The Round-Complexity of
Black-Box Concurrent Zero-Knowledge

Thesis for the Ph.D. Degree

by

Alon Rosen

T T L
S AL
N R

..- A

o A

Al ,? ay
2

r

Under the Supervision of
Professors Oded Goldreich and Moni Naor
Department of Computer Science and Applied Mathematics
The Weizmann Institute of Science

Submitted to the Feinberg Graduate School of
the Weizmann Institute of Science
Rehovot 76100, Israel

June 26, 2003

Abstract

Zero-knowledge proof systems are interactive protocols that enable one party, called the prover, to
convince another party, called the verifier, in the truth of a statement without revealing anything
beyond the validity of the assertion being proved. Besides being fascinating on their own right, zero-
knowledge proofs serve as an extremely useful tool for the realization of many cryptographic tasks.

The original setting in which zero-knowledge proofs were investigated consisted of a single prover
and verifier executing only one instance of the protocol at a time. A more realistic setting, especially
in the era of the Internet, is one that allows the concurrent execution of zero-knowledge protocols.

The most common technique for proving the zero-knowledge property of a protocol is called
black-box simulation. As it turns out, the usage of black-box simulation in the concurrent setting
introduces many technical difficulties. The only known way to enable black-box simulation in the
concurrent setting is to significantly increase the protocol’s round-complezity (i.e., the number of
messages exchanged in the protocol).

It has already been shown that for every language outside BPP there is no 4-round protocol
whose concurrent zero-knowledge (cZK) property is proved via black-box simulation. In contrast,
the most efficient ¢ZK protocol that we know of uses O(log2 n) rounds, where n is a “security”
parameter that is polynomially related to the number of concurrent executions. In this thesis we
close the gap between these upper and lower bounds. Our main results are:

e Any ¢ZK proof system for a language outside BPP, whose cZX property is proved using
black-box simulation, requires ©(log n/loglogn) rounds of interaction.

e Assuming that perfectly hiding commitments exist, every language in NP has a ¢ZK proof
system with O(a(n) -log n) rounds of interaction, where a(n) is any super-constant function.
Moreover, the ¢ZK property of this proof system is proved using black-box simulation.

The above two results complement each other and yield an (almost) full characterization of the
round-complexity of black-box ¢ZK protocols.

Acknowledgements

I would like to express my deepest gratitude to my thesis advisors Oded Goldreich and Moni Naor.
Oded and Moni are very special individuals, and each one of them has affected my scientific devel-
opment in his own distinctive way. It has been a privilege to study under their guidance.

Oded has agreed to take me under his supervision when Moni has left for a two year sabbatical.
Soon thereafter, he suggested me a project to work on. Amazingly enough, Oded’s initial suggestion
turned out to yield all the results in this thesis. Oded has invested an unparalleled amount of time
and effort to supply me with invaluable advice about technical issues, as well as on the way my work
should be presented. There is no doubt that Oded has had a significant impact both on my scientific
taste and on my approach to research. For that and for his devotion I thank him very much.

I am deeply indebted to Moni for treating me as a peer from the first moment. The credit he
has given me has greatly contributed to my self-confidence as a researcher. Moni has always been
available to discuss scientifical issues and has continuously provided me extremely interesting ideas
for research. Moni’s attitude to research, as well as his approach to people, make him an ideal
advisor and a person that is fun to work with. I consider myself lucky for having spent so much
time in the presence of someone as resourceful as Moni. I know that I have benefitted from it a lot.

I am most grateful to Shafi Goldwasser. It would be hard to underestimate the contribution of
Shafi’s advice and encouragement to my development as a researcher. Most people do not have the
privilege of having two advisors. With Shafi around, I often felt as if I had three.

Of all the people I have interacted with during my studies, I am especially thankful to Ran
Canetti, Omer Reingold and Ronen Shaltiel. Ran and Omer have been continuously guiding my
steps from the earliest stages of my studies. Ronen has done so from a later stage. Thanks to Ran
for being such a great collaborator, to Omer for his kindness and support from day one, and to
Ronen for persistently sticking to the (hopeless) task of making me learn from his mistakes.

I would like to thank the faculty members at the Weizmann Insititute for making it, together
with the students, such a great place to study in. Thanks to Itai Benjamini, Uri Feige, Ran Raz
and Adi Shamir for their enlightening courses. Special thanks to Uri, Itai and Ran for conveying
me their perspective about life as a researcher through many interesting conversations. Many
thanks are due to my fellow students at the Weizmann Institute for having shared their knowledge
and ideas with me. Special thanks to my closest collaborators: Danny Harnik, Yehuda Lindell,
Rafael Pass and Boaz Barak. I enjoyed very much working with you and have learnt a great deal
from it. T hope we will have the opportunity to work together in the future. I also thank Adi Akavia,
Tzvika Hartman, Robi Krauthgamer, Michael Langberg, Kobbi Nissim, Eran Ofek, Benny Pinkas,
Yoav Rodeh and Udi Wieder for many fruitful discussions.

I would like to thank my co-authors to the results that make up this thesis. Chapter 3 was
done jointly with Ran Canetti, Joe Kilian and Erez Petrank [9, 10]. Chapter 4 is joint with Mano]

iii

Prabhakaran and Amit Sahai [41]. I would especially like to mention Joe for his generosity and for
contributing so many key ideas to the field of concurrent zero-knowledge.

I am indebted to the people at the IBM T.J. Watson research center for an enjoyable summer.
Thanks to Marc Fischlin, Rosario Gennaro, Shai Halevi, Nick Howgrave-Graham, Eyal Kushilevitz
and Tal Rabin. Special thanks to Tal for being so great and for her patience during a long period
of uncertainty. I would like to thank Cynthia Dwork for her warm hospitality during a visit at
MICROSOFT. Thanks also to Dalit, Yael, Efrat and Avner for the entertaining dinners during my
two-week visit at IBM Almaden and Stanford.

Most importantly, I would like to thank the members of my family for their love and encour-
agement troughout the years. My parents Ora and Kalman, my brothers Erez and Oren, my wife
Vered and my sons Yoav and Itamar. I wish to express the deepest love to Vered, Yoav and Itamar.
Being in their presence is a wonderful experience and I consider it the greatest privilege of them all.
Finally, thanks to Rivka and Yossi for their much appreciated help with raising the kids.

v

Contents

Introduction
1.1 Zero-Knowledge Proof Systems L
1.1.1 Applications of ZK in Cryptography
1.1.2 Concurrent Composition of ZK oo
1.1.3 The round-complexity of black-box ¢ZKC
1.2 Why Black-Box Simulation is Problematic
1.2.1 The stand-alone case
1.2.2 Composition versus Repetition
1.2.3 The Richardson-Kilian protocol,
1.2.4 What About Non Black-Box Simulation?
1.3 Organization
Preliminaries
2.1 General e e
2.1.1 Basic notation
2.1.2 Probabilistic notation Lo
2.1.3 Computational indistinguishability 0oL
2.2 Imteractive Proofs L
2.3 Zero-Knowledge L
2.4 Concurrent Zero-Knowledge L oL
2.5 Black-Box Concurrent Zero-Knowledge,
2.6 Conventions e e e e e
2.7 Commitment Schemes L

Black-Box ¢ZK Requires (almost) Logarithmically many Rounds
3.1 Proof Outline e

3.1.1 The high-level framework
3.1.2 The schedule and additional ideas,
3.1.3 Theactual analysis
3.2 The Actual Proof (of Theorem 3.1),
3.2.1 The concurrent adversarial verifiero oL
3.2.2 The actual verifier strategy Vgp . . . o . o o oo oo
3.2.3 The decision procedure for L
3.3 Proof of Lemma 3.2.5 (performance on NO-instances)
3.3.1 The cheating prover e
3.3.2 The success probability of the cheating prover
3.3.3 Proof of Lemma 3.3.7 (legal transcripts yield useful block-prefixes)

13
13
13
13
13
14
14
15
15
16
18

c¢ZK in Logarithmically many Rounds
4.1 A c¢ZK proof system for NP
4.1.1 Theprotocol
4.1.2 Thesimulator L
4.2 High Level Analysis of the Simulation
4.2.1 The simulator runs in polynomial-time
4.2.2 The simulator’s output is “correctly” distributed
4.2.3 The simulator (almost) never gets “stuck”
4.3 A Detailed Description of our Protocol
4.3.1 Blum’s protocol L
4.3.2 The actual protocolo o
4.4 Zero-Knowledge
4.4.1 The simulator’s strategy oL
4.4.2 “Gluing” it all together
4.5 The Simulator’s Running Time
4.6 The Simulator’s Output Distribution
4.7 The Probability of Getting “stuck”
4.7.1 Proof of Lemma 4.7.5 (counting bad random tapes)
4.7.2 Proof of Lemma 4.7.10 (special intervals are visited many times)
4.8 Extensions. e
4.8.1 Applicability to other protocols
4.8.2 cZK arguments based on any one-way function
4.8.3 Applicability to resettable zero-knowledge
4.8.4 Concurrent ZK arguments with poly-logarithmic efficiency . . .

cZK Without Aborts

5.1 Proofof Theorem 5.1
5.1.1 The schedule, aversary verifiers and decision procedure
5.1.2 Proof of Lemma 5.1.5 (performance on NO-instances)
5.1.3 Proof of Lemma 5.1.8 (existence of useful initiation prefixes) . .
5.1.4 Proof of Lemma 5.1.9 (the structure of good sub-trees)

5.2 Extending the proof for the Richardson-Kilian protocol

Constant-Round ZK proofs for NP with a Simpler Proof of Security

6.1 Zero-Knowledge
6.1.1 The Simulator L
6.1.2 The simulator’s running time
6.1.3 The simulator’s output distribution.

Conclusions and Open Problems
7.1 Avoiding the Lower Bounds of Chapter3
7.2 Openproblems e

Appendix
8.1 Alternative Description of the Recursive Schedule
8.2 Solving the Recursion,

vi

59
99
60
61
63
63
63
63
68
68
69
70
70
75
76
7
78
82
88
92
92
92
94
94

97
97
98
101
104
105
107

109
110
110
111
111

113
113
114

Chapter 1

Introduction

The past two and a half decades have witnessed an unprecedented progress in the field of Cryptogra-
phy. During these years, many cryptographic tasks have been put under rigorous treatment and nu-
merous constructions realizing these tasks have been proposed. By now, the scope of cryptographic
constructions ranges from simple schemes that realize ”atomic” tasks such as authentication, iden-
tification, encryption and digital signatures, to fairly complex protocols that realize ”high-level”
tasks such as general secure two-party computation (the latter being so general that it captures
almost any conceivable cryptographic task in which two mutually distrustful parties interact).

The original setting in which cryptographic protocols were investigated consisted of a single ex-
ecution of the protocol at a time (this is the so called stand-alone setting). A more realistic setting,
especially in the era of the Internet, is one that allows the concurrent execution of protocols. In
the concurrent setting many protocols are executed at the same time, involving multiple parties
that may be talking with the same (or many) other parties simultaneously. The concurrent setting
presents the new risk of a coordinated attack in which an adversary controls many parties, inter-
leaving the executions of the protocols while trying to extract knowledge based on the existence of
multiple concurrent executions. It would be most desirable to have cryptographic protocols retain
their security properties even when executed concurrently. This would enable the realization of
cryptographic tasks in a way that preserves security in a setting that is closer to the “real world”.

Unfortunately, security of a specific protocol in the stand-alone setting does not necessarily
imply its security in the (more demanding) concurrent setting. It is thus of great relevance to
examine whether the original feasibility results for cryptographic protocols still hold when many
copies of the protocol are executed concurrently.

1.1 Zero-Knowledge Proof Systems

In the course of developing tools for the design of complex cryptographic tasks, many innovative
notions have emerged. One of the most basic (and important) examples for such notions is the one
of Zero-Knowledge Interactive Proofs. Interactive proofs, introduced by Goldwasser, Micali and
Rackoff [28], are efficient protocols that enable one party, known as the prover, to convince another
party, known as the verifier, of the validity of an assertion. In the process of proving the assertion,
the prover and the verifier exchange messages for a predetermined number of rounds. Throughout
the interaction, both prover and verifier may employ proabilistic strategies and toss coins in order
to determine their next message. At the end of the process, the verifier decides whether to accept
or reject the proof based on his view of the interaction (as well as on his coin-tosses).

2 CHAPTER 1. INTRODUCTION

The basic requirement is that whenever the assertion is true, the prover always convinces the
verifier (this is called the completeness condition), whereas if the assertion is false, then no matter
what the prover does, the verifier is convinced with very small probability, where the probability
is taken over the verifier’s coin-tosses (this is called the soundness condition).

An interactive proof is said to be zero-knowledge (ZK) if it yields nothing beyond the valid-
ity of the assertion being proved. This is formalized by requiring that the view of every proba-
bilistic polynomial-time adversary interacting with the prover can be simulated by a probabilistic
polynomial-time machine (a.k.a. the simulator). The idea behind this definition is that whatever
an adversary verifier might have learned from interacting with the prover, he could have actually
learned by himself (by running the simulator).

The concept of zero-knowledge was originally introduced by Goldwasser, Micali and Rack-
off [28]. The generality of ZK has been demonstrated by Goldreich, Micali and Wigderson [25],
who showed that every language in NP can be proved in ZK, provided that one-way functions
exist (cf. Naor [37], Hastad et al. [32]). Since then, Z/C proof systems have turned out to be an
extremely useful tool in the realization of increasingly many cryptographic tasks.

1.1.1 Applications of ZK in Cryptography

We illustrate the power of ZK proofs by giving two examples of their usefulness in Cryptography.
The first example consists of the application of ZX proofs to the construction of identification
schemes (due to Feige, Fiat and Shamir [18]). The second example demostrates the applicability of
ZK to the task of cryptographic protocol design (due to Goldreich, Micali and Wigderson [25, 26]).

Identification schemes: One of the earliest examples for the applicability of Z/C is the construc-
tion of identification schemes [18]. Such schemes are useful in a scenario where one party, Alice,
wishes to repeatedly identify herself to another party, Bob. The presumption is that Alice and Bob
are acquainted with one another, and that Bob possesses some (authenticated) public information
that is associated with a secret value known only to Alice. In order to identify herself, Alice invokes
an identification protocol and uses her secret information to convince Bob that she is indeed Alice.
The requirement is that Alice will always be able to convince Bob, and that nobody else can fool
Bob into believing that she/he is Alice (even after polynomially many invocations of the protocol).

A naive solution to this problem would be to let Alice choose a secret password s, and to publish
the value of f(s), where f is some one-way function (i.e., a function that is “easy” to evaluate on
all inputs but “hard” to invert on most inputs). When Alice wishes to identify herself to Bob, she
simply sends her password s to Bob who computes y = f(s) and compares it to the value that Alice
has published. The security of the resulting scheme is supposedly guaranteed by the one-wayness
of f (since it is hard to find the value of s given the value of f(s)). Unfortunately, this suggestion
suffers from a severe drawback: Any adversary who impersonates Bob can obtain the value of s
and later use it in order to identify himself as Alice.

The solution is to use ZK proofs (or actually a variant of ZK proofs, called ZK proofs of
knowledge [18, 4]). Rather than sending over the value of s, Alice will now prove in ZK that she
knows the preimage of f(s). (Here one uses the fact that, once f is specified, proving the knowledge
of a preimage under f is an NP assertion.) The ZK property then guarantees that, while Bob
has been convinced of the validity of the assertion, no impersonator can obtain the value of s and
misuse it at a later stage.

It should be noted that ZX seems a much stronger property than what is required here. In
particular, besides being unable to impersonate Alice, an adversary interacting with Alice will not
be able to do anything that he could have not been able to do prior to the interaction.

1.1. ZERO-KNOWLEDGE PROOF SYSTEMS 3

Enforcing honest behaviour on protocol participants: Perhaps the most important example
for the power of ZK is the role they play in enforcing “honest” behaviour on parties that participate
in a given protocol [25, 26]. Specifically, ZK proofs enable participants in a protocol to prove that
their actions are indeed consistent with the protocol’s prescribed instructions without taking any
risk of compromising the security of their own secret information (e.g., cryptographic keys). This
approach is made possible through the usage of ZK proofs for AP and proceeds according to the
following two-step paradigm:

Semi-honest protocol design: Design a protocol II; that is secure assuming that the adversaries
follow the protocol’s prescribed instructions (a.k.a. “semi-honest” adversaries).

Compilation to malicious model: “Compile” II; into a protocol Il that withstands any mali-
cious behaviour by making the parties prove in ZXC that they faithfully follow the instructions
of II;. Here one relies on the fact that, once II; is specified, consistency of the party’s actions
with the protocol’s instructions is an N'P-statement, and so by [25] can be proved in ZK.

Needless to say that this approach greatly facilitates the task of protocol design, since one only has
to consider adversaries that follow the protocol’s instructions. In fact, in many cases it is not clear
how one could have approached the above task in a different way, since one would have to take into
account any attack that an adversary might come up with.

1.1.2 Concurrent Composition of Z/X

The wide applicability of ZK proofs makes them a very useful “test case” for examining the behavior
of cryptographic protocols in the concurrent setting. On the one hand, many of the difficulties that
arise in the concurrent setting already appear in the (relatively basic) case of ZK. On the other
hand, positive solutions for the case of ZX may translate to positive solutions for much more
complex cryptographic tasks (that use ZK protocols as a subroutine).

Concurrent composition of ZK protocols was first considered by Feige [17]. A more extensive
treatment was given by Dwork, Naor and Sahai [15], who also argued that the task of proving
the ZXC property of a protocol in the concurrent setting might encounter technical difficulties if
approached in the straightforwad manner. Since then, concurrent composition of ZK protocols has
received a considerable amount of attention (cf. [17, 15, 16, 36, 8, 42, 35]).

The scenario that is typically considered in the context of ZX involves a single (or many) honest
provers that are running many concurrent executions of the same ZXC protocol. The honest prover
is trying to protect itself from a malicious adversary that controls a subset (or all) the verifiers
it is interacting with. Since it seems unrealistic (and certainly undesirable) for honest provers to
coordinate their actions so that security is preserved, one must assume that in each instance of the
protocol the honest prover acts independently.

A ZK protocol is said to be concurrent zero-knowledge (cZK) if it remains zero-knowledge under
concurrent composition. Recall that in order to demonstrate the ZXC property of a protocol it is
required to demonstrate that the view of every probabilistic polynomial-time adversary interacting
with the prover can be simulated in probabilistic polynomial-time. In the concurrent setting, the
verifiers’ view may include multiple sessions running at the same time. Furthermore, the verifiers
may have control over the scheduling of the messages in these sessions (i.e., the order in which the
interleaved execution of these sessions should be conducted). As a consequence, the simulator’s
task becomes considerably more complicated.

4 CHAPTER 1. INTRODUCTION

1.1.3 The round-complexity of black-box cZK

The most common technique for proving the Z/C property of a protocol is called black-box simula-
tion. (A black-box simulator is a simulator that has only black-box access to the adversary verifier.)
A protocol whose Z/C property is proved using black-box simulation is called black-box ZK.

While black-box simulation has proved to be a very useful tool for proving security in the
stand-alone setting, it does not seem to be suitable for use in the concurrent setting. The only
known way to enable black-box simulation in the concurrent setting is to significantly increase
the number of messages exchanged in the protocol [42] (a.k.a. the protocol’s round-complexity).
In particular, whereas the number of messages exchanged in the original (stand-alone) Z/K protocols
was a constant, the number of messages in the new ¢ZK protocols is required to grow with the
number of concurrent executions.

In the context of ¢cZK, the round-complexity of a protocol is measured as a function of some
predetemined “security” parameter n € N. The requirement is that the protocol will remain secure
as long as the number of concurrent executions is bounded by some polynomial in n (we stress that
the protocol is constructed before the polynomial bound is determined). We regard a protocol as
having “high” round complexity if the number of rounds in this protocol depends on the value of n.
This should be contrasted to constant-round protocols in which the number of messages is not
required to increase as n grows.

Since the number of messages exchanged is perhaps the most important efficiency consideration
for interactive protocols, it is natural to ask whether “high” round-complexity is inherent to the
notion of ¢Z/X. The main objective of this thesis is to investigate this question in the context of
black-box simulation. Arguably, this is not only an issue of theoretical interest, but rather has
also significant practical consequences. Having “low” round-complexity is a fundamental property
of any interactive protocol (especially if this protocol is a key ingredient for many other crypto-
graphic protocols). Our main conclusions are:

e Any c¢ZK proof system for a language outside BPP, whose cZ property is proved using
black-box simulation, requires ©(log n/loglogn) rounds of interaction.

e Assuming that perfectly hiding commitments exist, every language in NP has a ¢ZK proof
system with O(«(n) -log n) rounds of interaction, where a(n) is any super-constant function.
Moreover, the ¢ZK property of this proof system is proved using black-box simulation.

The above two results complement each other and yield an (almost) full characterization of the
round-complexity of black-box ¢Z/C protocols.

It should be noted that subsequently to our work, new non black-box simulation techniques
were devised [2]. These new techniques carry a great promise and give hope that a constant-round
cZK protocol can indeed be constructed. However, the results achieved so far in the context of
concurrent composition are only partial (see Section 1.2.4 and Chapter 7 for more details).

1.2 Why Black-Box Simulation is Problematic

We now turn to describe the main technical difficulties that are encountered when trying to establish
the ¢ZK property of a protocol via black-box simulation. We start by giving a high-level overview
of a “typical” construction of a ZK protocol for NP. Before we proceed, we (informally) define
the notion of commitment schemes [37], which are a central tool in the construction.

1.2. WHY BLACK-BOX SIMULATION IS PROBLEMATIC 5

Commitment schemes: Commitment schemes are the “digital” analog of sealed envelopes.
They are used to enable a party, known as the sender, to commit itself to a value while keeping it
secret from the receiver (this property is called hiding). Furthermore, the commitment is binding
in the sense that in a later stage, when the commitment is opened, it is guaranteed that the
“opening” can yield only a single value determined in the committing phase. For our purposes, it
will be convenient to think of commitments as a non-interactive process in which the sender sends
a single message to the receiver (somewhat analogously to an encryption scheme). The sender can
then open the commitment by sending an additional message that reveals the value committed to.

1.2.1 The stand-alone case

On a high-level, the typical ZK protocol for NP is constructed by combining many atomic ZK
protocols that proceed as follows.! Given a specific NP assertion, A, and a “proof” for the validity
of this assertion (typically, an N'P-witness w for the validity of A), the prover uses his coin-tosses
to generate two (related) messages My and M; that depend on A and w. Letting P denote the
prover and V denote the verifier, the protocol proceeds as follows:

P — V: Commit to My and M;.
V — P: Send a random o € {0,1}.

P — V: Reveal M,.

The verifier accepts if and only if the revealed message M, is “valid” (i.e., if it passes a prespecfied
validity inspection that is related to the commonly known assertion A). To insure that the resulting
protocol is indeed an interactive proof, it is required that My, M satisfy the following properties:

e If A is true, it is possible to make sure that both My and M; are “valid”.
e If A is false, then no matter what P does, either My or M; is “invalid”.

Thus if A is true then V always accepts, whereas if A is false then V accepts with probability at
most 1/2. (Here we rely on the fact that the commitment is binding and so P cannot reveal a
value that is different than what he has committed to.) To insure that the protocol is also ZK, the
following property is required:

e Given the value of o, it is always possible make sure that M, is “valid”.

Indeed, the soundness property of the protocol heavily relies on the fact that P does not know the
value of o before the protocol starts (and so V' can always “surprise” P by choosing ¢ at random).
Otherwise, P (knowing ¢ in advance) would have always been able to make V" accept in the protocol
(regardless of whether A is true or not).

However, knowing ¢ in advance is the key for proving the ZK property of the protocol. Consider
an adversary verifier V* that is trying to extract knowledge from the interaction (by possibly
deviating from the honest verifier strategy). All that has to be done in order to simulate the view
of V* is to let the simulator “guess” the value of ¢ in advance and generate My, M; so that M,
is valid. The simulator can then “feed” V* with a commitment to My, M; and obtain the value
of some o' that depends on this commitment. If indeed ¢’ = o then the simulator has suceeded

! As a side remark, we note that the type of protocols considered here resemble Blum’s protocol for Hamiltonicity [6]
(see Construction 4.3.1 in Page 68), and not the protocol by Goldreich, Micali and Wigderson for Graph 3-coloring [25].

6 CHAPTER 1. INTRODUCTION

in his task and will output a “valid” transcript in which V* accepts. The hiding property of the
commitment guarantees us that, no matter what is the strategy applied by V*, the probability that
o' = o is 1/2. In particular, after two attempts the simulator is expected to succeed in its task.
Notice that the resulting simulator is “black-box” in the sense that the only way in which V*’s
strategy is used is through the examination of its input/output behaviour.

Reducing the error via parallel repetition: To make the above protocol useful, however, one
must make sure that whenever A is false, V' accepts only with small probability (rather than 1/2).
To achieve this, the atomic protocol described above is repeated many (say, k) times independently.
V accepts if and only if it has accepted in all k£ repetitions. The probability of having V accept a
false statement is now reduced to 1/2* (by the independence of the repetitions).

The straighforward way to conduct the repetitions would be to perform the atomic protocols
sequentially (i.e., one protocol after the other, see Figure 1.1.a). This approach suffers from the
drawback that the resulting protocol has a fairly high round-complexity. To overcome this problem,
the repetitions may be conducted in parallel (i.e., the j' message of the atomic protocol is sent
together in all the k repetitions, see Figure 1.1.b).

a) (b)

—

P 14 i 14
—
=
— =>= ... =
=
=
= =>= ... =
=

Figure 1.1: Sequential and parallel repetition.

Unfortunately, repeating the protocol many times in parallel brings up the following difficulty.
Whereas in the case of a single execution, the probability that the ZK simulator “guesses” the value
of o correctly is at least 1/2, the probability that he does so simultaneously for all k repetitions
is 1/2%. For large k, this probability will be very small and might cause the simulator to run for
too long. Thus, it is not clear that the Z/C property of the protocol is preserved.

The solution to this problem is to let the verifier commit to all his “challenges” in advance.
Specifically, consider the following protocol [23]:

V — P (vl): Commit to random o1,...,0% € {0,1}.

P — V (pl): Commit to (Mg, M{), (Mg, M?),...,(ME, MF).
V — P (v2): Reveal o1,...,0%.

P —V (p2): Reveal M} M2, ..., M},

The verifier accepts if and only if for all j, the message M} is “valid”. By the hiding property of
the commitment used in (vl), we are guaranteed that when sending (pl), the prover P has “no
idea” about the values of o1, ..., 0k, and so the soundness of the original protocol is preserved.

1.2. WHY BLACK-BOX SIMULATION IS PROBLEMATIC 7

To see that the resulting protocol is ZK, consider the following simulation technique. Start by
obtaining the (vl1) message from the verifier V*. Then, playing the role of the prover, generate
a sequence of k pairs {Mg,Mf}?zl each containing “garbage” (i.e., not ncessarily “valid”). Feed
V* with the commitments to these pairs and obtain the values of oq,...,04. Once these values
are obtained, “rewind” the interaction to Step (pl) and recompute the values of {M{, M} ;?:1 S0
that for all 7, the value of Mg], is “valid”. Since we have not rewound past (v1) (and thus did
not modify its value), and since the commitment used in (v1) is binding, we are guaranteed that
when reaching (v2) for the second time, the revealed values of oy, ..., 0y are identical to the ones
revealed in the first time (v2) was reached (here we also use the fact that the commitment used
in (pl) is hiding and so V* cannot distinguish a commitment to “garbage” from a commitment to
“valid” ng’s). Using the values of the Mg],’s, the simulator can thus output a “valid” transcript
in which V* accepts, as required.

But what if V* refuses to reveal some (or all) of the committed values in Step (v2)? (Recall
that V* may behave in any adversarial manner.) In such a case, the simulator does not obtain
all of the values of o1,...,0; and will supposedly fail in its task. Luckily, if V* deviates from his
prescribed strategy and does not reveal some o; value in (v2), then the prover in the protocol is not
obligated to continue in the interaction (in particular, it aborts all k repetitions altogether). Using
this fact, it is then possible to show (with some compications) that the simulator can eventually
succeed in obtaining all of the values oy,...,0 and thus complete its task (cf. [23]).

1.2.2 Composition versus Repetition

Notice that the above analysis heavily relies on the fact that P is conducting a single execution of a
given protocol (in which the behaviour of V* in all repetitions is “linked” together). A more realistic
scenario involves a single (or many) honest provers that are running many executions (sessions) of
the same Z/C protocol, but are not allowed to “link” between the various executions. This is called
protocol composition. As in the case of protocol repetition, in the case of protocol composition the
honest prover is trying to protect itself from a malicious adversary V* that controls a subset (or
all) the verifiers it is interacting with. However, unlike the case of protocol repetition, the honest
prover is not allowed to coordinate its actions between different executions. As a consequence, a
verifier in one execution of the protocol is not held accountable of the “misbehaviour” of a verifier
in another execution.

—~
&
~—

(b)

P v P v

M=

Egﬁ%g (V) &= &= L&
g%gg pH)=>=> ... =
= "

P : (V2) &= ... &
glgg P2)=>= ... =
e

Figure 1.2: Sequential and parallel composition of a 4-round protocol.

8 CHAPTER 1. INTRODUCTION

Sequential and parallel composition: The most “basic” case of protocol composition is the
one of sequential composition (Figure 1.2.a). This case has been treated in its most generality by
Goldreich and Oren [27], who showed that any protocol that is (auxiliary input) ZK in a single
execution will remain ZX under sequential composition. A more complicated case is the one of
parallel composition (Figure 1.2.b). Here, a composition theorem is not known (and in fact does
hold in general [24, 17]). Still, as recently shown by Goldreich [21], there exists a specific ZK
protocol for NP (specifically, the protocol of [23]) that remains ZK under parallel composition.

Concurrent composition: A more general notion of protocol composition is the one of concur-
rent composition. Unlike the case of sequential and parallel composition (in which the scheduling
of messages is defined in advance), the scheduling of messages in the case of concurrent compo-
sition is controlled by the adversary verifier, who determines the order in which the interleaved
execution of the various sessions should be conducted. As observed by Dwork, Naor and Sahai [15],
letting V* control the scheduling and coordinate between sessions introduces technical difficulties
that black-box simulation does not seem to handle very well. This is best seen by considering the
following scheduling of messages for a 4-round protocol (suggested in [15]).

1 2 n
(V1)
Py =
=
=
=
=
(V2) <~
P2) =

Figure 1.3: A concurrent schedule for n sessions of a 4-round protocol.

In this scheduling, the prover starts by sending the first two messages (i.e., (pl), (v1)) in all
n sessions, only then proceeding to send the last two messages (i.e., (p2), (v2)) in the reverse
order of sessions (i.e., starting at the n'M session and ending at the first). Suppose now that
an adversary verifier V* is sending messages according to the above schedule while applying the
following “coordinated” strategy for all n sessions:

e V* produces the various verifier messages according to the honest verifier strategy.
e The verifier coin-tosses used in a specific session depend on previous messages in the schedule.?

e Whenever V* is not convinced in one session, he aborts the whole interaction altogether.?

2For example, V* could obtain random coins by applying a poly(n)-wise independent hash function (or even a
pseudorandom function) to the previous messages in the schedule. This would imply that the modification of even
one of the previous messages, yields “fresh” randomness for the current session.

®Notice that this behaviour significantly deviates from the honest verifier strategy in which the decision of whether
to reject or not is taken for each session independently of other sessions.

1.2. WHY BLACK-BOX SIMULATION IS PROBLEMATIC 9

Since the view of V* counsists of the concurrent interaction in all n sessions in the schedule and
since in each session V* sends messages according to the honest verifier strategy, the simulator’s
task is to produce a transcript that contains n sessions in which V* accepts (notice that the honest
prover P would never cause V* to reject, and so the simulator must do so as well).

The straightforward approach for simulation would be to use the 4-round protocol described
above and let the simulator “rewind” the interaction with V* in each session (just as it has done
in the “stand-alone” case). However, by doing so the following problem is encountered. In order
to suceed in the rewinding of the i*" session, the simulator must obtain the (v2) message in this
session. Since by the above scheduling, this message occurs after the end of session 4’ for all i’ > i,
the simulator will have to make V* accept (and thus rewind) in all sessions ¢’ > i (otherwise,
V* would have aborted the interaction at the moment session i’ ends, and the simulator would
never obtain (v2) in session 7). Moreover, whenever the simulator rewinds session 7, it modifies the
value of (pl) in this session. This will cause the randomness of all subsequent sessions (and so the
verifier’s “challenges” in sessions i’ > i) to be modified. In particular, the simulation work done for
all sessions ¢’ > i will be lost. To conclude:

e The simulator must rewind all n sessions.
e To rewind session 4, the simulator must rewind session ¢’ for all i’ > 1.
e By rewinding session 7, the simulation work invested in sessions i’ > i is lost.

Denoting by W (m) the amount of work that the simulator invests in m sessions, we obtain the
recursion W(m) > 2- W (m — 1), which solves to W (n) > 2™ (because W (1) = 2). This is clearly a
too high running time for the simulator to afford.

The above example gives intuition to the difficulties that a “rewinding” simulator will encounter
in the concurrent setting. At first glance it may seem that this still leaves open the possibility that
an alternative black-box simulation technique might be found. Unfortunately, the technique of
rewinding the interaction with V* turns our to be inherent to black-box simulation. (Intuitively,
this follows from the fact that rewinding is the only advantage that a black-box simulator might have
over the honest prover.) Using this fact (and building on the work of Goldreich and Krawczyk [24]),
Kilian, Petrank and Rackoff [36] have been able to trasform the above intuitive argment into an
impossiblity result, and to prove that for every language outside BPP there is no 4-round protocol
whose concurrent execution is simulatable in polynomial-time using black-box simulation. We
note that our Q(logn/loglogn) lower-bound on the round-complexity of black-box concurrent
ZK (presented in Chpater 3) is obtained by employing a new, more sophisticated, scheduling of
messages and by have the adversary verifier V* occasionally abort sessions (i.e., refuse to decommit)
depending on the history of the interaction.

1.2.3 The Richardson-Kilian protocol

For a while, it was not even clear whether there exists cZX protocols for languages outside of
BPP. Several works have (successfully) attempted to overcome the above difficulties by augmenting
the communication model with the so-called timing assumption [15, 16] or, alternatively, by using
various set-up assumptions (such as the public-key model [8, 13]). The feasibility of ¢Z/ in the plain
model (i.e., without resorting to any set-up assumptions) has been established by Richardson and
Kilian (RK for short) [42], who were the first to exhibit a family of ¢ZK protocols (parameterized
by the number of rounds) for all languages in N'P.

10 CHAPTER 1. INTRODUCTION

The RK protocol: The idea underlying the RK protocol is to transform a given constant-
round ZK protocol into ¢ZK by adding a k-round “preamble” to it (see Figure 1.4). This preamble
(i.e., messages (V0), (P1),(V1),...,(P7),(Vy)) is completely independent of the common input and
its sole purpose is to enable a successful simulation in the concurrent setting. Every round in the
preamble (i.e., every (Pj), (V) pair) is viewed as a “rewinding opportunity”. Having “successfully
rewound” even one of the rounds in the preamble is sufficient in order to cheat arbitrarily in the
actual proof (i.e., messages (p1),(v1),(v2)) and thus complete the simulation (cf. [20]).

The RK transformation reduces the problem of proving that the resulting protocol is ¢ZK to
coming up with a simulator that, with overwhelming probability, manages to successfully rewind
every session in the concurrent schedule (no matter what is the strategy applied by the verifier).
Clearly, the larger is the number of rounds in the preamble, the easier the simulation task is.
However, the main goal is to minimize the number of rounds in the protocol.

P voyy= V
Pl
V1
P2
V2

i)

=
<
=
<—

[

1

1)
3

Il

kel

Figure 1.4: The Richardson-Kilian k-round protocol.

The RK simulator: Recall that rewinding a specific session in the concurrent setting may result
in loss of work done for other sessions, and cause the simulator to do the same amount of work
again. (Since all simulation work done for sessions starting after the point to which we rewind
may be lost.) Considering a specific session of the RK protocol (out of m = poly(n) concurrent
sessions), there must be an iteration (i.e., a j € {1,...,k}) so that at most (m — 1)/k sessions of
the schedule start in the interval corresponding to the j'" iteration (of this specific session). So if
we try to rewind on the correct j, we will invest (and so waste) only work proportional to (m—1)/k
sessions. The idea is to abort the rewinding attempt on the j* iteration if more than (m — 1)/k
sessions are initiated in the corresponding interval (as this will rule out the incorrect j’s). The same
reasoning applies recursively (i.e., to the rewinding in these (m —1)/k sessions). Denoting by W (m)
the amount of work invested in m sessions, we obtain the recursion W(m) = poly(m) - W (2=L),
which solves to W (m) = m®0°8x™)_ Thus, whenever k = n, we get W (m) = m®1). This implies
that for any € > 0, every language in NP has an n‘-round ¢ZK proof system.

The RK analysis has been subsequently improved by Kilian and Petrank [35], who have em-
ployed a more sophisticated simulation technique (see Sections 4.1.2 and 4.4.1) to show that the
RK protocol remains concurrent zero-knowledge even if it has O(a(n) - log? n) rounds, where a(-)
is any non-constant function (e.g., a(n) = loglogn). On a high level, the key idea underlying
the Kilian-Petrank simulation strategy is that the order and timing of the simulator’s rewindings
are determined obliviously of the concurrent scheduling (which is determined “on the fly” by the
adversary verifier). This is in contrast to the RK simulation strategy which heavily depends on the
schedule as it is being revealed. Jumping ahead, we mention that our O(«a(n) - logn) upper bound

1.3. ORGANIZATION 11

on the round-complexity of ¢ZK is obtained by conducting a fairly sophisticated analysis of the
Kilian Petrank simulation technique (see Chapter 4) .

1.2.4 What About Non Black-Box Simulation?

In a recent breakthrough result, Barak [2] constructs a constant-round protocol for all languages
in N'P whose zero-knowledge property is proved using a non black-box simulator. Such a method
of simulation enables him to prove results known impossible for black-box simulation. Specifically,
for every (predetermined) polynomial p(-), there exists a constant-round protocol that preserves
its zero-knowledge property even when it is executed p(n) times concurrently (where n denotes the
“security” parameter). As we show in Chapter 3, even this weaker notion is impossible to achieve
when using black-box simulation, unless NP C BPP.

A major drawback of Barak’s protocol is that the (polynomial) number of concurrent sessions
relative to which the protocol should be secure must be fixed before the protocol is specified.
Moreover, the length of the messages in the protocol grows linearly with the number of concurrent
sessions. Thus, from both a theoretical and a practical point of view, Barak’s protocol is still not
satisfactory. What we would like to have is a single protocol that preserves its zero-knowledge
property even when it is executed concurrently for any (not predetermined) polynomial number of
times. Such a property is indeed satisfied by the protocols of [42, 35] (as well as by the protocol
presented in Chapter 4 of this thesis).

1.3 Organization

The main results in this thesis are presented in Chapters 3 and 4. The results presented in Chap-
ters 5 and 6 have emerged as a result of the research efforts invested in the main results, but
are interesting in their own right. It should be noted that, chronologically speaking, the result
presented in Chapter 5 has been obtained prior to the results in presented in Chapters 3 and 4.

Chapter 2 - Preliminaries: We give formal definitions of interactive proofs and zero-knowledge.
We then turn to define concurrent zero-knowledge, as well as black-box concurrent zero-knowledge.
We also specify some conventions that are used in the proofs of the lower bound and the upper
bound. Finally, we define the notion of bit-commitment, which will be used in the construction of
our ¢ZK protocol.

Chapter 3 - Lower bound: We show that in the context of ¢Z/C, Q(logn/lognlogn) rounds
of interaction are essential for black-box simulation of proof systems for languages outside of BPP
(Theorem 3.1). In addition, we note that the lower bound holds also for the case of cZK arguments.
In fact, it will hold even if the simulator knows the schedule in advance (in particular, it knows
the number of concurrent sessions, which may just equal the security parameter), and even if the
scheduling of the messages is fixed.

Chapter 4 - Upper bound: We show that, assuming the existence of perfectly-hiding com-
mitment schemes, every language in AP can be proved in ¢ZK using only O(a(n) -logn) rounds
of interaction, where a(n) is any super-constant function (Theorem 4.1). Our protocol retains its
zero-knowledge property no matter how many times it is executed concurrently (as long as the
number of concurrent sessions is polynomial in the size of the input). By considering so-called
zero-knowledge arguments, we are also able to achieve a similar result assuming only the existence

12 CHAPTER 1. INTRODUCTION

of one-way functions (Theorem 4.3). We also argue that our result in fact yields a generic trans-
formation that takes any “standard” ZX protocol and transforms it into ¢ZK while paying only
a “logarithmic” penatly in the round-complexity (Theorem 4.2). Additional results include the
construction of a resettable ZX protocol with “logarithmic” number of rounds (Theorem 4.4), and
the construction of ¢ZK arguments with polylogarithmic efficiency (Theorem 4.5).

Chapter 5 - cZK without aborts: We consider a “relaxation” of cZK and only require that the
ZIC property is mantained if the verifier never “aborts” any specific execution of the protocol during
the concurrent interaction. We show that even in this case, black-box simulation faces difficulties
that are not encountered in the stand-alone setting. Specifically, we show that even if the verifier
never “aborts”, 7 rounds of interaction are essential for black-box simulation of proof systems for
languages outside of BPP (Theorem 5.1). As a corollary, we obtain that the RK protocol with
k = 2 is not black-box ¢ZK, even in this restricted sense.

Chapter 6 - Constant-round ZK proofs for NP with a simpler proof of security: We
consider the task of constructing a constant-round ZK proof system for all languages in N'P. This
problem has been previously addressed by Goldreich and Kahan [23], who constructed such proof
systems assuming the existence of a collection of claw-free functions. We show how to use a variant
of the ¢ZK protocol presented in Chapter 4 in order to construct an alternative constant-round
ZK proof system for NP. The advantage of the new proof system over the one of [23] is that it
admits a considerably simpler proof of security.

Chapter 7 - Conclusions and open problems: We discuss the issues arising from our results,
as well as some open problems arising from Barak’s non black-box simulation techniques [2]. We also
suggest to investigate the round-complexity of ¢Z/X without aborts as an interesting open-problem.

Declaration: The author, Alon Rosen, declares that this thesis summarizes his work under the
supervision of Professors Oded Goldreich and Moni Naor. The results in Chapter 3 were obtained
jointly with Ran Canetti, Joe Kilian and Erez Petrank [9, 10]. The results in Chapter 4 were
obtained by myself and independently by Manoj Prabhakaran and Amit Sahai [41]. The results in
Chapters 5 [43] and 6 were obtained by myself.

