
Computational ComplexityOded GoldreichDepartment of Computer ScienceWeizmann Institute of ScienceRehovot, Israel.oded.goldreich@weizmann.ac.il Avi WigdersonSchool of MathematicsInstitute for Advanced StudyPrinceton, NJ, USA.avi@ias.eduOctober 3, 2004AbstractThe strive for e�ciency is ancient and universal, as time is always short for humans. Com-putational Complexity is a mathematical study of the what can be achieved when time (andother resources) are scarce.In this brief article we will introduce quite a few notions: Formal models of computation,and measures of e�ciency; the P vs. NP problem and NP-completeness; circuit complexity andproof complexity; randomized computation and pseudorandomness; probabilistic proof systems,cryptography and more. A glossary of complexity classes is included in an appendix. We highlyrecommend the given bibliography and the references therein for more information.

Contents1 Introduction 12 Preliminaries 12.1 Computability and Algorithms . 12.2 E�cient Computability and the class P . 23 The P versus NP Question 33.1 E�cient Veri�cation and the class NP . 33.2 The Big Conjecture . 43.3 NP versus coNP . 44 Reducibility and NP-Completeness 55 Lower Bounds 65.1 Boolean Circuit Complexity . 75.1.1 Basic Results and Questions . 85.1.2 Monotone Circuits . 85.1.3 Bounded-Depth Circuits . 95.1.4 Formula Size . 95.1.5 Why Is It Hard to Prove Lower Bounds? . 105.2 Arithmetic Circuits . 105.2.1 Univariate Polynomials . 115.2.2 Multivariate Polynomials . 115.3 Proof Complexity . 125.3.1 Logical Proof Systems . 135.3.2 Algebraic Proof Systems . 145.3.3 Geometric Proof Systems . 146 Randomized Computation 156.1 Counting at Random . 156.2 Probabilistic Proof Systems . 166.2.1 Interactive Proof Systems . 166.2.2 Zero-Knowledge Proof Systems . 176.2.3 Probabilistically Checkable Proof systems . 176.3 Weak Random Sources . 187 The Bright Side of Hardness 187.1 Pseudorandomness . 197.1.1 Hardness versus Randomness . 207.1.2 Pseudorandom Functions . 207.2 Cryptography . 218 The Tip of an Iceberg 228.1 Relaxing the Requirements . 228.1.1 Average-Case Complexity . 228.1.2 Approximation . 228.2 Other Complexity Measures . 228.3 Other Notions of Computation . 229 Concluding Remarks 23Bibliography 24Appendix: Glossary of Complexity Classes 25A.1 Algorithm-based classes . 25A.2 Circuit-based classes . 26

1 IntroductionComputational Complexity (or Complexity Theory) is a central sub�eld of the theoretical founda-tions of Computer Science. It is concerned with the study of the intrinsic complexity of computa-tional tasks. This study tends to aim at generality: it focuses on natural computational resources,and considers the e�ect of limiting these resources on the class of problems that can be solved.It also tends to asymptotics: studying this complexity as the size of data grows. Another relatedsub�eld (represented in this volume) deals with the design and analysis of algorithms for speci�c(classes of) computational problems that arise in a variety of areas of mathematics, science andengineering.The (half-century) history of Complexity Theory has witnessed two main research e�orts (ordirections). The �rst direction is aimed towards actually establishing concrete lower bounds onthe complexity of problems, via an analysis of the evolution of the process of computation. Thus,in a sense, the heart of this direction is a \low-level" analysis of computation. Most research incircuit complexity and in proof complexity falls within this category. In contrast, a second researche�ort is aimed at exploring the connections among computational problems and notions, withoutbeing able to provide absolute statements. This e�ort may be viewed as a \high-level" study ofcomputation. The theory of NP-completeness, the study of probabilistic proof systems as well aspseudorandomness and cryptography all falls within this category.2 PreliminariesThis exposition considers only �nite objects, encoded by �nite binary sequences, called strings. Fora natural number n, we denote by f0; 1gn the set of all binary sequences of length n, hereafterreferred to as n-bit strings. The set of all strings is denoted f0; 1g�; that is, f0; 1g� = [n2Nf0; 1gn.For x 2 f0; 1g�, we denote by jxj the length of x (i.e., x 2 f0; 1gjxj). At times, we associatef0; 1g��f0; 1g� with f0; 1g�. Natural numbers will be encoded by their binary expansion.2.1 Computability and AlgorithmsWe are all familiar with computers, and the ability of computer programs to manipulate data.But how does one capture all computational processes? Before being formal, we o�er a loosedescription, capturing many arti�cial as well as natural processes, and invite the reader to compareit with physical theories.A computation is a process that modi�es an environment via repeated applications of a prede-termined rule. The key restriction is that this rule is simple: in each application it depends anda�ects only a (small) portion of the environment, called the active zone. We contrast the a-prioribounded size of the active zone (and of the modi�cation rule) with the a-priori unbounded size ofthe entire environment. We note that, although each application of the rule has a very limitede�ect, the e�ect of many applications of the rule may be very complex. The computation rule(especially when designed to e�ect a desired computation) is often referred to as an algorithm.Such processes naturally compute functions, and their complexity is naturally captured by thenumber of steps they apply. Let us elaborate.We are interested in the transformation of the environment e�ected by the computational pro-cess. Typically, the initial environment to which the computation is applied encodes an input string,and the end environment (i.e., at termination of the computation)1 encodes an output string. We1We assume that, when invoked on any �nite initial environment, the computation halts after a �nite number of1

consider the mapping from inputs to outputs induced by the computation; that is, for each possibleinput x, we consider the output y obtained at the end of a computation initiated with input x, andsay that the computation maps input x to output y. We also consider the number of steps (i.e.,applications of the rule) taken by the computation for each input. The latter function is calledthe time complexity of the computational process. While time complexity is de�ned per input, oneoften considers it per input length, taking the maximum over all inputs of the same length.To de�ne computation (and computation time) rigorously, one needs to specify some model ofcomputation; that is, provide a concrete de�nition of environments and a class of rules that maybe applied to them. Such a model corresponds to an abstraction of a real computer (be it a PC,mainframe or network of computers). One simple abstract model that is commonly used is thatof Turing machines (see, e.g., [17]). Thus, speci�c algorithms (and their complexity) are typicallyformalized by corresponding Turing machines. We stress however that most results in the Theory ofComputation hold regardless of the speci�c computational model used, as long as it is \reasonable"(i.e. satis�es the aforementioned simplicity condition).The above discussion has implicitly referred to computations and Turing machines as a means ofcomputing functions. Speci�cally, a Turing machineM computes the function fM :f0; 1g�!f0; 1g�de�ned by fM(x)=y if, when invoked on input x, machine M halts with output y. (For example,we may refer to the computation of the integer multiplication function, which given an encoding oftwo integers returns the encoding of their product.) However, computations can also be viewed as ameans of \solving problems" or \making decisions", which are captured (respectively) by relationsand sets.Search problems are captured by binary relations R�f0; 1g��f0; 1g�, with the semantics thaty is called a (valid) solution for problem instance x if and only if (x; y)2R. Machine M solves thesearch problem R if (x; fM (x)) 2R whenever a solution for x exists; that is, given an instance xthat has a valid solution, machine M �nds some valid solution for x. (For example, we may referto a machine that, given a system of polynomial equations, returns a valid solution.)Decision problems are captured by sets S � f0; 1g�, with the semantics that S is the set of\yes-instances" (of the problem). We say that M solves the decision problem S if it holds thatfM (x) = 1 if and only if x 2 S; that is, given an instance x, machine M determines whether ornot x 2 S. (For example, we may refer to a machine that, given a natural number, determineswhether or not it is prime.) At times, it will be convenient to view decision problems as Booleanfunctions de�ned on the set of all strings (i.e., S : f0; 1g� !f0; 1g) rather than as sets of strings(i.e., S�f0; 1g�).In the rest of this exposition we associate the machine M with the function fM computed byit; that is, we write M(x) instead of fM (x).2.2 E�cient Computability and the class PSo far we have mathematically de�ned all tasks that can be computed in principle, and the timesuch computations take. Now we turn to de�ne what can be computed e�ciently, and then discussthe choices made in this de�nition.We call an algorithm e�cient if it terminates within time that is polynomial in the length ofits inputs. Understanding the class of problems (called P below) that have such algorithms is themajor goal of Computational Complexity Theory.De�nition 1 (the complexity class P) A decision problem S � f0; 1g� is solvable in polynomialsteps. 2

