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1 IntroductionZero-knowledge proof systems, introduced by Goldwasser, Micali and Racko� [13], are a keytool in the design of cryptographic protocols. The results of Goldreich, Micali and Wigder-son [12] guarantee that such proof systems can be constructed for any NP-statement, pro-vided that one-way functions exist. However, the general construction presented in [12]and subsequent works may yield quite ine�cient proof systems for particular applicationsof interest. Thus, developing methodoligies for the design of zero-knowledge proofs is stillof interest.Designing proof systems which are merely zero-knowledge with respect to the honestveri�er (i.e., the veri�er speci�ed for the system) is much easier than constructing proofsystems which are zero-knowledge in general (i.e., with respect to any e�cient strategy oftrying to extract knowledge from the speci�ed prover). For example, the simple 1-roundinteractive proof for Graph Non-Isomorphism 1 is zero-knowledge with respect to the honestveri�er. Yet, cheating veri�ers may extract knowledge from this system and a non-trivialmodi�cation, which utilizes proofs of knowledge and increases the number of rounds, isrequired to make it zero-knowledge in general. Likewise, assuming the existence of one-way function, there exist constant-round interactive proofs for any NP-language which arezero-knowledge with respect to the honest veri�er. Yet, constant-round interactive proofsfor NP which are zero-knowledge in general are known only under seemingly strongerassumptions and are also more complex (cf., [9]).In view of the relative simplicity of designing protocols which are zero-knowledge withrespect to the honest veri�er, a transformation of such protocols into protocols which arezero-knowledge in general (i.e., wrt any veri�er) may be very valuable. Assuming variousintractability assumptions, such transformations have been presented by Bellare et. al. [2],and Ostrovsky et. al. [18]. A transformation which does not rely on any intractabilityassumptions has been presented by Damg�ard in Crypto93. His transformation (of honest-veri�er zero-knowledge into general zero-knowledge) has two shortcomings. Firstly, itcan be applied only to constant-round protocols of the Arthur-Merlin type (i.e., in whichthe veri�er's messages are uniformly distributed in the set of strings of speci�ed length).Secondly, the transformation produces protocols of very high round complexity; speci�cally,the round complexity of the resulting protocol is linear in the randomness complexity ofthe original one.In this paper, we improve the round complexity of Damg�ard's transformation, whilepreserving the class of interactive proos to which it can be applied. Our transformation1To be convinced that G0 and G1 are not isomorphic, the veri�er randomly selects n random isomorphiccopies of each graph, randomly shu�es all these copies together, and asks the prover to specify the originof each copy. 1



only increases the number of rounds by a factor of two. However, it also increase the errorprobability of the proof system by a non-negligible amount which can be made arbitrarilysmall. This increase is inevitible in view of a result of Goldreich and Krawcyzk [10], seediscussion in subsection 4.4. Thus, to get proof systems with negligible error probability,one may repeat the protocols resulting from our transformation a non-constant number oftimes. Still, the resulting proof systems will have much lower round complexity than thoseresulting from Damg�ard's transformation.We preserve some of the positive properties of Damg�ard's transformation. In particular,our transformation does not rely on any computational assumptions and preserves perfectand almost-perfect zero-knowledge. However, unlike Damg�ard's transformation, the newtransformation is not applicable to argument systems (i.e., the BCC model [4]) or to proofsof knowledge.Our transformation builds on Damg�ard's work [6]. In his transformation, the randommessages sent by the veri�er (in each round) are replaced by a multi-round interactivehashing protocol, which in turn originates in the work of Naor, Ostrovsky, Venkatesanand Yung [17]. Instead, in our transformation, the random messages sent by the veri�erare replaced by a 3=2-round protocol, called Random Selection. The Random Selectionprotocol uses a family of ordinary hashing functions; speci�cally, we use a family of t-wiseindepedent functions, for some parameter t (which is certainly polynomial in the input).We believe that the Random Selection protocol may be of independent interest. Thus afew words are in place. The goal of this protocol is to allow two parties to select a \random"n-bit string. There is a parameter " which governs the quality of this selection and therequirement is asymmetric with respect to the two parties. Firstly, it is required that ifthe �rst