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1 IntroductionIn a recent work [1] Ajtai described a problem that is hard on the average if some well-known latticeproblems are hard to approximate in the worst case, and demonstrated how this problem can beused to construct one-way functions. We show that Ajtai's method can also be used to constructfamilies of collision-free hash functions. Furthermore, a slight modi�cation of this constructionyields families of functions which are both universal and collision-free.1.1 The ConstructionThe construction is very simple. For security parameter n we pick a random n�m matrix M withentries from Zq, where m and q are chosen so that n log q < m < q2n4 and q = O(nc) for someconstant c > 0. (E.g.,m = n2; q = n7). See Section 3 for a discussion about the choice parameters.The hash function hM : f0; 1gm ! Znq is then de�ned for s = s1s2 � � �sm 2 f0; 1gm ashM(s) = Ms mod q =Xi siMi mod qwhere Mi is the i'th column of M .Notice that hM 's input is m-bit long, and its output is n log q bit long. Since we chose theparameters so that m > n log q, there are collisions in hM . As we will argue below, however,it is infeasible to �nd any of these collisions unless some well known lattice problems have goodapproximation in the worst case. It follows that, although it is easy to �nd solutions for theequations Ms � 0 (mod q), it seems hard to �nd binary solutions (i.e., a vector s 2 f0; 1gm inthe solution space).Remark. Using our notation, the candidate one-way function introduced by Ajtai is f(M; s) def=(M;hM(s)). We note that this function is regular (cf., [3]); that is, the number of preimage ofany image is about the same. (Furthermore, for most M 's the number of pre-images under hM ofalmost all imapges is about the same.) To the best of our knowledge, it easier (and more e�cient)to construct a pseudo-random generator based on a regular one-way function than based on anarbitrary one-way function (cf., [3] and [4]).1.2 A Modi�cationA family of hash functions is called universal if a function uniformly selected in the family mapsevery two images uniformly on its range in a pairwise indepedent manner [2]. To obtain a familyof functions which is both universal and collision-free, we slightly modify the above construction.First we set q to be a prime of the desired size. Then, in addition to picking a random matrixM 2 Zn�mq , we also pick a random vector r 2 Znq . The function hM;r : f0; 1gm ! Znq is thende�ned for s = s1 � � �sm 2 f0; 1gm; hM(s) = Ms+ r (mod q) = r +Xi siMi (mod q)The modi�ed construction resembles the standard construction of universal hash functions [2], withcalculations done over Zq instead of over Z2. 1



2 Formal SettingIn this section we give a brief description of some well known lattice problems, describe Ajtai'sreduction, and our version of it.2.1 LatticesDe�nition 1: Given a set of n linearly independent vectors in Rn; V = hv1; � � � ; vni, we de�nethe lattice spanned by V as the set of all possible linear combinations of the vi's with integralcoe�cients, namely L(V ) def= (Xi aivi : ai 2 Z for all i)We call V the basis of the lattice L(V ). We say that a set of vectors L � Rn is a lattice if there isa basis V such that L = L(V ).It is convenient to picture a lattice L in Rn as a \tiling" of the space Rn using small parallelepipeds,with the lattice points being the vertices of these parallelepipeds. The parallelepipeds themselvesare spanned by some basis of L. We call the parallelepiped that are spanned by the \shortest basisof L" (the one whose vectors have the shortest Euclidean norm) the basic cells of the lattice L. SeeFigure 1 for an illustration of these terms in a simple lattice in R2.
R 2A lattice in

Tiling using the "basic-cells" Tiling using some other basisFigure 1: Tiling of a simple lattice in R2 with two di�erent basesFinding \short vectors" (i.e., vectors with small Euclidean norm) in lattices is considered a hardproblem. There are no known e�cient algorithms to �nd - given an arbitrary basis of a lattice -either the shortest non-zero vector in the lattice, or another basis for the same lattice whose longestvector is as short as possible. No e�cient algorithms are known for approximation versions of theseproblems as well. The approximation versions considered are(W1) Given an arbitrary basis B of a lattice L in Rn, approximate (up to a polynomial factor inn) the length of the shortest vector in L. 2