Chapter 2

Preliminaries

2.1 General

2.1.1 Basic notation

We let N denote the set of all integers. For any integer k£ € N, denote by [k] the set {1,2,...,k}.
For any x € {0,1}*, we let |z| denote the size of = (i.e., the number of bits used in order to write it).
For two machines M, A, we let M“(x) denote the output of machine M on input = and given oracle
access to A. The term negligible is used for denoting functions that are (asymptotically) smaller
than one over any polynomial. More precisely, a function v(-) from non-negative integers to reals
is called negligible if for every constant ¢ > 0 and all sufficiently large n, it holds that v(n) < n™¢

2.1.2 Probabilistic notation

Denote by z<-X the process of uniformly choosing an element z in a set X. If B(-) is an event de-

pending on the choice of z<- X, then Pr,_ x[B(x)] (alternatively, Pr,[B(z)]) denotes the probability
that B(z) holds when x is chosen with probability 1/|X|. Namely,

Pr,x [B(x)] = Z % - x(B(w))

where x is an indicator function so that x(B) = 1 if event B holds, and equals zero otherwise. We
denote by U, the uniform distribution over the set {0,1}".
2.1.3 Computational indistinguishability

Let S C {0,1}* be a set of strings. A probability ensemble indexed by S is a sequence of random
variables indexed by S. Namely, any X = {X,, }wes is a random variable indexed by S.

Definition 2.1.1 (Computational indistinguishability) Two ensembles X = {X, }wes and
Y = {Yy}wes are said to be computationally indistinguishable if for every probabilistic polynomial-
time algorithm D, there exists a negligible function v(-) so that for every w € S:

|Pr [D(Xy,w) =1] — Pr[D(Yy,w) = 1]| < v(|w|)

The algorithm D is often referred to as the distinguisher. For more details on computational
indistiguishability see Section 3.2 of [22].

13

14 CHAPTER 2. PRELIMINARIES

2.2 Interactive Proofs

We use the standard definitions of interactive proofs (and interactive Turing machines) [28, 22]
and arguments (a.k.a computationally-sound proofs) [7]. Given a pair of interactive Turing ma-
chines, P and V, we denote by (P, V)(x) the random variable representing the (local) output of V'
when interacting with machine P on common input z, when the random input to each machine is
uniformly and independently chosen.

Definition 2.2.1 (Interactive Proof System) A pair of interactive machines (P,V') is called
an interactive proof system for a language L if machine V' is polynomial-time and the following two
conditions hold with respect to some negligible function v(-):

e Completeness: For every x € L,

Pr(P,V)(z) =1] > 1 = v(|z])

e Soundness: For every x € L, and every interactive machine B,

Pr{(B,V)(z) = 1] < v(|z)

In case that the soundness condition s required to hold only with respect to a computationally
bounded prover, the pair (P,V) is called an interactive argument system.

Definition 2.2.1 can be relaxed to require only soundness error that is bounded away from
1 — v(Jz|). This is so, since the soundness error can always be made negligible by sufficiently many
parallel repetitions of the protocol (as such may occur anyhow in the concurrent model). However,
in the context of our lower bound, we do not know whether this condition can be relaxed when
dealing with computationally sound proofs (i.e., when the soundness condition is required to hold
only for machines B that are implementable by poly-size circuits). In particular, in this case parallel
repetitions do not necessarily reduce the soundness error (cf. [5]).

Definition 2.2.2 (Round-Complexity) Let (P,V') be an interactive proof system for a language
L and let r : N — N be an integer function. We say that (P,V') has round-complexity r(-) if for
every input x the number of messages exchanged is at most r(|x|). In such a case, we sometimes
refer to (P, V') as an r(-)-round interactive proof system.

2.3 Zero-Knowledge

Loosely speaking, an interactive proof is said to be zero-knowledge (ZK) if it yields nothing beyond
the validity of the assertion being proved. This is formalized by requiring that the view of every
probabilistic polynomial-time adversary V* interacting with the honest prover P can be simulated
by a probabilistic polynomial-time machine Sy~ (a.k.a. the simulator). The idea behind this def-
inition is that whatever V* might have learned from interacting with P, he could have actually
learned by himself (by running the simulator S). The transcript of an interaction consists of the
common input x, followed by the sequence of prover and verifier messages exchanged during the
interaction. We denote by view,.(z) a random variable describing the content of the random tape
of V* and the transcript of the interaction between P and V* (that is, all messages that V* sends
and receives during the interaction with P, on common input z).

2.4. CONCURRENT ZERO-KNOWLEDGE 15

Definition 2.3.1 (Zero-Knowledge) Let (P,V) be an interactive proof system for a language
L. We say that (P,V) is zero-knowledge, if for every probabilistic polynomial-time interactive
machine V* there exists a probabilistic polynomial-time algorithm Sy« such that the ensembles
{viewl.(x)}per and {Sy+(z)}zer are computationally indistinguishable.

To make Definition 2.3.1 useful in the context of protocol composition, Goldreich and Oren [27]
suggested to augment the definition so that the corresponding conditions hold also with respect
to all z € {0,1}*, where both V* and Sy~ are allowed to obtain z as auxiliary input. Jumping
ahead, we comment that in the context of black-box simulation,, the original definition implies the
augmented one (i.e., any black-box Z/ protocol is also ZK w.r.t. auxuliary inputs). Since in this
work we only consider the notion of black-box ZK, we may ignore the issue of auxiliary inputs
while being guaranteed that all results hold with repsect to the augmented definition as well.

2.4 Concurrent Zero-Knowledge

Let (P, V) be an interactive proof (resp. argument) for a language L, and consider a concurrent
adversary (verifier) V* that, given input x € L, interacts with an unbounded number of independent
copies of P (all on common input x). The concurrent adversary V* is allowed to interact with the
various copies of P concurrently, without any restrictions over the scheduling of the messages in the
different interactions with P (in particular, V* has control over the scheduling of the messages in
these interactions). In order to control the scheduling, the concurrent adversary V* concatenates
every message that it sends with the session and round number to which the next scheduled message
belongs. The convention is that the reply sent by the prover should have session and message indices
as specified in the preceding verifier message (in case it does not, the verifier V* is allowed to reject
the corresponding session). As before, the transcript of a concurrent interaction consists of the
common input x, followed by the sequence of prover and verifier messages exchanged during the
interaction. We denote by view; . (z) a random variable describing the content of the random tape
of V* and the transcript of the concurrent interaction between P and V* (that is, all messages that
V* sends and receives during the concurrent interactions with P, on common input z).

Definition 2.4.1 (Concurrent Zero-Knowledge) Let (P,V') be an interactive proof system for
a language L. We say that (P, V') is concurrent zero-knowledge, if for every probabilistic polynomial-
time concurrent adversary V* there exists a probabilistic polynomaial-time algorithm Sy« such that
the ensembles {view?}.(x)}rer, and {Sy«(x)}secr are computationally indistinguishable.

In the context of concurrent ZK, the round-complexity of a protocol is measured as a function of
some predetemined “security” parameter n € N. The requirement is that the protocol will remain
secure as long as the number of concurrent executions is bounded by some polynomial in n (we
stress that the protocol is constructed before the polynomial bound is determined). In this work,
we use the convention that the “security” paramter n is equal (or polynomially related) to |z|.

2.5 Black-Box Concurrent Zero-Knowledge

Loosely speaking, the definition of black-box zero-knowledge requires that there exists a “universal”
simulator, S, so that for every x € L and every probabilistic polynomial-time adversary V*, the
simulator S produces a distribution that is indistinguishable from view{.(x) while using V* as an
oracle (i.e., in a “black-box” manner). Essentially, the definition of black-box simulation says that

16 CHAPTER 2. PRELIMINARIES

the black-box simulator mimics the interaction of the prover P with any polynomial-time verifier
V* relative to any random input 7 it might choose. The simulator does so merely by using oracle
calls to V*(x;r) (which specifies the next message that V* sends on input = and random input 7).
The simulation is indistinguishable from the true interaction even if the distinguisher (i.e., D) is
given access to the oracle V*(z;r). For more details see Section 4.5.4.2 of [22].

Before we proceed with the formal definition for the case of ¢ZK, we will have to overcome a
technical difficulty arising from an inherent difference between the concurrent setting and “stand-
alone” setting. In “stand-alone” zero-knowledge the length of the output of the simulator depends
only on the protocol and the size of the common input z. It is thus reasonable to require that
the simulator runs in time that depends only on the size of x, regardless of the running time of
its black-box. However, in black-box concurrent zero-knowledge the output of the simulator is an
entire schedule, and its length depends on the running time of the concurrent adversary. Therefore,
if we naively require that the running time of the simulator is a fixed polynomial in the size of z,
then we end up with an unsatisfiable definition. (As for any simulator S there is an adversary V*
that generates a transcript that is longer than the running time of S.)

One way to solve the above problem is to have for each fixed polynomial ¢(-), a simulator S,
that “only” simulates all ¢(-)-sized circuits V*. Clearly, the running time of the simulator now
depends on the running time of V* (which is an upper bound on the size of the schedule), and
the above problem does not occur anymore. Another (less restrictive) way to overcome the above
problem would be to consider a simulator S, that "only” simulates all adversaries V* which run
at most ¢(|x|) sessions during their execution (we stress that ¢(-) is chosen after the protocol is
determined). Such simulators should run in worst-case time that is a fixed polynomial in ¢(]z|) and
in the size of the common input . In the sequel we choose to adopt the latter formalization.

Definition 2.5.1 (Black-Box Concurrent Zero-Knowledge) Let (P, V') be an interactive proof
system for a language L. We say that (P, V') is black-box concurrent zero-knowledge, if for every
polynomial q(-), there exists a probabilistic polynomial-time algorithm Sy, so that for every con-
current adversary circuit V* that runs at most q(|x|) concurrent sessions, Sq(x) runs in time
polynomial in q(|z|) and |x|, and satisfies that the ensembles {view}.(x)}eer and {S) (2)}ser are
computationally indistinguishable.

2.6 Conventions

Deviation gap and expected polynomial-time simulators: The deviation gap of a simulator
S for a proof-system (P, V') is defined as follows. Consider a distinguisher D that is required to
decide whether its input consists of view[.(z) or to the transcript that was produced by S. The
deviation gap of D is the difference between the probability that D outputs 1 given an output of
S, and the probability that D outputs 1 given view(.(z). The deviation gap of S is the deviation
gap of the best polynomial time distinguisher D. In our definitions of concurrent zero-knowledge
(Definitions 2.4.1 and 2.5.1) the deviation gap of the simulator is required to be negligible in |z|.

For our lower bound, we allow simulators that run in strict (worst case) polynomial time, and
have deviation gap at most 1/4. As for expected polynomial time simulators, one can use a standard
argument to show that any simulator running in expected polynomial time, and having deviation
gap at most 1/8 can be transformed into a simulator that runs in strict (worst case) polynomial
time, and has deviation gap at most 1/4. In particular, our lower bound (on simulators that run in
strict polynomial time, and have deviation gap at most 1/4) extends to a lower bound on simulators
running in expected polynomial time (and have deviation gap as large as 1/8).

2.6. CONVENTIONS 17

Query conventions: In the lower bound, k-round protocols consist of protocols in which 2k 4 2
messages are exchanged subject to the following conventions. The first message is a fixed initiation
message by the verifier, denoted vy, which is answered by the prover’s first message denoted p;.
The following verifier and prover messages are denoted va,py,...,Vky1,Pgpy1, Where vy is an
ACCEPT/REJECT message indicating whether the verifier has accepted its input, and the last message
(i.e., ppyy) is a fixed acknowledgment message sent by the prover.! Clearly, any protocol in which
2k messages are exchanged can be modified to fit this form (by adding at most two messages).

Both in the lower bound and the upper bound, we impose the following technical restrictions
on the simulator (we claim that each of these restrictions can be satisfied by any simulator): As in
(cf. [24]), the queries of the simulator are prefixes of possible execution transcripts (in the concurrent
setting).? Such a prefix is a sequence of alternating prover and verifier messages (which may belong
to different sessions as determined by the fixed schedule) that ends with a prover message. The
answer to the queries made by the simulator consists of a single verifier message (which belongs to
the next scheduled session), and is determined by the output of the machine V* when applied to
the corresponding query (that is, the answer to query 7 is the message V*(q)). In the case of the
upper bound, we assume that the verifier’s answers are always sent along with the identifiers of
the next scheduled message (as determined by V*). That is, every verifier message is concatenated
with the session and round number to which the next scheduled message belongs. In the case of the
lower bound, this is not necessary since we are counsidering a fixed scheduling that is determined
in advance and known to everybody. We assume that the simulator never repeats the same query
twice. In addition, we assume that before making a query ¢ = (b1, a1, ...,b, a¢), where the a’s are
prover messages, the simulator has made queries to all relevant prefixes (i.e., (b1, a1,...,b;, a;), for
every i < t), and has obtained the b;’s as answers. Finally, we assume that before producing output
(bi,a1,...,br,ar), the simulator makes the query (b1, aq,...,bp,ar).

On the simulator’s “behaviour”: Similarly to all known black-box simulators, the simulator
presented in Chapter 4 will go about the simulation task by means of "rewinding” the adversary
V* to past points in the interaction. That is, the simulator will explore many possible concurrent
interactions with V* by feeding it with different queries of the same length (while examining

V*’s output on these queries).®> As will turn out from our proof, before making a query § =
(py,V1,---,Ve_1,P;), Where the p’s are prover messages, the simulator will always make queries to
all relevant prefixes (i.e., (py,v1,...,vi—1,p;), for every i < t), and will obtain the v;’s as answers.

In addition, the simulator will never make an illegal query (except with negligible probability).
That is, the simulator will always feed the verifier with messages in the prescribed format, and will
make sure that the session and message numbers of any prover message in the query are indeed
consistent with the identifiers appearing in the preceding verifier message. Actually, in order to
succed, the simulator does deviate from the prescribed prover strategy (and indeed sends messages
that would have not been sent by an honest prover). However, it will do so in a way that cannot
be noticed by any probabilistic polynomial-time procedure (unless perfectly-binding commitments
do not exist). What we actually mean by saying that illegal queries are never made is that the
simulator will never send an ill-formed message (i.e., one that would cause an honest verifier V' to
immediately reject the protocol).

'The Piy1 message is an artificial message included in order to “streamline” the description of the adversarial
schedule (the schedule will be defined in Section 3.2.1).

% For sake of simplicity, we choose to omit the input = from the transcript’s representation (as it is implicit in the
description of the verifier anyway).

3Recall that every query made by the simulator corresponds to a specific execution transcript, and that the query’s
length corresponds to the number of messages exchanged so far.

18 CHAPTER 2. PRELIMINARIES

Dealing with ABORT messages: Since the adversary verifier V* may arbitrarily deviate from the
prescribed strategy, it may be the case that throughout its interaction with the prover (simulator),
V* occasionally sends ill-formed messages (in other words, V* may potentially refuse to decommit
to a previous commitment). Clearly, such an action on behalf of the verifier is considered illegal, and
the interaction in the relevant session stops (i.e., there is no need to continue exchanging messages
in this session). Without loss of generality, such ill-formed messages are always interpreted as some
predetermined ABORT message. For the sake of concreteness, we assume that whenever an ABORT
message is sent by the verifier, the prover and verifier keep exchanging ABORT messages until the
relevant session is completed. We stress that, as far as the prover (simulator) is concerned, illegal
actions on behalf of the verifier in one session do not have any effect on the interaction in other
sessions (since in the concurrent setting each prover/verifier pair is assumed to act independently).

2.7 Commitment Schemes

Commitment schemes are used to enable a party, known as the sender, to commit itself to a
value while keeping it secret from the receiver (this property is called hiding). Furthermore, the
commitment is binding, and thus in a later stage when the commitment is opened, it is guaranteed
that the “opening” can yield only a single value determined in the committing phase.

Perfectly-binding commitment schemes: In a perfectly binding commitment scheme, the
binding property holds even for an all-powerful sender, while the hiding property is only guaranteed
with respect to a polynomial-time bounded receiver. For simplicity, we present the definition for
a noun-interactive, commitment scheme for a single bit. String commitment can be obtained by
separately committing to each bit in the string.

We denote by C,(b) the output of the commitment scheme C' upon input b € {0,1} and using
the random string r € {0,1}" (for simplicity, we assume that C' uses n random bits where n € N
is the security parameter).

Definition 2.7.1 (Perfectly-binding commitment) A perfectly-binding bit commitment scheme
15 a probabilistic algorithm C satisfying the following two conditions:

e Perfect Binding: C,(0) # Cs(1) for every r,s € {0,1}"™ and n € N.

e Computational Hiding: The probability ensembles {Cy, (0)}nen and {Cy,(1)}nen are com-
putationally indistinguishable.

Non-interactive perfectly-binding commitment schemes can be constructed using any 1-1 one-
way function (see Section 4.4.1 of [22]). Allowing some minimal interaction (in which the receiver
first sends a single message), (almost) perfectly-binding commitment schemes can be obtained from
any one-way function [37, 32].

Perfectly-hiding commitment schemes: In a perfectly hiding commitment scheme, the binding
property is guaranteed to hold only with respect to a probabilistic polynomial-time sender. On the
other hand, the hiding property is information-theoretic. That is, the distributions of commitments
to 0 and commitments to 1 are identical (statistically-close), and thus even an all-powerful receiver
cannot know the value committed to by the sender. We stress that the binding property guarantees
that a cheating probabilistic polynomial-time sender can find only one decommitment, even though
decommitments to both 0 and 1 exist (which in particular means that an all powerful sender can
always decommit both to 0 and to 1). See [22] (Section 4.8.2) for a full definition.

2.7. COMMITMENT SCHEMES 19

Perfectly hiding commitment schemes can be constructed from any one-way permutation [38].
However, constant-round schemes are only known to exist under stronger assumptions; specifically,
assuming the existence of collision-resistant hash functions [39, 14] or the existence of a collection
of certified clawfree functions [23] (see also [22], Section 4.8.2.3).

20

CHAPTER 2. PRELIMINARIES

Chapter 3

Black-Box ¢ZK Requires (almost)
Logarithmically many Rounds

In this chapter we prove that in the context of black-box cZI, Q(logn/loglogn) rounds of inter-
action are essential for non-trivial proof systems. This bound is the first to rule out the possibility
of constant-round c¢ZK, when proven via black-box simulation. Furthermore, the bound almost
matches the number of rounds in the best known ¢Z/C protocol for languages outside BPP [41]
(see Chapter 4). The central result of this chapter is stated in the following theorem.

Theorem 3.1 (Lower Bound) Let r: N — N be a function so that r(n) = o(lo?ﬁ’)gn). Suppose
that (P, V') is an r(-)-round proof system for a language L, and that concurrent executions of P can
be simulated wn polynomial-time using black-box simulation. Then L € BPP. The theorem holds
even if the proof system is only computationally-sound (with negligible soundness error) and the

stmulation is only computationally-indistinguishable (from the actual executions).

The proof of Theorem 3.1 builds on the works of Goldreich and Krawczyk [24], Kilian, Petrank
and Rackoff [36], and Rosen [43]. On a very high level, the proof proceeds by constructing a specific
concurrent schedule of sessions, and demonstrating that a black-box simulator cannot successfully
generate a simulated accepting transcript for this schedule unless it “rewinds” the verifier many
times. The work spent on these rewindings will be super-polynomial unless the number of rounds
used by the protocol obeys the bound, or L € BPP.

While the general outline of the proof remains roughly the same as in [24, 36, 43|, the actual
schedule of sessions, and its analysis, are new. One main idea that, together with other ideas,
enables the proof of the bound is to have the verifier abort sessions depending on the history of the
interaction. A more detailed outline, presenting both the general structure and the new ideas in
the proof, appears in the next section.

Remark: The concurrent schedule in our proof is fived and known to everybody. As a consequence,
Theorem 3.1 is actually stronger than stated. It will hold even if the simulator knows the schedule
in advance (in particular, it knows the number of concurrent sessions), and even if the schedule
of the messages does not change dynamically (as a function of the history of the interaction).
Moreover, the actual scheduling and the number of sessions are known even before the protocol
itself is determined.

21

22 CHAPTER 3. BB CZK REQUIRES LOGARITHMICALLY MANY ROUNDS

3.1 Proof Outline

This section contains an outline of the proof of Theorem 3.1. The actual proof will be given in
Sections 3.2 and 3.3. To facilitate reading, we partition the outline into two parts: The first part
reviews the general framework. (This part mainly follows previous works, namely [24, 36, 43].) The
second part concentrates on the actual schedule and the specifics of our lower bound argument.

3.1.1 The high-level framework

Consider a k-round Concurrent Zero Knowledge proof system (P, V) for language L, and let S be
a black-box simulator for (P, V). We use S to construct a BPP decision procedure for L. For this
purpose, we construct a family {V}} of “cheating verifiers”. To decide on an input x, run S with a
cheating verifier V;, that was chosen at random from the constructed family, and decide that x € L
iff S outputs an accepting transcript of Vj.

The general structure of the family {V}} is roughly as follows. A member V}, in the family is
identified via a hash function h taken from a hash-function family H having “much randomness”
(or high independence). Specifically, the independence of H will be larger than the running time
of §. This guarantees that, for our purposes, a function drawn randomly from H behaves like a
random function. We define some fixed concurrent schedule of a number of sessions between V),
and the prover. In each session, V;, runs the code of the honest verifier V on input x and random
input h(a), where a is the current history of the (multi-session) interaction at the point where the
session starts. V}, accepts if all the copies of V' accept.

The proof of validity of the decision procedure is structured as follows. Say that S succeeds if
it outputs an accepting transcript of Vj,. It is first claimed that if € L then a valid simulator S
must succeed with high probability. Roughly speaking, this is so because each session behaves like
the original proof system (P, V'), and (P, V) accepts = with high probability. Demonstrating that
the simulator almost never succeeds when = ¢ L is much more involved. Given S we construct a
“cheating prover” P* that makes the honest verifier V accept « with probability that is polynomially
related to the success probability of S. The soundness of (P, V) now implies that in this case S
succeeds only with negligible probability. See details below.

Session-prefixes and useful session-prefixes: In order to complete the high-level description
of the proof, we must first define the following notions that play a central role in the analysis.
Consider the conversation between V;, and a prover. A session-prefix a is a prefix of this conversation
that ends at the point where some new session starts (including the first verifier message in that
session). (Recall that V’s random input for that new session is set to h(a).) Next, consider
the conversation between S and Vj in some run of S. (Such a conversation may contain many
interleaved and incomplete conversations of V}, with a prover.) Roughly speaking, a message sent
by S to the simulated V}, is said to have session prefix a if it relates to the session where the verifier
randomness is h(a). A session-prefix a is called useful in a run of S if:

1. It was accepted (i.e., V}, sent an ACCEPT message for session-prefix a).

2. V}, has sent exactly £ + 1 messages for session-prefix a.

Loosely speaking, Condition 2 implies that S did not rewind the relevant session-prefix, where
rewind session-prefix a is an informal term meaning that S rewinds V}, to a point where V}, provides
a second continuation for session-prefix a. By rewinding session-prefix a, the simulator is able to
obtain more than k4 1 verifier messages for session-prefix a. This is contrast to an actual execution
of the protocol (P, V) in which V sends exactly k£ + 1 messages.

3.1. PROOF OUTLINE 23

The construction of the cheating prover: Using the above terms, we sketch the construction
of the cheating prover P*. It first randomly chooses a function he-H and an index (of a session-
prefix) i. It then emulates an interaction between S and Vj,, with the exception that P* uses the
messages sent by S that have the i*® session-prefix as the messages that P* sends to the actual
verifier it interacts with; similarly, it uses the messages received from the actual verifier V' instead of
V,’s messages in the i*! session-prefix. The strategy of the cheating prover is depicted in Figure 3.1.

S Vi,

Emulated interaction
between S and V},

(Multiple sessions)

P V

Actual interaction
between P* and V

(Single session)

Figure 3.1: Describes the strategy of the cheating prover P*. The box on the left hand side repre-
sents the (multiple session) emulation of the interaction between S and V}, (executed “internally”
by P*). The box on the right hand side represents the actual execution of a single session between
P* and V. (Recall that P* relays some of the actual interaction messages to its internal emulation.)

The success probability of the cheating prover: We next claim that if the session-prefix
chosen by P* is useful, then (P*,V)(z) accepts. The key point is that whenever P* chooses
an useful session-prefix, the following two conditions (corresponding to the two conditions in the
definition of a useful session-prefix) are satisfied:

1. The session corresponding to the i*h session-prefix is accepted by V;, (and so by V).

2. P* manages to reach the end of the (P*, V') interaction without “getting into trouble”.!

Loosely speaking Item (1) is implied by Condition (1) in the definition of a useful session-prefix.
As for Ttem (2), this just follows from the fact that S does not rewind the i*" session-prefix (as
implied by Condition (2) in the definition of a useful session-prefix). In particular, P* (playing the
role of V},) will not have to send the j* verifier message with the i*! session-prefix more than once
to S (since the number of messages sent by Vj, for that session-prefix is exactly k + 1).

Since the number of session-prefixes in an execution of S is bounded by a polynomial, it follows
that if the conversation between S and Vj, contains a useful session-prefix with non-negligible
probability, then (P*,V)(x) accepts with non-negligible probability.

3.1.2 The schedule and additional ideas

Using the above framework, the crux of the lower bound is to come up with a schedule and V},’s
that allow demonstrating that whenever S succeeds, the conversation between S and V}, contains a
useful session-prefix (as we have argued above, it is in fact sufficient that the conversation between
S and V}, contains a useful session-prefix with non-negligible probability). This is done next.

!The problem is that P* does not know V’s random coins, and so it cannot compute the verifier’s answers by
himself. Thus, whenever P* is required in the emulation to send the j** verifier message in the protocol more than

once to S it might get into trouble (since it gets the j** verifier message only once from V).

24 CHAPTER 3. BB CZK REQUIRES LOGARITHMICALLY MANY ROUNDS

The 2-round case: Our starting point is the schedule used in [36] to demonstrate the impossibil-
ity of black-box concurrent zero-knowledge with protocols in which 4 messages are exchanged (i.e.,
V1,P;,V2,P9). The schedule is recursive and consists of n concurrent sessions (n is polynomially
related to the security parameter). Given parameter m < n, the scheduling on m sessions (denoted
R.) proceeds as follows (see Figure 3.2 for a graphical description):

1. If m =1, the relevant session exchanges all of its messages (i.e., vi,py, V2, Py)-
2. Otherwise (i.e., if m > 1):

Initial message exchange: The first session (out of m) exchanges 2 messages (i.e., vi,p;);

Recursive call: The schedule is applied recursively on the remaining m — 1 sessions;

Final message exchange: The first session (out of m) exchanges 2 messages (i.e., v, py).
At the end of each session V}, continues in the interaction if and only if the transcript of the session
that has just terminated would have been accepted by the prescribed verifier V. This means that

in order to proceed beyond the ending point of the ¢*! session, the simulator must make the honest
verifier accept the s session for all s > /.

(a) (b)

1 2 m 1 2 m
Vi = Vi =
p, = - p, =
=
=
=
<::> 7szl
=
=
Vo &= Vo &
p, = p, =

Figure 3.2: The “telescopic” schedule used to demonstrate impossibility of black-box concurrent
zero-knowledge in 2 rounds. Columuns correspond to n individual sessions and rows correspond to
the time progression. (a) Depicts the schedule explicitly. (b) Depicts the schedule in a recursive
manner (R,, denotes the recursive schedule for m sessions).

Suppose now that S succeeds in simulating the above V} but the conversation between S and
Vi, does not contain a useful session-prefix. Since V}, proceeds beyond the ending point of a session
ounly if this session is accepted, then the only reason for which the corresponding session-prefix can
be non-useful is because S has rewound that session-prefix. Put in other words, a session-prefix
becomes non-useful if and only if S resends the first prover message in the protocol (i.e., p;).? This
shuld cause V}, to resend the second verifier message (i.e., v3), thus violating Condition (2) in the
definition of a useful session-prefix (see 22).

ZNotice that the first prover message in the protocol (i.e., py) is the only place in which rewinding the interaction
may cause a session-prefix to be non-useful. The reason for this is that the first verifier message in the protocol (i.e.,
v1) is part of the session-prefix. Rewinding past this message (i.e., v1) would modify the session-prefix itself. As for
Po, it is clear that rewinding this message would not cause any change in verifier messages that correspond to the
relevant session-prefix (since, vi and vs occur after p, anyway).

3.1. PROOF OUTLINE 25

The key observation is that whenever the first prover message in the (" session is modified,
then so is the session-prefix of the s' session for all s > £. Thus, whenever S resends the first
prover message in the £*" session, it must do so also in the s*" session for all s > ¢ (since otherwise
the “fresh” session-prefix of the s session, that is induced by resending the above message, will
be useful). But this means that the work W (m), invested in the simulation of a schedule with
m levels, must satisfy W (m) > 2 - W(m — 1) for all m. Thus, either the conversation between
Vp, and S contains a useful session-prefix (in which case we are done), or the simulation requires
exponential-time (since W (m) > 2 - W (m — 1) solves to W (n) > 2" 1).

The k-round case — first attempt: A first attempt to generalize this schedule to the case of k
rounds may proceed as follows. Given parameter m < n do:

1. If m = 1, the relevant session exchanges all of its messages (i.e., v1,py,..., V41, Ppy1)-
2. Otherwise, for j =1,...,k+ 1:

Message exchange: The first session (out of m) exchanges two messages (i.e., v;,p;);

Recursive call: If j < k + 1, the scheduling is applied recursively on LmTflj new sessions;
(This is done using the next |™=!| remaining sessions out of 2,...,m.)

As before, at the end of each session V}, continues in the interaction if and only if the transcript of
the session that has just terminated would have been accepted by the prescribed verifier V. The
schedule is depicted in Figure 3.3.

1 2 m

Vi =
|2 =
Rm—1
k
Va =
P, =
Vi-i <
p,, =
Rom-1
13
Vi <
p; =
Vi =
P =
RM
3
Vit <
Pisa

Figure 3.3: First attempt to generalize the recursive schedule for k-round protocols.

26 CHAPTER 3. BB CZK REQUIRES LOGARITHMICALLY MANY ROUNDS

The crucial problem of the above schedule is that one can come up with a k-round protocol and
a corresponding simulator that manages to succesfully simulate V}, and cause all session-prefixes
in its conversation with V}, to be non-useful. Specifically, there exist protocols (cf. [42]) in which
the simulator is required to successfully rewind an honestly behaving verifier exactly once for every
session. Whereas in the case of 2-rounds this could have had devastating consequences (since, in
the case of the previous schedule, it would have implied W (m) > (k+1)-W(m—1) =2-W(m —1),
which solves to W (n) > 2"~1), in the general case (i.e., when k + 1 > 2) any rewinding of the
schedule that we have suggested would have forced the simulator to re-invest simulation “work”
only for 2~ sessions. Note that such a simulator satisfies W (m) = (k +1) - W (22), which solves
to k9Uegkn) — pOM) In particular, by investing polynomial amount of work the simulator is able
to make all session-prefixes not useful while succesfully simulating all sessions.

The k-round case — second attempt: One method to circumvent this difficulty was used
in [43]. However, that method extends the lower bound only up to 3 rounds (more precisely, 7
messages). Here we use a different method. What we do is let the cheating verifier abort (i.e., refuse
to answer) every message in the schedule with some predetermined probability (independently of
other messages). To do this, we first add another, binary hash function, g, to the specification
of V3. This hash function is taken from a family G with sufficient independence, so that it looks
like a random binary function. Now, before generating the next message in some session, V, ;, first
applies g to some predetermined part of the conversation so far. If g returns 0 then V; ;, aborts the
session by sending an ABORT message. If g returns 1 then V, 5, is run as usual.

The rationale behind the use of aborts can be explained as follows. Recall that a session-prefix
a stops being useful only when V; ; sends more than k messages whose session-prefix is a. This
means that a stops being useful only if S rewinds the session-prefix a and in addition g returns 1
in at least two of the continuations of a. This means that S is expected to rewind session-prefix
a several times before it stops being useful. Since each rewinding of a involves extra work of S
on higher-level sessions, this may force S to invest considerably more work before a session stops
being useful.

A bit more specifically, let p denote the probability, taken over the choice of g, that g returns 1
on a given input. In each attempt, the session is not aborted with probability p. Thus S is expected
to rewind a session prefix 1/p times before it becomes non-useful. This gives hope that, in order
to make sure that no session-prefix is useful, S must do work that satisfies a condition of the sort:

W(m) > Q(1/p) - W (") (3.)

This would mean that the work required to successfully simulate n sessions and make all session-
prefixes non-useful is at least Q(p~!°8x™). Consequently, when the expression p~!°8¢™ is super-
polynomial there is hope that the conversation between S and V}, contains a useful session-prefix
with non-negligible probability.

The k-round case — final version: However, demonstrating Eq. (3.1) brings up the following
difficulty. Once the verifier starts aborting sessions, the probability that a session is ever completed
may become too small. As a consequence, it is not clear anymore that the simulator must invest
simulation “work” for all sessions in the schedule. It may very well be the case that the simulator
will go about the simulation task while “avoiding” part of the simulation “work” in some recursive
invocations (as some of these invocations may be aborted anyway during the simulation). In

‘

3.2. THE ACTUAL PROOF (OF THEOREM 3.1) 27

other words, there is no guarantee that the recursive “work” invested by the simulator behaves
like Eq. (3.1).

To overcome this problem, we replace each session in the above schedule (for £ rounds) with
a “block” of, say, n sessions (see Figure 3.4 in Page 29). We now have n? sessions in a schedule.
(This choice of parameters is arbitrary, and is made for convenience of presentation.) V, ; accepts
a block of n sessions if at least 1/2 of the non-aborted sessions in this block were accepted and not
too many of the sessions in this block were aborted. Once a block is rejected, V, 5, halts. At the end
of the execution, V, ;, accepts if all blocks were accepted. The above modification guarantees that,
with a careful setting of the parameters, the simulator’s recursive “work” must satisfy Eq. (3.1), at
least with overwhelming probability.

Setting the value of p: It now remains to set the value of p so that Eq. (3.1) is established.
Clearly, the smaller p is chosen to be, the larger p~!'°8™ is. However, p cannot be too small,
or else the probability of a session to be ever completed will be too small, and Condition (1) in
the definition of a useful session-prefix (See Page 22) will not be satisfied. Specifically, a k-round
protocol is completed with probability p¥. We thus have to make sure that p* is not negligible (and
furthermore that p* - n > 1).

In the proof we set p = n~ /2% This will guarantee that a session is completed with probability
p* = n~1/2 (thus Condition (1) has hope to be satisfied). Furthermore, since p~'°8¢" is super-
polynomial whenever k£ = o(log n/loglog n), there is hope that Condition (2) in the definition of a
useful session-prefix (See Page 22) will be satisfied for £ = o(logn/loglogn).

3.1.3 The actual analysis

Demonstrating that there exist many accepted session-prefixes is straightforward. Demonstrating
that one of these session-prefixes is useful requires arguing on the dependency between the expected
work done by the simulator and its success probability. This is a tricky business, since the choices
made by the simulator (and in particular the amount of effort spent on making each session non-
useful) may depend on past events.

We go about this task by pinpointing a special (combinatorial) property that holds for any
successful run of the simulator, unless the simulator runs in super-polynomial time (Lemma 3.3.9).
Essentially, this property states that there exists a block of sessions such that none of the session-
prefixes in this block were rewound too many times. Using this property, we show (in Lemma
3.3.7) that the probability (over the choices of Vj j and the simulator) that a run of the simulator
contains no useful session-prefix is negligible.

3.2 The Actual Proof (of Theorem 3.1)

Assuming towards the contradiction that a black-box simulator, denoted S, contradicting Theo-
rem 3.1 exists, we will describe a probabilistic polynomial-time decision procedure for L, based on
S. The first step towards describing the decision procedure for L involves the construction of an
adversary verifier in the concurrent model. This is done next.

3.2.1 The concurrent adversarial verifier

The description of the adversarial strategy proceeds in several steps. We start by describing the
underlying fixed schedule of messages. Once the schedule is presented, we describe the adversary’s
strategy regarding the contents of the verifier messages.

28 CHAPTER 3. BB CZK REQUIRES LOGARITHMICALLY MANY ROUNDS

The schedule

For each z € {0,1}", we consider the following concurrent scheduling of n? sessions, all run on
common input x.3 The scheduling is defined recursively, where the scheduling of m < n? sessions
(denoted R,,) proceeds as follows:*

1. If m < n, sessions 1,...,m are executed sequentially until they are all completed;
2. Otherwise, for j =1,...,k+ 1:

Message exchange: Each of the first n sessions exchanges two messages (i.e., Vj,pj);

(These first n sessions out of {1,...,m} will be referred to as the main sessions of R,,.)

Recursive call: If j < k + 1, the scheduling is applied recursively on [™="] new sessions;

(This is done using the next | ™"] remaining sessions out of 1,...,m.)

The schedule is depicted in Figure 3.4. We stress that the verifier typically postpones its answer
(ie., vj) to the last prover’s message (i.e., p; ;) till after a recursive sub-schedule is executed, and

that in the j*" iteration of Step 2, | ™7*] new sessions are initiated (with the exception of the
first iteration, in which the first » (main) sessions are initiated as well). The order in which the
messages of various sessions are exchanged (in the first part of Step 2) is fixed but immaterial.
Say that we let the first session proceed, then the second and so on. That is, we have the order
vgl),pgl), .. ,vgn),pgn), where vg-z) (resp., pgz)) denotes the verifier’s (resp., prover’s) j' message in
the it session.

The set of n sessions that are explicitly executed during the message exchange phase of the
recursive invocation (i.e., the main sessions) is called a recursive block. (Notice that each recursive
block corresponds to exactly one recursive invocation of the schedule.) Taking a closer look at the
schedule we observe that every session in the schedule is explicitly executed in exactly one recursive
invocation (that is, belongs to exactly one recursive block). Since the total number of sessions in
the schedule is n2, and since the message exchange phase in each recursive invocation involves the
explicit execution of n sessions (in other words, the size of each recursive block is n), we have that
the total number of recursive blocks in the schedule equals n. Since each recursive invocation of the
schedule involves the invocation of k additional sub-schedules, the recursion actually corresponds
to a k-ary tree with n nodes. The depth of the recursion is thus |log,((k — 1)n 4+ 1)], and the

number of “leaves” in the recursion (i.e., sub-schedules of size at most n) is at least LWJ

Identifying sessions according to their recursive block: To simplify the exposition of the
proof, it will be convenient to associate every session appearing in the schedule with a pair of
indices (£,4) € {1,...,n} x {1,...,n}, rather than with a single index s € {1,...,n%}. The
value of ¢ = {(s) € {1,...,n} will represent the index of the recursive block to which session s
belongs (according to some canonical enumeration of the n invocations in the recursive schedule,
say according to the order in which they are invoked), whereas the value of i =i(s) € {1,...,n}
will represent the index of session s within the n sessions that belong to the ¢ recursive block (in
other words, session (£,i) is the i'" main session of the £*® recursive invocation in the schedule).
Typically, when we explicitly refer to messages of session (¢,7), the index of the corresponding

3Recall that each session consists of 2k + 2 messages, where k def k(n) = o(log n/ loglogn).

“In general, we may want to define a recursive scheduling for sessions 41,...,%,» and denote it by Ri,,...i,. (see
Section 8.1 in the Appendix for a more formal description of the schedule). We choose to simplify the exposition by
renaming these sessions as 1,...,m and denote the scheduling by R..

3.2. THE ACTUAL PROOF (OF THEOREM 3.1) 29

recursive block (i.e., £) is easily deducible from the context. In such cases, we will sometimes omit

the index £ from the “natural” notation vg-z’i) (resp. sz,i)), and stick to the notation vg-i) (resp. pg-i)).
Note that the values of (£,7) and the session index s are completely interchangeable (in particular,

¢ =sdivn and i = s mod n).

Definition 3.2.1 (Identifiers of next message) The schedule defines a mapping from partial
evecution transcripts ending with a prover message to the identifiers of the next verifier message;
that is, the session and round number to which the next verifier message belongs. (Recall that
such partial execution transcripts correspond to queries of a black-box simulator and so the map-

ping defines the identifier of the answer:) For such a query § = (b1, a1,...,b,a¢), we denote by
msn(q) = (£,7) € {1,...,n} x {1,...,n} the session to which the next verifier message belongs, and
by Tmsg(q) =7 € {1,...,k + 1} its index within the verifier’s messages in this session.

We stress that the identifiers of the next message are uniquely determined by the number of messages
appearing in the query (and are not affected by the contents of these messages).

1 2 n n+1 m
vy N
P1 = -
=
=
=
Rom=n
13
Vo =
P2 = -
=
=
=
i <=
P; =
£
=
=
Rn—n
%
Vi N
P; =
=
=
=
=
Vi <=:>
Pk
=
=
=
=
Rm—n
T
V41 <=
Pr41 = -
=
=
=

Figure 3.4: The recursive schedule R,, for m sessions. Columns correspond to m individual sessions
and rows correspond to the time progression.

30 CHAPTER 3. BB CZK REQUIRES LOGARITHMICALLY MANY ROUNDS

Towards constructing an adversarial verifier

Once the identifiers of the next verifier message are deduced from the query’s length, one has to
specify a strategy according to which the contents of the next verifier message will be determined.
Loosely speaking, our adversary verifier has two options: It will either send the answer that would
have been sent by an honest verifier (given the messages in the query that are relevant to the current
session), or it will choose to deviate from the honest verifier strategy and abort the interaction in
the current session (this will be done by answering with a special ABORT message). Since in a
non-trivial zero-knowledge proof system the honest verifier is always probabilistic (cf. [27]), and
since the “abort behaviour” of the adversary verifier should be “unpredictable” for the simulator,
we have that both options require a source of randomness (either for computing the contents
of the honest verifier answer or for deciding whether to abort the conversation). As is already
customary in works of this sort [24, 36, 43|, we let the source of randomness be a hash function
with sufficiently high independence (which is “hard-wired” into the verifier’s description), and
consider the execution of a black-box simulator that is given access to such a random verifier.
(Recall that the simulator’s queries correspond to partial execution transcripts and thus contain
the whole history of the interaction so far.)

Determining the randomness for a session: Focusing (first) on the randomness required to
compute the honest verifier’s answers, we ask what should the input of the above hash function
be. A naive solution would be to let the randomness for a session depend on the session’s index.
That is, to obtain randomness for session ({,i) = 7wy, () apply the hash function on the value
(¢,7). This solution will indeed imply that every two sessions have independent randomness (as
the hash function will have different inputs). However, the solution seems to fail to capture the
difficulty arising in the simulation (of multiple concurrent sessions). What we would like to have is
a situation in which whenever the simulator rewinds a session (that is, feeds the adversary verifier
with a different query of the same length), it causes the randomness of some other session (say, one
level down in the recursive schedule) to be completely modified. To achieve this, we must cause
the randomness of a session to depend also on the history of the entire interaction. Changing even
a single message in this history would immediately result in an unrelated instance of the current
session, and would thus force the simulator to redo the simulation work on this session all over again.