party follows the protocol then, no matter how its counterpart plays, the outputof the protocol will be at most " away (in norm-1) from uniform. Secondly, it is requiredthat if the second party follows the protocol then, no matter how its counterpart plays, nostring will appear as output of the protocol with probability greater than poly(n=") � 2�n.Our Random Selection protocol has the additional property of being simulatable in thesense that, given a possible outcome, it is easy to generate a (random) transcript of theprotocol which ends with this outcome.Other Related WorkThe idea of transforming honest veri�er zero-knowledge into zero-knowledge in generalwas �rst studied by Bellare, Micali and Ostrovsky [2]. Their transformation needed acomputational assumption of a speci�c algebraic type. Since then several constructionshave reduced the computational assumptions needed. The latest in this line of work isby Ostrovsky, Venkatesan and Yung [18], who give a transformation which is based on2



interactive hashing and preserved statistical zero-knowledge. Their transformation relies onexistence of a one-way permutation. The transformation works for any protocol, providedthat the veri�er is probabilistic polynomial-time.An indirect way of converting protocols which are zero-knowledge with respect to thehonest veri�er into ones which are zero-knowledge in general, is available through a recentresult of Ostrovsky and Wigderson [19]. They have proved that the existence of honestveri�er zero-knowledge proof system for a language which is \hard on the average" impliesthe existence of one-way functions. Combined with the results of [12] and [15, 3], thisyields a (computational and general) zero-knowledge proof for the same language. Thus,computational honest-veri�er zero-knowledge interactive proofs, for \hard on the average"languages, get transformed into computational zero-knowledge interactive proofs for theselanguages. However, perfect honest-veri�er zero-knowledge proofs (for such languages) donot get transformed into perfect zero-knowledge proofs.A two-party protocol for random selection, with unrelated properties, has been pre-sented in [8]. This protocol guarantees that, as long as one party plays honestly, theoutcome of the protocol hits any set S � f0; 1gn with probability at most ~O(qjSj=2n),where ~O(") def= " � polylog(1=").Another two-party protocol for random selection, with other unrelated properties, hasbeen presented in [11]. Loosely speaking, this protocol allows a computationally restrictedparty, interacting with a powerful and yet untrustful party, to uniformly select an elementin an easily recognizable set S � f0; 1gn.2 Some Remarks Concerning De�nitionsWe assume that the reader is familiar with the various de�nitions of interactive proofs(i.e., the GMR model). Below we merely point out some less familiar de�nitions that weare going to use.Following many works, we denote by (P; V )(x) a random variable representing thetranscript of the interaction between prover P and veri�er V , on common input x.In this paper we use a somewhat non-standard de�nition of zero-knowledge. Thisde�nition is very convenient for our purposes. Furthermore, we believe that it is nicer ingeneral. Below, we present only the honest-veri�er variant of perfect zero-knowledge. Wetrust the reader to generate the other variants by himself/herself.De�nition 1 (perfect zero-knowledge wrt honest veri�er): Let (P; V ) be an interactiveproof for language L. We say that P is perfect zero-knowledge with respect to the honestveri�er if there exists a probabistic polynomial-time machine M and a positive polynomialp() so that for every x 2 L 3



� with probability at least 1=p(jxj), on input x, machine M halts with output; (other-wise, it halts with no output).� given that on input x machine M halts with output, the output is distributed identi-cally to (P; V )(x).In the above de�nition, we require M to run in strictly polynomail-time (whereas thetraditional de�nition allows it to run in expected polynomial-time). However, unlike in thetraditional de�nition, we allow the machine to stop without output. All we require is thatwith non-negligible probability the machine stops with output. Clearly, the new de�nitionimplies the traditional one (since we can repeatedly invoke a strict simulator untill it stopswith output). Also, most zero-knowledge proofs can be show zero-knowledge also underthe new de�nition.2 However, we do not know if the traditional de�nition implies the newone in general. Actually, we believe that it does not. In case the reader is concerned of thisissue, he/she can augment the above de�nition by allowing the simulator both to run inexpected polynomial-time and still have output only with non-negligible probability. Thisaugmented de�nition is clearly equivalent to the traditional one and yet is somewhat moreconvenient for our purposes.For