(W2) Given an arbitrary basis B of a lattice L in Rn, �nd another basis of L whose length is atmost polynomially (in n) larger then that of the smallest basis of L (where the length of abasis is the length of its longest vector).We choose `W' for the notation to indicate that we will be interested in the worst-case complexityof these problems. The best known algorithms for these problems are the L3 algorithm and Schnorralgorithm. The L3 algorithm, due to Lenstra, Lenstra and Lov�asz [5] approximates these problemsto within a ratio of 2n=2 in the worst case, and Schnorr's algorithm [6] improves this to (1+ ")n forany �xed " > 0. Another problem which can be shown to be equivalent to the above approximationproblems (cf., [1]) is the following:(W3) Given an arbitrary basis B of a lattice L, �nd a set of n linearly independent lattice vectors,whose length is at most polynomially (in n) larger than the length of the smallest set of nlinearly independent lattice vectors. (Again, the length of a set of vectors is the length of itslongest vector.)A few remarks about (W3) are in order:1. Note that not every linearly independent set of n lattice points is a basis for that lattice.For example, if V = fv1; v2g span some lattice in R2, then the set f2v1; v2g is a linearlyindependent set of 2 vectors which does not span L(V ), since we cannot represent v1 as anintegral linear combination of 2v1 and v2.2. In the sequel we reduce the security of our construction to the di�culty of solving Problem(W3). It will be convenient to use the following notation: For a given polynomial Q(�), denoteby (W3)Q the problem of approximating the smallest independent set in an n-dimensionallattice up to a factor of Q(n).2.2 Ajtai's ReductionIn his paper Ajtai described the following problem:Problem (A1):Parameters: n;m; q 2 N , such that n log q < m � q2n4 and q = O(nc) for some constant c > 0.Input: A matrix M 2 Zn�mq .Output: A vector x 2 Zmq ; x 6= 0 so that Mx � 0 (mod q), and kxk < n (where kxk denotes theEuclidean norm of x).Here, we used `A' (in the notation) to indicate that we will be interested in the average-casecomplexity of this problem. Ajtai proved the following theorem, reducing the worst-case complexityof (W3) to the average-case complexity of (A1):Ajtai's Theorem [1]: Suppose that it is possible to solve a uniformly selected instance of Prob-lem (A1) in expected T (n;m; q)-time, where the expectation is taken over the choice of the instanceas well as the coin-tosses of the solving algorithm. Then it is possible to solve Problem (W3) inexpected poly(jI j) � T (n; poly(n); poly(n)) time on every n-dimensional instance I , where the ex-pectation is taken over the coin-tosses of the solving algorithm.Remark: Ajtai has noted that the theorem remain valid also when Problem (A1) is relaxed sothat the desired output is allowed to have Euclidean norm of up to poly(n) (i.e., one requireskxk � poly(n) rather than kxk < n) [1]. 3



