
Computational ComplexityOded GoldreichDepartment of Computer ScienceWeizmann Institute of ScienceRehovot, Israel.oded@wisdom.weizmann.ac.ilMarch 19, 20001 IntroductionComputational Complexity (a.k.a Complexity Theory) is a central �eld of Com-puter Science1 with a remarkable list of celebrated achievements as well as a veryvibrant research activity. The �eld is concerned with the study of the intrinsiccomplexity of computational tasks, and this study tend to aim at generality: Itfocuses on natural computational resources, and considers the e�ect of limitingthese resources on the class of problems that can be solved.The (half-century) history of Complexity theory has witnessed two mainresearch e�orts (or directions). The �rst direction is aimed towards actuallyestablishing concrete lower bounds on the complexity of problems, via an anal-ysis of the evolution (or e�ect) of the process of computation. Thus, in a sense,the heart of this direction is a \low-level" analysis of computation. Most re-search in circuit complexity (cf. [3]) and in proof complexity (cf. [2]) falls withinthis category. In contrast, a second research e�ort is aimed at exploring theconnections among computational problems and notions, without being able toprovide absolute statements on either of the problems (or notions) being re-lated. The current exposition focuses on the latter e�ort (or direction), whichmay be viewed as a \high-level" study of computation. We present a few of theinteresting notions, results and open problems in this direction.We list several reasons for our choice to focus on the \high-level" direction.The �rst is the great conceptual signi�cance of the know results; that is, as we1The theoretical aspects of Computer Science can be viewed as consisting of two disciplines:the Theory of Computation (TOC) and the Theory of Programming (TOP). TOC is concernedwith the process of computation and its e�ect, whereas TOP is concerned with the coding ofprograms that induce computations. Complexity Theory is but one �eld of TOC; other �eldsconcern the design and analysis of algorithms for speci�c computational problems that arisefrom a huge variety of areas of mathematics and science.1

shall see, many known results (and open problems) in this direction have anappealing conceptual message, which can be appreciated also by non-experts.Furthermore, these conceptual aspects may be explained without getting intotoo much technical details. Consequently, such material is more suitable for anexposition in a book of the current nature. Finally, we admit that the \high-level" direction is within the author's expertise, while this cannot be said aboutthe \low-level" direction.2 PreliminariesThis exposition considers only �nite objects, encoded by binary �nite sequencescalled strings. For a natural number n, we denote by f0; 1gn the set of all n-bit long strings. The set of all strings is denoted f0; 1g�; that is, f0; 1g� =[n2Nf0; 1gn. For x 2 f0; 1g�, we denote by jxj the length of x (i.e., x 2f0; 1gjxj).At times, we associate f0; 1g��f0; 1g� with f0; 1g�; the reader should merelyconsider an adequate encoding (i.e., (x1 � � �xm; y1 � � � yn) 2 f0; 1g��f0; 1g� maybe encoded by x1x2 � � �xmxm01y1y1 � � � ynyn 2 f0; 1g�). Typically, natural num-bers will be encoded by their binary expansion so that bn�1 � � � b1b0 2 f0; 1gnencodes the number Pn�1i=0 bi � 2i.Computability: We assume that the reader is familiar with the notion ofa computation (cf. [13]). Loosely speaking, a computation is a process thatmodi�es an environment via repeated applications of a predetermine rule thatdepends and e�ects only a (small) portion of the environment, called the activezone. The distinction is between the a-priori bounded size of the active zoneand the a-priori unbounded size of the entire environment. Although each ap-plication of the (computation) rule has a very limited e�ect, the e�ect of thecomputational process induced by the rule (i.e., many successive applications ofthe rule) may be very complex.We are interested in the transformation of the environment e�ected by thecomputational process (or computation). Typically, the initial environment towhich the computation is applied encodes an input string, and the end environ-ment (i.e., at termination of the computation)2 encodes an output string. Weconsider the mapping from inputs to outputs induced by the computation; thatis, for each possible input x, we consider the output y obtained at the end of acomputation initiated with input x, and say that the computation maps inputx to output y. We also consider the number of steps (i.e., application of therule) taken by the computation (as a function of all possible inputs). The latterfunction is called the time complexity of the computational process.2We assume that when invoked on any �nite initial environment, the computation haltsafter a �nite number of steps. 2

