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perfect, statistical and computational. Let us denote the corresponding hierarchies by PKC(�),SKC(�), and CKC(�). Assuming the existence of one-way functions, the third hierarchycollapses, namely CKC(0) = IP = CKC(poly) [GMW-86, IY-87, B+ 88]. Put di�erently,the zero level of computational knowledge-complexity extends to the maximum possible.Anyhow, in the rest of this paper we will be only interested in the other two hierarchies.Previous works have provided information only concerning the zero level of these hierar-chies. Fortnow has pioneered the attempts to investigate the computational complexity of(perfect/statistical) zero-knowledge [F-89], and was followed by Aiello and Hastad [AH-87].Their results can be summarized by the following theorem that bounds the computationalcomplexity of languages having zero-knowledge proofs.Theorem [F-89, AH-87]: SKC(0) � AM\ co-AMHence, languages having statistical zero-knowledge must lie in the second level of thepolynomial-time hierarchy. Needless to say that PKC(k(�)) � SKC(k(�)), for any function kand in particular for k � 0.On the other hand, if we allow polynomial amount of knowledge to be revealed, then everylanguage in IP can be proven.Theorem [LFKN-90, Sh-90]:PKC(poly(�)) = IP = PSPACEAs indicated in [GP-91], the �rst equality is a property of an adequate de�nition (of knowl-edge complexity) rather than a result.In this paper we study the class of languages that have interactive-proofs with logarith-mic knowledge-complexity. In particular, we bound the computational complexity of suchlanguages, showing that they can be recognized by probabilistic polynomial-time machineswith access to an NP oracle.Main Theorem: SKC(O(log(�))) � BPPNPWe recall that BPPNP is contained in the third level of the polynomial-time hierarchy(PH). It is believed that PH is a proper subset of PSPACE. Thus, assuming PH �6=PSPACE, our result yields the �rst proof that there exist languages in PSPACE whichcannot be proven by an interactive-proof that yields O(log n) bits of knowledge. In otherwords, there exist languages which do have interactive proofs but only interactive proofswith super-logarithmic knowledge-complexity.Prior to our work, there was no solid indication1 that would contradict the possibilitythat all languages in PSPACE have interactive-proofs which yield only one bit of knowledge.1Alas, if one had been willing to assume that all languages in PSPACE have interactive proofs of log-arithmically many rounds, an assumption that we consider unreasonable, then the result in [BP-92] wouldhave yielded a proof that PSPACE is not contained in SKC(1), provided (again) that PH �6= PSPACE .2



The only attempt to bound the computational complexity of languages having interactiveproofs of low knowledge-complexity was done by Bellare and Petrank. Yet, their workrefers only to languages having interactive proofs that are both of few rounds and of lowknowledge complexity [BP-92]. Speci�cally, they showed that if a language L has a r(n)-roundinteractive-proof of knowledge-complexity O( lognr(n) ) then the language can be recognized inBPPNP.Our proof of the Main Theorem consists of two parts. In the �rst part, we show that theprocedure described by Bellare and Petrank [BP-92] su�ces for recognizing languages havinginteractive proofs of logarithmic perfect knowledge complexity. To this end, we use a morecareful analysis than the one used in [BP-92]. In the second part of our proof we transforminteractive proofs of statistical knowledge complexity k(n) into interactive proofs of perfectknowledge complexity k(n)+log n. This transformation refers only to knowledge-complexitywith respect to the honest veri�er, but this su�ces since the �rst part of our proof appliesto the knowledge-complexity with respect to the honest veri�er. Yet, the transformation isinteresting for its own sake, and a few words are in place.The question of whether statistical zero-knowledge equals perfect zero-knowledge is oneof the better known open problems in this area. The question has been open also for thecase of zero-knowledge with respect to the honest veri�er. We show that for every poly-timecomputable function k :N 7!N (and in particular for k � 0)SKC(k(�)) � PKC(k(�) + log(�))This result may be considered an indication that these two hierarchies may collide.Techniques UsedAs stated above, the �rst part of our proof consists of presenting a more careful analysis ofan existing procedure, namely the procedure suggested by Bellare and Petrank in [BP-92].Their procedure, in turn, is a culmination of two sequences of works discussed bellow.The �rst sequence originates in Fortnow's de�nition of a simulator-based prover [F-89].Fortnow [F-89], and consequently Aiello and Hastad [AH-87], used the simulator-based proverin order to infer, by way of contradiction, bounds on the sizes of speci�c sets. A moreexplicit usage of the simulator-based prover was introduced by Bellare, Micali and Ostro-vsky [BMO-90]; speci�cally, they have suggested to use a PSPACE-implementation of thesimulator-based prover, instead of using the original prover (of unbounded complexity) wit-nessing the existence of a zero-knowledge interactive proof system. (Thus, they obtaineda bound on the complexity of provers required for zero-knowledge proof systems.) Ostro-vsky [Ost-91] suggested to use an implementation of the interaction between the veri�erand the simulation-based prover as a procedure for deciding the language. Furthermore,assuming that one-way functions do not exist, he used \universal extrapolation" proceduresof [ILu-90, ILe-90] to approximate the behavior of the simulator-based prover. (Thus, as-suming that one-way function do not exists, he presented an e�cient procedure that decideslanguages in SKC(0) and inferred that one-way functions are essential to the non-trivialityof statistical zero-knowledge). Bellare and Petrank distilled the decision procedure from thecontext of one-way functions, showing that the simulator-based prover can be implemented3



using a perfect universal extrapolator (also known as a \uniform generation" procedure)[BP-92]. The error in the implementation is directly related to the deviation of the uniformgeneration procedure.The second sequence of works deals with the two related problems of approximating thesize of sets and uniformly generating elements in them. These problems were related byJerrum et. al. [JVV-86]. Procedures for approximating the size of sets were invented bySipser [Si-83] and Stockmeyer [St-83], and further improved in [GS-89, AH-87], all using the\hashing paradigm". The same hashing technique, is the basis of the \universal extrapo-lation" procedures of [ILu-90, ILe-90]. However, the output of these procedures deviatesfrom the objective (i.e., uniform distribution on the target set) by a non-negligible amount(i.e., 1=poly(T ) when running for time T ). On the other hand, Jerrum et. al. have alsopointed out that (perfect) uniform generation can be done by a BPP�P2 -procedure [JVV-86].Bellare and Petrank combined the hashing-based approximation methods with the ideas of[JVV-86] to obtain a BPPNP -procedure for uniform generation with exponentially vanish-ing error probability [BP-92]. Actually, if the procedure is allowed to halt with no outputwith constant (or exponentially vanishing) probability, then its output distribution is exactlyuniform on the target set.Motivation for studying KCIn addition to the self-evident fundamental appeal of knowledge complexity, we wish to pointout some practical motivation for considering knowledge-complexity greater than zero. Inparticular, cryptographic protocols that release a small (i.e., logarithmic) amount of knowl-edge may be of practical value, especially if they are only applied once or if one can obtainsub-additive bounds on the knowledge complexity of their repeated executions. Note thattypically, a (single application of a) sub-protocol leaking logarithmically many bits (of knowl-edge) does not compromise the security of the entire protocol. The reason being that these(logarithmically many) bits can be guessed with non-negligible probability, which in turnmeans that any attack due to the \leaked bits" can be simulated with non-negligible proba-bility without them.But why use low knowledge-complexity protocols when one can use zero-knowledge ones(see, [GMW-86, GMW-87])? The reason is that the non-zero-knowledge protocols may bemore e�cient and/or may require weaker computational assumptions (see, for example,[OVY-91]).RemarksA remark concerning two de�nitions. Throughout the paper, SKC(k(�)) and PKC(k(�))denote the classes of knowledge-complexity with respect to the honest veri�er. Note that theMain Theorem is only strengthen by this, whereas the transformation (mentioned above) isindeed weaker. Furthermore, by an interactive proof we mean one in which the error prob-ability is negligible (i.e., smaller than any polynomial fraction). A few words of justi�cationappear in Section 2.A remark concerning Fortnow's paper [F-89]. In course of this research, we found out4