2.3 Our VersionWe observe that one can use essentially the same proof to prove that the following problem is alsohard on the averageProblem (A2):Parameters: n;m; q as in (A1).Input: A matrix M 2 Zn�mq .Output: A vector x 2 f�1; 0; 1gm; x 6= 0 so that Mx � 0 (mod q).Theorem 1: Suppose that it is possible to solve a uniformly selected instance of Problem (A2)in expected T (n;m; q)-time, where the expectation is taken over the choice of the instance as wellas the coin-tosses of the solving algorithm. Then it is possible to solve Problem (W3) in expectedpoly(jI j) � T (n; poly(n); poly(n)) time on every n-dimensional instance I , where the expectation istaken over the coin-tosses of the solving algorithm.Proof: By the above Remark, Ajtai's Theorem holds also when modifying Problem (A1) so thatthe output is (only) required to have Euclidean norm of up to m. Once so modi�ed, Problem (A1)becomes more relaxed than Problem (A2) and so the current theorem follows.For the sake of self-containment we sketch the main ideas of the proof of Ajtai's Theorem (equiva-lently, of Theorem 1) in Section 4. The reader is referred to [1] for further details.3 Constructing Collision-Free Hash FunctionsRecall our construction of a family of collision-free hash functions:Picking a hash-functionTo pick a hash-function with security-parameters n;m; q (where n log q < m � q2n4 andq = O(nc)), we pick a random matrix M 2 Zn�mq .Evaluating the hash functionGiven a matrix M 2 Zn�mq and a string s 2 f0; 1gm, computehM(s) = Ms mod q =Xi siMi mod qThe collision-free property is easy to establish assuming that Problem (A2) is hard on the average.That is,Theorem 2: Suppose that given a uniformly chosen matrix, M 2Zn�mq , as above it is possible to�nd in (expected) T (n;m; q)-time x 6= y 2 f0; 1gm so thatMx �My (mod q). Then it is possibleto solve a uniformly selected instance of Problem (A2) in (expected) T (n;m; q)-time.Proof: If we can �nd two binary strings s1 6= s2 2 f0; 1gm so that Ms1 � Ms2 (mod q) thenwe have M(s1 � s2) � 0 (mod q). Since s1; s2 2 f0; 1gm, we have x def= (s1 � s2) 2 f�1; 0; 1gm,which constitutes a solution to Problem (A2) for the instance M .4



3.1 The ParametersThe proof of Theorem 1 imposes restrictions on the relationship between the parameters n;m andq. First of all, we should think of n as the security parameter of the system, since we derive thedi�culty of solving Problem (A2) by assuming the di�culty of approximating some problems overn-dimensional lattices.The relation m > n log q is necessary for two reasons. The �rst is simply because we want theoutput of the hash function to be shorter than its input. The second is that when m < n log q,a random instance of problem (A2) typically does not have a solution at all, and the reductionprocedure in the proof of Theorem 1 falls apart.The relations q = O(nc) and m < q=2n4 also come from the proof of Theorem 1. Theirimplications for the security of the system are as follows:� The larger q is, the stronger the assumption which needs to be made regarding the complexityof problem (W3). Namely, the security proof shows that (A2) with parameters n;m; q is hardto solve on the average, if the problem (W3)(qn6) is hard in the worst case, where (W3)(qn6) isthe problem of approximating the shortest independent set of a lattice up to a factor of qn6.Thus, for example, if we worry (for a given n) that an approximation ratio of n15 is feasible,then we better choose q < n9. Also, since we know that approximation within exponentialfactor is possible, we must always choose q to be sub-exponential in n.� By the above, the ratio R def= q=n4m must be strictly bigger than 1 (above, for simplicy, westated R > 2). The larger R is, the better the reduction becomes: In the reduction from(W3) to (A2) we need to solve several random (A2) problems to obtain a solution to one(W3) problem. The number of instances of (A2) problem which need to be solved depends onR. Speci�cally, this number behaves roughly like n2= logR This means that when q=n4 = 2mwe need to solve about n2 (A2) instances for every (W3) instance, which yields a ratio ofO(n2) between the time it takes to break the hashing scheme and the time it takes to solve aworst-case (W3) problem. On the other hand, when R approaches 1 the number of iterations(in the reduction) grows rapidly (and tends to in�nity).Notice also that the inequalities n log q < m < qn4 implies a lower bound on q, namely qlog q > n5,which means that q = 
(n5 logn).4 Self-contained Proof Sketch of Theorem 1At the heart of the proof is the following procedure for solving (W3): It takes as inputs a basisB = hb1; � � � ; bni for a lattice and a set of n linearly independent lattice vectors V = hv1; � � � ; vni, withjv1j � jv2j � � � � � jvnj. The procedure produces another lattice vector w, such that jwj � jvnj=2and w is linearly independent of v1; � � � ; vn�1. We can then replace the vector vn with w and repeatthis process until we get a \very short independent set". When invoking this procedure, we denoteby S the length of the vector vn (which is the longest vector in V ).In the sequel we describe this procedure and show that as long as S is more than nc times thesize of the basic lattice-cell (for some constant c > 0), the procedure succeeds with high probability.Therefore we can repeat the process until the procedure fails, and then conclude that (with highprobability) the length of the longest vector in V is not more that nc times the size of the basiclattice-cell. For the rest of this section we will assume that S is larger than nc times the size of thebasic lattice-cell. 5