To rigorously de�ne computation (and computation time) one needs to spec-ify some model of computation; that is, provide a concrete de�nition of envi-ronments and a class of rules that may be applied to them. Such a modelcorresponds to an abstraction of a real computer (be it a PC, mainframe ornetwork of computers); however a simpler abstract model that is commonlyused is the one of Turing machines. We stress that most results in the theory ofcomputation hold regardless of the speci�c computational model used, as longas it is \reasonable". This refers both to the class of functions that can be com-puted, and to the class of functions (resp., problems) that can be \e�ciently"computed (resp., solved).E�cient Computability: We associate e�cient computations with compu-tations that terminate within time polynomial in the length of their inputs.The functional treatment of running-time (i.e., running-time as function of theinput length) is important for an easier development of the theory of e�cientcomputation, but such theories could also be developed for �xed input-length(alas at much greater e�ort). Polynomials are viewed as the canonical class ofslowly-growing functions that enjoy closure properties relevant to computation.Speci�cally, the class is closed under addition, multiplication and composition.The growth-rate of polynomials allows to consider as e�cient all proceduresthat have practically admissible time complexity, and the closure properties ofpolynomials o�er robustness of the notion of e�cient computation.De�nition 1 (polynomial-time) We say that a Turing machineM is polynomial-time if there exists a polynomial p so that for every x 2 f0; 1g�, when invokedon input x, machine M halts after at most p(jxj) steps.We stress again that the speci�c choice of Turing machines as a model of com-putation is immaterial, and polynomial-time Turing machines correspond tocomputations that can be carried out on a real computer within time polyno-mial in the input length.What is being Computed? The above discussion has implicitly referred tocomputations and Turing machines as means for computing functions. Speci�-cally, a Turing machineM computes the function fM : f0; 1g� ! f0; 1g� de�nedby fM (x) = y if when invoked on input x machineM halts with output y. How-ever, computations can also be viewed as means for \solving problems" or mak-ing decisions. We may say that M solves a search problem R � f0; 1g��f0; 1g�if for every (x; y) 2 R it holds that (x; fM (x)) 2 R; that is, given an instance xthat has a valid solution y (i.e., (x; y) 2R), machineM �nds some valid solutiony0 for x (i.e., (x; y0) 2R). We say that M solves a decision problem S � f0; 1g�if it holds that fM (x) = 1 if and only if x 2 S; that is, given an instance x,machine M determines whether x 2 S or not.3

In the rest of this exposition we associate the machine M with the functionfM computed by it; that is, we write M(x) instead of fM (x).3 The P versus NP QuestionOur focus is on the concept of e�cient computations, and on the question ofwhich functions (resp., problems) can be e�ciently computed (resp., e�cientlysolved). In terms of decision problems, a conservative approach to computingdevices associates e�cient computations with the complexity class P (whereP stands for Polynomial-time). Jumping ahead, we note that a more liberalapproach (pursued in Section 5) allows the computing devices to \toss coins"(be randomized).De�nition 2 (The complexity class P) A decision problem S � f0; 1g� issolvable in polynomial-time if there exists a deterministic polynomial-time Turingmachine M so that M(x) = 1 if and only if x 2 S. The class of search problemsthat are solvable in polynomial-time is denoted P.Similarly, we can de�ne the class of functions (resp., search problems) that arecomputable (resp., solvable) in polynomial-time. Clearly, we should consideronly polynomially-bounded functions and relations, where a function f (resp.,relation R) is polynomially-bounded if there exists a polynomial p so that jf(x)j �p(jxj) holds for every x (resp., jyj � p(jxj) holds for every (x; y) 2 R). Animportant fact is that for every polynomially-bounded relation R, if SR def=f(x; y0) : 9y00 s.t. (x; y0y00) 2 Rg is in P then R is solvable in polynomial-time.The complexity classNP is associated with search problems having solutionsthat, once given, can be e�ciently tested for validity. That is, a polynomially-bounded search problem R � f0; 1g��f0; 1g� is of the NP-type if one can decidemembership in R in polynomial-time. Thus, the following fundamental questionarises:Open Problem 3 (P versus NP { search version) Is every NP-type searchproblem solvable in polynomial-time?That is, if there exists an e�cient way to decide whether a given instance-solution pair is valid then does it follow that there exists an e�cient way to�nd a valid solution to a given instance? The P versus NP Question has also afundamental formulation in terms of decision problems:De�nition 4 (The complexity class NP) A set S is in NP, if there existsa polynomially-bounded relation RS � f0; 1g��f0; 1g� such that RS is in P andx 2 S if and only if there exists a y such that (x; y) 2 RS. Such a y is called aproof of membership of x 2 S. 4

Thus, NP consists of the class of sets for which there exist short proofs ofmembership that can be e�ciently veri�ed.3 Recall that P is the class of setsfor which membership can be e�ciently decided (without being given a proof).Thus, the P versus NP Question can be casted as follows: does the existence ofan e�cient veri�cation procedure for proofs of membership in a set imply theability to e�ciently decide membership in the set?Open Problem 5 (P versus NP { decision version) Is NP equal to P?That is, do proofs help or is it the case that one can �nd out the truth by oneselfessentially as easily as one can be convinced of the fact by a proof? Problems 3and 5 are in fact equivalent:Fact 6 Every NP-type search problem is solvable in polynomial-time if and onlyif P = NP.Proof: Suppose that equality holds for the search version and let S 2 NP .Then RS (as in De�nition 4), being an NP-type search, is solvable in polynomial-time, and it follows that S 2 P . Suppose, on the other hand, that NP = P ,and let R be an NP-type search. Then the set SR (as de�ned above) is in NPand so in P , and it follows that R is solvable in polynomial-time.The Big Conjecture: It is widely believed that P 6= NP , and settling thisconjecture is certainly the most intriguing open problem in Computer Science.The P 6= NP Conjecture is supported by our intuition regarding its two for-mulations: we believe that solving problems is harder than verifying a givensolution, and that proofs do help. Empirical evidence towards the conjectureis given by the fact that literally thousands of NP-type problems, coming froma wide variety of mathematical and scienti�c disciplines, are not known to bepolynomial-time solvable in spite of extensive research attempts aimed at pro-viding e�cient solving procedures for them. A famous example is the IntegerFactorization problem: given a natural number, �nd its prime factorization.Another Big Question: Assuming that P 6= NP , it is not clear whetherthe existence of an e�cient veri�cation procedure for proofs of membership ina set implies the the existence of an e�cient veri�cation procedure for proofs ofnon-membership in that set. That is, let coNP denote the class of sets that arecomplements of sets in NP (i.e., coNP def= ff0; 1g� n S : S 2 NPg).Open Problem 7 (NP versus coNP) Is NP equal to coNP?It is widely believed that coNP 6= NP. (Indeed, this implies P 6= NP.)3In some sources the class NP is de�ned via a �ctitious computing device called a non-deterministic machine, and NP stands for Non-deterministic Polynomial-time.5