time if there exists a (deterministic) polynomial-time Turing machine M such that M(x) = 1 if andonly if x 2 S. The class of decision problems that are solvable in polynomial time is denoted P.The asymptotic analysis of running-time (i.e., considering running-time as a function of theinput length) turned out to be crucial for revealing structure in the theory of e�cient computation.The choice of polynomial time may seem arbitrary (and theories could be developed with otherchoices), but again proved itself right. Polynomials are viewed as the canonical class of slowlygrowing functions that enjoy closure properties relevant to computation. Speci�cally, the class isclosed under addition, multiplication and composition. The growth rate of polynomials allows usto consider as e�cient essentially all problems for which practical computer programs exist, andthe closure properties of polynomials guarantee robustness of the notion of e�cient computation.Finally, while n100-time algorithms are called e�cient here despite their blatant impracticality,one rarely discovers even an n10-time algorithm for a natural problem (and when this happens,improvements to n3 or n2-time, which border on the practical, typically follow).It is important to contrast P to the class EXP, of all problems solvable in time exponential inthe length of their inputs. Exponential running time is considered blatantly ine�cient, and if theproblem has no faster algorithm, then it is deemed intractable. It is known (via a basic techniquecalled diagonalization that P 6= EXP ; furthermore, some problems in EXP do require exponentialtime. We note that almost all problems and classes considered in this paper will be in EXP viatrivial, \brute force" algorithms, and the main question will be if much faster algorithms can bedevised for them.Note that so far we restricted computation to be a deterministic process. In Section 6 we pursuethe important relaxation of allowing randomness (coin tosses) in computation, and its impact one�ciency and other computational notions.3 The P versus NP QuestionIn a nutshell, the P versus NP question is whether creativity can be automated. This applies to alltasks for which a successful completion can be easily recognized. A particular special case, whichis in fact quite general and has natural appeal to Mathematicians, is the task of determining if amathematical statement is true. Here successful completion is a proof, so the P versus NP Questioncan be informally stated as whether verifying proofs (which we view as a mechanical process) is,or is not, much easier than �nding a proof (which we view as creative). In general, the class NPcaptures all problems for which an adequate solution (when given) can be e�ciently veri�ed, whilethe class P captures all problems that can be solved e�ciently (without such external help). Wenow turn to formally de�ne these notions.3.1 E�cient Veri�cation and the class NPThe fundamental class NP of decision problems consists of the class of sets S for which there existshort proofs that x 2 S of membership, that which can be e�ciently veri�ed. These two ingredientsare captured by two properties of an auxiliary binary relation RS 2 P in which all y for which(x; y) 2 RS have polynomial (in jxj) length, and such a \proof" y exists i� x 2 S (thus certifying,or witnessing, or proving this fact).22The acronym NP stands for Non-deterministic Polynomial-time, where a non-deterministic machine is a �ctitiouscomputing device used in an alternative de�nition of the class NP. The non-deterministic moves of such a machinecorrespond to guessing a \proof" in De�nition 2. 3

De�nition 2 (the complexity class NP) A binary relation R�f0; 1g��f0; 1g� is called poly-nomially bounded if there exists a polynomial p such that jyj � p(jxj) holds for every (x; y)2R. Adecision problem S is in NP if there exists a polynomially bounded binary relation RS such thatRS is in P and x 2 S if and only if there exists y such that (x; y) 2 RS. Such a y is called a proof(or witness) of membership of x 2 S.We note that trivially NP � EXP , since we can go over all possible y's in exponential time.Can this trivial algorithm be improved? Since P is the class of sets for which membership can bee�ciently decided (without being given a proof), it follows that P �NP. Thus, the P versus NPQuestion can be cast as follows: does the existence of an e�cient veri�cation procedure for proofsof membership in a certain set imply the ability to e�ciently decide membership in the same set?Open Problem 3 Is NP equal to P?Natural search problems arise from every polynomially bounded relation R 2 P; namely, givenx, �nd any y for which (x; y)2R (if such a solution exists). Note that the polynomial bound onthe length of y guarantees that the search problem is not trivially intractable (as would be the caseif all solutions had length that is super-polynomial in the length of the instance). Furthermore,R 2 P implies that the search problem is natural in the sense that one can (e�ciently) recognizethe validity of a solution to a problem instance. One often views NP as the class of all such searchproblems; that is, the class of search problems referring to relations R 2 P that are polynomiallybounded. The search analog of the P versus NP question is whether the e�cient veri�cation ofcandidate solutions necessarily entails that valid solutions are easy to �nd. Indeed, the search anddecision versions of the P versus NP question are equivalent.3.2 The Big ConjectureIt is widely believed that P 6= NP . Settling this conjecture is certainly the most important openproblem in Computer Science, and among the most signi�cant in Mathematics. The P 6= NPConjecture is supported by our strong intuition, developed over centuries in a variety of humanactivities, that �nding solutions is far harder than verifying their adequacy. Further empiricalevidence in favor of the conjecture is given by the fact that literally thousands of NP problems, in awide variety of mathematical and scienti�c disciplines, are not known to be solvable in polynomialtime, in spite of extensive research attempts aimed at providing e�cient procedures for solvingthem. One famous example is the Integer Factorization problem: given a natural number, �nd itsprime factorization.The section on Circuit Complexity (Section 5.1) is devoted to attempts to prove this conjecture,discussing some partial results and limits of the techniques used so far.3.3 NP versus coNPAssuming that P 6= NP , it is unclear whether the existence of an e�cient veri�cation procedure forproofs of membership in a set implies the existence of an e�cient veri�cation procedure for proofsof non-membership in that set. Let coNP denote the class of sets that are complements of sets inNP (i.e., coNP def= ff0; 1g� n S : S 2 NPg).Open Problem 4 Is NP equal to coNP? 4

It is widely believed that coNP 6= NP . (Indeed, this implies P 6= NP). Here again intuitionfrom Mathematics is extremely relevant: to verify that a set of logical constraints is mutuallyinconsistent, that a family of polynomial equations have no common root, that a set of regionsin space has empty intersection, seems far harder to prove than their complements (exhibiting theconsistent valuation, root, point resp.). Indeed, only when (rare) extra mathematical structure isavailable do we have duality theorems, or complete systems of invariants, implying (computational)equivalence of the set and its complement. The section on Proof Complexity (Section 5.3) dealsfurther with this conjecture, and attempts to resolve it.4 Reducibility and NP-CompletenessIn this section we attempt to identify the \hardest" problems in NP. For this we shall de�ne anatural partial order on decision problems, called polynomial-time reducibility, and de�ne maximalelements in NP under this order to be \complete". We note that reductions and completeness arekey concepts in Complexity Theory.A general notion of (polynomial-time) reducibility among computational problems is obtainedby considering a (polynomial-time) machine for solving one problem (e.g., computing a function f)that may issue queries to another problem (e.g., to a function g)3. Thus, if the latter problem canbe solved e�ciently then so can the former. One restricted notion of a reduction, which refers todecision problems, requires the reduction machine to issue a single query and output the answer itobtains. In this case, a simpler formulation follows:De�nition 5 (Polynomial-time Reducibility) A set S is polynomial-time reducible to the setT if there exist polynomial-time computable function h such that x 2 S if and only if h(x) 2 T .De�nition 6 (NP-Completeness) A decision problem S is NP-complete if S is in NP and everydecision problem in NP is polynomial-time reducible to S.Thus, NP-complete (decision) problems are \universal" in the sense that providing a polynomial-time procedure for solving any of them will immediately imply polynomial-time procedures forsolving all other problems in NP (and in particular all NP-complete decision problems). Further-more, in a sense, each of these (NP-complete) problems \e�ciently encodes" all the other problemsand, in fact, all NP search problems. For example, the Integer Factorization problem can be \e�-ciently encoded" in any NP-complete problem (which may have nothing to do with integers). Thus,at �rst glance, it seems very surprising that NP-complete problems exist at all.Theorem 7 There exist NP-complete decision problems. Furthermore, the following decision prob-lems are NP-complete:SAT : Given a propositional formula, decide whether or not it is satis�able.43-Coloring : Given a planar map, decide whether or not it is 3-colorable.53Such a machine is called an oracle machine, and in the above case we say that it computes the function f byissuing queries to the oracle (function) g such that for query q the answer is g(q).4The problem remains NP-complete even when instances are restricted to be in Conjunctive Normal Form (CNF),and even when each clause has exactly three literals. These formulae are said to be in 3CNF form, and the set ofsatis�able 3CNF formulae is denoted 3SAT.5Recall that the celebrated 4-color Theorem asserts that 4 colors always su�ce. In contrast to the NP-completenessof deciding 3-colorability, it is easy to decide 2-colorability of arbitrary graphs (and in particular of planar maps).5

Subset Sum : Given a sequence of integers a1; :::; an and b, decide whether or not there exists a setI such that Pi2I ai = b.The decision problems mentioned above are but three examples among literally thousands of naturalNP-complete problems, from a wide variety of mathematical and scienti�c disciplines. Hundredsof such problems are listed in [5].Assuming that P 6= NP, no NP-complete problem has a polynomial-time decision procedure.Consequently, the corresponding NP search problems cannot be solved in polynomial time. Thus,proofs of NP-completeness are often taken as evidence to the intrinsic di�culty of a problem.Positive applications of NP-completeness are also known: in some cases a claim regardingall NP-sets is proved by establishing the claim only for some NP-complete set (and noting thatpolynomial-time reductions preserve the claimed property). Famous examples include the existenceof Zero-Knowledge proofs, established �rst for 3-coloring (see Section 6.2.2), and the PCP Theorem,established �rst for 3-SAT (see Section 6.2.3).We note that almost every natural problem in NP ever considered turns out to be either NP-complete or in P. Curiously, only a handful of natural problems, including Integer Factorizationand Graph Isomorphism, are not known to belong to either of these classes (and indeed there isstrong evidence they don't).5 Lower BoundsIn this section we survey some basic attempts at proving lower bounds on the complexity of naturalcomputational problems. In the �rst part, Circuit Complexity, we describe lower bounds for thesize of circuits that solve natural computational problems. This can be viewed as a program whoselong-term goal is proving that P 6= NP. In the second part, Proof Complexity, we describe lowerbounds on the length of propositional proofs of natural tautologies. This can be viewed as aprogram whose long-term goal is proving that NP 6= coNP. Both models refer to the �nite modelof directed acyclic graphs (DAGs), which we de�ne next.A DAG G(V;E) consists of a �nite set of vertices V , and a set of ordered pairs called directededges E � V �V , in which there are no directed cycles. The vertices with no incoming edges arecalled the inputs of the DAG G, and the vertices with no outgoing edges are called the outputs. Wewill restrict ourselves to DAGs in which the number of incoming edges to every vertex is at most2. If the number of outgoing edges from every node is at most 1, the DAG is called a tree. Finally,we assume that every vertex can be reached from some input via a directed path. The size of aDAG will be its number of edges.To make a DAG into a computational device (or a proof), each non-input vertex will be markedby a rule, converting values in its predecessors to values at that vertex. It is easy to see that thevertices of every DAG can be linearly ordered, such that predecessors of every vertex (if any) appearbefore it in the ordering. Thus, if the input vertices are labeled with some values, we can label theremaining vertices (in that order), one at a time, till all vertices (and in particular all outputs) arelabeled.For computation, the non-input vertices will be marked by functions (called gates) which makethe DAG a circuit. If we label the input vertices by speci�c values from some domain, the outputswill be determined by them, and the circuit will naturally de�ne a function (from input values tooutput values).For proofs, the non-input vertices will be marked by sound deduction (or inference) rules, whichmake the DAG a proof. If we label the inputs by formulae that are axioms in a given proof system,6

