
Deterministic Amplification of Space-Bounded Probabilistic Algorithms

Ziv Bar-Yossef
Department of Electrical Engineering

and Computer Science
U.C. Berkeley

Berkeley, CA 94720
zivi@cs.berkeley.edu

Oded Goldreich
Department of Computer Science

and Applied Mathematics
Weizmann Institute of Science

Rehovot 76100, Israel
oded@wisdom.weizmann.ac.il

Avi Wigderson
Institute of Computer Science

The Hebrew University of Jerusalem
Jerusalem 91904, Israel

avi@cs.huji.ac.il

Abstract

This paper initiates the study of deterministic ampli-
fication of space-bounded probabilistic algorithms. The
straightforward implementations of known amplification
methods cannot be used for such algorithms, since they con-
sume too much space. We present a new implementation
of the Ajtai-Komlós-Szemerédi method, that enables to am-
plify an S-space algorithm that uses r random bits and errs
with probability � to an O(kS)-space algorithm that usesr +O(k) random bits and errs with probability �
(k).

This method can be used to reduce the error probability
of BPL algorithms below any constant, with only a con-
stant addition of new random bits. This is weaker than the
exponential reduction that can be achieved for BPP algo-
rithms by methods that use only O(r) random bits. How-
ever, we prove that any black-box amplification method that
uses O(r) random bits and makes at most p parallel simu-
lations reduces the error to at most �O(p). Hence, in BPL,
where p should be a constant, the error cannot be reduced
to less than a constant. This means that our method is op-
timal with respect to black-box amplification methods, that
use O(r) random bits.

The new implementation of the AKS method is based on
explicit constructions of constant-space online extractors
and online expanders. These are extractors and expanders,
for which neighborhoods can be computed in a constant
space by a Turing machine with a one-way input tape.

1 Introduction

1.1 Deterministic amplification

A probabilistic algorithm for a language L � f0; 1g�
is an algorithm that may use random bits during its execu-
tion and determines in the end whether the input belongs to
the language or not. We consider Monte-Carlo algorithms,
which are probabilistic algorithms that are allowed to err on
their input with some constant probability 0 < � < 12 .

A natural question that emerges when dealing with
Monte-Carlo algorithms is how to reduce their error prob-
ability (to amplify the success of the algorithm). A naive
approach would suggest to run the algorithm k times inde-
pendently and take the majority vote of the results. This
would yield a Monte-Carlo algorithm that errs with proba-
bility �
(k). However, the number of random bits the new
algorithm uses is k times the number of random bits used
originally.

More involved methods are required for achieving a sim-
ilar descent in the error probability without “paying” in so
many random bits. These methods enable deterministic am-
plification of the probabilistic algorithm; that is, reducing
the algorithm’s error probability while adding only a small
number of new random bits.

All amplification methods are based on a black-box simu-
lation. The general framework of these methods can be out-
lined as follows. Denote by A the original Monte-Carlo al-
gorithm, by � its error probability and by r the number of
random bits it uses. An (l; r; k)-black-box simulator is a
meta algorithm, to which A is plugged in as a subroutine.



The simulator runs A k times on its input x and outputs the
majority vote of the results.1 The “heart” of the simulator is
the mechanism in which it produces the k r-bit strings, that
are supplied as random bits for the k executions of A. The
simulator uses a special combinatorial object, called extrac-
tor, which is a function that receives a random seed of lengthl and produces k pseudo-random strings of length r. The
simulator is further called a (�; �)-amplifier, if it “fools” the
copies of A, such that the error probability drops to � < �.
1.2 BPP amplificationBPP is the class of languages that are recognized by
polynomial-time Monte-Carlo algorithms. For this class
there exist very good amplification methods, that achieve
dramatic (up to exponential) reductions in the error proba-
bility with a small addition of random bits.

Karp, Pippenger and Sipser [8] and Chor and Goldre-
ich [2] exhibited two methods that use an optimal number
of random bits (r and 2r respectively) and reduce the error
probability linearly with the number of simulations k. Im-
pagliazzo and Zuckerman [6] succeeded to achieve an ex-
ponential reduction in the error probability (i.e., 2�
(k)), but
they require the use of additional k2 random bits. If we insist
on using an optimal number of random bits (i.e., O(r)), this
results in only a subexponential amplification of 2�
(pr).
Nisan [10] improved on this by presenting an exponential
amplification in the cost of a logk factor in the number of
random bits.

Cohen and Wigderson [3] and Impagliazzo and Zucker-
man [6] independently noticed that a result of Ajtai, Komlós
and Szemerédi [1] can be used to form an amplifier that re-
duces the error probabilityexponentially to 2�
(k) while us-
ing only r +O(k) random bits. Hence, this method is opti-
mal up to a constant for BPP amplifications.

The construction of AKS is based on expander graphs.
These are graphs with a very high connectivity. Random
walks on such graphs rapidly yield almost uniform distribu-
tions on the nodes. Since there are expanders with a constant
degree, they are useful for generating almost uniform distri-
butions using a small number of random bits.

Given a d-regular expander G on 2r nodes, the AKS am-
plifier produces a random walk v1; : : : vk of length k, that
starts at a random node v 2 G. v1; : : : ; vk are used as ran-
dom strings for the k simulations of A. The number of ran-
dom bits used is r (for the starting point) + k log d (for de-
termining the walk), which is r+O(k), while the error prob-
ability drops exponentially in k.

1For some applications it is better to perform a different function on thek results. Refer to [5] for examples.