the purpose of a motivating discussion in subsection 4.4, we use the notion ofblack-box zero-knowledge. Loosely speaking, black-box zero-knowledge is a strengtheningof the ordinary notion of zero-knowledge. Recall that (ordinary) zero-knowledge meansthat the interaction of the prover with any e�cient veri�er can be e�ciently simulated.Thus, this de�nition allows to use a di�erent simulator for each veri�er and furthermoremake no requirement regarding the relation among the various simulators. For black-boxzero-knowledge we require that there exists a universal simulator, which given access to anye�cient veri�er, can simulate the interaction of the prover with this veri�er. For furtherdetails { see [10].3 Random SelectionWe consider a randomized two-party protocol for selecting strings. The two parties to theprotocol are called the challenger and the responder. These names are supposed to re
ectthe asymmetric requirements (presented below) as well as the usage of the protocol in ourzero-knowledge transformation. Loosely speaking, we require that2This includes, for example, the perfect zero-knowledge proofs for Graph Isomorphismand the computa-tional zero-knowledge proofs for NP, but not the perfect zero-knowledge proof for Graph Non-Isomorphism[12]. 4



� if the challenger follows the protocol then, no matter which strategy is used by theresponder, the output of the protocol is almost uniformly distributed;� if the responder follows the protocol then, no string may appear with probabilitymuch greater than its probability under the uniform distribution. Furthermore, forany string which may appear as output, when an arbitrary challenger strategy isused, one can e�ciently generate a random transcript of that protocol ending withthis output.We postpone the formal speci�cation of these properties to the analysis of the protocolpresented below. Actually, we present two version of the protocol.Construction 1 (Random Selection Protocol { two versions): Let n and m < n beintegers3, and Hn;m be a family of functions, each mapping the set of n-bit long stringsonto4 the set of m-bit long strings.C1: the challenger uniformly selects h 2 Hn;m and sends it to the responder;R1: � (version 1): the responder uniformly selects x 2 f0; 1gn, computes � = h(x) andsends � to the challenger;� (version 2): the responder uniformly selects � 2 f0; 1gm and sends it to thechallenger;C2: the challenger uniformly selects a preimage of � under h and outputs it.We remark that if version 1 is used and both parties follow the protocol then the outputis uniformly distributed in f0; 1gn. However, the interesting case is when one of the partiesdeviates from the protocol. In this case, the protocol can be guaranteed to produce \good"output, provided that \good" families of hash functions are being used as Hn;m. Thesefunctions must have relatively succient representation as well as strong random properties.Furthermore, given a function h, it should be easy to evaluate h on a given image and togenerate a random preimage (of a given range element) under h. Using the algorithmicproperties of Hn;m it follows that the instructions speci�ed in the above protocol can beimplemented in probabilistic poly(n=")-time, which for " = 1=poly(n) means poly(n)-time.Construction 2 (Preferred family H tn;m): Let n, m < n and t = poly(n) be integers.We associate f0; 1gn with the �nite �eld GF (2n) and consider the set of (t � 1)-degree3In particular, we will use m def= n� 4 log2(n="), where " is an error-bound parameter.4We stress that each function in Hn;m rages over all f0; 1gm. Thus, the challenger may always respondin step C2 even if the responder deviates from the protocol or version 2 is used.5



polynomials over this �eld. For each such polynomial f , we consider the function h sothat, for every x 2 f0; 1gn, h(x) is the m most signi�cant bits of f(x). The family H tn;mconsists of all such functions h. The canonical description of a function h 2 H tn;m ismerely the sequence of t smallest coe�cients of the corresponding polynomial. Finaly, wemodify the functions in H tn;m so that for each h 2 H tn;m and every x0 2 f0; 1gm it holdsh(x00n�m) def= x0.In the sequel, we will use the family Hn;m def= Hnn;m. We now list the following, easy toverify, properties of the above family.P1 There is a poly(n)-time algorithm that, on input a function h 2 H tn;m and a stringx 2 f0; 1gn, outputs h(x).P2 The number of preimages of an image y under h 2 H tn;m is bounded above by 2n�m �t; furthermore, there exists a poly(2n�mt)-time algorithm that, on input y and h,outputs the set h�1(y) def= fx :h(x)=yg. (The algorithm works by trying all possibleextensions of y to an element of GF (2t); for each such extension it remains to �ndthe roots of a degree t� 1 polynomial over the �eld.)P3 H tn;m is a family of almost t-wise independent hashing functions in the following sense:for every t distinct images, x1; :::; xt 