The procedure consists of �ve steps: We �rst construct an \almost cubic" parallelepiped oflattice vectors, which we call a pseudo-cube. Next, we divide this pseudo-cube into many smallparallelepipeds (not necessarily of lattice vectors), which we call sub-pseudo-cubes. We then picksome random lattice points in the pseudo-cube (cf., Step 3) and consider the location of each pointwith respect to the partition of the pseudo-cube into sub-pseudo-cubes (cf., Step 4). Each suchlocation is represented as a vector in Znq and the collection of these vectors forms an instance ofProblem (A2). A solution to this instance yields a lattice point which is pretty close to a \corner"of the pseudo-cube. Thus, our �nal step consists of using the solution to this (A2) instance tocompute the \short vector" w. Below we describe each of these steps in more details.
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The pseudo-cubeFigure 2: The basic construction in the proof of Theorem 1 (for q = 3)1. Constructing a \pseudo-cube". The procedure �rst constructs a parallelepiped of latticevectors which is \almost a cube". This can be done by taking a su�ciently large cube (say, a cubewith side length of n3S), expressing each of the cubes' basis vectors as a linear combination of thevi's, and then rounding the coe�cients in this combination to the nearest integers. Denote thevectors thus obtained by f1; � � � ; fn and the parallelepiped which is spanned by them by C. Thefi's are all lattice vectors, and their distance from the basis vectors of the \real cube" is very smallcompared to the size of the cube1. Hence the parallelepiped C is very \cube-like". We call thisparallelepiped a pseudo-cube.1The fi's can be as far as Sn=2 away from the basis vectors of the real cube, but this is still much smaller thanthe size of the cube itself. 6



2. Dividing the pseudo-cube into \sub-pseudo-cubes". We then divide C into qn equal\sub-pseudo-cubes", each of which can be represented by a vector in Znq as follows:for T = 0B@ t1...tn 1CA 2 Znq ; de�ne CT def= (Xi �ifi : tiq � �i < ti + 1q )For each sub-pseudo-cube CT , we call the vector oT =Pi tiq fi the origin of CT . (oT is the vector inCT which is closest to the origin). We note that any vector in v 2 CT can be written as v = oT + �where � is the location of v inside the sub-pseudo-cube CT . See Figure 2 for an illustration of thatconstruction (with n = 2; q = 3).The parameter q was chosen so that each CT is \much smaller" than S. That is, the side-lengthof each sub-pseudo-cube CT is Sn3=q � S=2nm. With this choice, each CT is still much larger thanthe basic lattice cell (since S is much bigger than the size of the basic cell). This, together withthe fact that the CT 's are close to being cubes, implies that each CT contains approximately thesame number of lattice points.3. Choosing random lattice points in C. We then choosem random lattice points u1; � � �um 2C. To do that, we use the basis B = fb1; � � � ; bng of the lattice. To choose each point, we take alinear combination of the basis vectors bi with large enough integer coe�cients (say, in the range[0; 2nc �max(S; jBj)] for some constant c). This gives us some lattice point p.We then \reduce p mod C". By this we mean that we look at a tiling of the space Rn with thepseudo-cube C, and we compute the location vector of p in its surrounding pseudo-cube. Formally,this is done by representing p as a linear combination of the fi's, and taking the fractional part ofthe coe�cients in this combination. The resulting vector is a lattice point, since it is obtained bysubtracting integer combination of the fi's from p. Also, this vector must lie inside C, since it isa linear combination of the fi's with coe�cients in [0; 1). It can be shown that if we choose thecoe�cients from a large enough range, then the distribution induced over the lattice point in C isstatistically close to the uniform distribution.4. Constructing an instance of Problem (A2). After we have chosen m lattice pointsu1; � � � ; um, we compute for each ui the vector Ti 2 Znq which represent the sub-pseudo-cube inwhich ui falls. That is, for each i we have ui 2 CTi .Since, as we said above, each sub-pseudo-cube contains approximately the same number ofpoints, and since the ui's are distributed almost uniformly in C, then the distribution induced onthe CTi's is close to the uniform distribution, and so the distribution over the Ti's is close to theuniform distribution over Znq .We now consider the matrix whose columns are the vectors Ti, M = (T1jT2j � � � jTm). By theabove argument, it is an \almost uniform" random matrix in Zn�mq , and so, it is an \almostuniform" random instance of Problem (A2).5. Computing a \short lattice vector". We now have a random instance M of Problem (A2),and so we can use the algorithm whose existence we assume in Theorem 1 to solve it in expectedT (n;m; q) time. The solution is a vector x = fx1; � � � ; xmg 2 f�1; 0; 1gm so that Mx =Pi xiTi = 0(mod q).Once we found x, we compute the vector w0 =Pmi=1 xiui. Let us examine the vector w0: Recallthat we can represent each ui as the sum of oi def= oTi (the origin vector of CTi) and �i (the location7