1.3 Amplification of space-bounded computations

The randomness of a probabilistic algorithm may be
thought as the ability to flip an unbiased coin at each stage
of its execution. Frequently it is more convenient to think of
the results of these coin flips as given to the algorithm in ad-
vance on a special random tape. Note that in the first charac-
terization the algorithm may not recall previous random bits
unless it explicitly saves them on its work tape, where in the
second one it has a multiple access to the random bits with-
out “paying” for additional space. Therefore, the two char-
acterizations are equivalent only when the algorithm’s space
is unbounded (e.g. in BPP ). In space-bounded classes we
may use the second characterization only if we restrict the
random tape to be one-way.

This paper is the first to study deterministic amplifica-
tion of space-bounded Monte-Carlo algorithms, that have a
read-once access to their random tape. In particular we con-
sider amplification for the class BPL, which consists of the
languages recognized by logspace polynomial-time Monte-
Carlo algorithms with a one-way random tape.

For amplifying such algorithms we need amplifiers that
can compute the k pseudo-random strings and use them in
the simulations within the same space limits of the original
algorithm. All the mentioned above amplifiers, except for
the naive one, require multiple access to their random seed
during the computation. Therefore, a straightforward imple-
mentation of any of these amplifiers should store the seed on
the work tape. However, the length of this seed may be ex-
ponential in the space limits of the algorithm.

Thus, a different approach is needed in order to utilize
the above amplifiers for a space-bounded amplification. We
look for a non-trivial implementation of one of these ampli-
fiers that computes the pseudo-random strings without stor-
ing the random bits of the seed in the work space. Our first
main result succeeds to do so for the AKS amplifier.2 The
result requires the use of special expanders, for which neigh-
borhoods can be computed in a small space on a Turing ma-
chine with a read-once access to its input tape. Our main
lemma (Lemma 3.4) proves that, under a suitable encoding,
the expander of Margulis [9] has this property. Computing
a neighbor at this expander requires making a few summa-
tions modulo a power of 2. When choosing a proper encod-
ing for the nodes, the summations can be carried out with a
single pass on the input, while using only a constant space.
Hence, in this expander one can compute the ith bit of all the
nodes in a k-length random walk, using a constant space per
node. Therefore, we should keep only O(k) bits from stage
to stage. The amplifier executes simultaneously k copies of

2We also found a new implementation for the KPS amplifier, that en-
ables to use it for space-bounded amplifications. However, this implemen-
tation has no advantage on AKS, and reduces the error only linearly withk.



the original algorithm. At each stage k random bits are gen-
erated and supplied to the k copies. This yields a Monte-
Carlo algorithm that reduces the error probability to �
(k),
adds O(k) random bits and uses k times the space used by
the original algorithm.

By choosing an arbitrarily large (but still constant) k we
obtain the next positive result:

Theorem (BPL Amplification – Positive Result): For
any constant 0 < � < �, there exists an (explicitly given)(r + O(k); r; k)-black-box simulator, which is a (�; �)-
amplifier and can be used for BPL amplification.

The technical result that implies this theorem is a con-
struction of a small-space online extractor, as described in
the next section.

The deterministic amplification we achieve for space-
bounded classes is not as good as the known amplification
methods for time-bounded classes. Our amplifier succeeds
to achieve only a constant reduction of the error probabil-
ity, since the amount of space it uses grows linearly with the
number of simulations k. This connection is a direct result
of our strategy: we make the simulations in parallel and not
sequentially, as was done in previous methods.

A natural question is whether a non-constant reduction
can be achieved also for space-bounded computations, while
keeping the number of random bits small (e.g. O(r)). For
being able to obtain such a reduction with a black-box am-
plifier, one has to present a method that makes at most a con-
stant number of parallel simulations at any given moment.
Our lower bound shows this is not possible.

We prove that if a black-box amplifier, that uses O(r)
random bits, makes at most p parallel simulations, then
the error probability drops to at most �O(p). Since inBPL amplifications we can make only a constant number
of parallel simulations we obtain the following lower bound:

Theorem (BPL Amplification – Negative Result): For
any (�; �)-amplifier, that runs on an (O(r); r; k)-black-box
simulator and that can be used for BPL amplification, it
holds that � � �O(1).

Again, the technical result that implies this theorem is a
combinatorial lower bound on the structure of small-space
online extractors, as described in the next section.

This result shows that our implementation of the AKS
amplifier is optimal with respect to black-box amplifiers forBPL, that use O(r) random bits.

1.4 Online extractors and online expanders

The notion of extractors [13] is closely related to de-
terministic amplification. (l; r; k)-bipartite graphs are ones

with 2l nodes on the left side, each with degree k, and2r nodes on the right side. Such graphs are called (�; �)-
extractors, if for any distribution on the left that is uniform
on some subset of size �2l, the induced distribution on the
right (where the neighbor index is chosen uniformly at ran-
dom) is �-close to uniform (where the distance is the statis-
tical distance between distributions, which is half of the L1
distance).

Extractors have many applications in theoretical com-
puter science. The most celebrated ones are simulation
of randomized algorithms using defective random sources,
oblivious sampling, proofs of hardness results and conver-
sion of probabilistic existence proofs to explicit construc-
tions. Refer to [12] for a survey about extractors.

Our main interest is in the connection of extractors to de-
terministic amplification. It turns out that black-box ampli-
fiers are equivalent to weak extractors,3, a slightly weaker
notion than extractors. An (l; r; k)-bipartite graph is called
a (�; �)-weak extractor if for any pair of sets (U;W ), whereU is a subset of the left side of size� �2l, and W is a subset
of the right side that contains at least k2 neighbors of eachy 2 U , it holds that jW j � �2r. Every (l; r; k)-bipartite
graph can be used to construct an (l; r; k)-black-box simu-
lator and vice versa. Furthermore, the graph is a (�; �)-weak
extractor iff the simulator is a (�; �)-amplifier. If an (l; r; k)-
bipartite graph is a (�; �)-extractor it is also a (�; 12��)-weak
extractor. This implies that extractors too are useful for de-
terministic amplification.