the output again will be determined by them, and will yield the tautology proved by this proof.We note that both settings �t the paradigm of simplicity shared by computational modelsdiscussed in the previous section; the rules are simple by de�nition { they are applied to at most2 previous values. The main di�erence is that this model is �nite { each DAG can compute onlyfunctions/proofs with a �xed input length. To allow all input lengths, one must consider familiesof DAGs, one for each, thus signi�cantly extending the power of the computation model beyondthat of the notion of algorithm de�ned earlier. However, as we are interested in lower boundshere, this is legitimate, and one can hope that the �niteness of the model will potentially allow forcombinatorial techniques to analyze its power and limitations. Furthermore, these models allow forthe introduction (and study) of meaningful restricted classes of computations.We use the following asymptotic notation: For f; g :N!N, by f = O(g) (resp., f =
(g)) wemean that there exists a constant c > 0 such that f(n) � c � g(n) (resp., f(n) � c � g(n)) for alln2N.5.1 Boolean Circuit ComplexityIn Boolean circuits all inputs, outputs, and values at intermediate nodes of the DAG are bits. Theset of allowed gates is naturally taken to be a complete basis { one that allows the circuit to computeall Boolean functions. The speci�c choice of a complete basis hardly e�ects the study of circuitcomplexity. A typical choice is the set f^;_;:g of (respectively) conjunction, disjunction (each on2 bits) and negation (on 1 bit).De�nition 8 Denote by S(f) the size of the smallest Boolean circuit computing f .We will be interested in sequences of functions ffng, where fn is a function on n input bits, andwill study the complexity S(fn) asymptotically as a function of n. With some abuse of notation,for f(x) def= fjxj(x), we let S(f) denote the integer function that assigns to n the value S(fn).We note that di�erent circuits (in particular having a di�erent number of inputs) are used foreach fn. Still there may be a simple description of this sequence of circuits, say, an algorithm thaton input n produces a circuit computing fn. In case such an algorithm exists and works in timepolynomial in the size of its output, we say that the corresponding sequence of circuits is uniform.Note that if f has a uniform sequence of polynomial-size circuits then f 2 P. On the other hand, itcan be shown that any f 2 P has (a uniform sequence of) polynomial-size circuits. Consequently,a super-polynomial circuit lower-bound on any function in NP would imply that P 6= NP .But De�nition 8 makes no reference to \uniformity" and indeed the sequence of smallest circuitscomputing ffng may be highly \nonuniform". Indeed, non-uniformity makes the circuit modelstronger than Turing machines (or, equivalently, than the model of uniform circuits): there existfunctions f that cannot be computed by Turing machines (regardless of their running time), butdo have linear-size circuits. So isn't proving circuit lower bounds a much harder task than we needto resolve the P vs. NP question?The answer is that there is a strong sentiment that the extra power provided by non-uniformityis irrelevant to the P vs. NP question; that is, it is conjectured that NP-complete sets do nothave polynomial-size circuits. This conjecture is supported by the fact that its failure will yieldan unexpected collapse in the complexity of standard computations. Furthermore, the hope isthat abstracting away the (supposedly irrelevant) uniformity condition will allow for combinatorialtechniques to analyze the power and limitations of polynomial-size circuits (w.r.t NP-sets). Thishope has materialized in the study of restricted classes of circuits (see Sections 5.1.2 and 5.1.3).7

We also mention that Boolean circuits are a natural computational model, corresponding to\hardware complexity", and so their study is of independent interest. Moreover, some of thetechniques for analyzing Boolean functions found applications elsewhere (e.g., in computationallearning theory, combinatorics and game theory).5.1.1 Basic Results and QuestionsWe have already mentioned several basic facts about Boolean circuits, in particular the fact thatthey can e�ciently simulate Turing Machines. The next basic fact is that most Boolean functionsrequire exponential size circuits, which is due to the gap between the number of functions and thenumber of small circuits.So hard functions for circuits (and hence for Turing machines) abound. However, the hardnessabove is proved via a counting argument, and thus supplies no way of putting a �nger on onehard function. Using more conventional language { we cannot prove such hardness for any explicitfunction f (e.g., for an NP-complete function like SAT or even for functions in EXP). The situationis even worse { no nontrivial lower-bound is known for any explicit function. Note that for anyfunction f on n bits (which depends on all its inputs), we trivially must have S(f) � n, just toread the inputs. The main open problem of circuit complexity is beating this trivial bound.Open Problem 9 Find an explicit Boolean function f (or even a length-preserving function f)for which S(f) is not O(n).A particularly basic special case of this problem, is the question whether addition is easier to per-form than multiplication. Let ADD :f0; 1gn�f0; 1gn!f0; 1gn+1 and MULT :f0; 1gn�f0; 1gn!f0; 1g2n,denote, respectively, the addition and multiplication functions on a pair of integers (presented inbinary). For addition we have an optimal upper bound; that is, S(ADD) = O(n). For multiplication,the standard (elementary school) quadratic-time algorithm can be greatly improved (via DiscreteFourier Transforms) to slightly super-linear, yielding S(MULT) = O(n � (log n)2). Now, the questionis whether or not there exist linear-size circuits for multiplication (i.e., is S(MULT) = O(n))?Unable to prove any nontrivial lower bound, we now turn to restricted models. There has beensome remarkable successes in developing techniques for proving strong lower bounds for naturalrestricted classes of circuits. We describe the most important ones.General Boolean circuits, as described above, can compute every function and can do it at leastas e�ciently as general (uniform) algorithms. Restricted circuits may be only able to compute asubclass of all functions (e.g., monotone functions). The restriction makes sense when either therelated classes of functions or the computations represented by the restricted circuits are natu-ral, from a programming or a mathematical viewpoint. The models discussed below satisfy thiscondition.5.1.2 Monotone CircuitsAn extremely natural restriction comes by forbidding negation from the set of gates, namely allowingonly f^;_g. The resulting circuits are called monotone circuits and it is easy to see that they cancompute every function f : f0; 1gn!f0; 1g that is monotone with respect to the standard partialorder on n-bit strings (x � y i� for every bit position i we have xi � yi).It is as easy to see that most monotone functions require exponential size monotone circuits.Still, proving a super-polynomial lower bound on an explicit monotone function was open for over40 years, till the invention of the so-called approximation method.8

Let CLIQUE be the function that, given a graph on n vertices (by its adjacency matrix), outputs1 i� it contains a complete subgraph of size (say) pn (namely, all pairs of vertices in some pnsubset are connected by edges). This function is clearly monotone. Moreover, it is known to beNP-complete.Theorem 10 There are no polynomial-size monotone circuits for CLIQUE.We note that similar lower-bounds are known for functions in P.5.1.3 Bounded-Depth CircuitsThe next restriction is structural: we allow all gates, but limit the depth of the circuit. The depthof a DAG is simply the length of the longest directed path in it. So in a sense, depth captures theparallel time to compute the function: if a circuit has depth d, then the function can be evaluatedby enough processors in d phases (where in each phase many gates are evaluated at once). Paralleltime is another important computational resource.We will restrict d to be a constant, which still is interesting not only as parallel time, butalso due to the relation of this model to expressibility in �rst order logic as well as to complexityclasses above NP called the Polynomial-time Hierarchy (see section III). In the current setting (ofconstant-depth circuits), we allow unbounded fan-in (i.e., ^-gates and _-gates taking any numberof incoming edges), as otherwise each output bit can depend only on a constant number of inputbits.Let PAR (for parity) denote the sum modulo two of the input bits, and MAJ (for majority) be1 i� there are more 1's than 0's among the input bits. The invention of the random restrictionmethod led to the following basic result.Theorem 11 For all constant d, PAR and MAJ have no polynomial size circuit of depth d.Interestingly, MAJ remains hard (for constant-depth polynomial-size circuits) even if the circuitsare also allowed (unbounded fan-in) PAR-gates (this result is based on yet another proof technique:approximation by polynomials). However the \converse" does not hold, and the class of constant-depth polynomial-size circuits with MAJ-gates seems quite powerful.5.1.4 Formula SizeThe �nal restriction is again structural { we require the DAG to be a tree. Intuitively, this forbidsthe computation from reusing a previously computed partial result (and if it is needed again, it hasto be recomputed). The resulting circuits are simply formulae, which are natural not only for theirprevalent mathematical use, but also since their size can be related to the memory requirements ofa Turing machine. Here we go back to the standard basis of negation, and 2-bit input ^;_ gates.One of the oldest results on Circuit Complexity, is that PAR and MAJ are nontrivial in this model.The proof follows a simple combinatorial (or information theoretic) argument.Theorem 12 Boolean formuale for n-bit PAR and MAJ require size
(n2) size.This should be contrasted with the linear-size circuits that exist for both functions. We commentthat S(PAR) = O(n) is trivial, but S(MAJ) = O(n) is not.Can we give super-polynomial lower bounds on formula size? One of the cleanest methods sug-gested is the communication complexity method, which we demonstrate informally with an example.9

