Computational Complexity and Knowledge
Complexity™

Oded Goldreich! Rafail Ostrovsky? Erez Petrank’
March 20, 1995

Abstract

We study the computational complexity of languages which have interactive proofs
of logarithmic knowledge complexity. We show that all such languages can be recog-
nized in BPPVF. Prior to this work, for languages with greater-than-zero knowledge
complexity (and specifically, even for knowledge complexity 1) only trivial computa-
tional complexity bounds (i.e., recognizability in PSPACE = IP) were known. In the
course of our proof, we relate statistical knowledge-complexity with perfect knowledge-
complexity; specifically, we show that, for the honest verifier, these hierarchies coincide,

up to a logarithmic additive term (i.e., SKC(k(+)) € PKC(k(-) + log(-))).

1 Introduction

The notion of knowledge-complexity was introduced in the seminal paper of Goldwasser
Micali and Rackoff [GMR-85, GMR-89]. Knowledge-complexity (KC) is intended to measure
the computational advantage gained by interaction. Satisfactory formulations of knowledge-
complexity, for the case that it is not zero, have recently appeared in [GP-91]. A natural
suggestion, made by Goldwasser, Micali and Rackoff, is to classify languages according to
the knowledge-complexity of their interactive-proofs [GMR-89]. We feel that it is worthwhile
to give this suggestion a fair try.

The lowest level of the knowledge-complexity hierarchy is the class of languages having
interactive proofs of knowledge-complexity zero, better known as zero-knowledge. Actually,
there are three hierarchies extending the three standard definitions of zero-knowledge; namely

*An extended abstract of this paper appeared in the 26th ACM Symposium on Theory of Computing
(STOC 94), held in Montreal, Quebec, Canada, May 23-25, 1994.

TDepartment of Applied Mathematics and Computer Science, Weizmann Institute of Science, Rehovot,
Israel. E-mail: oded@wisdom.weizmann.ac.il. Supported by grant no. 92-00226 from the United States
— Israel Binational Science Foundation, Jerusalem, Israel.

tComputer Science Division, University of California at Berkeley, and International Computer Science
Institute, Berkeley, CA 94720. E-mail: rafail@cs.Berkeley.EDU. Supported by an NSF Postdoctoral
Fellowship and TCSI.

$Computer Science Department, Technion — Israel Institute of Technology, Haifa 32000, Israel. E-mail:
erez@Qcs.technion.ac.il.

perfect, statistical and computational. Let us denote the corresponding hierarchies by PKXC(-),
SKC(-), and CKC(-). Assuming the existence of one-way functions, the third hierarchy
collapses, namely CKC(0) = ITP = CKC(poly) [GMW-86, 1Y-87, B+ 88]. Put differently,
the zero level of computational knowledge-complexity extends to the maximum possible.
Anyhow, in the rest of this paper we will be only interested in the other two hierarchies.

Previous works have provided information only concerning the zero level of these hierar-
chies. Fortnow has pioneered the attempts to investigate the computational complexity of
(perfect/statistical) zero-knowledge [F-89], and was followed by Aiello and Hastad [AH-87].
Their results can be summarized by the following theorem that bounds the computational
complexity of languages having zero-knowledge proofs.

Theorem [F-89, AH-87]:
SKC(0) € AM [co-AM

Hence, languages having statistical zero-knowledge must lie in the second level of the
polynomial-time hierarchy. Needless to say that PKXC(k(-)) C SKC(k(+)), for any function k
and in particular for £ = 0.

On the other hand, if we allow polynomial amount of knowledge to be revealed, then every
language in ZP can be proven.

Theorem [LFKN-90, Sh-90]:
PKC(poly(:)) =IP = PSPACE

As indicated in [GP-91], the first equality is a property of an adequate definition (of knowl-
edge complexity) rather than a result.

In this paper we study the class of languages that have interactive-proofs with logarith-
mic knowledge-complexity. In particular, we bound the computational complexity of such
languages, showing that they can be recognized by probabilistic polynomial-time machines
with access to an NP oracle.

Main Theorem:

SKC(O(log(-))) C BPPN?

We recall that BPPV? is contained in the third level of the polynomial-time hierarchy
(PH). It is believed that PH is a proper subset of PSPACE. Thus, assuming PH %
PSPACE, our result yields the first proof that there exist languages in PSPACE which
cannot be proven by an interactive-proof that yields O(logn) bits of knowledge. In other
words, there exist languages which do have interactive proofs but only interactive proofs
with super-logarithmic knowledge-complexity.

Prior to our work, there was no solid indication® that would contradict the possibility
that all languages in PSPACE have interactive-proofs which yield only one bit of knowledge.

! Alas, if one had been willing to assume that all languages in PSP.ACE have interactive proofs of log-
arithmically many rounds, an assumption that we consider unreasonable; then the result in [BP-92] would

have yielded a proof that PSPACE is not contained in SKC(1), provided (again) that PH S PSPACE.

The only attempt to bound the computational complexity of languages having interactive
proofs of low knowledge-complexity was done by Bellare and Petrank. Yet, their work
refers only to languages having interactive proofs that are both of few rounds and of low
knowledge complexity [BP-92]. Specifically, they showed that if a language L has a r(n)-round

interactive-proof of knowledge-complexity O(lf(i?) then the language can be recognized in

BPPY?.

Our proof of the Main Theorem consists of two parts. In the first part, we show that the
procedure described by Bellare and Petrank [BP-92] suffices for recognizing languages having
interactive proofs of logarithmic perfect knowledge complexity. To this end, we use a more

careful analysis than the one used in [BP-92]. In the second part of our proof we transform
interactive proofs of statistical knowledge complexity k(n) into interactive proofs of perfect
knowledge complexity k(n)+logn. This transformation refers only to knowledge-complexity
with respect to the honest verifier, but this suffices since the first part of our proof applies
to the knowledge-complexity with respect to the honest verifier. Yet, the transformation is
interesting for its own sake, and a few words are in place.

The question of whether statistical zero-knowledge equals perfect zero-knowledge is one
of the better known open problems in this area. The question has been open also for the
case of zero-knowledge with respect to the honest verifier. We show that for every poly-time
computable function k:N+— N (and in particular for & = 0)

SKC(k(+)) € PKC(k(-) + log(-))

This result may be considered an indication that these two hierarchies may collide.

Techniques Used

As stated above, the first part of our proof consists of presenting a more careful analysis of
an existing procedure, namely the procedure suggested by Bellare and Petrank in [BP-92].
Their procedure, in turn, is a culmination of two sequences of works discussed bellow.

The first sequence originates in Fortnow’s definition of a simulator-based prover [F-89].
Fortnow [F-89], and consequently Aiello and Hastad [AH-87], used the simulator-based prover
in order to infer, by way of contradiction, bounds on the sizes of specific sets. A more
explicit usage of the simulator-based prover was introduced by Bellare, Micali and Ostro-
vsky [BMO-90]; specifically, they have suggested to use a PSPACE-implementation of the
simulator-based prover, instead of using the original prover (of unbounded complexity) wit-
nessing the existence of a zero-knowledge interactive proof system. (Thus, they obtained
a bound on the complexity of provers required for zero-knowledge proof systems.) Ostro-
vsky [Ost-91] suggested to use an implementation of the interaction between the verifier
and the simulation-based prover as a procedure for deciding the language. Furthermore,
assuming that one-way functions do not exist, he used “universal extrapolation” procedures
of [ILu-90, ILe-90] to approximate the behavior of the simulator-based prover. (Thus, as-
suming that one-way function do not exists, he presented an efficient procedure that decides
languages in SKC(0) and inferred that one-way functions are essential to the non-triviality
of statistical zero-knowledge). Bellare and Petrank distilled the decision procedure from the
context of one-way functions, showing that the simulator-based prover can be implemented

using a perfect universal extrapolator (also known as a “uniform generation” procedure)
[BP-92]. The error in the implementation is directly related to the deviation of the uniform
generation procedure.

The second sequence of works deals with the two related problems of approximating the
size of sets and uniformly generating elements in them. These problems were related by
Jerrum et. al. [JVV-86]. Procedures for approximating the size of sets were invented by
Sipser [Si-83] and Stockmeyer [St-83], and further improved in [GS-89, AH-87], all using the
“hashing paradigm”. The same hashing technique, is the basis of the “universal extrapo-
lation” procedures of [[Lu-90, ILe-90]. However, the output of these procedures deviates
from the objective (i.e., uniform distribution on the target set) by a non-negligible amount
(i.e., 1/poly(T) when running for time 7). On the other hand, Jerrum et. al. have also
pointed out that (perfect) uniform generation can be done by a BPPE§—procedure [JVV-86].
Bellare and Petrank combined the hashing-based approximation methods with the ideas of
[JVV-86] to obtain a BPPMP—procedure for uniform generation with exponentially vanish-
ing error probability [BP-92]. Actually, if the procedure is allowed to halt with no output
with constant (or exponentially vanishing) probability, then its output distribution is exactly
uniform on the target set.

