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We measure the quality of the estimate using two parameters: one is the precision of theestimate and the other is the error probability. Following Karp and Luby [KL] (see also [KLM]),we say that a random variable S estimates a value v with (additive) precision � and errorprobability � if Prob(jS � vj � �) � �. An (�(n); �(n))-sampler is a sampler that estimates theaverage of any function f : f0; 1gn ! [0; 1] with precision �(n) and error probability �(n). Theparameters we use to measure the cost of the estimate are the number of sample points used,and the amount of randomness (number of coin tosses) used.Lower bounds. We show lower bounds on the two cost parameters of an estimate as a functionof the quality parameters of the estimate. For the lower bound on the number of samples, we�rst consider samplers that given n always make t(n) samples at distinct places. We call suchsamplers t(n)-regular. We show that any t(n)-regular (�(n); �(n))-sampler satis�est(n) = 
( 1�(n)2 log 1�(n)) (1)We then generalize this lower bound to non-regular samplers.We remark that analogous lower bounds on the number of samples needed for hypothesistesting and estimating, with respect to memoryless sources, exist in di�erent settings. We notein particular the Cramer-Rao Bound and its many variants (see Chapter 2.4 of [VT]). However,none of these bounds applies directly to our computational setting.Next, we show a lower bound on the number of coin tosses, r(n), used by a sampler forfunctions f : f0; 1gn ! [0; 1]. The bound depends on n, on the number of sample points t(n),and on the error probability �(n). Speci�cally, we getr(n) � n + log 1�(n) � log t(n)� O(1) (2)Combining bounds (1) and (2), we get that for samplers using a minimal number of samples(namely, t(n) = O( 1�(n)2 log 1�(n))), the bound on the number of coin tosses is r(n) � n +
(log 1�(n))� O(log 1�(n)).We remark that both lower bounds hold even in a non-uniform setting, in which a di�erentalgorithm is allowed for each integer n. Furthermore, both bounds hold even for samplers thatoperate only on Boolean functions (namely, functions f : f0; 1gn ! f0; 1g).Tightness of the bounds. The lower bound on the number of samples is trivially tight,as demonstrated by the following straightforward sampler. On input n, output the average ofthe function value at t(n) mutually independent and uniformly chosen sample points. Using aCherno�-type bound [Ho], we get that t(n) = O( 1�(n)2 log 1�(n)) sample points are su�cient foran (�(n); �(n))-sampler. However, this sampler is very wasteful in randomness: it uses n � t(n)coin tosses.Several more randomness-e�cient samplers are known in the literature. We refer the readerto [BGG] for a survey. Of special interest is the sampler presented in [BGG]: this sampler issimultaneously tight with respect to both bounds (up to a multiplicative constant). Namely,in order to achieve an (�(n); �(n)) estimate for functions f : f0; 1gn ! [0; 1], this sampler usesO( 1�(n)2 log 1�(n)) samples, and tosses 2n+O(log 1�(n)) coins.Finally, we give a non-constructive proof of existence of a sampler that is more e�cientthan the [BGG] sampler, both in the number of samples and in the number of coins tossed.2



Namely, we show that given precision �, error probability �, and any number n 2 N, thereexists an (�; �)-sampler (for functions f : f0; 1gn ! [0; 1]) that uses 2�2 ln 4� samples, and tossesonly n+ logn+ 2 log 2� + 2 coins.Recently, Goldreich and Wigderson have presented an explicit (and e�cient) sampler thatgiven �, �, and n as above uses O( 1�2 log 1� ) samples and tosses n + O(log 1� ) + O(log 1� ) coins[GW].2 The settingWe use the following notational conventions. Let a 2R A denote a random variable, a, uniformlydistributed over the set A. Let Probe2RD (T (e)) denote the probability of event T (e) whenelement e is chosen uniformly at random from domainD. Let Ee2RD (X(e)) denote the expectedvalue of random variable