So where in the schedule should the randomness of session (¢,7) be determined? On the one
hand, we would like to determine the randomness of a session as late as possible (in order to
maximize the effect of changes in the history of the interaction on the randomness of the session).
On the other hand, we cannot afford to determine the randomness after the session’s initiating
message is scheduled (since the protocol’s specification may require that the verifier’s randomness
is completely determined before the first verifier message is sent). For technical reasons, the point in
which we choose to determine the randomness of session (¢,7) is the point in which recursive block
number / is invoked. That is, to obtain the randomness of session (£,i) = 75, (q) we feed the hash
function with the prefix of query g that ends just before the first message in block number ¢ (this
prefix is called the block-prefix of query g and is defined below). In order to achieve independence
with other sessions in block number ¢, we will also feed the hash function with the value of 1.
This (together with the above choice) guarantees us the following properties: (1) The input to the
hash function (and thus the randomness for session (,7)) does not change once the interaction in
the session begins (that is, once the first verifier message is sent). (2) For every pair of different
sessions, the input to the hash function is different (and thus the randomness for each session is
independent). (3) Even a single modification in the prefix of the interaction up to the first message
in block number £, induces fresh randomness for all sessions in block number £.

3.2. THE ACTUAL PROOF (OF THEOREM 3.1) 31

Definition 3.2.2 (Block-prefix) The block-prefix of a query G satisfying wsn(q) = (¢,4), is the
prefiz of G that is answered with the first verifier message of session ({,1) (that is, the first
main session in block number). More formally, bp(q) = (bi,a1,...,by,a,) is the block-prefiz
of 7= (br,a1,...,b,a¢) if mn(bp(q)) = (€,1) and Tmsg(bp(q)) = 1. The block-prefiz will be said to
correspond to recursive block number £.5 (Note that ¢ may be any index in {1,...,n}, and that a;
need not belong to session (£,1).)

Determining whether and when to abort sessions: Whereas the randomness that is used
to compute the honest verifier’'s answers in each session is determined before a session begins, the
randomness that is used in order to decide whether to abort a session is chosen independently every
time the execution of the schedule reaches the next verifier message in this session. As before, the
required randomness is obtained by applying a hash function on the suitable prefix of the execution
transcript. This time, however, the length of the prefix increases each time the execution of the
session reaches the next verifier message (rather than being fixed for the whole execution of the
session). This way, the decision of whether to abort a session also depends on the contents of
messages that were exchanged after the initiation of the session has occurred. Specifically, in order
to decide whether to abort session (£,i) = ms,(7) at the j'* message (where j = Tnsg(7)), we feed
the hash function with the prefix (of query) that ends with the (j—1)** prover message in the n'h
main session of block number £. (As before, the hash function is also fed with the value of i (in order
to achieve independence from other sessions in the block).) This prefix is called the iteration-prefix
of query 7 and is defined next (see Figure 3.5 for a graphical description of the block-prefix and
iteration-prefix of a query).

Definition 3.2.3 (Iteration-prefix) The iteration-prefix of a query G satisfying msn(q) = (¢,1)
and Tmsg(q) = j > 1, is the prefiz of G that ends with the (j —1)%* prover message in session
(¢,n) (that is, the n'® main session in block number £). More formally, ip(q) = (b1, a1,...,bs,as)
is the iteration-prefix of § = (b1, a1,...,b,a¢) if as is of the form pg-n_)l (where pg-n_)l denotes the
(j—1)° prover message in the n'" main session of block number £). This iteration-prefiz is said
to correspond to the block-prefiz of §. (Again, note that ¢ may be any index in {1,...,n}, and
that a; need not belong to session (¢,i). Also, note that the iteration-prefix is defined only for

Tmsg(q) > 1.)

We stress that two queries g;, 7, may have the same iteration-prefix even if they do not correspond
to the same session. This could happen whenever bp(q;) = bp(qs) and Tmge(71) = Tmsg(q2) (which
is possible even if 75, (7)) # Tsn(T2))-

Motivating Definitions 3.2.2 and 3.2.3: The choices made in Definitions 3.2.2 and 3.2.3
are designed to capture the difficulties encountered whenever many sessions are to be simulated
concurrently. As was previously mentioned, we would like to create a situation in which every
attempt of the simulator to rewind a specific session will result in loss of work done for other
sessions (and so will cause the simulator to do the same amount of work all over again). In order
to force the simulator to repeat each such rewinding attempt many times, we make each rewinding
attempt fail with some predetermined probability (by letting the verifier send an ABORT message
instead of a legal answer).

°In the special case that £ = 1 (that is, we are in the first block of the schedule), we define bp(g) =L.
SRecall that all of the above is required in order to make the simulator’s work accumulate to too much, and
eventually cause its running time to be super-polynomial.

32 CHAPTER 3. BB CZK REQUIRES LOGARITHMICALLY MANY ROUNDS

1 2 n n+1
vy =
P ()= -
=
=
=
Rm—n
k
Vo =
P2 = -
=
=
=
Vi1 —
Pj—1 =
ey
=(b)
Rm—n
I3
V] <::>
Py
Figure 3.5: Determining the prefixes of query g (in this example, query g ends with a pg-l) message
and is to be answered by v(~2), represented by the marked arrow): (a) indicates the block-prefix

J
of 7 (i.e., messages up to this point are used by V,; to determine the randomness to be used for
(2)
J
used by Vg, to determine whether or not message v§-2) will be set to ABORT).

computing message v."’). (b) indicates the iteration-prefix of g (i.e., messages up to this point are

To see that Definitions 3.2.2 and 3.2.3 indeed lead to the fulfillment of the above requirements,
we counsider the following example. Suppose that at some point during the simulation, the adversary
verifier aborts session (£,4) at the ' message (while answering query §). Further suppose that (for
some unspecified reason) the simulator wants to to get a “second chance” in receiving a legal answer
to the j'" message in session (¢,) (hoping that it will not receive the ABORT message again). Recall
that the decision of whether to abort a session depends on the outcome of a hash function when
applied to the iteration-prefix ip(q), of query g. In particular, to obtain a “second chance”, the
black-box simulator has no choice but to change at least one prover message in the above iteration-
prefix (in other words, the simulator must rewind the interaction to some message occurring in
iteration-prefix ip(q)). At first glance it may seem that the effect of changes in the iteration-prefix
of query g is confined to the messages that belong to session (¢,7) = ms,(g) (or at most, to messages
that belong to other sessions in block number ¢). However, taking a closer look at the schedule, we
observe that every iteration-prefix (and in particular ip(g)) can also be viewed as the block-prefix of
a recursive block one level down in the recursive construction. Viewed this way, it is clear that the
effect of changes in ip(q) is not confined only to messages that correspond to recursive block number
£, but rather extends also to sessions at lower levels in the recursive schedule. By changing even a
single message in iteration-prefix ip(g), the simulator is actually modifying the block-prefix of all
recursive blocks in a sub-schedule one level down in the recursive construction. This means that
the randomness for all sessions in these blocks is completely modified (recall that the randomness
of a session is determined by applying a hash function on the corresponding block-prefix), and that
all the simulation work done for these sessions is lost. In particular, by changing even a single
message in iteration-prefix ip(g), the simulator will find himself doing the simulation work for these
lower-level sessions all over again.

3.2. THE ACTUAL PROOF (OF THEOREM 3.1) 33

Having established the effect of changes in iteration-prefix ip(g) on sessions at lower levels in the
recursive schedule, we now turn to examine the actual effect on session (¢,7) = 7., () itself. One
possible consequence of changes in iteration-prefix ip(q) is that they may also effect the contents
of the block-prefix bp(q) of query g (notice that, by definition, the block-prefix bp(g) of query g
is contained in the iteration-prefix ip(g) of query). Whenever this happens, the randomness
used for session (/,7) is completely modified, and all simulation work done for this session will be
lost. A more interesting consequence of a change in the contents of iteration-prefix ip(q), is that
it will result in a completely independent decision of whether session (,7) is to be aborted at the
4§ message (the decision of whether to abort is taken whenever the simulator makes a query g
satisfying 7e,(q) = (¢,1), and Tmsg(q) = j). In other words, each time the simulator attempts to get
a “second chance” in receiving a legal answer to the 5™ message in session (£,i) (by rewinding the
interaction to a message that belongs to iteration-prefix ip(g)), it faces the risk of being answered
with an ABORT message independently of all previous rewinding attempts.

3.2.2 The actual verifier strategy V

We consider what happens when a simulator S (for the above schedule) is given oracle access to a
verifier strategy Vj ; defined as follows (depending on hash functions g, h and the input z). Recall
that we may assume that S runs in strict polynomial time: we denote such time bound by tg(-).
Let G denote a small family of tg(n)-wise independent hash functions mapping poly(n)-bit long
sequences into a single bit of output, so that for every o we have Pry¢lg(o) = 1] = n~1/2k Let H
denote a small family of tg(n)-wise independent hash functions mapping poly(n)-bit long sequences
to py(n)-bit sequences, so that for every o we have Pry_g[h(a) = 1] = 27°v(™) (where py (n) is
the number of random bits used by an honest verifier V on an input 2 € {0,1}").7 We describe
a family {V n}gec nen of adversarial verifier strategies (where is implicit in V). On query
g = (b1,a1,...,a;1,bt,a¢), the verifier acts as follows:

1. First, Vg, checks if the execution transcript given by the query is legal (i.e., corresponds to a
possible execution prefix), and halts with a special ERROR message if the query is not legal.®

2. Next, Vjp, determines the block-prefix, bp(q) = (b1,a1,...,by,ay), of query g. It also deter-
mines the identifiers of the next-message (£,i) = 7sn(7) and j = Tmeg(7), the iteration-prefix
ip(q) = (b1,aq,..., bg,pg-@l), and the j—1 prover messages of session i appearing in query g

(which we denote by sz'), . ,pg-izl).

(Motivating discussion: The next message is the j* verifier message in the i*® session of block £.
The value of the block-prefix, bp(g), is used in order to determine the randomness of session (¢,7),
whereas the value of the iteration-prefix, ip(g), is used in order to determine whether session (¢,1)
is about to be aborted at this point (i.e., 7' message) in the schedule (by answering with a special
ABORT message).)

3. If j =1, then Vj ;, answers with the verifier’s fixed initiation message for session i (i.e., vgi)).

4. If j > 1, then V; , determines b; ; = g(4, ip(q)) (i-e., a bit deciding whether to abort session ¢):

"We stress that functions in such families can be described by strings of polynomial length in a way that enables
polynomial time evaluation (cf. [34, 11, 12, 1]).

8In particular, V; ; checks whether the query is of the prescribed format (as described in Section 2.6, and as
determined by the schedule), and that the contents of its messages is consistent with V, ,’s prior answers. (That is,
for every proper prefix ¢ = (b1,a1,...,bu,ay) of query § = (b1, a1,...,bt,at), the verifier checks whether the value
of b,41 (as it appears in q) is indeed equal to the value of V, 1 (q').)

34 CHAPTER 3. BB CZK REQUIRES LOGARITHMICALLY MANY ROUNDS

(a) If b;; = 0, then V5 sets vgi) = ABORT (indicating that Vj; aborts session 7).

(b) If b; ; = 1, then V, ;, determines r; = h(¢, bp(q)) (as coins to be used by V'), and computes
@ _ V((i) (®)

J T,TiP] s an—1) that would have been sent by the honest verifier
:))) (2) (@)

on common input z, random-pad r;, and prover’s messages p;’,...,p; ;.

()

jo-

the message v

(c) Finally, Vyj, answers with v

Dealing with ABORT messages: Note that, once V, ; has aborted a session, the interaction in
this session essentially stops, and there is no need to continue exchanging messages in this session.
However, for simplicity of exposition we assume that the verifier and prover stick to the fixed
schedule of Section 3.2.1 and exchange ABORT messages whenever an aborted session is scheduled.
Specifically, if the j* verifier message in session i is ABORT then all subsequent prover and verifier
messages in that session will also equal ABORT.

On the arguments to g and h: The hash function h, which determines the random input for
V in a session, is applied both on i (the identifier of the relevant session within the current block)
and on the entire block-prefix of the query g. This means that even though all sessions in a specific
block have the same block-prefix, for every pair of two different sessions, the corresponding random
inputs of V' will be independent of each other (as long as the number of applications of h does not
exceed tg(n), which is indeed the case in our application). The hash function g, which determines
whether and when the verifier aborts sessions, is applied both on ¢ and on the entire iteration-prefix
of the query g. As in the case of h, the decision whether to abort a session is independent from
the same decision for other sessions (again, as long as ¢ is not applied more than tg(n) times).
However, there is a significant difference between the inputs of h and g: Whereas the input of h
is fized once i and the block-prefix are fixed (and is uneffected by mesages that belong to that
session), the input of ¢ varies depending on previous messages sent in that session. In particular,
whereas the randomness of a session is completely determined once the session begins, the decision
of whether to abort a session is taken independently each time that the schedule reaches the next
verifier message of this session.

On the number of different prefixes that occur in interactions with V, ;: Since the num-
ber of recursive blocks in the schedule is equal to n, and since there is a one-to-one correspondence
between recursive blocks and block-prefixes, we have that the number of different block-prefixes
that occur during an interaction between an honest prover P and the verifier V5, is always equal
to n. Since the number of iterations in the message exchange phase of a recursive invocation of
the schedule equals k£ + 1, and since there is a one-to-one correspondence between such iterations
and iteration-prefixes? we have that the number of different iteration-prefixes that occur during an
interaction between and honest prover P and the verifier V, p,, is always equal to k- n (that is, &
different iteration-prefixes for each one of the n recursive invocations of the schedule). In contrast,
the number of different block-prefixes (resp., iteration-prefixes), that occur during an execution
of a black-box simulator S that is given oracle access to V; ;, may be considerably larger than n
(resp., k- n). The reason for this is that there is nothing that prevents the simulator from feeding
Vg n with different queries of the same length (this corresponds to the so called rewinding of an
interaction). Still, the number of different prefixes in an execution of S is always upper bounded
by the running time of S; that is, tg(n).

°The only exception is the first iteration in the message exchange phase. Since only queries 7 that satisfy Tmsg (q) > 1
have an iteration-prefix, the first iteration will never have a corresponding iteration-prefix.

3.2. THE ACTUAL PROOF (OF THEOREM 3.1) 35

On the probability that a session is never aborted: A typical interaction between an
honest prover P and the verifier V; ;, will contain sessions whose execution has been aborted prior
to completion. Recall that at each point in the schedule, the decision of whether or not to abort the
next scheduled session depends on the outcome of g. Since the function g returns 1 with probability
n~1/2k a specific session is never aborted with probability (n=1/2%)¥ = n=1/2, Using the fact that
whenever a session is not aborted, V; 5 operates as the honest verifier, we infer that the probability
that a specific session is eventually accepted by V5, is at least 1/2 times the probability that the
very same session is never aborted (where 1/2 is an arbitrary lower bound on the completeness
probability of the protocol). In other words, the probability that a session is accepted by V5, is

at least ”_21 2 In particular, for every set of n sessions, the expected number of sessions that are
eventually accepted by V, j, (when interacting with the honest prover P) is at least n - L;/Z = %/2,

and with overwhelming high probability at least %/2 sessions are accepted by V p.

A slight modification of the verifier strategy: To facilitate the analysis, we slightly modify
the verifier strategy V, j so that it does not allow the number of accepted sessions in the history
of the interaction to deviate much from its “expected behavior”. Loosely speaking, given a prefix
of the execution transcript (ending with a prover message), the verifier will check whether the

recursive block that has just been completed contains at least %/2 accepted sessions. (To this end,
it will be sufficient to inspect the history of the interaction only when the execution of the schedule
reaches the end of a recursive block. That is, whenever the schedule reaches the last prover message
in the last session of a recursive block (i.e., some pggn_i_)l message).) The modified verifier strategy
(which we continue to denote by Vj 1), is obtained by adding to the original strategy an additional
Step 1’ (to be executed after Step 1 of V,):

(n)

1. If a; is of the form p,/; (i.e., in case query § = (b1, a1,...,b;, a;) ends with the last prover

th

message of the n' main session of a recursive block), V,; checks whether the transcript

— (n) . . . n1/2 . .
7= (b1,a1,..., bt7pk+1) contains the accepting conversations of at least *;— main sessions
in the block that has just been completed. In case it does not, V| ; halts with a special
DEVIATION message (indicating that the number of accepted sessions in the block that has
just been completed deviates from its expected value).

Motivating discussion: Since the expected number of accepted sessions in a specific block is

at least LQ/Z, the probability that the block contains less than %/2 accepted sessions is negligible.
Still, the above modification is not superfluous (even though it refers to events that occur only with
negligible probability): It allows us to assume that every recursive block that is completed during
the simulation (including those that do not appear in the simulator’s output) contains at least
nl/?

“1— accepted sessions. In particular, whenever the simulator feeds V, , with a partial execution

transcript (i.e., a query), we are guaranteed that for every completed block in this transcript, the
simulator has indeed “invested work” to simulate the at least %/2 accepted sessions in the block.

A slight modification of the simulator: Before presenting the decision procedure, we slightly
modify the simulator so that it never makes a query that is answered with either the ERROR or
DEVIATION messages by the verifier Vj ;. Note that the corresponding condition can be easily
checked by the simulator (which can easily produce this special message by itself),!? and that

10We stress that, as opposed to the ERROR and DEVIATION messages, the simulator cannot predict whether its query
is about to be answered with the ABORT message.

36 CHAPTER 3. BB CZK REQUIRES LOGARITHMICALLY MANY ROUNDS

the modification does not effect the simulator’s output. From this point on, when we talk of the
simulator (which we continue to denote by S) we mean the modified one.

3.2.3 The decision procedure for L

We are now ready to describe a probabilistic polynomial-time decision procedure for L, based on
the black-box simulator S and the verifier strategies V ;. On input € {0,1}", the procedure
operates as follows:

1. Uniformly select hash functions g&-G and he-H.

2. Invoke S on input x providing it black-box access to V; (as defined above). That is, the
procedure emulates the execution of the oracle machine S on input x along with emulating
the answers of V, ,, where g and h are as determined in Step 1.

3. Accept if and only if S outputs a legal transcript (as determined by Steps 1 and 1° of V; 5,).!!

By our hypothesis, the above procedure runs in probabilistic polynomial-time. We next analyze its
performance.

Lemma 3.2.4 (Performance on YEs-instances) For all but finitely many x € L, the above
procedure accepts x with probability at least 2/3.

Proof Sketch: Let z € L, &G, h<~H, and consider the honest prover P. We show below that,
except for negligible probability (where the probability is taken over the random choices of g, h,
and P’s coin tosses), when V, j interacts with P, all recursive blocks in the resulting transcript

. . . 1/2 . . .
contain the accepting conversations of at least “;— main sessions. Since for every g and h the

simulator SVo% (z) must generate a transcript whose deviation gap from (P, V, ;)(z) is at most 1/4,

it follows that SYs:» (2) has deviation gap at most 1/4 from (P, V,)(2) also when g«~G and heH.
Consequently, when S is run by the decision procedure for L, the transcript SVo.»(z) will not be
legal with probability at most 1/3. Details follow.

Let 7 denote the random variable describing the transcript of the interaction between the honest
prover P and Vj j,, where the probability is taken over the choices of g, h, and P. Let s € {1,... ,n?}.
We first calculate the probability that the s'" session in 7 is completed and accepted (i.e., Vg,n sends

the message v,(:il = ACCEPT), conditioned on the event that V; ; did not abandon the interaction

beforehand (i.e., V , did not send the DEVIATION message before).!? For uniformly selected 9@,
the probability that V,; does not abort the session in each of the k rounds, given that it has not
already aborted, is n~"/**. Thus, conditioned on the event that V, ; did not output DEVIATION
beforehand, the session is completed (without being aborted) with probability (Tfl/%)’c =n"2
The key observation is that if A is uniformly chosen from H then, conditioned on the event that
Vg, did not output DEVIATION beforehand and the current session is not aborted, the conversation

HRecall that we are assuming that the simulator never makes a query that is ruled out by Steps 1 and 1’ of
Vg,h- Since before producing output (b1, a1,...,br,ar) the simulator makes the query (b1,a1,...,br,ar), cheking
the legality of the transcript in Step 3 is not really necessary (as, in case that the modified simulator indeed reaches
the output stage “safely”, we are guaranteed that it will produce a legal output). In particular, we are always
guaranteed that the simulator either produces execution transcripts in which every recursive block contains at least
n1/2/4 sessions that were accepted by Vy », or it does not produce any output at all.

12Note that, since we are dealing with the honest prover P, there is no need to consider the ERROR message at all
(since in an interaction with the honest prover P, the adversary verifier V, , will never output ERROR anyway).

3.3. PROOF OF LEMMA 3.2.5 (PERFORMANCE ON NO-INSTANCES) 37

between Vj; and P is distributed identically to the conversation between the honest verifier V'
and P on input z. By the completeness requirement for zero-knowledge protocols, we have that
V' accepts in such an interaction with probability at least 1/2 (this probability is actually higher,
but 1/2 is more than enough for our purposes). Consequently, for uniformly selected g and h,
conditioned on the event that V, ; did not output DEVIATION beforehand, the probability that a

. . . n—1/2
session is accepted by Vg j is at least

We calculate the probability that 7 contains a block such that less than # of its sessions are

accepted. Say that a block B in a transcript has been completed if all the messages of sessions
in B have been sent during the interaction. Say that B is admissible if the number of accepted
sessions that belong to block B in the transcript is at least %/2. Enumerating blocks in the order
in which they are completed (that is, when we refer to the £ block in 7, we mean the ¢*® block
that is completed in 7), we denote by v, the event that all the blocks up to and including the ¢
block are admissible in 7.

For i € {1,...,n} define a boolean indicator af to be 1 if and only if the i*! session in the

¢*" block is accepted by Vyn- We have seen that, conditioned on the event v,_;, each af is 1
¢

2

nfl/

w.p. at least " 2 Asa consequence, for every ¢, the expectation of > ; «

. . . . 72 . .
of accepted main sessions in block number /) is at least "5—. Since, conditioned on y,_1, the al’s

are independent of each other, we can apply the Chernoff bound, and infer that Pr[vy|y,—1] >

(i.e., the number

1 — e~ U, Furthermore, since no session belongs to more than one block, we have: Pr[y,] >
Pr [vi|ve=1] - Pr[vi—1]- It follows (by induction on the number of completed blocks in a transcript),
that all blocks in 7 are admissible with probability at least (1 — e_Q(”1/2))” >1—n-e~ ") The
lemma follows. Wl

Lemma 3.2.5 (Performance on NO-instances) For all but finitely many x ¢ L, the above pro-
cedure rejects x with probability at least 2/3.

We can actually prove that for every positive polynomial p(-) and for all but finitely many = ¢ L,
the above procedure accepts = with probability at most 1/p(|x|). Assuming towards contradiction
that this is not the case, we will construct a (probabilistic polynomial-time) strategy for a cheating
prover that fools the honest verifier V' with success probability at least 1/poly(n) in contradiction
to the soundness (and even computational-soundness) of the proof system.

3.3 Proof of Lemma 3.2.5 (performance on No-instances)

Let us fix an @ € {0,1}"\ L as above.!3 Denote by AC = AC,, the set of triplets (o, g, k) so that on
input x, internal coins o and oracle access to V1, the simulator outputs a legal transcript (which
we denote by S}T/"’h(x)). Recall that our contradiction assumption is that Pr, 4 [(0,9,h) € AC|] >
1/p(n), for some fixed positive polynomial p(-). Before proceeding with the proof of Lemma 3.2.5,
we formalize what we mean by referring to the “execution of the simulator”.

Definition 3.3.1 (Execution of simulator) Letz,0 € {0,1}*, g € G and h € H. The execution
of simulator S, denoted EXEC,(0,g,h), is the sequence of queries made by S, given input x, random
coins o, and oracle access to Vy p(x).

3 Actually, we need to consider infinitely many such 2’s.

38 CHAPTER 3. BB CZK REQUIRES LOGARITHMICALLY MANY ROUNDS

Since the simulator has the ability to “rewind” the verifier V, ;, and explore V; ;’s output on various
execution prefixes (i.e., queries) of the same length, the number of distinct block-prefixes that appear
in EXEC,(0, g, h) may be strictly larger than n (recall that the schedule consists of n invocations
to recursive blocks, and that in an interaction between the honest prover P and V; there is a
one-to-one correspondence between recursive blocks and block-prefixes). As a consequence, the (!
distinct block-prefix appearing in EXEC, (0, g, h) does not necessarily correspond to the /' recursive
block in the schedule. Nevertheless, given EXEC;(c,g,h) and ¢, one can easily determine for the
/" distinct block-prefix in the execution of the simulator the index of its corresponding block in
the schedule (say, by extracting the ¢*" distinct block-prefix in EXEC,(0,g,h), and then analyzing
its length).

In the sequel, given a specific block-prefix bp, we let () ¢ {1,...,n} denote the index of
its corresponding block in the schedule (as determined by bp’s length). Note that two different
block-prefixes bp; and bp, in EXEC,(0, g, h) may satisfy £(%P1) = ¢(P2) (a5 they may correspond to
two different instances of the same recursive block). In particular, session (£(%21), i) may have more
than a single occurrence during the execution of the simulator (whereas in an interaction of the
honest prover P with V, , each session index will occur exactly once). This means that whenever
we refer to an instance of session (¢,4) in the simulation, we will also have to explicitly specify to
which block-prefix this instance corresponds. .

In order to avoid cumbersome statements, we will abuse the notation ¢P) and also use it in
order to specify to which instance the recursive block £®?) corresponds. That is, whenever we refer
to recursive block number () we will actually mean: “the specific instance of recursive block
number ¢ (= ¢®P)) that corresponds to block-prefix bp in EXEC,(o,g,h)”. Viewed this way, for
(1) = ¢(bp2) sessions (£(P1),§) and (£(P2)) actually correspond to two different instances of the
same session in the schedule.

3.3.1 The cheating prover

The cheating prover (denoted P*) starts by uniformly selecting a triplet (o, g,h) while hoping
that (o,g9,h) € AC. It next selects uniformly a pair (§,17) € {1,...,ts(n)} x {1,...,n}, where
the simulator’s running time, tg(n), acts as a bound on the number of (different block-prefixes
induced by the) queries made by S on input € {0,1}"™. The prover next emulates an execution of

Sy o (z) (where h(")| which is essentially equivalent to &, will be defined below), while interacting
with V(z,r) (that is, the honest verifier, running on input z and using coins 7). The prover handles
the simulator’s queries as well as the communication with the verifier as follows: Suppose that the
simulator makes query ¢ = (by,ay,..., b, a;), where the a’s are prover messages.

1. Operating as V; 5, the cheating prover determines the block-prefix bp(q) = (b1, a1,...,by,ay).
It also determines (¢,7) = 75 (Q), J = Tmsg(Q), the iteration-prefix ip(q) = (b1, a1, ..., bg,pg-ri)l),

and the j—1 prover messages pgi), ... ,pg-lzl appearing in the query g (as done by V, j, in Step 2).

(Note that by the modification of S there is no need to perform Steps 1 and 1’ of V)

2. If j =1, the cheating prover answers the simulator with the verifier’s fixed initiation message
for session ¢ (as done by V4 in Step 3).

3. If j > 1, the cheating prover determines b; ; = g(4,ip(q)) (as done by V, j in Step 4).

4. If bp(q) is the ¢ distinct block-prefix resulting from the simulator’s queries so far and if, in
addition, ¢ equals 7, then the cheating prover operates as follows:

3.3. PROOF OF LEMMA 3.2.5 (PERFORMANCE ON NO-INSTANCES) 39

(a) If b; ; =0, then the cheating prover answers the simulator with ABORT.

Motivating discussion for substeps b and c: The cheating prover has now reached a point
in the schedule in which it is supposed to feed the simulator with vg-l). To do so, it first forwards

pg-i_)l to the honest verifier V(z,7), and only then feeds the simulator with the verifier’s answer

vgi) (as if it were the answer given by V, ,.»). We stress the following two points: (1) The
o,
actual execution of the protocol (P, V}). (2) The cheating prover will wait and forward p
the verifier only when vg-i) is the next scheduled message.

message to V (since P* and V engage in an
(4)

]'_

cheating prover cannot forward more than one p

, to

(b) If b; ; = 1 and the cheating prover has only sent j—2 messages to the actual verifier, the
cheating-prover forwards pg-zzl to the verifier, and feeds the simulator with the verifier’s
response (i.e., which is of the form vg-l)).14

(We comment that by our conventions regarding the simulator, it cannot be the case that the
cheating prover has sent less than j—2 prover messages to the actual verifier. The prefixes of
the current query dictate j—2 sequences of prover messages with distinct lengths, so that none
of these sequences was answered with ABORT. In particular, the last message of each one of these
sequences was already forwarded to the verifier.)

(c) If b; ; = 1 and the cheating prover has already sent j—1 messages (or more) to the actual
verifier then it retrieves the (j—1)%* answer it has received and feeds it to the simulator.

(We comment that this makes sense provided that the simulator never makes two queries with
the same block-prefix and the same number of prover messages, but with a different sequence of

such messages. However, for 7 > 2 it may be the case that a previous query regarding the same
(2)

j—1
to conduct Step 4c (see further discussion below).)

block-prefix had a different p message. This is the case in which the cheating prover may fail

5. If either bp(7) is NOT the ¢! distinct block-prefix resulting from the queries so far, or if i is
NOT equal to 7, the prover emulates V, j, in the obvious manner (i.e., as in Step 4 of Vj 3):

(a) If b; ; = 0, then the cheating prover answers the simulator with ABORT.

(b) If b;; = 1, then the cheating prover determines r; = h(i,bp(q)), and then answers the

simulator with V(x,r;; pgi), - ,pg-izl), where all notations are as above.

On the efficiency of the cheating prover: Notice that the strategy of the cheating prover
can be implemented in polynomial-time (that is, given that the simulator’s running time, tg(-),
is polynomial as well). Thus, Lemma 3.2.5 (and so Theorem 3.1) will also hold if (P, V) is an
argument system (since, in the case of argument systems, the existence of an efficient P* leads to
contradiction of the computational soundness of (P, V)).

The cheating prover may “do nonsense” in Step 4c: The cheating prover is hoping to
convince an honest verifier by focusing on the 5" session in recursive block number K(bpﬁ), where
bpe denotes the ¢ distinct block-prefix in the simulator’s execution. Prover messages in session

MNote that in the special case that j = 1 (i.e., when the verifier’s response is the fixed initiation message vgi)), the
cheating prover cannot really forward p](-i)l to the honest verifier (since no such message exists). Still, since vgl) is
a fixed initiation message, the cheating prover can produce vgi) without actually having to interact with the honest

verifier (as it indeed does in Step 2 of the cheating prover strategy).

40 CHAPTER 3. BB CZK REQUIRES LOGARITHMICALLY MANY ROUNDS

(E(Ef), n) are received from the (multi-session) simulator and are forwarded to the (single-session)
verifier. The honest verifier’s answers are then fed back to the simulator as if they were answers
given by V,) (defined below). For the cheating prover to succeed in convincing the honest verifier

the following two conditions must be satisfied: (1) Session (é(bpi), 1) is eventually accepted by V, ;).
(2) The cheating prover never “does nonsense” in Step 4c¢ during its execution. Let us clarify the
meaning of this “nonsense”.

One main problem that the cheating prover is facing while conducting Step 4c emerges from the
following fact: Whereas the black-box simulator is allowed to “rewind” Vg7h(r) (impersonated by the
cheating prover) and attempt different execution prefixes before proceeding with the interaction
of a session, the prover cannot do so while iI(ltgzracting with the actual verifier. In pa(rt)icular, the
" U

cheating prover may reach Step 4c with a p,”; message that is different from the p,”, message

that was previously forwarded to the honest verifier (in Step 4b). Given that the verifier’s answer

to the current p(-")

7—1
5-"_)1 message, by answering (in Step 4c) in the same way as before, the prover action

“makes no sense”.!5

We stress that, at this point in its execution, the cheating prover might as well have stopped
with some predetermined “failure” message (rather than “doing nonsense”). However, for simplicity
of presentation, it is more convenient for us to let the cheating prover “do nonsense”.

The punchline of the analysis is that with noticeable probability (over choices of (o, g, h)), there

message is most likely to be different than the answer which was given to the

“previous” p

exists a choice of (£,7) so that the above “bad” event will not occur for session (E(bpf), 7). That is,
using the fact that the success of a “rewinding” also depends on the output of g (which determines
whether and when sessions are aborted) we show that, with non-negligible probability, Step 4c is

(n)

;-1 messages. Specifically, for every j € {2,...,k+1}, once a

(m)
7—1

never reached with two different p

(m

p;, message is forwarded to the verifier (in Step 4b), all subsequent p:"’; messages are either equal

to the forwarded message or are answered with ABORT (here we assume that session (E(Ef),n) is

(n)

eventually accepted by V i, and every p;”; message is forwarded to the verifier at least once).

Defining A(") (mentioned above): Let (0,g,h) and (£,7) be the initial choices made by the
cheating prover, let %5 be the ¢ block-prefix appearing in EXEC,(0,g,h), and suppose that the
honest verifier uses coins r. Then, the function A" = R(79mEM is defined to be uniformly
distributed among the functions k' which satisfy the following conditions: The value of A’ when
applied on (1, bpg) equals 7, whereas for (7,¢') # (1,€) the value of h' when applied on (7', bpr)
equals the value of h on this prefix. (The set of such functions &' is not empty due to the hypothesis
that the functions are selected in a family of tg(n)-wise independent hash functions.) We note that
replacing h by h(") does not effect Step 5 of the cheating prover, and that the cheating prover does
not know A(). In particular, whenever the honest verifier V uses coins r, one may think of the
cheating prover as if it is answering the simulator’s queries with the answers that would have been
given by V).

Claim 3.3.2 For every value of o,g,¢ and n, if h and r are uniformly distributed then so is h(").

5We stress that the cheating prover does not know the random coins of the honest verifier, and so it cannot compute
the verifier’s answers by himself. In addition, since P* and V are engaging in an actual execution of the specified
protocol (P, V) (in which every message is sent exactly once), the cheating prover cannot forward the “recent” pg@l

message to the honest verifier in order to obtain the corresponding answer (because it has already forwarded the

(m)

previous p;""; message to the honest verifier).

3.3. PROOF OF LEMMA 3.2.5 (PERFORMANCE ON NO-INSTANCES) 41

Proof Sketch: Fix some simulator coins o € {0,1}*, g € G, block-prefix index £ € {1,...,ts(n)},
and session index 7 € {1,...,n}. The key for proving Claim 3.3.2 is to view the process of picking
a function h € H as counsisting of two stages. The first stage is an iterative process in which up to
ts(n) different arguments are adversarially chosen, and for each such argument the value of h on this
argument is uniformly selected in its range. In the second stage, a function A is chosen uniformly
from all A’s in H under the constraints that are introduced in the first stage. The iterative process
in which the arguments are chosen (that is, the first stage above) corresponds the simulator’s choice
of the various block-prefixes bp (along with the indices i), on which & is applied.

At first glance, it seems obvious that the function A("), which is uniformly distributed amongst
all functions that are defined to be equal to h on all inputs (except for the input (7, @5) on which it
equals r) is uniformly distributed in H. Taking a closer look, however, one realizes that a rigorous
proof for the above claim is more complex than one may initially think, since it is not even clear
that an h that is defined by the above process actually belongs to the family H.

The main difficulty in proving the above lies in the fact that the simulator’s queries may “adap-
tively“ depend on previous answers it has received (which, in turn, may depend on previous out-
comes of h). The key obervation used in order to overcome this difficulty is that for every family
of tg(n)-wise independent functions and for every sequence of at most tg(n) arguments (and in
particular, for an adaptively chosen sequence), the values of a uniformly chosen function when
applied to the arguments in the sequence are uniformly and independently distributed. Thus, as
long as the values assigned to the function in the first stage of the above process are uniformly and
independently distributed (which is indeed the case, even if we constraint one output to be equal
to r), the process will yield a uniformly distributed function from H. W

3.3.2 The success probability of the cheating prover

We start by introducing two important notions that will play a central role in the analysis of the
success probability of the cheating prover.

Grouping queries according to their iteration-prefixes

In the sequel, it will be convenient to group the queries of the simulator into different classes based
on different iteration-prefixes. (Recall that the iteration-prefix of a query g (satisfying 7, (7) = (¢, %)
and Tmse(q) =7 >1) is the prefix of g that ends with the (j—1)* prover message in session (£, n).).
Grouping by iteration-prefixes particularly makes sense in the case that two queries are of the same
length (see discussion below). Nevertheless, by Definition 3.2.3, two queries may have the same
iteration-prefix even if they are of different lengths (see below).

Definition 3.3.3 (ip-different queries) Two queries, §; and Gy (of possibly different lengths),
are said to be ip-different, if and only if they have different iteration-prefizes (that is, ip(q,) #ip(qds))-

By Definition 3.2.3, if two queries, §; and §q,, satisfy ip(q;) = ip(gy), then the following two
conditions must hold: (1) men(qy) = (£,41), Tsn(Ge) = (£,42) and; (2) Tmsg(T1) = Tmse(T2). However,
it is not necessarily true that i3 = ¢2. In particular, it may very well be the case that q1, g2 have
different lengths (i.e., i; # i) but are not ip-different (note that if i; = iy then ¢; and ¢y are of
equal length). Still, even if two queries are of the same length and have the same iteration-prefix, it
is not necessarily true that they are equal, as they may be different at some message which occurs
after their iteration-prefixes.

42 CHAPTER 3. BB CZK REQUIRES LOGARITHMICALLY MANY ROUNDS

Motivating Definition 3.3.3: Recall that a necessary condition for the success of the cheating

(m

prover is that for every j, once a p;”; message has been forwarded to the verifier (in Step 4b), all

(n)

subsequent p;”; messages (that are not answered with ABORT) are equal to the forwarded message.
In order to satisfy the above condition it is sufficient to require that the cheating prover never
reaches Steps 4b and 4c¢ with two ip-different queries of equal length. The reason for this is that if
two queries of the same length have the same iteration-prefix, then they contain the same sequence
of prover messages for the corresponding session (since all such messages are contained in the

(n) (n)

iteration-prefix), and so they agree on their p;; message. In particular, once a p;”; message has

been forwarded to the verifier (in Step 4b), all subsequent queries that reach Step 4c and are of
(m)

the same lenght will have the same pj"_1 messages as the first such query (since they have the same
iteration-prefix).

In light of the above discussion, it is only natural to require that the number of ip-different
queries that reach Step 4c of the cheating prover is exactly one (as, in such a case, the above
necessary condition is indeed satified).! Jumping ahead, we comment that the smaller is the
number of ip-different queries that correspond to block-prefix @5, the smaller is the probability
that more than one ip-different query reaches Step 4c. The reason for this lies in the fact that
the number of ip-different queries that correspond to block-prefix %5 is equal to the number of
different iteration-prefixes that correspond to EE' In particular, the smaller is the number of such
iteration-prefixes, the smaller is the probability that ¢ will evaluate to 1 on more than a single
iteration-prefix (thus reaching Step 4c¢ with more than one ip-different query).

Useful block-prefixes

The probability that the cheating prover makes the honest verifier accept will be lower bounded by
the probability that the ¢ distinct block-prefix in EXEC,(c,g,h) is n-useful (in the sense hinted
above and defined next):

Definition 3.3.4 (Useful block-prefix) A block-prefiz bp = (b, ay,...,by,ay), that appears in
EXEC, (0, g, h), is called i-useful if it satisfies the following two conditions:

1. For every j€{2,..,k+1}, the number of ip-different queries § in EXEC(0, g, h) that correspond

0'7 ?
q))=1, is exactly one.

to block-prefiz bp and satisfy me,(q)= (L), 1), Tmsg(§) =7, and g(i,ip(
2. The (only) query g in EXECy(0,g,h) that corresponds to block-prefiz bp and that satisfies
Ton(@) = (L) 0), Tmse(7) = k+1, and g(i,ip(7)) = 1, is answered with ACCEPT by V, .

If there exists an i € {1,...,n}, so that a block-prefix is i-useful, then this block-prefix is called
useful.

Condition 1 in Definition 3.3.4 states that for every fixed value of j there exists exactly one iteration-
prefix, ip, that corresponds to queries of the block-prefix bp and the j* message so that g(i,ip)
evaluates to 1. Condition 2 asserts that the last verifier message in the i*" main session of recursive
block number ¢ = () is equal to ACCEPT. It follows that if the cheating prover happeuns to select
(0,9,h,&,m) so that block-prefix %5 (ie., the ™ distinct block-prefix in EXEC, (o, g, h("))) is 7-
useful, then it convinces V' (z,7); the reason being that (by Condition 2) the last message in session

'6In order to ensure the cheating prover’s success, the above requirement should be augmented by the condition

that session (K(gﬁ), n) is accepted by V_ ;..

3.3. PROOF OF LEMMA 3.2.5 (PERFORMANCE ON NO-INSTANCES) 43

(1<) 1)) is answered with ACCEPT,!” and that (by Condition 1) the emulation does not get into
trouble in Step 4c of the cheating prover (to see this, notice that each prover message in session
(¢(%¢) 1) will end up reaching Step 4c only once).

Let (P*,V)(z) = (P*(0,9,h,&,n),V (r))(x) denote the random variable representing the (local)
output of the honest verifier V' when interacting with the cheating prover P* on common input
x, where o, g, h,&,n are the initial random choices made by the cheating prover P*, and r is the
randomness used by the honest verifier V. Adopting this notation, we will say that the cheating
prover P* = P*(x, 0,9, h,&,n) has convinced the honest verifier V= V(x,r) if (P*,V')(z) = ACCEPT.
With these notations, we are ready to formalize the above discussion.

Claim 3.3.5 If the cheating prover happens to select (o,g,h,€,m) so that the £ distinct block-
prefiz in EXEC, (0, g, (")) is n-useful, then the cheating prover convinces V(xz,r) (i.e., (P*,V)(z)=
ACCEPT).

Proof: Let us fix x € {0,1}", 0 € {0,1}*, g € G, h € H, r € {1,...,pv(n)}, n € {1,...,n},
and € € {1,...,ts(n)}. We show that if the £* distinct block-prefix in EXEC,(0, g, (")) is p-useful,
then the cheating prover P*(z,0,g,h,&,n) convinces the honest verifier V' (z,r).

By definition of the cheating-prover, the prover messages that are actually forwarded to the hon-
est verifier (in Step 4b) correspond to session (K(bpﬁ), n). Specifically, messages that are forwarded by
the cheating prover are of the form pg-"_)l, and correspond to queries g, that satisfy 7, (7) = (K(bpﬁ), n),
Tmsg(7) = j and g(n,ip(7)) = 1. Since the ¢ distinct block-prefix in EXEC, (0, g, k(")) is p-useful,
we have that for every j € {2,...,k+1}, there is exactly one query 7 that satisfies the above condi-

tions. Thus, for every j € {2,...,k+1}, the cheating prover never reaches Step 4c with two different

pg@l messages. Here we use the fact that if two queries of the same length are not ip-different (i.e.,

have the same iteration-prefix) then the answers given by Vi, n(n to these queries are identical (see
discussion above). This in particular means that P* is answering the simulator’s queries with the
answers that would have been given by Voh" itself. (Put in other words, whenever the £ distinct
block-prefix in EXEC,(c, g, h{")) is n-useful, the emulation does not “get into trouble” in Step 4c of
the cheating prover.)