Motivation for studying KC

In addition to the self-evident fundamental appeal of knowledge complexity, we wish to point
out some practical motivation for considering knowledge-complexity greater than zero. In
particular, cryptographic protocols that release a small (i.e., logarithmic) amount of knowl-
edge may be of practical value, especially if they are only applied once or if one can obtain
sub-additive bounds on the knowledge complexity of their repeated executions. Note that
typically, a (single application of a) sub-protocol leaking logarithmically many bits (of knowl-
edge) does not compromise the security of the entire protocol. The reason being that these
(logarithmically many) bits can be guessed with non-negligible probability, which in turn
means that any attack due to the “leaked bits” can be simulated with non-negligible proba-
bility without them.

But why use low knowledge-complexity protocols when one can use zero-knowledge ones
(see, [GMW-86, GMW-87])? The reason is that the non-zero-knowledge protocols may be
more efficient and/or may require weaker computational assumptions (see, for example,

[OVY-91]).

Remarks

A remark concerning two definitions. Throughout the paper, SKC(k(-)) and PKC(k(-))
denote the classes of knowledge-complexity with respect to the honest verifier. Note that the
Main Theorem is only strengthen by this, whereas the transformation (mentioned above) is
indeed weaker. Furthermore, by an interactive proof we mean one in which the error prob-
ability is negligible (i.e., smaller than any polynomial fraction). A few words of justification
appear in Section 2.

A remark concerning Fortnow’s paper [F-89]. In course of this research, we found out

that the proof that SKC(0) C co-AM as it appears in [F-89] is not correct. In particular,
there is a flaw in the AM-protocol presented in [F-89] for the complement language (see
Appendix A). However, the paper of Aiello and Hastad provides all the necessary machinery
for proving Fortnow’s result as well [AH-87, H-94]. Needless to say that the basic approach
presented by Fortnow (i.e., looking at the “simulator-based prover”) is valid and has inspired
all subsequent works (e.g., [AH-87, BMO-90, Ost-91, BP-92, OW-93]) as well as the current

one.

2 Preliminaries

Let us state some of the definitions and conventions we use in the paper. Throughout this
paper we use n to denote the length of the input x. A function f : N — [0,1] is called
1

negligible if for every polynomial p and all sufficiently large n’s f(n) < o

2.1 Interactive proofs

Let us recall the concept of interactive proofs, presented by [GMR-89]. For formal defini-
tions and motivating discussions the reader is referred to [GMR-89]. A protocol between a
(computationally unbounded) prover P and a (probabilistic polynomial-time) verifier V' con-
stitutes an interactive proof for a language L if there exists a negligible function ¢ : N — [0, 1]
such that

1. Completeness: If x € L then

Pr[(P,V)(x) accepts] > 1 —€(n)
2. Soundness: If ¢ L then for any prover P*
Pr[(P*,V)(x) accepts] < e(n)

Remark: Usually, the definition of interactive proofs is robust in the sense that setting the
error probability to be bounded away from % does not change their expressive power, since
the error probability can be reduced by repetitions. However, this standard procedure is not
applicable when knowledge-complexity is measured, since (even sequential) repetitions may
increase the knowledge-complexity. The question is, thus, what is the right definition. The
definition used above is quite standard and natural; it is certainly less arbitrary then setting
the error to be some favorite constant (e.g., +) or function (e.g., 27"). Yet, our techniques
yield non-trivial results also in case one defines interactive proofs with non-negligible error
probability (e.g., constant error probability). For example, languages having interactive
proofs with error probability 1/4 and perfect knowledge complexity 1 are also in BPPNT.
For more details see Appendix B. Also note that we have allowed two-sided error probability;

this strengthens our main result but weakens the statistical to perfect transformation?.

2Suppose you had a transformation for the one-sided case. Then, given a two-sided interactive proof
of some statistical knowledge complexity you could have transformed it to a one-sided error proof of the
same knowledge complexity (cf., [GMS-87]). Applying the transformation for the one-sided case would have
yvielded an even better result.

2.2 Knowledge Complexity

Throughout the rest of the paper, we refer to knowledge-complexity with respect to the honest
verifier; namely, the ability to simulate the (honest) verifier’s view of its interaction with the
prover. (In the stronger definition, one considers the ability to simulate the point of view of
any efficient verifier while interacting with the prover.)

We let (P, V)(x) denote the random variable that represents V'’s view of the interaction
with P on common input x. The view contains the verifier’s random tape as well as the
sequence of messages exchanged between the parties.

We begin by briefly recalling the definitions of perfect and statistical zero-knowledge. A
protocol (P, V') is perfect zero-knowledge (resp., statistical zero-knowledge) over a language L
if there is a probabilistic polynomial time simulator M such that for every x € L the random
variable M () is distributed identically to (P, V')(x) (resp., the statistical difference between
M (z) and (P, V)(x) is a negligible function in |z]).

Next, we present the definitions of perfect (resp., statistical) knowledge-complexity which
we use in the sequel. These definitions extend the definition of perfect (resp., statistical) zero-
knowledge, in the sense that knowledge-complexity zero is exactly zero-knowledge. Actually,
there are two alternative formulations of knowledge-complexity, called the oracle version and
the fraction version. These formulations coincide at the zero level and differ by at most an
additive constant otherwise [GP-91]. For further intuition and motivation see [GP-91]. It
will be convenient to use both definitions in this paper®.

By the oracle formulation, the knowledge-complexity of a protocol (P, V') is the number
of oracle (bit) queries that are needed to simulate the protocol efficiently.

Definition 2.1 (knowledge complexity — oracle version): Let k: N — N. We say that an
interactive proof (P, V') for a language L has perfect (resp., statistical) knowledge complexity
k(n) in the oracle sense if there exists a probabilistic polynomial time oracle machine M and
an oracle A such that:

1. On input x € L, machine M queries the oracle A for at most k(|x|) bits.

2. For each x € L, machine M* produces an output with probability at least %, and given

that M4 halts with an output, M*(z) is identically distributed (resp., statistically close)
to (P,V)(x).

In the fraction formulation, the simulator is not given any explicit help. Instead, one
measures the density of the largest subspace of simulator’s executions (i.e., coins) which is
identical (resp., close) to the (P, V) distribution.

Definition 2.2 (knowledge complexity — fraction version): Let p: N — (0,1]. We say that an
interactive proof (P, V') for a language L has perfect (resp., statistical) knowledge-complexity
log,(1/p(n)) in the fraction sense if there exists a probabilistic polynomial-time machine M
with the following “good subspace” property. For any x € L there is a subset of M s possible
random tapes S, such that:

3The analysis of the [BP-92] procedure is easier when using the fraction version, whereas the transforma-
tion from statistical to perfect i1s easier when using the oracle version.

1. The set S, contains at least a p(|x]) fraction of the set of all possible coin tosses of M(x).

2. Conditioned on the event that M(x)’s coins fall in S,, the random variable M(x) is
identically distributed (resp., statistically close) to (P,V)(x). Namely, for the perfect
case this means that for every ¢

Prob(M(z,w)=c|wé€S,) = Prob((P,V)(x)=c¢)

where M (x,w) denotes the output of the simulator M on input x and coin tosses sequence
w.

As mentioned above, these two measures are almost equal.

Theorem [GP-91]: The fraction measure and the oracle measure are equal up to an additive
constant.

Since none of our results is sensitive to a difference of an additive constant in the measure, we
ignore this difference in the subsequent definition as well as in the statement of our results.

Definition 2.3 (knowledge complexity classes):
e PKC(k(-)) = languages having interactive proofs of perfect knowledge complexity k(-).
e SKC(k(+)) = languages having interactive proofs of statistical knowledge complexity k(-).

2.3 The simulation based prover

An important ingredient in our proof is the notion of a simulation based prover, introduced
by Fortnow [F-89]. Consider a simulator M that outputs conversations of an interaction
between a prover P and a verifier V. We define a new prover P*, called the simulation based
prover, which selects its messages according to the conditional probabilities induced by the
simulation. Namely, on a partial history h of a conversation, P* outputs a message a with
probability

Prob(P*(h)=a) & Prob(My =hoa | My =h)

where M; denotes the distribution induced by M on t-long prefixes of conversations. (Here,
the length of a prefix means the number of messages in it.)

It is important to note that the behavior of P* is not necessarily close to the behavior
of the original prover P. Specifically, if the knowledge complexity is greater than 0 and
we consider the simulator guaranteed by the fraction definition, then P* and P might have
quite a different behavior. Our main objective will be to show that even in this case P* still
behaves in a manner from which we can benefit.

3 The Perfect Case

In this section we prove that the Main Theorem holds for the special case of perfect knowledge
complexity. Combining this result with the transformation (Theorem 2) of the subsequent
section, we get the Main Theorem.