2 (f0; 1gn � f0; 1gm0n�m), for a uniformly cho-sen h 2 H tn;m, the random variables h(x1); :::; h(xt) are indepedently and uniformlydistributed in f0; 1gm.3.1 The output distribution for honest challegerWe now turn to analyze the output distribution of the above protocol, assuming thatthe challenger plays according to the protocol. In the analysis we allow the responder todeviate arbitrarily from the protocol and thus as far as this analysis goes the two versionsin Construction 1 are equivalent. The analysis is done using the \random" properties ofthe family H tn;m. Recall that the statistical di�erence between two random variable X andY is 12X� jProb(X=�)� Prob(Y =�)jWe say that X is "-away from Y if the statistical di�erence between them is ".Proposition 1 Let n be an integer, " 2 [0; 1] and m def= n � 4 log2(n="). Suppose thatHn;m is a family of almost n-wise independent hashing functions. Then, no matter whichstrategy is used by the responder, provided that the challenger follows the protocol, theoutput of the protocol is at most (2"+ 2�n)-away from uniform distribution.6



proof: Recall that an equivalent de�nition of the statistical di�erence between two randomvariables, X and Y , is maxS fjProb(X 2S)� Prob(Y 2S)jgIn our case, one random variable is the output of the protocol whereas the other is uniformlydistributed. Thus, it su�ces to upper bound the di�erence between the probability thatthe output hits an arbitrary set S and the density of S (in f0; 1gn). Furthermore, it su�cesto consider sets S of density greater/equal to one half (i.e., jSj � 12 � 2n). Let us denoteby �� : Hn;m 7! f0; 1gm an arbitrary strategy employed by the responder. Then, underthe conditions of the proposition, the output of the protocol uniformly distributed in therandom set h�1(��(h)), where h is uniformly selected in Hn;m. Thus, for a set S, theprobability that the output is in S equalsExph2Hn;m  jh�1(��(h)) \ Sjjh�1(��(h))j ! (1)For an arbitrarily �xed set S, we can bound the expression in Eq. 1 by considering theevent in which a uniformly chosen h 2 Hn;m satis�esjh�1(�) \ Sjjh�1(�)j 62 [(1� 2")�(S)] for all � 2 f0; 1gm. (2)where �(S) def= jSj2n . Whenever this event occurs, Eq. 1 is in the interval [(1� 2")�(S); (1 +2")�] and so the statistical di�erence is at most 2". Thus, it remains to upper boundthe probability that the above event does not hold. We �rst note that when estimatingthe cardinality of the sets h�1(�) and h�1(�) \ S we may ignore the contribution of thepreimages in f0; 1gm0n�m, since there is at most one such elements (i.e., �0n�m). Fixingan arbitrary � and using the t-moment method, with t = n, we getProbh2Hn;m �jh�1(�) \ Sj 62 [(1� ")�(S)2n�m]� <  t" � �(S) � 2�(n�m)=2!n< � nn2�n< 2�2nThus, with overwhelmingly high probability, jh�1(�) \ Sj 2 [(1 � ")�(S) � 2n�m], for all� 2 f0; 1gm. By a similar argument, with overwhelmingly high probability, jh�1(�)j 2[(1 � ") � 2n�m], for all � 2 f0; 1gm. Thus, with overwhelmingly high probability (i.e., atleast 1 � 2�n), the event in Eq. 2 holds. 7



3.2 The output distribution for honest responderWe now show that no matter what strategy is used by the challenger, if the responderfollows the protocol then the set of possible outputs of the protocol must constitute a non-negligible fraction of the set of n-bit long strings. This claim holds for both versions ofConstruction 1. Furthermore, we show that no single string may appear with probabilitywhich is much more than 2�n (i.e., its probability weight under the uniform distribution).Proposition 2 Suppose that Hn;m = H tn;m is a family of hashing functions satisfyingproperty (P2), for some t = poly(n). Let C� be an arbitrary challenger strategy. Then,for every x 2 f0; 1gn, the probability that an execution of version 1 of the protocol withchallenger strategy C� ends with output x is at most (t � 2n�m) � 2�n.proof: We consider an arbitrary (probabilistic) strategy for the challenger, denoted C�.Without loss of generality, we may assume that the �rst message of this strategy is anelement of Hn;m (messages violating this convention are treated/interpreted as a �xedfunction h0 2 Hn;m). Similarly, we may assume that the second message of the challenger,given partial history (h; �), is an element of h�1(�) (again, messages violating this con-vention are interpreted as, say, the lexicographically �rst element of h�1(�)). Finally, itsu�ces to consider deterministic strategies for the challenger; since, given a probabilisticstrategy C�, we can uniformly select a sequence r respresenting the outcome of the cointosses of C� and consider the strategy c(�) def= C�r (�) def= C�(r; �).We now upper bound the probability that an execution of the protocol with challengerstrategy c ends with output x. We denote by h def= c(�) the �rst message of strategy c. Now,the protocol may end with output x only if the responder chose the message � def= h(x).Thus, the probability that the responder choose � is exactly jfx0 : h(x0) = �gj � 2�n. Byproperty (P2), for each h 2 Hn;m and � 2 f0; 1gm, the cardinality of the set h�1(�) is atmost t � 2n�m. The proposition follows.Proposition 3 Let C� be an arbitrary challenger strategy. Then, for every x 2 f0; 1gn,the probability that an execution of version 2 of the protocol with challenger strategy C� endswith output x is at most 2�m. Furthermore, for every deterministic challenger strategy c,exactly 2m strings may appear as output, each with probability exactly 2�m.proof: Fix a deterministic strategy c and a string x 2 f0; 1gn. As in the previous proof,we may assume that h def= c(�) 2 Hn;m and c(�) 2 h�1(�). Denoting h def= c(�), version 2terminates with output x if and only if the responder chooses the message � def= h(x) andx = c(�). Since � is selected uniformly in f0; 1gm, the proposition follows.8



3.3 Simultability property of the protocolWe conclude the analysis of the above protocol by showing that, one can e�ciently generaterandom transcripts of the protocol having this output. Throughout this analysis, weassume that the responder follows the instruction speci�ed by the protocol. As in the proofof the last two propositions, it su�ces to consider an arbitrary deterministic challengerstrategy, denoted c.Now, suppose that Hn;m = H tn;m is a family of hashing functions satisfying property(P1), for some t = poly(n). Then, on input x and access to a function c :f0; 1g� 7!f0; 1g�,we can easily test if c(h(x)) = x, where h def= c(�). In case the above condition holds, thetriple (h; h(x); x) is the only transcript of the execution of the protocol, with challengerstrategy c, which ends with output x. Otherwise, there is no execution of the protocol,with challenger strategy c, which ends with output x. Thus,Proposition 4 Consider executions of the Random Selection protocol in which the chal-lenger strategy, denoted c, is an arbitrary function and the responder plays according tothe protocol. There exists a polynomial-time oracle machine that, on input x 2 f0; 1gn andh 2 Hn;m and oracle access to a function c, either generates the unique transcript of ac-execution which outputs x or indicates that no such execution exists.3.4 Setting the ParametersProposition 1 motivates us to set " (the parameter governing the approximation of theoutput in case of honest challenger) as small as possible. On the other hand, Propositions 2and 3 motivates us to maintain the di�erence n�m small and in paricular logarithmic (inn). Recalling that n � m = 4 log2(n="), this suggests setting " = 1=p(n) for some �xedpositive polynomial p.4 The Zero-Knowledge TransformationOur transformation is restricted to interactive proofs in which the veri�er sends the out-come of every coin it tosses. Such interactive proofs are called Arthur-Merlin games [1]or public-coins interactive proofs (cf., [14]). Note that in such interactive proofs the veri-�er moves, save the last, may consist merely of tossing coins and sending their outcome.(In its last move the veri�er decides, based on the entire history of the communication,whether to accept the input or not.) Without loss of generality, we may assume that inevery round of such an interactive proof the veri�er tosses at least 4 log(jxj=") coins, wherex is the common input to the interactive proof and " speci�es the desired bound on the9



statistical distance (between one round in the resulting interactive proof and the originalone). Furthermore, assume for sake of simplicity that at each round the veri�er tosses thesame number of coins, denoted n.4.1 The TransformationIn the following description, we use the second version of the Random Selection protocolpresented in Construction 1. This simpli�es the construction of the simulator for thetransformed interactive proof. The �rst version can be used as well, at the expense ofsome modi�cation in the simulator construction.The protocol transformation consists of replacing each veri�er move (except the last,decision move) by an execution of the Random Selection protocol, in which the veri�erplays the role of the challenger and the prover plays the role of the responder. Thus,each round of the original interactive proof, consisting of a random message sent by theveri�er followed by a respond of the prover, is relaced by two rounds in which the three�rst messages are of the Random Selection protocol and the fourth message is the proverrespond. Namely,Construction 3 (transformation of round i in (P; V ) interaction): Let (P; V ) be an in-teractive proof system in which the veri�er V only uses public coins, let "(n) = 1=poly(n)be the desired error in the Random Selection protocol, m def= m(n) def= n�4 log2(n="(n)) andHn;m be as speci�ed in Construction 2 (for t = n). The ith round of the (P; V ) interaction,on common input x, is replaced by the following two rounds of the resulting