Consider two players, the �rst having a prime number x < 2n, and the second having a compositenumber y < 2n. Clearly, any two such numbers must di�er on at least one bit position in theirbinary expansion (i.e., there exists an i s.t. xi 6= yi), and it is the goal of the parties to �nd suchan i. To that end, the party exchange messages, according to a pre-determined protocol, and thequestion is what is the communication complexity (in terms of total number of bits exchanged onthe worst-case input pair) of the best such protocol. Proving a super-logarithmic lower-bound willestablish (the widely believed conjecture) that testing primality has no polynomial size formulae.Note that a lower bound of purely information theoretic nature (no computational restriction werepaced on the parties) implies a computational one!5.1.5 Why Is It Hard to Prove Lower Bounds?The failure to obtain (nontrivial) lower bounds for general circuit in a span of 60 years raisesthe question of whether there is a fundamental reason for this failure. The same may be askedabout any long standing mathematical problem (e.g. the Riemann Hypothesis), and the typical(vague!) answer would be that, probably, the current tools and ideas (which may well have beensuccessful at attacking related, easier problems) do not su�ce. Complexity Theory can make thisvague statement into a theorem! Thus we have a \formal excuse" for our failure so far: we canclassify a general set of ideas and tools, which are responsible for virtually all restricted lowerbounds known, yet must necessarily fail for proving general ones. This introspective result suggestsa framework called Natural Proofs, which encapsulates all known lower bound techniques. It showsthat natural proofs of general circuit lower bounds for explicit functions surprisingly imply (...)e�cient algorithms of a type conjectured not to exist (e.g., for integer factoring).One interpretation of the aforementioned result, is an \independence result" of general circuitlower bounds from a certain natural fragment of Peano Arithmetic.6 This may hint that the Pvs. NP problem may be independent from PA or even Set Theory, although few believe the latterto be the case.5.2 Arithmetic CircuitsWe now leave the Boolean rind, and discuss circuits over general �elds. Fix any �eld F . The gatesof the DAG will now be the standard + and � operations in the �eld. This requires two immediateclari�cations. First, to allow using constants of the �eld, one adds a special input vertex whosevalue is the constant `1' of the �eld. Moreover, multiplication by any �eld element (e.g., �1) isfree. Second, one may wonder about division. However, we will be mainly interested in computingpolynomials, and for computing polynomials (over in�nite �elds) division can be e�ciently emulatedby the other operations.Now the inputs of the DAG will hold elements of the �eld F , and hence so will all computedvalues at vertices. Thus an arithmetic circuit computes a polynomial map p : F n ! Fm, and everysuch polynomial map is computed by some circuit. We denote by SF (p) the size of a smallest circuitcomputing p (when no subscript is given, F = Q the �eld of rational numbers). As usual, we'll beinterested in sequences of polynomials, one for every input size, and will study size asymptotically.It is easy to see that over any �xed �nite �eld, arithmetic circuits can simulate Boolean circuitson Boolean inputs with only constant factor loss in size. Thus the study of arithmetic circuitsfocuses more on in�nite �elds, where lower bounds may be easier to obtain.6This result as the aforementioned one rely on the existence of one-way functions, see Section 7.10

As in the Boolean case, the existence of hard functions is easy to establish (via dimensionconsiderations, rather than counting argument), and we will be interested in explicit (families of)polynomials. However, the notion of explicitness is more delicate here (e.g., allowing polynomialswith algebraically independent coe�cients would yield strong lower bounds, which are of no interestwhatsoever). Very roughly speaking, polynomials are called explicit if the mapping from monomialsto (a �nite description of) their coe�cients has an e�cient program.An important parameter, which is absent in the Boolean model, is the degree of the polynomial(s)computed. It is obvious, for example, that a degree d polynomial (even in one variable, i.e., n = 1)requires size at least log d. We briey consider the univariate case (in which d is the only measure ofinput size), which already contains striking and important problems. Then we move to the generalmultivariate case, in which as usual n, the number of inputs will be the main parameter.5.2.1 Univariate PolynomialsHow tight is the log d lower bounds for the size of an arithmetic circuit computing a degree dpolynomial? A simple dimension argument shows that for most degree d polynomials p, S(p) =
(d). However, we know of no explicit one:Open Problem 13 Find an explicit polynomial p of degree d, such that S(p) is not O(log d).Two concrete examples are illuminating. Let p(x) = xd, and q(x) = (x + 1)(x + 2) � � � (x + d).Clearly S(p) � 2 log d (via repeated squaring), so the trivial lower bound is tight. On the otherhand, it is a major open problem to determine S(q), and the conjecture is that S(q)� (log d)O(1).To realize the importance of this question, we state the following fact: If S(q) � (log d)O(1), thenInteger Factorization can be done in polynomial-time.5.2.2 Multivariate PolynomialsWe are now back to polynomials with n variables. To make n our only input size parameter, it isconvenient to restrict ourselves to polynomials whose total degree is at most n.Once again, almost every polynomial p in n variables requires size S(p) � exp(n=2), via adimension argument, and we seek explicit polynomial (families) that are hard. Unlike in theBoolean world, here there are slightly nontrivial lower bounds (via elementary tools from algebraicgeometry).Theorem 14 S(xn1 + xn2 + � � �+ xnn) =
(n log n).The same techniques extend to prove a similar lower-bound for other natural polynomials suchas the symmetric polynomials and the determinant. Establishing a stronger lower-bound for anyexplicit polynomial is a major open problem. Another is obtaining a super-linear lower bound fora polynomial map of constant (even 1) total degree. Outstanding candidates for the latter are thelinear maps computing the Discrete Fourier Transform over the Complex numbers, or the Walshtransform over the Rationals (for both O(n log n) algorithms are known, but no super-linear lowerbounds).We now focus on speci�c polynomials of central importance. The most natural and well studiedcandidate for the last open problem is the matrix multiplication function MM: let A;B be twom �m matrices of variables over F , and de�ne MM(A;B) to be the n = m2 entries of the matrixA�B. Thus, MM is a set of n explicit bilinear forms over the 2n input variables. It is known thatSGF(2)(MM) � 3n. On the other hand, the obvious m3 = n3=2 algorithm can be improved.11

Theorem 15 For every �eld F , SF (MM) = O(n1:19).So what is the complexity of MM (even if one counts only multiplication gates)? Is it linear oralmost-linear or is it the case that S(MM) > n� for some � > 1? This is indeed a famous openproblem.We next consider the determinant and permanent polynomials (DET and PER, resp.) over then = m2 variables representing anm�mmatrix. While DET plays a major role in classical mathemat-ics, PER is somewhat esoteric (though it appears in Statistical Mechanics and Quantum Mechanics).In the context of complexity theory both polynomials are of great importance, because they capturenatural complexity classes. DET has relatively low complexity (and is closely related to the class ofpolynomials having polynomial-sized arithmetic formulae), whereas PER seems to have high com-plexity (and it is complete for the counting class #P which contains NP). Thus, it is conjecturedthat PER is not polynomial-time reducible to DET. A speci�c type of reduction that makes sense inthis algebraic context is by projection.De�nition 16 Let X and Y be two disjoint �nite sets of variables. Let p 2 F [X] and q 2 F [Y] betwo polynomials. We say that there is a projection from p to q over F , denoted p / q if there existsa function h : X ! Y [F such that p(�x) � q(h(�x)).Clearly, if p / q then SF (p) � SF (q). Let DETm and PERm denote these functions restricted tom-by-m matrices. It is known that PERm / DET3m , but to yield a polynomial-time reduction onewould need a projection of PERm to DETpoly(m). It is conjectured that no such projection exists.Open Problem 17 Is PERm / DETmO(1)?5.3 Proof ComplexityThe concept of proof is what distinguishes the study of Mathematics from all other �elds of humaninquiry. Mathematicians have gathered millennia of experience to attribute such adjectives to proofsas \insightful, original, deep" and most notably, \di�cult". Can one quantify, mathematically, thedi�culty of proving various theorems? This is exactly the task undertaken in Proof Complexity. Itseeks to classify theorems according to the di�culty of proving them, much like Circuit Complexityseeks to classify functions according to the di�culty of computing them. In proofs, just likein computation, there will be a number of models, called proof systems capturing the power ofreasoning allowed to the prover.We will consider only propositional proof systems, and so our theorems will be tautologies. Wewill see soon why the complexity of proving tautologies is highly nontrivial and amply motivated.The formal de�nition of a proof system spells out what we take for granted: the e�ciency ofthe veri�cation procedure.7De�nition 18 A (propositional) proof system is a polynomial-time Turing machine M with theproperty that T is a tautology if and only if there exist a (\proof") � such that M(�; T) = 1.87Here e�ciency of the veri�cation procedure refers to its running-time measured in terms of the total length ofthe alleged theorem and proof. In contrast, in Sections 3.1 and 6.2, we consider the running-time as a function of thelength of the alleged theorem.8In agreement with standard formalisms (see below), the proof is seen as coming before the theorem.
12