4 NP-CompletenessFor the current discussions, it is more convenient to view decision problems asBoolean functions de�ned over the set of strings (i.e., S : f0; 1g� ! f0; 1g) ratherthan as sets of strings (i.e., S � f0; 1g�). A general notion of (polynomially-time) reducibility among computational problems is obtained by considering a(polynomially-time) machine for solving one problem (e.g., computing a functionf) that may ask queries to another problem (e.g., to a function g).4 Below, weconsider a restricted notion of (polynomially-time) reducibility in which themachine makes a single query and outputs the answer it obtains.De�nition 8 (NP-completeness) A function f is polynomially-reducible to afunction g if there exist a polynomial-time computable function h so that f(x) =g(h(x)) for every x 2 f0; 1g�. Speci�cally, in case of decision problems, the setS is polynomially-reducible to the set S0 if it holds that x 2 S if and only ifh(x) 2 S0. A decision problem S is NP-complete if S is in NP and everydecision problem in NP is polynomially-reducible to S.Thus, NP-complete (decision) problems are \universal" in the sense that pro-viding a polynomial-time procedure for solving any of them will immediatelyimply polynomial-time procedures for solving any problem in NP (and in par-ticular all NP-complete decision problems). Furthermore, in a sense, each ofthese (NP-complete) problems \e�ciently encodes" all the other problems, andin fact all NP-type search problems. For example, the problem of integer factor-ization can be \e�ciently encoded" in any NP-complete problem (which mayhave nothing to do with integers).5 Thus, at �rst glance it seems very surprisingthat NP-complete problems exist at all.Theorem 9 There exist NP-complete decision problems. Furthermore, the fol-lowing decision problems are NP-complete:SAT : Given a propositional formula, decide whether it is satis�able.63-Coloring : Given a simple graph, decide whether it is 3-colorable.74Such a machine is called an oracle machine, and in the case above we say that it computesthe function f by making queries to the oracle (function) g so that for query q the answer isg(q).5In particular, a polynomial-time decision procedure for any of the problems below yieldsa polynomial-time algorithm for factoring integers.6The problem remains NP-complete even when instances are restricted to be in Conjunc-tive Normal Form (CNF), and even when each clause has exactly 3 literals. In this case, theinput is a set of clauses, each consisting of 3 literals, where each literal is either a Boolean vari-able or its negation. The question is whether there exists a truth assignment to the variables,so that each clause contains at least one literal that evaluates to true.7The input consists of a set of unordered pairs, called edges, over a �nite set V (of vertices).The question is whether there exists a mapping � : V ! f1; 2; 3g so that �(u) 6= �(v) for everyedge (u; v). 6

Subset Sum : Given a sequence of integers a1; :::; an and b, decide whetherthere exists a set I so that Pi2I ai = b.The decision problems mentioned above are but three examples out of literallythousands of NP-complete problems, coming from a wide variety of mathemat-ical and scienti�c disciplines. (Hundreds of such problems are listed in [4].)Assuming that P 6= NP , no NP-complete problem has a polynomial-timedecision procedure. Consequently, the corresponding NP-type search problem(associated with the relation in De�nition 4), cannot be solve in polynomial-time.5 Randomized ComputationAs hinted in Section 3, so far our approach to computing devises was somewhatconservative: we thought of them as (repeatedly) executing a deterministic rule.A more liberal approach pursued in this section considers computing devicesthat use a probabilistic (or randomized) rule. We still focus on polynomial-time computations, but these are probabilistic polynomial-time computations.Speci�cally, we allow probabilistic rules that choose uniformly among two prede-termined possibilities, and observe that the e�ect of more general probabilisticrules can be e�ciently approximated by a rule of the former type. We commentthat probabilistic computations are believed to take place in real-life computa-tions that are employed in a variety of applications (e.g., sampling, simulations,etc.).8Rigorous models of probabilistic machines are de�ned by natural extensionsof the basic model; for example, we will talk of probabilistic Turing machines.Again, the speci�c choice of model is immaterial; as long as it is \reasonable".We consider the output distribution of such probabilistic machines on �xedinputs; that is, for a probabilistic machine M and string x 2 f0; 1g�, we denotebyM(x) the distribution of the output ofM on input x, where the probability istaken over the machine's random moves. Considering decision problems, threenatural types of machines arise:1. Machines that never err, but may output a special don't know symbol(denoted ?)9;2. Machines with one-sided error probability (see below);3. Machines with two-sided error probability.8In what sense do these applications really utilize random moves is a di�erent question.The point is that the programmers and users treat these computations as if they are takingrandom moves. We further discuss this issue in Section 6.1.9The latter relaxation is essential, or else one may obtain an equivalent deterministicmachine by merely �xing all choices of the probabilistic machine (e.g., to be all 1).7