The complexity of computing neighborhoods in a weak
extractor determines the efficiency of the resulting ampli-
fier and its applicability to specific classes of randomized
algorithms. For example, in order to use a weak extractor
in the amplification of polynomial-time randomized algo-
rithms, neighborhoodsshould be computed in a polynomial-
time.

We are interested in amplifiers that are applicable for
space-bounded algorithms. Hence, we seek weak extrac-
tors, in which neighborhoods can be computed with a small
space. The neighborhoods are computed on a Turing ma-
chine with a one-way input tape and k one-way output tapes.
When the machine is given a node on the left of a weak ex-
tractor, it outputs its k neighbors, one neighbor per output
tape. An output tape is called alive at time t, if there is some
data that was already written on it, and there is still more to
be written until the execution ends. The machine is calledp-parallel, if p is the maximal number (over all inputs) of
living output tapes at any given moment. An (S; p)-explicit
online weak extractor is one that has an S-space p-parallel
neighborhood-computationmachine. A black-box amplifier
can run such a machine, by supplying it input from its one-
way random tape and using its output bits as random bits for
thek simulations. If the original algorithmA uses SA space,

3Also known as majority dispersers. Refer to [3].



then the amplifier is an O(S + pSA)-space algorithm.
Therefore the next construction yields the positive result

for amplifiers stated in the previous section:

Theorem (Weak Extractors – Positive Result): For any
constant 0 < � < 116 there exists an (explicitly given)(O(k); k)-explicit online (r + O(k); r; k)-bipartite graph,
which is an (�
(k); �)-weak extractor.

The main tool in this construction is showing that,
under a suitable encoding, the expander of Margulis is
a constant-space online expander. Online expanders are
ones, for which neighborhoods can be computed by a
Turing machine with a one-way input tape. This is the first
known example of such expanders:

Theorem (Online Expanders): Fix any natural numberw � 2. Then, for a varying r there exists a constant-space
online family of expanders on w2r vertices.

On the other hand, a p-parallel S-space black-box
amplifier results in an (S; p)-explicit weak extractor. The
following lower bound shows that in small-space online(�; �)-weak extractors � goes down with the parallelism p
and not with the degree k. This implies the negative result
for amplifiers stated in the previous section.

Theorem (Weak Extractors – Negative Result): For any
constant � and for any ( r4 ; p)-explicit online (O(r); r; k)-
bipartite graph which is a (�; �)-weak extractor, it holds that� � 2�O(p).
1.5 Conclusions

This paper presents an amplification method for space-
bounded computations, which is proven to be optimal with
respect to black-box methods. This does not mean that other
methods, which may utilize properties of space-bounded
randomized algorithms, cannot do any better. It is plausi-
ble that non black-box methods may achieve better than a
constant reduction of the error probability.

Randomization in space-bounded computations seems to
be better understood than in time-bounded computations:
Specifically, utilizing the structure of space-bounded com-
putations, unconditional results such as BPL � SC (by
Nisan [11]) and BPL � L 32 (by Saks and Zhou [15]) were
obtained. It is thus plausible that, utilizing the structure of
space-bounded computations, one may do better than black-
box amplification.

On the other hand, if BPL = L then the entire question
(of amplification of BPL algorithms) is mute. Yet, trying to
come-up with better amplification of BPL algorithms may
be a fruitful avenue towards trying to prove that BPL = L.

1.6 Paper overview

Section 2, Definitions, presents the models we are work-
ing with: Monte-Carloalgorithms, black-box amplifiers and
weak extractors. It outlines the close connection between
the two latter notions.

Section 3, Formal statement of results, presents the list of
results obtained in this paper.

Section 4, The upper bound, presents the construction
of the (O(k); k)-explicit online weak extractor. It begins
by a short review of expander graphs, proves that, under a
suitable encoding, the expander of Margulis is a constant-
space online expander and ends by presenting the mentioned
above construction.

Section 5, The lower bound, proves the lower bound for
small-space online weak extractors.

2 Definitions

This section sets the framework of our discussion
throughout the paper. It begins by a short review of
Monte-Carlo algorithms. It introduces the notion of
black-box amplifiers, which is the model we consider for
deterministic amplification. It presents weak extractors
and their equivalence to black-box amplifiers. Finally, it
discusses the applicability of amplifiers to amplification
of specific classes and its relation to the complexity of
neighborhood-computation in weak extractors.

During the discussion we use the convention that space
is counted in binary, and accounts also for the machine state
and the positions of the heads. Hence, the maximal number
of configurations an S-space machine has is exactly 2S.

2.1 Black-box amplification of Monte-Carlo algo-
rithms

Definition 2.1 An (r; �)-Monte-Carlo algorithm for a
language L (where 0 < � < 12 is some constant) is a ran-
domized algorithm A with a one-way random tape, that on
inputs of length n uses r = r(n) random bits, and satisfies
for all inputsx: Pry2Rf0;1gr [A(x; y) 6= �L(x)] < � (where�L is the characteristic function of L).

This paper discusses two randomized complexity classes.BPP is the class of languages computed by Monte-Carlo
algorithms that run in a polynomial-time. BPL is the class
of logspace polynomial-time Monte-Carlo algorithms. We
stress the one-way access of the algorithms to their random
tape. Hence, they cannot recall previous random bits unless
they explicitly store them in the work space.