that the proof that SKC(0) � co-AM as it appears in [F-89] is not correct. In particular,there is a 
aw in the AM-protocol presented in [F-89] for the complement language (seeAppendix A). However, the paper of Aiello and Hastad provides all the necessary machineryfor proving Fortnow's result as well [AH-87, H-94]. Needless to say that the basic approachpresented by Fortnow (i.e., looking at the \simulator-based prover") is valid and has inspiredall subsequent works (e.g., [AH-87, BMO-90, Ost-91, BP-92, OW-93]) as well as the currentone.2 PreliminariesLet us state some of the de�nitions and conventions we use in the paper. Throughout thispaper we use n to denote the length of the input x. A function f : N ! [0; 1] is callednegligible if for every polynomial p and all su�ciently large n's f(n) < 1p(n).2.1 Interactive proofsLet us recall the concept of interactive proofs, presented by [GMR-89]. For formal de�ni-tions and motivating discussions the reader is referred to [GMR-89]. A protocol between a(computationally unbounded) prover P and a (probabilistic polynomial-time) veri�er V con-stitutes an interactive proof for a language L if there exists a negligible function � : N! [0; 1]such that1. Completeness: If x 2 L thenPr [(P; V )(x) accepts ] � 1� �(n)2. Soundness: If x 62 L then for any prover P �Pr [(P �; V )(x) accepts ] � �(n)Remark: Usually, the de�nition of interactive proofs is robust in the sense that setting theerror probability to be bounded away from 12 does not change their expressive power, sincethe error probability can be reduced by repetitions. However, this standard procedure is notapplicable when knowledge-complexity is measured, since (even sequential) repetitions mayincrease the knowledge-complexity. The question is, thus, what is the right de�nition. Thede�nition used above is quite standard and natural; it is certainly less arbitrary then settingthe error to be some favorite constant (e.g., 13) or function (e.g., 2�n). Yet, our techniquesyield non-trivial results also in case one de�nes interactive proofs with non-negligible errorprobability (e.g., constant error probability). For example, languages having interactiveproofs with error probability 1=4 and perfect knowledge complexity 1 are also in BPPNP.For more details see Appendix B. Also note that we have allowed two-sided error probability;this strengthens our main result but weakens the statistical to perfect transformation2.2Suppose you had a transformation for the one-sided case. Then, given a two-sided interactive proofof some statistical knowledge complexity you could have transformed it to a one-sided error proof of thesame knowledge complexity (cf., [GMS-87]). Applying the transformation for the one-sided case would haveyielded an even better result. 5



2.2 Knowledge ComplexityThroughout the rest of the paper, we refer to knowledge-complexitywith respect to the honestveri�er; namely, the ability to simulate the (honest) veri�er's view of its interaction with theprover. (In the stronger de�nition, one considers the ability to simulate the point of view ofany e�cient veri�er while interacting with the prover.)We let (P; V )(x) denote the random variable that represents V 's view of the interactionwith P on common input x. The view contains the veri�er's random tape as well as thesequence of messages exchanged between the parties.We begin by brie
y recalling the de�nitions of perfect and statistical zero-knowledge. Aprotocol (P; V ) is perfect zero-knowledge (resp., statistical zero-knowledge) over a language Lif there is a probabilistic polynomial time simulatorM such that for every x 2 L the randomvariable M(x) is distributed identically to (P; V )(x) (resp., the statistical di�erence betweenM(x) and (P; V )(x) is a negligible function in jxj).Next, we present the de�nitions of perfect (resp., statistical) knowledge-complexity whichwe use in the sequel. These de�nitions extend the de�nition of perfect (resp., statistical) zero-knowledge, in the sense that knowledge-complexity zero is exactly zero-knowledge. Actually,there are two alternative formulations of knowledge-complexity, called the oracle version andthe fraction version. These formulations coincide at the zero level and di�er by at most anadditive constant otherwise [GP-91]. For further intuition and motivation see [GP-91]. Itwill be convenient to use both de�nitions in this paper3.By the oracle formulation, the knowledge-complexity of a protocol (P; V ) is the numberof oracle (bit) queries that are needed to simulate the protocol e�ciently.De�nition 2.1 (knowledge complexity | oracle version): Let k: N ! N. We say that aninteractive proof (P; V ) for a language L has perfect (resp., statistical) knowledge complexityk(n) in the oracle sense if there exists a probabilistic polynomial time oracle machine M andan oracle A such that:1. On input x 2 L, machine M queries the oracle A for at most k(jxj) bits.2. For each x 2 L, machine MA produces an output with probability at least 12 , and giventhat MA halts with an output, MA(x) is identically distributed (resp., statistically close)to (P; V )(x).In the fraction formulation, the simulator is not given any explicit help. Instead, onemeasures the density of the largest subspace of simulator's executions (i.e., coins) which isidentical (resp., close) to the (P; V ) distribution.De�nition 2.2 (knowledge complexity| fraction version): Let �: N! (0; 1]. We say that aninteractive proof (P; V ) for a language L has perfect (resp., statistical) knowledge-complexitylog2(1=�(n)) in the fraction sense if there exists a probabilistic polynomial-time machine Mwith the following \good subspace" property. For any x 2 L there is a subset of M 's possiblerandom tapes Sx, such that:3The analysis of the [BP-92] procedure is easier when using the fraction version, whereas the transforma-tion from statistical to perfect is easier when using the oracle version.6



1. The set Sx contains at least a �(jxj) fraction of the set of all possible coin tosses of M(x).2. Conditioned on the event that M(x)'s coins fall in Sx, the random variable M(x) isidentically distributed (resp., statistically close) to (P; V )(x). Namely, for the perfectcase this means that for every �cProb(M(x; !)=�c j!2Sx) = Prob((P; V )(x)=�c)where M(x; !) denotes the output of the simulator M on input x and coin tosses sequence!.As mentioned above, these two measures are almost equal.Theorem [GP-91]: The fraction measure and the oracle measure are equal up to an additiveconstant.Since none of our results is sensitive to a di�erence of an additive constant in the measure, weignore this di�erence in the subsequent de�nition as well as in the statement of our results.De�nition 2.3 (knowledge complexity classes):� PKC(k(�)) = languages having interactive proofs of perfect knowledge complexity k(�).� SKC(k(�)) = languages having interactive proofs of statistical knowledge complexity k(�).2.3 The simulation based proverAn important ingredient in our proof is the notion of a simulation based prover, introducedby Fortnow [F-89]. Consider a simulator M that outputs conversations of an interactionbetween a prover P and a veri�er V . We de�ne a new prover P �, called the simulation basedprover, which selects its messages according to the conditional probabilities induced by thesimulation. Namely, on a partial history h of a conversation, P � outputs a message � withprobability Prob(P �(h)=�) def= Prob(Mjhj+1=h�� ���Mjhj=h)where Mt denotes the distribution induced by M on t-long pre�xes of conversations. (Here,the length of a pre�x means the number of messages in it.)It is important to note that the behavior of P � is not necessarily close to the behaviorof the original prover P . Speci�cally, if the knowledge complexity is greater than 0 andwe consider the simulator guaranteed by the fraction de�nition, then P � and P might havequite a di�erent behavior. Our main objective will be to show that even in this case P � stillbehaves in a manner from which we can bene�t.3 The Perfect CaseIn this section we prove that the Main Theorem holds for the special case of perfect knowledgecomplexity. Combining this result with the transformation (Theorem 2) of the subsequentsection, we get the Main Theorem. 7