Of course, the error probability needs to be bounded (or else the de�nition ismeaningless). We focus on probabilistic polynomial-time machines, and on errorprobability that may be reduced to a \negligible" amount by polynomially manyindependent repetitions. This gives rise to natural complexity classes such asthe following.De�nition 10 (ZPP, RP and BPP) Let S : f0; 1g� ! f0; 1g be a decisionproblem, and M be a probabilistic polynomial-time machine.1. Suppose that for every x 2 f0; 1g� it holds that M(x) 2 fS(x);?g andPr[M(x) = S(x)] � 12 . Then S 2 ZPP.2. Suppose that for every x 2 f0; 1g� it holds that S(x) = 1 implies Pr[M(x) =1] � 12 and S(x) = 0 implies Pr[M(x) = 0] = 1. Then S 2 RP.Similarly, if S(x) = 1 implies Pr[M(x) = 1] = 1 and S(x) = 0 impliesPr[M(x) = 0] � 12 then S 2 coRP.3. If for every x 2 f0; 1g� it holds that Pr[M(x) = S(x)] � 23 then S 2 BPP.Indeed, coRP = ff0; 1g� n S : S 2 RPg, and ZPP = RP \ coRP. Wecomment that, in all cases, the error (or don't know) probability can be reducedto, say, exp(�jxj) by invokingM for O(jxj) times, where in each run M utilizesindependent random choices.A fundamental question that comes to mind refers to the e�ect of random-ization on the computing power. Since P � ZPP � RP � BPP, the realquestion is whether these inclusions are strict. In Section 6 we discuss evidenceto the contrary, still the following is a fundamental open problem:Open Problem 11 Does P = BPP?The set of prime numbers is known to be in ZPP. It is also known thatthe Extended Riemann Hypothesis (ERH) implies that the set of primes is inP , but an analogue unconditional result is not known. The current state ofknowledge (by which a speci�c problem is in P if either ERH holds or a generalcomputational conjecture holds but not unconditionally) seems fascinating.5.1 Counting at RandomAn interesting question regarding NP-type search problems is to determine howmany solutions does a speci�c instance have. Clearly, counting the number ofsolutions (even approximately) allows to determine whether a solution existsat all. For example, approximately counting the number of satisfying assign-ments to a given propositional formula allows to determine whether the formulais satis�able. Interestingly, approximately counting the number of satisfyingassignments is not signi�cantly harder than deciding if such exists:8

Theorem 12 There exists a probabilistic polynomial-time oracle10 machine that,on input a formula and oracle access to SAT , outputs an integer that withprobability at least 23 is within a factor of 2 of the number of satisfying assign-ments of .We comment that an analogous statement holds for any NP-complete problem,and that it is not known whether a similar approximation can be obtained bya deterministic polynomial-time oracle machine. The approximation factor canbe reduced to 1+ j j�c, for any �xed constant c. However, it is believed that anexact count cannot be obtained via a probabilistic polynomial-time oracle withoracle access to SAT . Let us phrase this too as an important open problem.Open Problem 13 Does there exist a probabilistic polynomial-time oracle ma-chine that, on input a formula and oracle access to SAT , outputs an integerthat with probability at least 23 equals the number of satisfying assignments of .Turning back to what is known, we mention that a machine as in Theorem 12can generate a uniformly distributed satisfying assignment, provided that suchexists: There exists a probabilistic polynomial-time oracle machine that, on inputa satis�able formula and oracle access to SAT , outputs a uniformly distributedsatisfying assignment to .5.2 Probabilistic Proof SystemsThe glory attributed to the creativity involved in �nding proofs, makes us forgetthat it is the less glori�ed process of veri�cation that gives proofs their value.Conceptually speaking, proofs are secondary to the veri�cation procedure; in-deed, proof systems are de�ned in terms of their veri�cation procedures.The notion of a veri�cation procedure assumes the notion of computation andfurthermore the notion of e�cient computation. This implicit notion is madeexplicit in the de�nition of NP , in which e�cient computation is associatedwith (deterministic) polynomial-time procedures. Let us restate NP as a classof proof systems.De�nition 14 (NP-proof systems) Let S � f0; 1g� and � : f0; 1g��f0; 1g� !f0; 1g be a function so that x 2 S if and only if there exists a w 2 f0; 1g� suchthat �(x;w) = 1. If � is computable in time bounded by a polynomial in thelength of its �rst argument then we say that S is an NP-set and that � de�nesan NP-proof system.The formulation of NP-proofs restricts the \e�ective" length of proofs to bepolynomial in length of the corresponding assertions (since the running-time ofthe veri�cation procedure is restricted to be polynomial in the length of the10See Footnote 4. Here, upon making any query 0 the machine is told whether 0 issatis�able or not. 9