The model for all amplification methods is black-box
simulation. A black-box simulator M is a generic algo-
rithm, into which any Monte-Carlo algorithm B can be



plugged in, yielding an algorithm MB. M runs k copies ofB and outputs the majority vote of the results. M gets r,
the number of random bits used by B, as input. It generatesk bit-strings, each of length r, and supplies them as random
bits for the simulations ofB. For the generation of these bit-
strings M uses l = l(r) random bits.B already comes with its input. B can be thought as the
computation of a Monte-Carlo algorithm A on an input x.
Therefore, at any given configuration of B, only the random
bit it reads determines to which of two possible configura-
tions it should move.M is not an oracle machine with respect to B itself, but
rather to its transition function. The transition function, de-
noted by fB , maps pairs of the form (u; b), where u is a con-
figuration ofB and b is a bit, to the configuration v, to whichB moves from u after reading the random bit b.

For making sure M uses the queries to fB to form le-
gal executions ofB, we impose several restrictions on these
queries. First, M is restricted to query fB with either an ini-
tial configuration or with a configuration returned by a previ-
ous call to fB . Each query is labeled by a number. When M
queries fB with an initial configuration, it labels the query
with a new number. When it queries fB with a configura-
tion returned from a previous call to fB , it labels the new
query with the number of the query that returned this config-
uration. A sequence of queries labeled by the same number
forms a single simulation ofB. Hence, the number of query
labelsM uses is the number of simulations it makes (i.e., k).

The steps, at whichM calls the oracle fB , are called sim-
ulationsteps. The rest are called computation steps. We fur-
ther postulate that during the computation steps M has no
access to any of the configurations ofB. This means that the
computation steps ofM are not affected by the choice of the
algorithmB, because all it sees from every algorithm B we
plug in is a sequence of r requests for random bits. Hence,
fixing r and the random string y 2 f0; 1gl(r) uniquely de-
termines the computation steps of M .

Definition 2.2 An (l; r; k)-black-box simulator (wherek = k(r) and l = l(r)) is an algorithm M as speci-
fied above. M is further called a (�; �)-amplifier (where� = �(�; r)), if for any (r; �)-Monte-Carlo algorithmB the
machineM fB is an (l; �)-Monte-Carloalgorithm. In the se-
quel, we use MB as shorthand for M fB .

Without loss of generality, we assume that M stores the
last configuration reached in each simulation (which is the
configuration returned by the last query labeled by the sim-
ulation number). The reason is that if M manages to store
less bits than those required for holding the configuration
(for every configuration), and then succeeds to restore the
configuration before the next call to fB, then there is some
shorter description of the configurations of B. If the encod-
ing of B’s configurations is chosen to be the most efficient

one, then this is not possible.
We call the space used byM during its computation steps

the private storage. The space used for holding the config-
urations of the currently executed simulations is called the
simulation storage.

Definition 2.3 A simulation made by a black-box simula-
torM is called active at time t, if M holds an intermediate
(not accepting or rejecting) configuration of this simulation
at time t. M is calledp-parallel, if p is the maximal number
(over all inputs and all time steps) of active simulationsM
has.

If the private storage of a black-box simulator M is S, it
is p-parallel and the space used by B is SB , then MB usesO(S+ pSB) space. Hence, the parallelism of a simulator is
an important factor in estimating its space requirements.

Definition 2.4 A simulatorM is called (S; p)-efficient, if
it is p-parallel and uses S private space.

The next definition determines when a simulator can be used
for amplification of algorithms of a specific class:

Definition 2.5 Let C be some randomized complexity class.
A simulator M is called C-applicable if for any algorithmB 2 C it holds that MB 2 C.

We are interested in BPL-applicable amplifiers. It is
easy to see that such amplifiers should be (O(log r); O(1))-
efficient.4 The naive amplifier described in the intro-
duction reduces the error probability exponentially and is(O(log r); 1)-efficient, thus is BPL-applicable. However,
it consumes a lot of random bits (i.e., kr). The other am-
plifiers mentioned in the introduction also manage to reduce
the error substantially, and even with a small number of ran-
dom bits. Unfortunately, the straightforward implementa-
tions of these amplifiers are only (O(r); 1)-efficient, hence
are notBPL-applicable. We look for an amplifier that keeps
both the space and the number of random bits small.

2.2 Weak extractors

Note that black-box amplifiers utilize the original algo-
rithm only through its output interface and not by analysis
of the way it works. This observation results in a combina-
torial characterization of black-box amplifiers.

Definition 2.6 An (l; r; k)-bipartite graph is a bipartite
graph, whose left side is V1 = f0; 1gl, its right side isV2 = f0; 1gr and each node in V1 is of degree k.

4BPL-applicable amplifiers should also run in a polynomial-time.
However, time is not a crucial issue in this discussion. It is easy to verify
that all the amplifiers we consider run in a polynomial-time.



Consider an (l; r; k)-black-box simulator M and fix a
number r and a random string y of length l = l(r). The
computation steps ofM are uniquely determined by r and y.
It follows that the bit strings that are supplied to the k simu-
lations as random bits are functions of r and y only. Denote
these strings by y1; : : : ; yk. We define an (l; r; k)-bipartite
graph GM;r as follows: V1 corresponds to all the possible
random strings of length l = l(r) fed to M , when its in-
put is r. V2 corresponds to all the possible random strings of
length r fed to an r-bit Monte-Carlo algorithm. Each nodey 2 V1 is connected to the nodes y1; : : : ; yk 2 V2.

The being of M a (�; �)-amplifier translates to a combi-
natorial property of GM;r.

Definition 2.7 An (l; r; k)-bipartite graph is called a(�; �)-weak extractor if for every subset W � V2, wherejW j < �2r, the set fy 2 V1 : j�(y) \W j � k2g is of size< �2l, where �(y) is the neighbor-set of y.

Lemma 2.8 M is an (l; r; k)-black-box simulator if and
only if for all r the graph GM;r is an (l; r; k)-bipartite
graph. Furthermore, M is a (�; �)-amplifier iff for all r the
graph GM;r is a (�; �)-weak extractor.