Theorem 1 PKC(O(log n)) � BPPNPOur proof follows the procedure suggested in [BP-92], which in turn follows the approachof [F-89, BMO-90, Ost-91] while introducing a new uniform generation procedure whichbuilds on ideas of [Si-83, St-83, GS-89, JVV-86] (see introduction).Suppose that (P; V ) is an interactive proof of perfect knowledge complexity k(�) =O(log n) for the languages L, and let M be the simulator guaranteed by the fraction for-mulation (i.e., De�nition 2.2). We consider the conversations of the original veri�er V withthe simulation-based-prover P � (see de�nition in Section 2.3). We are going to show thatthe probability that the interaction (P �; V ) is accepting is negligible if x 62 L and greaterthan a polynomial fraction if x 2 L. Our proof di�ers from [BP-92] in the analysis of thecase x 2 L (and thus we get a stronger result although we use the same procedure). Thisseparation between the cases x 62 L and x 2 L can be ampli�ed by sequential repetitions ofthe protocol (P �; V ). So it remains to observe that we can sample the (P �; V ) interactionsin probabilistic polynomial-time having access to an NP oracle. This observation originatesfrom [BP-92] and is justi�ed as follows. Clearly, V 's part of the interaction can be producedin polynomial-time. Also, by the uniform generation procedure of [BP-92] we can implementP � by a probabilistic polynomial time machine that has access to an NP oracle. Actually,the implementation may fail with negligible probability, but this does not matter. Thus, itremains only to prove the following lemma.Lemma 3.11. If x 2 L then the probability that (P �; V ) outputs an accepting conversation is at least12 � 2�k.2. If x 62 L then the probability that (P �; V ) outputs an accepting conversation is negligible.Remark: In [BP-92], a weaker lemma is proven. Speci�cally, they show that the probabilitythat (P �; V ) output an accepting conversation (on x 2 L) is related to 2�k�t, where t is thenumber of rounds in the protocol. Note that in our proof t could be an arbitrary polynomialnumber of rounds.proof: The second part of the lemma follows from the soundness property as before. Wethus concentrate on the �rst part. We �x an arbitrary x 2 L for the rest of the proof andallow ourselves not to mention it in the sequel discussion and notation. Let k = k(jxj) andq be the number of coin tosses made by M . We denote by 
 def= f0; 1gq the set of all possiblecoin tosses, and by S the \good subspace" ofM (i.e., S has density 2�k in 
 and for ! chosenuniformly in S the simulator outputs exactly the distribution of the interaction (P; V )).Consider the conversations that are output by the simulator on ! 2 S. The probabilityto get such a conversation when the simulator is run on ! uniformly selected in 
, is atleast 2�k. We claim that the probability to get these conversations in the interaction (P �; V )is also at least 2�k. This is not obvious, since the distribution produced by (P �; V ) maynot be identical to the distribution produced by M on a uniformly selected ! 2 
. Nor isit necessarily identical to the distribution produced by M on a uniformly selected ! 2 S.However, the prover's moves in (P �; V ) are distributed as in the case that the simulator8



selects ! uniformly in 
, whereas the veri�er's moves (in (P �; V )) are distributed as in thecase that the simulator selects ! uniformly in S. Thus, it should not be too surprising thatthe above claim can be proven.However, we need more than the above claim: It is not enough that the (P �; V ) conver-sations have an origin in S, they must be accepting as well. (Note that this is not obvioussince M simulates an interactive proof that may have two-sided error.) Again, the densityof the accepting conversations in the \good subspace" of M is high (i.e., � 1 � �), yet weneed to show that this is the case also for the (P �; V ) interaction. Actually, we will showthat the probability than an (P �; V ) conversation is accepting and \has an origin" in S is atleast 12 � 2�k.Let us begin the formal argument with some notations. For each possible history of theinteraction, h, we de�ne subsets of the random tapes of the simulator (i.e., subsets of 
)as follows. 
h is the set of ! 2 
 which cause the simulator to output a conversation withpre�x h. Sh is the subset of !'s in 
h which are also in S. Ah is the set of !'s in Sh whichare also accepting.Thus, lettingMt(!) denote the t-message long pre�x output by the simulatorM on coins!, we get 
h def= f! : Mjhj(!)=hgSh def= 
h \ SAh def= f! 2 Sh : M(!) is acceptinggLet C be a random variable representing the (P �; V ) interaction, and � be an indicator sothat �(�c) = 1 if the conversation �c is accepting and �(�c) = 0 otherwise. Our aim is to provethat Prob(�(C) = 1) � 12 � 2�k. Note thatProb(�(C) = 1) = X�c Prob(C=�c) � �(�c)� X�c Prob(C=�c) � jA�cjj
�cjThe above expression is exactly the expectation value of jAcjj
cj . Thus, we need to show that:Exp�c  jA�cjj
�cj! > 12 � 2�k (1)where the expectation is over the possible conversations �c as produced by the interaction(P �; V ). Once Equation (1) is proven, we are done. Denote the empty history by �. Toprove Equation (1) it su�ces to prove thatExp�c  jA�cjj
�cj � jA�cjjS�cj! � jA�jj
�j � jA�jjS�j (2)since using jA� jjS�j > q12 and jS�jj
�j � 2�k, we getExp�c  jA�cjj
�cj! � jA�jj
�j � jA�jjS�j9



=  jA�jjS�j!2 � jS�jj
�j� 12 � 2�kThe proof of Equation (2) is by induction on the number of rounds. Namely, for each roundi, we show that the expected value of jAhjj
hj � jAhjjSh j over all possible histories h of i rounds (i.e.,length i) is greater or equal to the expected value of this expression over all histories h0 ofi� 1 rounds. In order to show the induction step we consider two cases:1. the current step is by the prover (i.e., P �); and2. the current step is by the veri�er (i.e., V ).In both cases we show, for any history h,Expm  jAh�mjj
h�mj � jAh�mjjSh�mj! � jAhjj
hj � jAhjjShj (3)where the expectation is over the possible current moves m, given history h, as produced bythe interaction (P �; V ).Technical ClaimThe following technical claim is used for deriving the inequalities in both cases.Claim 3.2 Let xi, yi, 1 � i � n be positive reals. Then,nXi=1 xi2yi � (Pni=1 xi)2Pni=1 yiProof: The Cauchy-Schwartz Inequality asserts: nXi=1 ai2! �  nXi=1 bi2! �  nXi=1 ai � bi!2Setting ai def= pyi (we can do this since yi is positive) and bi def= xiai , and rearranging the terms,we get the desired inequality. 2Prover Step { denoted �Given history h, the prover P � sends � as its next message with probability j
h��jj
hj . Thus,Exp�  jAh��jj
h��j � jAh��jjSh��j! = X� j
h��jj
hj � jAh��jj
h��j � jAh��jjSh��j= 1j
hj �X� jAh��j2jSh��j� jAhjj
hj � jAhjjShjThe inequality is justi�ed by using the Technical Claim and noting that P� jAh��j = jAhjand P� jSh��j = jShj. 10



Veri�er Step { denoted �By the perfectness of the simulation, when restricted to the good subspace S, we know thatgiven history h, the veri�er V sends � as its next message with probability jSh�� jjShj . Thus,Exp�  jAh��jj
h��j � jAh��jjSh��j! = X� jSh��jjShj � jAh��jj
h��j � jAh��jjSh��j= 1jShj �X� jAh��j2j
h��j� jAhjj
hj � jAhjjShjThe inequality is justi�ed by using the Technical Claim and noting that P� jAh��j = jAhjand P� j
h��j = j
hj.Having proven Equation (3) for both cases, Equation (2) follows and so does the lemma. 24 The TransformationIn this section we show how to transform statistical knowledge complexity into perfect knowl-edge complexity, incurring only a logarithmic additive term. This transformation combinedwith Theorem 1 yields the Main Theorem.Theorem 2 For every (poly-time computable) k : N 7! N,SKC (k(�)) � PKC (k(�) +O(log(�)))We stress again that these knowledge complexity classes refer to the honest veri�er and thatwe don't know whether such a result holds for the analogous knowledge complexity classesreferring to arbitrary (poly-time) veri�ers.proof: Here we use the oracle formulation of knowledge complexity (see De�nition 2.1). Westart with an overview of the proof. Suppose we are given a simulator M which producesoutput that is statistically close to the real prover-veri�er interaction. We change both theinteractive proof and its simulation so that they produce exactly the same distribution space.We will take advantage of the fact that the prover in the interactive proof and the oracle that\assists" the simulator are both in�nitely powerful. Thus, the modi�cation to the prover'sprogram and the augmentation to the oracle need not be e�ciently computable. We stressthat the modi�cation to the simulator itself will be e�ciently computable. Also, we maintainthe original veri�er (of the interactive proof), and thus the resulting interactive proof is stillsound. Furthermore, the resulting interaction will be statistically close to the original one(on any x 2 L) and therefore the completeness property of the original interactive proof ismaintained (although the error probability here may increase by a negligible amount).11