assertion). However, longer proofs may be allowed by padding the assertionwith su�ciently many blank symbols. So it seems that NP-proofs give a sat-isfactory formulation of proof systems (with e�cient veri�cation procedures).This is indeed the case if one associates e�cient procedures with deterministicpolynomial-time procedures. However, we can gain a lot if we are willing to takea somewhat non-traditional step and allow probabilistic veri�cation procedures.In particular:� Randomized and interactive veri�cation procedures, giving rise to interac-tive proof systems, seem much more powerful (i.e., \expressive") than theirdeterministic counterparts. In particular, such interactive proof systemsexists for any set in coNP (e.g., for the set of unsatis�ed propositionalformula), whereas it is widely believed that some sets in coNP do nothave NP-proof systems (i.e., NP 6= coNP).Loosely speaking, an interactive proof system is a game between a com-putationally bounded veri�er and a computationally unbounded proverwhose goal is to convince the veri�er of the validity of some assertion.Speci�cally, the veri�er is probabilistic and its time-complexity is poly-nomial in the length of the assertion. It is required that if the assertionholds then the veri�er always accepts (when interacting with an appropri-ate prover strategy). On the other hand, if the assertion is false then theveri�er must reject with probability at least 12 , no matter what strategyis being employed by the prover. Thus, a \proof" in this context is nota �xed and static object, but rather a randomized (dynamic) process inwhich the veri�er interacts with the prover. Intuitively, one may think ofthis interaction as consisting of \tricky" questions asked by the veri�er,to which the prover has to reply \convincingly".� Such randomized procedures allow the introduction of zero-knowledge proofswhich are of great theoretical and practical interest. Furthermore, underreasonable complexity assumptions (such as those in Section 6), every setin NP has a zero-knowledge proof system.Loosely speaking, zero-knowledge proofs are interactive proofs that yieldnothing (to the veri�er) beyond the fact that the assertion is indeed valid.That is, whatever the veri�er can e�ciently compute after interacting witha zero-knowledge prover, can be e�ciently computed from the assertionitself (without interacting with anyone). Thus, zero-knowledge proofs ex-hibit an extreme contrast between being convinced of the validity of astatement and learning anything in addition (while receiving such a con-vincing proof).� NP-proofs can be e�ciently transformed into a (redundant) form thato�ers a trade-o� between the number of locations examined in the NP-proof and the con�dence in its validity. The latter redundant proofs arecalled probabilistically checkable proofs (or pcp).10

Loosely speaking, a pcp system consists of a probabilistic polynomial-timeveri�er having access to an oracle which represents a proof in redundantform. Typically, the veri�er accesses only few of the oracle bits, andthese bit positions are determined by the outcome of the veri�er's cointosses. Again, it is required that if the assertion holds then the veri�eralways accepts (when given access to an adequate oracle); whereas, if theassertion is false then the veri�er must reject with probability at least 12 ,no matter which oracle is used.It turns out that any set in NP has a pcp system in which the veri�erasks only a constant number of (Boolean!) queries.In all the abovementioned types of probabilistic proof systems, explicit boundsare imposed on the computational complexity of the veri�cation procedure,which in turn is personi�ed by the notion of a veri�er. Furthermore, in allthese proof systems, the veri�er is allowed to toss coins and rule by statisticalevidence. Thus, all these proof systems carry a probability of error; yet, thisprobability is explicitly bounded and, furthermore, can be reduced by successiveapplication of the proof system.6 The Bright Side of HardnessThe conjecture by which P 6= NP means that there are computational problemsof great interest that are inherently intractable. These are bad news, but thereis a bright side to them: computational hardness (alas in a stronger form thanknown to follow from P 6= NP) has many fascinating conceptual consequencesas well as important practical applications. Speci�cally, in accordance withour intuition, we shall assume that not all e�cient processes can be e�cientlyreversed (or inverted). Furthermore, we shall assume that hardness to invert isa typical (rather than pathological) phenomena for some e�ciently-computablefunctions. That is, we assume that one-way functions (as de�ned below) doexist.De�nition 15 (One-Way Functions) A function f :f0; 1g�!f0; 1g� is calledone-way if the following two conditions hold1. easy to compute: the function f is computable in polynomial-time.2. hard to invert: for every probabilistic polynomial-time machine, M , everypositive polynomial p(�), and all su�ciently large n'sPrx �M(1n; f(x))2f�1(f(x))� < 1p(n)where x is uniformly distributed in f0; 1gn.11

For example, the widely believed conjecture by which integer factorization isintractable for a noticeable fraction of the instances implies the existence ofone-way functions. On the other hand, if P = NP then no one-way functionsexist. An important open problem is whether P 6= NP implies the existence ofone-way functions.Below, we discuss the connection between computational di�culty { in theform of one-way functions { on one hand, and two important computationaltheories on the other hand. Speci�cally, we refer to the theory of pseudoran-domness and to the theory of cryptography. A fundamental concept, which ispivotal to both these theories, is the concept of computational indistinguisha-bility. Loosely speaking, two objects are said to be computationally indistin-guishable if no e�cient procedure can tell them apart. Here objects will beprobability distributions11 over bit strings rather than individual strings. Weactually consider probability ensembles each being an in�nite sequence of dis-tributions, where each distribution assigns positive probability weight only tostrings of length polynomial in the index of the distribution (within the ensem-ble).De�nition 16 (Computational Indistinguishability) The probability en-sembles fPngn2N and fQngn2N are called computationally indistinguishable iffor every probabilistic polynomial-time machine, M , every positive polynomialp(�), and all su�ciently large n'sjPr[M(1n; Pn)=1]� Pr[M(1n; Qn)=1]j < 1p(n)Computational indistinguishability is a (strict) coarsening of statistical indis-tinguishability. We focus on the non-trivial cases of pairs of ensembles that arecomputationally indistinguishable although they are statistically very di�erent.It is easy to show that such pairs do exist, but we care about pairs of ensemblesthat are e�ciently samplable.12 Interestingly, such pairs exists if and only ifone-way functions exist.6.1 PseudorandomnessLoosely speaking, a pseudorandom generator is an e�cient (deterministic) pro-cedure that stretches short random strings into longer strings that are compu-tationally indistinguishable from long random strings.De�nition 17 (pseudorandom generators) A deterministic polynomial-timemachine G is called a pseudorandom generator if there exists a monotonely in-11We stress that when we talk of distributions we mean discrete probability distributionshaving a �nite support that is a set of strings.12The ensemble fPngn2N is e�ciently samplable if there exists a a probabilistic polynomial-time machine M so that M(1n) and Pn are identically distributed, for every n.12

