
1A brief overview of Complexity TheoryThe following brief overview is intended as a teaser for students in an introductorycourse on Complexity Theory. Out of the tough came forth sweetness1Judges, 14:14Complexity Theory is concerned with the study of the intrinsic complexity of com-putational tasks. Its \�nal" goals include the determination of the complexity ofany well-de�ned task. Additional \�nal" goals include obtaining an understand-ing of the relations between various computational phenomena (e.g., relating onefact regarding computational complexity to another). Indeed, we may say that theformer type of goals is concerned with absolute answers regarding speci�c compu-tational phenomena, whereas the latter type is concerned with questions regardingthe relation between computational phenomena.Interestingly, the current success of Complexity Theory in coping with the lattertype of goals has been more signi�cant. In fact, the failure to resolve questions ofthe \absolute" type, led to the ourishing of methods for coping with questionsof the \relative" type. Putting aside for a moment the frustration caused by thefailure, we must admit that there is something fascinating in the success: in somesense, establishing relations between phenomena is more revealing than makingstatements about each phenomenon. Indeed, the �rst example that comes to mindis the theory of NP-completeness. Let us consider this theory, for a moment, fromthe perspective of these two types of goals.Complexity theory has failed to determine the intrinsic complexity of tasks suchas �nding a satisfying assignment to a given (satis�able) propositional formula or�nding a 3-coloring of a given (3-colorable) graph. But it has established thatthese two seemingly di�erent computational tasks are in some sense the same (or,more precisely, are computationally equivalent). The author �nds this successamazing and exciting, and hopes that the reader shares his feeling. The samefeeling of wonder and excitement is generated by many of the other discoveries ofComplexity theory. Indeed, the reader is invited to join a fast tour of some of theother questions and answers that make up the �eld of Complexity theory.We will indeed start with the \P versus NP Question". Our daily experience isthat it is harder to solve a problem than it is to check the correctness of a solution(e.g., think of either a puzzle or a research problem). Is this experience merelya coincidence or does it represent a fundamental fact of life (or a property of theworld)? Could you imagine a world in which solving any problem is not signi�cantlyharder than checking a solution to it? Would the term \solving a problem" notlose its meaning in such a hypothetical (and impossible in our opinion) world?The denial of the plausibility of such a hypothetical world (in which \solving" isnot harder than \checking") is what \P di�erent from NP" actually means, where0Written by Oded Goldreich (2005).1The quote is commonly used to mean that bene�t arose out of misfortune.



2P represents tasks that are e�ciently solvable and NP represents tasks for whichsolutions can be e�ciently checked.The mathematically (or theoretically) inclined reader may also consider thetask of proving theorems versus the task of verifying the validity of proofs. Indeed,�nding proofs is a special type of the aforementioned task of \solving a problem"(and verifying the validity of proofs is a corresponding case of checking correctness).Again, \P di�erent from NP" means that there are theorems that are harder toprove than to be convinced of their correctness when presented with a proof. Thismeans that the notion of a proof is meaningful (i.e., that proofs do help whentrying to be convinced of the correctness of assertions). Here NP represents setsof assertions that can be e�ciently veri�ed with the help of adequate proofs, andP represents sets of assertions that can be e�ciently veri�ed from scratch (i.e.,without proofs).In light of the foregoing discussion it is clear that the P-versus-NP Question isa fundamental scienti�c question of far-reaching consequences. The fact that thisquestion seems beyond our current reach led to the development of the theory ofNP-completeness. Loosely speaking, this theory identi�es a set of computationalproblems that are as hard as NP. That is, the fate of the P-versus-NP Questionlies with each of these problems: if any of these problems is easy to solve thenso are all problems in NP. Thus, showing that a problem is NP-complete providesevidence to its intractability (assuming, of course, \P di�erent than NP"). Indeed,demonstrating NP-completeness of computational tasks is a central tool in indicat-ing hardness of natural computational problems, and it has been used extensivelyboth in computer science and in other disciplines. NP-completeness indicates notonly the conjectured intractability of a problem but rather also its \richness" in thesense that the problem is rich enough to \encode" any other problem in NP. Theuse of the term \encoding" is justi�ed by the exact meaning of NP-completeness,which in turn is based on establishing relations between di�erent computationalproblems (without referring to their \absolute" complexity).The foregoing discussion of the P-versus-NP Question also hints to the impor-tance of representation, a phenomenon that is central to complexity theory. Ingeneral, complexity theory is concerned with problems the solutions of which areimplicit in the problem's statement. That is, the problem contains all necessaryinformation, and one merely needs to process this information in order to supplythe answer.2 Thus, complexity theory is concerned with manipulation of informa-tion, and its transformation from one representation (in which the information isgiven) to another representation (which is the one desired). Indeed, a solution toa computational problem is merely a di�erent representation of the informationgiven; that is, a representation in which the answer is explicit rather than implicit.For example, the answer to the question of whether or not a given Boolean for-mula is satis�able is implicit in the formula itself (but the task is to make theanswer explicit). Thus, complexity theory clari�es a central issue regarding rep-2In contrast, in other disciplines, solving a problem may require gathering information that isnot available in the problem's statement. This information may either be available from auxiliary(past) records or be obtained by conducting new experiments.