At this point, we have that the cheating prover never fails to perform Step 4c¢, and so the
interaction that it is conducting with V(z,7) reaches “safely” the (k+1)%* verifier message in the
protocol. To complete the proof we have to show that at the end of the interaction with the
cheating-prover, V(x,r) outputs ACCEPT. This is true since, by Condition 2 of Definition 3.3.4,
the query g, that corresponds to block-prefix %"37 satisfies 7, (q) = (é(bpﬁ),n), Tmsg(q) = J and
g(n,ip(q)) = 1, is answered with ACCEPT. Here we use the fact that V(z,r) behaves exactly as

V, n(r behaves on queries that correspond to the €0 distinct block-prefix in EXEC, (0, g,). W

Reduction to rareness of legal transcripts without useful block-prefixes

The following lemma (Lemma 3.3.6) establishes the connection between the success probability
of the simulator and the success probability of the cheating-prover. Loosely speaking, the lemma,
asserts that if S outputs a legal transcript with non-negligible probability, then the cheating prover
will succeed in convincing the honest verifier with non-negligible probability. Since this is in con-
tradiction to the computational soundness of the proof system, we have that Lemma 3.3.6 actually

th

"Notice that V (z,r) behaves exactly as V, n(» behaves on queries that correspond to the ™ distinct iteration-

prefix in EXEC, (0, g, h(").

44 CHAPTER 3. BB CZK REQUIRES LOGARITHMICALLY MANY ROUNDS

implies the correctness of Lemma 3.2.5 (recall that the contradiction hypothesis of Lemma 3.2.5 is
that the probability that the simulator outputs a legal transcript is non-negligible).

Lemma 3.3.6 Suppose that Pr, 4 p[(0,9,h) € AC] > 1/p(n) for some fized polynomial p(-). Then
the probability (taken over o,g,h,&,n,r), that (P*,V)(x) = ACCEPT is at least m

Proof: Define a Boolean indicator usefulg ,(c, g, h) to be true if and only if the ¢ distinct block-
prefix in EXEC,(0, g, h) is n-useful. Using Claim 3.3.5, we have:

Prognens [(P*,V)(w) = ACCEPT] > Pry g ¢y [usefule (0, g, h(7))] (3.2)
where the second probability refers to an interaction between S and Vi, hin- Since for every value

of 0,¢g,m and &, when h and 7 are uniformly selected the function A(") is uniformly distributed (see
Claim 3.3.2), we infer that:

Proghenr [usefulgﬂ,(a,g,h(r))] = Pry g peq [usefule (0,9, h")] (3.3)

On the other hand, since ¢ and 7 are distributed independently of (o, g, h), we have:

ts(n) n
Pro g heqlusefule (0,9, k)] = Z ZPr0797h7f777 [usefuly i(0,9,h) & (£ =L & n=1)]
(=1 i=1
ts(n) n
= Z Z Prg gy [usefuly;(o,g,h)] - Pre, [§ = € & n = 1]
(=1 i=1
tS(n) n 1
= Pry g [usefuly (o, g, h)] - ————
ZZZI ; g [] ts(n) -n
1
> Prygpn[3¢,is.t. usefuly (o, 9,h)] - - (3.4)

where tg(n) is the bound used by the cheating prover (for the number of distinct block-prefixes in
EXEC, (0, g,h)). Combining Eq. (3.2), (3.3), (3.4) we get:

1

Proghenr (P*,V)(x) = ACCEPT| > Pry gy (30,4 s.t. usefuly;(o,g,h)] - Par—
s(n)-n

(3.5)

Recall that by our hypothesis, Pr|(o,g,h) € AC] > 1/p(n) for some fixed polynomial p(-). We can
thus rewrite and lower bound the value of Pr, 45, [3¢,1 s.t. usefuly;(o, g, k)] in the following way:

Pr [Eﬁ,i s.t. usefuly ;(o, g, h)]
= 1-Pr [Vﬁ,i —wsefulg (o, g, h)]
= 1- Pr[(w,i —usefuly (o, g, 1)) & (0, g, h)gZAC)]— Pr[(w,i ~usefuly (o, g, b)) & ((0, g, h)E Ac)]
> 1- Pr[(a,g,h) ¢ AC] - Pr[(Vﬁ,i —wsefuly ;(0,9,h)) & (0,9,h) € AC]
> 1/p(n) = Pr[(¥¢,i ~usefuly;(a,9,h)) & (0,9, h) € AC]

3.3. PROOF OF LEMMA 3.2.5 (PERFORMANCE ON NO-INSTANCES) 45

where all the above probabilities are taken over (o,g,h). It follows that in order to show that
Pro g hénr [(P*,V)(x) = ACCEPT| > m, it will be sufficient to prove that for every fixed
polynomial p/(-) it holds that:

Pry o n [(VE,i nusefuly ;(0,g9,h)) & (0,9,h) € AC] < 1/p' (n)

Thus, Lemma 3.3.6 is satisfied provided that Pr, g5 V¢, —usefuly;(o, g, h) & (0,9, h) € AC] is neg-
ligible. Consequently, Lemma 3.3.6 will follow by establishing Lemma 3.3.7, stated next.

Lemma 3.3.7 The probability (taken over o,g,h), that for all pairs (£,i) usefuly;(o,g,h) does not
hold and that (o,g,h) € AC, is negligible. That is, the probability that EXEC(c,g,h) does not
contain a useful block-prefix and S outputs a legal transcript is negligible.

This completes the proof of Lemma 3.3.6. In the rest of this section we prove Lemma 3.3.7. W

3.3.3 Proof of Lemma 3.3.7 (legal transcripts yield useful block-prefixes)

The proof of Lemma 3.3.7 will proceed as follows. We first define a special kind of block-prefixes,
called potentially-useful block-prefixes. Loosely speaking, these are block-prefixes in which the sim-
ulator does not make too many “rewinding” attempts (each “rewinding” corresponds to a different
iteration-prefix). Intuitively, the larger the number of “rewinds” is, the smaller is the probability
that a specific block-prefix is useful. A block-prefix with a small number of “rewinds” is thus more
likely to cause its block-prefix to be useful. Thus our basic approach will be to show that:

1. In every “successful” execution (i.e., producing a legal transcript), the simulator generates a
potentially-useful block-prefix. This is proved by demonstrating, based on the structure of
the schedule, that if no potentially-useful block-prefix exists, then the simulation must take
super-polynomial time.

2. Any potentially-useful block-prefix is in fact useful with considerable probability. The argu-
ment that demonstrates this claim proceeds basically as follows. Consider a specific block-
prefix bp, let £ = ((’?) and focus on a specific instance of session (£,7) (that is, the specific
instance of session (£,4) that corresponds to block-prefix bp). Suppose that block-prefix bp
is potentially-useful and that the above instance of session (¢,4) happens to be accepted by
Vg,n- This means that there exist k queries with block-prefix bp that consist of the “main
thread” that leads to acceptance (i.e., all queries that were not answered with ABORT). Recall
that the decision to abort a session (/,7) is made by applying the function ¢ to 7 and the
iteration-prefix of the corresponding query. Thus, if there are only few different iteration-
prefixes that correspond to block-prefix bp (which, as we said, is potentially-useful), then
there is considerable probability that all the queries having block-prefix bp, but which do
not belong to that “main thread”, will be answered with ABORT (that is, g will evaluate to 0
on the corresponding input). If this lucky event occurs, then block-prefix bp will indeed be
useful (recall that for a block-prefix to be useful we require that there exists a corresponding
session that is accepted by V; ; and satisfies that for every j € {2,...,k+1} there is a single
iteration-prefix that makes g evaluate to 1 at the j'" message of this session).

Returning to the actual proof, we start by introducing the necessary definition (of a potentially-
useful block-prefix). Recall that, for any ¢ € G and h € H, the running time of the simulator S
with oracle access to V4 is bounded by tg(n). Let ¢ be a constant such that tg(n) < n¢ for all
sufficiently large n.

46 CHAPTER 3. BB CZK REQUIRES LOGARITHMICALLY MANY ROUNDS

Definition 3.3.8 (Potentially-useful block-prefix) A block-prefiz bp = (b1, a1, ..,by,a,), that
appears in EXEC; (o, g, h), is called potentially-useful if it satisfies the following two conditions:

1. The number of ip-different queries that correspond to block-prefiz bp is at most k¢H1.

2. The execution of the simulator reaches the end of the block that corresponds to block-prefiz bp.
That is, EXEC, (0, g, h) contains a query g, that ends with the (k+1)%* prover message in the
n'™ main session of recursive block number (%) (i.e., some p,(fff)’n) message).

We stress that the bound k°*! in Condition 1 above refers to the same constant ¢ > 0 that is used

in the time bound tg(n) < n°. Using Definition 3.3.3 (of ip-different queries), we have that a bound

of k1 on the number of ip-different queries that correspond to block-prefix bp induces an upper
bound on the total number of iteration-prefixes that correspond to block-prefix bp. Note that this
is in contrast to the definition of a useful block-prefix (Definition 3.3.4), in which we only have

a bound on the number of ip-different queries of a specific length (i.e., the number of ip-different

queries that correspond to specific message in a specific session).

(®p)
Turning to Condition 2 of Definition 3.3.8 we recall that the query g ends with a p,(f+f)

message (i.e., the last prover message of recursive block number K(bp)). Technically speaking, this
means that § does not actually correspond to block-prefix bp (since, by definition of the recursive
schedule, the answer to query ¢ is a message that does not belong to recursive block number E(bp)).
Nevertheless, since before making query g, the simulator has made queries to all prefixes of g, we
are guaranteed that for every i€ {1,...,n} and j€{1,...,k+1}, the simulator has made a query g, ;

that is a prefix of g, corresponds to block-prefix bp, and satisfies ., (7) = (E(E), i) and Tms(q) =17.

(In other words, all messages of all sessions in recursive block number ¢®P) have occurred during
the execution of the simulator.) Furthermore, since the (modified) simulator does not make a query
that is answered with a DEVIATION message (in Step 1’ of V; 5) and it does make the query 7 , we
are guaranteed that the partial execution transcript induced by the query g contains the accepting
conversations of at least %/2 sessions in recursive block number ¢(?), (The latter observation will
be used ounly at a later stage (while proving Lemma 3.3.7).)

It is worth noting that whereas the definition of a useful block-prefix refers to the contents
of iteration-prefixes (induced by the queries) that are sent by the simulator, the definition of a
potentially-useful block-prefix refers only to their quantity (neither to their contents nor to the
effect of the application of g on them).!® It is thus natural that statements referring to potentially-
useful block-prefixes tend to have a combinatorial flavor. The following lemma is no exception. It
asserts that every “successful” execution of the simulator must contain a potentially-useful block-
prefix (or, otherwise, the simulator will run in super-polynomial time).

Lemma 3.3.9 For any (o,g,h) € AC,, EXEC,(0,g,h) contains a potentially-useful block-prefiz.

Proof of Lemma 3.3.9 (existence of potentially-useful block-prefixes)

The proof of Lemma 3.3.9 is by contradiction. We assume the existence of a triplet (o, g, h) € AC
so that every block-prefix in EXEC,(0,g,h) is not potentially-useful, and show that this implies
that SY»(x) made strictly more than n¢ queries (which contradicts the explicit hypothesis that the
running time of S is bounded by n¢).

'8In particular, whereas the definition of a useful block-prefix refers to the outcome of g on iteration-prefixes that
correspond to the relevant block-prefix, the definition of a potentially-useful block-prefix refers only to the number of
ip-different queries that correspond to the block-prefix (ignoring the outcomes of g on the relevant iteration-prefixes).

3.3. PROOF OF LEMMA 3.2.5 (PERFORMANCE ON NO-INSTANCES) 47

The query—and—answer tree: Throughout the proof of Lemma 3.3.9, we will fix an arbitrary
(0,9,h) € AC as above, and study the corresponding EXEC, (0, g,h). A key vehicle in this study is
the notion of a query—and—answer tree introduced in [36] (and also used in [43]).' This is a rooted
tree (corresponding to EXEC, (0, g, h)) in which vertices are labeled with verifier messages and edges
are labeled with prover’s messages. The root is labeled with the fixed verifier message initializing
the first session, and has outgoing edges corresponding to the prover’s messages initializing this
session. In general, paths down the tree (i.e., from the root to some vertices) correspond to queries.
The query associated with such a path is obtained by concatenating the labeling of the vertices and
edges along the path in the order traversed. We stress that each vertex in the query—and-answer
tree corresponds to a query actually made by the simulator.

The index of the verifier (resp., prover) message labeling a specific vertex (resp., edge) in the
tree is completely determined by the level in which the vertex (resp., edge) lies. That is, all vertices
(resp., edges) in the w'" level of the tree are labeled with the w'" verifier (resp., prover) message
in the schedule (out of a total of n?-(k+1) scheduled messages). For example, if w = n?-(k+1)
all vertices (resp., edges) at the w' level (which is the lowest possible level in the tree) are labeled
with vgci’ln) (resp., p,(ci’ln)). The difference between “sibling” vertices in the same level of the tree lies
in the difference in the labels of their incoming edges (as induced by the simulator’s “rewinds”).
Specifically, whenever the simulator “rewinds” the interaction to the w'® verifier message in the
schedule (i.e., makes a new query that is answered with the w'® verifier message), the corresponding
vertex in the tree (which lies at the w'" level) will have multiple descendants one level down in the
tree (i.e., at the (w+1)% level). The edges to each one of these descendants will be labeled with a
different prover message.?? We stress that the difference between these prover messages lies in the
contents of the corresponding message (and not in its index).

By the above discussion, the outdegree of every vertex in the query—and—-answer tree corresponds
to the number of “rewinds” that the simulator has made to the relevant point in the schedule (the
order in which the outgoing edges appear in the tree does not necessarily correspond to the order
in which the “rewinds” were actually performed by the simulator). Vertices in which the simulator
does not perform a “rewinding” will thus have a single outgoing edge. In particular, in case that
the simulator follows the prescribed prover strategy P (sending each scheduled message exactly
once), all vertices in the tree will have outdegree one, and the tree will actually consist of a single
path of total length n? - (k+1) (ending with an edge that is labeled with a p,(ci’ln) message).

Recall that, by our conventions regarding the simulator, before making a query g the simulator
has made queries to all prefixes of §. Since every query corresponds to a path down the tree,
we have that every particular path down the query—and—answer tree is developed from the root
downwards (that is, within a specific path, a level w < W' vertex is always visited before a level
W' vertex). However, we cannot say anything about the order in which different paths in the tree
are developed (for example, we cannot assume that the simulator has made all queries that end at
a level w vertex before making any other query that ends at a level w’' > w vertex, or that it has
visited all vertices of level w in some specific order). To summarize, the only guarantee that we
have about the order in which the query—and—answer tree is developed is implied by the convention
that before making a specific query, the simulator has made queries to all relevant prefixes.

Satisfied path: A path from one node in the tree to some of its descendants is said to satisfy
session ¢ if the path contains edges (resp., vertices) for each of the messages sent by the prover

¥The query—and-answer tree should not be confused with the tree that is induced by the recursive schedule.
20Tn particular, the shape of the query—and—answer tree is completely determined by the contents of prover messages
in EXEC, (0, g, h) (whereas the contents of verifier answers given by Vj ;, have no effect on the shape of the tree).

48 CHAPTER 3. BB CZK REQUIRES LOGARITHMICALLY MANY ROUNDS

(resp., verifier) in session 7. A path is called satisfied if it satisfies all sessions for which the verifier’s
first message appears along the path. One important example for a satisfied path is the path that
starts at the root of the query—and—answer tree and ends with an edge that is labeled with a pg_’ln)
message. This path contains all n? - (k+1) messages in the schedule (and so satisfies all n? sessions
in the schedule). We stress that the contents of messages (occurring as labels) along a path are
completely irrelevant to the question of whether the path is satisfied or not. In particular, a path
may be satisfied even if some (or even all) of the vertices along it are labeled with ABORT.

Recall that, by our conventions, the simulator never makes a query that is answered with the
DEVIATION message. We are thus guaranteed that, for every completed block along a path in
the tree, at least %/2 sessions are accepted by V5. In particular, the vertices corresponding to
messages of these accepted sessions cannot be labeled with ABORT.

Good sub-tree: Consider an arbitrary sub-tree (of the query—and-answer tree) that satisfies the
following two conditions:

1. The sub-tree is rooted at a vertex corresponding to the first message of some session so that
this session is the first main session of some recursive invocation of the schedule.

2. Each path in the sub-tree is truncated at the last message of the relevant recursive invocation.

The full tree (i.e., the tree rooted at the vertex labeled with the first message in the schedule)
is indeed such a tree, but we will need to consider sub-trees which correspond to m sessions in
the recursive schedule construction (i.e., correspond to R,,). We call such a sub-tree m-good if it
contains a satisfied path starting at the root of the sub-tree. Since (o, g, h) €AC, we have that the
simulator has indeed produced a “legal” transcript as output. It follows that the full tree contains a
path from the root to a leaf that contains vertices (resp., edges) for each of the messages sent by the

verifier (resp., prover) in all n? sessions of the schedule (as otherwise the transcript Syt (z) would
have not been legal). In other words, the full tree contains a satisfied path and is thus n?-good.

Note that, by the definition of the recursive schedule, two m-good sub-trees are always disjoint.
On the other hand, if m’ < m, it may be the case that an m/-good sub-tree is contained in another
m-good sub-tree. As a matter of fact, since an m-good sub-tree contains all messages of all sessions
in a recursive block corresponding to R,,, then it must contain at least & disjoint “—=-good sub-
trees (i.e., that correspond to k the recursive invocations of R% made by R,,).

The next lemma (which can be viewed as the crux of the proof) states that, if the contradiction
m—

hypothesis of Lemma 3.3.9 is satisfied, then the number of disjoint ™—*-good sub-trees that are
contained in an m-good sub-tree is actually considerably larger than k.

Lemma 3.3.10 Suppose that every block-prefiz that appears in EXEC;(o,g,h) is not potentially-
useful. Then for every m > n, every m-good sub-tree contains at least k1 disjoint Tt -good

sub-trees.

Denote by W (m) the size of an m-good sub-tree. (That is, W (m) actually represents the work
performed by the simulator on m concurrent sessions in our fixed scheduling.) It follows (from
Lemma 3.3.10) that any m-good sub-tree must satisfy:

1 fm<n
> - .
W(m) = { kc+1 . W (m;n) 1fm >n (3 6)

Since for all but finitely many n, Eq. (3.6) solves to W (n?) > n® (see Section 8.2 in the Appendix),
and since every vertex in the query—and-answer tree corresponds to a query actually made by the

3.3. PROOF OF LEMMA 3.2.5 (PERFORMANCE ON NO-INSTANCES) 49

simulator, it follows that the hypothesis that the simulator runs in time that is bounded by n¢ (and
hence the full n2-good tree must have been of size at most n¢) is contradicted. Thus, Lemma 3.3.9
will actually follow from Lemma 3.3.10.

Proof (of Lemma 3.3.10): Let T be an arbitrary m-good sub-tree of the query—and—answer
tree. Considering the m sessions corresponding to an m-good sub-tree, we focus on the n main
sessions of this level of the recursive construction. Let Bp denote the recursive block to which
the indices of these n sessions belong. A T-query is a query § whose corresponding path down the
query—and—answer tree ends with a node that belongs to T' (recall that every query g appearing
in EXEC(0,g,h) corresponds to a path down the full tree), and that satisfies 74, (7) € Br.2' We
first claim that all T-queries § in EXEC.(0,g,h) have the same block-prefix. This block-prefix
corresponds to the path from the root of the full tree to the root of T, and is denoted by bpy.

Fact 3.3.11 All T-queries in EXEC4(0, g, h) have the same block-prefiz (denoted bpy).

Proof: Assume, towards contradiction, that there exist two different T-queries §;,qy so that
bp(q,) # bp(qs). In particular, bp(g,) and bp(g,) must differ in a message that precedes the first
message of the first main session in By. (Note that if two block-prefixes are equal in all messages
preceding the first message of the first session of the relevant block then, by definition, they are
equal.??) This means that the paths that correspond to g, and g, split from each other before they
reach the root of T' (remember that 7" is rooted at a node corresponding to the first main session of
recursive block Br). But this contradicts the fact that both paths that correspond to these queries
end with a node in T, and the fact follows. W

Using the hypothesis that no block-prefix in EXEC,(0, g, h) is potentially-useful, we prove:

Claim 3.3.12 Let T be an m-good sub-tree. Then the number of ip-different queries that correspond
to block-prefiz bpy is at least k¢t

Proof: Since all block-prefixes that appear in EXEC,(0,g,h) are not potentially-useful (by the
hypothesis of Lemma 3.3.10), this holds as a special case for block-prefix bpy. Let £ = (1) be the
index of the recursive block that corresponds to block-prefix bp, in EXEC,(c,g,h). Since block-
prefix bpy is not potentially-useful, at least one of the two conditions of Definition 3.3.8 is violated.
In other words, one of the following two conditions is satisfied:

1. The number of ip-different queries that correspond to block-prefix bpy is at least kL.

2. The execution of the simulator does not reach the end of the block that corresponds to

(¢n)

block-prefix bp; (i.e., there is no query in EXEC,(0, g,) that ends with a P, message that

corresponds to block-prefix bpy).

Now, since 1" is an m-good sub-tree, then it must contain a satisfied path. Such a path starts at
the root of T" and satisfies all sessions whose first verifier message appears along the path. The key
observation is that every satisfied path that starts at the root of sub-tree 7' must satisfy all the

*INote that queries g that satisfy 7sn(q) € Br do not necessarily correspond to a path that ends with a node in T
(as EXEC, (0, g, h) may contain a different sub-tree T" that satisfies By = Byv). Also note that there exist queries g,
whose corresponding path ends with a node that belongs to 1I', but satisfy 7s,(g) € Br. This is so, since 17" may also
contain vertices that correspond to messages in sessions which are not main sessions of By (in particular, all sessions
that belong to the lower level recursive blocks that are invoked by block Br).

*?Recall that the index of the relevant block is determined by the length of the corresponding block-prefix

50 CHAPTER 3. BB CZK REQUIRES LOGARITHMICALLY MANY ROUNDS

main sessions in By (to see this, notice that the first message of all main sessions in By will always
appear along such a path), and so it contains all messages of all main session in recursive block
Br. In particular, the sub-tree T" contains a path that starts at the root of T" and ends with an

edge that is labeled with the last prover message in session number (£,n) (i.e., a p,(f ")

41 message).
In other words, the execution of the simulator does reach the end of the block that corresponds to
block-prefix bpy (since, for the above path to exist, the simulator must have made a query that
ends with a pgf_ﬁ) message that corresponds to block-prefix bpy), and so Condition 2 above does
not apply. Thus, the only reason that may cause block-prefix bp; not to be potentially-useful is
Condition 1. We conclude that the number of ip-different queries that correspond to block-prefix

bpy is at least k°T1 as required.

The following claim establishes the connection between the number of ip-different queries that
correspond to block-prefix bpy and the number of “—-good sub-trees contained in 7. Loosely
speaking, this is achieved based on the following three observations: (1) Two queries are said to
be ip-different if and only if they have different iteration-prefixes. (2) Every iteration-prefix is a
block-prefix of some sub-schedule one level down in the recursive construction (consisting of ™=

sessions). (3) Every such distinct block-prefix yields a distinct ™"-good sub-tree.

Claim 3.3.13 Let T be an m-good sub-tree. Then for every pair of ip-different queries that corre-

spond to block-prefiz bpp, the sub-tree T contains two disjoint T -good sub-trees.

Once Claim 3.3.13 is proved, we can use it in conjunction with Claim 3.3.12 to infer that 7" contains
at least k°t! disjoint “-good sub-trees.

Proof: Before we proceed with the proof of Claim 3.3.13, we introduce the notion of an iteration-
suffix of a query g. This is the suffix of § that starts at the ending point of the query’s iteration-prefix.
A key feature satisfied by an iteration-suffix of a query is that it contains all the messages of all
sessions belonging to some invocation of the schedule one level down in the recursive construction
(this follows directly from the structure of our fixed schedule).

Definition 3.3.14 (Iteration-suffix) The iteration-suffix of a query G (satisfying j = Tmse(q) >
1), denoted is(q), is the suffiz of g that begins at the ending point of the iteration-prefiz of query q.
That is, for = (by,a1,...,as, b)) if ip(q@) = (b1, ay,...,bs_1,as) then is(q) = (as,bsy1,...,a,by). >

Let g be a query, and let (£,7) = msn(Q), J = Tmsg(q). Let P(q) denote the path corresponding to
query g in the query-and-answer tree. Let P;,(7) denote the sub-path of P(g) that corresponds
to the iteration-prefix ip(q) of g, and let P;s(q) denote the sub-path of P(g) that corresponds to
the iteration-suffix is(g) of g. That is, the sub-path P;,(q) starts at the root of the full tree, and

(¢n) (¢n) (¢1)
ends at a p; ;—1" message and ends at a v;

message (in particular, path P(g) can be obtained by concatenating P;,(g) with Pis(7)*).

message, whereas the sub-path P;s(q) starts at a p

Fact 3.3.15 For every query § € EXEC,(0,g,h), the sub-path P;s(q) is satisfied. Moreover:

1. The sub-path P;s(q) satisfies all ™2 sessions of a recursive invocation one level down in the
recursive construction (i.e., corresponding to R%)

2. If G corresponds to block-prefiz bpy, then the sub-path Pis(q) is contained in T.

(
J

24To be precise, one should delete from the resulting concatenation one of the two consecutive edges which are
labeled with as = pg.zflb) (one edge is the last in P;,(q) and the other edge is the first in P (7)).

23This means that as is of the form p 2;7{), where (£,7) =7sn(q) and j=7msg(q)-

3.3. PROOF OF LEMMA 3.2.5 (PERFORMANCE ON NO-INSTANCES) 51

Proof: Let ({,i) =7 (q) and j =Tms(7). By nature of our fixed scheduling, the vertex in which

sub-path P;,(q) begins precedes the first message of all (nested) sessions in the (j—1)% recursive

invocation made by recursive block number ¢ (i.e., an instance of R »—. which is invoked by R,,).
k

(41)

Since query ¢ is answered with a v, message, we have that the sub-path Pis(q) eventually reaches

a vertex labeled with v\“. In particular, the sub-path P;s(q) (starting at a pg-éfi)

J
at a vgg,z) vertex) contains the first and last messages of each of the above (nested) sessions, and
so contains edges (resp., vertices) for each prover (resp., verifier) message in these sessions. But
this means (by definition) that all these (nested) sessions are satisfied by P;s(g). Since the above
(nested) sessions are the only sessions whose first message appears along the sub-path P;s(7), we

have that P;s(g) is satisfied. To see that whenever g corresponds to block-prefix bp; the sub-path
(&)
j—1

edge and ending

Pis(q) is contained in the sub-tree 7', we observe that both its starting point (i.e., a p edge)

and its ending point (i.e., a vg-é’i) vertex) are contained in 7. [l

Fact 3.3.16 Let q;,q, be two ip-different queries. Then Pis(q,) and Pis(qy) are disjoint.

Proof: Let G, and g, be two ip-different queries, let ({1,i1) = msn(qy), ({2,i2) = 7su(qo), and let
J1 = Tmsg(T1), J2 = Tmsg(Jo). Recall that queries §; and @, are said to be ip-different if and only
if they have different iteration-prefixes. Since §; and g, are assumed to be ip-different, then so are
iteration-prefixes ip(q,) and ip(gy). In particular, the paths Py,(q;) and P;y(q,) are different. We
distinguish between the following two cases:

1. Path P;,(g;) splits from P;,(7,): In such a case, the ending points of paths P;,(7;) and
Pip(qy) must belong to different sub-trees of the query-and-answer tree. Since the starting
point of an iteration-suffix is the ending point of the corresponding iteration-prefix, we must
have that paths P;s(g;) and P;s(gy) are disjoint.

2. Path P;,(q,) is a prefix of path P;,(g,): That is, both P;,(q;) and P;,(7y) reach a)

Ji—1
vertex, while path P;,(7,) continues down the tree and reaches a vg-isz) vertex. The key

observation in this case is that either ¢; is strictly smaller than f3, or j; is strictly smaller
than jo. The reason for this is that in case both ¢; = ¢y and j; = j2 hold, iteration-prefix

ip(7,) must be equal to iteration-prefix ip(g,),?°> in contradiction to our hypothesis. Since

path P;s(q,) starts at a pjfl_’rf) vertex and ends with a v vertex, and since path P;(q5)

J1
2,m)

starts with a pjifl vertex, we have that the ending point of path P;s(q;) precedes the starting
(1,1)
J1

the p%i’rf) message). In particular, paths P;s(q;) and P;s(q,) are disjoint.

point of path P;s(g,) (this is so since if j; < jo, the p message will always precede/equal

It follows that for every two ip-different queries, g, and @,, sub-paths P;s(q;) and Pis(q,) are
disjoint, as required. W

Back to the proof of Claim 3.3.13, let §; and g, be two ip-different queries that correspond to
block-prefix bpy (as guaranteed by the hypothesis of Claim 3.3.13), and let P;s(q;) and Pis(g,) be
as above. Consider the two sub-trees, 17 and 15, of 1" that are rooted at the starting point of sub-
paths P;s(q;) and Pis(q,) respectively (note that by, Fact 3.3.15, 71 and T% are indeed sub-trees

*That is, unless bp(q;) # bp(g,). But in such a case, paths Pip(q;) and Pip(g,) must split from each other (since
they differ in some message that belongs to their block-prefix), and we are back to Case 1.

52 CHAPTER 3. BB CZK REQUIRES LOGARITHMICALLY MANY ROUNDS

of T'). By definition of our recursive schedule, 71 and T correspond to ™" sessions one level

down in the recursive construction (i.e., to an instance of R?) Using Fact 3.3.15 we infer that

sub-path P;s(q,) (resp., Pis(qy)) contains all messages of all sessions in T} (resp., Tb), and so the
Tn

sub-tree T (resp., Ty), is ™z"-good. In addition, since sub-paths P;;(q;) and P;s(qy) are disjoint
(by Fact 3.3.16) and since, by definition of an ™=-good tree, two different ™"-good trees are
always disjoint, then 77 and T, (which, being rooted at different vertices, must be different) are
also disjoint. It follows that for every pair of different queries that correspond to block-prefix bpy,

the sub-tree 7" contains two disjoint ™"-good sub-trees. Wi

We are finally ready to establish Lemma 3.3.10 (using Claims 3.3.12 and 3.3.13). By Claim 3.3.12,
we have that the number of different queries that correspond to block-prefix bpy is at least kL.
Since (by Claim 3.3.13), for every pair of different queries that correspond to block-prefix bp; the
sub-tree 1" contains two disjoint *"-good sub-trees, we infer that T contains a total of at least
k<t disjoint m--good sub-trees (corresponding to the (at least) ket! different queries mentioned

above). Lemma 3.3.10 follows. W

Back to the Proof of Lemma 3.3.7 (existence of useful block-prefixes)

Once the correctness of Lemma 3.3.9 is established, we may proceed with the proof of Lemma 3.3.7.
Let 2 € {0,1}". We bound from above the probability, taken over the choices of o € {0,1}*, ge-G
and h& H, that (0,g,h) € AC and that for all £ € {1,...,ts5(n)} and all i € {1,...,n}, the /"
distinct block-prefix in EXEC, (0, g, h) is not i-useful. Specifically, we would like to show that:

Progn| (V4 i —usefuly;(o,9,h)) & ((0,9,h) € AC) (3.7)

is negligible. Define a Boolean indicator pot—use,(c,g,h) to be true if and only if the ¢! dis-
tinct block-prefix in EXEC.(o,g,h) is potentially-useful. As proved in Lemma 3.3.9, for any
(0,g,h) € AC there exists an index £ € {1,...,t5(n)}, so that the /'! block-prefix in EXEC,(0,g,h)
is potentially-useful. In other words, for every (o, g,h) € AC, pot—use,(c, g, h) holds for some value
of £. Thus, Eq. (3.7) is upper bounded by:

ts(n)
Progn [\/ pot—use, (o, g,h) & (Vie{l,... , n} ﬂusefulg,i(a,g,h))] (3.8)
=1

Consider a specific £ € {1,...,t5(n)} so that pot—use,(c,g,h) is satisfied (i.e., the £'! block prefix
in EXEC.(0,g,h) is potentially-useful). By Condition 2 in the definition of a potentially-useful
block-prefix (Definition 3.3.8), the execution of the simulator reaches the end of the corresponding
block in the schedule. In other words, there exists a query § € EXEC,(0,g,h) that ends with the

(k +1)** prover message in the n*® main session of recursive block number £(%?¢) where bp, denotes
the ¢ distinct block-prefix in EXEC, (0, g, h), and £(2¢) denotes the index of the recursive block that
corresponds to block-prefix bp, in EXEC, (0, g, h). Since, by our convention and the modification of
the simulator, S never generates a query that is answered with a DEVIATION message, we have that
the partial execution transcript induced by query g must contain the accepting conversations of at
least %/2 main sessions in block number ¢(%P¢) (as otherwise query § would have been answered
with the DEVIATION message in Step 17 of Vj 3).

3.3. PROOF OF LEMMA 3.2.5 (PERFORMANCE ON NO-INSTANCES) 93

Let q@ﬂ = Q(Et’)(a,g,h) denote the first query in EXEC,(o,g,h) that is as above (i.e., that
ends with the (k 4 1)*' prover message in the n'® main session of recursive block number K(El),
where bp, denotes the d'® block-prefix appearing in EXEC, (0, g, h)).25 Define an additional Boolean
indicator acceptzﬂ-(a,g, h) to be true if and only if query q@ﬂ contains an accepting conversation
for session (E(%l),i) (that is, no prover message in session (E(%l),i) is answered with ABORT, and
the last verifier message of this session equals ACCEPT).27 It follows that for every £ € {1,...,t5(n)}

that satisfies pot—use,(c,g,h) (as above), there exists a set S C {1,...,n} of size %/2 such that
accepty ;(0, g, h) holds for every i € S. Thus, Eq. (3.8) is upper bounded by:

ts (’n

Progn \/ \/ (pot—useg(a,g,h) & (‘v’i € S, —usefuly;(0,9,h) & acceptzyi(a,g,h))) (3.9)

Using the union bound, we upper bound Eq. (3.9) by:

ts(n)

Z Z Prygn {pot—useg(a,g, h) & (W € S, —usefuly;(0,9,h) & accept, (0, g, h))} (3.10)

The last expression is upper bounded using the following lemma, that bounds the probability that a
specific set of different sessions corresponding to the same (in index) potentially-useful block-prefix
are accepted (at the first time that the recursive block to which they belong is completed), but still
do not turn it into a useful block-prefix. In fact, we prove something stronger:

Lemma 3.3.17 For every o € {0,1}*, every h € H, every { € {1,...,ts(n)}, and every set of
indices S C {1,...,n}, so that |S| > k:

M

S
Pry [pot—usez(a,g,h) & (Vi € S, —usefulyi(0,9,h) & acceptzﬂ-(a,g,h))} < (n_(+ﬁ))‘ |

Proof: Let z € {0,1}*. Fix some 0 € {0,1}*, he H,{ € {1,...,ts(n)} and a set S C {1,...,n}.
Denote by bp, = bp,(g) the * distinct block-prefix in EXEC, (0, h, g), and by £(%?¢) the index of its
corresponding recursive block in the schedule. We bound the probability, taken over the choice of
ggG, that for all 4 € S block-prefix bp, is not i-useful, even though it is potentially-useful and for

all ¢ € S the query 7*P¢) contains an accepting conversation for session (K(bpl),i).

*6Since the simulator is allowed to feed Vj;, with different queries of the same length, we have that the execution
of the simulator may reach the end of the corresponding block more than once (and thus, EXEC; (0, g, h) may contain

b main session of block number é(a‘f)).

more than a single query that ends with the (k+1)®" prover message in the n
Since each time that the simulator reaches the end of the corresponding block, the above set of accepted sessions may
be different, we are not able to pinpoint a specific set of accepted sessions without explicitly specifying to which one
of the above queries we are referring. We solve this problem by explicitly referring to the first query that satisfies the

above conditions (note that, in our case, such a query is always guaranteed to exist).

2"Note that the second condition implies the first one. Namely, if the last verifier message of session (Z(bpe),i)
equals ACCEPT, then no prover message in this session could have been answered with ABORT.

54 CHAPTER 3. BB CZK REQUIRES LOGARITHMICALLY MANY ROUNDS

A technical problem resolved: In order to prove Lemma 3.3.17 we need to focus on the ¢t}

distinct block-prefix in EXEC, (o, h,g) (denoted by bp,) and analyze the behaviour of a uniformly
chosen g when applied to the various iteration-prefixes that correspond to bp,. However, trying to
do so we encounter a technical problem. This problem is caused by the fact that the contents of
block-prefix bp, depends on ¢.2% In particular, it does not make sense to analyze the behaviour of a
uniformly chosen g on iteration-prefixes that correspond to an “undetermined” block-prefix (since
it is not possible to determine the iteration-prefixes that correspond to bp, when bp, itself is not
determined). To overcome the above problem, we rely on the following observations:

1. Whenever o, h and £ are fixed, the contents of block-prefix bp, is completely determined by
the output of g on inputs that have occurred before bp, has been reached (i.e., has appeared
as a block-prefix of some query) for the first time.

2. All iteration-prefixes that correspond to block-prefix bp, occur after bp, has been reached for
the first time.

It is thus possible to carry out the analysis by considering the output of ¢ only on inputs that have
occurred after bp, has been determined. That is, fixing o, h and £ we distinguish between: (a) the
outputs of ¢ that have occurred before the (" distinct block-prefix in EXEC,(0,g,R) (i.e., bp,) has
been reached, and (b) the outputs of g that have occurred after bp, has been reached. For every
possible outcome of (a) we will analyze the (probabilistic) behaviour of g only over the outcomes
of (b). (Recall that once (a)’s outcome has been determined, the identities (but not the contents)
of all relevant prefixes are well defined.) Since for every possible outcome of (a) the analysis will
hold, it will in particular hold over all choices of g.

More formally, consider the following (alternative) way of describing a uniformly chosen g € G
(at least as far as EXEC,(c0,g,h) is concerned). Let g1,g2 be two tg(n)-wise independent hash
functions uniformly chosen from G and let o, h, £ be as above. We define ¢(91:92) = ¢(h.t:91,92) 4
be uniformly distributed among the functions ¢’ that satisfy the following conditions: the value of
g’ when applied to an input « that has occurred before bp, has been reached (in EXEC,(0,g,h)) is
equal to g;(«), whereas the value of ¢’ when applied to an input « that has occurred after bp, has
been reached is equal to ga(«).

Similarly to the proof of Claim 3.3.2 it can be shown that for every o, h, ¢ as above, if ¢; and
go are uniformly distributed then so is ¢{91:92). In particular:

Pry [pot—useg(a,g, h) & (Vz’ € S, —usefuly;(0,9,h) & accept, (o, g, h))]
= Pry g [pot—usez(a,g(gl’”),h) & (‘v’i €S, —uusefulg,i(a,g(gl’”), h) & acceptzyi(a,g(g1 92) h))]

By fixing g1 and then analyzing the behaviour of a uniformly chosen go on the relevant iteration-
prefixes the above technical problem is resolved. This is due to the following two reasons: (1) For
every choice of o, h, £ and for every fixed value of g1, the block-prefix bp, is completely determined
(and the corresponding iteration-prefixes are well defined). (2) Once bp, has been reached, the
outcome of 9(91792) when applied to the relevant iteration-prefixes is completely determined by the
choice of gy. Thus, all we need to show to prove Lemma 3.3.17 is that for every choice of ¢,

Prg, [pot—useg(a,g(gl’”),h) & (‘v’i €S, —.usefulg,i(a,g(g1 92) h) & acceptm(a,g(gl’”)7 h))] (3.11)

is upper bounded by (n~(1/2+1/4k))[S],

28 (Clearly, the contents of queries that appear in EXEC, (0, g, h) may depend on the choice of the hash function g.
(This is because the simulator may dynamically adapt its queries depending on the outcome of g on iteration-prefixes
of past queries.) As a consequence, the contents of bp, = bp,(g) may vary together with the choice of g.

3.3. PROOF OF LEMMA 3.2.5 (PERFORMANCE ON NO-INSTANCES) 95

Back to the actual proof of Lemma 3.3.17: Consider the block-prefix bp,, as determined
by the choices of o,h,f and g;, and focus on the iteration-prefixes that correspond to bp, in
EXECg(0, g, h). We next analyze the implications of bp, being not i-useful, even though it is poten-

tially useful and for all ¢« € S query q@ﬂ contains an accepting conversation for session (E(Et’), Q).

Claim 3.3.18 Leto € {0,1}*, g€ G,he H,de {1,...,ts(n)} and S C {1,...,n}. Suppose that
the indicator (pot—usez(a,g, h) & (Vi € S, ~usefuly ;(o,9,h) & acceptzyi(a,g,h))) is true. Then:

1. The number of different iteration-prefizes that correspond to block-prefiz bp, is at most k°t1.

2. For every j € {2,...,k+1}, there exists an iteration-prefix Ej (corresponding to block-
prefiz bp,), so that for every i € S we have g(i,ﬁj) =1.
(&) (

3. For every i € S, there ewist an (additional) iteration-prefiz ip corresponding to block-

prefiz bp,), so that for every j€{2,... k + 1}, we have E(Z) #ip;, and g(i,ﬁ(z)) =1.

In accordance with the discussion above, Claim 3.3.18 will be invoked with g = g(91:92).

Proof: Loosely speaking, Item (1) follows directly from the hypothesis that block-prefix bp, is
potentially-useful. In order to prove Item (2) we also use the hypothesis that for all i € S query
7*¢) contains an accepting conversation for session (£(%?¢) i), and in order to to prove Item (3) we
additionally use the hypothesis that for all 7 € S block-prefix bp, is not i-useful. Details follow.

Proof of Item 1: The hypothesis that block-prefix bp, is potentially-useful (i.e., pot—use,(c, g, h)
holds), implies that the number of iteration-prefixes that correspond to block-prefix bp, is at
most kT (as otherwise, the number of ip-different queries that correspond to bp, would have

been greater than k¢t1).

Proof of Item 2: Let i € S and recall that accept,;(0,g,h) holds. In particular, we have that
query q(ﬁl) (i.e., the first query in EXEC, (0, g, h) that ends with the (k + 1) prover message
in the n'" main session of recursive block number K(El)) contains an accepting conversation for
session (E(El), i). That is, no prover message in session (K(El), i) is answered with ABORT, and
the last verifier message of this session equals ACCEPT. Since by our conventions regarding
the simulator, before making query 7¢) the simulator has made queries to all relevant
prefixes, then it must be the case that all prefixes of query g(®?¢) have previously occurred as
queries in EXECy(0, g, h). In particular, for every i € S and for every j € {2,...,k + 1}, the
execution of the simulator must contain a query g; ; that is a prefix of ﬁ(ﬁf) and that satisfies
bp(g; ;) = bpe, an@i,j)z(g(bp‘)j)y Tmsg(Ti,j) =7, and g(i,9p(q; ;) = 1. (If g(i,ip(g; ;)) would
have been equal to 0, query 7*?¢) would have contained a prover message in session (K(bpl), i)
that is answered with ABORT, in contradiction to the fact that accept,,;(c, g, h) holds.) Since
for every j € {2,...,k+1} and for every i1,iz € S we have that z'p(qz-m-j = ip(T;, ;) (as queries

g; ; are all prefixes of g, and [ip(q;, ;)| = [ip(q;, ;)|), we can set ip; = ip(g; ;). It follows that

for every j € {2,...,k+1}, iteration-prefix ip; corresponds to block-prefix bp, (as queries Qi
all have block-prefix bp,), and for every i € S we have that g(i,ﬁj) =1.