X(e) when element e is chosen uniformly at random from domain D.For a function f : f0; 1gn ! [0; 1], let �vf be the average of the function f :�vf = 12n Xx2f0;1gn f(x)An (�(n); �(n))-sampler is a randomized oracle Turing machine, S, that for every n and forevery function f : f0; 1gn ! [0; 1] satis�es:Probr2RR �jSf(n; r)� �vf j > �(n)� < �(n) (3)where R is the domain of the random inputs of S, and Sf(n; r) denotes the output of S withoracle f on input n and random input r. We stress that samplers can be adaptive, that isthe location of a sample point may depend on the function value at previous sample points.Furthermore, the number of sample points may vary as well. Given a sampler, let t(f) be therandom variable describing the number of samples made when given oracle access to functionf . For the lower bound on the number of samples we also consider a special type of samplers.These samplers are both regular and weak. These two unrelated properties are de�ned as follows.A t(n)-regular sampler, given n, always sample the function at t(n) (adaptively chosen) places,where all sample points are distinct. A weak sampler has an additional special output symbol,?, meaning \I don't know". A weak sampler may output ? with any probability that is strictlyless than 1. Furthermore, it has to satisfy the condition (3) only when its output is not ?.That is, for all n and for all f : f0; 1gn ! [0; 1] a weak (�; �)-sampler S satis�es:(a) Probr2RR �Sf(n; r) =?� < 1(b) Probr2RR �jSf(n; r)� �vf j > �(n) j Sf(n; r) 6=?� < �(n)In the sequel, we use t; �; �; r to shorthand t(n); �(n); �(n); r(n), respectively.3 A lower bound on the number of samplesIn this section we show lower bounds on the number of samples made. First we show, inTheorem 1 below, that a t-regular, (�; �)-sampler satis�es t = 
( 1�2 log(1� )), even in the case3



where the sampler is weak. Namely, the sampler satis�es the lower bound even though it mayalmost always output ?. We prove this result only for samplers that use at most 2n2�2 samplepoints. However, we hardly lose generality by this restriction: any sampler that uses as manyas 2n2�2 samples is highly ine�cient and is not likely to be interesting. In Corollary 1 wegeneralize the lower bound to non-regular samplers. The corollary uses the fact that Theorem1 holds also for weak samplers (actually, it is for this corollary that we have introduced thenotion of weak samplers).Theorem 1 Let � � 18 , � � 16, and t � 2n=2�2. Let S be a t-regular, weak (�; �)-sampler. Then,for all large enough n, t � 14�2 ln� 18ep��� (4)where e is the natural base of logarithms.Corollary 1 Let � � 18 , � � 16, and t � 2n=2�2. Let S be an (�; �)-sampler. Then, for all largeenough n there exists a function f : f0; 1gn ! f0; 1g such that for all 0 < � < 1,Er2RR(t(f)) � �4�2 ln� 1� �8ep���Remark: The best value for � is determined by �. For constant �, say � = 12 , we getEr2RR(t(f)) = 
( 1�2 ln 1� ).Proof of Corollary 1: Let � = 1� maxf :f0;1gn!f0;1gE(t(f)). Consider the � -regular samplerS 0 that runs S with the exception that at most � samples are made. If S outputs an estimatebefore the (� + 1)st sample, then S0 outputs this estimate and halts. Otherwise S 0 outputs? and halts. By Markov inequality, S0 outputs ? with probability at most �. Therefore theprobability that S0 outputs a wrong estimate, given that S 0 does not output ?, is at most �1��(the worst case is when all wrong estimates occur when S makes less than � samples). Thatis, S0 is a � -regular, weak (�; �1��)-sampler. The corollary follows by applying Theorem 1 tosampler S 0. 2Proof of Theorem 1: The proof follows an idea of Johan Hastad which greatly simpli�esour original proof. Consider a run of sampler S with oracle access to some function f , andlet ~a = a1; : : : ; at be the function values at the points sampled by S. Then, the output ofS depends on only ~a and the random choices of S (the sample points are determined by therandom choices and the previous sample values). We exploit this fact as follows. We de�netwo sets of functions, called F 12+� and F 12��, and proceed in two steps roughly described below.First, we show that in order for S to be a weak (�; �)-sampler the distribution of ~a whenf 2R F 12+� should di�er considerably from the distribution of ~a when f 2R F 12��. Next, weshow that in order for the distributions of ~a to di�er as required, the number of samples hasto be at least as claimed in the theorem.Consider the following two sets of functions:F 12+� 4= ff : f0; 1gn ! f0; 1gj�vf = 12 + �gF 12�� 4= ff : f0; 1gn ! f0; 1gj�vf = 12 � �g4