Theorem 1 PKC(O(logn)) C BPPNF

Our proof follows the procedure suggested in [BP-92], which in turn follows the approach
of [F-89, BMO-90, Ost-91] while introducing a new uniform generation procedure which
builds on ideas of [Si-83, St-83, GS-89, JVV-86] (see introduction).

Suppose that (P,V) is an interactive proof of perfect knowledge complexity k(-) =
O(logn) for the languages L, and let M be the simulator guaranteed by the fraction for-
mulation (i.e., Definition 2.2). We consider the conversations of the original verifier V' with
the simulation-based-prover P* (see definition in Section 2.3). We are going to show that
the probability that the interaction (P*, V') is accepting is negligible if ¢ L and greater
than a polynomial fraction if @ € L. Our proof differs from [BP-92] in the analysis of the
case © € L (and thus we get a stronger result although we use the same procedure). This
separation between the cases © € L and x € L can be amplified by sequential repetitions of
the protocol (P*, V). So it remains to observe that we can sample the (P*, V') interactions
in probabilistic polynomial-time having access to an NP oracle. This observation originates
from [BP-92] and is justified as follows. Clearly, V’s part of the interaction can be produced
in polynomial-time. Also, by the uniform generation procedure of [BP-92] we can implement
P* by a probabilistic polynomial time machine that has access to an NP oracle. Actually,
the implementation may fail with negligible probability, but this does not matter. Thus, it
remains only to prove the following lemma.

Lemma 3.1

1. If & € L then the probability that (P*,V') outpuls an accepting conversation is at least
L. o—k
L. 9-k
2

2. If x & L then the probability that (P*, V') outputs an accepting conversation is negligible.

Remark: In [BP-92], a weaker lemma is proven. Specifically, they show that the probability
that (P*, V) output an accepting conversation (on x € L) is related to 27%! where ¢ is the
number of rounds in the protocol. Note that in our proof ¢ could be an arbitrary polynomial
number of rounds.

proof: The second part of the lemma follows from the soundness property as before. We
thus concentrate on the first part. We fix an arbitrary @ € L for the rest of the proof and
allow ourselves not to mention it in the sequel discussion and notation. Let k = k(|z|) and

g be the number of coin tosses made by M. We denote by () & {0,1}? the set of all possible
coin tosses, and by S the “good subspace” of M (i.e., S has density 27 in © and for w chosen
uniformly in S the simulator outputs exactly the distribution of the interaction (P, V')).
Consider the conversations that are output by the simulator on w € 5. The probability
to get such a conversation when the simulator is run on w uniformly selected in €2, is at
least 27%. We claim that the probability to get these conversations in the interaction (P*, V')
is also at least 27%. This is not obvious, since the distribution produced by (P*, V) may
not be identical to the distribution produced by M on a uniformly selected w € . Nor is
it necessarily identical to the distribution produced by M on a uniformly selected w € S.

However, the prover’s moves in (P*, V) are distributed as in the case that the simulator

selects w uniformly in €2, whereas the verifier’s moves (in (P*,V)) are distributed as in the
case that the simulator selects w uniformly in S. Thus, it should not be too surprising that
the above claim can be proven.

However, we need more than the above claim: It is not enough that the (P*, V') conver-
sations have an origin in S, they must be accepting as well. (Note that this is not obvious
since M simulates an interactive proof that may have two-sided error.) Again, the density
of the accepting conversations in the “good subspace” of M is high (i.e., > 1 — ¢), yet we
need to show that this is the case also for the (P*, V) interaction. Actually, we will show
that the probability than an (P*, V') conversation is accepting and “has an origin” in S is at
least % -2k,

Let us begin the formal argument with some notations. For each possible history of the
interaction, h, we define subsets of the random tapes of the simulator (i.e., subsets of)
as follows. €2, is the set of w € @ which cause the simulator to output a conversation with
prefix h. S} is the subset of w’s in), which are also in S. A, is the set of w’s in S}, which
are also accepting.

Thus, letting M;(w) denote the t-message long prefix output by the simulator M on coins
w, we get

O = {w: Myy(w) =1}

Sy s

A, ¥ {ues,: M(w) is accepting}
Let C' be a random variable representing the (P*, V') interaction, and x be an indicator so
that y(¢) = 1 if the conversation ¢ is accepting and y(¢) = 0 otherwise. Our aim is to prove

that Prob(x(C) =1) > 1.27% Note that

Prob(x(C)=1) = ZProb(C:E) - x(€)

Az
> ZProb(Czc)-‘Q:
The above expression is exactly the expectation value of Iéci. Thus, we need to show that:
Azl U1
Exp; > =2 1
w. (157) > 5 0

where the expectation is over the possible conversations ¢ as produced by the interaction
(P*,V). Once Equation (1) is proven, we are done. Denote the empty history by A. To
prove Equation (1) it suffices to prove that

A |AC|) Ay A
Exp. . > . 2
pe(w 5.1) = 1 15 2)

. . A s -
since using ﬁ > \/g and ﬁ > 27 we get

|Ac|) |Ax] AL
Fxp. > 2.2
pC(w =l 5

>

The proof of Equation (2) is by induction on the number of rounds. Namely, for each round

2, we show that the expected value of % . % over all possible histories h of ¢ rounds (i.e.,

length ¢) is greater or equal to the expected value of this expression over all histories A’ of
2 — 1 rounds. In order to show the induction step we consider two cases:
1. the current step is by the prover (i.e., P*); and

2. the current step is by the verifier (i.e., V).

In both cases we show, for any history A,
Anom| |Anom Anl A
Expm(| hom| | An |)Z| o [AR] (3)
Qhom| [Shom| /) — 1] [54]

where the expectation is over the possible current moves m, given history h, as produced by
the interaction (P*, V).

Technical Claim

The following technical claim is used for deriving the inequalities in both cases.

Claim 3.2 Let x;, y;, 1 <1 <n be positive reals. Then,

Zn: $i2 Z (Z?il (Ei)2
i—1 Yi 22:1 Yi

Proof: The Cauchy-Schwartz Inequality asserts:

Setting a; & Vi (we can do this since y; is positive) and b; & = and rearranging the terms,
we get the desired inequality. O

Prover Step — denoted «

Given history h, the prover P* sends « as its next message with probability [@hoal Thus,

|S2h|
11 o 11 o &2 o 11 o 11 oo

|Qhooz| |Shoa| o |Qh| |Qhooz| |Shoa|
. 1 |Ahoa|
0 2 Syl
[An] [An]
Q%] [k

The inequality is justified by using the Technical Claim and noting that 3", |Anea| = |As]
and 3, |Shoa| = |9h]-

10

Verifier Step — denoted /3

By the perfectness of the simulation, when restricted to the good subspace S, we know that

given history h, the verifier V sends § as its next message with probability ||g°’|3| Thus,

Apop| | Ano Shosl [Anosl [Ano
EXM(MJ hﬁ|)zz|hﬁ| [Aos| [Anosl

[Dnos| |Shos] 1Sh] 1ol |Shosl
1 | Apos|?
EA Z Qo]
@.@
= ISk

The inequality is justified by using the Technical Claim and noting that Y 5|An.s| = |Ax|
and Zﬁ |Qhoﬁ| = |Qh|

Having proven Equation (3) for both cases, Equation (2) follows and so does the lemma. O

4 The Transformation

In this section we show how to transform statistical knowledge complexity into perfect knowl-
edge complexity, incurring only a logarithmic additive term. This transformation combined
with Theorem 1 yields the Main Theorem.

Theorem 2 For every (poly-time computable) k : N +— N,
SKC(k(-)) € PKC (k(-) + O(log(-)))

We stress again that these knowledge complexity classes refer to the honest verifier and that
we don’t know whether such a result holds for the analogous knowledge complexity classes
referring to arbitrary (poly-time) verifiers.

proof: Here we use the oracle formulation of knowledge complexity (see Definition 2.1). We
start with an overview of the proof. Suppose we are given a simulator M which produces
output that is statistically close to the real prover-verifier interaction. We change both the
interactive proof and its simulation so that they produce exactly the same distribution space.
We will take advantage of the fact that the prover in the interactive proof and the oracle that
“assists” the simulator are both infinitely powerful. Thus, the modification to the prover’s
program and the augmentation to the oracle need not be efficiently computable. We stress
that the modification to the simulator itself will be efficiently computable. Also, we maintain
the original verifier (of the interactive proof), and thus the resulting interactive proof is still
sound. Furthermore, the resulting interaction will be statistically close to the original one
(on any @ € L) and therefore the completeness property of the original interactive proof is
maintained (although the error probability here may increase by a negligible amount).

11

Preliminaries

Let L € SKC(k(-)), and (P, V) be the guaranteed interactive proof. Without loss of gener-
ality, we may assume that all messages are of length 1. This message-length convention is
merely a matter of encoding.