The proof of this lemma is fairly simple, and can be found
in [12].

Weak extractors were introduced by Cohen and Wigder-
son in [3] (they called them majority dispersers), and they
lie between the two more familiar notions of extractors and
dispersers.

Definition 2.9 An (l; r; k)-bipartite graph is called a(�; �)-extractor if for every subset U � V1, wherejU j � �2l, when choosing at random a node from U
and then a random neighbor of this node, the induced
distribution on the right is �-close to uniform.

Definition 2.10 An (l; r; k)-bipartite graph is called
a (�; �)-disperser if for every subset U � V1,
where jU j � �2l, it holds that j�(U )j � �2r, where�(U ) = [u2U�(u).

We should note that these notations deviate from the stan-
dard definitions in a few technical non significant details.5

Our choice best illustrates the connection to amplification
exhibited in Lemma 2.8.

If an (l; r; k)-bipartite graph is a (�; �)-extractor then it is
also a (�; 12 � �)-weak extractor, and if it is a (�; �)-weak ex-
tractor then it is a (�; �)-disperser. Hence, extractors are use-
ful in constructing black-box amplifiers, and analysis of dis-
persers may shed light on the limitations of black-box am-
plifiers. Moreover, dispersers are equivalent to black-box

5k is usually the logarithm of the left degree and � is the min-entropy
of the distribution on the left.

amplifiers that perform an OR function on the results of the
simulations. Such amplifiers are useful in amplification of
one-sided-error Monte-Carlo algorithms.

2.3 Bipartite graph explicitness

The equivalence between black-box simulators and bi-
partite graphs can be used in the context of simulator appli-
cability too. Explicit bipartite graphs (ones in which neigh-
borhoods are easy to compute) yield efficient simulators and
vice versa.

We begin by introducing two new Turing machine vari-
ants:

Definition 2.11 An online Turing machine is a Turing ma-
chine with a one-way read-only input tape.

Definition 2.12 A k-output Turing machine is a Turing
machine that has k one-way write-only output tapes. The
machine has a special address tape, from which it takes the
index of the output tape to be accessed next.

Such a machine computes a function f : f0; 1g� !(f0; 1g�)k, where the ith coordinate of the output is written
on the ith output tape. The machine needs the special ad-
dress tape, since k is allowed to grow with the input length.
For space calculations this tape is considered as a work tape,
hence the machine is charged for the space it consumes.

We present below notions that correspond to active sim-
ulations and simulator parallelism in the setting of k-output
machines. k-output machines will be used later to com-
pute the k neighbors of a node on the left of an (l; r; k)-
bipartite graph. These neighbors will be used by a simulator
as pseudo-random strings for the simulations of the original
algorithm. A simulation is active if it received some of its
random bits but not all of them. This happens exactly when
the corresponding output tape contains some of the bits, that
should be written on it, but not all of them. This is the mo-
tivation for the next definition:

Definition 2.13 Fix an input y for a k-output machine, and
consider its execution on this input. We denote by tyi;start
and tyi;end the time steps in which the first and the last bits

(respectively) are written on the ith output tape. We say that
this tape is alive at time t on the input y if tyi;start � t �tyi;end.

Definition 2.14 A k-output machine is called p-parallel, ifp is the maximal (over all inputs y and all time steps t) num-
ber of living output tapes.

Definition 2.15 An online k-output machine is called(S; p)-efficient, if it is p-parallel and uses S space.

We are now ready for the explicitness definition:



Definition 2.16 A family of (l; r; k)-bipartite graphs fGrg
(where l = l(r) and k = k(r)) is called (S; p)-explicit,
if there is an (S; p)-efficient k-output machine NG (called
the neighborhood machine) with two input tapes: a two-
way input tape on which it gets the parameter r and a one-
way input tape on which it gets a node v on the left side ofGr. NG outputs thek neighbors of v on its output tapes, one
neighbor per tape.

Note that there is no requirement that the ith neighbor
will be written on the ith output tape. Any permutation of
the neighbors is acceptable.

The next theorem demonstrates the equivalence between
bipartite graph explicitness and simulator efficiency. This,
together with Lemma 2.8, enables us to concentrate on the
study of weak extractors, and obtain conclusions about am-
plifiers.

Theorem 2.17 (Equivalence Theorem) For S � logk
an (l; r; k)-black-box simulator M is (O(S); p)-efficient if
and only if the family of (l; r; k)-bipartite graphs fGM;rg is(O(S); p)-explicit.

Proof: Assume M is (O(S); p)-efficient. We construct an(S; p)-efficient neighborhood algorithm NG for the familyfGM;rg, which is based on M . When given r on its two-
way input tape and y on its one-way input tape, NG runsM , while supplying it r as input and y as a random string.NG ignores the simulation steps of M . When M submits
a random bit to the ith simulation,NG writes this bit on itsith output tape. It can be easily verified that NG computes
neighborhoods in GM;r.NG follows the computation steps of M accurately.
Hence, it uses the same space (O(S)). Moreover, NG’s
schedule for its output tapes is the same as M ’s schedule for
its simulations. Therefore, at any given moment the num-
ber of living output tapes NG has is identical to the num-
ber of active simulations M has. It follows that since M
is p-parallel then so is NG. We conclude that fGM;rg is(O(S); p)-explicit.

The opposite direction is quite similar. 2
3 Formal statement of results

This paper has two main results. The first one shows that
the AKS weak extractor is (O(k); k)-explicit. This is the
first construction of a small-space online weak extractor.

Theorem 3.1 (Upper Bound) Fix any constant 0 < � <116 . Then, for any k = k(r) there exists an (O(k); k)-
explicit family of (r+O(k); r; k)-bipartite graphs, that are(�
(k); �)-weak extractors.