interactive proof(P 0; V 0). Let (h1; �1; r1; �1; :::; hi�1; ai�1; ri�1; �i�1) be the history so far of the interactionbetween prover P 0 and veri�er V 0. Then, the next two rounds consist of an execution ofthe (second version of the) Random Selection protocol follows by P 0 mimicing the responseof P . Namely, in the �rst round, the veri�er V 0 uniformly selects hi 2 Hn;m and sends itto the prover P 0 who replies with ai uniformly selected in f0; 1gm. In the second round,the veri�er V 0 uniformly selects ri 2 h�1i (ai) and sends it to the prover P 0 who replies with�i def= P (x; r1; :::; ri).The �nal decision of the new veri�er V 0 mimics the one of the original veri�er V ;namely, V 0(h1; �1; r1; �1; :::; ht; at; rt; �t) = V (r1; �1; :::; rt; �t)4.2 Preservation of Completeness and SoundnessIn this subsection, we may assume that V 0 follows the interactive proof. Thus, if for somex 2 f0; 1g�, prover P always convinces V on common input x then P 0 always convinces10



V 0 on this common input. We stress that both V 0 and P 0 run in polynomial-time whengiven oracle access to V and P , respecitely. Thus, the new veri�er is a legitimate one.Furthermore, if the original prover P , working in polynomial-time with help of a suitableauxiliary input, could convince the original veri�er to accept some common input, thenthe resulting prover P 0 could do the same (i.e., can convince V 0 to accept this commoninput, while working in polynomial-time with help of the same auxiliary input).We have just seen that the completeness properties of the original interactive proof ispreserved, by the transformation, in a strong sense. Soundness properties are preserved aswell, but with some slackness which results from the imperfectness of the Random Selectionprotocol. In particular,Proposition 5 Let � : f0; 1g� 7! [0; 1] be a function bounding the probability that veri�erV accepts inputs when interacting with any (possibly cheating) prover. Namely, �(x) is abound on the probability that V accepts x. Suppose that on input x, the interactive proof(P; V ) runs for t(jxj) rounds. Then, �0(x) def= �(x)+O(t(jxj) �"(jxj)) is a function boundingthe probability that veri�er V 0 accepts inputs when interacting with any (possibly cheating)prover.proof: Recall that V 0 plays the role of the challenger in the Random Selection protocol.Thus, the proposition follows quite immediately from Proposition 1.We stress that the above proposition remains valid no matter which of the two versionof Random Selection is used. The same holds with respect to the comments regardingcompleteness (made above).4.3 Zero-KnowledgeIn this subsection, we may assume that P 0 follows the interactive proof. Assuming that Pis zero-knowledge with respect to the veri�er V , we prove that P 0 is zero-knowledge withrespect to any probabilistic polynomial-time veri�er strategy. Furthermore, this state-ment holds for the three versions of zero-knowledge; speci�cally, perfect, almost-perfect(statistical), and computational zero-knowledge.Proposition 6 Let (P; V ) be a constant-round Arthur-Merlin interactive proof. Supposethat P is perfect (resp. almost-perfect) [resp. computational] zero-knowledge with respectto the honest veri�er V over the set L � f0; 1g�. Then P 0 is perfect (resp. almost-perfect)[resp. computational] zero-knowledge (with respect to any probabilistic polynomail-timeveri�er) over the set L � f0; 1g�. 11



proof: Let M be a simulator witnessing the hypothesis of the proposition. We start byconsidering the case of perfect zero-knowledge. Then, for every x 2 L, with non-negligibleprobability M(x) halts with output, and given that this happens the output is distributedidentically to (P; V )(x). For every veri�er strategy V � interacting with P 0, we construct asimulator M� as follows. Again, by uniformly selecting and �xing coin tosses for V �, wemay assume that V � is deterministic.The Simulator M�: On input x, the simulator invokes M and assuming M(x) halts withoutput, sets (r1; �1; :::; rt; �t) def= M(x); otherwise M� also halts with no output. The sim-ulator M� now tries to form transcripts of the Random Selection protocol which end withoutput r1, r2 through rt, respectively. (Here we use the simulatability of the Random Se-lection protocol.) A transcript with output r1 is formed as follows. M� feeds V � with inputx and obtains h1, which can be assumed as in Propositions 2 and 3 to be in Hn;m. Next,M� computes a1 = h1(r1) and feeds V � with (x; a1). If V � replies with r1, we've succeededin forming a transcript for the �rst invokation of Random Selection and we proceed tothe next. Otherwise, M� halts with no output. We note that for the next invokations ofRandom Selection, V � is fed with the entire history so far; for example, to obtain h2 wefeed V � with (x; a1; �1) and next we feed it with (x; a1; �1; a2), where a2 = h2(r2). If all trounds were completed successfully, M� halts