3resentation; that is, the distinction between what is explicit and what is implicitin a representation. Furthermore, it even suggests a quanti�cation of the level ofnon-explicitness.In general, complexity theory provides new viewpoints on various phenomenathat were considered also by past thinkers. Examples include the aforementionedconcepts of proofs and representation as well as concepts like randomness, knowl-edge, interaction, secrecy and learning. We next discuss some of these conceptsand the perspective o�ered by complexity theory.The concept of randomness has puzzled thinkers for ages. Their perspectivecan be described as ontological: they asked \what is randomness" and wonderedwhether it exist at all (or is the world deterministic). The perspective of complexitytheory is behavioristic: it is based on de�ning objects as equivalent if they cannotbe told apart by any e�cient procedure. That is, a coin toss is (de�ned to be) \ran-dom" (even if one believes that the universe is deterministic) if it is infeasible topredict the coin's outcome. Likewise, a string (or a distribution of strings) is \ran-dom" if it is infeasible to distinguish it from the uniform distribution (regardless ofwhether or not one can generate the latter). Interestingly, randomness (or ratherpseudorandomness) de�ned this way is e�ciently expandable; that is, under a rea-sonable complexity assumption (to be discussed next), short pseudorandom stringscan be deterministically expanded into long pseudorandom strings. Indeed, it turnsout that randomness is intimately related to intractability. Firstly, note that thevery de�nition of pseudorandomness refers to intractability (i.e., the infeasibilityof distinguishing a pseudorandomness object from a uniformly distributed object).Secondly, as hinted above, a complexity assumption that refers to the existence offunctions that are easy to evaluate but hard to invert (called one-way functions) im-ply the existence of deterministic programs (called pseudorandom generators) thatstretch short random seeds into long pseudorandom sequences. In fact, it turnsout that the existence of pseudorandom generators is equivalent to the existenceof one-way functions.Complexity theory o�ers its own perspective on the concept of knowledge (anddistinguishes it from information). It views knowledge as the result of a hardcomputation. Thus, whatever can be e�ciently done by anyone is not consideredknowledge. In particular, the result of an easy computation applied to publiclyavailable information is not considered knowledge. In contrast, the value of ahard to compute function applied to publicly available information is knowledge,and if somebody provides you with such a value then it has provided you withknowledge. This discussion is related to the notion of zero-knowledge interactions,which are interactions in which no knowledge is gained. Such interactions maystill be useful, because they may assert the correctness of speci�c data that wasprovided beforehand.The foregoing paragraph has explicitly referred to interaction. It has pointedone possible motivation for interaction: gaining knowledge. It turns out that in-teraction may help in a variety of other contexts. For example, it may be easier toverify an assertion when allowed to interact with a prover rather than when readinga proof. Put di�erently, interaction with some teacher may be more bene�cial than