Proof of Item 3: Let i € S and recall that in addition to the fact that accept, ;(c, g, k) holds, we
have that usefuly ;(o, g, h) does not hold. Notice that the only reason for which useful ;(c, g, h)

56 CHAPTER 3. BB CZK REQUIRES LOGARITHMICALLY MANY ROUNDS

can be false (i.e., the /' block-prefix is not i-useful), is that Condition 1 in Definition 3.3.4
is violated by EXEC.(0,g,h). (Recall that accept,;(c,g,h) holds, and so Condition 2 in
Definition 3.3.4 is indeed satisfied by query g; ., (as defined above): This query corresponds
to block-prefix bpy, satisfies mo (7; 441) = (ebro)), Tmsg(Ti p1) = K+ 1, 9(4,1p(T; 441)) = 1,
and is answered with ACCEPT.)

For Condition 1 in Definition 3.3.4 to be violated, there must exists a j € {2,...,k+1},
with two ip-different queries, g, and g,, that correspond to block-prefix bp,, satisfy ms,(g;)=
Tsn(Qa) = (g(bpl)ﬂ')y ﬂ-msg(ql) = 7'rrnsg(qZ) = j, and g(i,ip(q,)) = g(i,ip(gy)) = 1. Since,
by definition, two queries are considered ip-different only if they differ in their iteration-
prefixes, we have that there exist two different iteration-prefixes ip(g,) and ip(gy) (of the
same length) that correspond to block-prefix bp, and satisfy ¢(i,i1p(q,)) = 9(i,ip(qy)) = 1.
Since iteration-prefixes ip,, ..., i1 (from Item 2 above) are all of distinct length, and since
the only iteration-prefix in ip,,...,4p;,; that can be equal to either ip(g;) or ip(qy) is %j
(note that this is the only iteration-prefix having the same length as ip(g,) and ip(g,)), then it
must be the case that at least one of ip(q,),ip(g,) is different from all of ip,, ..., ip,; (recall
that ip(7;) and ip(g,) are different, which means that they cannot be both equal to ip;). In
particular, for every ¢ € S (that satisfies useful;(o,g,h) & accept,;(c,g,h)), there exists at

least one (extra) iteration-prefix, ﬁ(i) € {ip(q,),ip(g,)}, that corresponds to block-prefix bp,,
differs from ip; for every j € {2,...,k + 1}, and satisfies gg(i,E(Z)) =1.

This completes the proof of Claim 3.3.18.

Recall that the hash function gy is chosen at random from a tg(n)-wise independent family. Since
for every pair of different iteration-prefixes the function go will have different inputs, then go will
have independent outputs when applied to different iteration-prefixes (since no more than tg(n)
queries are made by the simulator). Similarly, for every pair of different 4,7’ € S, go will have
different input, and thus independent output. Put in other words, all outcomes of go that are
relevant to block-prefix bp, are independent of each other. Since a uniformly chosen go will output
1 with probability n~1/2¥ we may view every application of gy on iteration-prefixes that correspond
to bp, as an independently executed experiment that succeeds with probability p~1/2k 29

Using Claim 3.3.18.1 (i.e., Item 1 of Claim 3.3.18), the applications of g, which are relevant to
sessions {(£(P0),i)};cs can be viewed as a sequence of at most k°t! experiments (corresponding to
at most k°T! different iteration-prefixes). Each of these experiments consists of |S| independent
sub-experiments (corresponding to the different ¢ € S), and each sub-experiment succeeds with
probability n=1/2¥_ Claim 3.3.18.2 now implies that at least & of the above experiments will fully
succeed (that is, all of their sub-experiments will succeed), while Claim 3.3.18.3 implies that for
every i € S there exists an additional successful sub-experiment (that is, a sub-experiment of one
of the k! — k remaining experiments). Using the fact that the probability that a sub-experiment
succeeds is n~Y2* we infer that the probability that an experiment fully succeeds is equal to
(n~1/28)ISI In particular, the probability in Eq. (3.11) is upper bounded by the probability that
the following two events occur (these events correspond to Claims 3.3.18.2 and 3.3.18.3 respectively):

29We may describe the process of picking gggG as the process of independently letting the output of g» be equal
to 1 with probability n='/2* (each time a new input is introduced). Note that we will be doing so only for inputs that
occur after block-prefix b_pz has been determined (as, in the above case, all inputs for g2 are iteration-prefixes that
correspond to block-prefix b_pl, and such iteration-prefixes will occur only after %2 has already been determined).

3.3. PROOF OF LEMMA 3.2.5 (PERFORMANCE ON NO-INSTANCES) 57

Event 1: In a sequence of (at most k1) experiments, each succeeding with probability (n=/2%)I5],

there exist k successful experiments. (The success probability corresponds to the probability
that for every i € S, we have gy(i,ip;) =1 (see Claim 3.3.18.2).)

Event 2: For every one out of |S| sequences of the remaining (at most k1 —k) sub-experiments,
each succeeding with probability n=/%% | there exists at least one successful experiment. (In this
(@)

case, the success probability corresponds to the probability that iteration-prefix ip - satisfies

92(3,ip™) =1 (see Claim 3.3.18.3).)

For i € |S| and j € [k°*!], let us denote the success of the i*! sub-experiment in the j*' experiment
by x; ;. By the above discussion for every ¢,7, the probability that x; ; holds is n=L/2k (indepen-
dently of other y;;’s). We now have that, for Event 1 above to suceed, there must exists a set
of k experiments, K C [k°T!] so that for all (i,j) € S x K, the event y; ; holds. For Event 2 to
suceed, it must be the case that, for every i € S, there exist one additional experiment (i.e., some
j € [kt \ K) so that y; j holds. It follows that Eq. (3.11) is upper bounded by:

> Pr [Vj €K, VieS st. Xi,j] - Pr {W €85, 3jekT\K st. xij

KC[Re+1]
SN\ k gt g\ 1S
) -y

(K|=k

< (kc+1)k . ((n% S|>k . (k0+1 . nfﬁ)w‘ (3.12)
_ (kc+1)k+|5\ _ (n_%)k-ISHIS\

= ()) (o))

< (nGr)” (3.13)

where Eq. (3.12) holds whenever kt! — k = o(n'/?*) (which is satisfied if k = o(log)ign)),

and Eq. (3.13) holds whenever (k¢t1)F+SI. (n=1/4)ISI < 1 (which is satisfied if both |S| > k

and k = 0(1o§ﬁgn))- This means that Eq. (3.11) is upper bounded by (n=(1/2+1/4)ISI "and the

proof of Lemma 3.3.17 is complete. |l

Using Lemma 3.3.17, we upper bound Eq. (3.10) by

1/2 nl/2 1/2
n (il)\ "E 4-e-m\ 1 _(Lii)\"F
ts(n) . <n1/2> . (TL (2+4k)) < ts(n) . (W) . (n (2+4k))
4
172
4-¢e 1
= t5<">'<m)

nl/2

< tg(n)-27"1

(3.14)

where Inequality 3.14 holds whenever 8 - e < n'/4 (which holds for k < %). This completes

the proof of Lemma 3.3.7 (since poly(n) - 2-n'/?) g negligible).

58

CHAPTER 3. BB CZK REQUIRES LOGARITHMICALLY MANY ROUNDS

Chapter 4

cZK in Logarithmically many Rounds

In this chapter we present a black-box ¢ZXC protocol whose number of rounds matches the lower
bound established in Chapter 3. Specifically, assuming the existence of perfectly-hiding commit-
ment schemes (which exist assuming the existence of a collection of claw-free functions [29]), we
show that every language in NP can be proved in ¢ZK using logarithmically many rounds of
interaction. This is formally stated in the following theorem.

Theorem 4.1 (Upper Bound) Assume the existence of perfectly-hiding commitment schemes,
and let o : N — N be any super-constant function. Then, there exists an O(a(n) - logn)-round
black-box concurrent zero-knowledge proof system for every language L € N'P.

The proof of Theorem 4.1 builds on the protocol by Richardson and Kilian [42] and on the
simulator by Kilian and Petrank [35]. However, our analysis of the simulator’s execution is more
sophisticated and thus yields a stronger result. We introduce a novel counting argument that
involves a direct analysis of the underlying probability space. This is in contrast to previous results
that required subtle manipulations of conditional probabilities. We also present a new variant of
the RK protocol [42] which is both simpler and more amenable to analysis than the original version.

4.1 A cZK proof system for NP

We start by presenting a high-level description of our protocol, as well as a description of the
black-box simulator that establishes its zero-knowledge property. Our protocol is inspired by the
Richardson-Kilian (RK) protocol [42] and uses the well known 3-round protocol for Hamiltonicity
by Blum [6] as a building block. The crucial property of Blum’s protocol that we need in order to
construct a concurrent zero-knowledge simulator is that the simulation task becomes trivial as soon
as the verifier’s message is known in advance. That is, if the prover knows the verifier’s “challenge”
prior to the beginning of the protocol then it can always make the verifier accept (regardless of
whether the graph is Hamiltonian). This is done by adjusting the prover’s messages according
to the contents of the verifier’s “challenge” (which, as we said, is known in advance). We stress
that the choice of Blum’s protocol as a building block is arbitrary (and is made just for clarity of
presentation). In fact, the above property is satisfied by many other known protocols (in particular,
any one of these protocols could have been used as a building block for our construction).

Much alike the RK protocol [42], our protocol is designed to overcome difficulties that are
encountered whenever many sessions are to be black-box simulated concurrently. This is done by
adding a “preamble” to the protocol, which is completely independent of the common input and
whose sole purpose is to enable a successful simulation in the concurrent setting. Every round in the
preamble is viewed as a “rewind opportunity”. Having successfully rewound even one of the rounds

59

60 CHAPTER 4. CZK IN LOGARITHMICALLY MANY ROUNDS

in the preamble is sufficient in order to reveal the verifier’s “challenge” in the Hamiltonicity proof
system. As mentioned above, knowing the verifier’s “challenge” in advance enables the simulator
to cheat arbitrarily in the Hamiltonicity proof (regardless of whether the graph is Hamiltonian).

4.1.1 The protocol

We let k be any super-logarithmic function in n. Our protocol consists of two stages. In the
first stage (or preamble), which is independent of the actual common input, the verifier commits
to a random n-bit string o, and to two sequences, {a?,j}f,jzl, and {ail,j ﬁjzl, each consisting of
k% random n-bit strings (this first message is called the initial commitment of the protocol). The
sequences are chosen under the constraint that for every ¢,j the value of UZOJ- (S3) az{j equals o. This
is followed by k iterations so that in the j'' iteration the prover sends a random k-bit string,
Tj =T1j,..-,Tkj, and the verifier decommits to 011]’-]', . ,O';;Ijj’-j.

In the second stage, the prover and verifier engage in the 3-round protocol for Hamiltonicity,
where the “challenge” sent by the verifier in the second round of the Hamiltonicity protocol equals
o (at this point the verifier also decommits to all the values o, {ail_”’j k., that were not revealed

J 1,5=1
in the first stage). The protocol is depicted in Figure 4.1.

A cZK Proof System for N'P
Common Input: A directed graph G = (V, E) with n def [V].
Auxiliary Input to Prover: A directed Hamiltonian Cycle, C C E, in G.
Additional parameter: A super-logarithmic function k(n).
Stage 1: Commitment to challenge o € {0,1}" (independent of common input):

P — V : Send first message for perfectly hiding commitment scheme.

V — P : Commit to random o, {o};}¥._,, {0} ;} ;=) s:t. o) ; @ o}, =0 forall i, 5.

Forj=1,...,k:
P — V : Send a random k-bit string r; =1 ;,...,7%;-
V — P : Decommit to o7, ..., 0"

end (for);

Stage 2: Engage in Blum’s 3-round Hamiltonicity protocol using o as challenge:

P — V : Use C to produce first prover message of Hamiltonicity protocol.

. 1=k
V — P : Decommit to ¢ and to {o;; "/} ;_,.

P — V : Answer ¢ with second prover message of Hamiltonicity protocol.

Figure 4.1: Our concurrent zero-knowledge protocol. The first stage is independent of the common
input. The second stage consists of a 3-round proof of Hamiltonicity, where the “challenge” sent
by V is the n-bit string ¢ committed to in the first message of the first stage.

Intuitively, since in an actual execution of the protocol, the prover does not know the value of
o, the protocol constitutes a proof system for Hamiltonicity (with soundness error 2~ ™). However,
knowing the value of ¢ in advance allows the simulation of the protocol: Whenever the simulator
may cause the verifier to reveal both agj and ail,j for some 7,7 (this is done by the means of

. . . 71,5 Tk 5 . .
rewinding the verifier after the values 011]’-] yee e ,ak'”]’-] have been revealed), it can simulate the rest of

4.1. A CZK PROOF SYSTEM FOR NP 61

the protocol (and specifically Stage 2) by adjusting the first message of the Hamiltonicity protocol
according to the value of o = U?J- @ Uil,j (which, as we said, is obtained before entering the Stage 2).

4.1.2 The simulator

(V0), (P1),(V1),...,(Pk),(Vk) denote the 2k + 1 first stage messages in our protocol and let
(p1),(v1),(p2) denote the three (second stage) messages in the Hamiltonicity proof system. Loosely
speaking, the simulator is said to rewind the the j'" round if after receiving a (Vj) message, it “goes
back” to some point preceding the corresponding (Pj) message and “re-executes” the relevant part
of the interaction until (Vy) is reached again.

The simulator is said to successfully rewind the 5" round, if it manages to receive (V) as answer
to two different (Pj) messages. Note that, once this happens, the simulator has obtained both agj
and ail,j for some ¢ € {1,...,k}. Thus, if the simulator successfully rewinds even one of the rounds
in the first stage then it reveals the verifier’s “challenge” (which is equal to U?J- @ O'iIJ-). Once the
“challenge” is revealed, the simulator can cheat arbitrarily in the second stage of the protocol.

To simplify the analysis, we let the simulator always pick the (Pj)’s uniformly at random. Since
the length of the (Pj) messages is super-logarithmic, the probability that any two (Pj) messages

sent during the simulation are equal is negligible.

Motivating discussion: The binding property of the initial commitment guarantees us that,
once a?,j and ail,j have been revealed, the verifier cannot “change his mind” and decommit to
o # 02 ;@ ail’j at a later stage. However, this remains true only if we have not rewound past the
initial commitment. As observed by Dwork, Naor and Sahai [15], rewinding a specific session in
the concurrent setting may result in rewinding past the initial commitment of other sessions. This
means that the “work” done for these sessions may be lost (since once we rewind past the initial
commitment of a session all a::]?j values that we have gathered in this session become irrelevant).
Consequently, the simulator may find himself doing the same amount of “work” again.

The big question is how to design a simulation strategy that will manage to overcome the above
difficulty. One possible approach would be to try and rewind every session at the location that will
"minimize the damage”. This is the approach taken by Richardson and Kilian [42]. Specifically,
for every specific session (out of m concurrent sessions), there must be a j € {1,...,k} so that at
most (m —1)/k other sessions start in the interval corresponding to the 5™ iteration (of this specific
session). So if we try to rewind on the correct j, we will invest (and so waste) only work proportional
to (m —1)/k sessions. The idea is to avoid the rewinding attempt on the j' iteration if more than
(m — 1)/k sessions are initiated in the corresponding interval (this will rule out the incorrect j’s).
The same reasoning applies recursively (i.e., to the rewinding in these (m — 1)/k sessions).

The drawback of this approach is that it works only when the number of iterations in the pream-
ble is polynomially related to the number of concurrent sessions. Specifically, denoting by W (m)
the amount of work invested in m sessions, we obtain the recursion W(m) = poly(m) - W (2=L),
which solves to W (m) = m®U°8x ™) Thus, whenever k = n, we get W (m) = m®®), whereas taking
k to be a constant (or even poly-logarithmic) will cause W (m) to be quasi-polynomial.

A totally different approach is taken by Kilian and Petrank [35]. Rather than concentrating on
each session separately and decide on the rewindings according to the schedule as it is being revealed,
determine the rewindings obliviously of the concurrent scheduling (which is determined ”on the fly”
by the adversary verifier). Specifically, the order and timing of the simulator’s rewindings are
determined recursively and depend only on: (1) The length of the execution transcript determined
so far. (2) The total number of concurrent sessions (which, by definition, is determined prior to
the simulation process). This is essentially the approach taken by us.

62 CHAPTER 4. CZK IN LOGARITHMICALLY MANY ROUNDS

Procedure SOLVE(Y, hist, T'):

1. Bottom level (¢ = 1):

e If session s does not appear in hist, delete all session s messages from 7 .

Uniformly choose a first stage prover message p, and feed V* with (hist, p).

Store V*’s answer v, in 7.
Output 7, (p,v).

2. Recursive step (£ > 1):

o Set 71, (P1,V1,. -, Des2, Vey2) <—SOLVE(L/2, hist, T).

e Set 72, (P1,V1,.-,De/2,Ve/2) < SOLVE({/2, hist, 7p).

e Set 73, (De/2+1,Vej24+15- -

e Set 7y, (Deja+1,Vej241s---

,De,V¢) <SOLVE({/2, (hist,p1,vy,...
,Pe, Vi) «— SOLVE({/2, (hist,p1,v1,...

b Olltpllt ,T47 (plavla"'

7pZ7VZ)'

,Pe/zaVe/z)a Ts).
;p2/2>VZ/2)a T3).

Figure 4.2: The rewinding strategy of our simulator. We stress that the actual “work” is made
at the bottom level of the recursion. Even though messages (p1,v1,...,De ve) do not explicitly
appear in the output, some of them (i.e., the ones that are still “relevant”) do appear in the table
7. Notice that the timing of the rewinds is oblivious of the scheduling.

The rewinding strategy: The rewinding strategy of our simulator is specified by the SOLVE
procedure. The goal of the SOLVE procedure is to supply the simulator with V*’s “challenges”
before reaching the second stage in the protocol. As discussed above, this is done by rewinding the
interaction with V* while trying to achieve two “different” answers to some (Vj) message.

The timing of the rewinds performed by the SOLVE procedure depends only the number of first
stage verifier messages received so far (and on the size of the schedule). For the sake of simplicity,
we currently ignore second stage messages and refrain from specifying the way they are handled.
On a very high level, the SOLVE procedure splits the (first stage) messages it is about to explore
into two halves and invokes itself recursively twice for each half (completing the two runs of the
first half before proceeding to the two runs of the second half).

At the top level of the recursion, the messages that are about to be explored consist of the
entire schedule, whereas at the bottom level the procedure explores only a single message (at this
level, the verifier message explored is stored in a special ”data-structure”, denoted 7). The solve
procedure always outputs the sequence of “most recently explored” messages.

The input to the SOLVE procedure consists of a triplet (¢, hist,7"). The parameter ¢ corresponds
to the number of verifier messages to be explored, the string hist consists of the messages in the
“most recently visited” history of interaction, and 7 is a table containing the contents of all the
messages explored so far (to be used whenever the second stage is reached in some session).!

The simulation is performed by invoking the SOLVE procedure with the appropriate parameters.
Specifically, whenever the schedule contains m = poly(n) sessions, the SOLVE procedure is invoked
with input (m(k+1), ¢, ¢) (wherem(k+1) is the total number of first stage verifier messages in a
schedule of size m). The SOLVE procedure is depicted in Figure 4.2.

!The messages stored in 7 are used in order to determine the verifier's “challenge” according to “different” answers
to (Vj). They are kept “relevant” by constantly keeping track of the sessions that are rewound past their initial com-
mitment. That is, whenever the SOLVE procedure rewinds past the (V0) message of a session, all messages belonging
to this session are deleted from 7 (since, once this happens, they become irrelevant to the rest of the simulation).

4.2. HIGH LEVEL ANALYSIS OF THE SIMULATION 63

4.2 High Level Analysis of the Simulation

In order to prove the correctness of the simulation, it will be sufficient to show that for every
adversary verifier V*, the three conditions corresponding to the following subsections are satisfied.

4.2.1 The simulator runs in polynomial-time

Each invocation of the SOLVE procedure with parameter ¢ > 1 involves four recursive invocations
of the SOLVE procedure with parameter £/2. In addition, the work invested at the bottom of the
recursion (i.e., when ¢ = 1) is upper bounded by poly(n). Thus, the recursive work W (m - (k+1)),
that is invested by the SOLVE procedure in order to handle m - (k + 1) (first stage) verifier messages
satisfies W(m - (k +1)) < (m - (k+ 1))? - poly(n) = poly(n) (see Section 4.5 for details).

4.2.2 The simulator’s output is “correctly” distributed

Indistinguishability of the simulator’s output from V*’s view (of m = poly(n) concurrent interac-
tions with P) is shown assuming that the simulator does not get “stuck” during its execution (see
below). Since the simulator S will get “stuck” only with negligible probability, indistinguishability
will immediately follow. The key for proving the above lies in the following two properties:

e First stage messages output by S are identically distributed to first stage messages sent by P.
This property is proved based on the definition of the simulator’s actions. (We note that this
property is easier to prove for our protocol than it is for the RK protocol.)

e Second stage messages output by S are computationally indistinguishable from second stage
messages sent by P. This property is proved based on the zero-knowledge property of the
underlying protocol (in our case, Blum’s Hamiltonicity protocol).

4.2.3 The simulator (almost) never gets “stuck”

This is the most challenging part of the proof. What is required is to show that whenever a
session (out of m = poly(|z|) sessions in the schedule) reaches the second stage in the protocol,
the simulator has already managed to obtain the value of the ”challenge” corresponding to this
session (at least with overwhelming probability). We assume, for simplicity of presentation, that
the concurrent scheduling applied by V* is fixed in advance (where by “fixed schedule” we mean a
schedule that does not vary “dynamically” as a function of the messages that V* has seen so far).
The ideas for coping with “dynamic” schedulings are presented in the actual proof.

Partitioning the schedule into rewind intervals: The execution of the SOLVE procedure
induces a partitioning of the 2-m- (k+1) (prover and verifier) messages in the schedule into disjoint
rewind intervals. At the top level of the recursion there are two disjoint intervals of length m - (k+1)
and at the bottom of the recursion there are m - (k+1) disjoint intervals of length 2. In general,
at the w'™ level of the recursion (out of d = logs(m - (k+1)) possible levels) there are 2% disjoint
intervals of m(k + 1)/2“T! messages each.

Notice that rewind intervals may contain messages from all sessions. Also notice, that a rewind
interval may be “visited” multiple times during the execution of the SOLVE procedure (in particular,
a level-w interval is visited exactly 2 times during the simulation). The fixed schedule assumption
implies that each time an interval is “visited”, it will contain the same scheduling of messages.

64 CHAPTER 4. CZK IN LOGARITHMICALLY MANY ROUNDS

Minimal rewind intervals: We denote by [a,b] an interval starting with prover message a and
ending with verifier message b. Focusing on messages of a specific session, we note that for every
pair of messages (Pj),(Vj) in this session we can associate a level-w interval [aj, b;] so that:

1. Both (Pj) and (Vj) are contained in [aj, b;].
2. None of the level-(w 4 1) sub-intervals of [aj, b;] contains both (Pj) and (Vj).

We call such a rewind interval a j-minimal interval. Notice that for every j € {1,...,k} there is
only one j-minimal interval [a;, b;] (and that for every j # j' the interval [a;, b;] is different from

[aj, bjr]).

I e |

(P(-1)) | [
(VG-1)) [[
Lbj—l I_ [

v5) [er %
(b)) Lo, |
[

ve) | Lo | [

Figure 4.3: Demonstrates the way in which minimal intervals are determined. Also demonstrates
possible containments between minimal intervals of different iterations. In this example, the in-
tervals [aj_1,b;—1] and [aj11,bj41] are disjoint (as well as the intervals [a;_1,b;—1] and [aj, b;]),
whereas the interval [a;j41,b;41] contains [aj, b;].

In some sense j-minimal intervals correspond to the shortest interval in which the simulator can
rewind message (Vj) (that is, while potentially changing the value of (Pj7)). Intuitively, for such a
rewinding to be useful, the interval should not contain message (V0). Otherwise, the value that was
revealed in some run of the interval becomes irrelevant once the rewinding is performed (since all
the relevant values in the 7 table are deleted whenever we rewind past (V0)). Likewise, the interval
should not contain message (p1). Otherwise, the simulation faces the risk of getting “stuck” before
it manages to reveal multiple (Pj), (Vj) pairs of messages (by running the interval twice).

To rule out the above possibilities we focus on j-minimal intervals that do not contain neither
(V0) nor (p1) (such intervals are said to be good). It can be seen that the number of minimal
intervals that do not contain neither (VO0) nor (p1) is at least £ —2d. This just follows from the fact
that in every level the (VO0) (resp. (pl)) message is contained in exactly one interval. In particular,
the number of minimal intervals that are “spoiled” by (VO0) (resp. (pl)) is at most d.

At this point, the simulator’s task may seem easy to achieve. Indeed, if V* acts according to the
prescribed verifier strategy, then all that the simulator has to do is to run a good interval twice.?
Since V* is acting honestly, we are guaranteed that, with overwhelming probability, in each of the
two runs the simulator obtains a ”different” (Vj) message. In such a case, it will be sufficient
to require that there ezists a good interval. By the above discussion this is guaranteed whenever
k > 2d (and since d = O(log n), setting k = w(logn) will do).

2Observe that whenever [a;, b;] is reached during the simulation then it is run twice.

4.2. HIGH LEVEL ANALYSIS OF THE SIMULATION 65

Dealing with ABORT messages: Unfortunately, the adversary verifier V* may arbitrarily deviate
from the prescribed strategy. In particular, it may be the case that throughout its interaction with
the prover (simulator), V* occasionally sends an ABORT message (in other words, V* may potentially
refuse to decommit to a previous commitment). Clearly, such an action on behalf of the verifier is
considered illegal, and the interaction in the relevant session stops (i.e., there is no need to continue
exchanging messages in this session). This may seem as good news (since, once this happens, the
simulator does not really need to ”invest” any more work in the corresponding session).

The problem is that V* does not always refuse to decommit (but may refuse with some prob-
ability 0 < p < 1, which is not known in advance by the simulator). Thus, if we focus on two
consecutive runs of a specific interval, the simulator may find himself in a situation in which the
first run is answered with ABORT whereas the second run of the interval is “properly answered”.
This means that the simulator has not managed to obtain the “challenge” from the two runs of
this interval, and it thus faces the risk of getting “stuck” at a later stage of the interaction.

One naive solution would be to let the simulator always output the run in which V* has refused
to decommit (that is, whenever it gets “stuck”). The problem with this solution is that it “skews”
the distribution of transcripts outputted by the simulator towards transcripts that contain too many
ill-formed messages. This may cause a too large deviation of the simulator’s output distribution
from the distribution of “real” interactions (between V* and the honest prover P).

In our solution we have chosen to let the simulator always output the “most recently explored”
run. This choice guarantees that the simulator indeed produces the “correct” distribution of first
stage messages (in the sense discussed above). However it makes him face the risk that V* aborts
in the first run of an interval and “properly answers” in the second run.

Achieving “independent” rewinds: Let p; denote the probability that V* sends a “proper”
(Vj) message. Using this notation, the probability that V* aborts in the first run of [aj,b;] but
“properly answers” in the second run is equal to (1 —p;) - p; < 1/4 (we call this a “bad” event).
Let k' < k be the number of good intervals in the simulation. At first glance, it may seem that
the probability of the above “bad” event to occur in all good intervals is upper bounded by (1/4)’“’
(which means that the probability of getting “stuck” is negligible whenever k¥’ = w(logn)).

However, this reasoning applies only when all runs of the good intervals are independent. Un-
fortunately, very strong dependencies may exist between different good intervals. This will happen
whenever one good interval contains another good interval. In such a case, aborting in the first run
of one interval, may immediately imply abort in the first run of the other interval.

The solution is to focus on a set of disjoint intervals. Such intervals do not suffer from the
dependencies described above, and can be shown to be “bad” independently from other (disjoint)
intervals. The abundance of disjoint intervals can be easily guaranteed by taking k sufficiently
large. Specifically, if £ = w(log?n) (as in the Kilian-Petrank simulator [35]), then there must
exist a level in the recursion (out of d = log(m - (k+1)) = O(logn) levels) that contains at least
k' = w(log?n)/d = w(logn) good intervals. Since same level intervals are all disjoint, then their
runs are “independent”. In particular, the probability that for all of them the “bad” event will
occur is negligible.

Special intervals: Unfortunately, the argument establishing the abundance of disjoint intervals
does not extend to the case when k£ = O(Iog n). Here we are not guaranteed that there exists
a level with many good intervals. In fact, there may exists only few (i.e., & = o(logn)) disjoint
intervals. To overcome this obstacle, we use a completely different approach. Rather than proving
the existence of a large set of disjoint intervals (each being executed twice), we prove the existence

of a (possibly small) set of disjoint intervals and guarantee that the total number of executions of

66 CHAPTER 4. CZK IN LOGARITHMICALLY MANY ROUNDS

these intervals is large. By doing so, we exploit the fact that, from the time that (V0) is visited
until the time that (p1) is reached, the simulator typically visits each rewinding interval many times
(and not just twice as we assumed before).

Specifically, for every scheduling applied by V*, we define our set of intervals as the set of all
minimal intervals that do not contain any other minimal interval (i.e., intervals [a;, b;] that do not
contain [ajr,bj] for any j' # j). We call such intervals special intervals. Notice that all special
intervals are disjoint. We let S C {1,...,k} denote the set of all indices j for which [a;,b;] is
special. For simplicity, assume that S = {1,...,|S|}.

Our goal will be to bound (from below) the total number of times that special intervals are
visited. To do so, we introduce a notion of “distance” between consecutive special intervals. This
“distance” is supposed to reflect the number of times that a certain special interval has been
executed since the last time that the preceding special interval has been visited. For every j € S,
we let d; denote the “distance” of [a;,b;] from [a;_1,bj_1].> Using this definition we show that,
no matter what is the scheduling strategy applied by V*, the following two conditions are always
satisfied:

1. The number of “independent” runs of [aj, b;] since [a;_1,b; 1] has been last visited is 24 .
2. Yjesdj >k —d.

Loosely speaking, Item 1 follows from the definition of d; and from the fact that [a;,b;] and
[aj—1,bj—1] are disjoint. As for Item 2, this is a combinatorial statement on binary trees, that is
proved by induction on the number of minimal intervals in the “recursion tree”.

Bounding the failure probability: Recall that we are interested in the probability that the
“bad” event occurs during the simulation. Whereas in the previous analysis, this happened only if
for all intervals the first run was aborted and the second was “properly answered”, in the current
analysis the simulator will fail only if for every j € {1,...,|S|}, it holds that the first 2% — 1 runs
of the interval [aj,b;] are aborted and the last one is "properly answered” (since otherwise the
simulator has managed to obtain two “different” answers to (Vj)).

Let R be the set of all random tapes used by the simulator. A specific p € R is said to be
“bad” if the “bad” event occurs during a simulation that uses p as random tape (if the “bad” event
does not occur during the simulation then p is called “good”). We shall show that the fraction of
"bad” tapes p € R is negligible. To do this we will show that every “bad” random tape can be
mapped into a set of super-polynomially many other “good” random tapes so that every two “bad”
random tapes are mapped to two disjoint sets of “good” random tapes. This would imply that for
every random tape that leads to the simulator’s failure there exist super-polynomially many other
tapes that do not. Since the simulator picks a random tape uniformly amongst all possible random
tapes, it follows that the simulator’s failure probability is negligible.

Mapping a “bad” random tape to many “good” ones: Let uj,...,us (where for every
j € {1,...,]S}, the value of u; is chosen in {1,...,2%}). We map a random tape p € R into
another random tape p’ € R by swapping the portion of p used to produce prover messages in
the %" run of [a;,b;] with the portion used in the (2%)™ run (this is done for all j € S). The
swappings are made possible due to the following facts: (1) Prover messages in interval [a;, b;] are
produced using ”fresh” randomness each time it is visited. (2) If two intervals [a;, b;] and [a;, bj]

3The value d; is defined as the ”recursive depth” of [a;,b;] relative to the “common ancestor” of [aj,b;] and
[aj—1,bj—1] (i-e., relative to the smallest rewind interval containing both [a;,b;] and [a;j—1,b;-1]).

4.2. HIGH LEVEL ANALYSIS OF THE SIMULATION 67

are disjoint then so is the randomness used to produce their corresponding prover messages (recall
that all special intervals are disjoint).

We claim that if p is a “bad” random tape, then after the swappings have been applied, the
resulting tape p’ is “good”. To see this, consider the smallest j € S for which u; # 2% (i.e., for
which the u!" run of [aj, bj] and the (2%)™ run have been actually swapped). The key observation
is that, once the swappings have been applied to p, the last run of [a;,b;] is aborted (and one of
the first 2% — 1 runs is “properly answered”).* In other words, there exists a j € S for which the
“bad” event does not occur during the simulation (and so p’ is “good”).?

The above argument will apply as long as the sequence uy, ..., u|s, causes the randomness of at
least one special interval to be swapped. The number of possibilities to choose uy,...,u5 so that
this happens (i.e., the randomness of at least one special interval is swapped) is:

[[25 -1 = 2Xies® —1 > obd_3

JjeS
(the sequence ui,...,ug = 201 . 2%s) being the only one that leaves the coin tosses intact).
Overall, we get that a single “bad” random tape p € R can be mapped to as many as 2¢-7 — 1
other “good” random tapes. As we show below, any two such “bad” tapes will be mapped to disjoint
sets of “good” tapes and so the fraction of “bad” random tapes is at most 2¥~%¢ = 2k=0(ogn) Thys,
whenever k£ = w(logn), the probability that the simulator gets “stuck” is negligible.

Defining an “inverse” mapping: To argue that any two ”bad” random tapes are mapped to
disjoint sets of “good” tapes we will define an “inverse” to the above mapping. To do this, we should
be able, given a “good” random tape p’ € R, to determine the value of u; for every j € {1,...,|S|}
(that is, we should be able to determine with which run of [a;, b;] the last run was swapped).

In order to to determine the value of the u;’s we will run the simulation with p’ as random
tape and examine for which special intervals one of the first 2% — 1 runs is “properly answered”
and the last run is aborted by V*. Once u; is determined for some interval, we will swap back its
randomness and continue to inspect and swap the next special interval.

If we take care of inspecting the intervals and reversing the swapping of their randomness
“inductively”, we are guaranteed that for every interval that we are examining exactly one of the
runs is “properly answered” and the others are aborted. Loosely speaking, this follows from the
fact that the “good” tape that we are trying to invert originates from a “bad” tape in which every
interval is aborted in the first 2% — 1 runs and “properly answered” in the last run.

The reason for which the order of swapping is important is that V*’s answer in a specific interval
also depends on the randomness used to run the “most recent execution” of previous intervals (since,
whenever we reach a specific interval, the outcome of these “recent” runs appears in the history of
the interaction). In order to be able to say something meaningful about an interval’s run we must
make sure that, whenever we inspect the run of the simulator on this interval, the history of the
interaction up to the starting point of the interval is consistent with the outcome of running the
simulator with the "bad” tape that we are aiming to obtain.

As soon as we reach the last special interval we know that the resulting tape is the original
“bad” random tape (since all along the way we preserve the “invariant” that the randomness used
so far is consistent with the original “bad” random tape).

‘Here we rely on the fact that the simulator’s coin tosses completely determine the outcome of an interval’s run
(that is, modulo the history of the interaction up to the starting point of the interval).

5To see that the simulator does not get “stuck” when using p' as its random tape, notice that when reaching the
second stage of the corresponding session, the simulator will not have to do anything in order to successfully produce
a second stage transcript (since all second stage messages should appear as being aborted anyway).

68 CHAPTER 4. CZK IN LOGARITHMICALLY MANY ROUNDS

4.3 A Detailed Description of our Protocol

4.3.1 Blum’s protocol

We consider n parallel repetitions of the following basic proof system for the Hamiltonian Cycle
(HC) problem which is NP-complete (and thus get proof systems for any language in N'P) [6, 22].
We cousider directed graphs (and the existence of directed Hamiltonian cycles).

Construction 4.3.1 (Basic proof system for HC):

e Common Input: a directed graph G = (V, E) with n def V.
e Auxiliary Input to Prover: a directed Hamiltonian Cycle, C C E, in G.

e Prover’s first step (a) Select a random permutation, w, of the vertices V, and commit
(using a perfectly-binding commitment scheme) to the entries of the adjacency matriz of
the resulting permuted graph. That is, send an n-by-n matric of commitments so that the
(7(i), 7(5))™" entry is a commitment to 1 if (i,5) € E, and is a commitment to 0 otherwise.

e Verifier’s first step (ﬁ) Uniformly select o € {0,1} and send it to the prover.

e Prover’s second step (55) Ifo =0, send 7 to the verifier along with the revealing (i.e., preim-
ages) of all commitments. Otherwise, reveal only the commitments to entries (w(i),w(j)) with
(i,j) € C. In both cases also supply the corresponding decormmitments.

e Verifier’s second step (@) If 0 = 0, check that the revealed graph is indeed isomorphic, via w,
to G. Otherwise, just check that all revealed values are 1 and that the corresponding entries
form a simple n-cycle. In both cases check that the decommitments are proper (i.e., that they
fit the corresponding commitments). Accept if and only if the corresponding condition holds.

A key propery of the above protocol (which is also satisfied by many other known protocols) is
that if the prover knows the contents of verifier’s “challenge” message o (i.e., as determined in
Step (v1)) prior to sending its own first message (i.e., as determined in Step (p1)), then it is able
to convince the verifier that G contains an Hamiltionian cycle even without knowing such a cycle
(actually, it will convince the verifier even if the graph does not contain an Hamiltionian cycle).

The reason for this is that in such a case, the prover can set up its first message according to
o in a way that will always make the verifier accept in Step (@) Specifically, knowing in advance
that ¢ = 0, the prover will commit to the entries of the adjacency matrix of the permuted graph
(as specified in Step (p1) of Construction 4.3.1), thus being able to reveal a permutation 7 and the
preimages of all commitments in Step (p2). On the other hand, knowing in advance that o = 1,
the prover will commit to the full graph K,,, thus being able to open an arbitrary cycle in the
supposedly permuted graph.

As a side remark, we observe that the above property is in fact sufficient in order to prove that
a single execution of Construction 4.3.1 is black-box zero-knowledge in the “stand alone” setting.®
All that the simulator has to do is to try and ”guess” the value of o prior to determining the value
of the prover’s first message (and keep trying until it suceeds).

5This is in contrast to the protocol obtained by conducting n parallel repetitions of the basic Hamiltonicity proof
system (from Construction 4.3.1), which cannot be proved to be black-box zero-knowldege (unless NP C BPP) [24].

4.3. A DETAILED DESCRIPTION OF OUR PROTOCOL 69

4.3.2 The actual protocol

Using Counstruction 4.3.1 as a building block, we are now ready to present a concurrent zero-
knowledge proof system for Hamiltonicity. Since Hamiltonicity is N'P-complete, it will follow that
every language in /P can be proved in concurrent zero-knowledge.

Construction 4.3.2 (A cZK proof system for HC):

e Common Input: a directed graph G = (V,E) with n def V|, and a parameter k = k(n)
(determining the number of rounds).

e Auxiliary Input to Prover: a directed Hamiltonian Cycle, C C E, in G.

o First stage: This stage involves 2k + 2 rounds and is independent of the common input G.

1. Prover’s preliminary step (P0): Uniformly select a first message for a (2-round)
perfectly-hiding commitment scheme and send it to the verifier.

2. Verifier’s preliminary step (VO0): Uniformly select o € {0,1}", and two sequences,
{0 31, {ot,; 3,21, each consisting of k* random n-bit strings. The sequences are
chosen under the constraint that for every 1,7 the value of aﬂj @ a}d equals o. Commit
(using the perfectly-hiding commitment scheme) to all 2k*+1 selected strings. The
commitments are denoted 3, {06}y, {B;}F,_,.

3. Forj=1,...,k:

(a) Prover’s j step (Pj): Uniformly select a k-bit string rj =11 j,...,71,; € {0,1}F
and send it to the verifier.

(b) Verifier’s j*" step (Vj): Reveal the values (preimages) of 81" ,..., 8,5
4. The prover proceeds with the execution if and only zf for every j € {1 ,k}, the
verifier has properly decommited to the values of o,]' - ,crkf]’ (i.e that fm" every

ie{l,....k}, o Z-:-’ is a valid decommitment of ﬂw .

e Second stage: The prover and verifier engage in n (parallel) executions of a slightly modified
version of the basic Hamiltonicity protocol (described in Construction 4.3.1):

1. Prover’s first step (pl): Send the first message in the Hamiltonicity proof system (i.e.,
n parallel copies of Step (pl) in Construction 4.5.1).

2. Verifier’s first step (v1): Reveal the value (i.e., preimage) of B (which is supposed to be
equal to o). Also reveal the value of all k* commitments that have not been revealed in

the first stage (i.e., the values of all {ﬂl TR).

3. Prover’s second step (p2): Check that the verifier has properly decommited to the values
of o and {01 "IVr) (in particular, check that of ; @ o} ; indeed equals o for all 7).
If so, send the third message in the basic Hamzltomczty proof system (i.e., n parallel
copies of Step (p2) in Construction 4.3.1).

4. Verifier’s second step (v2): Conduct the verification of the prover’s proofs (i.e., as

described in Step (ﬁ) of Construction 4.3.1), and accept if and only if all corresponding
conditions hold.

We next argue that Construction 4.3.2 indeed constitutes an interactive-proof for the language HC.

70 CHAPTER 4. CZK IN LOGARITHMICALLY MANY ROUNDS

Completeness

Completeness of the above proof system (i.e., Construction 4.3.2) follows from the perfect com-
pleteness of the basic Hamiltonicity proof system (i.e., Construction 4.3.1). Suppose that the input
graph G is indeed Hamiltonian. Then if the prover follows the prescribed program P, the verifier
will always accept (i.e., accept with probability 1). Specifically, in order to successfully conduct the
first stage, all that the prover has to do is to send an initialization message for the perfectly-hiding
commitments scheme, and k£ uniformly and independently chosen k-bit strings, one string per each
round in the first stage (this can be done even wihtout knowing an Hamiltonian cycle in G). As for
the second stage, since the prover knows an Hamiltionian cycle C C E in G, then no matter what
is the “challenge” sent by the verifier in Step (v1), the perfect completeness of Construction 4.3.1
guarantees that the prover will be always able to answer properly in Step (p2) (thus making the
verifier accept).