Consider the execution of S given oracle access to a function drawn uniformly from F 12+�(respectively, F 12��). Let ~A be the random variable describing the function values at the placessampled by S. That is, ~A = ~a = a1; : : : ; at means that the function value at the ith sampledplace is ai 2 f0; 1g. Note that ~A depends both on the choice of f and the random choices of S.Let ~Ar (respectively, ~Af) have the distribution of ~A when the random choices of S are �xed tobe r (respectively, when the sampled function is f).Since S is a weak (�; �)-sampler, we haveP 12+� 4= Probr2RR;f2RF 12+� �Sf(n; r) � 12 j 6?� � � (5)P 12�� 4= Probr2RR;f2RF 12�� �Sf(n; r) � 12 j 6?� � � (6)where 6? denotes the event that S does not output ? (note that these inequalities are meaningfulas long as S outputs ? with probability strictly less than 1). The value P 12+� can be written asP 12+� = X~a2f0;1gtProbr2RR;f2RF 12+�( ~A = ~a) �Probr2RR;f2RF 12+� �Sf(n; r) � 12 ��� ~A = ~a; 6?�= X~a2f0;1gtEr2RR �Probf2RF 12+�( ~Ar = ~a)� � Ef2RF 12+� �Probr2RR(Sf(n; r) � 12 ��� ~Af = ~a; 6?)�A key observation is that when the sample values are ~a, the output of the sampler isa (deterministic) function of ~a and the random input, r. Let V (~a; r) denote this function.Then, for any function f 2 F 12+� [ F 12�� the probability Probr2RR(Sf(n; r) < 12 j ~Af = ~a; 6?)equals Probr2RR(V (~a; r) < 12 j 6?); this last probability depends only on V , ~a and r, and is, inparticular, the same for all functions f . In addition, the probability Probf2RF 12+�( ~Ar = ~a) isthe same for all r 2 R (this is so since, when f 2R F 12+�, all sequences of t distinct samplepoints are equally likely to result in sample values ~a). Fix some arbitrary r0 2 R. The previousequation now becomesP 12+� = X~a2f0;1gtProbf2RF12 +�( ~Ar0 = ~a) �Probr2RR�V (~a; r) � 12 j 6?� (7)Similarly, P 12�� = X~a2f0;1gtProbf2RF 12��( ~Ar0 = ~a) � Probr2RR�V (~a; r) � 12 j 6?� (8)Let Q(~a) 4= Probr2RR;(V (~a; r) � 12 j 6?). Then, 1� Q(~a) � Probr2RR;(V (~a; r) � 12 j 6?). AddingInequalities (5) and (6), and using Equations (7)and (8), we get2� � P 12+� + P 12��� X~a2f0;1gt �Q(~a) �Probf2RF 12+�( ~Ar0 = ~a) + (1�Q(~a)) �Probf2RF 12��( ~Ar0 = ~a)�� X~a2f0;1gtminfProbf2RF12+�( ~Ar0 = ~a);Probf2RF 12��( ~Ar0 = ~a)g (9)5



Note that Probf2RF 12+�( ~Ar0 = ~a) depends only on the number of `1' entries in ~a, denoted w(~a).Also, if a vector ~b is the bit complement of ~a (i.e., ~b� ~a = 1t) thenProbf2RF12+�( ~Ar0 = ~a) = Probf2RF12��( ~Ar0 = ~b). Thus (9) becomes:2 � X~a: w(~a)<d t2 eProbf2RF 12+�( ~Ar0 = ~a) � 2�Namely, Probf2RF 12+� �w( ~Ar0) < d t2e� � � (10)We remark that similarily we may obtain Probf2RF 12�� �w( ~Ar0) > b t2c� � �. Thus, thedistributions of ~Ar0 when f 2R F 12+� and when f 2R F 12�� di�er substantially. This concludesthe �rst step of our proof.In the second step of the proof we bound the left hand side of (10) from below. Let A(~a)denote the set of functions f in F 12+� such that ~a is the sequence of sample values obtained bySf(n; r0). It follows that on random input r0, sampler S samples all functions in A(~a) at thesame places. Thus, for each ~a 2 f0; 1gt, we haveProbf2RF 12+� ( ~Ar0 = ~a) = jA(~a)jjF 12+�j= � 2n�t2n( 12+�)�w(a)�� 2n2n( 12+�)�� 2�t�1 � (1 + 2�)w(~a) � (1� 2�)t�w(~a)(where the last inequality holds for all su�ciently large n and for t � 14p2n. For details seeour Technical Report [CEG]). Plugging this bound in (10), we get� � 2�t�1 dt=2e�1Xi=0  ti! � (1 + 2�)i � (1� 2�)t�i> 2�t�1 � (1 + 2�)dt=2e�dpt=2e � (1� 2�)dt=2e+dpt=2e � dt=2e�1Xi=dt=2e�dpt=2e ti! (11)Using the Stirling approximation, (11) yields (for � < 18):� > 14ep� � (1� 4�2)dt=2e+dpt=2e> 18ep� � e�4�2tThe theorem follows. 2 6