Note that the de�nition guarantees completeness and soundness, as well as veri�cation e�ciencyof the proof system. It judiciously ignores the size of the proof � (of the tautology T), which isa measure of how complex it is to prove T in the system M . For each tautology T , let sM (T)denote the size of the shortest proof of T inM (i.e., the length of the shortest string � such that Maccepts (�; T)). Abusing notation, we let sM (n) denotes the maximum sM (T) over all tautologiesT of length n.The following simple observation provides a basic connection of this concept with computationalcomplexity, and the major question of Section 3.3.Theorem 19 There exists a proof systemM such that sM is polynomial if and only if NP = coNP.It is natural to start attacking this formidable problem by considering �rst simple (and thusweaker) proof systems, and then move on to more and more complex ones. Moreover, naturalproof systems, capturing basic (restricted) types and \primitives" of reasoning, as well as naturaltautologies, suggest themselves as objects for this study. In the rest of this section we focus on suchrestricted proof systems.Di�erent branches of Mathematics such as logic, algebra and geometry provide di�erent suchsystems, often implicitly. A typical system would have a set of axioms, and a set of deductionrules. A proof would proceed to derive the desired tautology in a sequence of steps, each producinga formula (often called a line of the proof), which is either an axiom, or follows from previousformulae via one of the deduction rules. (Clearly, a Turing machine can easily verify the validityof such a proof).This perfectly �t our DAG model.9 The inputs will be labeled by the axioms, the internalvertices by deduction rules, which in turn \infer" a formula for that vertex from the formulae atthe vertices pointing to it.There is an equivalent and somewhat more convenient view of (simple) proof systems, namelyas (simple) refutation systems. First, recalling that 3SAT is NP-complete (see Footnote 4), notethat every (negation of a) tautology can be written as a conjunction of clauses, with each clausebeing a disjunction of only 3 literals (variables or their negation). Now, if we take these clauses asaxioms, and derive (using the rules of the system) a contradiction (e.g., the negation of an axiom,or better yet the empty clause), then we have proved the tautology (since we have proved thatits negation yields a contradiction). We will use the refutation viewpoint throughout, and oftenexchange \tautology" and its negation, \contradiction".So we turn to study the proof length s�(T) of tautologies T in proof systems �. The �rstobservation, revealing a major di�erence between proof complexity and circuit complexity, is thatthe trivial counting argument fails. The reason is that, while the number of functions on n bits is22n , there are at most 2n tautologies of this length. Thus in proof complexity, even the existenceof a hard tautology, not necessarily explicit, would be of interest. As we shall see, however, mostknown lower bounds (in restricted proof systems) apply to very natural tautologies.The rest of this section is divided to three parts, on logical, algebraic and geometric proofsystems. We will briey describe important representatives and basic results in each.5.3.1 Logical Proof SystemsThe proof systems in this section will all have lines that are Boolean formulae, and the di�erenceswill be in the structural limits imposed on these formulae.9General proof systems as in De�nition 18 can also be adapted to this formalism, by considering a deduction rulethat corresponds to a single step of the machine M . However, the deduction rules considered below are even simpler,and more importantly they are natural. 13

The most basic proof system, called Frege system, puts no restriction on the formulae manipu-lated by the proof. It has one derivation rule, called the cut rule: A_C;B _:C ` A_B (addingany other sound rule, like modus ponens, has little e�ect on the length of proofs in this system).Frege systems are basic in the sense that they (in several variants) are the most common in Logic,and in that polynomial length proofs in these systems naturally corresponds to \polynomial-timereasoning" about feasible objects.The major open problem in proof complexity is to �nd any tautology (as usual we mean afamily of tautologies) that has no polynomial-size proof in the Frege system.As lower bounds for Frege are hard, we turn to subsystems of Frege which are interesting andnatural. The most widely studied system is Resolution, whose importance stems from its use bymost propositional (as well as �rst order) automated theorem provers. The formulae allowed inResolution refutations are simply clauses (disjunctions), and so the derivation cut rule simpli�es tothe \resolution rule": A _ x;B _ :x ` A _B, for clauses A;B and variable x.An example of a tautology that is easy for Frege and hard for Resolution, is the pigeonholeprinciple, PHPmn , expressing the fact that there is no one-to-one mapping of m pigeons to n < mholes.Theorem 20 sFrege(PHPn+1n) = nO(1) but sResolution(PHPn+1n) = 2
(n)5.3.2 Algebraic Proof SystemsJust as a natural contradiction in the Boolean setting is an unsatis�able collection of clauses, anatural contradiction in the algebraic setting is a system of polynomials without a common root.Moreover, CNF formulae can be easily converted to a system of polynomials, one per clause, overany �eld. One often adds the polynomials x2i � xi which ensure Boolean values.A natural proof system (related to Hilbert's Nullstellensatz, and to computations of Grobnerbases in symbolic algebra programs) is Polynomial Calculus, abbreviated PC. The lines in thissystem are polynomials (represented explicitly by all coe�cients), and it has two deduction rules:For any two polynomials g; h, the rule g; h ` g + h, and for any polynomial g and variable xi, therule g; xi ` xig. Strong size lower bounds (obtained from degree lower bounds) are known for thissystem. For example, encoding the pigeonhole principle as a contradicting set of constant degreepolynomials, we haveTheorem 21 For every n and every m > n, sPC(PHPmn) � 2n=2, over every �eld.5.3.3 Geometric Proof SystemsYet another natural way to represent contradictions is a by a set of regions in space that haveempty intersection. Again, we care mainly about discrete (say, Boolean) domains, and a widesource of interesting contradictions are Integer Programs from Combinatorial Optimization. Here,the constraints are (a�ne) linear inequalities with integer coe�cients (so the regions are subsetsof the Boolean cube carved out by halfspaces). The most basic system is called Cutting Planes(CP). Its lines are linear inequalities with integer coe�cients. Its deduction rules are (the obvious)addition of inequalities, and the (less obvious) dividing the coe�cients by a constant (and rounding,taking advantage of the integrality of the solution space).While PHPmn is easy in this system, exponential lower bounds are known for other tautologies.We mention that they are obtained from the monotone circuit lower bounds of Section 5.1.2.14

6 Randomized ComputationAs hinted in Section 3, until now we restricted computations to (repeatedly) executing a deter-ministic rule. A more liberal approach pursued in this section considers computing devices thatuse a probabilistic (or randomized) rule. We still focus on polynomial-time computations, butthese are probabilistic (i.e., can \toss coins"). Speci�cally, we allow probabilistic rules that chooseuniformly among two outcomes. We comment that probabilistic computations are believed to takeplace in real-life algorithms that are employed in a variety of applications (e.g., random sampling,Monte-Carlo simulations, etc.).10Rigorous models of probabilistic machines are de�ned by natural extensions of the basic model,yielding probabilistic Turing machines. For a probabilistic machine M and string x2 f0; 1g�, wedenote byM(x) the distribution of the output ofM when invoked on input x, where the probabilityis taken over the machine's randommoves. Considering decision problems, we want this distributionto yield the correct answer with high probability for every input. This leads to the de�nition ofBPP (for Bounded error, Probabilistic Polynomial time):De�nition 22 (BPP) A Boolean function f is in BPP if there exists a probabilistic polynomial-time machine M such that for every x 2 f0; 1g�, Pr[M(x) 6= f(x)] � 1=3.The error bound 1=3 is arbitrary; for any k = poly(jxj), the error can be reduced to 2�k by invokingthe program O(k) times and taking a majority vote of the answers. We stress that the randommoves in the di�erent invocations are independent.Again, it is trivial that BPP � EXP , via enumerating all possible outcomes of coin tossesand taking a majority vote. The relation of BPP to NP is not known, but it is known that ifNP = P then also BPP = P. Finally, non-uniformity can replace randomness: every function inBPP has polynomial-size circuits. But the fundamental question is whether or not randomizationadds computing power over determinism (for decision problems).Open Problem 23 Does P = BPP?While quite a few problems11 are known to be in BPP but not known to be in P, there isoverwhelming evidence that the answer to the question above is positive (namely, randomizationdoes not add extra power in the context of decision problems): we elaborate a bit in Section 7.1.6.1 Counting at RandomOne important question regarding NP search problems is that of determining how many solutionsa speci�c instance has. This captures a host of interesting problems from various disciplines, e.g.counting the number of solutions to a system of multivariate polynomials, counting the number ofperfect matchings of a graph, computing the volume of a polytope (given by linear inequalities) inhigh dimension, computing various parameters of physical systems, etc.In most of these problems, even approximate counting would su�ce. Clearly, approximatecounting allows one to determine whether a solution exists at all. For example, counting thenumber of satisfying assignments for a given propositional formula (even approximately) allowsone to determine whether the formula is satis�able. Interestingly, the converse is also true.10The sense in which these applications actually utilize random moves is a di�erent question. The point is thatone analyzes these computations as though they are taking random moves.11A central example is Identity Testing: given an arithmetic circuit over Q, decide if it computes the identicallyzero polynomial. 15