Recall that Definition 2.1 only guarantees that the simulator produces output with prob-
ability > % Yet, employing Proposition 3.8 in [GP-91], we get that there exists an oracle
machine M, that after asking k(n) + 2loglogn queries, always produces an output so that
the output is statistically close to the interaction of (P, V). Let A denote the associated or-

acle, and let M’ L M4 and P’ and V' be the simulation-based prover and verifier? induced
by M’ (i.e., (P, V') = M").
In the rest of the presentation, we fix a generic input x € L. and omit it from the notation.
notations: Let [A, B]; be a random variable representing the ¢-message (¢-bit) long prefix of
the interaction between A and B (the common input « is implicit in the notation). We denote
by A(h) the random variable representing the message sent by A after interaction-history
h. Thus, if the i'" message is sent by A, we can write [A, B];_; o A([A, B];_1) = [A, B;. By
X £ Y we denote the fact that the random variables X and Y are statistically close.
Using these notations we may write for every h € {0,1}* and o € {0,1}:
Prob(P'(h) = o) = Prob ([M'];41 = hoa|[M']; = h)
and similarly,
Prob(V'(h) = o) = Prob ([M')iz1 = hoo|[M']; =h).

Claim 4.1 The distribution induced by (P', V) is statistically close to the distributions in-
duced by both M' = (P, V') and (P,V).
proof: By definition, the distributions produced by M’ = (P, V') and (P, V) are statistically
close. Thus, we have

[P, V]; = [P',V'];, for every i (4)
We prove that [P, V] is statistically close to [P’,V’] by induction on the length of the
interaction. Assuming that [P’,V]; = [P’,V'];, we wish to prove it for i + 1. We distinguish
two cases. In case the 7 + 15 move is by the prover, we get

[Plv V]i-l-l [Plv V]Z © Pl([Plv V]Z)

[Plv V/]Z © Pl([Plv V/]Z)
[P,V i
(use the induction hypothesis for =). In case the 7 + 13 move is by the verifier, we get

[P V]t [P, V]io V([P V])
[PV o V(TP Vi)
[,] V([P V)
[P V]Z-I-l
[P

]Z-l—l

[l= I

[le A= I

[l I

*A simulator-based verifier is defined analogously to the simulator-based prover. It is a fictitious entity
which does not necessarily coincide with V.

12

where the first = is justified by the induction hypothesis and the two others by Eq. (4).
We stress that since the induction hypothesis is used only once in the induction step, the
statistical distance is linear in the number of induction steps (rather than exponential). O

Motivating discussion: Note that the statistical difference between the interaction (P, V') and
the simulation M’' = (P’, V') is due solely to the difference between the proper verifier (i.e.,
V) and the verifier induced by the simulator (i.e., V’). This difference is due to V' putting
too much probability weight on certain moves and thus also too little weight on their sibling
messages (recall that a message in the interaction contains one bit). In what follows we deal
with two cases.

The first case is when this difference between the behavior of V' (induced by M’) and
the behavior of the verifier V' is “more than tiny”. This case receives most of our attention.
We are going to use the oracle in order to move weight from a verifier message 3 that gets
too much weight (after a history h) to its sibling message 5 & 1 that gets too little weight
(after the history h) in the simulation. Specifically, when the new simulator M" invokes M’
and comes up with a conversation that has h o 3 as a prefix, the simulator M” (with the
help of the oracle) will output (a different) conversation with the prefix h o (3 & 1) instead
of outputting the original conversation. The simulator M"” will do this with probability that
exactly compensates for the difference between V' and V. This leaves one problem. How
does the new simulator M” come up with a conversation that has a prefix ho (3@ 1)? The
cost of letting the oracle supply the rest of the conversation (after the known prefix ho(S&1))
is too high. We adopt a “brutal” solution in which we truncate all conversations that have
ho(B&1)as aprefix. The truncation takes place both in the interaction (P”, V'), where
P" stops the conversation after 3 & 1 (with a special STOP message) and in the simulation
where the oracle recognizes cases in which the simulator M” should output a truncated
conversation. These changes make M” and V behave exactly the same on messages for
which the difference between V' and V is more than tiny. Naturally, V' immediately rejects
when P” stops the interaction abruptly, so we have to make sure that this change does not
foil the ability of P” to convince V on an input x € L. It turns out that these truncations
happen with negligible probability since such truncation is needed only when the difference
between V and V' is more than tiny. Thus, P"” convinces V on z € L almost with the same
probability as P’ does.

The second possible case is that the difference between the behavior of V' and V' is tiny.
In this case, looking at a full conversation ¢, we get that the tiny differences sum up to a
small difference between the probability of ¢ in the distributions of M’ and in the distribution
of (P',V). We correct these differences by lowering the probabilities of all conversations in
the new simulator. The probability of each conversation is lowered so that its relative weight
(relatively to all other conversations) is equal to its relative weight in the interaction (P”, V).
Technically, this is done by M” not producing an output in certain cases that M’ did produce
an output.

Technical remark: The oracle can be used to allow the simulator to toss bias coins when the
simulator does not “know” the bias. Suppose that the simulator needs to toss a coin so that
it comes-up head with probability zlm, where N < 2™ and both N and m are integers. The
simulator supplies the oracle with a uniformly chosen r € {0,1}™ and the oracle answers
head if r is among the first N strings in {0,1}™ and tail otherwise. A similar procedure

13

is applicable for implementing a lottery with more than two a-priori known values. Using
this procedure, we can get extremely good approximations of probability spaces at a cost
related to an a-priori known upper bound on the size of the support (i.e., the oracle answer
is logarithmic in the size of the support).

def 1

Definition: Let ¢ = 0] where ¢ is the number of rounds in the interaction (P, V).

e Let h be a partial history of the interaction and be a possible next move by the verifier.
We say that J is weak with respect to h if

Prob(V/(h)=/) < (1 — ¢) - Prob(V(h)=p3)

e A conversation ¢ = (¢, ..., ¢;) is t-weak if ¢; is weak with respect to (eq, ..., ¢;—1), otherwise
it is 2-good. (Note that a conversation can be i-weak only if the " move is a verifier
move.)

e A conversation ¢ = (e¢q,...,¢;) is i-critical if it is ¢-weak but j-good for every j < 1.
A conversation ¢ = (ci1,...,¢) is i-co-critical if the conversation obtained from ¢, by

complementing (only) the 7*® bit, is s-critical. (Note that a conversation can be i-critical
only for a single ¢, yet it may be i-co-critical for many ¢’s.)

e A conversation is weak if it is ¢-weak for some 2, otherwise it is good.
Claim 4.2 (P',V) outputs weak conversations with negligible probability.

proof: Recall that [P, V] = [P’, V'] and that the same holds also for prefixes of the conver-
sations. Namely, for any 1 < i < ¢, [P',V]; = [P',V'];. Let us define a prefix h € {0,1}" of
a conversation to be bad if either

Prob([P/, V'], = h) < (1 - g) Prob([P', V];=h)
or .

Prob([P', V') =h) > (1 + 5) Prob([P, V];=h)
The claim follows by combining two facts.

Fact 4.3 The probability that (P',V) outputs a conversation with a bad prefiz is negligible.

proof: Define B; to be the set of bad prefixes of length :. By the statistical closeness of
[P, V]; and [P, V'];, we get that

AE Y [Prob([P, V]i=h) = Prob([P',V'];=h)| < 4
hEB;

for some negligible fraction 7. On the other hand, A can be bounded from bellow by

/ B Prob([P',V'];=h)
Z Prob([P',V]i=h) - ‘1 - Prob([P',V];=h) ‘

heB;

which by definition of B; is at least

Prob([F, V];€ B:) - ‘i%‘

Thus, Prob([P',V];€B;) < 2% and the fact follows. O

14

Fact 4.4 If a conversation ¢ = (¢, ...,¢;) is weak then it contains a bad prefic.

proof: Suppose that & cir1 1s weak with respect h & (¢1,...,¢;). If his a bad prefix then
we are done. Otherwise it holds that

Prob([P, V)= h) < (1 + %) Prob([P', V];=h)
Using the fact that 3 is weak with respect to h, we get
Prob([P/,V/]ip1=h o 8) < (1 + %) (1= ¢) - Prob([P, V]is1 =h o)
< (1 - %) - Prob([P', V]ip1=h o B)
which implies that h o 3 is a bad prefix of ¢ O

Combining Facts 4.3 and 4.4, Claim 4.2 follows. O

Claim 4.5 Suppose that ¢ = (¢q, ..., ¢) is a good conversation. Then, the probability that ¢ is
output by M is at least (1—¢)I"/21.Prob([P',V]=¢). Furthermore, forl <k, ifé = (¢, ..., ¢)
is 1-good for every ¢ € {I+1,....k}, then

Prob ([Mly=~|[Mi=h) > (1= I Prob ([P, V] =7|[P,V]=h)
where ’ydéf(cl, ey Cp) and hd:ef(cl, ey €1)

proof: To see that this is the case, we write the probabilities step by step conditioned on
the history so far. We note that the prover’s steps happen with equal probabilities in both
sides of the inequality, and therefore can be reduced. Since the relevant verifier’s steps are
not weak, we get the mentioned inequality. The actual proof proceeds by induction on &k — .
Clearly, if & — [= 0 the claim holds. We note that if £ — = 1 the claim also holds since
step k in the conversation is either a prover step or a k-good verifier step.