PreliminariesLet L 2 SKC(k(�)), and (P; V ) be the guaranteed interactive proof. Without loss of gener-ality, we may assume that all messages are of length 1. This message-length convention ismerely a matter of encoding.Recall that De�nition 2.1 only guarantees that the simulator produces output with prob-ability � 12 . Yet, employing Proposition 3.8 in [GP-91], we get that there exists an oraclemachine M , that after asking k(n) + 2 log log n queries, always produces an output so thatthe output is statistically close to the interaction of (P; V ). Let A denote the associated or-acle, and let M 0 def= MA and P 0 and V 0 be the simulation-based prover and veri�er4 inducedby M 0 (i.e., (P 0; V 0) =M 0).In the rest of the presentation, we �x a generic input x 2 L and omit it from the notation.notations: Let [A;B]i be a random variable representing the i-message (i-bit) long pre�x ofthe interaction betweenA and B (the common input x is implicit in the notation). We denoteby A(h) the random variable representing the message sent by A after interaction-historyh. Thus, if the ith message is sent by A, we can write [A;B]i�1 �A([A;B]i�1) = [A;B]i. ByX s= Y we denote the fact that the random variables X and Y are statistically close.Using these notations we may write for every h 2 f0; 1gi and � 2 f0; 1g:Prob(P 0(h) = �) = Prob ([M 0]i+1 = h � �j[M 0]i = h)and similarly, Prob(V 0(h) = �) = Prob ([M 0]i+1 = h � �j[M 0]i = h) :Claim 4.1 The distribution induced by (P 0; V ) is statistically close to the distributions in-duced by both M 0 = (P 0; V 0) and (P; V ).proof: By de�nition, the distributions produced by M 0 = (P 0; V 0) and (P; V ) are statisticallyclose. Thus, we have [P; V ]i s= [P 0; V 0]i; for every i (4)We prove that [P 0; V ] is statistically close to [P 0; V 0] by induction on the length of theinteraction. Assuming that [P 0; V ]i s= [P 0; V 0]i, we wish to prove it for i+ 1. We distinguishtwo cases. In case the i+ 1st move is by the prover, we get[P 0; V ]i+1 = [P 0; V ]i � P 0([P 0; V ]i)s= [P 0; V 0]i � P 0([P 0; V 0]i)= [P 0; V 0]i+1(use the induction hypothesis for s=). In case the i+ 1st move is by the veri�er, we get[P 0; V ]i+1 = [P 0; V ]i � V ([P 0; V ]i)s= [P 0; V 0]i � V ([P 0; V 0]i)s= [P; V ]i � V ([P; V ]i)= [P; V ]i+1s= [P 0; V 0]i+14A simulator-based veri�er is de�ned analogously to the simulator-based prover. It is a �ctitious entitywhich does not necessarily coincide with V . 12



where the �rst s= is justi�ed by the induction hypothesis and the two others by Eq. (4).We stress that since the induction hypothesis is used only once in the induction step, thestatistical distance is linear in the number of induction steps (rather than exponential). 2Motivating discussion: Note that the statistical di�erence between the interaction (P 0; V ) andthe simulation M 0 = (P 0; V 0) is due solely to the di�erence between the proper veri�er (i.e.,V ) and the veri�er induced by the simulator (i.e., V 0). This di�erence is due to V 0 puttingtoo much probability weight on certain moves and thus also too little weight on their siblingmessages (recall that a message in the interaction contains one bit). In what follows we dealwith two cases.The �rst case is when this di�erence between the behavior of V 0 (induced by M 0) andthe behavior of the veri�er V is \more than tiny". This case receives most of our attention.We are going to use the oracle in order to move weight from a veri�er message � that getstoo much weight (after a history h) to its sibling message � � 1 that gets too little weight(after the history h) in the simulation. Speci�cally, when the new simulator M 00 invokes M 0and comes up with a conversation that has h � � as a pre�x, the simulator M 00 (with thehelp of the oracle) will output (a di�erent) conversation with the pre�x h � (� � 1) insteadof outputting the original conversation. The simulatorM 00 will do this with probability thatexactly compensates for the di�erence between V 0 and V . This leaves one problem. Howdoes the new simulator M 00 come up with a conversation that has a pre�x h � (� � 1)? Thecost of letting the oracle supply the rest of the conversation (after the known pre�x h�(��1))is too high. We adopt a \brutal" solution in which we truncate all conversations that haveh � (� � 1) as a pre�x. The truncation takes place both in the interaction (P 00; V ), whereP 00 stops the conversation after � � 1 (with a special STOP message) and in the simulationwhere the oracle recognizes cases in which the simulator M 00 should output a truncatedconversation. These changes make M 00 and V behave exactly the same on messages forwhich the di�erence between V 0 and V is more than tiny. Naturally, V immediately rejectswhen P 00 stops the interaction abruptly, so we have to make sure that this change does notfoil the ability of P 00 to convince V on an input x 2 L. It turns out that these truncationshappen with negligible probability since such truncation is needed only when the di�erencebetween V and V 0 is more than tiny. Thus, P 00 convinces V on x 2 L almost with the sameprobability as P 0 does.The second possible case is that the di�erence between the behavior of V and V 0 is tiny.In this case, looking at a full conversation �c, we get that the tiny di�erences sum up to asmall di�erence between the probability of �c in the distributions ofM 0 and in the distributionof (P 0; V ). We correct these di�erences by lowering the probabilities of all conversations inthe new simulator. The probability of each conversation is lowered so that its relative weight(relatively to all other conversations) is equal to its relative weight in the interaction (P 00; V ).Technically, this is done byM 00 not producing an output in certain cases thatM 0 did producean output.Technical remark: The oracle can be used to allow the simulator to toss bias coins when thesimulator does not \know" the bias. Suppose that the simulator needs to toss a coin so thatit comes-up head with probability N2m , where N < 2m and both N and m are integers. Thesimulator supplies the oracle with a uniformly chosen r 2 f0; 1gm and the oracle answershead if r is among the �rst N strings in f0; 1gm and tail otherwise. A similar procedure13



is applicable for implementing a lottery with more than two a-priori known values. Usingthis procedure, we can get extremely good approximations of probability spaces at a costrelated to an a-priori known upper bound on the size of the support (i.e., the oracle answeris logarithmic in the size of the support).De�nition: Let � def= 1O(t) where t is the number of rounds in the interaction (P; V ).� Let h be a partial history of the interaction and � be a possible next move by the veri�er.We say that � is weak with respect to h ifProb(V 0(h)=�) < (1� �) � Prob(V (h)=�)� A conversation �c = (c1; :::; ct) is i-weak if ci is weak with respect to (c1; :::; ci�1), otherwiseit is i-good. (Note that a conversation can be i-weak only if the ith move is a veri�ermove.)� A conversation �c = (c1; :::; ct) is i-critical if it is i-weak but j-good for every j < i.A conversation �c = (c1; :::; ct) is i-co-critical if the conversation obtained from �c, bycomplementing (only) the ith bit, is i-critical. (Note that a conversation can be i-criticalonly for a single i, yet it may be i-co-critical for many i's.)� A conversation is weak if it is i-weak for some i, otherwise it is good.Claim 4.2 (P 0; V ) outputs weak conversations with negligible probability.proof: Recall that [P 0; V ] s= [P 0; V 0] and that the same holds also for pre�xes of the conver-sations. Namely, for any 1 � i � t, [P 0; V ]i s= [P 0; V 0]i. Let us de�ne a pre�x h 2 f0; 1gi ofa conversation to be bad if eitherProb([P 0; V 0]i=h) < �1� �2� � Prob([P 0; V ]i=h)or Prob([P 0; V 0]i=h) > �1 + �2� � Prob([P 0; V ]i=h)The claim follows by combining two facts.Fact 4.3 The probability that (P 0; V ) outputs a conversation with a bad pre�x is negligible.proof: De�ne Bi to be the set of bad pre�xes of length i. By the statistical closeness of[P 0; V ]i and [P 0; V 0]i, we get that� def= Xh2Bi jProb([P 0; V ]i=h)� Prob([P 0; V 0]i=h)j � 
for some negligible fraction 
. On the other hand, � can be bounded from bellow byXh2Bi Prob([P 0; V ]i=h) � �����1� Prob([P 0; V 0]i=h)Prob([P 0; V ]i=h) �����which by de�nition of Bi is at leastProb([P 0; V ]i2Bi) � ����� �2 ����Thus, Prob([P 0; V ]i2Bi) � 2
� and the fact follows. 214