of ui inside CTi). Thus, w0 = mXi=1 xiui = mXi=1 xioi + mXi=1 xi�iA key observation is that since Pi xiTi = �0 (mod q), \reducing the vector (Pi xioi) mod C" weget (Pi xioi) (mod C) = �0. To see why this is the case, recall that each oi = oTi has the formPj ti(j)q fj , where ti(j) 2 f0; :::; q � 1g is the jth component of Ti. The hypothesis Pi xiti(j) = 0(mod q) for j = 1; ::; n, yields thatXi xioTi = Xi xiXj ti(j)q fj = Xj (Pi xiti(j)q )fj = Xj cjfjwhere all cj's are integers. Since \reducing the vector Pi xioTi mod C" means subtracting from itan integer linear combination of fj 's, the resulting vector is �0. Thus, \reducing w0 mod C" we getw0 (mod C) = mXi=1 xi�iSince each �i is just the location of some point inside the sub-pseudo-cube CTi then the size of each�i is at most n � S=2mn = S=2m. Moreover as xi 2 f�1; 0; 1g for all i we get




Xi xi�i




 �Xi jxij � k�ik � m � S2m = S2This means that the vector w0 (mod C) is close up to S2 to one of the \corners" of C. Thus allwe need to do is to �nd the di�erence vector between w0 (mod C) and that corner. Doing that isvery similar to reducing w0 mod C: We express w0 as a linear combination of the fi's, but insteadof taking the fractional part of the coe�cients we take the di�erence between these coe�cients andthe closest integers. This gives us the \promised vector" w, a lattice point whose length is at mostS=2.The only thing left to verify is that with high probability, w can replace the largest vector inV (i.e., it is linearly independent of the other vectors in V ). To see that, notice that the vector xdoes not depend on the exact choice of the ui's, but only on the choice of their sub-pseudo-cubesCTi's. Thus we can think of the process of choosing the ui's as �rst choosing the CTi's, computingthe xi's and only then choosing the �i's.Assume (w.l.o.g.) that we have x1 6= 0. Let us now �x all the �i's except �1 and then pick �1 soas to get a random lattice point in CT1 . Thus, the probability that w falls in some �xed subspaceof Rn (such as the one spanned by the n � 1 smallest vectors in V ), equals the probability that arandom point in CT1 falls in such subspace. Since CT1 is a pseudo-cube which is much larger thanthe basic cell of L, this probability is very small.AcknowledgmentsWe thank Dan Boneh and Jin Yi Cai for drawing our attention to an error in a previous version ofthis note. 8
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