if a random wvariable in a random clause is assigned (in a random copy) a value
that 1s consistent with the lexicographically-first satisfying variable as indicated by the list.
Specifically, uniformly select a clause j1 € [m], a position in it jo € [3], and a copy i € [¢'], let
idx(j1,2) € [n] be the index of the variable that appears as the ja-th variable in Cj, , obtain

the value v — v\’ € {0,1} and the indicator £ «— £, € [3], and accept if and only if the

: idx(j1,j2)
following holds

10

(a) In case jo = L, we accept if and only if the iy-th literal in Cj, is satisfied when assigning
v to the corresponding variable.

(b) In case jo < {, we accept if and only if the iy-th literal in Cj, is not satisfied when
assigning v to the corresponding variable.

(c) In case jo > L, we always accept.

Notice that 7”7 has query complexity 2 (and is non-adaptive). It is also easy to see that it has
perfect completeness. It is left to analyze the soundness of T".

Lemma 5.4 For some constant s' < 1 the following holds. For every ((v(V, ..., v()), L1y lym))
that is at relative distance at least 6(C')/3 from C', the tester T" accepts ((U(1 N, (L1, lam))
with probability at most s'.

Proof: In the following proof we refer to distances of various strings from three different codes,
having different blocklength. Thus, it will be less confusing to refer to absolute distnaces (rather
than to relative ones). Thus, throughout this proof, we always make reference also to absolute
distance.

We consider two cases with respect to the distance of (v(l), . ,U(C’)) from the repetition code.
For some € > 0 (to be determined below), the easy case is when (v(1), ..., v(¢)) is e-far from being
a repetitive encoding of any binary string (i.e., (v, ... v(¢)) € {0,1}‘3’” is at distance at least
ec’n from the repetition code). In this case, by virtue of the first sub-tester of 7", the sequence
(D, o) (0, ... la)) is rejected with constant probability.

Otherwise, (v(1),... (<)) is e-close to such a repetitive encoding of some string w € {0,1}"
(ie., (v, ... () € {0,1}¢™ is at distance at most e¢'n from w® (i.e., w repeated C' times)).
This means that at least half of the v(?)’s are at distance at most 2en from w. On the other hand,

since (£1,...,¢4,) accounts for 4cn locations in the code €' and (v, ..., v()), (¢1,... lym)) is

at distance at least d = 6(C) - (¢'n + 4en) from €', it follows that (v(V),... v(¢)) is at distance at

least d — 4cn from some repetltive encoding of a codeword of C. Thus, by the triangle inequality,
the distance of w from C must be at least

mingee {dist((v®, ... v, u)} — dist((vD), ... 0, w)

/

c
d —4cen — edn
2
6(C") 4e
> (T—F—e)-n (1)

We take ¢ large enough and e small enough, so that Eq. (1) is greater than (@ +2¢) - n. Recalling
that at least half of the v(9’s are at distnace at most 2en from w, it follows that these v()’s are
at distance at least (6(C)/4) - n from C. Recall that, in case jo = ¢ (which occurs with probability
1/3), the second subtester of 7" emulates the codeword tester of C on a randomly chosen v, With
probability at least one half, such a random () will be at least (6(C)/4)- from C, and hence the
test rejects with some constant probability. The lemma follows.]

Remark 5.5 We did not use the fact that the tester T' checks whether the list ({1, ..., lyy,) is the
lexicographically-first suitable one in our soundness analysis. The reason for adding these tests is
aesthetic: it ensures that all non-codewords are rejected by T' with positive probability. Thus, a
string is in C' if and only if it is accepted by T' with probability 1.

11

Combining the above, we obtain:

Theorem 5.6 For some 6 > 0, s < 1 and arbitrary large n’s, there exist [2,1, s]-locally testable
ternary codes C,, C {0,1,2}" with minimal relative distance 6 and |C]| > gnt=eM)

5.4 GF(2)-Linear Codes over {0,1}?

The notion of G F(2)-linearity used here refers to viewing {0,1}? as a vector space (of dimension 2)
over the two-element field GF(2), and requires the codewords (viewed as sequences over GF(2))
to satisfy linear constraints over GF'(2). Thus, the codeword tester checks that the symbols read
(viewed as 2-sequences over GF(2)) satisfy a linear constraint over GF(2). (Indeed, this is the
notion discussed in Footnote 1.)