creasing function, ` : N ! N, so that the following two probability ensembles,denoted fGngn2N and fRngn2N, are computationally indistinguishable.1. Distribution Gn is de�ned as the output of G on a uniformly selected n-bitstring.2. Distribution Rn is de�ned as the uniform distribution over f0; 1g`(n).The function ` is called the stretch measure of the generator.That is, pseudorandom generators yield a particularly interesting case of com-putational indistinguishability: For every n, the distribution Gn is e�cientlysamplable using less that jGnj truly random coins, and yet it is computationallyindistinguishable from the uniform distribution over jGnj-bit long strings (i.e.,the distribution Rn).Theorem 18 Pseudorandom generators exist if and only if one-way functionsexist. Furthermore, in case pseudorandom generators exist they exists for anystretch measure that is a polynomial.Thus, in a sense, computational di�culty can be converted into randomness,and vice versa. Furthermore, the proof of Theorem 18 links computational in-distinguishability to computational unpredictability, hinting that computationaldi�culty (of predicting an information-theoretically determined event) is linkedto randomness (or to appearance of being random).Using pseudorandom generators. Pseudorandom generators allow to shrinkthe amount of \true randomness" used in any e�cient randomized procedure.This is done by feeding the procedure with the output of a pseudorandom gener-ator invoked on a truly random shorter string. The modi�ed procedure needs amuch smaller amount of \true randomness" but essentially maintains the func-tionality of the original procedure.13 Still we need to start with some amount of\true randomness", and the question is from where to obtain it. The answer isthat \true randomness" (or something that appears so) may be obtained fromnature; that is, by sampling some physical phenomena. Indeed, such samplesare not uniformly distributed over the set of strings of speci�c length, yet if theycontain enough entropy then almost perfect randomness can be (e�ciently) ex-tracted from them.1413Using seemingly stronger notions of pseudorandom generators, one may shrink the amountof \true randomness" to an even lower level, at which it is feasible to deterministically scanall possibilities. Such seemingly stronger pseudorandom generators imply that BPP = P, andexist under seemingly stronger (and yet very plausible) conjectures regarding computationaldi�culty.14The construction of such randomness extractors is indeed a very active research direction,and the currently known results (although not optimal) are very satisfactory.13

Pseudorandom functions. Pseudorandom generators allow one to e�cientlygenerate long pseudorandom sequences from short random seeds. Pseudoran-dom functions are even more powerful: they allow e�cient direct access to ahuge pseudorandom sequence (which is infeasible to scan bit-by-bit). In otherwords, pseudorandom functions can replace truly random functions in any e�-cient application (e.g., most notably in cryptography). That is, pseudorandomfunctions are indistinguishable from random functions by any e�cient procedurethat may obtain the function values at arguments of its choice. We refrain frompresenting a precise de�nition, but do mention a central result: Pseudorandomfunctions can be constructed given any pseudorandom generator.6.2 CryptographyThe assumption that one-way functions exists is a necessary and su�cient con-dition for much of modern cryptography. Here we focus on the basic tasks ofproviding secret and authenticated communication. Ignoring several importantissues, these tasks are reduced to the construction of encryption and signatureschemes.Encryption schemes. Such schemes are supposed to provide secret commu-nication between parties in a setting in which these parties communicate over achannel that may be eavesdropped by an adversary. There are two cases di�er-ing by whether the communicating parties have agreed on a common secret priorto the communication or not. In both cases, the encryption scheme consists ofthree probabilistic polynomial-time procedures: key generation, encryption (de-noted E), and decryption (D). Loosely speaking, on input a security parametern (in unary), the key-generation outputs a pair of corresponding encryptionand decryption keys, (e; d), so that for every string x 2 f0; 1g�, it holds thatDd(Ee(x)) = x, where Ee(x) (resp., Dd(y)) denotes the output of the encryption(resp., decryption) procedure on input (e; x) (resp., (d; y)).The di�erence between the two cases is in the way the scheme is employedand this will be reected in the de�nition of security. In the �rst case, known asthe private-key case, a set of mutually trustful parties employ the key-generationprocess, prior to the actual communication, obtaining a pair of keys (e; d). Westress that, in this case, the encryption-key e is known to all trusted parties andonly to them. Later, each trusted party may encrypt messages by applying Ee,and retrieve them (i.e., decrypt) by applying Dd. The information available tothe adversary, in this case, is a sequence of encrypted messages sent over thechannel, using a �xed encryption-key unknown to it. (We stress that the totalamount of information encrypted using this encryption-key may be much largerthan the length of the key, and so perfect information theoretic secrecy is notpossible.)In the second case, known as the public-key case, the receiver invokes the key-generation process, publicizes the encryption-key e (but not the decryption-key14