Fact 4.4 If a conversation �c = (c1; :::; ct) is weak then it contains a bad pre�x.proof: Suppose that � def= ci+1 is weak with respect h def= (c1; :::; ci). If h is a bad pre�x thenwe are done. Otherwise it holds thatProb([P 0; V 0]i=h) < �1 + �2� � Prob([P 0; V ]i=h)Using the fact that � is weak with respect to h, we getProb([P 0; V 0]i+1=h � �) < �1 + �2� � (1� �) � Prob([P 0; V ]i+1=h � �)< �1 � �2� � Prob([P 0; V ]i+1=h � �)which implies that h � � is a bad pre�x of �c. 2Combining Facts 4.3 and 4.4, Claim 4.2 follows. 2Claim 4.5 Suppose that �c = (c1; :::; ct) is a good conversation. Then, the probability that �c isoutput by M 0 is at least (1��)dt=2e �Prob([P 0; V ]=�c). Furthermore, for l < k, if �c = (c1; :::; ct)is i-good for every i 2 fl + 1; :::; kg, thenProb ([M 0]k=
 j [M 0]l=h) � (1� �)d k�l2 e � Prob ([P 0; V ]k=
 j [P 0; V ]l=h)where 
 def= (c1; :::; ck) and h def= (c1; :::; cl)proof: To see that this is the case, we write the probabilities step by step conditioned onthe history so far. We note that the prover's steps happen with equal probabilities in bothsides of the inequality, and therefore can be reduced. Since the relevant veri�er's steps arenot weak, we get the mentioned inequality. The actual proof proceeds by induction on k� l.Clearly, if k � l = 0 the claim holds. We note that if k � l = 1 the claim also holds sincestep k in the conversation is either a prover step or a k-good veri�er step.To show the induction step we use the induction hypothesis for k � l � 2. Namely,Prob ([M 0]k�2 = (c1; : : : ; ck�2) j [M 0]l = (c1; : : : ; cl)) (5)� (1 � �)d k�l2 e�1 � Prob ([P 0; V ]k�2 = (c1; : : : ; ck�2) j [P 0; V ]l = (c1; : : : ; cl))Steps k � 1 and k include one prover message and one veri�er message. Assume, withoutloss of generality, that the prover step is k � 1. Since P 0 is the simulator based prover, weget Prob ([M 0]k�1 = (c1; : : : ; ck�1) j [M 0]k�2 = (c1; : : : ; ck�2)) (6)= Prob ([P 0; V ]k�1 = (c1; : : : ; ck�1) j [P 0; V ]k�2 = (c1; : : : ; ck�2))Since step k of the veri�er is good, we also have:Prob ([M 0]k = (c1; : : : ; ck) j [M 0]k�1 = (c1; : : : ; ck�1)) (7)� (1 � �) � Prob ([P 0; V ]k = (c1; : : : ; ck j [P 0; V ]k�1 = (c1; : : : ; ck�1))Combining Equations 5, 6, and 7, the induction step follows and we are done. 215



Dealing with weak conversationsWe start by modifying the prover P 0, resulting in a modi�ed prover, denoted P 00, that stopsonce it gets a veri�er message which is weak with respect to the current history; otherwise,P 00 behaves as P 0. Namely,De�nition (modi�ed prover - P 00): For any h 2 f0; 1g� and � 2 f0; 1g,P 00(h � �) = ( STOP if � is weak with respect to h:P 0(h � �) OtherwiseWe assume that the veri�er V stops and rejects immediately upon receiving an illegal messagefrom the prover (and in particular upon receiving this STOP message).Next, we modify the simulator so that it outputs either good conversations or truncatedconversations which are originally i-critical. Jumping ahead, we stress that such truncatedi-critical conversations will be generated from both i-critical and i-co-critical conversations.The modi�ed simulator, denoted M 00, proceeds as follows5. First, it invokes M 0 and obtainsa conversation �c = (c1; :::; ct). Next, it queries the augmented oracle on �c. The oracle answersprobabilistically and its answers are of the form (i; �), where i 2 f1; :::; tg and � 2 f0; 1g.The probability distribution will be speci�ed below, at this point we only wish to remarkthat the oracle only returns pairs (i; �) for which one of the following three conditions holds1. �c is good, i = t and � = 0 (if �c is good and is not i-co-critical for any i's then the oraclealways answers this way);2. �c is i-critical and � = 0;3. �c is i-co-critical and � = 1.Finally, the new simulator (M 00) halts outputting (c1; :::; ci�1; ci � �), which in case � = 1 isnot a pre�x of �c. Note that i may be smaller than t, in which case M 00 outputs a truncatedconversation which is always i-critical; otherwise, M 00 outputs a non-truncated conversation.Note that this oracle message contains at most 1 + log t bits where t is the length of theinteraction between P 0 and V . It remains to specify the oracle's answer distribution.Let us start by considering two special cases. In the �rst case, the conversation generatedby M 0 is i-critical, for some i, but is not j-co-critical for any j < i. In this case the oraclealways answers (i; 0) and consequently the simulator always outputs the i-bit long pre�x.However, this pre�x is still being output with too low probability. This will be corrected bythe second case hereby described. In this (\second") case, the conversation �c generated byM 0is good and i-co-critical for a single i. This means that the i-bit long pre�x is given too muchprobability weight whereas the pre�x obtained by complimenting the ith bit gets too littleweight. To correct this, the oracle outputs (i; 1) with probability q and (t; 0) otherwise, whereq will be speci�ed. What happens is that the M 00 will output the \i-complimented pre�x"with higher probability than with which it has appeared in M 0. The value of q is determinedas follows. Denote p def= Prob(V (c1; :::; ci�1)=ci � 1) and p0 def= Prob(V 0(c1; :::; ci�1)=ci � 1).Then, setting q so that p0 + (1 � p0) � q = p (i.e., q = p�p01�p0 ) allows the simulator to outputthe pre�x (c1; :::; ci�1; ci � 1) with the right probability.5We stress that P 00 is not necessarily the simulator-based prover of M 00.16



In the general case, the conversation generated by M 0 may be i-co-critical for manyi's as well as j-critical for some (single) j. In case it is j-critical, it can be i-co-criticalonly for i < j. Let us consider the sequence of indices, (i1; :::; il), for which the generatedconversation is critical or co-critical (i.e., the conversation is ik-co-critical for all k < l andis either il-critical or il-co-critical). We consider two cases. In both cases the qk's are set asin the above example; namely, qk = pk�p0k1�p0k , where pk def= Prob(V (c1; :::; cik�1) = cik � 1) andp0k def= Prob(V 0(c1; :::; cik�1)=cik � 1).1. The generated conversation, �c = (c1; :::; ct), is ik-co-critical for every k < l and is il-critical. In this case, the distribution of the oracle answers is as follows. For everyk < l, the pair (ik; 1) is returned with probability (Qj<k(1 � qj)) � qk; whereas the pair(il; 0) appears with probability Qj<l(1� qj). We stress that no other pair appears in thisdistribution.62. The generated conversation, �c = (c1; :::; ct), is ik-co-critical for every k � l. In this case,the distribution of the oracle answers is as follows. For every k � l, the pair (ik; 1)is returned with probability (Qj<k(1 � qj)) � qk; whereas the pair (t; 0) appears withprobability Qj�l(1 � qj). Again, no other pair appears in this distribution.Claim 4.61. [P 00; V ] s= [P 0; V ];2. Each conversation of (P 00; V ), be it a complete (P 0; V )-conversation or a truncated (i.e.,critical) one, is output by M 00 with probability that is at least a (1 � �)t > 34 fraction ofthe probability that it appears in [P 00; V ].proof: The weak conversations are negligible in the output distribution of (P 0; V ) (seeClaim 4.2). The only di�erence between [P 00; V ] and [P 0; V ] originates from a di�erent be-havior of P 00 on weak conversations, speci�cally P 00 truncates them while P 0 does not. Yet,the distribution on the good conversations remains unchanged. Therefore the distributionof [P 00; V ] is statistically close to the distribution of [P 0; V ], and we are done with Part (1).For Part (2) let us start with an intuitive discussion which may help reading through theformal proof that follows. First, we recall that the behavior of the simulation M 0 in proversteps is identical to the behavior of the interaction (P 0; V ) in prover's steps. This followssimply from the fact that P 0 is the simulation based prover of M 0. We will show that thisproperty still holds for the new interaction (P 00; V ) and the new simulation M 00. We will dothis by noting two di�erent cases. In one case, the prover step is conducted by P 00 exactlyas it is done by P 0 and then M 00 behaves exactly as M 0. The second possible case is that theprover step contains the special message STOP. We shall note that this occurs with exactlythe same probability in the distribution (P 00; V ) and in the distribution of M 00.Next, we consider the veri�er steps. In the construction of M 00 and P 00 we considered thebehavior of M 0 and V on veri�er steps and made changes when these di�erences were not\tiny". We called a message � weak with respect to a history h, if the simulator assigns themessage � (after outputting h) a probability which is smaller by a factor of more than (1��)from the probability that the veri�er V outputs the message � on history h. We did not6Indeed the reader can easily verify that these probabilities sum up to 1.17