4 A lower bound on the number of coin tossesIn this section we show a lower bound on the amount of randomness used by an (�; �)-sampler,as a function of the input length n, the precision �, the error probability �, and the number ofsamples t.Theorem 2 Let � < 12 , and let � � 12. Let S be an (�; �)-sampler that on input n tosses rcoins, and uses at most t sampling points so that t � 122n. Then,r � n � log t + log 1� + log(1� 2�) � 2: (12)Remarks: (Recall that � is the precision of the estimate, and � is the error probability.)� Note that a non-trivial lower bound on the number of coin-tosses can hold only for t � 122nand � < 12 . If t > 122n then the average over t �xed sample points is an (�; 0)-sampler thattosses no coins (for some � < 12 , where � depends on t). For � � 12 , the algorithm thatalways outputs 12 constitutes an (�; 0)-sampler.� For � < c < 12 (where c > 0 is a constant), the above bound takes the form r �n� log t+ log ��1 �O(1).� For samplers using a minimal number of samples (namely, t(n) = O( 1�(n)2 log 1�(n))), thebound on the number of coin tosses is r � n+ log 1� � 2 log 1� �O(log log 1� ).Proof. Let S be an (�; �)-sampler as in the theorem. Construct a function f : f0; 1gn ! f0; 1gin the following manner. Enumerate all the 2r possible sequences of the coin tosses of S. LetT denote the set of d2�2re �rst sequences. Let D � f0; 1gn denote the set of all points that aresampled by the sampler S when its sequence of coin tosses is in T . Clearly, jDj � t � jT j. Letf(x) = ( 1 x 2 D0 otherwiseLet E denote the event that all the sample values are 1. When sampling function f , event Ehas probability at least 2� (over the coin tosses of the algorithm).Note that when the sampled function is the constant function g � 1, event E has probability1. The estimate made by S given oracle access to function g must be at least 1 � �, withprobability at least 1 � �. Thus, given event E, the answer of algorithm S must be at least1� � with probability at least 1� �. Returning to function f , we now haveProb(Sf(n) � 1� �) � Prob(Sf(n) � 1� � jE) �Prob(E)� (1� �) � 2�� �when the probability is taken over the coin tosses of sampler S. Consequently, since S is an(�; �)-sampler, the average of function f must satisfy�vf � 1� 2�: (13)7



On the other hand, we bound �vf from above. Clearly,�vf = 2�n � jf�1(1)j= 2�n � jDj� 2�n � jT j � t= 2�n � d2�2re � t:It can be seen that d2�2re � 4�2r. (Otherwise, � < 2�r. As error probabilities can takeonly multiples of 2�r, the sampler S must have error probability � = 0. This requires either� � 12 or t > 122n, in contradiction with the provisions of the theorem.) We thus have,�vf � 2�n � 4 � �2r � t: (14)Combining (13) and (14), we get 4 � �2r � t � 2�n � 1� 2�:The theorem follows. 25 On the existence of randomness-e�cient samplersBellare, Goldreich and Goldwasser show a randomness-e�cient sampling algorithm that usesan optimal number of samples, up to a constant factor. Speci�cally, the [BGG] algorithm usesO( 1�2 log 1� ) samples, and tosses 2n+ O(log 1� ) coins.In this section we show, in a non-constructive manner, that given a number n 2N, and any(�; �)-sampler S, it is possible to reduce the number of coin tosses used by S to n + 2 log 1� +log log 1� , without increasing the number of samples taken. We stress that the resulting samplersare non-uniform.We apply this result to the straightforward sampler described in the introduction (i.e., theone that takes the average of the function value at some prede�ned number of uniformly andindependently chosen sample points) to show the existence of an (�; �)-sampler that uses only2�2 ln 4� samples and tosses r � n + 2 log 1� + log log 1� coins. Since in our model � � 2�n alwaysholds (if � < 12 and t < 2n), we in fact have r � n + log n+ 2 log 1� + 1.Theorem 3 Let n 2N. Let S be an (�; �)-sampler that on input n uses t samples. Then thereexists:(a). An (�; 2�)-sampler, S 0, for functions f : f0; 1gn ! f0; 1g, that on input n uses t samples,and tosses only n+ 2 log 1� coins.