Soundness

Soundness of the above proof system (i.e. Construction 4.3.2) follows from soundness of the basic
Hamiltonicity proof system (i.e., Construction 4.3.1), and from the perfectly-hiding property of the
commitment sent by the verifier in Step (V0). Suppose that the input graph G is not Hamiltonian.
Then no matter what the prover does, the k? values, {a:’i’l i?:h e {a:i,;k i?:h that are revealed by
the verifier in the first stage are uniformly and independ7ently chosen (a7nd so reveal no information
about the actual value of o). Since the commitment scheme used by the verifier in Step (VO0) is
perfectly-hiding, we deduce that when reaching Step (p1) the prover has “no idea” about the value
of the “challenge” o that is about to be revealed in Step (v2) (i.e., as far as the information available
to the prover is concerned each possiblity is almost equally likely). In other words, even though the
cheating prover reaches the second stage (i.e., Step (p1)) after seeing all messages in the first stage,
the messages in the second stage are (almost) statistically independent of the verifier’'s messages
in the first stage. A standard argument can be then used to demonstrate how a cheating prover
for Construction 4.3.2 is transformed into an (all-powerful) cheating prover for Construction 4.3.1
(with only a negligible difference in the cheating probability), in contradiction to the soundness
property of Construction 4.3.1. Hence, we get:

Proposition 4.3.3 Construction 4.3.2 constitutes an interactive proof system for Hamiltonicity.

4.4 Zero-Knowledge

In order to demonstrate the zero-knowledge property of Counstruction 4.3.2, we will show that
for every polynomial p(-) there exists a “universal” black-box simulator, S,, so that for every
G = (V, E) € HC and concurrent adversary verifier V* (running at most p(|V|) concurrent sessions),
Sp(G) runs in time poly(n) (where n = |V]), and satisfies that the ensemble {view}.(G)}qenc is
computationally indistinguishable from the ensemble {SZ‘,/* (G)}aenc-

4.4.1 The simulator’s strategy

We assume that the number of sessions that are run by the concurrent adversary verifier V* is fixed
in advance and known to everybody. We denote it by m (= poly(n)). The simulator S,, starts
by selecting and fixing a random tape 7 for V*. It then proceeds by exploring various prefixes
of possible interactions between P and V*. This is done while having only ”black-box” access

4.4. ZERO-KNOWLEDGE 71

to V*’s strategy (as described in Section 2.6). For simplicity of presentation, we partition the
description of the simulator’s strategy into two disjoint (but not independent) procedures. The
first procedure handles the messages that are exchanged in the first stage of the protocol. This is
done while completely ignoring the messages of the second stage. The second procedure handles
the messages in the second stage while using auxiliary information produced by the first procedure.
This information is located in some “global” data-structure that is dynamically updated (by the first
procedure) as the simulation proceeds. To complete the simulator’s description we describe how the
two procedures can be merged into one super-procedure that with overwhelming probability outputs
a ”legal” transcript (representing a concurrent interaction between P and V*). The analysis of the
simulator’s running time and output distribution are then presented in Sections 4.5, 4.6 and 4.7.

Handling first stage messages

First stage messages are handled by the SOLVE procedure. The goal of this procedure is to supply
the simulator with the values of V*’s “challenges” before it reaches the second stage in the protocol
(where by “challenges” we refer to messages that correspond to Step (v1) of Construction 4.3.2).
To this end, the SOLVE procedure tries to make sure that for every session (out of m concurrent
sessions) there exists 4,5 € {1,...,k} x {1,...,k} for which the verifier V* has properly revealed
the values of both ag ; and 02-17]- (during the simulation process). This should always take place
prior to reaching the second stage of the corresponding session (or otherwise, the simulator will get
”stuck”). Once both agj and ail’j are revealed, the value of V*’s challenge (which should be equal
to 02 ;@ U}J) can be easily determined, and the required goal is indeed achieved.

In order to receive both agj and ail’j (i.e., in some (Vj) message of a specific session), the
simulator must explore at least two different interaction prefixes in which the corresponding (Pj)
message is different. The way this is done is by means of “rewinding” the interaction with V* to a
point in the schedule that precedes the (Pj) message (while hoping that the (Pj) message is indeed
modified in the process).”

The rewinding strategy of the SOLVE procedure is recursive and is essentially identical to the
simulation strategy suggested by Kilian-Petrank [35]. The key idea underlying this simulation
strategy is that the order and timing of the simulator’s rewinds are determined obliviously of the
concurrent scheduling (which is determined “on the fly” by the adversary verifier V*). Specifically,
the order and timing of the rewinds depend only on m, the number of concurrent sessions (which,
by definition, is determined prior to the simulation process), and on the length of the execution

prefix explored so far.®

The “global” data-structure: To store the values it has discovered about the verifier’s ”chal-
lenge” in session s € {1,...,m}, the SOLVE procedure will write information into a table denoted
7. This table will contain the (first stage) verifier messages that have been revealed so far (such

"Note that great care should be taken in planning the rewinding strategy. As we have previously mentioned,
rewinding a specific session in the concurrent setting may result in loss of work done for other sessions, and cause
the simulator to do the same amount of work again. In particular, all simulation work done for sessions starting
after the point to which to rewind may be lost (since the revealed values of O'?J- and ail,]- become irrelevant once we
rewind to a point preceding the verifier’s preliminary commitment in Step (V0)). Conducting a “wasteful” rewinding
strategy may cause the work done by the simulator to accumulate to too much (thus causing the simulator to run in
super-polynomial time).

8This is in contrast to the rewinding strategy of the Richardson-Kilian simulator [42] which heavily depends on
the schedule as it is being revealed (remember that the scheduling is dynamically determined by the adversary verifier
and is not necessarily known to the simulator in advance).

72 CHAPTER 4. CZK IN LOGARITHMICALLY MANY ROUNDS

messages may consist of the opened values of some {a:’] le’s or, alternatively, of an ABORT mes-
sage). As we have already mentioned, “rewinds” that take place during the simulation process may
render part of the data stored in the 7 table irrelevant. In particular, whenever the interaction is
rewound to a point that precedes the verifier’s preliminary commitment in session s (i.e., a (V0)
message), all the values corresponding to session s in the 7 table are not relevant any more. In
such cases, these values should be deleted from the table and the accumulation of information for

session s should restart from scratch.

The input of the SOLVE procedure: The SOLVE procedure is given three arguments as input.
The first argument, denoted ¢, is a parameter determining the total number of verifier messages
that the SOLVE procedure should handle. At the top level of the recursion, the argument ¢ equals
m - (k + 1), which is the total number of (first stage) verifier messages in a schedule of m sessions
(that is, including the verifier’s preliminary step, (V0)). At the bottom level of the recursion, the
SOLVE procedure should handle a single (first stage) verifier message (that is, ¢ equals 1).

The second argument given to the SOLVE procedure, denoted hist, is a sequence of alternating
prover and verifier messages which corresponds to the “most recently visited” history of the in-
teraction (as induced by the simulator’s queries). In accordance with our conventions, all queries
made by the relevant invocation of the SOLVE procedure will have hist as their prefix. At the top
level of the recursion, the hist argument is initialized as an empty list and becomes increasingly
longer as the simulation proceeds (its eventual length being 2m - (k + 1)). In intermediate stages
of the recursion the hist argument may initially be of arbitrary length and is eventually augmented
with a suffix containing a total of 2¢ (prover and verifier) messages.

The third argument of the SOLVE procedure is the table 7. As mentioned above, this argument
is used in order to store the first stage messages revealed so far. In order to keep these messages
relevant, the SOLVE procedure will inspect the hist argument to see for which sessions the (V0)
message does not appear in the history of the interaction. Since for such sessions, any value that
is possibly stored in the 7 table is not relevant for the rest of the simulation (see above discussion
about the “global” data-structure), the SOLVE procedure will delete this value from the 7 table
and will restart the accumulation of information for these sessions from scratch.

The SOLVE procedure: We are now ready to proceed with the description of the SOLVE proce-
dure. Given 4, hist and 7 as inputs, the SOLVE procedure acts as follows (see also Figure 4.2):

If =1 (i.e., we are at the bottom level of the recursion):

1. If (VO) message of session s does not appear in hist, delete all session s messages from 7.
2. Uniformly choose a first stage prover message p, and feed V* with g = (hist, p).

3. Store V*’s answer v, in 7.7

4. Output (p,v), 7.

If £ > 1 (i.e., we are at some intermediate level of the recursion):

1. Invoke the SOLVE procedure recursively with parameters ¢/2, hist and 7. The recursive
invocation outputs a table 77, as well as a transcript of £ (first stage) messages denoted

(1317{}17 cee 7?[/27{}5/2)'

°The message v = V*(q) consists of a first stage verifier message in session s € {1,...,m}. It is either of the form

(V0) or (Vj) for some j € {1,...,k} (supposedly containing the “legal” openings of UIIJI’ e U;'fj‘j).

4.4. ZERO-KNOWLEDGE 73

2. "Rewind” the interaction and perform Step 1 again. That is, invoke the SOLVE procedure
recursively with parameters ¢/2, hist and 7. The recursive invocation outputs a table
T3, as well as a transcript of ¢ (first stage) messages denoted (p;, vy, ... ,pZ/Q,Vg/z).IO

3. Augment the hist argument with the “most recently visited” transcript (that is, the
transcript (py,v1i,..., P2, Ve/2) computed in Step 2) and invoke recursively the SOLVE
procedure with parameters /2, (hist,p;, vy, ... ,Pejas vg/2) and 7. The recursive invoca-
tion outputs a table 73, as well as a transcript of the £ subsequent (first stage) messages
denoted (Pyoy1,Ves2415---»Pps Ve)-

4. "Rewind” the interaction and perform Step 3 again. That is, invoke the SOLVE proce-
dure recursively with parameters £/2, (histp),vy,... ,p€/2,v5/2) and 75. The recursive
invocation outputs a table 7;, as well as a transcript of the ¢ subsequent (first stage)
messages denoted (Pg/o115Ve/211,-- -+ Po> vy). 1t

5. Output 74 and the “most recently visited” transcript, which consists of the messages
(p17V17 v 7P€7Vf)'

Some comments: Notice that the order and timing of the “rewinds” performed by the SOLVE
procedure are determined obliviously of the concurrent schedule (whereas the order in which the
7 table is updated does depend on the scheduling of the various messages in the various sessions).
Also note that, as opposed to the [42, 35] simulation strategies, the values of the (first stage)
prover messages (i.e., of (Pj) messages) do not depend on the values revealed by the verifier
in the corresponding answers (i.e., in the (Vj) messages), but are rather chosen uniformly and
independently each time. Since the transcript output by the simulator consists of the prover/verifier
messages that were “most recently visited” by the SOLVE procedure, the first stage messages that
eventually appear in the simulator’s output are identically distributed to “real” first stage messages
(i.e., messages that are actually exchanged between an honest prover P and the verifier V*).

Updating the 7 table: The 7 table is updated only when visiting the bottom level of the
recursion. Given a first stage verifier message v, the SOLVE procedure determines the session

number, s € {1,...,m}, of the corresponding (Vj) message (according to the session identifiers that
appear in v) and stores (Vj) in 7. The (Vj) message may either contain a sequence afj’-j, e ,af]’-j

of n-bit strings or an ABORT message. Since the (Pj) message to which (V) is given as answer may
occur in the schedule much earlier than (Vj) does, the simulator may perform rewinds that do not
reach (Pj) (and so do not change its value), but repeatedly obtain different (Vj)’s as answer. In
such cases, the SOLVE procedure will always store the “recently obtained” (Vj) message instead of
previous ones (that were given as answer to the same (Pj)).

Note that since the schedule may vary “dynamically” as a function of the history of the inter-
action, it may be the case that not all messages in a specific session s € {1,...,m} are “visited”
the same number of times by the SOLVE procedure. In particular, the number of verifier messages
that appear in 7 may differ from session to session and from iteration to iteration (within a specific
session). A detailed analysis of the contents of the 7 table whenever the simulator reaches the
second stage in session s appears in Section 4.7.

10We stress that corresponding messages in the (p,, 71, . . . sPe/2r Tes2) and the (py, Vi, ..., Py, Ve/2) sequences do not
necessarily belong to the same sessions s € {1,...,m}. This is because the concurrent schedule may be “dynamically”
determined by V™ as a function of the history of the interaction (in particular, different values of p,,... 1Pes2 and
P1,---,Py/» may cause the corresponding answers of V™ to belong to different sessions).

1 Again, notice that corresponding messages in the (f’e/2+1: Y¢/241,---,P¢, Ve) and the (P[/2+1,VZ/2+17 .-, PerVe)
sequences do not necessarily belong to the same session.

74 CHAPTER 4. CZK IN LOGARITHMICALLY MANY ROUNDS

Handling second stage messages

Second stage messages are handled by the PROVE procedure. The goal of this procedure is to
produce a second stage transcript that is indistinguishable from actual second stage transcripts
(that is, between P and V*). This should be done while avoiding a situation in which the basic
Hamiltonicity proof system that is conducted in the second stage of the protocol is rejected by the
verifier V* (since in such cases the simulator may get ”stuck”). The key for the success of the
PROVE procedure lies in the success of the SOLVE procedure to discover the ”challenge” sent by V*
already during the first stage of the protocol. Given that the SOLVE procedure has indeed succeeded
in discovering the “challenge”, the task of the PROVE procedure is trivial (whereas if the SOLVE
procedure did not succeed to discover the “challenge” then the PROVE procedure is bound to fail).
One other case in which the task of the PROVE procedure is trivial is when the “current history”
of the interaction contains an ABORT message on behalf of the verifier V* (that is, in the relevant
session). In such cases the interaction in the relevant session stops and the PROVE procedure does
not need to do anything in order to produce a ”legal” second stage transcript.

The PROVE procedure: The PROVE procedure is invoked either when the concurrent schedule
reaches the first prover message in the second stage of session s € {1,...,m} (that is, a (p1) message)
or when it reaches the second prover message in the second stage (that is, a (p2) message). Note
that this may happen many times during the simulation process (as induced by the adversary
verifier’s scheduling strategy and the “rewinds” of the SOLVE procedure). On input s€{1,...,m}
and a partial execution transcript (denoted hist), the PROVE procedure acts as follows:

1. Start by checking whether the hist argument contains an ABORT message on behalf of the
verifier (in session s). Specifically, for every j € {1,...,k}, check whether the (Vj) message
of session s (as it appears in hist) consists of an ABORT message. If it does (for some j), abort
session s (just as an honest prover P would have done in such a case).

2. Otherwise (i.e., the hist argument does not contain an ABORT message in session s), search
the 7 table for a pair o9 i O belongmg to session s:

(a) If the T table does not contain such a pair (that is, if for every ¢, the 7 table contains
only o? ; for some fixed b € {0,1}, and possibly some additional ABORT messages), output
(1nd1cat1ng failure of the simulation).

(b) If the 7 table indeed contains a palr o) ;; and o} ; belonging to session s, compute the
value of V*’s “challenge”, o = o @al j and 1nvoke the CONVINCE subroutine with input
(o, hist). The CONVINCE subroutlne handles the execution of second stage messages in
the protocol (and is described below).

(c) Let p denote the output of the CONVINCE subroutine (where p is either of the form (p1)
or (p2), depending on our location in the schedule). Output p.

The CONVINCE subroutine: Given the value of 0 = 0109 ...0, and hist, the CONVINCE subrou-
tine handles the £*" (parallel) execution in the second stage of session s in the following way:

4.4. ZERO-KNOWLEDGE 75

e Prover’s first step (pl): If ¢ =0, act according to Step (a) in Construction 4.3.1. Specif-
ically, select a random permutation, 7, of the vertices V, and commit (using a perfectly-
binding commitment scheme) to the entries of the adjacency matriz of the resulting permuted
graph. That is, output an n-by-n matriz of commitments so that the (m(i),w(j))" entry is
a commitment to 1 if (i,7) € E, and is a commitment to 0 otherwise.

Otherwise (i.e., if o = 1), commit to the entries of the adjacency matriz of the full graph
K,,. That is, output an n-by-n matriz of commitments so that for every (i,j) € {1,...,n},
the (i,7)" entry is a commitment to 1.

e Prover’s second step (p2): Check (in hist) that V* has properly decommited to all relevant

values (in particular, check that the (* bit of 0'? ® o} indeed equals o¢ for all j) and abort

J
otherwise.

If 0, = 0, output m along with the revealing (i.e., preimages) of all commitments.
Otherwise (i.e., if o, = 1), output only the openings of commitments to entries (w(i),(5))
with (i,7) € C where C is an arbitrary Hamiltonian cycle in K,. In both cases also supply
the corresponding decommitments.

Some comments: Note that the CONVINCE subroutine never causes the verifier V* to reject in
the second stage (that is, unless V* sends an ABORT message instead of the corresponding (v1)
message). The reason for this is that it is always invoked with the correct value of o (which was
previously revealed by the SOLVE procedure). In particular, once the PROVE procedure has “safely”
reached Step 2b the success of the PROVE procedure is guaranteed.

The actions taken by the CONVINCE subroutine are identical to the actions taken by the simu-
lator of Blum’s basic Hamiltonicity protocol. As a consequence, the distribution of the simulated
second stages in our protocol are identical to the distribution produced by Blum’s simulator. This
fact will be used later in order to reduce the indistiguishability property of our simulator’s output
to the indistiguishability property of Blum’s simulator’s output.

4.4.2 “Gluing” it all together

The SIMULATE procedure which merges the SOLVE and PROVE procedures together handles all
messages sent by V* during the simulation process (that is, both first stage and second stage
messages). In general, the SIMULATE procedure is obtained by incorporating the PROVE procedure
into the SOLVE procedure in a way that enables the SOLVE procedure to handle also second stage
messages (see Figure 4.4 for a “pseudocode” description of the SIMULATE procedure).

The two main modifications applied to the SOLVE procedure (in order to obtain the SIMULATE
procedure) are the following: (1) If /£ = 1 (that is, at the bottom level of the recursion), the
SIMULATE procedure will keep exchanging messages until it reaches a first stage verifier message.
This is done while augmenting the hist argument with the corresponding outcomes of the PROVE
procedure (according to the schedule that is being revealed by V*). Once a first stage message is
reached, the SIMULATE procedure acts exactly as the SOLVE procedure. (2) Similarly to the SOLVE
procedure, the output of the SIMULATE procedure is a partial execution transcript. However, unlike
the SOLVE procedure, the ouptut length of the SIMULATE procedure is greater than 2/ (since, besides
2(first stage messages, it will also contain second stage messages).

76 CHAPTER 4. CZK IN LOGARITHMICALLY MANY ROUNDS

Procedure SIMULATE(Y, hist, T):
1. If¢=1,

(a) If session s does not appear in hist, delete all session s messages in 7.
(b) As long as no first stage verifier message has been reached, do:
i. If next scheduled message, p,,, is a first stage prover message:
Uniformly choose p,,, and set v, < V*(hist,p;,V1,...,Py_1> Vu—1,Py)-
ii. If next scheduled message, p,,, is a second stage prover message:
Set p,, < PROVE(S, (hist,p;,V1,...,Pu_q,Vu—1)), and vy «— V*(hist,p;,vi,...,Vy_1,P,)-
(c) As soon as a first stage message v, has been reached store v, in 7.
(d) Output 7 and (py,V1,---,Pgy,Va)-

Remark: Note that v, is the only first stage verifier message in (py,v1,-..,Py> Va)-
2. Otherwise (i.e., if £ > 1),
(a) Set Ty, (By,V1,...,D4,%a) < SIMULATE({/2, hist, T).
(b) Set 72, (py,V1,.--,PqsVa) < SIMULATE({(/2, hist, 77).
(c) Set T3, (Pat1sVatis-- 1Py s Vay) < SIMULATE(L/2, (hist,py, V1, ..., Py, Va), 72)-
(d) Set T4, (Pay1>Vatis---»Patp Vat+s) < SIMULATE(L/2, (hist,py, Vi, ..., Py, Va), T3)-
(e) Output 7y and (p17 Vi,. -3 Paypr Va+ﬁ)‘
Remark: (1) The value of & (resp. () is not necessarily equal to the value of a (resp. 3). (2)
The sequence (py,vi,. .. ,pa+ﬁ,va+g) contains exactly 2¢ first stage prover and verifier messages

(as well as arbitrarily many second stage messages). In particular, o + 8 > £.

Figure 4.4: The SIMULATE procedure - Handles both first and second stage messages. It is obtained
by merging the SOLVE and PROVE procedures (with the help of the table 7).

4.5 The Simulator’s Running Time

We start by showing that the simulator’s running time is polynomial both in m and in n = |V|.
Since m = poly(n) it will follow that the simulator runs in polynomial-time in n.

Using the fact that the total number of sessions run by the adversary verifier V* is at most m, we
infer that the number of invocations of the PROVE procedure at the bottom level of the recursion
(i.e., when ¢ = 1) is upper bounded by m. In particular, the work invested by the SIMULATE
procedure at the bottom level of the recursion is upper bounded by poly(n) - m = poly(n) (where
the poly(n) factor in the poly(n) - m term results from the polynomial amount of work invested in
each invocation of the PROVE procedure). Since each invocation of the SIMULATE procedure with
parameter £ > 1 involves four recursive invocations of the SIMULATE procedure with parameter ¢/2,
we have that the work W ({), that is invested by the SIMULATE procedure in order to handle ¢ (first
stage) verifier messages satisfies:

poly(n) Ife=1
WO = { 4-W(/2) IfL>1 (4.1)

Since the total number of first stage verifier messages in the m sessions of the concurrent schedule
equals m - (k + 1), the total running time of the simulation process (which consists of a single

4.6. THE SIMULATOR’S OUTPUT DISTRIBUTION 77

invocation of the SIMULATE procedure with parameter m - (k + 1)) equals W(m - (k + 1)). A
straightforward solution of the recursive formula in Eq. (4.1) establishes that W(m - (k + 1)) is
upper bounded by:

glogx(m-(k+1)) . 1oly(n) = (m - (k + 1))? - poly(n) = poly(n)
Hence, we have:

Proposition 4.5.1 For every m=poly(n), the simulator S,, runs in (strict) polynomial-time in n.

4.6 The Simulator’s Output Distribution

We now turn to show that for every G € HC' the simulator’s output distribution is computationally
indistinguishable from V*’s view of interactions with the honest prover P. Specifically,

Proposition 4.6.1 The ensemble {SY (G)}aemc is computationally indistinguishable from the
ensemble {view,.(G)}genc-

Proof: As a hybrid experiment, consider what happens to the output distribution of the simulator
Sy if we (slightly) modify its simulation strategy in the following way: Suppose that on input
G = (V,E) € HC, the simulator S,,, obtains a directed Hamiltonian Cycle C C F in G (as auxiliary
input) and uses it in order to produce real prover messages whenever it reaches the second stage
of the protocol. Specifically, whenever it reaches the second stage of session s € {1,...,m}, the
hybrid simulator inspects the 7 table and checks whether the PROVE procedure should output L (in
which case it also does). If the PROVE procedure does not have to output L, the hybrid simulator
follows the prescribed prover strategy and generates prover messages for the corresponding second
stage (by using the cycle it possesses rather than invoking the PROVE procedure). We claim that
the ensemble consisting of the resulting output (which we denote by SV (G, C)) is computationally
indistinguishable from {SY"(G)}gemc. Namely,

Claim 4.6.2 The ensemble {SV" (@) }genc is computationally indistinguishable from the ensemble
{Shm (G, O)}genc-

Proof Sketch: The claim is proved using a standard hybrid argument. It reduces the indistin-
guishability of two neighbouring hybrids to the indistinguishability of Blum’s simulator’s output
(that is, if the output of Blum’s simulator [6] is computationally indistinguishable from the view
of real executions of the basic Hamiltonicity proof system, then so are neighbouring hybrids). The
latter is proved to hold based on the computational-secrecy property of the commitment scheme
that is used by the prover in Step (p1) of Construction 4.3.1 (see [6, 22] for further details).

We consider m + 1 hybrid distributions that are induced by the output of the following hybrid
simulation procedure. For s € {0,...,m}, given G € HC, a Hamiltonian cycle C' in G and black-
box access to V*, the s*® hybrid simulation procedure (which we denote by H,), handles first stage
messages exactly as the “original” simulator S,, would have handled. For every session index s’ < s,
the hybrid simulator H, handles also second stage messages exactly as S, does (that is, by invoking
the PROVE procedure), whereas for every session index s’ > s, the hybrid simulator Hy handles
the relevant second stage messages exactly as the "modified” simulator S,, does (that is, by using
the cycle it possesses in order to produce real prover messages). Note that the output of H) is
identically distributed to the output of S¥", whereas the output of HS/* is identically distributed

m

to the output of SV". Also note that for every s € {0,...,m}, the distribution HY (G, C) is

78 CHAPTER 4. CZK IN LOGARITHMICALLY MANY ROUNDS

efficiently constructible (specifically, given a Hamiltonian cycle C in G, it is easy to follow SV (G)’s
strategy, while producing real prover messages whenever necessary). Thus, indistinguishability of
the ensemble {SY" (G)}genc from the ensemble {SV"(G)}aerc follows from indistinguishability
of {Hs—l(G7 C)}G’GHC and {HS(G7 C)}G’GHC-

Claim 4.6.3 For all s € {1,...,m}, the ensembles {H;_1(G,C)}genc and {Hs(G,C)}aenc are
computationally indistinguishable.

Proof Sketch: Follows from indistinguishability of Blum’s simulator’s output (by applying an
additional hybrid argument). Uses the extra property that the output is indistinguishable even if
the distinguisher has a-priori knowledge of a Hamiltonian Cycle C'in G.

This completes the proof of Claim 4.6.2. [

We next consider what happens to the output distribution of the hybrid simulator S, if we assume
that it does not output L (i.e., does not get “stuck”). It turns out that in such a case, the resulting
output distribution is identical to the distribution of {view}.(G)}cemc. Namely,

Claim 4.6.4 The ensemble {SY. (G,C)}aenc conditioned on it not being L, is identically dis-
tributed to the ensemble {view!.(G)}genc.

Proof: Notice that the first stage messages that appear in the output of the “original” simulator
(that is, S,,) are identically distributed to the first stage messages that are produced by an honest
prover P (since they are uniformly and independently chosen). Since the first stage messages that
appear in the output of the “modified” simulator (that is, §m) are identical to the ones appearing in
the output of S,,, we infer that they are identically distributed to the first stage messages that are
produced by an honest prover P. Using the fact that the second stage messages that appear in the
output of the “modified” simulator are (by definition) identically distributed to the second stage
messages that are produced by an honest prover P, we infer that the ensemble {S’K* (G,O)}genc
is identically distributed to {view}«(G)}cerc. M

As we show in Proposition 4.7.1 (see next section), S,, outputs L only with negligible probability.
In particular, the ensemble {SV" (G, C)}genc is computationally indistinguishable from (and in
fact statistically close to) the ensemble {SY" (G, C)}genc, conditioned on it not being L. Namely,

Claim 4.6.5 The ensemble {3*,2* (G,C)}genc is computationally indistinguishable from the en-
semble {SV"(G,C)Ygenc conditioned on it not being L.

It can be seen that Claims 4.6.2, 4.6.4 and 4.6.5 imply the correctness of Proposition 4.6.1.

4.7 The Probability of Getting “stuck”

We next analyze the probability that the SIMULATE procedure gets ”stuck” during its execution. We
are particularly interested in the probability that any specific invocation of the PROVE procedure
returns | during the simulation process (note that this is the only reason for which the simulator
may get “stuck”). As will turn out from our analysis, any specific invocation of the PROVE procedure
will return L with probability at most 1/29(’“). Since the number of invocations of the PROVE
procedure is polynomial in n, it follows that the SIMULATE procedure outputs L with probability

4.7. THE PROBABILITY OF GETTING “STUCK” 79

poly(n) - 1/2°%%) By setting the number of rounds in the protocol to be k(n) = a(n) - log n, where
a(-) is any super-constant function (e.g., a(n) = loglogn), we are guaranteed that the SIMULATE
procedure outputs L with negligible probability. Specifically:

Proposition 4.7.1 Let o : N — N be any super-constant function, let k(n) = «a(n) - logn,
and consider any instantiation of Construction 4.3.2 with parameter k = k(n). Then the prob-
ability of getting “stuck” during the simulation is negligible. Specifically, for every sufficiently large
G=(V,E)e HC:
P 1
v _
Pr [S)7(G) = 1] < — T8

where n = |V| and the probability above is taken over the simulator’s coin tosses.

Proof: We consider executions of the hybrid simulator §m, given input G = (V, F), random coins
p, and black-box access to V* (we let §¥;(G) denote the resulting output).

Let gg(n) be a (polynomial) bound on the total number of invocations of the PROVE procedure
during an execution of the simulator (note that gg(n) is upper bounded by the simulator’s running
time). As we have mentioned before, the (hybrid) simulator S,, gets “stuck” (i.e., outputs L) if
and only if there exists a session s € {1,...,m} and an index £ € {1,...,qs(n)} so that the ¢!
invocation of the PROVE procedure (for session s) outputs L. Let hist, , = hists ;(p) be a random
variable describing the contents of the hist argument at the moment that the PROVE procedure is
invoked for the /' time (with s as its first argument). Using the union-bound we have:

m gs(n)

Pr, (S}, (G) = 1L] < >3 Pr,[erOvE(s, hist, (p)) = 1] (4.2)
=1 (=1

Eq. (4.2) will be bounded using the following lemma. This lemma, which in some sense is the
crux of the proof (of the zero-knowledge property), establishes an upper bound on the probability
that a specific invocation of the PROVE procedure outputs L.

Lemma 4.7.2 For every (s,£)€ {1,...,m} x {1,...,qs(n)} and all sufficiently large G € HC':

. 1
Pr, [PROVE(s, hist, ¢(p)) = L] < Sk

Combining Lemma 4.7.2, Eq. (4.2) and the hypothesis of Proposition 4.7.1 we infer that for all
sufficiently large n = |V|:

P 1
Pr, [S¥7P(G) = _I_] < m-qg(n)- oh/d

m-gs(n) 1
2k /8 ’ 2k /8
1
< W (43)

Where Eq. (4.3) holds whenever m - gs(n) < 2¥/8 (which is satisfied whenever k(n) is equal to
a(n) -logn, and n is sufficiently large). This completes the proof of Proposition 4.7.1. [l

80 CHAPTER 4. CZK IN LOGARITHMICALLY MANY ROUNDS

Proof of Lemma 4.7.2: Let s € {1,...,m} and ¢ € {1,...,¢9s(n)}. We next show that the
probability that the ¢! invocation of the PROVE procedure outputs L is upper bounded by 1/2k/4.

Throughout the analysis we will assume that the simulator never sends the same prover message
twice during its execution. Such an assumption is justified by the fact that prover messages in the
protocol are k-bits long. In particular, the probability that any two uniformly chosen (Pj) messages
are equal is at most 1/2%. Since for every session, the number of prover messages sent is at most
poly(n), then the overall probability of sending the same prover message twice is at most poly(n)/2*.
By taking n to be sufficiently large this probability is upper bounded 1/2k/2.

We thus set our goal to bound the probability that the PROVE procedure outputs L assuming
the simulator never sends the same prover message twice. By the above discussion, it will be
sufficient to bound this probability by 1/2k/2. The probability that the PROVE procedure outputs
1 would be then upper bounded by 1/2%/2 4 1/2k/2 = 2/2k/2 < 1/2k/4,

From now on, we focus on messages that belong to session s and ignore messages from other
sessions (unless otherwise specified). For every choice p of the simulator’s randomness we focus
on an invocation of the PROVE procedure with input (s, hists ¢) = (s, hists ¢(p)). We associate the
invocation of the PROVE procedure with the value of the (V0) message that appears in the hist, ,(p)
argument. We will analyze the execution of the simulator from the time (V0) has been last visited
until the time that PROVE(s, hist, ;) is invoked.

The contents of the 7 table: Forevery j € {1,...,k}, we consider the sequence of (first stage)
verifier messages, (Vj), that appear in the 7 table at the moment that PROVE(s, hist, ;) is invoked.
Let «; denote the length of this sequence. The value a; actually corresponds to the number of
times that the (Vj) message has been visited since all session s messages have been last deleted
from 7. (Recall that this happens whenever a (V0) message is visited by the SIMULATE procedure.)
Note that «; is not necessarily equal for all j € {1,...,k}.

For u € {1,...,q;}, let (Pj),, (Vj), denote the u'? pair of (Pj), (Vj) messages that was visited
by the SIMULATE procedure since (V0) has been last visited.'? (Using this notation, the j* above
sequence can be written as (Vj)y, (Vi)y, ..., (Vj)a],.) We now have the following claim.

Claim 4.7.3 Suppose that PROVE(Ss, hists o) = L. Then for all j € {1,...,k}:
1. (Vj), = ABORT for all u < .

2. (Vj),, # ABORT.

Proof: Going back to the description of the PROVE procedure we observe that the only reason for
which it outputs L is that it has reached Step (2a). Put in other words, the PROVE procedure will
output L if and only if:

1. The hist, ; argument does not contain an ABORT message in session s.
2. The 7T table does not contain a pair agj, ail’j belonging to session s.

We start by showing that for all j € {1,...,k}, it holds that (Vj)a]_ # ABORT. Consider the
sequence of first stage verifier messages that appear in hist, , and belong to session s. Notice that

2Note that the (Pj) message may occur in the schedule much earlier than (V;j) does. In particular, the simulator
may perform rewinds that do not reach (Pj) (and so do not change its value), but repeatedly obtain different (Vj)’s
as answer. In such cases, the (Vj), message stored in 7 as answer to (Pj), will always correspond to the ”most
recently obtained” (Vj) message that was given as answer to (Pj) (see discussion in Page 73).

4.7. THE PROBABILITY OF GETTING “STUCK” 81

this sequence contains all k + 1 first stage messages in session s (since PROVE(S, hist, ¢) is always
invoked only after the first stage of session s has been completed). Using the fact that the hist,,
argument consists of the “most recently visited” execution transcript in the simulation, we have
that the sequence of first stage verifier messages that appear in hist, , and belong to session s can
be written as (V0), (V1),,,(V2),,,...,(Vk),, . Since, by Condition (1) above, the hist; , argument
does not contain an ABORT message in session s it immediately follows that for all j € {1,... k}, it
holds that (Vj)aj # ABORT.

Suppose now for contradiction that there exists a j € {1,...,k} and a v € {1,...,a; — 1} so
that (Vj), # ABORT. Since we are assuming that all (Pj)’s in the simulation are different, then

so are (Pj), and (Pj)a]_. Since both (Vj), and (Vj)a]_ are not equal to ABORT it immediately

follows that the table contains a pair agj, ail’j belonging to session s.'® This is in contradiction to

Condition (2) above and thus to our hypothesis that the PROVE procedure outputs L. [l

Definition 4.7.4 (Bad random tapes) Let R be the set of all random tapes used by the simu-
lator and let p € R. For any j € {1,...,k} define a Boolean indicator bad;(p) = bad, ;s ;(p) to be
true iof and only if when S uses p as random tape it holds that:

1. (Vj), = ABORT for all u < .
2. (Vj),, # ABORT.

By Claim 4.7.3, we have:

Pr, |PROVE(s, hist, ¢(p)) = L

j=1

< Pr, [/k\ badj(p)] (4.4)

We shall show that for all sufficiently large n, the fraction of “bad” tapes p € R for which
/\;?:1 bad;(p) holds is at most 1/2¥73¢ where d (= logy(m - (k + 1))) is the depth of the simu-
lator’s recursion. To do this we will show that every “bad” random tape can be mapped into a set
of 26734 _ 1 random tapes for which bad;(p) does not hold for some j. Moreover, this will be done
so that every two “bad” random tapes are mapped to two disjoint sets of “good” random tapes.
Put in other words, for every random tape that causes /\;?:1 bad;(p) to hold, there exist 2k=3d _q
other tapes that do not. Since the simulator picks a random tape uniformly amongst all possible
random tapes, it will then follow that the probability that /\;?:1 bad;(p) holds is at most 1/2F 3%,

Lemma 4.7.5 (Counting bad random tapes) Let B C R be the set of all p € R for which
/\;?:1 bad;(p) holds. Then, there exists a mapping f : R — 2% such that for every p € B:

1. |f(p)| = 2873
2. For all p' € B\ {p}, the sets f(p) and f(p') are disjoint.
3. The sets f(p)\ {p} and B are disjoint.

The proof of Lemma 4.7.5 is the most involved part in the simulator’s analysis. Before we prove it
(in Section 4.7.1), we show how it can be used in order to complete the proof of Lemma 4.7.2. We
start with the following corollary of Lemma 4.7.5.

13To see this notice that, if (Pj), = 71,...,7,; and (Pj), = s1j,...,sk,; are different, then there must exist
J P
it €{1,...,k} so that r;; # s; ;. Since both (Vj), and (Vj)aj are not equal to ABORT, then the values of both a::]."

and o

’“J must have been revealed by V*.

4]

82 CHAPTER 4. CZK IN LOGARITHMICALLY MANY ROUNDS

Corollary 4.7.6 Let B C R be as above. Then |B|/|R| < 2k+3d'

Proof: Counsider the set:

6 U (10\ 1))

pEB
By Condition (3) in Lemma 4.7.5 it holds that G C R \ B. We thus have:
[R[=B = [R\B
> |9
= > 1f(»\{p}] (4.5)
pEB
> |B|- (2F 1) (4.6)

Where Eq. (4.5) follows from Condition (2) in Lemma 4.7.5 and Eq. (4.6) follows from Condition (1)
in Lemma 4.7.5. B

Using Corollary 4.7.6 we are now able to complete the proof of Lemma 4.7.2:

k
Pr, /\badj(p)] = Pr,[p€ B]
7=1
_ 18l
IR
1
< o (4.7)

Since k = w(logn) and d =logm - (k+ 1) = O(logn) then for all sufficiently large n’s it holds that
1/2F=34 < 1/2%/2. By combining Eq. (4.7) with Eq. (4.4) we infer that for all sufficiently large n’s:

Pr, |PROVE(s, hist, ¢(p)) = L| < k72

This completes the proof of Lemma 4.7.2.

4.7.1 Proof of Lemma 4.7.5 (counting bad random tapes)

The proof of Lemma 4.7.5 will proceed as follows. We first define the notion of rewind intervals.
Loosely speaking, these are segments of the concurrent schedule that are induced by the various
rewindings of the simulator and are executied multiple times during the simulation. We then focus
on a subset of "special” intervals. These intervals satify some useful properties that enable us to
use them in order to define the desired mapping f : R — 2%. Using the properties of the ”special”
intervals we can then argue that the mapping f indeed satisfies the required properties.

Throughout the proof of Lemma 4.7.5, we consider the actions taken during the execution
of the SOLVE procedure (rather than considering the full execution of the SIMULATE procedure).
This renders our analysis much “cleaner” since we only have to refer only to first stage messages
(namely, (P0),(V0),(P1),(V1),...,(Pk),(Vk)), and can ignore second stage messages (namely
(p1),(v1),(p2)). Extension of the analysis to the SIMULATE procedure case can be then achieved
in a straightforward way (the reason this is possible is that the timing of the simulator’s “rewinds”
depends only on the number of first stage messages exchanged so far).

4.7. THE PROBABILITY OF GETTING “STUCK” 83

Partitioning the schedule into rewind intervals: The execution of the SOLVE procedure
induces a partitioning of the 2-m - (k+1) (prover and verifier) messages in the schedule into disjoint
rewind intervals. At the top level of the recursion there are two disjoint intervals of length m - (k+1)
and at the bottom of the recursion there are m - (k+1) disjoint intervals of length 2. In general,
at the w' level of the recursion (out of d = logy(m - (k+1)) possible levels) there are 2% disjoint
intervals of m(k + 1)/2**! messages each.

Notice that rewind intervals may contain messages from all sessions. Also notice, that a rewind
interval may be “visited” multiple times during the execution of the SOLVE procedure (in particular,
a level-w interval is visited exactly 2% times during the simulation). Since the scheduling of messages
may vary ”dynamically” with the history of the interaction, a specific interval may contain a
different scheduling of messages each time it is visited.

Minimal rewind intervals: We denote by [a,b] an interval starting with prover message a and
ending with verifier message b. Consider the scheduling of messages as they appear in the hist,,
argument (i.e., at the moment that PROVE(s, hist; ¢) is invoked). Focusing on messages of session s,
we note that for every pair of messages (Pj), (V) in this session we can associate a level-w interval
[aj, bj] so that:

1. Both (Pj) and (Vj) are contained in [aj, b;].
2. None of the level-(w 4 1) sub-intervals of [a;, b;] contains both (Pj) and (Vj).

We call such a rewind interval a j-minimal interval. Notice that for every j € {1,...,k} there is only
one j-minimal interval [a;, b;] and that for every j # j' the interval [a;, b;] is different from [a;r, bj].

I e |

(PG-1)) | [
(VG-1)) [[
Lbj—l I_ [

v5) [er %
(b)) Lo, |
[

ve) | Lo | [

Figure 4.5: Demonstrates the way in which minimal intervals are determined. Also demonstrates
possible containments between minimal intervals of different iterations. In this example, the in-
tervals [aj_1,b;—1] and [aj11,bj41] are disjoint (as well as the intervals [a;_1,b;—1] and [aj, b;]),
whereas the interval [a;j41,b;41] contains [aj, b;].

In some sense j-minimal intervals correspond to the shortest interval in which the simulator can
rewind message (Vj) (that is, while potentially changing the value of (P7)). Intuitively, for such a
rewinding to be useful, the interval should not contain message (V0). Otherwise, the values that
were revealed in some run of the interval become irrelevant once rewinds are performed (since all
the relevant values in the 7 table are deleted whenever we rewind past (V0)). Likewise, the interval
should not contain message (p1). Otherwise, the simulation faces the risk of getting “stuck” before
it manages to reveal multiple (Pj), (V) pairs of messages (by running the interval multiple times).

84 CHAPTER 4. CZK IN LOGARITHMICALLY MANY ROUNDS

It can be seen that the number of minimal intervals that do not contain neither (VO) nor (p1)
is at least k' = k — 2d (for simplicity, these intervals will be indexed by {1,...,%'}). The reason for
this is that in every level of the recursion the (VO) (resp. (p1)) message is contained in exactly one
interval. In particular, the number of minimal intervals that are “spoiled” by (V0) (resp. (pl)) is at
most d. This guarantees that (V0) and (p1) are not visited during single invocations of [a;, b;]. For
the sake of our analysis, however, we will want to make sure that (V0) and (p1) are not visited also
during multiple invocations of [a;, b;]. In such a case, requiring that [a;, b;] does not contain neither
(VO0) nor (p1) may not be sufficient.'* Jumping ahead, we remark that what we will have to require
is that for some intervals, even intervals containing them do not contain neither (VO0) nor (p1).

Special rewind intervals: In order to define the mapping f : R — 2%, we will need to focus on
a specific set of disjoint minimal intervals (called special intervals). An important fact that we will
extensively use is that if two intervals are disjoint then so is the portion of the random tape that
used to run them (i.e., in order to produce uniformly chosen (Pj) messages for the corresponding
interval). Another important fact is that in each run of the interval, the SOLVE procedure makes
use of “fresh” randomness (i.e., randomness used in one run is never used in a later run).