To show the induction step we use the induction hypothesis for & — [— 2. Namely,

Prob ([M'|g—2 = (c1, ...y ch2) | [M']i = (c1,. .., 1)) (5)
> (1 - 6)[%]_1 -Prob ([P, V]s—e = (c1,. .., cr—2) | [P, V]i = (c1, ..., 1))

Steps £ — 1 and k include one prover message and one verifier message. Assume, without
loss of generality, that the prover step is & — 1. Since P’ is the simulator based prover, we
get

Prob ([M's—1 = (c1y ooy cht) | [M =2 = (c1y - -+, i) (6)
= Prob ([P, V]i—1 = (c1, ..y pm1) | [P, V]k—2 = (€1, -+ ., Cho2))

Since step k of the verifier is good, we also have:

Prob ([M']y = (c1, ...) | [M']k—1 = (c1y ..., cpo1)) (7)
> (1 —¢€)-Prob ([P, V] = (c1,..yei | [P/ V]e—1 = (1, oy cht))

Combining Equations 5, 6, and 7, the induction step follows and we are done. O

15

Dealing with weak conversations

We start by modifying the prover P’; resulting in a modified prover, denoted P”, that stops
once it gets a verifier message which is weak with respect to the current history; otherwise,
P" behaves as P'. Namely,

Definition (modified prover - P”): For any h € {0,1}* and € {0,1},

" |} sTop if § is weak with respect to h.
Pi(ho)= { P'(hop) Otherwise

We assume that the verifier V stops and rejects immediately upon receiving an illegal message
from the prover (and in particular upon receiving this STOP message).

Next, we modify the simulator so that it outputs either good conversations or truncated
conversations which are originally z-critical. Jumping ahead, we stress that such truncated
t-critical conversations will be generated from both i-critical and 2-co-critical conversations.
The modified simulator, denoted M”, proceeds as follows®. First, it invokes M’ and obtains
a conversation ¢ = (¢q, ..., ¢;). Next, it queries the augmented oracle on ¢. The oracle answers
probabilistically and its answers are of the form (7,0), where ¢ € {1,...,t} and o € {0,1}.
The probability distribution will be specified below, at this point we only wish to remark
that the oracle only returns pairs (¢, o) for which one of the following three conditions holds

1. ¢is good, i =t and o = 0 (if ¢ is good and is not ¢-co-critical for any i’s then the oracle
always answers this way);

2. ¢ is t-critical and o = 0;
3. ¢ is 2-co-critical and o = 1.

Finally, the new simulator (M") halts outputting (e1, ..., ¢i—1,¢; & o), which in case o =1 is
not a prefix of ¢. Note that ¢ may be smaller than ¢, in which case M"” outputs a truncated
conversation which is always ¢-critical; otherwise, M" outputs a non-truncated conversation.
Note that this oracle message contains at most 1 + logt bits where ¢ is the length of the
interaction between P’ and V. It remains to specify the oracle’s answer distribution.

Let us start by considering two special cases. In the first case, the conversation generated
by M’ is ¢-critical, for some ¢, but is not j-co-critical for any 5 < 7. In this case the oracle
always answers (7,0) and consequently the simulator always outputs the ¢-bit long prefix.
However, this prefix is still being output with too low probability. This will be corrected by
the second case hereby described. In this (“second”) case, the conversation ¢ generated by M’
is good and z-co-critical for a single ¢. This means that the ¢-bit long prefix is given too much
probability weight whereas the prefix obtained by complimenting the ¢*! bit gets too little
weight. To correct this, the oracle outputs (¢, 1) with probability ¢ and (¢, 0) otherwise, where
g will be specified. What happens is that the M” will output the “i-complimented prefix”
with higher probability than with which it has appeared in M’. The value of ¢ is determined
as follows. Denote p def Prob(V(ct,...,cic1)=¢; & 1) and p/ def Prob(V'(e1,...,cic1)=c¢ B 1).
Then, setting ¢ so that p’ + (1 —p')-¢=p (e, q¢= p_p/) allows the simulator to output
the prefix (eq, ..., ¢i—1,¢; B 1) with the right probability.

1-p/

®We stress that P is not necessarily the simulator-based prover of M".

16

In the general case, the conversation generated by M’ may be i-co-critical for many
i’s as well as j-critical for some (single) j. In case it is j-critical, it can be ¢-co-critical
only for ¢ < j. Let us consider the sequence of indices, (iy,...,4;), for which the generated
conversation is critical or co-critical (i.e., the conversation is ix-co-critical for all k& < [and
is either i;-critical or ¢;-co-critical). We consider two cases. In both cases the ¢;’s are set as

in the above example; namely, ¢, = Plk_—p227 where py af Prob(V(ci,...,¢im1) =¢i, B 1) and
def
pl. = Prob(V'(e1,...,cip—1)=c¢i, & 1).
1. The generated conversation, ¢ = (cq,...,¢), is ix-co-critical for every k& < [and is -

critical. In this case, the distribution of the oracle answers is as follows. For every
k < I, the pair (i, 1) is returned with probability ([T;.,(1 — ¢;)) - gx; whereas the pair
(21,0) appears with probability [T,.,(1 —¢;). We stress that no other pair appears in this
distribution.®

2. The generated conversation, ¢ = (1, ..., ¢;), is ig-co-critical for every k& < [. In this case,
the distribution of the oracle answers is as follows. For every k < [, the pair (i, 1)
is returned with probability ([T;.x(1 — ¢;)) - qx; whereas the pair (¢,0) appears with
probability T];;(1 — ¢;). Again, no other pair appears in this distribution.

Claim 4.6
1. [P V] = [P,V];
2. Each conversation of (P", V'), be it a complete (P',V')-conversation or a truncated (i.e.,
critical) one, is output by M" with probability that is at least a (1 — ¢)" > % fraction of
the probability that it appears in [P",V].

proof: The weak conversations are negligible in the output distribution of (P, V) (see
Claim 4.2). The only difference between [P”, V] and [P’, V] originates from a different be-
havior of P” on weak conversations, specifically P” truncates them while P’ does not. Yet,
the distribution on the good conversations remains unchanged. Therefore the distribution
of [P", V] is statistically close to the distribution of [P’, V], and we are done with Part (1).

For Part (2) let us start with an intuitive discussion which may help reading through the
formal proof that follows. First, we recall that the behavior of the simulation M’ in prover
steps is identical to the behavior of the interaction (P’, V') in prover’s steps. This follows
simply from the fact that P’ is the simulation based prover of M’. We will show that this
property still holds for the new interaction (P”, V) and the new simulation M”. We will do
this by noting two different cases. In one case, the prover step is conducted by P” exactly
as it is done by P’ and then M" behaves exactly as M’'. The second possible case is that the
prover step contains the special message STOP. We shall note that this occurs with exactly
the same probability in the distribution (P”, V') and in the distribution of M".

Next, we consider the verifier steps. In the construction of M” and P"” we considered the
behavior of M" and V' on verifier steps and made changes when these differences were not
“tiny”. We called a message [weak with respect to a history A, if the simulator assigns the
message [(after outputting) a probability which is smaller by a factor of more than (1 —¢)
from the probability that the verifier V outputs the message 3 on history h. We did not

5Indeed the reader can easily verify that these probabilities sum up to 1.

17

make changes in messages whose difference in weight (between the simulation M’ and the
interaction (P, V)) were smaller than that. In the proof, we consider two cases. First, the
message 3 is weak with respect to the history h. Clearly, the sibling message 7 &1 is getting
too much weight in the simulation M’. So in the definition of M"” we made adjustments to
move weight from the prefix ho (8 @ 1) to the prefix ho 3. We will show that this transfer
of weight exactly cancels the difference between the behavior of V' and the behavior of M".
Namely, the weak messages (and their siblings) are assigned exactly the same probability
both in M” and by V. Thus, we show that when a weak step is involved, the behavior of
(P",V) and the behavior of M" are exactly equivalent. It remains to deal with messages for
which the difference between the conditional behavior of V and M’ is “tiny” and was not
considered so far. In this case, M" behaves like M’. However, since the difference is so tiny,
we get that even if we accumulate the differences throughout the conversation, they sum up
to at most the multiplicative factor 3/4 stated in the claim.

Let us begin the formal proof by writing again the probability that (P”, V') outputs ¢ as
the product of the conditional probabilities of the ¢ steps. Namely,

t
[1 Prob ([P, V]ig1=hi o cipa | [P, V]i=h:)

=1

where h; & (¢1,...,¢;). We do the same for the probability that M” outputs a conversation
¢. We will show by induction that each step of any conversation is produced by M” with at
least (1 — ¢€) times the probability of the same step in the (P”, V)-interaction. Once we have
shown this, we are done. Clearly this claim holds for the null prefix. To prove the induction
step, we consider the two possibilities for the party making the 7 + 1% step.

i + 15¢ step is by the prover: Consider the conditional behavior of M" given the history so
far. We will show that this behavior is identical to the behavior of P” on the same partial
history.