make changes in messages whose di�erence in weight (between the simulation M 0 and theinteraction (P 0; V )) were smaller than that. In the proof, we consider two cases. First, themessage � is weak with respect to the history h. Clearly, the sibling message ��1 is gettingtoo much weight in the simulation M 0. So in the de�nition of M 00 we made adjustments tomove weight from the pre�x h � (� � 1) to the pre�x h � �. We will show that this transferof weight exactly cancels the di�erence between the behavior of V and the behavior of M 0.Namely, the weak messages (and their siblings) are assigned exactly the same probabilityboth in M 00 and by V . Thus, we show that when a weak step is involved, the behavior of(P 00; V ) and the behavior of M 00 are exactly equivalent. It remains to deal with messages forwhich the di�erence between the conditional behavior of V and M 0 is \tiny" and was notconsidered so far. In this case, M 00 behaves like M 0. However, since the di�erence is so tiny,we get that even if we accumulate the di�erences throughout the conversation, they sum upto at most the multiplicative factor 3=4 stated in the claim.Let us begin the formal proof by writing again the probability that (P 00; V ) outputs �c asthe product of the conditional probabilities of the t steps. Namely,tYi=1Prob ([P 00; V ]i+1=hi � ci+1 j [P 00; V ]i=hi )where hi def= (c1; :::; ci). We do the same for the probability that M 00 outputs a conversation�c. We will show by induction that each step of any conversation is produced by M 00 with atleast (1� �) times the probability of the same step in the (P 00; V )-interaction. Once we haveshown this, we are done. Clearly this claim holds for the null pre�x. To prove the inductionstep, we consider the two possibilities for the party making the i+ 1st step.i + 1st step is by the prover: Consider the conditional behavior of M 00 given the history sofar. We will show that this behavior is identical to the behavior of P 00 on the same partialhistory.A delicate point to note here is that we may talk about the behavior of M 00 on a pre�xhi only if this pre�x appears with positive probability in the output distribution [M 00]i.However, by the induction hypothesis any pre�x that is output by [P 00; V ]i appears withpositive probability in [M 00]i.We partition the analysis into two cases.1. First, we consider the case in which the last message of the veri�er is weak with respectto the history that precedes it. Namely, h = h0 � � and � is weak with respect to h0. Inthis case, both in the interaction (P 00; V ) and in the simulationM 00, the next message ofthe prover is set to STOP with probability 1. Namely,Prob (M 00 = h � STOP j [M 00]i = h) = 1= Prob (P 00(h) = STOP)2. The other possible case is that the last message of the veri�er is not weak with respectto its preceding history. In this case, the simulator M 00 behaves like M 0 and the proverP 00 behaves like P 0. (Note that the changes in critical and co-critical steps apply only to18



veri�er steps.) Thus,Prob ([M 00]i+1 = h � � j [M 00]i = h) = Prob ([M 0]i+1 = h � � j [M 0]i = h)= Prob (P 0(h) = �)= Prob (P 00(h) = �)To summarize, the conditional behavior of M 00 in the prover steps and the conditionalbehavior of P 00 are exactly equal.i + 1st step is by the veri�er: Again, we consider the conditional behavior of M 00 given thehistory so far. Let us recall the second modi�cation applied to M 0 when deriving M 00. Thismodi�cation changes the conditional probability of the veri�er steps in the distribution ofM 0in order to add weight to steps having low probability in the simulation. We note that thismodi�cation is made only in critical or co-critical steps of the veri�er. Consider a history hiwhich might appear in the interaction (P 00; V ) and a possible response � of V to hi. Again,by the induction hypothesis, hi has a positive probability to be output by the simulationM 00 and therefore we may consider the conditional behavior of M 00 on this history hi. Thereare three cases to be considered, corresponding to whether either � or �� 1 or none is weakwith respect to hi.We start with the simplest case in which neither � nor � � 1 is weak (w.r.t. hi). In thiscase, the behavior of M 00 is identical to the behavior of M 0 since the oracle never sends themessage (i+ 1; �) in this case. However, by the fact that � is not weak, we get that(1� �) � Prob(V (h) = �) � Prob ([M 0]i+1 = h � � j [M 0]i = h)= Prob ([M 00]i+1 = h � � j [M 00]i = h)and we are done with this simple case.We now turn to the case in which � is weak (w.r.t. hi). In this case, given that M 00 hasproduced the pre�x hi, it produces hi�� wheneverM 0 produces the pre�x hi��. Furthermore,with conditional probability q (as de�ned above), M 00 produces the pre�x hi � � also in caseM 0 produces the pre�x hi � (� � 1). As above, we de�nep def= Prob (V (hi) = �)p0 def= Prob (V 0(hi) = �)Since V 0 is the simulation (M 0) based veri�er, we may also writep0 = Prob ([M 0]i+1 = hi � � j [M 0]i = hi) (8)Also, recall that q was de�ned as p�p01�p0 . Now, using these notations:Prob ([M 00]i+1=hi � � j[M 00]i=hi ) = Prob ([M 0]i+1=hi � � j[M 0]i=hi )+ p � p01 � p0 � Prob ([M 0]i+1=hi � (� � 1) j[M 0]i=hi )Using Equation (8), we get = p0 + p � p01 � p0 � (1� p0)= p= Prob (V (h) = �)19



Finally, we turn to the case in which ��1 is weak (w.r.t. hi). Again, this means that � isco-critical in �c. Given that M 00 has produced the pre�x hi, it produces hi � � only when M 0produces the pre�x hi � �, and furthermore, M 00 does so only with probability 1 � q (whereq is again as de�ned above). We denote p and p0, with respect to the critical message � � 1.Namely, p def= Prob (V (hi) = � � 1)p0 def= Prob (V 0(hi) = � � 1)= Prob ([M 0]i+1 = hi � (� � 1) j [M 0]i = hi)Thus, recalling that q = p�p01�p0 , we getProb ([M 00]i+1=hi � � j[M 00]i=hi ) = (1� p� p01� p0 ) � Prob ([M 0]i+1=hi � � j[M 0]i=hi )= 1 � p1� p0 � (1� p0)= 1� p= Prob (V (hi) = �)This completes the proof of Claim 4.6. 2Lowering the probability of some simulator outputsAfter handling the di�erences between M 0 and (P 0; V ) which are not tiny, we make the lastmodi�cation, in which we deal with tiny di�erences. We do that by lowering the probabilitythat the simulator outputs a conversation, in case it outputs this conversation more frequentlythan it appears in (P 00; V ). The modi�ed simulator, denoted M 000, runs M 00 to obtain aconversation �c. (Note that M 00 always produces output.) Using the further-augmentedoracle, M 000 outputs �c with probabilityp�c def= 34 � Prob([P 00; V ]=�c)Prob([M 00]=�c)Note that p�c � 1 holds due to Part 2 of Claim 4.6.Claim 4.71. M 000 produces output with probability 34 ;2. The output distribution of M 000 (i.e., in case it has output) is identical to the distribution[P 00; V ].proof: The probability that M 000 produces an output is exactly:X�c Prob ([M 00]=�c) � p�c = 3420



As for part (2), we note that the probability that a conversation �c is output byM 000 is exactly34 � Prob ([P 00; V ]=�c). Since the simulator halts with an output with probability exactly 34,we get that given that M 000 halts with an output, it outputs �c with probability exactlyProb ([P 00; V ]=�c)) and we are done. 2An important point not explicitly addressed so far is whether all the modi�cations applied tothe simulator preserve its ability to be implemented by a probabilistic polynomial-time withbounded access to an oracle. Clearly, this is the case with respect to M 00 (at the expense ofadditional 1 + log2 t = O(log n) oracle queries). Yet, regarding the last modi�cation thereis a subtle points which needs to be addressed. Speci�cally, we need to verify that thede�nition of M 000 is implementable; namely, that M 000 can (with help of an augmented oracle)\sieve" conversations with exactly the desired probability. Note that the method presentedabove (in the \technical remark") may yield exponentially small deviation from the desiredprobability. This will get very close to a perfect simulation, but yet will not achieve it.To this end, we modify the \sieving process" suggested in the technical remark to dealwith the speci�c case we have here. But �rst we modify P 00 so that it makes its randomchoices (in case it has any) by 
ipping a polynomial number of unbiased coins.7 This roundingdoes change a bit the behavior of P 00, but the deviation can be made so small that the aboveassertions (speci�cally Claim 4.6) still hold.Consider the speci�c sieving probability we need here. Namely: p�c = 34 � a=bc=d , whereab = Prob([P 00; V ] = �c) and cd = Prob([M 00]=�c). A key observation is that c is the numberof coin tosses which lead M 00 to output �c (i.e., using the notation of the previous section,c = j
�cj). Observing that b is the size of probability space for [P 00; V ] and using the abovemodi�cation to P 00, we rewrite p�c as 3ad4b � 1c = ec2f , where e and f = poly(n) are somenon-negative integers.We now note, that the oracle can allow the simulator to sieve conversations with prob-ability ec (f = 0), for any 0 � e � c in the following way. M 000 sends to the oracle therandom tape ! that it has tossed for M 00, and the oracle sieves only e out of the possible crandom tapes which lead M 00 to output �c. The general case of p�c = ec2f is deal by writingp�c = qc + rc2f , where q = be=2fc and r = e� q2f < 2f . To implement this sieve, M 000 suppliesthe oracle with a uniformly chosen f -bit long string (in addition to !). The oracle sieves outq random-tapes (of M 00) as before, and uses the extra bits in order to decide on the sieve incase ! equals a speci�c (di�erent) random-tape.Combining Claims 4.1, 4.6 (part 1), and 4.7, we conclude that (P 00; V ) is an interactive proofsystem of perfect knowledge complexity k(n) + O(log n) for L. This completes the proof ofTheorem 2.7The implementation of P 00 was not discussed explicitly. It is possible that P 00 uses an in�nite numberof coin tosses to select its next message (either 0 or 1). However, an in�nite number of coin tosses is notreally needed since rounding the probabilities so that a polynomial number of coins su�ces, causes onlyexponentially small rounding errors. 21