d), and the sender uses e to generate encryptions as before. This allows every-body (not only parties that the receiver trusts) to send encrypted messages tothe receiver, but in such a case also the adversary knows the encryption-keye. Thus, the information available to the adversary in this case is a sequenceof encrypted messages sent over the channel, using a �xed encryption-key thatis also known to it. In both cases, security amounts to asserting that the ad-versary does not learn anything from the information available to it. That is,whatever the adversary can e�ciently compute from the public information, canbe e�ciently computed from scratch.15Private-key encryption schemes exist if and only if one-way functions exists.16Public-key encryption schemes can be constructed based on a seemingly strongerassumption; yet this assumption is also implied by the abovementioned conjec-ture regarding the intractability of integer factorization.Signature schemes. Here too we have two cases corresponding to whethera certain key (here it is the veri�cation-key) is public or not. In both cases,the scheme consists of three probabilistic polynomial-time procedures: key gen-eration, signing (S), and veri�cation (V). On input a security parameter n(in unary), the key-generation outputs a pair of corresponding signing andveri�cation keys, (s; v), so that for every string x 2 f0; 1g�, it holds thatVv(x; Ss(x)) = 1, where Ss(x) (resp., Vd(x; y)) denotes the output of the signing(resp., veri�cation) procedure on input (s; x) (resp., (v; x; y)).The di�erence between the two cases is in the way the scheme is employedand this will be reected in the de�nition of security. In the private-key case(a.k.a message-authentication), the scheme is used to authenticate messagessent among mutually trustful parties that communicate over a channel thatmay be subject to message corruptions (and/or message insertion/deletion).It is assumed that the parties have invoked the key-generation process priorto the communication, obtaining a signing-key s (which may w.l.o.g equal theveri�cation-key v). Subsequently, the sender authenticates each message x byappending Ss(x) to it, and the receiver veri�es the authenticity by applying Vv .In the public-key case, the scheme is used in order to allow universal veri�cationof commitments done by parties. Towards this end, each party invokes the15The actual formulation refers to the notion of computational indistinguishability. It as-serts that for every distribution ensemble of the �rst type (representing what the aversarycomputes from the information available to it) there exists a distribution ensemble of thesecond type (representing what can be computed from scratch) so that the two ensembles arecomputationally indistinguishable. Note that in the private-key case, we may assume withoutloss of generality that e = d; whereas in the public-key case, d must be hard to compute frome.16Speci�cally, a private-key encryption scheme may be constructed as follows. The key-generation procedure consists of selecting a pseudorandom function f : f0; 1gn ! f0; 1gn,which serves both as the encryption and decryption key. Subsequently, each message x 2f0; 1gn is encrypted by uniformly selecting r 2 f0; 1gn and sending (r; f(r)�x), where �denotes the bit-by-bit exclusive-or of equal-length strings.15

key-generation process, deposits the resulting veri�cation-key v on a trustedpublic-�le, and keeps the corresponding signing-key s secret. When the userlater wishes to commit to a document, it applies Ss to it, and this commitmentis universally veri�able with respect to its public veri�cation-key.In both cases, security amounts to asserting that it is infeasible for anybodygiven the public information (but not having the signing-key), to produce a validsignature (i.e., a commitment w.r.t the veri�cation-key) to a document for whichsuch a commitment was not supplied before by a party holding the signing-key.That is, forgery should be infeasible even if the forger may ask the legitimateuser to sign documents of its choice; after such an attack the forger may indeedpresent valid signatures to all documents it has requested a signature for, butnot for any other document. (We stress that in case of public-key schemes thisis required to hold even if the forger has the veri�cation-key.)Private-key signature schemes exist if and only if one-way functions exists.17Public-key signature schemes can be constructed based on the same assumption.Beyond encryption and signature schemes. We stress that cryptographyencompasses much more than methods for providing secret and authenticatedcommunication. In general, cryptography is concerned with the constructionof schemes that maintain any desired functionality under malicious attemptsaimed at making them deviate from their prescribed functionality. Looselyspeaking, a secure implementation of a multi-party functionality is a multi-partyprotocol in which the impact of malicious parties is e�ectively restricted toapplying the prescribed functionality on inputs chosen by the correspondingparties. A major result in the area states that under plausible assumptionsregarding computational di�culty, any e�ciently computed functionality can besecurely implemented.7 The Tip of an IcebergEven within the topics discussed above, many important results were not dis-cussed. Some of these omissions will amazed experts in the �eld; but in view ofspace limitations we had no choice but to omit many interesting results regard-ing the above topics. Furthermore, other important topics and even wide areaswere not mentioned at all. We briey discuss some of these topics and areas.Relaxing the requirements. The \P versus NP" question, as well as muchof the discussion in Sections 2{4, focuses on a simpli�ed view of the goals of(e�cient) computations. Speci�cally, we have insisted on e�cient proceduresthat always give the exact answer. In practice, one may be content with e�cient17Speci�cally, a private-key signature scheme may be constructed as follows. The key-generation procedure consists of selecting a pseudorandom function f : f0; 1gn ! f0; 1gn.Subsequently, each message x 2 f0; 1gn is signed by the value f(x).16