Theorem 24 There exists a probabilistic polynomial-time oracle machine12 that, on input a for-mula and oracle access to SAT, outputs an integer that with probability at least 23 is within a factorof 2 of the number of satisfying assignments for .We comment that an analogous statement holds for any NP-complete problem.The approximation factor can be reduced to 1 + j j�c, for any �xed constant c. However, itis believed that an exact count cannot be obtained via a probabilistic polynomial-time oracle withoracle access to SAT. We mention that computing the aforementioned quantity (or computing thenumber of solutions to any NP-search problem) is polynomial-time reducible to computing thepermanent of positive integer matrices.13For some of the problems mentioned above, approximate counting can be done without the SAToracle: There are polynomial-time probabilistic algorithms for approximating the permanent ofpositive matrices, approximating the volume of polytopes, and more. These follow a connectionof approximate counting to the related problem of uniform generation of solutions, and the con-struction and analysis of adequate Markov chains for solving the related sampling problems (see[9, Chap. 12]).6.2 Probabilistic Proof SystemsThe glory attributed to the creativity involved in �nding proofs, makes us forget that it is the lessglori�ed process of veri�cation that de�nes proof systems.The notion of a veri�cation procedure presupposes the notion of computation14 and furthermorethe notion of e�cient computation (because veri�cation, unlike coming up with proofs, is supposedto be easy). It will be convenient here to view a proof system for a set S (e.g., of satis�ableformulae) as a game between an all-powerful prover and an e�cient veri�er: Both receive an inputx, and the prover attempts to convince the veri�er that x 2 S. Completeness dictates that theprover succeeds for every x 2 S, and soundness dictates that any prover fails for every x 62 S.When taking the most natural choice of e�ciency requirement, namely restricting the veri�erto be a deterministic polynomial-time machine, we get back the de�nition of the class NP (slightlyrephrased): a set S is in NP if and only if membership in S can be veri�ed by a deterministicpolynomial-time machine when given an alleged proof of polynomial length (i.e., polynomial in jxj).Now we relax the e�ciency requirement, and let the veri�er be a probabilistic polynomial-timemachine, allowing it to \rule by statistical evidence" and hence to err (with low probability, whichis explicitly bounded and can be reduced via repetitions). This relaxation is not suggested as asubstitute to the notion Mathematical truth; however, as we shall below, it turns out to yieldenormous advance in computer science.6.2.1 Interactive Proof SystemsWhen the veri�er is deterministic, we can always assume that the prover simply sends it a singlemessage (the purported \proof"), and based on this message the veri�er decides whether to acceptor reject the common input x as a member of the target set S.When the veri�er is probabilistic, interaction may add power. We thus consider a (randomized)interaction between the parties, which may be viewed as an \interrogation" by a persistent student,12See Footnote 3. Here, upon issuing any query 0 the machine is told whether or not 0 is satis�able.13We stress that this reduction does not preserve the quality of an approximation.14This may explain the historical fact that notions of computation were �rst rigorously formulated in the contextof logic. 16

asking the teacher \tough" questions in order to be convinced of correctness.15 Since the veri�erought to be e�cient (i.e., run in time polynomial in jxj), this interaction is bounded to have atmost these many rounds. The class IP (for Interactive Proofs) contains all sets S for which thereis a veri�er that accepts every x 2 S with probability 1 (after interacting with an adequate prover),but rejects any x 62 S with probability at least 1=2 (no matter what strategy is employed by theprover).A major result asserts that interactive proofs exists for every set in PSPACE (i.e., having adecision procedure that uses a polynomial amount of memory, but possibly working in exponential-time).Theorem 25 IP = PSPACE .While it is not known if NP 6= PSPACE , it is widely believed to be the case, and so it seemsthat interactive proofs are more powerful than standard non-interactive and deterministic proofs(i.e., NP-proofs). In particular, since coNP � PSPACE , Theorem 25 implies that there are suchinteractive proofs for every set in coNP (e.g., the set of propositional tautologies), whereas somecoNP-sets are believed not to have NP-proofs.6.2.2 Zero-Knowledge Proof SystemsHere the thrust is not to prove more theorems, but rather to have proofs with additional properties.Randomized and interactive veri�cation procedures as in Section 6.2.1 allow the (meaningful) in-troduction of zero-knowledge proofs, which are proofs that yield nothing beyond their own validity.Such proofs seem counter-intuitive and undesirable for educational purposes, but they are veryuseful in cryptography.For example, a zero-knowledge proof that a certain propositional formula is satis�able doesnot reveal a satisfying assignment to the formula nor any partial information regarding such anassignment (e.g., whether the �rst variable can assume the value true). In general, whatever theveri�er can e�ciently compute after interacting with a zero-knowledge prover, can be e�cientlyreconstructed from the assertion itself (without interacting with anyone).Clearly, any set in BPP has a zero-knowledge proof, in which the prover says nothing (and theveri�er decides by itself). What is surprising is that zero-knowledge proofs seem to exist also forsets that are not in BPP . In particular:Theorem 26 Assuming the existence of one-way functions (see Section 7), every set in NP hasa zero-knowledge proof system.6.2.3 Probabilistically Checkable Proof systemsLet us return to the non-interactive mode, in which the veri�er receives a (alleged) written proof.But now we restrict its access to the proof so as to read only a small part of it (which may berandomly selected). An excellent analogy is to imagine a referee trying to decide the correctness ofa long proof by sampling a few lines of the proof. It seems hopeless to detect a single \bug" unlessthe entire \proof" is read; but this intuition is valid only for the \natural" way of writing downproofs and fails when \robust" formats of proofs are used and one is willing to settle for statisticalevidence.15Interestingly, it turns out that asking \tough" questions is not better than asking random questions!17

Such \robust" proof systems are called PCPs (for Probabilistically Checkable Proofs). Looselyspeaking, a pcp system for a set S consists of a probabilistic polynomial-time veri�er having accessto an oracle that represents a proof in redundant form, where (as in case of NP-proofs) the lengthof the proof is polynomial in the length of the input. The veri�er accesses only a constant numberof the oracle bits, and accepts every x 2 S with probability 1 (when given access to an adequateoracle), but rejects any x 62 S with probability at least 1=2 (no matter to which oracle it is givenaccess).Theorem 27 (The PCP Theorem) Each set in NP has a pcp system. Furthermore, thereexists a polynomial-time procedure for converting any NP-proof to the corresponding pcp-oracle.Indeed, the proof of the PCP Theorem suggests a new way of writing \robust" proofs, in which anybug must \spread" all over16. One important application of the PCP Theorem (and its variants) isthe connection to the complexity of combinatorial approximation. For example, it is NP-completeto decide if, for a given linear system of equations over GF(2), the fraction of mutually satis�ableequations is greater than 99% or smaller than 51%.6.3 Weak Random SourcesWe now return to the question of how to obtain the assumed randomness for all the probabilisticcomputations discussed in this section. Although randomness seems to be present in the world (e.g.,the perceived randomness in the weather, Geiger counters, Zener diodes, real coin ips, etc.), it doesnot seem to be in the perfect form of unbiased and independent coin tosses (as postulated above).Thus, to actually use randomized procedures, we need to convert weak sources of randomnessinto almost perfect ones. Very general mathematical models capturing such weak sources havebeen proposed. Algorithms converting the randomness in them into a distribution that in closeto uniform (namely unbiased, independent stream of bits) are called randomness extractors, andnear optimal ones have been constructed. This large body of work is surveyed, e.g., in [16]. Wemention that this question turned out to be related to certain types of pseudorandom generators(cf. Section 7.1) as well as to combinatorics and coding theory.7 The Bright Side of HardnessThe Big Conjecture according to which P 6= NP means that there are computational problems ofgreat interest that are inherently intractable. This is bad news, but there is a bright side to thematter: computational hardness (alas in a stronger form than known to follow from P 6= NP) hasmany fascinating conceptual consequences as well as important practical applications. Speci�cally,in accordance with our intuition, we shall assume that not all e�cient processes can be e�cientlyreversed (or inverted). Furthermore, we shall assume that hardness to invert is a typical (ratherthan pathological) phenomenon for some e�ciently computable functions. That is, we assume thatone-way functions exist.De�nition 28 (One-Way Functions) A function f : f0; 1g� ! f0; 1g� is called one-way if thefollowing two conditions hold1. easy to compute: the function f is computable in polynomial time.16The analogy to error correcting codes is indeed in place, and the cross fertilization between these two areas hasbeen very signi�cant. 18

2. hard to invert: for every probabilistic polynomial-time machine, M , every positive polynomialp(�), and all su�ciently large nPrx hM(1n; f(x))2f�1(f(x))i < 1p(n)where x is uniformly distributed in f0; 1gn.For example, the widely believed conjecture according to which integer factorization is intractable(for a noticeable fraction of the instances) implies the existence of one-way functions. On the otherhand, if P = NP then no one-way functions exist. One important open problem is whether P 6= NPimplies the existence of one-way functions.Below, we discuss the connection between computational di�culty (in the form of one-wayfunctions) on the one hand, and two important computational theories on the other hand: thetheory of Pseudorandomness and the theory of Cryptography.One fundamental concept, which is pivotal to both these theories, is the concept of computationalindistinguishability. Loosely speaking, two objects are said to be computationally indistinguishableif no e�cient procedure can tell them apart. Here objects will be probability distributions (on�nite binary sequences). We actually consider probability ensembles, where an ensemble is a familyof distributions, each on strings of di�erent length (e.g., the uniform ensemble is the family fUngn2N,where Un is the uniform distribution on all n-bit strings).De�nition 29 (Computational Indistinguishability) The probability ensembles fPngn2N andfQngn2N are called computationally indistinguishable if for every probabilistic polynomial-time ma-chine, M , every positive polynomial p(�), and all su�ciently large njPr[M(1n; Pn)=1]� Pr[M(1n; Qn)=1]j < 1p(n) :Computational indistinguishability is a (strict) coarsening of statistical indistinguishability. Wefocus on the non-trivial cases of pairs of ensembles that are computationally indistinguishablealthough they are statistically very di�erent. It is easy to show that such pairs do exist, but wefurther focus on pairs of such ensembles that are e�ciently samplable17. Interestingly, such pairsexists if and only if one-way functions exist.7.1 PseudorandomnessWe call an ensemble pseudorandom if it is computationally indistinguishable from the random(i.e., uniform) ensemble. A pseudorandom generator is an e�cient (deterministic) procedure thatstretches short random strings into longer pseudorandom strings.De�nition 30 (Pseudorandom Generators) A deterministic polynomial-time machine G iscalled a pseudorandom generator if there exists a monotonically increasing function, ` :N!N, suchthat the probability ensembles fU`(n)gn2N and fG(Un)gn2N are computationally indistinguishable.18The function ` is called the stretch measure of the generator, and the n-bit input of the generatoris called its seed.17The ensemble fPngn2N is e�ciently samplable if there exists a probabilistic polynomial-time machine M suchthat M(1n) and Pn are identically distributed, for every n.18Recall that Um denotes the uniform distribution over f0; 1gm. Thus, G(Un) is de�ned as the output of G on auniformly selected n-bit input string. 19