5 Concluding RemarksWe consider our main result as a very �rst step towards a classi�cation of languages accordingto the knowledge complexity of their interactive proof systems. Indeed there is much to beknown. Below we �rst mention two questions which do not seem too ambitious. The �rstis to try to provide evidence that NP-complete languages cannot be proven within low(say logarithmic or even constant) knowledge complexity. A possible avenue for proving thisconjecture is to show that languages having logarithmic knowledge complexity are in co-AM,rather than in BPPNP (recall that NP is unlikely to be in co-AM - see also [BHZ-87]). Thesecond suggestion is to try to provide indications that there are languages in PSPACE whichdo not have interactive proofs of linear (rather than logarithmic) knowledge complexity. Thereader can easily envision more moderate and more ambitious challenges in this direction.Another interesting question is whether all levels greater then zero of the knowledge-complexity hierarchy contain strictly more languages than previous levels, or if some partialcollapse occurs. For example, it is open whether constant or even logarithmic knowledgecomplexity classes do not collapse to the zero level.Regarding our transformation of statistical knowledge complexity into perfect knowledgecomplexity (i.e., Theorem 2), a few interesting questions arise. Firstly, can the cost of thetransformation be reduced to bellow O(log n) bits of knowledge? A result for the specialcase of statistical zero-knowledge will be almost as interesting. Secondly, can one present ananalogous transformation that preserves one-sided error probability of the interactive proof?(Note that our transformation introduces a negligible error probability into the completenesscondition.) Finally, can one present an analogous transformation that applies to knowledgecomplexitywith respect to arbitrary veri�ers? (Our transformation applies only to knowledgecomplexity with respect to the honest veri�er.)6 AcknowledgementWe thank Leonard Shulman for providing us with a simpler proof of Claim 3.2.References[AH-87] W. Aiello and J. H�astad. Perfect Zero-Knowledge can be Recognized in TwoRounds. Proceedings of the 28th Annual IEEE Symposium on the Foundationsof Computer Science, IEEE (1987).[BMO-90] M. Bellare, S. Micali and R. Ostrovsky. The (True) Complexity ofStatistical Zero-Knowledge. Proceedings of the 22nd Annual ACM Symposiumon the Theory of Computing, ACM (1990).[BP-92] M. Bellare and E. Petrank. Making Zero-Knowledge Provers E�cient.Proceedings of the 24rd Annual ACM Symposium on the Theory of Computing,ACM (1992) 22
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A APPENDIX: A Flaw in [F-89]In [F-89], Fortnow presents a constructive method for proving that SZK def= SKC(0) iscontained in co-AM. Given an interactive proof (P; V ) for a languages L and a (statistical)zero-knowledge simulator M (for the honest veri�er V ), he constructs a two-round protocol(P 0; V 0). This protocol was claimed to constitute an interactive proof system for L. Thisclaim, as we are going to show, is wrong. Yet, the result SZK � co-AM does hold, sincethe work of Aiello and Hastad contains the necessary re�nements which enable to present amodi�ed AM-protocol for L (see [AH-87, H-94]). Furthermore, Fortnow's basic approach isvalid, and indeed it was used in subsequent works (e.g., [AH-87, BMO-90, Ost-91, BP-92,OW-93]).Fortnow's basic approach starts with the observation that the simulator M must behavedi�erently on x 2 L and x 62 L. Clearly, the di�erence cannot be recognized in polynomial-time, unless L 2 BPP. Yet, stronger recognition devices, such as interactive proofs shouldbe able to tell the di�erence. Fortnow suggests a characterization of the simulator's behavioron x 2 L and uses this characterization in his protocol for L, yet this characterization iswrong. Aiello and Hastad present a re�nement of Fortnow's characterization [AH-87], theircharacterization is correct and can be used to show that SZK � AM (which is the goal oftheir paper) as well as SZK � co-AM.Fortnow's characterizationGiven an interactive proof (P; V ) for L and a simulator M , and �xing a common inputx 2 f0; 1g�, the following sets are de�ned. Let us denote by t the number of random bitsthat the veri�er V uses on input x, and by q the number of random bits used by the simulatorM . For every conversation pre�x, h, we consider the set of the veri�er's coin tosses whichare consistent with h (the conversation so far). We denote this set by Rh1 . Namely, forh = (�1; �1; :::; �i; �i) (or h = (�1; �1; :::; �i; �i; �i+1)), r 2 Rh1 i� V (x; r; �1; :::; �j) = �jfor every j � i, where V (x; r; ��) denotes the message sent by V on input x random-taper and prover message-sequence ��. The set Rh1 depends only on the veri�er V . Next, weconsider sets Rh2 which are subsets of the corresponding Rh1 's. Speci�cally, they containonly r's that can appear with h in an accepting conversation output by the simulator M .Namely, r 2 Rh2 i� r 2 Rh1 and there exists ! 2 f0; 1gq so that M(x; !) is an acceptingconversation with pre�x h. (Here M(x; !) denotes the conversation output by M on inputx and simulator-random-tape !.)Motivation: For simplicity, suppose that the simulation is perfect (i.e., M witnesses that(P; V ) is perfect zero-knowledge) and that (P; V ) has one sided error (i.e., \perfect complete-ness"). Then, for every x 2 L and every possible h, we must have Rh2 = Rh1 (otherwise thesimulation is not perfect). However, if x 62 L then there must exist h's so that Rh2 is muchsmaller than Rh1 . Otherwise the simulator-based prover (for M) will always convince V toaccept x, thus violating the soundness condition of (P; V ). The problem with the above di-chotomy is that it is \too existential" and thus it is not clear how to use it. Instead Fortnowclaimed a dichotomy which is more quantitative.25



A False Characterization: Let pref(�c) denote the set of all message-subsequences in the con-versation �c.� if x 2 L then Prob!(8h 2 pref(M(x; !)) ���Rh2��� �1 ���Rh1 ���) > 34� if x 62 L then Prob!(8h 2 pref(M(x; !)) ���Rh2��� �2 ���Rh1 ���) < 14where the probability (in both cases) is taken uniformly over ! 2 f0; 1gq. We did not specifywhat is meant by �i. One may substitute � �1 � by � � 12 � �, and � �2 � by � � 14 � �.The gap between the two is needed for the approximate lower/upper bound protocols.A CounterexampleThe mistake is in the second item of the characterization. The false argument given in [F-89]confuses between the probability distribution of conversations output by the simulator andthe probability distribution of the conversations between a simulator-based prover (denoteP �) and the veri�er. These distributions are not necessarily the same (note that we are incase x 62 L). Consequently, the probability that \good" conversations (i.e., conversationsfor which jR2j � jR1j for all pre�xes) occur in the (P �; V ) interaction is not the same asthe probability that the simulator outputs \good" conversations. This point is ignored in[F-89] and leads there to the false conclusion that the characterization holds. Bellow, wepresent an interactive proof (P; V ) and a (perfect) zero-knowledge simulator for which thecharacterization fails.The interactive proof that we present is for the empty language �. This interactive proofis perfect zero knowledge for the trivial reason that the requirement is vacuous. Yet, wepresent a simulator for this interactive proof which, for every x 2 f0; 1g� = �, outputs\good" conversation with probability close to 1. Thus, the characterization fails.The interactive proof (from the veri�er's point of view { input x 2 f0; 1gn):� The veri�er uniformly selects � 2 f0; 1gn and sends � to the prover.� The veri�er waits for the prover's message � 2 f0; 1gn.� Next, the veri�er uniformly selects 
 2 f0; 1gn and sends 
 to the prover.� The veri�er accepts i� either � = 0n or � = 
.Regardless of the prover's strategy, the veri�er accepts each x 2 f0; 1gn with negligibleprobability; speci�cally 2�n + (1 � 2�n) � 2�n. Thus, the above protocol indeed constitutesan interactive proof for the empty language �.The simulator operates as follows (on input x 2 f0; 1gn):� With probability 1� �, the simulatorM outputs a conversation uniformly distributed in0n � f0; 1g2n. (� is negligible, say � = 2�n)� With probability �, the simulator M outputs a conversation uniformly distributed in(f0; 1gn � 0n)� f0; 1g2n. 26