Using Lemma 2.8 and the Equivalence Theorem (Theo-
rem 2.17) we obtain a first example for amplifiers which use
both a small space and a small number of random bits:

Corollary 3.2 (Space Efficient Amplifiers) Fix any con-
stant 0 < � < 116 . Then, for any k = k(r) there exists
an (O(k); k)-efficient (r+O(k); r; k)-black-box simulator,
which is an (�
(k); �)-amplifier.

The restriction on � is not a significant obstacle, since if
the original algorithm has a higher error probability, we can
repeat it a constant number of times and take the majority
vote of the answers. Using the amplifier with this repeated
algorithm would change our estimations by a constant factor
only.

Since this amplifier uses only O(k) space and runs at
most k parallel simulations, then for a constant k it isBPL-
applicable:

Corollary 3.3 For any two constants 0 < � < � < 116
there exists a BPL-applicable (r + O(1); r; O(1))-black-
box simulator, which is a (�; �)-amplifier.

The main tool in the efficient weak extractor construc-
tion is a constant-space online expander. The main lemma
proves that, under a suitable encoding, neighborhoods in
the expander of Margulis [9] can be computed in a constant
space on an online Turing machine. This result is interesting
for itself:

Lemma 3.4 Fix any natural number w � 2. Then, for a
varying r there exists a family of constant-space online ex-
pander graphs on w2r vertices.

The amplifier we presented cannot achieve more than
a constant reduction of the error probability for BPL al-
gorithms, since this probability goes down with k, and k
is bounded to be a constant due to the space limitations.
Our second main result shows that this construction is op-
timal with respect to BPL-applicable black-box amplifiers
that use O(r) random bits. The result derives from a lower
bound on � in dispersers that are small-space-explicit. The
lower bound shows that in such dispersers � goes down with
the disperser parallelism and not with the degree k:

Theorem 3.5 (Lower Bound) For constants 0 < � < 12
and f � 4, for any c = c(r), k = k(r) < 2 rf , � = �(r) and
for an ( rf ; p)-explicit family of (cr; r; k)-bipartite graphs,

that are (�; �)-dispersers, it holds that � � 2�O(q), whereq = pcf .

Using Lemma 2.8 and the Equivalence Theorem we obtain
the following conclusion for space-bounded amplification:

Corollary 3.6 For a constant �, for any k = k(r), � = �(r)
and for a BPL-applicable (O(r); r; k)-black-box simula-
tor, which is a (�; �)-amplifier, it holds that � � �O(1).



4 The upper bound

This section presents the construction of (O(k); k)-
explicit online weak extractors. The main tool in the con-
struction is constant-space online expanders.

The section begins by a review of expander graphs, a
presentation of the Margulis construction and a definition
of online expanders. It presents an encoding for the Mar-
gulis construction, under which it is a constant-space online
expander. Then, it proves that raising a constant-space on-
line expander to a constant power yields a better expander,
which is still constant-space and online. Finally, it shows
the AKS weak extractor is (O(k); k)-explicit, by presenting
a neighborhood algorithm that uses a constant-space online
expander.

4.1 Expander graphs

We call a graph G a -expander if every subset S of at
most half of its nodes has a neighborhood of size at least(1+)jSj.6 There is a strong connection between the expan-
sion factor () of an expander graph and the second eigen-
value of its adjacency matrix. Let M be the adjacency ma-
trix of an expander graph G and let �1; : : : ; �N be its N
eigenvalues in a decreasing order of absolute values. It turns
out that the smaller the ratio j�2jd the greater the expansion
factor. Therefore, the second eigenvalue is sometimes used
to measure the expansion quality of a graph. Furthermore,�2 is the actual parameter which matters in the AKS con-
struction (employed below).

Definition 4.1 An undirected multi-graphG on N vertices
is called an (N; d; �)-expander if it is d-regular and the
absolute value of the second eigenvalue of its adjacency ma-
trix is �.

Margulis [9] introduced a family of graphs fGNg for in-
tegers N that have an integer square root m. Let T1 and T2
be 2 � 2 matrices over the ring Zm and let b1 and b2 be 2-
dimensional vectors overZm. We define two affine transfor-
mations: A1z = T1z + b1 and A2z = T2z+ b2. The vertex
set of GN is Zm � Zm. Each node is a pair (x; y) wherex; y 2 Zm. (x; y) is connected to T1�xy�; A1�xy�; T2�xy� andA2�xy�.GN is an 8-regular graph. Margulis proved that its sec-
ond eigenvalue is less than 8, hinting it may be a good ex-
pander. However, he did not achieve a bound on the ratio �d .
Gabber and Galil [4] were the first to present such a bound.
Jimbo and Maruoka [7] obtained the best estimation known
for the second eigenvalue of this graph:

6Actually, the standard definition requires the neighborhood set to be of

size at least (1 + (1� 2jSjjGj ))jSj.

Theorem 4.2 (Margulis, Gabber–Galil, Jimbo–Maruoka)

The graph GN with T1 = � 1 10 1 �
, b1 = � 10 �

,T2 = � 1 01 1 �
and b2 = � 01 �

is an (N; 8; 5p2)-
expander graph.

We will need expander graphs which are easy to com-
pute by space-bounded algorithms that have a read-once ac-
cess to their input tape. For this we introduce the next no-
tion of online graphs. These are graphs in which neigh-
borhoods can be computed on an online machine with a
bounded space. An online graph of order q is one, on which
walks of length q are computable by space-bounded online
machines.