with output (h1; a1; r1; �1; :::; ht; at; rt; �t).The following observation which follows from Proposition 4 simpli�es our analysis. Supposethat (r1; �1; :::; rt; �t) is a transcript of a (P; V ) interaction on common input x. Then,there exists at most one (P 0; V �)(x)-transcript that matches it. Namely, there is a uniquesequence of hi's and ai's so that h1 = V �(x), a1 = h1(r1), h2 = V �(x; a1; �1), a2 = h2(r2)and so on. It follows that once M has output a transcript the entire operation of M� isdetermined. In particular, all invokations of V � are on inputs which are already determined.The above construction will be used also in case of almost-perfect and computationalzero-knowledge. However, we start by analyzing it in case of perfect zero-knowledge. Thenext two claims establish that P 0 is perfect zero-knowledge in this case.Claim 1: If M perfectly simulates (P; V ) then M� produces output with non-negligibleprobability (i.e., there exists a positive polynomial p such that, for every x, on input xmachine M produces output with probability at least 1=p(jxj)).proof: It su�ces to bound the fraction of r's which appear as output of the RandomSelection protocol when the challenger uses strategy V � (with adequately added auxiliaryinputs, i.e., x for the �rst invokation, (x; a1; �1) for the second, and so on). By Proposition 3and the setting of the parameters in the construction of (P 0; V 0), it follows that this fractionis bounded by a non-negligible function of jxj, denoted f(jxj). Thus, M�(x) produces anoutput with probability at least p(jxj) � f(jxj)t, where p(jxj) is a lower bound on the12



probability that M(x) produces output. The claim follows. 2Claim 2: If the output distributionM(x) equals the distribution (P; V )(x) then the outputdistribution M�(x) equals the distribution (P 0; V �)(x).proof: Consider a generic transcript, (h1; a1; r1; �1; :::; ht; at; rt; �t), in the support of eitherdistributions (i.e., M�(x) or (P 0; V �)(x)). As always5, such a transcript is totally deter-mined by the prover messages, namely the subtranscript (a1; �1; :::; at; �t). We �rst provethat the subtranscript (a1; :::; at) appears with equal probability in both distributions;speci�cally, it appears with probability (2�m)t in both.� For the distribution (P 0; V �)(x), this is obvious by the de�nition of Random Selection(version 2).� For the distribution M�(x), we note that the subtranscript (a1; :::; at) appears inan output only if ri's used to produce it (see construction of M�) meet a conditionthat can be satis�ed by exactly one sequence of ri's (i.e., if r1 = V �(x; a1), r2 =V �(x; a1; �1; a2) and so on). By the fact that M perfectly simulates (P; V ) it followsthat the ri's are uniformly distributed.Thus, each (a1; :::; at) subtranscript appear with the same probability in both distributionsM�(x) and (P 0; V �)(x). Now, using again the fact that M perfectly simulates (P; V ), weconclude that each (a1; �1; :::; at; �t) subtranscript appear with the same probability in thetwo distributions. 2This concludes our treatment of perfect zero-knowledge. In the other cases (i.e., almost-perfect and computational zero-knowledge), we use the same simulator M� and adapt theanalysis as follows. We start with the case of almost-perfect zero-knowledge, where againwe use a pair of claims to establish the validity of the simulation.Claim 3: If the output distribution ensemble fM(x)gx2L is statistically close to the en-semble f(P; V )(x)gx2L then M� produces output with non-negligible probability.proof sketch: The proof follows by an adaptation of the proof of Claim 1. The key obser-vation is that a distribution which is statistically close to uniform (here we refer to thesequence of ri's produced by M) must hit a non-negligible fraction of the sequences (herewe refer to the ri's produced by Random Selection with V �) with non-negligible probability.2Claim 4: Let M be as in Claim 3. Then the output distribution ensemble fM�(x)gx2L isstatistically close to the ensemble f(P 0; V �)(x)gx2L5Recall that V � is determinitic. 13



proof sketch: We repeat the argument of Claim 2 noting that all equality assertions shouldbe replaced by statistical closeness. Speci�cally, the ri's can not be guaranteed to beuniformly distributed but rather statistically close to such a distribution. It follows thatthe distribution of ai's in the output of the simulation is statistically close to uniform.(Note that the statistical di�erence between the ai's and the uniform distribution maybe larger by a polynomial factor than the corresponding di�erence observed on the ri's,but still this is negligible.) Similarly, we can argue that the augmentation by the �i's isstatistically close (rather than equal) in the two distributions. 