4reading any book. We comment that the added power of such interactive proofs isrooted in their being randomized (i.e., the veri�cation procedure is randomized),because if the veri�er's questions can be determined beforehand then the provermay just provide the transcript of the interaction as a traditional written proof.Another concept related to knowledge is that of secrecy: knowledge is some-thing that one party has while another party does not have (and cannot feasiblyobtain by itself) { thus, in some sense knowledge is a secret. In general, complexitytheory is related to Cryptography, where the latter is broadly de�ned as the studyof systems that are easy to use but hard to abuse. Typically, such systems involvesecrets, randomness and interaction as well as a complexity gap between the easeof proper usage and the infeasibility of causing the system to deviate from its pre-scribed behavior. Thus, much of Cryptography is based on complexity theoreticassumptions and its results are typically transformations of relatively simple com-putational primitives (e.g., one-way functions) into more complex cryptographicapplications (e.g., a secure encryption scheme).We have already mentioned the context of learning when referring to learningfrom a teacher versus learning from a book. Recall that complexity theory providesevidence to the advantage of the former. This is in the context of gaining knowledgeabout publicly available information. In contrast, computational learning theoryis concerned with learning objects that are only partially available to the learner(i.e., learning a function based on its value at a few random locations or even atlocations chosen by the learner). Complexity theory sheds light on the intrinsiclimitations of learning (in this sense).Complexity theory deals with a variety of computational tasks. We have alreadymentioned two fundamental types of tasks: searching for solutions (or \�ndingsolutions") and making decisions (e.g., regarding the validity of assertion). Wehave also hinted that in some cases these two types of tasks can be related. Nowwe consider two additional types of tasks: counting the number of solutions andgenerating random solutions. Clearly, both the latter tasks are at least as hard as�nding arbitrary solutions to the corresponding problem, but it turns out that forsome natural problems they are not signi�cantly harder. Speci�cally, under somenatural conditions on the problem, approximately counting the number of solutionsand generating an approximately random solution is not signi�cantly harder than�nding an arbitrary solution.Having mentioned the notion of approximation, we note that the study of thecomplexity of �nding approximate solutions has also received a lot of attention.One type of approximation problems refers to an objective function de�ned on theset of potential solutions. Rather than �nding a solution that attains the optimalvalue, the approximation task consists of �nding a solution that attains an \almostoptimal" value, where the notion of \almost optimal" may be understood in dif-ferent ways giving rise to di�erent levels of approximation. Interestingly, in manycases even a very relaxed level of approximation is as di�cult to achieve as theoriginal (exact) search problem (i.e., �nding an approximate solution is as hardas �nding an optimal solution). Surprisingly, these hardness of approximation re-sults are related to the study of probabilistically checkable proofs, which are proofs



5that allow for ultra-fast probabilistic veri�cation. Amazingly, every proof can bee�ciently transformed into one that allows for probabilistic veri�cation based onprobing a constant number of bits (in the alleged proof). Turning back to approx-imation problems, we note that in other cases a reasonable level of approximationis easier to achieve than solving the original (exact) search problem.Approximation is a natural relaxation of various computational problems. An-other natural relaxation is the study of average-case complexity, where the \aver-age" is taken over some \simple" distributions (representing a model of the prob-lem's instances that may occur in practice). We stress that, although it was notstated explicitly, the entire discussion so far has referred to \worst-case" analysis ofalgorithms. We mention that worst-case complexity is a more robust notion thanaverage-case complexity. For starters, one avoids the controversial question of whatare the instances that are \important in practice" and correspondingly the selectionof the class of distributions for which average-case analysis is to be conducted. Nev-ertheless, a relatively robust theory of average-case complexity has been suggested,albeit it is far less developed than the theory of worst-case complexity.In view of the central role of randomness in complexity theory (as evident, say,in the study of pseudorandomness, probabilistic proof systems, and cryptography),one may wonder as to whether the randomness needed for the various applicationscan be obtained in real-life. One speci�c question, which received a lot of atten-tion, is the possibility of \purifying" randomness (or \extracting good randomnessfrom bad sources"). That is, can we use \defected" sources of randomness in or-der to implement almost perfect sources of randomness. The answer depends, ofcourse, on the model of such defected sources. This study turned out to be relatedto complexity theory, where the most tight connection is between some type ofrandomness extractors and some type of pseudorandom generators.So far we have focused on the time complexity of computational tasks, whilerelying on the natural association of e�ciency with time. However, time is notthe only resource one should care about. Another important resource is space:the amount of (temporary) memory consumed by the computation. The studyof space complexity has uncovered several fascinating phenomena, which seem toindicate a fundamental di�erence between space complexity and time complexity.For example, in the context of space complexity, verifying proofs of validity ofassertions (of any speci�c type) has the same complexity as verifying proofs ofinvalidity for the same type of assertions.In case the reader feels dizzy, it is no wonder. We took an ultra-fast air-tour ofsome mountain tops, and dizziness is to be expected. Needless to say, the rest ofthe course will be in a totally di�erent style. We will climb some of these mountainsby foot, step by step, and will stop to look around and reect.Absolute Results (a.k.a. Lower-Bounds). As stated up-front, absolute re-sults are not known for many of the \big questions" of complexity theory (mostnotably the P-versus-NP Question). However, several highly non-trivial absoluteresults have been proved. For example, it was shown that using negation canspeed-up the computation of monotone functions (which do not require negation



6for their mere computation). In addition, many promising techniques were intro-duced and employed with the aim of providing a low-level analysis of the progressof computation. However, the focus of this course is elsewhere.