procedures that \typically" give an \approximate" answer. Indeed, both termsin quotes require clari�cation:1. Average-case complexity. Indeed, one may talk of procedures that answercorrectly on a large fraction of the instances, but such a discussion assumesthat all instances are equally interesting for practice, which is typically notthe case.18 A more appealing theory of average-case complexity must con-sider a wide class of \simple distributions" and measure the performanceof procedures when instances are selected according to such distributions(cf. [5]). We warn that allowing arbitrary distributions would collapseaverage-case complexity to worst-case complexity (as discussed in Sec-tions 2{4). A reasonable choice of a class of \simple distributions" is theclass of distributions that can be e�ciently sampled from.2. Approximation. What do we mean by an approximation to a computa-tional problem? There are many possible answers, and their meaningful-ness depends on the speci�cs of the application. For example, in case ofsearch problems, we may be satis�ed with a solution that is close to bevalid; e.g., for a search problem R � f0; 1g� � f0; 1g�, given x we maybe content with a y0 that di�ers in relatively few bits from a string y sat-isfying (x; y) 2 R. More generally, we may care about a payo� function� : f0; 1g� � f0; 1g� so that given x one should �nd a y with maximum(or close to maximum) value for �(x; y). (See [8].) A natural notion ofapproximation is applicable also to decision problems (i.e., determiningset membership): given an instance x we may ask how close is x (undersome relevant distance measure) to an instance in the set (cf. [6]).Other complexity measures. So far, we have focused on the running-timeof procedures, which is arguably the most important complexity measure. How-ever, other complexity measures such as the amount of work-space consumedduring the computation are important too (cf. [13]). Another important issue isto what extent can a computation be performed in parallel; that is, speeding-upthe computation by running { concurrently { several computing devices (whichmay exchange information during the course of computation). In addition toparallel-time, a fundamentally important complexity measure in such a case isthe number of (parallel) computing devices used (cf. [10]).Other notions of computation. A setting related to parallel computing isthe one of distributed computing, with the di�erence being that in the lattercase only parts of the input are given to each computing device. Furthermore,18We mention that the formulation of one-way function does refer to one simple distributionof instances, which may be uniform in case the function is 1-1 over the set of strings of anylength. However, there we deal with arti�cially generated (hard) instances, rather than withproblem instances that arise from natural applications.17

in typical studies one wishes to minimize the amount of communication betweenthese devices (and certainly prohibit communicating the entire input among thedevices). Consequently, measures of communication complexity arise and play amajor role (cf. [1]). Communication complexity is also considered as a measureof the \complexity" of functions (cf. [12]), but in these abstract studies com-munication proportional to the length of the input is not ruled out (but ratherappears frequently). An altogether di�erent type of computational problemsare investigated in the context of computational learning theory (cf. [11]).Major areas we have ignored. As stated in the introduction, our expositiontotally ignores two major areas of complexity theory: circuit complexity (cf. [3])and proof complexity (cf. [2]). The activity in these areas is aimed towardsdeveloping proof techniques that may be used towards the resolution of thebig problems (such as P vs NP), but the current achievements { though veryimpressive { seem far from reaching this goal. Current crown-jewel achievementsin these areas take the form of tight (or strong) lower bounds on the complexityof computing (resp., proving) \relatively simple" functions (resp., claims) inrestricted models of computation (resp., proof systems).8 Concluding remarksWe hope that this ultra-brief survey conveys the fascinating avor of the con-cepts, results and open problems that dominate the �eld of computational com-plexity. We believe that the coming century will witness even more excitingdevelopments in this �eld, and urge the reader to try to contribute to them.Bibliographic Notes: Providing even a minimal set of bibliographic notesfor the material discussed in the main part of this exposition would have resultedin an extensive bibliography, which we cannot a�ord due to space limitations.Instead, we merely refer the reader to books containing such bibliographic notes:For Sections 2{4, see [9, 4]. For Sections 5 and 6, see [7].References[1] H. Attiya and J. Welch: Distributed Computing: Fundamentals, Simula-tions and Advanced Topics. McGraw-Hill Publishing Company, London,1998.[2] P. Beame and T. Pitassi: Propositional Proof Complexity: Past, Present,and Future. In Bulletin of the European Association for Theoretical Com-puter Science, Vol. 65, June 1998, pp. 66{89.18

[3] R. Boppana and M. Sipser: The complexity of �nite functions. In Handbookof Theoretical Computer Science: Volume A{ Algorithms and Complexity,J. van Leeuwen editor, MIT Press/Elsevier, 1990, pp. 757{804.[4] M.R. Garey and D.S. Johnson: Computers and Intractability: A Guide tothe Theory of NP-Completeness. W.H. Freeman and Company, New York,1979.[5] O. Goldreich: Notes on Levin's Theory of Average-Case Complexity. InECCC, TR97-058, 1997.[6] O. Goldreich: Combinatorial Property Testing { A Survey. In DIMACSSeries in Disc. Math. and Theoretical Computer Science, Vol. 43 (Ran-domization Methods in Algorithm Design), 1998.[7] O. Goldreich: Modern Cryptography, Probabilistic Proofs and Pseudoran-domness. Algorithms and Combinatorics series (Vol. 17), Springer, 1999.[8] D. Hochbaum (ed.): Approximation Algorithms for NP-hard Problems.PWS, 1996.[9] J.E. Hopcroft and J.D. Ullman: Introduction to Automata Theory, Lan-guages and Computation, Addison-Wesley, 1979.[10] R.M. Karp and V. Ramachandran: Parallel Algorithms for Shared MemoryMachines. In Handbook of Theoretical Computer Science, Vol A: Algorithmsand Complexity, 1990.[11] M.J. Kearns and U.V. Vazirani: An introduction to Computational Learn-ing Theory, MIT Press, 1994.[12] E. Kushilevitz and N. Nisan: Communication Complexity, Cambridge Uni-versity Press, 1996.[13] M. Sipser: Introduction to the Theory of Computation. PWS PublishingCompany, 1997.

19