2Finally, we deal with the most complicated case, namely the case of computational zero-knowledge. The following pair of claims is a computational analogue of the previous pair.Claim 5: Suppose that the output distribution ensemble fM(x)gx2L is computationallyindistinguishable from the ensemble f(P; V )(x)gx2L. Then M� produces output with non-negligible probability.proof sketch: The proof follows by an adaptation of the proof of Claim 1. Here we note thata distribution which is computationally indistinguishable from the uniform distribution(i.e., the sequence of ri's produced by M) must hit a polynomial-time recognizable set(i.e., the set of ri's produced by Random Selection with V �) with probability which maydi�er from the density of the (recognizable) set by at most a negligible amount. Thus, ifthe recoginzable set has non-negligible density, as is the case here, then it must be hit withnon-negligible probability. 2Claim 6: Let M be as in Claim 5. Then the output distribution ensemble fM�(x)gx2L iscomputationally indistinguishable from the ensemble f(P 0; V �)(x)gx2L.proof sketch: Here making claims regarding the output distribution of M� requires a \sim-ulation argument". Speci�cally, assume towards contradiction, that there exists an al-gorithm, denoted D�, that can distinguish the output distribution of fM�(x)gx2L fromthe distribution ensemble fP 0; V �)(x)gx2L. Then, we can construct an algorithm D thatcan distinguish the output distribution of fM(x)gx2L from the distribution ensemblefP; V )(x)gx2L, in contradiction to the hypothesis regarding M . Given a (P; V )-transcript(from either distributions), algorithm D produces a (P 0; V �)-transcript by employing thesame construction as M�, speci�cally by tring to simulate the Random Selection protocol.Clearly, for the (P; V )(x) distribution this must succeeds with non-negligible probability.Also, the success probability on theM(x) distribution must be very close, otherwise we im-midiately get a distinguisher. Observe that the extended transcripts produced from the the(P; V )(x) distribution are distributed alike (P 0; V �)(x); whereas the extended transcriptsproduced from the the M(x) distribution are distributed alike M�(x). Thus, invoking D�on the extended transcript produced as speci�ed allows us to distinguish the two indis-14



tinguishable ensembles, fM(x)gx2L and fP; V )(x)gx2L, in contradiction to the hypothesis.2Thus, in all three cases considered, the corresponding zero-knowledge claim holds.We remark that the above proposition remains valid even if one uses the �rst version of theRandom Selection protocol. However, a slightly more complex simulator will have to beused. The reason being that in the �rst version (of the Random Selection protocol) the ai'sare not selected uniformly but are rather weighted by the number of their preimages underthe corresponding hi's. Thus, ri's which are mapped to ai's with small preimage may beless likely in the real interactions. To compensate for this phenomenon, one maymodify thesimulator so that it skews the probabilities in the same manner. Namely, when producinga transcript with less likely ri's, the simulator will discard it with some probability. Therequired probability (with which to discard transcripts) can be easily computed.4.4 ConclusionsCombining Propositions 5 and 6, we getTheorem 1 Let � : N 7! [0; 1]. Suppose L has a constant-round Arthur-Merlin proofsystem, with error bound �, which is perfect (resp. almost-perfect) [resp. computational]zero-knowledge with respect to the honest veri�er. Then, for every positive polynomial p(�),L has a constant-round Arthur-Merlin proof system, with error bound �0(n) def= �(n)+ 1p(n) ,which is perfect (resp. almost-perfect) [resp. computational] zero-knowledge (with respectto any probabilistic polynomial-time veri�er). Furthermore, the zero-knowledge propertycan be demonstrated using a black-box simulation. Also, if the original system had no erroron inputs in L then the same holds for the new system.Theorem 1 does not preserve the error probability of the original system. This seemsinevitible, in light of [10]. Recall that there are languages believed not to be in BPPwhich have constant-round Arthur-Merlin proof systems, with exponentially small errorprobability, which are zero-knowledge with respect to the honest veri�er. For example,Graph Isomorphism has such a system (for perfect zero-knowledge), and assuming theexistence of one-way functions, every language in NP has such a system (for compu-tational zero-knowledge) [12]. Now, a stronger version of Theorem 1, say one in which�0(n)��(n) is a negligible function of n, would imply that these languages have constant-round Arthur-Merlin (balck-box) zero-knowledge proof systems (with negligible error prob-ability). But, according to [10], languages having constant-round Arthur-Merlin (balck-box) zero-knowledge proof systems lie in BPP. Needless to say that NP and even GraphNon-Isomorphism are believed not to lie in BPP.15
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