Definition 4.7.7 (Special intervals) A minimal interval [a;,b;] is said to be special if it does
not contain any other minimal interval (i.e., if [aj, b;] does not contain [aj, b for any j' # j).

Notice that all special intervals are disjoint. We let S C {1,...,k'} denote the set of all indices j
for which [a;, b;] is special. For simplicity, assume that S = {1,...,|S|}.

For j € S, let 6; be the number of times [a;, b;] is run since [a;_1,b;_1] is “last” visited (where
by “last” we mean during the time (V0) is visited until (p1) is reached). A trivial upper bound
on ¢; is 2%, where w is the recursive depth of interval [a;, b;]. However, since we restrict ourselves
to the time between (V0) is visited until (p1) is reached, the value of ¢; is typically smaller that
2" and is in fact upper bounded by «; (recall that a; denotes the number of times (Vj) has been
visited since the 7 table was initialized). Notice that 6; may be actually smaller than «; since we
are counting only the runs of [a;, b;] that have occurred after [a; 1, b; 1] was “last” visited.

The mapping f: We are finally ready to define the mapping f : R — 2% (Figure 4.6). This
mapping makes use of another mapping hs : R X [61] X ... X [6;g]] = R (Figure 4.7) that depends
on the set S (as determined by the schedule at the moment that PROVE(s, hist,) is invoked).

At a high level, given input p and uy,...,u|5|, the mapping hs takes the portion of the random
tape p that corresponds to the u;-h run of interval [aj,b;] and swaps it with the portion that
corresponds to the "last” (i.e., 6;-11) run of this interval (in case u; = 6; then hg leaves the runs of
[aj,b;] intact). This is done for all j € S. As we have observed above, different runs of a specific
interval use disjoint portions of the random tape. In particular, swapping the randomness of two
runs of [aj,b;] is an operation that makes sense. Moreover, since disjoint intervals use disjoint
portions of the random tape, for every j # j' swapping two runs of [a;, b;] will not interfere with
swapping two runs of [a;r, bjr].

The mapping f will be obtained by invoking hs(p,u1,...,u)s) with all possible values of
u1,...,us) € [01] X ... x [¢|5] as input. The set S and the values é1,...,65 used in order to
define the mapping hs are determined by the mapping f. This is done by running and monitoring

MFor example, if the interval containing [aj,b;] contains either (V0) or (p1), then, in some cases, the number of
“safe” invocations of [aj, b;] is not more than two (even though [a;, b;] itself does not contain (V0) or (p1)).

4.7. THE PROBABILITY OF GETTING “STUCK” 85

the simulation with random tape p and black-box access to V*. Once PROVE(s, hist,) is reached,
f can inspect the scheduling of messages as it appears in hist, and determine the set 5.1

Notice that the mapping f can be computed efficiently. However, this fact is immaterial for the
correctness of the analysis since all we have to do is to estasblish the existence of such a mapping
(regardless of its efficiency).

Mapping f : R — 2%
Input: A random tape p € R
Output: A set of random tapes G C 2*
1. Determine the set of special indices S C {1,...,k'}:

(a) Run the simulator given random tape p and black-box access to V*.

(b) Check for which j, interval [a;, b;] is special (as induced by V*’s scheduling).

2. For j € S, let 6; be the number of times [a;, b;] is run since [a;—1,b;_1] is “last” visited.

3. Let W = wuy,...,u 5 denote a sequence in A def [61] X ... x [6)5]]. Set
= {r:(p.0)}
TeA
4. Output G.

Figure 4.6: Mapping a single “bad” random tape to a set of “good” random tapes.

Mapping hs : R x [61] X ... x [6|5] — R

Input: A random tape p € R and a sequence & = uy,...,us| € [01] X ... X [§g/]

Output: A random tape p,,,. ER

-HU|S|
1. Set py, « p.
2. Forj=1,...,|9

(a) Let p, denote the portion of py, .. ., , that is used in wth

run of [a;,b;].
(b) Swap the locations of p,; and ps, within pu, . . u; ;-

(c) Denote by py,,....; the resulting string.

3. Output Puy,..,us)+

Figure 4.7: Mapping a “bad” random tape to a “good” random tape.
The following Claim will establish Item (3) of Lemma 4.7.5.

Claim 4.7.8 Let p € B be a bad random tape. Then the sets f(p)\ {p} and B are disjoint.

5Here we implicitly assume that all invocations of the PROVE procedure prior to the £*" invocations did not return
1. This issue can be handled by conducting the analysis inductively while assuming that all previous invocations of
the PROVE procedure did not return L.

86 CHAPTER 4. CZK IN LOGARITHMICALLY MANY ROUNDS

Proof: It will be sufficient to show that for every wi,...,ujg # 01,...,05, the random tape
Pui,.us) = hs(psut, ... us)) does not belong to B (notice that hg(p,61,...,05) = p).

Consider the smallest j € S for which u; # ;. We start by observing that, up to the point in
which [aj, b;] is run for the first time (after the “last” run of interval [a;_1,b;_1]), the randomness
used by the simulator when running with Pur,uys) is equal to the randomness used by the simulator
when running with p. This means that all runs of [a;, b;] that occur after [a;_1,bj_1] has been “last”
visited will have the same ”history” of interaction regardless of whether Pur,...;us OF P is used.

The key observation for proving the claim is that, modulo the history of the interaction at
the starting point of an interval, the randomness used in a specific run of an interval completely
determines its outcome (remember that V*’s random tape is fixed in advance). Since the last
occurrence of (Vj) in 7 corresponds to the “last” time [a;,b;] is visited, then the portion of the
random tape used for the 6}1}1 run of [a;, b;| completely determines the value of (Vj)aj (which is the
last occurrence of (Vj) in 7).

Notice that, when using py, .. as random tape, the randomness used in p in order to perform

LHU|S
the 65" run of [a;,b;] is instead use‘,d‘ for the u" run of interval [aj, b;]. Since the randomness used
in a specific run of an interval completely determines its outcome, the value of (Vj) in the u}h run
of [a;,b;] is now equal to (Vj)aj. Recall that p € B. This in particular means that, when using p
as random tape, it holds that (Vj)a]_ # ABORT (by Condition (2) in Definition 4.7.4). Denoting the
(Vj) message that appears in the u}h run of interval [a;, b;] by (Vj), we then have that, when the
simulator uses py, . as random tape, (Vj), = (Vj)aj # ABORT.

Since uj < ¢;, then (Vj), does not appear in hist, ; (since it appears in the outcome of the u

..,u|5|
th
J
run of [a;, b;] and the “most recently visited” run when PROVE(s, hist; ;) is invoked is the 5;-}1 run).

In addition since whenever PROVE(s, hist, ¢) is invoked, some (V) message must appear in hist, s,
we infer that there exist a (Vj) that occurs after (Vyj), does. This message corresponds to (Vj)
J

where a;- is the number of occurrences of (Vj) in 7 when using Pur,...uys) 85 random tape.
We thus have that, when using Pur,.. s B8 random tape, there must exist a v < 04;- for which
(Vj), # ABORT. By Condition (1) in Definition 4.7.4 this implies that Pur,...us| & B- [|

We now turn to establish Item (2) of Lemma 4.7.5. Let g : B x {0,1}* x [61] x ... x [615)]] = R be
a mapping defined as:

_ def _
g(p7S7u) = hS(p7u)

where p € B. To show that for all p # p’ € B, the sets f(p) and f(p') are disjoint it will be sufficient
to show that ¢ is one-to-one. In such a case we would have that for any two S # 5" C {1,...,k'},
it holds that hs(p,u) # hg(p',u') (regardless of the values of p,u and p',@') and so the sets

7(9) = Uz {hs(pm)} and f(p') = Ug {ho (', W)} are disjoin.
Claim 4.7.9 Let g : B x {0,1}* x [61] x ... x [6;g]] = R be as above. Then, g is one-to-one.

Proof: To argue that ¢ is one-to-one we will define an inverse mapping ¢~' so that for every

random tape p' € range(g), the value of g1 (p’) = (p, S, %) satisfies g(p, S, @) = p'.

Given p' € range(g), the basic idea for defining g ! is to recognize the subset of intervals whose
randomness was swapped by f (while “producing” p’ from some p € B) and to reverse the swapping
(i.e. to swap back the randomness of these intervals). The main difficulty in doing so lies in the
task of recognizing which are these intervals whose randomness is to be swapped (i.e., to recognize
what is the set S that corresponds to a run of the simulator with p € B as random tape).

4.7. THE PROBABILITY OF GETTING “STUCK” 87

The solution to this problem will be to inspect the intervals and reverse the swapping of their
randomness “inductively”. The reason for which the order of swapping is important is that V*’s
answer in a specific interval also depends on the randomness used to run the “most recent execution”
of previous intervals (since, whenever we reach a specific interval, the outcome of these “recent”
runs appears in the history of the interaction). In order to be able to say something meaningful
about an interval’s run we must make sure that, whenever we inspect the run of the simulator on
this interval, the history of the interaction up to the starting point of the interval is consistent
with the outcome of running the simulator with the bad tape p € B that p’ “originates” from. The
process describing the mapping ¢! is depicted in Figure 4.8.

Mapping g+ : R — B x {0,1}* x [61] x ... x [65]
Input: A random tape p € range(g) C R.
Output: A random tape p' € B, a set S C {1,...,k'} and a sequence w € [61] X ... x [§g/].

1. Set py, < pand S = ¢.
2. Forj=1,... k"

a) Run the simulator given random tape py, ... «._, and black-box access to V*.

1y---)Uj—1
b) Find unique u; so that u' run of [a;, b;] is “properly answered”.
J j 3> 95
(C) If u; < 5_7':
i. Set S — SU{j}.

ii. Let p, denote the portion of Puy,....u;_, that is used in wth

run of [a;, b;].
iii. Swap the locations of p,; and ps;, within pu, ., _,-
iv. Denote by py,,....u; the resulting string.

(d) Otherwise, continue to next j € {1,...,k'}.

3. Output p' = Pur,ous), S and T =1u1,...,us|.

Figure 4.8: Mapping a “good” tape back to the original “bad” tape.

Since the tape p’ € range(g) that we are trying to invert originates from a bad tape p € B then
for every j € {1,...,k'}, when using p as random tape, the interval [a;,b;] is aborted in all but
the last runs of [aj,b;], where by last run we mean the last time [aj, b;] is executed prior to the
invocation of PROVE(s, hists ¢). Notice that, once PROVE(s, hist ¢) is invoked, we can determine the
value of ¢; by simply counting the number of times [a;,b;] has been visited from the time (V0)
was visited until (p1) is reached. If it happens to be the case that when using p’ as random tape
the last (i.e., 6;-11) run of the currently inspected interval [a;, b;] is not properly answered, then we
know that the randomness of [a;, b;] has been swapped by f and should be swapped back.

If along the way we preserve the “invariant” that the randomness used so far is consistent with
the original bad random tape p € B then it must be the case that, for the above interval, there

exists a unigue uj < 6; so that the u;-h run of [aj, b;] is properly answered. We can thus swap the

randomness used for the u;h run with the randomness used for the 5;}1 run. As soon as we reach
the last special interval we know that the resulting tape is the original “bad” random tape (since
all along the way we have preserved the “invariant” that the randomness used so far is consistent
with the original p € B). W

88 CHAPTER 4. CZK IN LOGARITHMICALLY MANY ROUNDS

All that remains in order to complete the proof, is to establish Item (1) of Lemma 4.7.5. To do
so, we will need to argue that for all p € B it holds that |f(p)| > 2¥=3¢. This will be achieved by
proving the following lemma.

Lemma 4.7.10 Let d = logz(m - (k+1)). Then, there exist values dy,...,d;s| € {1,...,d} so that:
1. For all j € S, it holds that 6; = 243 .
2. Yiesdj > kK —d.

Corollary 4.7.11 Let p € B be a bad random tape. Then |f(p)| > 2k—32.

Proof: By the definition of f : R — 2" and by Claim 4.7.9, we have:

|f(p)| =

U {hs(%m}‘ = Z [{hs(p, @)}

ueA ueA

Since [{hs(p,u@)}| = 1, then the size of f(p) is in fact equal to the number of @’s in A. The size of
A [61] X ... x [6)g/] is precisely [];cg 6;, and so:

Ifo)l = 116

JES

= JJ2% (4.8)
JeS

= zzjesdj

> ok'—d (4.9)

where Eq. (4.8) and Eq. (4.9) follow from Items (1) and (2) of Lemma 4.7.10 respectively. Finally,
since k' = k — 2d, we get that |f(p)| > 2873, as required.

4.7.2 Proof of Lemma 4.7.10 (special intervals are visited many times)

A central tool in the proof of Lemma 4.7.10 will be the notion of the recursion tree. This is a full
binary tree whose nodes correspond to the rewind intervals as induced by the recursive calls of the
SOLVE procedure. Every node [a,b] in the recursion tree has two descendants. Each one of the
descendants corresponds to one of the recursive calls made during some visit to [a,b]. The root of
the tree corresponds to a rewind interval of size m - (k+1). At the bottom level of the recursion tree
there are m - (k41) nodes each corresponding to distinct interval of length 2. In general, at the w®
level of the tree (out of d = logy(m - (k+1)) possible levels) there are 2" nodes, each corresponding
to a distinct interval of length m(k + 1)/2%+1L.

It can be seen that, for any two nodes labeled [a,b] and [d/, V'] in the recursion tree, [a,b] is a
descendant of [a/,] if and only if interval [a,b] is contained in [a’,b]. The distance of [a, b] from
[a,b] is determined in the straightforward manner by considering the distance between these nodes
in the binary tree. Recall that we are focusing on the scheduling as it appears in hist, , (i.e., at
the moment that PROVE(s, hist, ¢) is invoked). This scheduling induces a specific labeling of the
tree’s nodes acording to the messages that appear at each one of the rewind intervals at that time.
It also determines the identity of the nodes that correspond to minimal intervals, as well as the

4.7. THE PROBABILITY OF GETTING “STUCK” 89

nodes that correspond to special intervals. By Definition 4.7.7, nodes that correspond to a special
interval do not have any descendant that corresponds to a minimal interval.

Let S C {1,...,k'} be the set of all indices j for which interval [a;,b;] is special. Let j € S
and let [A;, B;] be the common ancestor of [a;_1,b0;—1] and [a;, b;] in the recursion tree. That is,
[Aj,B;] is the “deepest” node in the tree that has both [a;_1,b; 1] and [a}, b;] as descendants (this
corresponds to the smallest rewind interval that contains both [aj_1,b;—1] and [a;, b;]).

Defining the d;’s - first step: We are now redy to define the value of the d;’s. This will proceed
in two steps. We first define a sequence of values cy,...,¢g. For any j € S, the value of ¢; will
reflect the overall number of times that interval [a;, b;] is visited after [ajr, bj] is last visited. We
then turn to show how to ”correct” the values of the ¢;’s so to take into consideration only those

visits that have occurred before (p1l) has been reached. The resulting sequence of values dy, . .. s d)s
will then faithfully reflect the number of times that [a;, b;] is visited after [a;r, b;| is last visited (as
required by the definition of the 6;’s). The values ¢y, ... ,¢|s| are defined as follows:

o If j =1, then ¢; = 1.
e If j > 1, then ¢; equals to the distance of [a;, b;] from [A;, B;].

Notice that for all j € S, it holds that ¢; > 1. Figure 4.9 demonstrates the way in which c1,...,¢/g
are defined.

[
(PG-1)
(VG1)

Lb]‘—1

l__|l__g|l__|l__|
<%

®i) [t

(Vi)

(P(7+)) b;

(V(G+H))

bz | | ajt2
(V(H+2)) b1 bjto

Figure 4.9: Demonstrates the definition of the ¢;’s. In this example the special intervals are
laj—1,bj-1], [a;,b;] and [aj42,b;42] (and j+1 ¢ S). Notice that the distance of [aj49,b;42] from
its common ancestor with [a;, b;] is 2, and so ¢j;2 = 2 (the common ancestor being [aj41,bj4+1]).
Similarly, the distance of [aj, b;] from its common ancestor with [a;_1,b;_1] is also 2 and so ¢; = 2.

Claim 4.7.12 Let j € S. Then, for every invocation of the common ancestor of [a;_1,b;_1] and
laj,bj], the number of times that [aj,b;] is visited after [aj_1,b;_1] is last visited is precisely 2.

Proof: Let j € S and let [A;, B;] be the common ancestor of [a;_1,b;_1] and [a;, b;]. By definition,
the value of ¢; equals the recursive depth of [a;, b;] relative to [A;, B;]. We thus know that for every
invocation of interval [Aj, Bj], the interval [aj,b;] is invoked precisely 2% times. To see that all
2% invocations of [a;, b;] occur after the last invocation of [aj 1, b 1], we recall that [a; 1,b;] and
[aj,b;] are contained in different halves of the common ancestor [A;, B;]. By definition of the SOLVE
procedure, the two invocations of the second half of an interval occur only after the two invocations
of the first half have occured. Thus all 2% invocations of [a;, b;] (which occur as a result of the two

90 CHAPTER 4. CZK IN LOGARITHMICALLY MANY ROUNDS

recursive invocations of the second half of [Aj, B;]) occur after all invocations of [a; 1,b; 1] (which
occur as a result of the two recursive invocations of the first half of [A;,B;]). W

Interfering intervals: Consider any run of the simulator from the time that message (V0)
was visited until message (pl) is reached. Since this run involves the exchange of messages
(P0),(V0),(P1),(V1),...,(Pk),(Vk), then it must have been caused by some invocation of an
interval [A, B] that contains [aj,b;] for all j € {1,...,k'}. Notice that for all j € S the interval
[A, B] contains [A;, B;]. In particular, for every j € S, by the time that (p1) is reached, the interval
[Aj,B;] is invoked at least once. By, Claim 4.7.12, this implies that for all j € S, the number of
times that [a;, b;] is visited after the last visit of [a;_1,b;_1] is precisely 2%.

At first glance this seems to establish that 6; = 2%. However, this is not necessarily true. The
reason for this is that, by definition, the value of 6; reflects only the number of visits to [a;, b;]
before (p1) is reached. It might very well be the case that not all of the 2% runs of [aj,b;] have
occurred before (p1) is reached.

Specifically, whenever the second half of the common ancestor [A;, B;] contains the message
(pl), only one of its invocations will occur prior to reaching (p1). This already cuts the number of
visits to [a;, b;] by a factor of two. The situation is made even worse by the fact that every interval
that lies “in between” [A;, B;] and [a;, bj] and that contains (p1) can be invoked at most once before
reaching (p1) (such intervals are said to be interfering to [a;, b;]). Thus, the number of invocations
of [a;, b;] before (p1) is reached decreases exponentially with the number of interfering intervals.
For every j € S, let e; denote the number of intervals interfering to [a;,b;]. Notice that for all
J € S, it holds that ¢; > e; (since for all j € {1,...,k’} interval [a;, b;] does not contain (p1)).

(PG-1))
(V(-1))

) [
Vi)

<
————————

(p1) I_ Ld

Figure 4.10: Demonstrates the definition of interfering intervals. In this example the special inter-
vals are [a;j_1,bj—1] and [aj, b;]. Notice that [c,d] lies “in between” [aj,b;] and its common ancestor
with [a;_1,b;_1]. Since the interval [c,d| contains (p1), then it is interfering to [a;, b;]. This means
that e; equals 1 (whereas ¢; = 2), and that the number of invocations of [a;, b;] prior to reaching
(p1) (and after visiting [a; 1, b;_1] for the last time) is equal to 2% ™% = 2 (whereas, without taking
interference into account, it would have been 2% = 4).

Claim 4.7.13 Let j € S. Then, for every invocation of the common ancestor of [aj_1,bj—1] and
laj, bj], the number of times that [aj,b;] is visited after [a;_1,b;_1] is last visited and before (p1) is
reached is precisely 2% % .

Proof Sketch: Let j € S and let [Aj, B;] be the common ancestor of [a;_1,b;_1] and [a;, b;]. By
definition, the number of “non-interfering” intervals that: (1) are contained in [A;, Bj], (2) contain

4.7. THE PROBABILITY OF GETTING “STUCK” 91

laj, b;] but, (3) do not contain (p1), is exactly ¢; — e;. The key observation is that no such “non-
interfering” interval contains an interfering interval (since otherwise it would have contained (p1)
as well). Thus, prior to reaching (p1), all these intervals are invoked at least twice by the interval
containing them. This means that the total number of invocations of [a;, b;] (which is contained in
all of these intervals) is exactly 2%7%. [

We are finally ready to define dy,...,d|g. For any j € S, let

def
dj = cj— e

To complete the proof of Lemma 4.7.10 we need to prove the following claim.

Claim 4.7.14 Let dy,...,d|s| be defined as above. Then,

ddj > K —d

JES
Proof: The proof is by induction on k’. For any choice of k', let S C {1,...,k'}, {(cj,dj,e;)}jes
be as above. We will show that for every &' > d, it holds that that 3°,cg(c; —e;) > k' —d. We
stress that throughout the proof, we do not make use of any property of the schedule (besides using
the “binary-tree structure” and the depth, d, of the simulator’s execution).

Base case (k' =d+1): Since |S| > 1, and for all j € S, it holds that ¢; — e; > 0, we have:

Z(Cj-@j) > 1 = kK —-d

JES

Induction step (k' > d): Consider the k' —1 intervals that are obtained by removing the index |S]
(i-e., the index corresponding to the “latest” special interval [a|g|, bjg(])- Let S" C {1,..., K"} \ {|S[}
denote the set of special intervals after the removal of the index |S|. Notice that S C S’. This is
because any interval that was special before the removal of |S| will remain special after the removal.
Moreover, for all j € SN S’, the value of ¢; — e; has not been changed by the removal of |S| (since
it is always defined relative to the “preceding” element in |S|). We now have two cases.

Case 1: There exists J € S’ \ S so that the interval [as,bs] is special. That is, by removing
lajs), bjs|] we have caused [a;,bs] to be special (even though it was not special before). This could
have happened only if the unique interval previously contained by [a,, b;] was [a|g|, bg|] (otherwise,
[a,bs] would have not become special after removing [a|g|,bg/]). In particular, [az,b,] does not
contain the intervals [a|g|_1,bgj—1] (i-e., the special interval preceding [a|g|,b5]) and [Ag|, Bg|]
(ie., the common ancestor of [as_1,bs/—1] and [a|s|,bjs]). This means that both [a;,bs] and
[a)s), bjs|] have the same common ancestor with [ajg—1,bj5/—1]- Since [a;,bs] contains [a|g), bjs]
then cjg) > ¢;. In addition, since the set of intervals interfering to [as,b;] is equal to the set of
intervals interfering to [a|5‘, b‘5|] then ejg) = e;. As a consequence, c|5| — €|5| > ¢y — €. Using the
induction hypothesis (for ¥’ — 1), we get:

Ylej—e) = D (e +leg—es) = D (¢j—e)+(cs—es+1)

jES jeS"\{J} FeS\{J}
> D (g—e)+1
Jjes’
> (K -1)—d+1

= K -d

92 CHAPTER 4. CZK IN LOGARITHMICALLY MANY ROUNDS

Case 2: S’ = S. Using the induction hypothesis, and the fact that 5] — €5 > 0, we get:

Ylej—e) = Y (ci—ej)+ (s —es)

jes jes’
> Z (¢j—ej)+1
jes’
> (K—1)—-d+1
= kK —d

In both cases, we obtain the desired result. This completes the proof of Claim 4.7.14. i
Using, Claims 4.7.13 and 4.7.14, we have:

1. For all j € S, it holds that &§; = 2%

This completes the proof of Lemma 4.7.10.

4.8 Extensions

4.8.1 Applicability to other protocols

Theorem 4.1 is proved by adding an O(a(n) - logn)-round “preamble” to the well known 3-round
protocol for Hamiltonicity by Blum [6]. The crucial property of Blum’s protocol that we need in
order to prove concurrent zero-knowledge is that it is a “challenge-response” type of protocol so
that the simulation task becomes trivial if the verifier’s “challenge” is known in advance. Using our
mehtodology, it is possible to transform any such protocol into concurrent zero-knowledge, while
paying only a logarithmic cost in the round complexity.

Denote by CRZK(r(+)) the class of all languages L C {0,1}* having an r(-)-round ”challenge—
response” interactive proof (resp. argument) system, so that the simulation task becomes “trivial”
if the verifier’s ”challenges” are known in advance. We now have the following theorem.

Theorem 4.2 (A generic transformation for CRZK) Let « : N — N be any super-constant
interger function, and let v : N — N be any integer function. Then, assuming the existence of
perfectly-hiding commitment schemes (resp. one-way functions), every language L € CRZK(r(-))
has an (r(n) + O(a(n) - logn))-round concurrent zero-knowledge proof (resp. argument) system.

In light of Theorem 4.2, Construction 4.3.2 may be viewed as a generic transformation that enhances
such protocols and makes them secure in the concurrent setting with only a logarithmic increase in
the round complexity. Examples for protocols satsfying the above property are the well known pro-
tocols for graph 3-coloring [25], for proving the knowledge of a square root modulo a composite [20],
as well as the protocol for proving knowledge of discrete logarithms modulo a prime [44].

4.8.2 ¢ZK arguments based on any one-way function

Using Construction 4.3.1 as a building block, we are able to present a cZK argument system
for Hamiltonicity, while assuming only the existence of one-way functions. Since Hamiltonicity is
NP-complete, it will follow that every language in NP can be argued in cZK.

4.8. EXTENSIONS 93

Construction 4.8.1 (A cZK argument system for HC):

e Common Input: a directed graph G = (V,E) with n Lef V|, and a parameter k = k(n)
(determining the number of rounds).

e Auxiliary Input to Prover: a directed Hamiltonian Cycle, C C E, in G.

o First stage: This stage involves 2k + 2 rounds and is independent of the common input G.

1. Prover’s preliminary step (P0): Uniformly select a first message for a (2-round)
perfectly-hiding commitment scheme and send it to the verifier.

2. Veriﬁer s preliminary step (V0): Uniformly select o € {0,1}"™, and two sequences,
{0’ J 15 {o; ’J}” 1> each consisting of k* random n-bit strmgs The sequences are
chosen under the constraint that for every i,j the value of aw @ aw- equals o. Commit
(using the perfectly-hiding commitment scheme) to all 2k®>+1 selected strings. The
commitments are denoted 3, {52} ;_,, {6,

3. Forj=1,...,k:
(a) Prover’s jh step (Pj): Uniformly select a k-bit string rj =11 j,...,711,; € {0,1}F
and send it to the verifier.
(b) Verifier’s j*" step (Vj): Reveal the values (preimages) of 81" ,..., 8,5
4. The prover proceeds with the execution if and only zf for every j € {1 kY, the
verifier has properly decommited to the values of o) 3 ,...,akU (i.e that fm" every

J
ie{l,....k}, o z,L]j is a valid decommitment of ,BTL 7).

7]1

e Second stage: The prover and verifier engage in n (parallel) executions of a slightly modified
version of the basic Hamiltonicity protocol (described in Construction 4.3.1):

1. Prover’s first step (pl): Send the first message in the Hamiltonicity proof system (i.e.,
n parallel copies of Step (pl) in Construction 4.5.1).

2. Verifier’s first step (v1): Send the value of o, as well as the value of all k* commitments
that have not been revealed in the first stage (i.e., {crl "IV Z1)- In addition prove
(using an ordinary zero-knowledge argument of knowledge) the knowledge of k + 1
strings, s, 81, ..., sk, so that Cs(o) = 8 and Cj, (o - "y = ﬂ;ir" for all 7.

3. Prover’s second step (p2): Check that the verifier has properly decornmited to the values
of o and {01 "Ik (in particular, check that ol ; & of ; indeed equals o for all 7).

If so, send the third message in the basic Hamzltomczty proof system (i.e., n parallel
copies of Step (p2) in Construction 4.3.1).

4. Verifier’s second step (v2): Conduct the verification of the prover’s proofs (i.e., as
described in Step (v2) of Construction 4.3.1), and accept if and only if all corresponding
conditions hold.

Completeness and soundness of Construction 4.8.1 are proved in a similar way to Construc-
tion 4.3.2. The main difference is in the proof of soundness. This time, rather than using the
perfect secrecy of the commitments used in Step (VO0) of Construction 4.3.2, we use the zero-
knowedge property of the argument used in Step (v1), as well as the computational secrecy of the
commitments used in Step (V0) of Construction 4.8.1. We thus have:

Proposition 4.8.2 Suppose there exist one-way functions. Then Construction 4.8.1 constitutes
an interactive argument system for Hamiltonicity.

94 CHAPTER 4. CZK IN LOGARITHMICALLY MANY ROUNDS

Using the same simulator as the one used for Construction 4.3.2 and with some more work on the
analysis of its success probability and output distribution (building on the soundness of the ZK
argument used in Step (v1)), we obtain.

Theorem 4.3 (cZK argument) Suppose there exist one-way functions. Let o : N — N be any
super-constant function, and let k(n) = a(n) -logn. Then, any instantiation of Construction 4.8.1
with parameter k = k(n) is concurrent zero-knowledge.

4.8.3 Applicability to resettable zero-knowledge

Our result also enables improvement in the round complexity of resettable zero-knowledge [8].
Specifically, using a general transformation of (certain) concurrent zero-knowledge protocols into
resettable zero-knowledge [8], we obtain:

Theorem 4.4 (Resettable ZK) Assuming the existence of perfectly-hiding commitment schemes
(resp. one-way functions), there exists an O(logn)-round resettable zero-knowledge proof (resp. ar-
gument) system for every language L € N'P.

Theorem 4.4 is proven by employing a general transformation (by Canetti et al. [8]) that ap-
plies to a subclass of ¢ZK protocols. When applied to the ¢ZK proof system presented in Con-
struction 4.3.2 (as well as Construction 4.8.1), the transformation yields a resettable ZX proof
(resp. argument) system. The class of protocols to which the [8] transformation applies is the
class of admissible protocols. Loosely speaking, the class of admissible protocols consists of all ¢Z/C
protocols in which the first verifier message “essentially determines” all its subsequent messages.
What we mean by “essentially determines” is that the only freedom retained by the verifier is either
to abort (or act so that the prover aborts) or to send a practically predetermined message. Recall
that, in our case, the first verifier message is a sequence of commitments that are revealed (i.e.,
decommited) in subsequent verifier steps. In such a case, the verifier’s freedom in subsequent steps
is confined to either send an illegal decommitment (which is viewed as aborting and actually causes
the prover to abort) or properly decommit to the predetermined value. It follows that our ¢ZK
protocol satisfies the “admissibility” property required by [8], and can be thus transformed into
resettable ZK. For more details, see [8].

4.8.4 Concurrent ZK arguments with poly-logarithmic efficiency

Another application of our work is the existence of concurrent zero-knowledge arguments with poly-
logarithmic efficiency. Denote by ¢ZK(r(-),m(-)) the class of all languages L C {0,1}* having a
zero-knowledge argument system, so that on common input x € {0,1}*, the number of messages
exchanged is at most 7(|z|), and the total length of the messages exchanged is at most m(|z]).
In case that m(n) = polylog(n), the argument system is said to have poly-logarithmic efficiency.
Zero-knowledge arguments with poly-logarithmic efficiency have been constructed by Kilian [33],
while assuming the existence of strong collision resistant hash functions (i.e., so that for some ¢ > 0
forming collisions with probability greater than 2% requires at least 2¥° time). We now have the
following theorem.

Theorem 4.5 (cZK with poly-logarithmic efficiency) Assuming the existence of strong colli-
sion resistant hash functions, N'P is contained in cZK(O(log), polylog). That is, for every language
L € N'P, there exists an O(log n)-round black-box concurrent zero-knowledge argument system with

poly-logarithmic efficiency.

4.8. EXTENSIONS 95

Theorem 4.5 is proved by applying the transformation referred to in Section 4.8.1 to the protocol
of Kilian [33]. The theorem will follow by noting that the preamble of Construction 4.3.2 can
be constructed with polylogarithmic efficiency, and that Kilian’s arguments satisfy the property
required by Theorem 4.2.

96

CHAPTER 4. CZK IN LOGARITHMICALLY MANY ROUNDS

Chapter 5

cZK Without Aborts

The lower bound presented in Chapter 4 heavily relies on the fact that the adversary verifier is
allowed to occasionally abort the concurrent interaction. In this chapter, we consider concurrent
composition of ZK in which the verifier is never allowed to abort during the interaction (we call such
executions non-aborting concurrent ezecutions). This restriction on the verifier strategy is quite
reasonable and it is not inconceivable that it might enable the construction of constant-round ¢Z/C
protocols (in particular, the lower-bound presented in Chapter 4 does not apply in such a setting).
Determining the round-complexity of cZK protocols with non-aborting concurrent executions thus
seems to be an interesting question (see also Chapter 7). In this Chapter we make a preliminary step
towards achieving this task by showing that even in the non-aborting case the task of concurrent
composition is “non-trivial”.

Theorem 5.1 Suppose that (P,V') is a T-round proof system for a language L, and that non-
aborting concurrent executions of P can be simulated in polynomial-time using black-box simula-
tion. Then L € BPP. This holds even if the proof system is only computationally-sound (with
negligible soundness error) and the simulation is only computationally-indistinguishable (from the
actual executions).

The proof of Theorem 5.1 builds on the works of Goldreich and Krawczyk [24] and Kilian,
Petrank and Rackoff [36]. It utilizes a fixed scheduling of the concurrent executions. This scheduling
is defined recursively and is more sophisticated than the one proposed by [15] and used by [36].
It also exploits a special property of the first message sent by the verifier. At the end of this
chapter (Section 5.2) we show hot to extend Theorem 5.1 so to prove that the 9-round version of
the Richardson-Kilian protocol [42] (i.e., with parameter £ = 2) cannot be black-box simulated
under non-aborting concurrent executions.

5.1 Proof of Theorem 5.1

The high level structure of the proof roughly follows the one the proof presented in Chapter 3.
That is, we construct a concurrent schedule of sessions, and demonstrate that a black-box simulator
cannot successfully generate a simulated accepting transcript for this schedule unless it “rewinds”
the verifier many times. The work spent on these rewinds will be super-polynomial unless the
number of rounds used by the protocol obeys the bound, or L € BPP. The main difference lies
in the fact that the adversary verifier considered in the current proof never aborts. This obviously
facilitates the simulator’s task. Still, since the bound we are proving here is considerably more
modest than the one proved in Chapter 3, the resulting proof ends up being much simpler.

97

98 CHAPTER 5. CZK WITHOUT ABORTS

5.1.1 The schedule, aversary verifiers and decision procedure
The schedule

For each = € {0,1}", we consider the following concurrent scheduling of n sessions all run on
common input . The scheduling is defined recursively, where the scheduling of m sessions (denoted
R.) proceeds in 3 phases:

First phase: Each of the first m/logm sessions exchanges three messages (i.e., p;,v1,ps), this
is followed by a recursive application of the scheduling on the next m/log m sessions.

Second phase: Each of the first m/ log m sessions exchanges two additional messages (i.e., va, p3),
this is followed by a recursive application of the scheduling on the last m — 2 - % sessions.

Third phase: Each of the first m/ log m sessions exchanges the remaining messages (i.e.,v3,p,,v4).

The schedule is depicted in Figure 5.1. We stress that the verifier typically postpones its answer
(i.e., vg-l)) to the last prover’s message (i.e., pg-z)) till after a recursive sub-schedule is executed, and

that it is crucial that in the first phase each session will finish exchanging its messages before the
next sessions begins (whereas the order in which the messages are exchanged in the second and

third phases is immaterial).

]_ 2 lngnm logm +1 li‘gn;:n, +1 m
2
1
P, =
s
=
Z
=
R_m_
logm
<~
=
<=
=
Vo <<=
p; =
Rong._m
log m
<~
=
R
<=
=
<=
V3 <=
p, =
VvV, <=

Figure 5.1: The fixed schedule — recursive structure for m sessions.

5.1. PROOF OF THEOREM 5.1 99

Definition 5.1.1 (Identifiers of next message) The fized schedule defines a mapping from par-
tial execution transcripts ending with a prover message to the identifiers of the next verifier mes-
sage; that is, the session and round number to which the next verifier message belongs. (Recall
that such partial execution transcripts correspond to queries of a black-box simulator and so
the mapping defines the identifier of the answer:) For such a query § = (a1,by,...,a¢, b, ap41),
we let 7, () € {1,...,n} denote the session to which the next verifier message belongs, and by
Tmsg(q) € {1,...,4} its index within the verifier’s messages in this session.

Definition 5.1.2 (Initiation-prefix) The initiation-prefix ip of a query G is the prefiz of § ending
with the prover’s initiation message of session we,(q). More formally, ip = ay,b1, ..., ae, by, apy1, 18
the initiation-prefiz of § = (a1, b1, ...,as, by, arv1) if apyy s of the form sz) for i = mwsu(q). (Note
that mmee(7) may be any index in {1,...,4}, and that a;41 need not belong to session i.)

Definition 5.1.3 (Prover-sequence) The prover-sequence of a query q is the sequence of all
prover messages in session wsy(q) that appear in the query g. The length of such a sequence is
Tmsg(q) € {1,...,4}. In case the length of the prover-sequence equals 4, both query G and its
prover-sequence are said to be terminating (otherwise, they are called non-terminating). The prover-
sequence s said to correspond to the initiation-prefiz ip of the query g. (Note that all queries having
the same initiation-prefix agree on the first element of their prover-sequence, since this message is
part of the initiation-prefix.)

We consider what happens when a black-box simulator (for the above schedule) is given oracle
access to a verifier strategy V}, defined as follows (depending on a hash function A and the input z).

The verifier strategy V},

On query § = (a1,by, ..., as, by, ag1), where the a’s are prover messages (and z is implicit in V},),
the verifier answers as follows:

1. First, V}, checks if the execution transcript given by the query is legal (i.e., consistent with
V}’s prior answers), and answers with an error message if the query is not legal. (In fact this
is not necessary since by our convention the simulator only makes legal queries. From this
point on we ignore this case.)

2. More importantly, V}, checks whether the query contains the transcript of a session in which
the last verifier message indicates rejecting the input. In case such a session exists, V}, refuses
to answer (i.e., answers with some special “refuse” symbol).

3. Next, V}, determines the initiation-prefix, denoted ay,bq,...,as, bg, apr1, of query g. It also
(4) (@)
e

determines ¢ = 74, (7), j = Tmsg(7), and the prover-sequence of query g, denoted p;”, ..., p

4. Finally, V}, determines r; = h(aq,b1, ..., ag, by, apr1) (as coins to be used by V'), and answers
with the message V(l‘,’l‘i;pgz),...,pg-z)) that would have been sent by the honest verifier on
(%) (@)

common input z, random-pad r;, and prover’s messages p;’,...,p; -
Assuming towards the contradiction that a black-box simulator, denoted S, contradicting Theo-
rem 5.1 exists, we now descibe a probabilistic polynomial-time decision procedure for L, based on

S. Recall that we may assume that S runs in strict polynomial time: we denote such time bound
by ts(-). On input z € LN{0,1}"™ and oracle access to any (probabilistic polynomial-time) V*, the

100 CHAPTER 5. CZK WITHOUT ABORTS

simulator S must output transcipts with distribution having computational deviation of at most
1/6 from the distribution of transcripts in the actual concurrent executions of V* with P.

A slight modification of the simulator: Before presenting the procedure, we slightly modify
the simulator so that it never makes a query that is refused by a verifier V;,. Note that this condition
can be easily checked by the simulator, and that the modification does not effect the simulator’s
output. From this point on, when we talk of the simulator (which we continue to denote by S) we
mean the modified one.

Decision procedure for L
On input = € {0,1}", proceed as follows:

1. Uniformly select a function h out of a small family of ¢g(n)-wise independent hash functions
mapping poly(n)-bit long sequences to py(n)-bit sequences, where py(n) is the number of
random bits used by V' on an input z € {0,1}".

2. Invoke S on input z providing it black-box access to V} (as defined above). That is, the
procedure emulates the execution of the oracle machine S on input x along with emulating
the answers of Vj,.

3. Accept if and only if all sessions in the transcript output by S are accepting.

By our hypothesis, the above procedure runs in probabilistic polynomial-time. We next analyze its
performance.

Lemma 5.1.4 (Performance on YEs-instances) For all but finitely many x € L, the above
procedure acccepts x with probability at least 2/3.

Proof Sketch: The key observation is that for uniformly selected &, the behavior of V}, in actual
(concurrent) interactions with P is identical to the behavior of V' in such interactions. The reason
is that, in such actual interactions, a randomly selected i determines uniformly and independently
distributed random-pads for all n sessions. Since with high probability (say at least 5/6), V" accepts
in all n concurrent sessions, the same must be true for V3, when A is uniformly selected. Since the
simulation deviation of S is at most 1/6, it follows that for every h the probability that S (x)
is a transcript in which all sessions accept is lower bounded by pp — 1/6, where p;, denotes the
probability that V}, accepts z (in all sessions) when interacting with P. Taking expectation over
all possible A’s, the lemma follows. [l

Lemma 5.1.5 (Performance on NO-instances) For all but finitely many x ¢ L, the above pro-
cedure rejects x with probability at least 2/3.

We can actually prove that for every polynomial p and all but finitely many x ¢ L, the above
procedure accepts with probability at most 1/p(|z|). Assuming towards the contradiction that
this is not the case, we will construct a (probabilistic polynomial-time) strategy for a cheating
prover that fools the honest verifier V' with success probability at least 1/poly(n) (in contradiction
to the computational-soundness of the proof system). Loosely speaking, the argument capitalizes
on the fact that rewinding of a session requires the simulator to work on a new simulation sub-
problem (one level down in the recursive construction). New work is required since each different

5.1. PROOF OF THEOREM 5.1 101

message for the rewinded session forms an unrelated instance of the simulation sub-problem (by
virtue of definition of V}). The schedule causes work involved in such rewinding to accumulate to
too much, and so it must be the case that the simulator does not rewind some (full instance of
some) session. In this case the cheating prover may use such a session in order to fool the verifier.

5.1.2 Proof of Lemma 5.1.5 (performance on NO-instances)

Let us fix an € {0,1}" \ L as above.l Define by AC = AC, the set of pairs (o, h) so that on input
x, coins o and oracle access to V4, the simulator outputs a transcript, denoted SY#(z), in which all
n sessions accept. Recall that our contradiction assumption is that Pr, 4[(o, h) € AC] > 1/p(n), for
some fixed polynomial p(-).

The cheating prover

The cheating prover starts by uniformly selecting a pair (o, k) and hoping that (o, h) is in AC. It
next selects uniformly two elements ¢ and ¢ in {1,...,¢s(n)}, where gs(n) < tg(n) is a bound on
the number of queries made by S on input z € {0,1}". The prover next emulates an execution of

Sy () (where h’, which is essentially equivalent to h, will be defined below), while interacting with
the honest verifier V. The prover handles the simulator’s queries as well as the communication with
the verifier as follows: Suppose that the simulator makes query § = (ay, b, ..., a¢, by, ary1), where
the a’s are prover messages.