Claim: In contradiction to the characterization, for every x 2 f0; 1g� = �,Prob!(8h 2 pref(M(x; !)) ���Rh2 ��� = ���Rh1 ���) � 1� �Proof: It su�ces to show that every conversation of the form 0n�
 satis�es R2 = R1 forall its pre�xes. First observe that R�1 = f0; 1g2n = R�2 , since for every �
 2 f0; 1g2nthe simulator outputs the accepting conversation �

 with non-zero probability. Similarly,R0n1 = 0nf0; 1gn = R0n2 . Next, for every � 2 f0; 1gn, we have R0n�1 = 0nf0; 1gn = R0n�2 , sincefor every 
 2 f0; 1gn the simulator outputs the accepting conversation 0n�
 with non-zeroprobability. (Here we use the fact that the veri�er always accepts when � = 0n.) Similarly,R0n�
1 = 0n
 = R0n�
2 . 2ConclusionThe source of trouble is that the de�nition of the sets Rh2 's does not take into account theprobability weight assigned by the simulator to !'s that witness the assertion \the simulatoroutputs an accepting conversation that starts with h". Indeed, this is exactly the nature ofthe re�nement suggested by Aiello and Hastad [AH-87].
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B APPENDIX: Applying our techniques fornon-negligible error probabilitiesAs explained in the introduction, the notion of an interactive proof with bounded knowledgecomplexity is not robust under changes in the allowed error probability. Throughout thepaper, we use the natural de�nition of interactive proofs in which the error probability isnegligible. However, our techniques yield non-trivial results also in the case one de�nesinteractive proofs with some speci�c non-negligible error probability. In this appendix weexplain how such assertions may be obtained, and state such results for two special cases.Denote by �c(n) (an upper bound on) the probability that the veri�er rejects an inputx although x 2 L and the prover plays honestly. This is the error probability related tothe completeness condition. Similarly, denote by �s(n) (an upper bound on) the probabilitythat the veri�er accepts x 62 L when the prover follows its optimal strategy (not necessarilyfollowing the protocol). This is the error probability related to the soundness condition.We say that an interactive proof has error probabilities (�s; �c) if its error probability in thesoundness condition is bounded by �s and its error probability in the completeness conditionis bounded by �c.B.1 The perfect caseIn this subsection, we consider the more restricted case of perfect knowledge complexity, andderive Theorem 3 which is the analogue of Theorem 1 for the case that the error probabilitiesare not negligible. Following the de�nitions in Section 3, we denote the simulation basedprover by P �.Let us follows the steps of the proof of our main theorem and observe which assertionshold for the case of non-negligible error probability. We begin by observing that the followinggeneralization of Lemma 3.1 holds:Lemma B.1 Let (P; V ) be an interactive proof for L with error probabilities (�s(n); �c(n))and with knowledge complexity k(n), then1. If x 2 L then the probability that (P �; V ) outputs an accepting conversation is at least(1� �c(n))2 � 2�k(n), where n = jxj.2. If x 62 L then the probability that (P �; V ) outputs an accepting conversation is at most�s(n), where n = jxj.The proof of this lemma is identical to the proof of Lemma 3.1, except that here jA�jjS� j =1 � �c(n). As explained in Section 3, an e�cient machine with access to an NP oracle cansample conversations in (P �; V ). By Lemma B.1, this would yield an accepting conversationwith probability at most �s(n) in the case x 62 L and at least (1 � �c(n))2 � 2�k(n) whenx 2 L. In case these two probabilities di�er su�ciently (i.e., by more then a polynomialfraction), we can use standard ampli�cation techniques to get a probabilistic algorithm thatdetermines whether x 2 L with error probability less than 1=3 (or negligible, or 2�n). Tosummarize, we get the following theorem for perfect knowledge complexity.28



Theorem 3 If a language L has an interactive proof with perfect knowledge complexity k(n)and error probabilities (�s; �c) and if there exists a polynomial p(n) such that(1 � �c(n))2 � 2�k(n) > �s(n) + 1p(n)then L 2 BPPNP.Examples: Theorem 3 implies, for example, that if a language L has an interactive proofof knowledge complexity 1 and error probability 1=4 (both in the soundness condition andin the completeness condition), then L is in BPPNP. Another interesting example is thecase of one-sided error (i.e., �c = 0). Theorem 3 implies that for any polynomial p(�), if alanguage L has a one-sided error interactive proof (P; V ) of knowledge complexity at mostlog2 �p(�)2 � and error probability �s � 1p(�), then L is in BPPNP.B.2 The general (statistical) caseUnfortunately, the analogue result for statistical knowledge complexity is not as clean, andhas various di�erent formulations according to possible properties of the error probabilities.Let us explain how such a result can be obtain, and give a speci�c example for the specialcase in which �c = 0, i.e., the original interaction has one-sided error.Recall that the proof for the negligible error-probability case uses the transformation fromstatistical to perfect knowledge complexity and then uses Theorem 1. This transformationincreases the knowledge complexity by a logarithmic additive term. In view of Lemma B.1,it is desirable not to increase the knowledge complexity without concurrently decreasing theerror probability. Thus, before applying the transformation, we reduce the error probabilityby iterating the protocol as many times as possible while maintaining logarithmic knowledgecomplexity.Speci�cally, denote the length of the interaction by l(n). Also, �x an input x of length n,and let l = l(n), k = k(n), �s = �s(n) and �c = �c(n). The transformation from statistical toperfect knowledge complexity (as described in Section 4) increases the knowledge complexityby 1 + log2 l. We begin by running the original protocol (P; V ) sequentially t def= d(log2 l)=ketimes. These repetitions yield a new protocol (P 0; V 0) whose length is t � l, its knowledgecomplexity is bounded by t � k < (k � 1) + log2 l, and its error probability decreases. Tocompute the decrease in the error probabilities, we partition the analysis into two casesaccording to whether the original interaction has one sided error or not.If the original interaction has one sided error, i.e., the veri�er always accepts when x 2 L,then the new veri�er V 0 accepts only if all repetitions of the original protocols end accepting.The error probabilities in this case decrease from (�s; 0) to (�ts; 0). In the case where theoriginal interactive proof was not one sided, the veri�er counts the number of original inter-actions that end with the original veri�er accepting. The new veri�er accepts if this numberis greater than �s+(1��c)2 � t. In order to compute the new error probabilities we may applythe Cherno� bound and get an upper bound on the new error probabilities which dependson t, on the di�erence between 1 � �c and �s, and of-course on �s and �c themselves.Next, we apply the transformation of Section 4 (\from statistical to perfect knowledgecomplexity") and get a new interactive proof (P 00; V 00) for L which has knowledge complexity29



k � 1 + log2 l + 1 + dlog2(l � t)e, where the additional 1 + dlog2(l � t)e term comes from thetransformation. Finally, if the resulting parameters of (P 00; V 00) satisfy the conditions statedin Theorem 3, then we get that the language L is in BPPNP. Let us provide full details forthe special (yet important) case of one sided error (i.e., �c = 0).In the special case of one-sided error, we end up using Theorem 3 for an interactive proofwith knowledge complexity k + log2 l + dlog2(l � t)e and (one-sided) error probability �st.Thus, we get the following theorem for statistical knowledge complexity:Theorem 4 Suppose that a language L has an interactive proof of statistical knowledgecomplexity k(n), one-sided error probability �s(n), and with length l(n) so that there exists apolynomial p(n) for which the following inequality holds12 � 2k(n) � l(n)2 � l log2 l(n)k(n) m � �s(n)d(log2 l(n))=k(n)e + 1p(n)Then L 2 BPPNP.
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