A delicate point to note here is that we may talk about the behavior of M” on a prefix
h; only if this prefix appears with positive probability in the output distribution [M"];.
However, by the induction hypothesis any prefix that is output by [P”,V]; appears with
positive probability in [M"];.

We partition the analysis into two cases.

1. First, we consider the case in which the last message of the verifier is weak with respect
to the history that precedes it. Namely, h = A’ o § and 3 is weak with respect to A'. In

this case, both in the interaction (P”, V) and in the simulation M”, the next message of
the prover is set to STOP with probability 1. Namely,

Prob (M" = hoSTOP |[M"];=h) = 1
= Prob (P"(h) = STOP)

2. The other possible case is that the last message of the verifier is not weak with respect
to its preceding history. In this case, the simulator M"” behaves like M’ and the prover
P" behaves like P’. (Note that the changes in critical and co-critical steps apply only to

18

verifier steps.) Thus,
Prob ([M";z1 = hoa|[M");=h) = Prob([M'y1=hoal|[M];=")
= Prob (P'(h) = a)
= Prob (P"(h) = «)

To summarize, the conditional behavior of M” in the prover steps and the conditional
behavior of P” are exactly equal.

i + 15¢ step is by the verifier: Again, we consider the conditional behavior of M” given the
history so far. Let us recall the second modification applied to M’ when deriving M"”. This
modification changes the conditional probability of the verifier steps in the distribution of M’
in order to add weight to steps having low probability in the simulation. We note that this
modification is made only in critical or co-critical steps of the verifier. Consider a history h;
which might appear in the interaction (P”, V) and a possible response 3 of V to h,;. Again,
by the induction hypothesis, h; has a positive probability to be output by the simulation
M" and therefore we may consider the conditional behavior of M" on this history k;. There
are three cases to be considered, corresponding to whether either 5 or 74 1 or none is weak
with respect to h;.

We start with the simplest case in which neither 8 nor 5@ 1 is weak (w.r.t. ;). In this
case, the behavior of M” is identical to the behavior of M’ since the oracle never sends the
message (¢ + 1,0) in this case. However, by the fact that § is not weak, we get that

(1 —¢€)-Prob(V(h) =) < Prob([M'];z1=hop|[M'];,=h)
— Prob (M) = ho | [M"]; = h)
and we are done with this simple case.
We now turn to the case in which 3 is weak (w.r.t. h;). In this case, given that M" has
produced the prefix h;, it produces ;03 whenever M’ produces the prefix h;03. Furthermore,

with conditional probability ¢ (as defined above), M" produces the prefix h; o 3 also in case
M’ produces the prefix h; o (& 1). As above, we define

def

= Prob(V(h;) =)
P Prob (V'(h;) =)
Since V' is the simulation (M’) based verifier, we may also write
p' = Prob ([M']iy1 = hio B |[M'); = hy) (8)

p— ! . .
=L Now, using these notations:

Also, recall that ¢ was defined as -
Prob ([M”]i-l—l = hZ o] ﬂ |[M”]Z = hz) = Prob ([M/]i-l—l = hZ o] ﬂ |[M/]Z = hz)

o
+ }1? _i/ - Prob ([M']iz1=hio (8@ 1) |[M");=h;)
Using Equation (8), we get

Finally, we turn to the case in which & 1 is weak (w.r.t. h;). Again, this means that 3 is
co-critical in ¢. Given that M"” has produced the prefix h;, it produces h; o 5 only when M’
produces the prefix h; o 3, and furthermore, M" does so only with probability 1 — ¢ (where
q is again as defined above). We denote p and p’, with respect to the critical message 3 & 1.
Namely,

p = Prob(V(h)=pF1)
P Prob (V/(hi)=4®1)
= Prob([M'liz1i=hio(BD1)|[M]; = hi)

p=p'

Thus, recalling that ¢ = =, we get
o
Prob ([M"]isa=hio BIIM"i=hi) = (L= =)~ Prob([Msa=hi o 3[[M:=h))
-p
L—p
— (1=
T (1—=p)

This completes the proof of Claim 4.6. O

Lowering the probability of some simulator outputs

After handling the differences between M’ and (P, V') which are not tiny, we make the last
modification, in which we deal with tiny differences. We do that by lowering the probability
that the simulator outputs a conversation, in case it outputs this conversation more frequently
than it appears in (P”,V). The modified simulator, denoted M"’, runs M" to obtain a
conversation ¢. (Note that M” always produces output.) Using the further-augmented
oracle, M"" outputs ¢ with probability

def 3 Prob([P", V]=¢)
Pe = I Prob([M"]=¢)

Note that p: < 1 holds due to Part 2 of Claim 4.6.

Claim 4.7

1. M produces output with probabilily %;
2. The output distribution of M'" (i.e., in case it has output) is identical to the distribution
14 s 14
[P, V].

proof: The probability that M" produces an output is exactly:

ZProb ([M"]=¢) - p: = Z

20

As for part (2), we note that the probability that a conversation ¢ is output by M" is exactly
2. Prob ([P",V]=¢). Since the simulator halts with an output with probability exactly 2,
we get that given that M’ halts with an output, it outputs ¢ with probability exactly
Prob ([P",V]=¢)) and we are done. O

An important point not explicitly addressed so far is whether all the modifications applied to
the simulator preserve its ability to be implemented by a probabilistic polynomial-time with
bounded access to an oracle. Clearly, this is the case with respect to M"” (at the expense of
additional 1 + log,t = O(logn) oracle queries). Yet, regarding the last modification there
is a subtle points which needs to be addressed. Specifically, we need to verify that the
definition of M"" is implementable; namely, that M"" can (with help of an augmented oracle)
“sieve” conversations with exactly the desired probability. Note that the method presented
above (in the “technical remark”) may yield exponentially small deviation from the desired
probability. This will get very close to a perfect simulation, but yet will not achieve it.

To this end, we modify the “sieving process” suggested in the technical remark to deal
with the specific case we have here. But first we modify P” so that it makes its random
choices (in case it has any) by flipping a polynomial number of unbiased coins.” This rounding
does change a bit the behavior of P”, but the deviation can be made so small that the above
assertions (specifically Claim 4.6) still hold.

Consider the specific sieving probability we need here. Namely: p; = % . ZT/S, where
¢ = Prob([P",V]=¢) and § = Prob([M"]=¢). A key observation is that ¢ is the number
of coin tosses which lead M” to output ¢ (i.e., using the notation of the previous section,
¢ = |Q:]). Observing that b is the size of probability space for [P”, V] and using the above
modification to P”, we rewrite p; as % . % = =57, where e and f = poly(n) are some
non-negative integers.

We now note, that the oracle can allow the simulator to sieve conversations with prob-
ability < (f = 0), for any 0 < e < ¢ in the following way. M" sends to the oracle the
random tape w that it has tossed for M”, and the oracle sieves only e out of the possible ¢
random tapes which lead M" to output ¢. The general case of p: = 77 is deal by writing
pe = L4+ 25, where ¢ = le/2/] and r = ¢ — ¢2/ < 2. To implement this sieve, M" supplies
the oracle with a uniformly chosen f-bit long string (in addition to w). The oracle sieves out
q random-tapes (of M") as before, and uses the extra bits in order to decide on the sieve in

case w equals a specific (different) random-tape.

Combining Claims 4.1, 4.6 (part 1), and 4.7, we conclude that (P”, V) is an interactive proof
system of perfect knowledge complexity k(n) + O(logn) for L. This completes the proof of
Theorem 2.

"The implementation of P” was not discussed explicitly. It is possible that P" uses an infinite number
of coin tosses to select its next message (either 0 or 1). However, an infinite number of coin tosses is not
really needed since rounding the probabilities so that a polynomial number of coins suffices, causes only
exponentially small rounding errors.

21

5 Concluding Remarks

We consider our main result as a very first step towards a classification of languages according
to the knowledge complexity of their interactive proof systems. Indeed there is much to be
known. Below we first mention two questions which do not seem too ambitious. The first
is to try to provide evidence that NP-complete languages cannot be proven within low
(say logarithmic or even constant) knowledge complexity. A possible avenue for proving this
conjecture is to show that languages having logarithmic knowledge complexity are in co-AM,
rather than in BPPN7 (recall that NP is unlikely to be in co-AM - see also [BHZ-87]). The
second suggestion is to try to provide indications that there are languages in PSP ACE which
do not have interactive proofs of linear (rather than logarithmic) knowledge complexity. The
reader can easily envision more moderate and more ambitious challenges in this direction.