Definition 4.3 A family of d-regular multi-graphsfFNg onN vertices is calledS-space online of order q if the follow-
ing hold:7

1. There exists an encoding eV for the vertex set of FN by
binary strings of length O(logN ).

2. There exists an encoding ed for f1; : : : ; dg by binary
strings of length O(log d).

3. There is an S-space q-output online machine R
(called the order-q neighborhood machine),
that on input (ed(j1); : : : ; ed(jq); eV (v)), wherej1; : : : ; jq 2 f1; : : : ; dg and v is a node in FN ,
outputs eV (v1); : : : ; eV (vq) on its q output tape (one
node per tape), where v1; : : : ; vq are the nodes in
the walk on FN that starts at v and is specified byj1; : : : ; jq.8

Some applications require highly expanding graphs. We
presented a construction that has a relatively moderate ex-
pansion factor. It is standard to increase expansion by look-
ing at powers of the graph.

Definition 4.4 Given a graph G whose adjacency matrix isM , define the qth power of G (denoted by G(q)) to be the
multi-graph whose adjacency matrix is M q.

Proposition 4.5 Let G be an (N; d; �)-expander. ThenG(q) is an (N; dq; �q)-expander.

We leave the proof of this simple proposition to the reader.

4.2 Main lemmas

The following is the main lemma of the upper bound. It
exhibits an encoding for the expander of Margulis, under
which it is an online constant-space graph:

7When a graph is online of order 1, we call it simply an online graph.
8v0 = v and vi is the jthi neighbor of vi�1 .



Lemma 4.6 (Lemma 3.4 restated) Fix any natural num-
ber w � 2. Then, for a varying r the Margulis expander
family (of Theorem 4.2), fGw2rg, is constant-space online.

Proof: The encoding we present for the Margulis family
uses an alphabet of sizew. For simplicity we assume w = 2,
in which case we can use a binary alphabet.

Every node in G22r corresponds to a pair (x; y), wherex; y 2 Z2r . We encode a node by the sequencex1; y1; x2; y2; : : : ; xr; yr, where x1 and y1 are the least sig-
nificant bits of x and y respectively, and xr and yr are their
most significant bits. The neighbor indices f1; : : : ; 8g are
encoded standardly.

Fix an input (ed(j); eV (v)) for the algorithm, and denote
by v0 the jth neighbor of v (eV (v0) should be the output of
the algorithm). For v = (x; y) and v0 = (x0; y0), both x0
and y0 are obtained by linear combinations of x,y and 1 with
coefficients in f�1; 0; 1g (e.g., x�y�1). The combination
itself is determined by j.

For computing eV ((x0; y0)) from eV ((x; y)) (and j),
one just performs a straightforward addition, while taking
advantage of two facts: (1) For every i, the bits xi and yi ineV ((x; y)) are adjacent. (2) The r bits of the sum modulo2r are exactly the r least significant bits of the sum without
a modulo. 2
The next lemma shows that computing walks of length q on
online graphs can be done by only multiplying the space by
a factor of q.

Lemma 4.7 Let fFNg be a family of S-space online
graphs. Then, it is also O(qS)-space online of order q.

Proof: Let R be the order-1 neighborhood machine offFNg. The order-q neighborhood machine, M , runs q
copies R1; : : : ; Rq of R simultaneously. Ri computes theith node in the walk.M starts by runningR1; : : : ; Rq (in this order) until eachRi reads all the bits of ed(ji) from the input tape. The wayed(j1); : : : ; ed(jq) are put on the input tape enables to do it
serially. Notice that R cannot output any bit before it starts
to read the bits of v. Therefore, R1; : : : ; Rq do not try to
output anything at this stage.M starts the second stage of its execution by runningRq
until it demands an input bit. This bit should come from the
output of Rq�1. Therefore, M suspends Rq and runs Rq�1
until it requires an input bit. This goes on, until R1 needs
an input bit. R1 can simply read its input bits from the input
tape of M .

WhenRi outputsa bit, its execution is suspended and this
bit is used twice. First, it is written on the ith output tape.
Then, it is transferred to Ri+1 as an input. The execution ofRi+1 is resumed until it demands again an input bit or until
it generates an output bit.

Per each Ri, the machine M keeps O(S) bits on its work
tape to store the configuration of Ri. Therefore, it runs inO(qS) space. Clearly, M is an online machine. 2
As a corollary, we obtain that neighborhoods in a q-power
of an online graph can be computed in the cost of a q-factor
only in the space.

Corollary 4.8 Let fFNg be a family of S-space online d-

regular graphs. Then, fF (q)N g is a family of O(qS)-space
online dq-regular graphs.

Proof: Note that every neighbor index j in F (q)N corre-
sponds to a walk of length q j1; : : : ; jq on FN . Hence, the

neighborhood machine of F (q)N has to compute the last node
at q-length walks on FN . It can use the order-q neighbor-
hood machine of FN , by considering only its last output
tape. By Lemma 4.7 this machine uses onlyO(qS) space. 2
By taking an arbitrarily large constant power q of the Mar-
gulis expanders, we obtain the following useful result:

Corollary 4.9 Fix any constant � > 0 and a natural num-
ber w � 2. Then, for a varying r there exists a constant-
space online family of (w2r; d; �)-expanders, for which d is
constant and �d < �.

4.3 The weak extractor construction

In the following construction we use the AKS random-
walk method with graphs as in Lemma 4.7 as expanders.

Theorem 4.10 (Theorem 3.1 restated) Fix any constant0 < � < 116 . Then, for any k = k(r) there exists
an (O(k); k)-explicit family of (r + O(k); r; k)-bipartite
graphs, that are (�
(k); �)-weak extractors.