(b). A (2�; 2�)-sampler, S 00, for functions f : f0; 1gn ! [0; 1], that on input n uses t samples,and tosses only n+ 2 log 1� + log log 12� coins.Proof. The proof adapts a technique of Newman [N] to this context.(a). Let r be the number of coin tosses used by sampler S on input n. Consider the22n � 2r table where a row corresponds to a function f : f0; 1gn ! f0; 1g, and a column8



corresponds to a coin-toss sequence of the sampler S. A table-entry (f; �) is bad if the estimateof sampler S, on random input �, is at least � away from the average of f . Since S is an (�; �)sampler, there are at most a �-fraction of bad entries in each row.We use a probabilistic argument to show that there exists a small subset, denoted K,of columns (i.e., coin-toss sequences), with the following property: reducing the table to thecolumns of this subset, there are at most a 2�-fraction of bad entries in each row. Sampler S0consists of choosing at random a column � 2R K, and running S on random input �. Thus, S0is a (�; 2�)-sampler, and tosses only log jKj coins.We show the existence of such a subset, K, in the following way. Consider the followingchoice of a set of columns: k independent selections of a column are made, where each selectionis made with uniform distribution. Say that a chosen set of columns is unfortunate for a row, ifmore than 2�k of the chosen entries in this row are bad. By the Hoefding Inequality [Ho], theprobability that a chosen set is unfortunate for a row is less than 2e�2k�2. Thus, the probabilitythat there exists a row for which the choice is unfortunate is at most 22n � 2e�2k�2.Setting k = 2n�2 , we have that the probability (over the choices of k columns) that thereexists a row for which the choice is unfortunate is less than 1. We conclude that there exists achoice of at most 2n�2 columns (i.e., coin-toss sequences) that is fortunate for all the rows.(b). Consider the set of functions F = ff : f0; 1gn ! Ig, where I = fi�2� j i = 1 : : :b 12�cg.For every f : f0; 1gn ! [0; 1], let f 0 2 F be the following approximation of f in F : for eachx 2 f0; 1gn, the value of f 0(x) is the rounding of f(x) to the nearest value in I . Note thatjI j = 12� , and j�vf 0 � �vf j � �. Using the technique of part (a), we have that there exists an (�; 2�)sampler, S0, for functions in F , that tosses only n+ 2 log 1� + log log 12� coins.Sampler S00 operates as follows, on any function f : f0; 1gn ! [0; 1]. Run sampler S 0 withthe following provision: round each sample value to the nearest value in I before giving it to S 0.Since sampler S 0 is an (�; 2�)-sampler for functions in F , with probability (1� 2�) the estimatemade by sampler S0 is less than � away from the average of f 0, the approximation of f in F .Consequently, this estimate is less than 2� away from the average of f . 2Corollary 2 Let n 2 N. For every � > 0 and every � > 0, there exist:(a). An (�; �)-sampler for boolean functions that uses 12�2 ln 4� samples and tosses n+ 2 log 2� coins.(b). An (�; �)-sampler for functions into [0; 1] that uses 2�2 ln 4� samples and tosses n+2 log 2� +log log 1� coins.Proof. Consider the sampler S, that chooses t sample points with uniform distribution andoutputs the average of the function value at these points. By Hoefding Inequality [Ho], Sis an (�; 2e�2�2t) sampler for every � > 0. Thus, for every � > 0 and every � > 0, we havethat t = 12�2 ln 2� samples are su�cient for S to be an (�; �) sampler. The corollary follows byapplying Theorem 3 to sampler S. 2AcknowledgementsWe are indebted to Johan Hastad for suggesting a simpli�cation for our proof of Theorem 1.9
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