We briefly sketch how to obtain [2,s,1]-locally testable codes over the four symbol alphabet
{0,1}? that are GF(2)-linear, have linear distance and non-trivial rate. This improves over a
corresponding result of [5] that achieves similar features for much larger alphabet (i.e., the alphabet
size grows with the blocklength, n).

Our starting point is the binary code C, given by Theorem 5.1, assuming a uniform tester 7T°
over m = cn tests, where each test is a parity of three bits. We view this code as a code C], over
¥ = {0,1}2, say, by encoding each bit b by the symbol 0b. Our new code, denoted C”, is formed
by taking a repetitive encoding of a word w € C/, (using ¢’ > ¢ copies, as in Section 5.3) and
appending to it the assignment 4, € ({0,1}2)™ to the first two variables in each test. Clearly, C!/
is GF(2)-linear. Furthermore, as in Section 5.3, the distances in the new code are dominated by
these in the old code and thus the code’s distance and rate are as desired. We now turn to the
new codeword tester: Essentially this tester checks that the first part properly encodes some binary
string and that the auxiliary part matches the first part (and the parity conditions). That is, on
input (v, ..., v(¢)), A), the tester proceeds as follows:

1. With probability 1/2, it performs a random test of proper repetitive encoding of a binary
string. That is, it selects i1,y € [¢/] and j € [n| at random, and accepts if and only if the
j-th symbol of v(1) equals the j-th symbol of v(®2) and this symbol is in {00,01}.

2. With probability 1/2, it performs a random test of consistency and parity. That is, it select
an original test j € [m] and an index ¢ € [3] at random, and checks whether the j-th symbol
of A matches the value of a random copy of the i-th variable of the j-th original test. Letting
idx;(j) € [n] denote the index of the variable that appears as the i-th variable of the j-th
original test, we consider two cases:

(a) In case i € {1,2}, we compare the i-th coordinate of the j-th symbol of A with the
second coordinate of the idx;(j)-th entry in v(2), where iy is uniformly selected in [¢/].

(b) In case i = 3, we compare the sum of the two coordinates of the j-th symbol of A with
the second coordinate of the idx;(j)-th entry in v(®) where again i is uniformly selected

in [].
Thus, the first sub-tester enforces that (v(l), . ,U(C’)) is close to a proper encoding of a binary
string, whereas the second sub-tester enforces consistency of (v, ..., v(¢)) and A (by the first

case) as well as emulates the original tester 7' (by the second case). Notice that all tests performed
are homogeneous equalities over GF'(2), so we get:

Theorem 5.7 For some 6 >0, s < 1 and arbitrary large n’s, there exists a [2,1, s|-locally testable
GF(2)-linear codes C"' C ({0,1}%)" with minimal relative distance § and |C"| > 27 "%

12

6 Non-Perfect Completeness for Binary Codes

In this section, we show that perfect completeness is essential for Theorem 4.1 (i.e., the upper-bound
regarding non-linear binary codes admitting two-query testers).

We briefly sketch how to obtain [2, s, c]-locally testable codes over the binary alphabet with
linear distance and non-trivial rate. Indeed, by Theorem 4.1, we can only achieve this for ¢ < 1.
Since this construction and the problems it faces are very similar to the ternary codes of the previous
section, we only sketch the main ideas and point to the differences between the two constructions,
leaving the implementation details to the interested reader.

Our starting point is the code C given by Theorem 5.1, assuming a uniform tester 7" over m = ¢n
tests, where each test is a parity of three bits. Using the 2-CNF parity gadget of [1], we replace
each such parity test by a 2-CNF with 12 clauses having four auxiliary variables that are dedicated
to this 2-CNF. The resulting 2-CNF gadget has the following properties:

1. There exists no assignment that satisfies all 12 clauses of the resulting 2-CNF.

2. Every satisfying assignment to the three original variables can be extended to an assignment
that satisfies 11 out of the 12 clauses of the resulting 2-CNF.