1. Operating as V}, the cheating prover first determines the initiation-prefix, ip corresponding
to the current query g. Let ip = a1, b1, ..., as, by, aps1, (Note that by our convention and the
modification of the simulator there is no need to perform Steps 1 and 2 of V}.)

2. If ip is the ¢*! distinct initiation-prefix resulting from the simulator’s queries so far then the
cheating prover operates as follows:

(a) The cheating prover determines i = 7sn(q), j = Tmsg(7), and the prover-sequence of g,

denoted pgi), ...,pg-i) (as done by V} in Step 3).

(b) If the query g is non-terminating (i.e., 7 < 3), and the cheating prover has only sent

j — 1 messages to the actual verifier then it forwards sz) to the verifier, and feeds the
simulator with the verifier’s response (i.e., which is of the form vg-z)).2

(c) If the query 7 is non-terminating (i.e., j < 3), and the cheating prover has already sent
j messages to the actual verifier, the prover retrieves the j'" message it has received and

feeds it to the simulator.?

(d) Whenever the query g is terminating (i.e., 7 = 4), the cheating prover operates as follows:

'In a formal proof we need to consider infinitely many such a’s.

2We comment that by our conventions regarding the simulator, it cannot be the case that the cheating prover has
sent less than j — 1 messages to the actual verifier: The prefixes of the current query dictate j — 1 such messages.

3 We comment that the cheating prover may fail to conduct Step 2c. This will happen whenever the simulator
makes two queries with the same initiation-prefix and the same number of prover messages in the corresponding
session, but with a different sequence of such messages. Whereas this will never happen when j = 1 (as once the
initiation-prefix is fixed then so is the value of pgi)), it may very well be the case that for j € {2,3} a previous query
(%)

regarding initiation-prefix 7p had a different p; message. In such a case the cheating prover will indeed fail. The

punchline of the analysis is that with noticeable probability this will not happen.

102 CHAPTER 5. CZK WITHOUT ABORTS

i. Aslong as the ¢*! terminating query corresponding to the above initiation-prefix has

not been made, the cheating prover feeds the simulator with vg) = 0 (i.e., session

rejected).

ii. Otherwise, the cheating prover operates as in Step 2b (i.e., it forwards pfli) to the

verifier, and feeds the simulator with the verifier’s response — some vy) message).t

3. If ip is NOT the ¢t distinct initiation-prefix resulting from the queries so far then the
prover emulates Vj, in the obvious manner (i.e., as in Step 4 of V3): It first determines
r; = h(a1,b1,...,ag,bp,ap11), and then answers with V(l‘,’l‘i;pgz), ...,pgz)), where all notations
are as above.

Defining i’ (mentioned above): Let (0,h) and £ be the initial choices made by the cheating
prover, and suppose that the honest verifier uses coins r. Then, the function b’ is defined to be
uniformly distributed among the functions A” which satisfy the following conditions: The value
of h" on the ¢ initiation-prefix equals r, whereas for every ¢ # ¢, the value of h” on the ¢!
initiation-prefix equals the value of & on this prefix. (Here we use the hypothesis that the functions
are selected in a family of tg(n)-wise independent hash functions. We note that replacing h by h'
does not effect Step 3 of the cheating prover, and that the prover does not know h'.)

The probability that the cheating prover makes the honest verifier accept is lower bounded by
the probability that both (o, ') € AC and the messages forwarded by the cheating prover in Step 2
are consistent with an accepting conversation with V},/. For the latter event to occur, it is necessary
that the £'" distinct initiation-prefix will be useful (in the sense hinted above and defined now). It
is also necessary that ¢ was “successfully” chosen (i.e., the ¢'! terminating query which corresponds
to the (*! initiation-prefix is accepted by V).

Definition 5.1.6 (Accepting query) A terminating query § = (a1,b1,...,a¢, b, a¢11) (i.e., for
which Tmse(q) = 4) is said to be accepting if Vir(a1,bi,...,as, by, ar1) equals 1 (i.e., session e (q)
is accepted by V).

Definition 5.1.7 (Useful initiation-prefix) A specific initiation-prefix ip in an execution of
Sy (x) is called useful if the following conditions hold:

1. During 1its execution, S(‘T/"' () made at least one accepting query that corresponds to the
initiation-prefiz ip.

2. As long as no accepting query corresponding to the initiation-prefiz ip was made during the
execution of S,‘T/h' (x), the number of (non-terminating) different prover-sequences that corre-
spond to ip is at most 3, and these prover-sequences are prefives of one another.’

Otherwise, the prefix is called unuseful.

“We note that once the cheating prover arrives to this point, then it either succeds in the cheating task or
completely fails (depending on the verifier’s response). As a consequence, it is not essential to define the cheating
prover’s actions from this point on (as in both cases the algorithm will be terminated).

°In other words, we allow for many different terminating queries to occur (as long as they are not accepting). On
the other hand, for j € {1, 2,3} only a single query that has a prover sequence of length j is allowed. This requirement
will enable us to avoid situations in which the cheating prover will fail (as described in Footnote 3).

5.1. PROOF OF THEOREM 5.1 103

The success probability

Define a Boolean indicator x(o, #’,£) to be true if and only if the £!! distinct initiation-prefix in an
execution of Sy*' (x) is useful. Define an additional Boolean indicator ¢ (o, h', £, () to be true if and
only if the ¢(*! terminating query among all terminating queries that correspond to the ¢! distinct
initiation-prefix (in an execution of S (x)) is the first one to be accepting. It follows that if the
cheating prover happens to select (o, h,£,¢) so that both x(o,h',£) and (o, h’,£,¢) hold then it
convinces V (z,7); the first reason being that the ¢** such query is answered by an accept message®,
and the second reason being that the emulation does not get into trouble (in Steps 2¢ and 2d). To
see this, notice that all first (¢ — 1) queries having the ¢ distinct initiation-prefix satisfy exactly
one of the following conditions:

1. They have non-terminating prover-sequences that are prefixes of one another (which implies
that the cheating prover never has to forward such queries to the verifier twice).

2. They have terminating prover-sequences which should be rejected (recall that as long as the

¢t terminating query has not been asked by S}T/’L' (z), the cheating prover automatically rejects
any terminating query).

Thus, the probability that when selecting (o, h, £, () the cheating prover convinces V(x,r) is at
least;:

Pr (o, 1, £,¢) & x(a, 1, £)]
= Pr (o, 1, 6,C) | x(o, ', 0)] - Pr [x(o, W,)]
> Prlv(o,h',€,C) | x(o,h,0)] - Pr[(o,h') € AC & x(0, I/, ()] (5.1)

Note that if the £'" distinct initiation-prefix is useful, and ¢ is uniformly (and independently) se-
lected in {1, ..., gs(n)}, the probability that the (*® query corresponding to the /! distinct initiation—
prefix is the first to be accepting is at least 1/¢g(n). Thus, Eq. (5.1) is lower bounded by:

Pr(o,h') € AC & x (0, H',0)]
qs(n)

Using the fact that, for every value of ¢ and o, when h and r are uniformly selected the function
h' is uniformly distributed, we infer that £ is distributed independently of (o, h'). Thus, Eq. (5.2)
is lower bounded by

(5.2)

Pr[di s.t. x(o,h',4) | (o, k") € AC]
gs(n)?
Thus, Eq. (5.3) is noticeable (i.e., at least 1/poly(n)) provided that so is the value of

Pr[(o, 1) € AC] -

(5.3)

Pr[3i s.t. x(o,h',4) | (o, k') € AC]

The rest of the proofis devoted to establishing the last hypothesis. In fact we prove a much stronger
statement:

Lemma 5.1.8 For every (o,h') € AC, the execution of S(‘;/h' (z) contains a useful initiation-prefiz
(that is, there exists an i s.t. x(o,h', i) holds).

®We use the fact that V (z,r) behaves exactly as Vj/ () behaves on queries for the ¢*" distinct initiation-prefix.

104 CHAPTER 5. CZK WITHOUT ABORTS

5.1.3 Proof of Lemma 5.1.8 (existence of useful initiation prefixes)

The proof of Lemma 5.1.8 is by contradiction. We assume the existence of a pair (o,h') € AC so
that all initiation-prefixes in the execution of S}T/’L' (z) are unuseful and show that this implies that

' s n
Syt (z) made at least n(wstn) > poly(n) queries which contradicts the assumption that it runs
in polynomial-time.

The query—and—answer tree

Throughout the rest of the proof, we fix an arbitrary (o,h') € AC so that all initiation-prefixes
in the execution of S}T/h' (z) are unuseful, and study this execution. A key vehicle in this study is
the notion of a query—and—answer tree introduced in [36]. This is a rooted tree in which vertices
are labeled with verifier messages and edges are labeled by prover’s messages. The root is labeled
by the empty string, and it has outgoing edges corresponding to the possible prover’s messages
initializing the first session. In general, paths down the tree (i.e., from the root to some vertices)
correspond to queries. The query associated with such a path is obtained by concatenating the
labeling of the vertices and edges in the order traversed. We stress that each vertex in the tree
corresponds to a query actually made by the simulator.

Satisfied sub-path: A sub-path from one node in the tree to some of its descendants is said to
satisfy session 7 if the sub-path contains edges (resp., vertices) for each of the messages sent by the
prover (resp., verifier) in session ¢, and if the last such message (i.e., vgz)) indicates that the verifier
accepts session 7. A sub-path is called satisfied if it satisfies all sessions for which the first prover’s
message appears on the sub-path.

Forking sub-tree: For any i and j € {2,3,4}, we say that a sub-tree (7, j)-forks if it contains
two sub-paths, p and 7, having the same initiation-prefix, so that

(%)

1. P and 7 differ in the edge representing the j*" prover message for session i (i.e., a P; message).

2. Each of p and 7 reaches a vertex representing the j' verifier message (i.e., some vg-i)).

In such a case, we may also say that the sub-tree (i,7)-forks on 7 (or on 7).

Good sub-tree: Consider an arbitrary sub-tree rooted at a vertex corresponding to the first
message in some session so that this session is the first at some level of the recursive construction
of the schedule. The full tree is indeed such a tree, but we will need to consider sub-trees which
correspond to m sessions in the recursive schedule construction. We call such a sub-tree m-good if
it contains a sub-path satisfying all m sessions for which the prover’s first message appears in the
sub-tree (all these first messages are in particular contained in the sub-path). Since (o, k') € AC it
follows that the full tree contains a path from the root to a leaf representing an accepting transcript.
The path from the root to this leaf thus satisfies all sessions (i.e., 1 through n) which implies that
the full tree is n-good.

The structure of good sub-trees: The crux of the entire proof is given in the following lemma.

Lemma 5.1.9 Let T be an m-good sub-tree. Then, at least one of the following holds:

5.1. PROOF OF THEOREM 5.1 105

1. T contains at least two different (m -2 %)—good sub-trees.

2. T contains at least 10;"m different (%)—good sub-trees.

Denote by W(m) the size of an m-good sub-tree (where W(m) stands for the work actually per-
formed by the simulator on m concurrent sessions in our fixed scheduling). It follows (from Lemma
5.1.9) that any m-good sub-tree must satisfy

W (m) > min{IOTgnm W (loZm) 2. W <m —2. 10;’%)} (5.4)

Since Eq. (5.4) solves to nQ(bl;%w) (proof omitted), and since every vertex in the query—and-—
answer tree corresponds to a query actually made by the simulator, then the assumption that the
simulator runs in poly(n)-time (and hence the tree is of poly(n) size) is contradicted. Thus, Lemma
5.1.8 follows from Lemma 5.1.9.

5.1.4 Proof of Lemma 5.1.9 (the structure of good sub-trees)

Considering the m sessions corresponding to an m-good sub-tree, we focus on the m/log m sessions
dealt explicitly at this level of the recursive construction (i.e., the first m/log m sessions, which we

denote by F def {1,...,m/logm}).

Claim 5.1.10 Let T' be an m-good sub-tree. Then for any session i € F, there exists j € {2,3}
such that the sub-tree (i,7)-forks.

Proof: Consider some ¢ € F, and let P; be the first sub-path reached during the execution of
S(‘T/"' () which satisfies session i (since the sub-tree is m-good such a sub-path must exist, and since
i € F every such sub-path must be contained in the sub-tree). Recall that by the contradiction
assumption for the proof of Lemma 5.1.8, all initiation-prefixes in the execution of S,‘T/h' (x) are
unuseful. In particular, the initiation-prefix corresponding to sub-path p; is unuseful. Still, path
p; contains vertices for each prover message in session ¢ and contains an accepting message by
the verifier. So the only thing which may prevent the above initiation-prefix from being useful is
having two (non-terminating) queries with the very same initiation-prefix (non-terminating) prover-
sequences of the same length. Say that these sequences first differ at their j*® element, and note
that j € {2,3} (as the prover-sequences are non-terminating and the first prover message, pgz), is
constant once the initiation-prefix is fixed). Also note that the two (non-terminating) queries were
answered by the verifier (rather than refused), since the (modified) simulator avoids queries which
will be refused. By associating a sub-path to each one of the above queries we obtain two different
sub-paths (having the same initiation-prefix), that differ in some sz)

vg-i) vertex (for j € {2,3}). The required (i, j)-forking follows. W

edge and eventually reach a

Claim 5.1.11 If there exists a session i € F such that the sub-tree (i,3)-forks, then the sub-tree
contains two different (m—2 2-)-good sub-trees.

logm

Proof: Let i € F such that the sub-tree (i,3)-forks. That is, there exist two sub-paths, p; and
(4) '

7, that differ in the edge representing a p3y’ message, and that eventually reach some vgz) vertex.

106 CHAPTER 5. CZK WITHOUT ABORTS

In particular, paths p; and 7; split from each other before the edge which corresponds to the p()

(2)

message occurs along these paths (as otherwise the p;”’ edge would have been identical in both
paths). By nature of the fixed scheduling, the vertex in which the above splitting occurs precedes
the first message of all (nested) sessions in the second recursive construction (that is, sessions

2-2-+1,.,m). It follows that both p; and 7; contain the first and last messages of each of these
(@)

(nested) sessions (as they both reach a vy’ vertex). Therefore, by definition of V}, all these sessions
must be satisfied by both these paths (or else V}, would have not answered with a vgz) message
but rather with a “refuse” symbol) Consider now the corresponding sub-paths of p; and 7; which
begin at edge pgk) where k = 2 - logm +1 (ie., pgk) is the edge which represents the first message
of the first session in the second recursive construction). Each of these new sub-paths is contained
in a disjoint sub-tree corresponding to the recursive construction, and satisfies all of its (m—2.=-)
sessions. It follows that the (original) sub-tree contains two different (m—2. 2 mz-)-good sub-trees and

the claim follows. [}

Claim 5.1.12 If for every session i € F the sub-tree (i,2)-forks, then the sub-tree contains at least
|F| = different (52-)-good sub-trees.

log

In the proof of Claim 5.1.12 we use a special property of (i,2)-forking: The only location in which
the splitting of path 7; from path p; may occur, is a vertex which represents a ng) message. Any

(¥

splitting which has occured at a vertex which precedes the v;’ vertex would have caused the
initiation-prefixes of (session i along) paths p, and 7; to be different (by virtue of the definition of

Vi, and since all vertices preceding vgz) are part of the initiation-prefix of session 7).

Proof: Since for all sessions ¢ € F the sub-tree (i, 2)-forks, then for every such i there exist two
sub-paths, p; and 7;, that split from each other in a ng)
vgz) vertex. Similarly to the proof of Claim 5.1.11, we can claim that each one of the above paths
contains a “special” sub-path (denoted P; and 7; respectively), that starts at a ng)
at a vgz) vertex, and satisfies all 2 sessions in the first recursive construction (that is, sessions
Togm Lo 2-52-). Note that paths p; and 7; are completely disjoint. Let i1,z be two different sesions
in F (without loss of generality i1 < i), and let p; , 7, ,D;,,Ti, be their corresponding “special”
sub-paths. The key point is that for every 71,49 as above, it cannot be the case that both “special”

sub-paths corresponding to session iy are contained in the sub-paths corresponding to session #;

(i2)

(to justify this, we use the fact that p;, and 7;, split from each other in a v;*’ vertex and that for
every i € {i1,i2}, paths p; and T7; are disjoint).

vertex and that eventually reach some

vertex, ends

This enables us to associate a distinct (2 m) -good sub-tree to every ¢ € F (i.e., which either
corresponds to path P;, or to path 7;). Which in particular means that the tree contains at least
| F| different (z-)-good sub-trees. W

We are finally ready to analyze the structure of the sub-tree T'. Since for every ¢ € F there must
exist j € {2,3} such that the sub-tree (7,j)-forks (Claim 5.1.10), then it must be the case that
either T contains two distinct (m-2-2-)-good sub-trees (Claim 5.1.11),
distinet (2-)-good sub-trees (Claun 5.1.12). This completes the proof of Lemma 5.1.9 which in
turn 1mphes Lemmata 5.1.8 and 5.1.5. The proof of Theorem 5.1 is complete.

5.2. EXTENDING THE PROOF FOR THE RICHARDSON-KILIAN PROTOCOL 107

5.2 Extending the proof for the Richardson-Kilian protocol

Recall that the Richardson-Kilian protocol [42] consists of two stages. We will treat the first stage
of the RK protocol (which consists of 6 rounds) as if it were the first 6 rounds of any 7-round
protocol, and the second stage (which consists of a 3-round WI proof) as if it were the remaining
7*h message. An important property which is satisfied by the RK protocol is that the coin tosses
used by the verifier in the second stage are independent of the coins used by the verifier in the first
stage. We can therefore define and take advantage of two (different) types of initiation-prefixes.
A first-stage initiation prefix and a second-stage initiation prefix (which is well defined only given
the first one). These initiation-prefixes will determine the coin tosses to be used by V}, in each
corresponding stage of the protocol (analogously to the proof of Theorem 5.1).

The cheating prover will pick a random index for each of the above types of initiation-prefixes
(corresponding to ¢ and ¢ in the proof of Theorem 3.1). The first index (i.e., £) is treated exactly
as in the proof of Theorem 3.1, whereas the second index (i.e., () will determine which of the
WI session corresponding to the second-phase initiation-prefix (and which also correspond to the
very same /"' first-phase initiation-prefix) will be actually executed between the cheating prover
and the verifier. As long as the (' second-stage initiation prefix will not be encountered, the
cheating prover will be able to impersonate V}, while always deciding correctly whether to reject or
to accept the corresponding “dummy” WI session (as the second-stage initiation-prefix completely
determines the coins to be used by Vj, in the second stage of the protocol). As in the proof of
Theorem 3.1, the probability that the (*P second-stage initiation prefix (that corresponds to the
¢*h first-phase initiation-prefix) will make the verifier accept is non-negligible. The existence of a
useful pair of initiation-prefixes (i.e., £ and () is proved essentially in the same way as in the proof
of Theorem 3.1.

108 CHAPTER 5. CZK WITHOUT ABORTS

Chapter 6

Constant-Round ZK proofs for N'P
with a Simpler Proof of Security

In this chapter we consider the task of constructing a constant-round Z/XC proof system for all
languages in NP. This problem has been previously addressed by Goldreich and Kahan [23], who
constructed a 5-round proof system assuming the existence of a collection of claw-free functions.
We show how to use a variant of the cZ/XC protocol presented in Chapter 4 in order to construct a
7-round ZK proof system for NP. The advantage of the new proof system over the one of [23] is
that it admits a considerably simpler proof of security. Consider the following protocol, which is a
variant of Construction 4.3.2 in which the preamble has only one iteration (rather than k iterations
as in Construction 4.3.2).

A 7-round ZK Proof System for NP
Common Input: A directed graph G = (V, E) with n def [V].
Auxiliary Input to Prover: A directed Hamiltonian Cycle, C C E, in G.
Additional parameter: A super-logarithmic function k(n).

Stage 1: Commitment to challenge o € {0,1}" (independent of common input):

P — V (P1): Send first message for perfectly hiding commitment scheme.

V — P (V1): Commit to random o, {o%}% | {o}}F | s.t. o) @ o} =0 for all .
P — V (P2): Send a random k-bit string r = ry,...,rg.

V — P (V2): Decommit to a1*,...,0,".

Stage 2: Engage in Blum’s 3-round Hamiltonicity protocol using o as challenge:

P — V (p1): Use C to produce first prover message of Hamiltonicity protocol.

V — P (v1): Decommit to o and to {o; " }5_,.

i

P — V (p2): Answer o with second prover message of Hamiltonicity protocol.

Figure 6.1: A 7-round ZK proof for N'P.

Using the same arguments as in Section 4.3.2, it can be seen that the resulting protocol is both
complete and sound. In particular, the construction above is an interactive proof system for HC.
The following theorem states that it is also ZKC.

109

110 CHAPTER 3. CONSTANT-ROUND ZK PROOFS FOR NP

Theorem 6.1 (Constant-round ZK proof for N'P) Assume the existence of perfectly-hiding
commitment schemes. Then, the protocol described in Figure 6.1 s a ZK proof system for HC.

6.1 Zero-Knowledge

In order to demonstrate the ZK property of the protocol, we will show that there exists a ”universal”
black-box simulator, S, so that for every G = (V, E) € HC and adversary verifier V* that runs in
polynomial time (in n = |V]), S(G) runs in expected time poly(n), and satisfies that the ensemble
{view?..(G)}gemc is computationally indistinguishable from the ensemble {SV" (G)}genc.

6.1.1 The Simulator

On input G = (V, E) with n = |V, the simulator S starts by selecting and fixing a random tape
s € {0,1}P°Y(™) for V* It then proceeds by exploring various prefixes of possible interactions
between P and V*. This is done while having only black-box access to V*.

Step (S1): Randomly generate a (P1) message and obtain (V1) = V*(G, (P1);s).
Step (S2): Randomly generate a (P2) message and obtain (V2) = V*(G, (P1), (P2);s).
1. If (V2) # ABORT, proceed to Step (S3).
2. If (V2) = ABORT, output ((P1),(V1),ABORT) and stop.
Step (S3): For j =1,2,...
1. Randomly generate (P2); and obtain (V2); = V*(G, (P1), (P2),; s).
2. If (V2); # ABORT, proceed to Step (S4).
3. If (V2),; = ABORT continue.

end(for)

Step (S4): Let (P2) =ry,...,r, be the prover message generated in Step (S2) of the simulation
and let (P2); =7} ... 7} be the last prover message generated in Step (53):

1. If (P2) = (P2);, output L and stop.

2. If (P2) # (P2);, there exists ¢ € {1,...,k} so that r; #7]. Let 0 = 0]' & a::.
3. Use o to produce an accepting transcript (p1), (v1),(p2) for G € HC (as in Page 74).
1. Output ((P1), (V1), (P2), (V2), (p1), (v1), (p2)) and stop.

Figure 6.2: The black-box simulator S.

Notice that simulator always picks the (P2)j messages uniformly at random. Since the length of the
(P2)’s is super-logarithmic, the probability that any two (P1) messages sent during the simulation
are equal is negligible (see Section 6.1.3 for further details). We note that in previous simulators
(cf. [23]), the values of the (Pj) messages depended on the values revealed by the verifier in the
corresponding (V2) answers, and were not chosen uniformly and independently each time. This is
the main reason in the complication of previous analysises of the simulator’s output distribution.

6.1. ZERO-KNOWLEDGE 111

6.1.2 The simulator’s running time

For any G € HC, for any choice of s and of (P1), let (= ((G, (P1), s) denote the probability that
the verifier V* does not send an ABORT message in message (V2). The probability ¢ is taken over
the random choices of message (P2). (Or, in other words, over the coin-tosses used by the simulator
to generate (P2) during the simulation (both in Steps (S2) and (S3).1).)

Using this notation, the simulator proceeds to Step (S3) with probability ¢ and is then expected
to reach Step (S4) after repeatedly rewinding in Step (S3).1 for 1/¢ times (since the probability of
successfully rewinding in each one of the rewinds is precisely (, independently of other rewinds).
For i € {1,2,3,4}, let p;(-) be a polynomial bound on the work required in order to perform
Step (Si) of the simulation (where in Step (S3), the value p3(-) represents the work of a single
execution of Step (S3).1). The expected running time of the simulator is then:

pa(m) + (L= pa(m) + € (o) + % pa(m) £ pa(n)) < pa(0) + pan) + pal) + paln)
= poly(n)

Since the above holds for any choice of s and (P1), then it is also true for randomly chosen s
and (P1) (and offcourse for any G € HC). We thus have,

Proposition 6.1.1 The simulator S runs in expected polynomial-time (in n = |V]).

6.1.3 The simulator’s output distribution

We now turn to show that for every G € HC, the simulator’s output distribution is computationally
indistinguishable from V*’s view of interactions with the honest prover P. Specifically,

Proposition 6.1.2 Suppose that the commitment used in Step (pl) is hiding. Then, the ensemble
{SV (@) }genc is computationally indistinguishable from the ensemble {view?.(G)}aenc-

Proof: As a hybrid experiment, consider what happens to the output distribution of the simulator
S if we (slightly) modify its simulation strategy in the following way: Suppose that on input
G = (V,E) € HC, the simulator S obtains a directed Hamiltonian Cycle C' C F in G (as auxiliary
input) and uses it in order to produce real prover messages whenever it reaches the second stage of
the protocol. Specifically, when it reaches the second stage, the hybrid simulator checks whether the
original simulator S should output L (in which case it also does). If S does not have to output L,
the hybrid simulator follows the prescribed prover strategy and generates prover messages for the
corresponding second stage (by using the cycle it possesses rather than its prior knowledge of o).
We claim that the ensemble consisting of the resulting output (which we denote by SV (G, C)) is
computationally indistinguishable from {SV" (G)}genc. Namely,

Claim 6.1.3 Suppose that the commitment used in Step (pl) is hidir/z\g. Then, the ensemble
{SV (@) }geno is computationally indistinguishable from the ensemble {SV" (G, C)}aemc.

Proof Sketch: The claim is proved by reducing the proof to the indistinguishability of Blum’s
simulator’s output (that is, if the output of Blum’s simulator [6] is computationally indistinguishable
from the view of real executions of the basic Hamiltonicity proof system, then {SV" (G)}aemc
and {SV"(G,C)}genc are indistinguishable as well). The latter is proved to hold based on the
computational-hiding property of the commitment scheme that is used by the prover in Step (p1)
of Construction 4.3.1 (see [6, 22] for further details). Here we also use the extra property that the

112 CHAPTER 3. CONSTANT-ROUND ZK PROOFS FOR NP

output of Blum’s simulator is indistinguishable from true interactions even if the distinguisher has
a-priori knowledge of a Hamiltonian Cycle C in G. W

We next consider what happens to the output distribution of the hybrid simulator S if we assume
that it does not output L. It turns out that in such a case, the resulting output distribution is
identical to the distribution of {view}.(G)}cemc. Namely,

Claim 6.1.4 The ensemble {gv*(G,C)}GeHC conditioned on it not being L, is identically dis-
tributed to the ensemble {view!.(G)}genc.

Proof: Notice that the first stage messages that appear in the output of the “original” simulator
(that is, S) are identically distributed to the first stage messages that are produced by an honest
prover P (since they are uniformly and independently chosen). Since the first stage messages that
appear in the output of the “modified” simulator (that is, §) are identical to the ones appearing in
the output of S, we infer that they are identically distributed to the first stage messages that are
produced by an honest prover P. Using the fact that the second stage messages that appear in the
output of the “modified” simulator are (by definition) identically distributed to the second stage
messages that are produced by an honest prover P, we infer that the ensemble {gv* (G,C)}genc
is identically distributed to {view}«(G)}cenc. M

As we will show in Proposition 6.1.6 below, S outputs L only with negligible probability. In
particular, the ensemble {SV" (G, C)}genc is computationally indistinguishable from (and in fact
statistically close to) the ensemble {SV" (G, C)}gemc, conditioned on it not being L. Namely,

Claim 6.1.5 The ensemble {SV(G,C)Ygenc is computationally indistinguishable from the en-
semble {SV"(G,C)Yqemc conditioned on it not being L.

As we have mentioned above, Claim 6.1.5 follows by establishing the following claim.
Claim 6.1.6 For any G = (V, E) € HC, the probability that SV (G, C) = L is negligible (in |V]).

Proof: Let G € HC with n = |V|. We will show that for any choice of s € {0,1}P°Y(®) and (P1)
the probability of S outputting L (over random choices of (P2) = r € {0,1}*) is precisely 1/2".
Since k is super-logarithmic it will immediately follow that the probability that SV (G,C) = L
is negligible. Let V* = V*((P1),s) denote the “residual” strategy of V* when ((P1),s) are fixed

(ie., VX(G,7) o V*(G,(P1),r;s)), and let ¢ be as in Section 6.1.2. We then have:
Pr, [§‘7*(G7C) = _I_] = Pr, [§‘7* (G,C) = L1 | S reaches (SS)} - Pr, [§ reaches (S3)}
= Pr, [§‘~/* (G,C) = L1 | S reaches (SS)] ¢
= Pr,[(P2) = (P2),] ¢ (6.1)

Now, since (P2) and (P2); are uniformly and independently chosen in {0, 1}, and since the number
of r € {0,1}* for which V*(G,r) is not equal to ABORT is precisely 2F - ¢, then it holds that
Pr[(P2) = (P2),] = 1/(2% - ¢). Using Eq. (6.1) we infer that:
AT 1 1
v — — - . e J—
Pr,[$ (@) = 1| = ¢
as required. W

It can be seen that Claims 6.1.3, 6.1.4 and 6.1.5 imply the correctness of Proposition 6.1.2. W

Chapter 7

Conclusions and Open Problems

7.1 Avoiding the Lower Bounds of Chapter 3

The lower bound presented in Chapter 3 of this thesis draws severe limitations on the ability of
black-box simulators to cope with the standard concurrent zero-knowledge setting. This suggests
two main directions for further research in the area.

Alternative models: One first possibility that comes into mind would be to consider relaxations
of and augmentations to the standard model. Indeed, several works have managed to “bypass” the
difficulty in constructing concurrent zero-knowledge protocols by modifying the standard model in
a number of ways. Dwork, Naor and Sahai augment the communication model with assumptions
on the maximum delay of messages and skews of local clocks of parties [15, 16]. Damgard uses a
common reference string [13], and Canetti et.al. use a public registry file [§].

A different approach would be to try and achieve security properties that are weaker than
zero-knowledge but are still useful. For example, Feige and Shamir consider the notion of witness
indistinguishability [17, 19], which is preserved under concurrent composition.

Beyond black-box simulation: Loosely speaking, the only advantage that a black-box simula-
tor may have over the honest prover is the ability to “rewind” the interaction and explore different
execution paths before proceeding with the simulation (as its access to the verifier’s strategy is
restricted to the examination of input/output behavior). As we show in Chapter 3, such a mode
of operation (i.e., the necessity to rewind every session) is a major contributor to the hardness of
simulating many concurrent sessions. It is thus natural to think that a simulator that deviates from
this paradigm (i.e., is non black-box, in the sense that is does not have to rewind the adversary
in order to obtain a faithful simulation of the conversation), would essentially bypass the main
problem that arises while trying to simulate many concurrent sessions.

Hada and Tanaka [30] have considered some weaker variants of zero-knowledge, and exhibited a
three-round protocol for NP (whereas only BPP has three-round block-box zero-knowledge [24]).
Their protocol was an example for a zero-knowledge protocol not proven secure via black-box
simulation. Alas, their analysis was based in an essential way on a strong and highly non-standard
hardness assumption.

As mentioned before, Barak [2] constructs a constant-round protocol for all languages in NP
whose zero-knowledge property is proved using a mon black-box simulator. It should be noted,
however, that Barak’s new techniques are still not known to yield a satisfactory solution to the
problem of “full-fledged” concurrent composition (even when allowing arbitrarily many rounds in
the protocol).

113

114 CHAPTER 7. CONCLUSIONS AND OPEN PROBLEMS

7.2 Open problems

The main conclusion of this work is that the round-complexity of black-box c¢ZIC is essentially
logarithmic. Specifically, by combining Theorem 3.1 with Theorem 4.1, we have:

Corollary The round-complezity of black-box concurrent zero-knowledge is é(log n) rounds.t

Still, in light of Barak’s recent result [2], constant-round ¢Z/C protocols (with non black-box simu-
lators) do not seem out of reach. A natural open question is whether there exists a constant-round
(non black-box) ¢ZK protocol for all languages in N'P.

Open Problem 1 Is there a ¢ZK protocol for NP with a constant number of rounds?

As a first step, it would be interesting to determine whether non black-box simulation techniques
can at all improve over black-box simulation techniques in the context of concurrent composition.

Open Problem 2 Is there a ¢ZK protocol for NP with a sublogarithmic number of rounds?

It would be in fact interesting to see whether Barak’s non black-box simulation techniques can at
all be extended to handle unbounded concurrency (regardless of the number of rounds).
Regarding cZ/X without aborts. Here the situation is not resolved as well. In particular,
assuming that the verifier never aborts is not known to enable any improvement in the round-
complexity of cZK protocols. On the other hand, the best lower bound to date shows that 7 round
are not sufficient for black-box simulation. It would be interesting to close the gap between the
currently known upper and lower bounds (presented in Chapter 4 and Chapter 5 respectively).

Open Problem 3 Determine the exact round-complexity of cZK without aborts.

The latter question mainly refers to black-box simulation, though it is also interesting (and open)
in the context of non black-box simulation.

! (n) = B(h(n) it both £(n) = O(h(m) and () = Ah()). f(n) = O(h(mw) (sesp. f(n)

= Q(h(n))) if there exist
constants c1, ¢z > 0 so that for all sufficiently large n, f(n) < c1-h(n)/(log h(n))°* (resp. f(n) > ¢

1-h(n)/(log h(n))).

Chapter 8

Appendix

8.1 Alternative Description of the Recursive Schedule

The schedule consists of n? sessions (each session consists of k+1 prover messages and k+ 1 verifier
messages). It is defined recursively, where for each m < n?, the schedule for sessions i1,...,im
(denoted Ry, ... ;..) proceeds as follows:

1. If m < n, execute sessions 41,..., %, sequentially until they are all completed;
2. Otherwise, For j =1,...,k+ 1:

(a) For £=1,...,n
i. Send the j' verifier message in session i, (i.e., vgil))'

(e)>’

ii. Send the j*® prover message in session i, (i.e. ; Pj

(b) If j <k +1, invoke a recursive copy of Ri, .1 1), mi(uije (Wheret At | =22]);

(Sessions Unt(j—1)-t+1)s- - - > b(ntj.¢) are the next ¢ remaining sessions out of 7y, ... yim-)

8.2 Solving the Recursion
Claim 8.2.1 Suppose that Eq. (3.6) holds. Then for all sufficiently large n, W (n?) > n.

Proof: By applying Eq. (3.6) iteratively log,(n — 1) times, we get:

W(’IL2) > (kc-l—l)logk(n_l) W (TL)

> (kc“)log’“ "
(

1)C+1

mn —
> ne (8.1)

where Eq. (8.1) holds for all sufficiently large n.

115

116 CHAPTER 8. APPENDIX

Bibliography

[1] N. Alon, L. Babai, and A. Itai A Fast and Simple Randomized Parallel Algorithm for the
Maximal Independent Set Problem. Journal of ALgorithms, 7, pages 567-583, 1986.

[2] B. Barak. How to go Beyond the Black-Box Simulation Barrier. In 42nd FOCS, pages 106-115,
2001.

[3] B. Barak and Y. Lindell. Strict Polynomial-Time in Simulation and Extraction. In 3/th STOC,
pages 484-493, 2002.

[4] M. Bellare, O. Goldreich. On Defining Proofs of Knowledge. In CRYPT092. Springer LNCS
0740. Pages 390-420, 1992.

[5] M. Bellare, R. Impagliazzo and M. Naor. Does Parallel Repetition Lower the Error in Compu-
tationally Sound Protocols? In 38th FOCS, pages 374-383, 1997.

[6] M. Blum. How to prove a Theorem So No One Else Can Claim It. Proc. of the International
Congress of Mathematicians, Berekeley, California, USA, pages 1444-1451, 1986.

[7] G. Brassard, D. Chaum and C. Crépeau. Minimum Disclosure Proofs of Knowledge. JCSS,
Vol. 37, No. 2, pages 156189, 1988.

[8] R. Canetti, O. Goldreich, S. Goldwasser, and S. Micali. Resettable Zero-Knowledge. In $2nd
STOC, pages 235-244 ,2000.

[9] R. Canetti, J. Kilian, E. Petrank and A. Rosen. Black-Box Concurrent Zero-Knowledge Requires

Q(logn) Rounds. In 33rd STOC, pages 570-579 2001.

[10] R. Canetti, J. Kilian, E. Petrank and A. Rosen. Black-Box Concurrent Zero-Knowledge Re-
quires (almost) Logarithmically many Rounds. In SIAM Jour. on Computing, , Vol. 32, No. 1,
pages 1-47, 2002.

[11] M.N. Wegman, and J.L. Carter. New Hash Functions and Their Use in Authentication and
Set Equality. JCSS 22, 1981, pages 265-279.

[12] B. Chor, and O. Goldreich On the power of Two-Point Based Sampling. Jour. of Complezity,
Vol. 5, 1989, pages 96-106.

[13] I. Damgard. Eficient Concurrent Zero-Knowledge in the Auxiliary String Model. In Furo-
Crypt2000, LNCS 1807, pages 418-430, 2000.

[14] I. Damgard, T. Pedersen and B. Pfitzmann. On the Existence of Statistically Hiding Bit
Commitment Schemes and Fail-Stop Signatures. In Crypto93, Springer-Verlag LNCS Vol. 773,
pages 250-265, 1993.

117

118 BIBLIOGRAPHY

[15] C. Dwork, M. Naor, and A. Sahai. Concurrent Zero-Knowledge. In 30th STOC, pages 409418,
1998.

[16] C. Dwork, and A. Sahai. Concurrent Zero-Knowledge: Reducing the Need for Timing Con-
straints. In Crypto98, Springer LNCS 1462 , pages 442-457, 1998.

[17] U. Feige. Ph.D. thesis, Alternative Models for Zero Knowledge Interactive Proofs. Weizmann
Institute of Science, 1990.

[18] U. Feige, A. Fiat and A. Shamir. Zero Knowledge Proofs of Identity. Journal of Cryptology,
Vol. 1(2), pages 77-94,1988.

[19] U. Feige and A. Shamir. Witness Indistinguishability and Witness Hiding Protocols. In 22nd
STOC, pages 416-426, 1990.

[20] A. Fiat and A. Shamir. How to Prove Yourself: Practical Solution to Identification and Sig-
nature Problems. In Crypto86, Springer LNCS 1233, pages 186-189, 1987.

[21] O. Goldreich. Concurrent Zero-Knowledge with Timing — Revisited. In 3/th STOC, pages
332-340, 2002.

[22] O. Goldreich. Foundation of Cryptography — Basic Tools. Cambridge University Press, 2001.

[23] O. Goldreich and A. Kahan. How to Construct Constant-Round Zero-Knowledge Proof Sys-
tems for NP. Jour. of Cryptology, Vol. 9, No. 2, pages 167-189, 1996.

[24] O. Goldreich and H. Krawczyk. On the Composition of Zero-Knowledge Proof Systems. SIAM
J. Computing, Vol. 25, No. 1, pages 169-192, 1996.

[25] O. Goldreich, S. Micali and A. Wigderson. Proofs that Yield Nothing But Their Validity or
All Languages in NP Have Zero-Knowledge Proof Systems. JACM, Vol. 38, No. 1, pp. 691-729,
1991.

[26] O. Goldreich, S. Micali and A. Wigderson. How to Play any Mental Game — A Completeness
Theorem for Protocols with Honest Majority. In 19th STOC, pages 218-229, 1987.

[27] O. Goldreich and Y. Oren. Definitions and Properties of Zero-Knowledge Proof Systems. Jour.
of Cryptology, Vol. 7, No. 1, pages 1-32, 1994.

[28] S. Goldwasser, S. Micali and C. Rackoff. The Knowledge Complexity of Interactive Proof
Systems. SIAM J. Comput., Vol. 18, No. 1, pp. 186208, 1989.

[29] S. Goldwasser, S. Micali and R.L. Rivest. A Digital Signature Scheme Secure Against Adaptive
Chosen Message Attacks. SIAM J. Comput., Vol. 17, No. 2, pp. 281-308, 1988.

[30] S. Hada and T. Tanaka. On the Existence of 3-Round Zero-Knowledge Protocols. In Crypto98,
Springer LNCS 1462, pages 408423, 1998.

[31] D. Harnik, M. Naor, O. Reingold and A. Rosen. Completeness in Two-Party Secure Compu-
tation Revisited. Unpublished manuscript.

[32] J. Hastad, R. Impagliazzo, L.A. Levin and M. Luby. Construction of Pseudorandom Generator
from any One-Way Function. SIAM Jour. on Computing, Vol. 28 (4), pages 1364-1396, 1999.

BIBLIOGRAPHY 119

[33] J. Kilian. A Note on Efficient Zero-Knowledge Proofs and Arguments. In 24th STOC, pages
723732, 1992.

[34] A. Joffe. On a set of Almost Deterministic k-Independent Random Variables. The annals of
Probability, 1974, Vol. 2, No. 1, pages 161-162.

[35] J. Kilian and E. Petrank. Concurrent and Resettable Zero-Knowledge in Poly-logarithmic
Rounds. In 3%rd STOC, pages 560-569, 2001.

[36] J. Kilian, E. Petrank, and C. Rackoff. Lower Bounds for Zero-Knowledge on the Internet. In
39th FOCS, pages 484-492, 1998.

[37] M. Naor. Bit Commitment using Pseudorandomness. Jour. of Cryptology, Vol. 4, pages 151—
158, 1991.

[38] M. Naor, R. Ostrovsky, R. Venkatesan and M. Yung. Zero-Knowledge Arguments for NP can
be Based on General Assumptions. Jour. of Cryptology, Vol. 11, pages 87-108, 1998.

[39] M. Naor and M. Yung. Universal One-Way Hash Functions and their Cryptographic Applica-
tions. In 21st STOC, pages 33-43, 1989.

[40] R. Pass and A. Rosen. Bounded-Concurrent Secure Two-Party Computation in a Constant
Number of Rounds. To appear in FOCS 2003.

[41] M. Prabhakaran, A. Rosen and A. Sahai. Concurrent Zero-Knowledge with Logarithmic Round
Complexity. Proceedings of the 43rd annual IEEE symposium on Foundations of Computer
Science (FOCS 2002), 2002.

[42] R. Richardson and J. Kilian. On the Concurrent Composition of Zero-Knowledge Proofs. In
EuroCrypt99, Springer LNCS 1592, pages 415-431, 1999.

[43] A. Rosen. A note on the round-complexity of Concurrent Zero-Knowledge. In Crypto2000,
Springer LNCS 1880, pages 451-468, 2000.

[44] C.P. Schnorr. Efficient Signature Generation by Smart Cards. Jour. of Cryptology Vol. 4 (3),
pages 161-174, 1991.

[45] A. Yao. How to Generate and Exchange Secrets. In 27th FOCS, pages 162167, 1986.