That is, pseudorandom generators yield a particularly interesting case of computational indistin-guishability: the distribution G(Un), which is e�ciently samplable using only n truly random coins(and so has entropy n), is computationally indistinguishable from the uniform distribution over`(n)-bit long strings (having entropy `(n) > n). The major question which we turn to deal with isof course: do pseudorandom generators exist?7.1.1 Hardness versus RandomnessBy its very de�nition, the notion of a pseudorandom generator is connected to computationaldi�culty (i.e., the computational di�culty of determining that the generator's output is not trulyrandom). It turns out that the connection between the two notions is even stronger.Theorem 31 Pseudorandom generators exist if and only if one-way functions exist. Furthermore,if pseudorandom generators exist then they exist for any stretch measure that is a polynomial.Theorem 31 converts computational di�culty (hardness) into pseudorandomness, and vice versa.Furthermore, its proof links computational indistinguishability to computational unpredictability,hinting that computational di�culty (of predicting an information theoretically determined event)is linked to randomness (or to the appearance of being random).Pseudorandom generators allow for a drastic reduction in the amount of \true randomness" usedin any e�cient randomized procedure. Rather than using independent coin tosses, such procedurescan use the output of a pseudorandom generator, which in turn can be generated deterministicallybased on many fewer coin tosses (used to select the generator's seed). The e�ect of this replacementon the behavior of such procedures will be negligible. In algorithmic applications, where it ispossible to invoke the same procedure many times and rule by a majority vote, one can derivedeterministic procedures by trying all possible seeds. In particular, using a seemingly strongernotion of pseudorandom generators (which work in time exponential in their seeds and producesequences that look random to tests of a �xed polynomial-time complexity), allows to convertany probabilistic polynomial-time algorithm into a deterministic one (implying that BPP = P).Such pseudorandom generators exist under plausible conjectures regarding computational di�cultywhich seem far weaker than the existence of one-way functions. Thus for example:Theorem 32 If, for some constant � > 0, S(SAT) > 2�n then BPP = P. Moreover, SAT can bereplaced by any problem computable in 2O(n)-time.7.1.2 Pseudorandom FunctionsPseudorandom generators allow for the e�cient generation of long pseudorandom sequences fromshort random seeds. Pseudorandom functions are even more powerful: they allow for e�cientdirect access to a huge pseudorandom sequence (which is infeasible to scan bit-by-bit). That is,pseudorandom functions are e�ciently computable (ensembles of) functions that are indistinguish-able from truly random functions by any e�cient procedure that can obtain the function values atarguments of its choice. We refrain from presenting a precise de�nition, but do mention a centralresult: pseudorandom functions can be constructed given any pseudorandom generator. We alsomention that pseudorandom functions have many applications (most notably in cryptography).
20

7.2 CryptographyCryptography has existed for millennia. However, in the past it was focused on one basic problem {that of providing secret communications. By contrast, the modern computational theory of cryp-tography is interested in all tasks involving several communicating agents in which the following(often conicting) desires are crucial: privacy, namely the protection of secrecy, and resilience,namely the ability to withstand malicious behavior of participants. Perhaps the best example toillustrate these di�culties is playing a game of Poker over the telephone (i.e., the \new age" playerscannot rely on physical implements such as cards dealt from a deck that is visible by all play-ers). In general, cryptography is concerned with the construction of schemes that maintain anydesired functionality under malicious attempts aimed at making these schemes deviate from theirprescribed functionality.As with pseudorandomness, there are two key assumptions underlying the new theory. First,that all parties (including the adversary) are computationally limited: they are modeled as prob-abilistic polynomial-time machines and hence computationally indistinguishable distributions areequivalent as far as these parties are concerned. Second, that a certain type of computationallyhard problem exists, namely, one-way functions and in some cases stronger versions called trapdoorpermutations, which in turn are implied by the hardness of integer factorization. In fact, all theresults mentioned below hold if trapdoor permutations exist, and cannot hold if one-way functionsdo not exist.Starting with the traditional problem of providing secret communication over insecure channels,we note that pseudorandom functions (which can be constructed based on any one-way function)provide a satisfactory solution for this problem: The communicating parties, sharing a pseudoran-dom function, may exchange information in secrecy by masking it with the values of the functionevaluated at adequately selected arguments (which may be agreed-upon a priori or transmitted inthe clear). That is, the parties use a pseudorandom function as a secret key in (predetermined)encryption and decryption procedures. Still, the communicating parties have to agree on this keybeforehand (or transmit this key through an auxiliary secret channel).The need for a priori agreement on a secret key is removed when using \public-key" encryptionschemes, in which the key used for encryption can be made public while only the (di�erent) key usedfor decryption is kept secret. In particular, in such schemes, it is infeasible to recover the decryption-key from the encyption-key, although such random pairs of keys can be generated e�ciently. Securepublic-key encryption schemes (i.e., providing for secret communication without any prior secretagreement) can be constructed based on trapdoor permutations.A general framework for casting cryptographic problems consists of specifying a random processwhich mapsm inputs to m outputs. The inputs to the process are to be thought of as local inputs ofm parties, and the m outputs are their corresponding local outputs. The random process describesthe desired functionality. That is, if the m parties were to trust each other (or trust some outsideparty), then they could each send their local input to the trusted party, who would compute theoutcome of the process and send each party the corresponding output. Loosely speaking, a secureimplementation of such a functionality is an m-party protocol in which the impact of maliciousparties is e�ectively restricted to application of the prescribed functionality to inputs chosen by thecorresponding parties. One major result in this area is the following.Theorem 33 Assuming the existence of trapdoor permutations, any e�ciently computed function-ality can be securely implemented. 21

8 The Tip of an IcebergEven within the topics discussed above, many important notions and results have not been dis-cussed for space reasons. Furthermore, other important topics and even wide areas have not beenmentioned at all. Here we briey discuss some of these topics and areas.8.1 Relaxing the RequirementsThe P vs. NP Question, as well as most of the discussion so far, focuses on a simpli�ed view of thegoals of (e�cient) computations. Speci�cally, we have insisted on e�cient procedures that alwaysgive the exact answer. In practice, one may be content with e�cient procedures that \typically"give an \approximate" answer. Indeed, both terms in quotation marks require clari�cation.8.1.1 Average-Case ComplexityOne may consider procedures that answer correctly on a large fraction of the instances. But thisassumes that all instances are equally interesting in practice, which is typically not the case. Onthe other hand, demanding success under all input distributions gives back worst-case complexity.A very appealing theory of average-case complexity (cf. [6]) demands success only for the family ofall input distributions that can be e�ciently sampled.8.1.2 ApproximationWhat do we mean by an approximation to a computational problem? There are many possible an-swers, and their signi�cance depends on the speci�cs of the application. For optimization problems,the answer is obvious: we'd like to get \close" to the optimum (see [9]). For search problems, wemay be satis�ed with a solution that is close in some metric to being valid. For decision problems(i.e., determining set membership), we may ask how close the input is (under some relevant distancemeasure) to an instance in the set (cf. [15]).8.2 Other Complexity MeasuresUntil now, we have focused on the running time of procedures, which is arguably the most impor-tant complexity measure. However, other complexity measures such as the amount of work-spaceconsumed during the computation are also important (cf. [17]). Another important issue is theextent to which a computation can be performed in parallel; that is, speeding-up the computationby splitting the work among several computing devices, which are viewed as components of thesame (parallel) machine and they are provided with direct access to the same memory module. Inaddition to the parallel time, a fundamentally important complexity measure in such a case is thenumber of (parallel) computing devices used (cf. [10]).8.3 Other Notions of ComputationFollowing are a few of the computational models we did not discuss. Models of distributed comput-ing refer to distant computing devices, each given a local input (which may be viewed as a part ofa global input). In typical studies one wishes to minimize the amount of communication betweenthese devices (and certainly avoid the communication of the entire input). In addition to measuresof communication complexity, a central issue is asynchrony (cf. [1]). We note that the communica-tion complexity of two-argument (and many-argument) functions is studied as a measure of their22

\complexity" (cf. [13]), but in these studies communication proportional to the length of the inputis not ruled out (but rather appears frequently). While being \information theoretic" in nature,this model has many connections to complexity theory. Altogether di�erent types of computationalproblems are investigated in the context of computational learning theory (cf. [11]) and the studyof on-line (cf. [2]). Finally, Quantum Computation investigates the possibility of using quantummechanics to speed up computation (cf. [12]).9 Concluding RemarksWe hope that this ultra-brief survey conveys the fascinating avor of the concepts, results and openproblems that dominate the �eld of computational complexity. One important feature of the �eldwe did not do justice to, is the remarkable web of (often surprising) connections between di�erentsubareas, and its impact on progress. For further details on the material discussed in Sections 2{4,the reader is referred to standard textbooks such as [5, 17]. For further details on the materialdiscussed in Sections 5.1, 5.2 and 5.3, the reader is referred to [4], [18] and [3], respectively. Forfurther details on the material discussed in Sections 6 and 7, the reader is referred to [7] (and alsoto [8] for further details on Section 7.2).