3. For every assignment to the three original variables that does not satisfy the parity condition,
and for every assignment of the auxiliary variables, at most 10 out of the 12 clauses (of the
resulting 2-CNF) are satisfied.

Our new binary code C” is formed by taking a repetitive encoding of a word w € C,, (using ¢ > ¢
copies, as in the previous section) and appending to it an assignment A, € {0,1}*™ to the set of
auxiliary variables. (Recall, each of the m test is allocated 4 different auxiliary variables, and A, is
an assignment to these 4m variables.) The latter assignment (i.e., A,,) will be the lexicographically
first among all assignments that satisfy 11 out of 12 of the clauses in each resulting 2-CNF gadget.
As in the ternary case, the original code will dominate distances in the new code (by virtue of
sufficient repetitions). We do not bother to check that the assignment provided to the auxiliary
variables is the one being lexicographically-first. (Actually, we do not know whether such a check
can be implemented.) This will have the effect that some elements not in the code (yet extremely
close to it) will be accepted with probability that is as high as the acceptance probability of some
codewords. Although somewhat unpleasing (see Remark 5.5), this does not contradict the definition
of a locally testable code. Note that, since we are dealing here with 2-CNFs (rather than 3-CNFs),
it is straightforward to test (by two queries) whether a random clause is satisfiable (by the provided
assignment). Thus, the new codeword test operates as follows, on input ((v(), ... v(¢)), A):

1. With probability 1/2, it performs a random test of proper repetitive encoding of a binary
string. That is, it selects i1,is € [/] and j € [n] at random, and accepts if and only if the
j-th bit of v(1) equals the j-th bit of v(%2).

2. With probability 1/2, it performs a random test of satisfaction. That is, it selects a 2-clause
J € [12m] at random, determines the indices of the two variables that appear in the j-th
clause and checks whether their assignment satisfies the clause. Note that the assignment
of an original variable is obtained by looking at random at one of its copies provided in
(v, ... ,U(C’)), whereas the assignment of an auxiliary variables is obtained from A.

Note that C” is binary, non-linear, and essentially preserves the distance and rate of C. The above
tester has query complexity 2 (and is non-adaptive). It can be shown that it has completeness
11/12, and soundness error (11 — €)/12, for some constant ¢ > 0. We get:

13

Theorem 6.1 For some 6 > 0, s < ¢ =11/12 and arbitrary large n’s, there exists a [2, ¢, s|-locally

testable binary codes C|! C {0,1}™ with minimal relative distance 6 and |Cp1| > 2"

1—o0(1)

References

[1]

2]

[5]

[6]

M. Bellare, O. Goldreich and M. Sudan. Free Bits, PCPs and Non-Approximability — Towards
Tight Results. SIAM Journal on Computing, Vol. 27, No. 3, pages 804-915, 1998.

E. Ben-Sasson, P. Harsha, S. Raskhodnikova. Some 3-CNF Properties are Hard to Test. In 35th
STOC, 2003.

K. Friedl and M. Sudan. Some Improvements to Total Degree Tests. In Proc. ISTCS, pages
190-198, 1995.

O. Goldreich, S. Goldwasser, D. Ron. Property Testing and its connection to Learning and
Approximation. Journal of the ACM, 45(4):653-750, July 1998.

O. Goldreich and M. Sudan. Locally Testable Codes and PCPs of Almost-Linear Length. In
43rd FOCS, pages 13-22, 2002.

M. Kiwi. Probabilistically Checkable Proofs and the Testing of Hadamard-like Codes. Ph.D.
Thesis, MIT, 1996.

R. Rubinfeld and M. Sudan. Robust characterization of polynomials with applications to pro-
gram testing. SICOMP, Vol. 25(2), pages 252-271, 1996.

14