Another interesting question is whether all levels greater then zero of the knowledge-
complexity hierarchy contain strictly more languages than previous levels, or if some partial
collapse occurs. For example, it is open whether constant or even logarithmic knowledge
complexity classes do not collapse to the zero level.

Regarding our transformation of statistical knowledge complexity into perfect knowledge
complexity (i.e., Theorem 2), a few interesting questions arise. Firstly, can the cost of the
transformation be reduced to bellow O(logn) bits of knowledge? A result for the special
case of statistical zero-knowledge will be almost as interesting. Secondly, can one present an
analogous transformation that preserves one-sided error probability of the interactive proof?
(Note that our transformation introduces a negligible error probability into the completeness
condition.) Finally, can one present an analogous transformation that applies to knowledge
complexity with respect to arbitrary verifiers? (Our transformation applies only to knowledge
complexity with respect to the honest verifier.)

6 Acknowledgement

We thank Leonard Shulman for providing us with a simpler proof of Claim 3.2.

References

[AH-87] W. AIELLO AND J. HASTAD. Perfect Zero-Knowledge can be Recognized in Two
Rounds. Proceedings of the 28th Annual IEEE Symposium on the Foundations
of Computer Science, IEEE (1987).

[BMO-90] M. BELLARE, S. MicALl AND R. OSTROVSKY. The (True) Complexity of
Statistical Zero-Knowledge. Proceedings of the 22nd Annual ACM Symposium
on the Theory of Computing, ACM (1990).

[BP-92] M. BELLARE AND E. PETRANK. Making Zero-Knowledge Provers Efficient.
Proceedings of the 24rd Annual ACM Symposium on the Theory of Computing,
ACM (1992)

22

[B+ 88]

[BHZ-87]

[F-89]

[GMS-87]

[GMW-86]

[GMW-87]

[GP-91]

[GMR-85]

[GMR-89]

[GS-89]

[11-94]

[1Lu-90]

[ILe-90]

[1Y-87]

M. BEN-OR, S. GOLDWASSER, O. GOLDREICH, J. HASTAD, J. KILIAN, S.
MicALl AND P. ROGAWAY. Everything Provable is Provable in Zero-Knowledge.
Advances in Cryptology — Proceedings of CRYPTO 88, Lecture Notes in Com-
puter Science 403, Springer-Verlag (1989). S. Goldwasser, ed.

R. BorPPANA, J. HASTAD AND S. ZACHOS. Does co- N P Have Short Interactive
Proofs”. Information Processing Letters, Vol 25 (1987), No. 2, pp 127-132.

L. FortNOW. The Complexity of Perfect Zero-Knowledge. Advances in Com-
puting Research (ed. S. Micali) Vol. 18 (1989).

O. GOLDREICH, Y. MANSOUR AND M. SIPSER. Interactive Proof Systems:

Provers that never Fail and Random Selection. Proceedings of the 28th Annual
IEEE Symposium on the Foundations of Computer Science, IEEE (1987).

O. GOLDREICH, S. MICALI, AND A. WIGDERSON, “Proofs that Yield Nothing
But their Validity and a Methodology of Cryptographic Protocol Design”, Proc.

27th FOCS 86, See also Jour. of ACM. Vol 38, No 1, July 1991, pp. 691-729.

O. GOLDREICH, S. MicALl, AND A. WIGDERSON, “How to Play any Mental
Game or a Completeness Theorems for Protocols of Honest Majority”, STOCST.

O. GOLDREICH AND E. PETRANK. Quantifying Knowledge Complexity. Pro-
ceedings of the 32nd Annual IEEE Symposium on the Foundations of Computer
Science, IEEE (1991).

S. GOLDWASSER, S. MicALI, AND C. RACKOFF. The Knowledge Complexity
of Interactive Proofs. Proceedings of the 17th Annual ACM Symposium on the
Theory of Computing, ACM (1985).

S. GOLDWASSER, S. MicALI, AND C. RACKOFF. The Knowledge Complexity
of Interactive Proofs. STAM J. Comput. 18 (1), 186-208 (February 1989).

S. GOLDWASSER, AND M. SIPSER, Private Coins vs. Public Coins in Interactive
Proof Systems, Advances in Computing Research (ed. S. Micali), 1989, Vol. 5,
pp- 73-90.

J. HASTAD. Perfect Zero-Knowledge in AM N co-AM. Unpublished 2-page
manuscript explaining the underlying ideas behind [AH-87]. 1994.

R. IMPAGLIAZZO AND M. LUBY, One-Way Functions are Essential for Com-
plexity Based Cryptography, 30th FOCS, pp. 230-235, 1990.

R. ImpPAGLIAZZO AND L.A. LEVIN, No Better Ways to Generate Hard NP
Instances than Picking Uniformly at Random, $1st FOCS, pp. 812-821, 1990.

R. IMPAGLIAZZO AND M. YUNG. Direct Minimum-Knowledge computations.
Advances in Cryptology — Proceedings of CRYPTO 87, Lecture Notes in Com-
puter Science 293, Springer-Verlag (1987).

23

[TVV-86]

[LFKN-90]

[Ost-91]

[OW-93]

[OVY-91]

[Sh-90]

[Si-83]

[St-83]

M. JERRUM, L. VALIANT AND V. VAZIRANI. Random Generation of Combi-
natorial Structures from a Uniform Distribution. Theoretical Computer Science

43, 169-188 (1936).

C. Lunp, L. ForTtNnOW, H. KARLOFF AND N. NISAN. Algebraic Methods for

Interactive Proof Systems. Proceedings of the 31st Annual IEEE Symposium on
the Foundations of Computer Science, IEEE (1990).

R. OSTROVSKY. One-Way Functions, Hard on Average Problems, and Statisti-

cal Zero-Knowledge Proofs. Proceedings of Structures In Complexity Theory 6th
Annual Conference IEEE (1991).

R. OSTROVSKY AND A. WIGDERSON. One-Way Functions are Essential For

Non-Trivial Zero-Knowledge, Proc. 2nd Israeli Symp. on Theory of Computing
and Systems, 1993.

R. OSTROVSKY, R. VENKATESAN AND M. YUNG. Fair Games Against an All-
Powertul Adversary. AMS DIMACS Series in Discrete Mathematics and Theo-
retical Computer Science. Vol 13. (Jin-Yi Cai ed.) pp. 155-169.

A. SuaMIR. [IP=PSPACE. Proc. 22nd ACM Symp. on Theory of Computing,
pages 11-15, 1990.

M. SipSER. A Complexity Theoretic Approach to Randomness. Proceedings of
the 15th Annual ACM Symposium on the Theory of Computing, ACM (1983).

L. STOCKMEYER. The Complexity of Approximate Counting. Proceedings of the
15th Annual ACM Symposium on the Theory of Computing, ACM (1983).

24

A APPENDIX: A Flaw in [F-89]

In [F-89], Fortnow presents a constructive method for proving that SZK e SKC(0) is
contained in co-AM. Given an interactive proof (P, V') for a languages [and a (statistical)
zero-knowledge simulator M (for the honest verifier V), he constructs a two-round protocol
(P',V"). This protocol was claimed to constitute an interactive proof system for L. This
claim, as we are going to show, is wrong. Yet, the result SZK C co-AM does hold, since
the work of Aiello and Hastad contains the necessary refinements which enable to present a
modified AM-protocol for L (see [AH-87, H-94]). Furthermore, Fortnow’s basic approach is
valid, and indeed it was used in subsequent works (e.g., [AH-87, BMO-90, Ost-91, BP-92,
OW-93]).

Fortnow’s basic approach starts with the observation that the simulator M must behave
differently on « € L and « ¢ L. Clearly, the difference cannot be recognized in polynomial-
time, unless L. € BPP. Yet, stronger recognition devices, such as interactive proofs should
be able to tell the difference. Fortnow suggests a characterization of the simulator’s behavior
on x € L and uses this characterization in his protocol for L, yet this characterization is
wrong. Alello and Hastad present a refinement of Fortnow’s characterization [AH-87], their
characterization is correct and can be used to show that SZK C AM (which is the goal of
their paper) as well as SZK C co-AM.

Fortnow’s characterization

Given an interactive proof (P, V) for L and a simulator M, and fixing a common input
x € {0,1}7, the following sets are defined. Let us denote by ¢ the number of random bits
that the verifier V' uses on input =, and by ¢ the number of random bits used by the simulator
M. For every conversation prefix, i, we consider the set of the verifier’s coin tosses which
are consistent with A (the conversation so far). We denote this set by R}. Namely, for
ho= (a1, B1y s, 35) (or b = (an, B1,.ees iy Bisqigr)), 7 € R ff Vz,r,aq, ., a5) = 35
for every j < ¢, where V(x,r, &) denotes the message sent by V on input = random-tape
r and prover message-sequence . The set R depends only on the verifier V. Next, we
consider sets R} which are subsets of the corresponding R!’s. Specifically, they contain
only r’s that can appear with & in an accepting conversation output by the simulator M.
Namely, r € Rl iff r € R and there exists w € {0,1}? so that M(z,w) is an accepting
conversation with prefix h. (Here M(x,w) denotes the conversation output by M on input
x and simulator-random-tape w.)