23

References[1] H. Attiya and J. Welch: Distributed Computing: Fundamentals, Simulations and Advanced Topics,McGraw-Hill, 1998.[2] A. Borodin and R. El-Yaniv: On-line Computation and Competitive Analysis, Cambridge Uni-versity Press, 1998.[3] P. Beame and T. Pitassi: Propositional Proof Complexity: Past, Present, and Future, inBulletin of the EATCS, Vol. 65, June 1998.[4] R. Boppana and M. Sipser: The complexity of �nite functions, in [14].[5] M.R. Garey and D.S. Johnson: Computers and Intractability: A Guide to the Theory of NP-Completeness, W.H. Freeman and Company, 1979.[6] O. Goldreich: Notes on Levin's Theory of Average-Case Complexity, In ECCC, TR97-058, 1997.[7] O. Goldreich: Modern Cryptography, Probabilistic Proofs and Pseudorandomness, Algorithmsand Combinatorics series (Vol. 17), Springer, 1999.[8] O. Goldreich: Foundation of Cryptography (in two volumes: Basic Tools and Basic Applications),Cambridge University Press, 2001 and 2004.[9] D. Hochbaum (ed.): Approximation Algorithms for NP-Hard Problems, PWS, 1996.[10] R.M. Karp and V. Ramachandran: Parallel Algorithms for Shared-Memory Machines, in [14].[11] M.J. Kearns and U.V. Vazirani: An introduction to Computational Learning Theory, MIT Press,1994.[12] A. Kitaev, A. Shen, M Vyalyi: Classical and Quantum Computation, AMS, 2002.[13] E. Kushilevitz and N. Nisan: Communication Complexity, Cambridge University Press, 1996.[14] J. van Leeuwen (ed.): Handbook of Theoretical Computer Science, Vol A: Algorithms and Com-plexity, MIT Press/Elsevier, 1990.[15] D. Ron: Property Testing (A Tutorial), in Handbook on Randomized Computing (Volume II),Kluwer Academic Publishers, 2001.[16] R. Shaltiel: Recent Developments in Explicit Constructions of Extractors, in Bulletin of theEATCS, Vol. 77, 2002.[17] M. Sipser: Introduction to the Theory of Computation, PWS, 1997.[18] V. Strassen: Algebraic Complexity Theory, in [14].
24

Appendix: Glossary of Complexity ClassesComplexity classes are sets of computational problems, where each class contains problems thatcan be solved with speci�c computational resources. Examples of such classes (e.g., P and NP)are presented in the essay \Computational Complexity" (Sec. IV) and the reader is referred therefor further discussion of the notions of computation and complexity.To de�ne a complexity class one speci�es a model of computation, a complexity measure (liketime or space), and a bound on it. The prevailing model of computation is that of Turing machines,which in turn capture the notion of (uniform) algorithms. Another important model is the one ofnon-uniform circuits. The term uniformity refers to whether the algorithm is the same one forevery input length or whether a di�erent \algorithm" (or rather a \circuit") is considered for eachinput length. Recall (from Sec. IV) that complexity is always measured as a function of the inputlength.We focus on natural complexity classes, obtained by considering natural complexity measuresand bounds, which contain natural computational problems. Furthermore, almost all of theseclasses can be \characterized" by natural problems, which capture every problem in the class.Such problems are called complete for the class, which means that they are in the class and everyproblem in the class can be \easily" reduced to them, where \easily" means that the reduction takesless resources than what each of the problems seems to require individually. We stress the fact thatcomplete problem not only exist, but rather are natural and make no reference to computationalmodels or resources. E�cient algorithm for a complete problem implies an algorithm of similare�ciency for all problems in the class.A.1 Algorithm-based classesThe two main complexity measures considered in the context of (uniform) algorithms are the num-ber of steps taken by the algorithm (i.e., its time complexity) and the amount of "memory" or\work-space" consumed by the computation (i.e., its space complexity). In our Sec. IV essay, we de-�ne the time-complexity classes P and NP (cf. Sec. 3.1), coNP (cf. Sec. 3.4), and BPP (cf. Sec. 5).In addition, we mention a couple of other classes associated with probabilistic polynomial-time:� The set S is in RP if there exists a probabilistic polynomial-time machine M such that x2Simplies Pr[M(x)=1] � 12 , while x 62S implies Pr[M(x)=1] = 0. Also, coRP = ff0; 1g�nS :S2RPg. The latter class contains the problem of deciding whether a given arithmetic circuitover Q computes the identically zero polynomial.� The decision problem S :f0; 1g�!f0; 1g is in ZPP if there exists a probabilistic polynomial-time machine M such that for every x it holds that M(x)2fS(x);?g and Pr[M(x)=S(x)] �12 , where ? s a special failure symbol. Equivalently, ZPP is the class of all sets which havea probabilistic algorithm which always returns the correct andswer, and runs in expectedpolynomial time.Clearly, ZPP = RP \ coRP � RP � NP \ BPP.When de�ning space-complexity classes, one counts only the space consumed by the actualcomputation, and not the space occupied by the input and output. This is formalized by postulatingthat the input is read from a read-only device (resp., the output is written on a write-only device).Four important classes of decision problems are:� The class L consists of problems solvable in logarithmic space. That is, a set S is in L if thereexists a standard (i.e., deterministic) algorithm of logarithmic space-complexity for deciding25

membership in S. This class contains some simple computational problems (e.g., matrixmultiplication), and arguably captures the most space-e�cient computations.� The class RL consists of problems solvable by a randomized algorithm of logarithmic space-complexity. This class contains the problem of deciding whether a given undirected graph isconnected. This problem is not known to be in L.� The class NL is the non-deterministic analogue of L, and is traditionally de�ned in termsof non-deterministic machines of logarithmic space-complexity. Alternatively, analogously tothe de�nition of NP , a set S is in NL if there exists a polynomially bounded binary relationRS 2 L such that x 2 S if and only if there exists y such that (x; y) 2 RS . The class NLcontains the problem of deciding whether there exists a directed path between two givenvertexes in a given directed graph. In fact, the latter problem is complete for the class (underlogarithmic-space reductions). Interestingly, coNL def= ff0; 1g� n S : S2NLg equals NL.� The class PSPACE consists of (decision) problems solvable in polynomial space. This classcontains very di�cult problems, including the computation of winning strategies for anye�cient 2-party games (as discussed below).Clearly, L � RL � NL � P and NP � PSPACE .Turning back to time-complexity, we mention the classes E and EXP corresponding to problemsthat can be solved (by a deterministic algorithm) in time 2O(n) and 2poly(n), respectively, for n-bitlong inputs. Clearly, PSPACE � EXP .Two classes related to the class NP are the \counting class" #P and the Polynomial-timehierarchy. Functions in #P count the number of solutions to an NP-type search problem (e.g..compute the number of satisfying assignments of a given formula). Formally, a function f is in #Pif there exists an NP-type relation R such that f(x) = jfy : (x; y) 2Rgj. Clearly, #P problemsare solvable in polynomial space. Surprisingly, the permanent of positive integer matrices is #P-complete (i.e., it is in #P and any function in #P is polynomial-time reducible to it).The Polynomial-time hierarchy, PH, consists of sets S such that there exists a constant k anda (k + 1)-ary polynomially bounded relation RS 2P such that x2S if and only if 9y18y29y38y4:::such that (x; y1; y2; y3; y4; :::; yk)2RS . Indeed, NP corresponds to the special case where k = 1.Interestingly, PH is polynomial-time reducible to #P . Oded's Note:I prefer toomit thenextparagraph.Sets in the Polynomial-time hierarchy and in the class PSPACE capture the complexity of�nding winning strategies in certain e�cient 2-party game. In such games, the two players computetheir next move (from any given position) in polynomial time (in terms of the initial position) anda winning position can be recognized in polynomial-time. For example, a set S as above can beviewed via a k-move game in which, starting from a given position x, the �rst party takes the �rstmove y1, the second responds with y2, etc, and the winner is determined by whether or not thetranscript (x; y1; � � � yk) of the game is in RS . That is, x2S if, starting at the initial position x, the�rst party has a winning strategy in the k-move game determined by RS . Thus, sets in PH (resp.,PSPACE) corresponds to games with a constant number of (resp., polynomailly many) moves.A.2 Circuit-based classesSee Sec. IV for discussion of circuits as computing devices. The two main complexity measuresconsidered in the context of (non-uniform) circuits are the number of gates (or wires) in the circuit(i.e., the circuit's size) and the length of the longest directed path from an input to an output (i.e.,the circuit's depth). 26

The main motivation for the introduction of complexity classes based on circuits is the devel-opment of lower-bounds. For example, the class of problems solvable by polynomial-size circuits,denoted P=poly, is a super-set of P (because it clearly contains P as well as any subset of f1g�,whereas there exists such sets that represents decision problems that are not solvable (i.e., by anyuniform algorithm)). Thus, showing that NP is not contained in P=poly would imply P 6= NP .For further discussion see Sec. IV.The class AC0, discussed in our Sec. IV article (cf. Sec. 5.1.3), consists of sets recognized byconstant-depth polynomial-size circuits of unbounded fan-in. The analogue class that allows also(unbounded fan-in) majority-gates (or, equivalently, threshold-gates) is denoted T C0. For any non-negative integer k, the class of sets recognized by polynomial-size circuits of bounded fan-in (resp.,unbounded fan-in) having depth O(logk n), where n is the input length, is denoted NCk (resp.,ACk). Clearly, NCk � ACk � NCk+1 and NC def= [k2NNCk.We mention that the class NC2 � NL is the habitat of most natural computational problemsof Linear Algebra: solving a linear system of equations as well as computing the rank, inverse anddeterminant of a matrix. The class NC1 contains all symmetric functions, regular languages aswell as word problems for �nite groups and monoids. The class AC0 contains all properties of �niteobjects expressible by �rst-order logic.

27