Proof: We follow the [3, 6] construction of extractors us-
ing random walks on expander graphs [1]. Specifically, we
construct a weak-extractor H, using a constant power of
the Margulis expander G2r , for which �d < �
(1). Call
this expander G. The nodes in V1 correspond to walks of
length k on G and the nodes in V2 correspond to the nodes
of G. Each walk is connected to all the nodes that appear in
it. To encode a walk we need r bits for the starting point
and k log d bits for the neighbor indices. Hence, H is an(r + k logd; r; k)-bipartite graph.

For the proof that H is an (�
(k); �)-weak extractor refer
to [1, 3, 6].

Note that NH , the neighborhood algorithm of H, has
to compute walks of length k on the online expander G.
Lemma 4.7 proves that this can be done on a k-output online
machine, while increasing the space by a factor of k only.
Hence, since G is a constant-space online graph, NH needs
onlyO(k) space. NH uses all the k output tapes throughout
the whole computation, implying it is k-parallel. 2



5 The lower bound

This section presents the lower bound we obtained for
dispersers, that have 2O(r) nodes on their left, and that haver4-space neighborhood algorithms. We show that in such
dispersers � depends only on the parallelism of the neigh-
borhood algorithm, and not on k. It follows, that no matter
how large is k, if the parallelism is small, then � is large.

For the proof of the lower bound we introduce a new no-
tion regarding computations on k-output Turing machines.
This notion tries to capture the influence of the input on the
output written on the ith tape.

Definition 5.1 Let M be an online k-output Turing ma-
chine, and let y be some input for it. Denote by tj the time
in which yj, the jth bit of y, is read from the input tape. We
say that yj is seen by the ith output tape, if tyi;start � tj �tyi;end. In other words, yj is read during i’s lifetime. We de-
note by lyi the number of input bits seen by the ith output
tape. We say that i is m-rich on input y if lyi � m.

The next lemma proves that if a disperser has a p-parallel
neighborhoodalgorithm, then for each fixed input onlyO(p)
of the outputs are substantially affected by the input.

Lemma 5.2 Let D be a (cr; r; k)-bipartite graph whose
neighborhood algorithmND is p-parallel. Then, for any in-
put y of ND there are at most pcf output tapes, which arerf -rich.

Proof: Since the machine is online, each of the cr input
bits is read only once. Therefore, it is seen by at most p
output tapes (i.e. at most p output tapes are alive when this
bit is read). It follows that there are at most lp pairs of the
form (i; yj), where i is an output tape index and yj is a
bit seen by i during its lifetime. Since the ith output tape
contributes lyi such pairs, then there are at most wp tapes
for which lyi > lw . Substituting l = cr and w = cf yields
what is stated in the lemma. 2

The richness notion becomes crucial in determining the
influence of the input on each of the output tapes when the
machine can use only a small space. The lower bound proof
uses this fact to prove that in “good” dispersers (ones that
have 2O(r) nodes on their left), which have only an r4-space
neighborhood algorithm, � depends on the neighborhood al-
gorithm parallelism.

Theorem 5.3 (Theorem 3.5 restated) For constants 0 <� < 12 and f � 4, for any c = c(r), k = k(r) < 2 rf , � =�(r) and for an ( rf ; p)-explicit family of (cr; r; k)-bipartite

graphs, that are (�; �)-dispersers, it holds that � � 2�O(q),
where q = pcf .

Proof: Let D be some disperser as in the theorem, and letND be its neighborhood algorithm.
Radhakrishnan and Ta-Shma show in [14] that for a con-

stant 0 < � � 12 and for any r and l, if G is an (l; r; k)-
bipartite graph, which is a (�; �)-disperser, then necessar-
ily � � 2�O(k). We will construct from D a (cr; r; q)-
bipartite graph, which is a (�; �2)-disperser, implying that� � 2�O(q).

For each node y 2 V1, consider the execution of ND ony. Denote by Iy = fiy1; : : : ; iyqg the q richest output tapes in
this execution, and by Jy = fjy1 ; : : : ; jyk�qg the rest of the
output tapes. Lemma 5.2 implies that the tapes in Jy are all
at most rf -rich on y.

For each i 2 f1; : : : ; kg denote by Si the set of all y’s for
which i 2 Jy. The string written on the ith output tape is a
deterministic function of the configuration of the machine,
when it starts to write on this tape, and of the input portion
read during the tape’s lifetime. Hence, the total number of
possible outputs on the ith tape going over all the inputs inSi is at most the product of: (1) The number of configura-
tions when the machine starts to write on this tape. SinceND uses at most rf space, this number is at most 2 rf (recall
our space accounting convention). (2) The number of pos-
sible input portions read during the tape’s lifetime. For any
input y 2 Si it holds that i 2 Jy, implying that the ith tape
sees on y an input portion of length at most rf (i.e. lyi � rf ).
Therefore, the number of possible input portions is at most2 rf+1. Hence, the total is at most 2 2rf +1.

Denote by Ui � V2 the set of nodes that are written on
the ith output tape when the input is in Si. Denote by U
the union over all i: U = [ki=1Ui. The above observation
means that jU j � Pki=1 jUij � k2 2rf +1 � 2 3rf +1 < �22r,
for a sufficiently large r.

Color the edges of D by red and blue as follows: the
edges between y and the neighbors written on the tapes in Iy
are colored by red and the edges between y and the neigh-
bors written on the tapes in Jy are colored by blue. We
decompose D into two dispersers: D1 contains all the red
edges and D2 all the blue edges. Note that every y has de-
gree q in D1, and that all the edges in D2 lead to nodes inU .

By the disperser property, every subset of V1 of size at
least �2cr has at least �2r neighbors. After dropping the
edges ofD2, which only lead to nodes inU , each such subset
has at least �22r neighbors. Therefore, D1 is the (cr; r; q)-
bipartite graph, which is a (�; �2)-disperser, we looked for.2
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