Motivation: For simplicity, suppose that the simulation is perfect (i.e., M witnesses that
(P, V) is perfect zero-knowledge) and that (P, V') has one sided error (i.e., “perfect complete-
ness”). Then, for every x € L and every possible h, we must have R} = R} (otherwise the
simulation is not perfect). However, if z ¢ L then there must exist A’s so that R} is much
smaller than R?. Otherwise the simulator-based prover (for M) will always convince V to
accept x, thus violating the soundness condition of (P, V). The problem with the above di-
chotomy is that it is “too existential” and thus it is not clear how to use it. Instead Fortnow
claimed a dichotomy which is more quantitative.

25

A False Characterization: Let pref(¢) denote the set of all message-subsequences in the con-
versation ¢.
o if x € L then
Prob,(Vh € pref(M(x,w)) ‘Rg‘ = ‘RH) >

W | o

o if v ¢ [then
1

Prob,(Vh € pref(M(x,w)) ‘Rg‘ Rog ‘RH) <7
where the probability (in both cases) is taken uniformly over w € {0,1}?. We did not specify
what is meant by ;. One may substitute a ~; # by a > % -, and a 3 § by a > i - .
The gap between the two is needed for the approximate lower /upper bound protocols.

A Counterexample

The mistake is in the second item of the characterization. The false argument given in [F-89]
confuses between the probability distribution of conversations output by the simulator and
the probability distribution of the conversations between a simulator-based prover (denote
P~) and the verifier. These distributions are not necessarily the same (note that we are in
case © ¢ L). Consequently, the probability that “good” conversations (i.e., conversations
for which |Ry| &~ |Ry| for all prefixes) occur in the (P*, V) interaction is not the same as
the probability that the simulator outputs “good” conversations. This point is ignored in
[F-89] and leads there to the false conclusion that the characterization holds. Bellow, we
present an interactive proof (P, V) and a (perfect) zero-knowledge simulator for which the
characterization fails.

The interactive proof that we present is for the empty language ®. This interactive proof
is perfect zero knowledge for the trivial reason that the requirement is vacuous. Yet, we
present a simulator for this interactive proof which, for every z € {0,1}" = ®, outputs
“good” conversation with probability close to 1. Thus, the characterization fails.

The interactive proof (from the verifier’s point of view — input « € {0,1}"):
e The verifier uniformly selects a € {0,1}" and sends a to the prover.
o The verifier waits for the prover’s message 5 € {0,1}".
e Next, the verifier uniformly selects v € {0,1}" and sends 7 to the prover.
o The verifier accepts iff either & = 0" or § = ~.
Regardless of the prover’s strategy, the verifier accepts each x € {0,1}" with negligible

probability; specifically 27" 4 (1 — 27") - 27", Thus, the above protocol indeed constitutes
an interactive proof for the empty language ®.

The simulator operates as follows (on input x € {0,1}"):

e With probability 1 — ¢, the simulator M outputs a conversation uniformly distributed in
0" x {0,1}*". (e is negligible, say ¢ = 27")

e With probability ¢, the simulator M outputs a conversation uniformly distributed in

({0,1}" —07) x {0,1}*".

26

Claim: In contradiction to the characterization, for every x € {0,1}" = ®,
Prob,(Yh € pref(M(x,w)) ‘Rg‘ = ‘RH) >1—ce€

Proof: It suffices to show that every conversation of the form 0”3~ satisfies Ry, = Ry for
all its prefixes. First observe that R} = {0,1}*" = R}, since for every ay € {0,1}*"
the simulator outputs the accepting conversation a~y~ with non-zero probability. Similarly,
R =07{0,1}" = RY". Next, for every 5 € {0,1}", we have RY"” = 07{0,1}" = R} ", since
for every v € {0,1}" the simulator outputs the accepting conversation 0”3~ with non-zero
probability. (Here we use the fact that the verifier always accepts when o = 0".) Similarly,
R =0my = Ry O

Conclusion

The source of trouble is that the definition of the sets R!’s does not take into account the
probability weight assigned by the simulator to w’s that witness the assertion “the simulator
outputs an accepting conversation that starts with A”7. Indeed, this is exactly the nature of

the refinement suggested by Aiello and Hastad [AH-87].

27

B APPENDIX: Applying our techniques for
non-negligible error probabilities

As explained in the introduction, the notion of an interactive proot with bounded knowledge
complexity is not robust under changes in the allowed error probability. Throughout the
paper, we use the natural definition of interactive proofs in which the error probability is
negligible. However, our techniques yield non-trivial results also in the case one defines
interactive proofs with some specific non-negligible error probability. In this appendix we
explain how such assertions may be obtained, and state such results for two special cases.

Denote by €e.(n) (an upper bound on) the probability that the verifier rejects an input
x although = € L and the prover plays honestly. This is the error probability related to
the completeness condition. Similarly, denote by €5(n) (an upper bound on) the probability
that the verifier accepts @ ¢ L when the prover follows its optimal strategy (not necessarily
following the protocol). This is the error probability related to the soundness condition.
We say that an interactive proof has error probabilities (es, €.) if its error probability in the
soundness condition is bounded by ¢, and its error probability in the completeness condition
is bounded by e..

B.1 The perfect case

In this subsection, we consider the more restricted case of perfect knowledge complexity, and
derive Theorem 3 which is the analogue of Theorem 1 for the case that the error probabilities
are not negligible. Following the definitions in Section 3, we denote the simulation based
prover by P*.

Let us follows the steps of the proof of our main theorem and observe which assertions
hold for the case of non-negligible error probability. We begin by observing that the following
generalization of Lemma 3.1 holds:

Lemma B.1 Let (P,V) be an interactive proof for L with error probabilities (es;(n),e.(n))
and with knowledge complexity k(n), then

1. If & € L then the probability that (P*,V) outpuls an accepting conversation is at least
(1 —ee(n))* - 275 where n = |z|.

2. If x € L then the probability that (P*,V) outputs an accepting conversation is at most
€s(n), where n = |x|.

The proof of this lemma is identical to the proof of Lemma 3.1, except that here % =
1 — e.(n). As explained in Section 3, an efficient machine with access to an NP oracle can
sample conversations in (P*, V). By Lemma B.1, this would yield an accepting conversation
with probability at most e,(n) in the case x ¢ L and at least (1 — e.(n))?- 275" when
x € L. In case these two probabilities differ sufficiently (i.e., by more then a polynomial
fraction), we can use standard amplification techniques to get a probabilistic algorithm that
determines whether @ € L with error probability less than 1/3 (or negligible, or 27"). To

summarize, we get the following theorem for perfect knowledge complexity.

28

Theorem 3 [f a language L has an interactive proof with perfect knowledge complexity k(n)
and error probabilities (es,¢.) and if there exists a polynomial p(n) such that

a2 S) 4
(1= lm 2750 >)+ o

then L € BPPVNF.

Examples: Theorem 3 implies, for example, that if a language L has an interactive proof
of knowledge complexity 1 and error probability 1/4 (both in the soundness condition and
in the completeness condition), then L is in BPPNP. Another interesting example is the
case of one-sided error (i.e., ¢, = 0). Theorem 3 implies that for any polynomial p(-), if a
language L has a one-sided error interactive proof (P, V') of knowledge complexity at most

log, (@) and error probability ¢, < ﬁ, then L is in BPPNT.

B.2 The general (statistical) case

Unfortunately, the analogue result for statistical knowledge complexity is not as clean, and
has various different formulations according to possible properties of the error probabilities.
Let us explain how such a result can be obtain, and give a specific example for the special
case in which e. = 0, i.e., the original interaction has one-sided error.

Recall that the proof for the negligible error-probability case uses the transformation from
statistical to perfect knowledge complexity and then uses Theorem 1. This transformation
increases the knowledge complexity by a logarithmic additive term. In view of Lemma B.1,
it is desirable not to increase the knowledge complexity without concurrently decreasing the
error probability. Thus, before applying the transformation, we reduce the error probability
by iterating the protocol as many times as possible while maintaining logarithmic knowledge
complexity.

Specifically, denote the length of the interaction by I(n). Also, fix an input « of length n,
and let [=1(n), k = k(n), ;s = ¢5(n) and €. = €.(n). The transformation from statistical to
perfect knowledge complexity (as described in Section 4) increases the knowledge complexity
by 1 +log, [. We begin by running the original protocol (P, V') sequentially ¢ & [(logy 1)/ k]
times. These repetitions yield a new protocol (P’, V') whose length is t - [, its knowledge
complexity is bounded by t - k < (k — 1) + log, [, and its error probability decreases. To
compute the decrease in the error probabilities, we partition the analysis into two cases
according to whether the original interaction has one sided error or not.

If the original interaction has one sided error, i.e., the verifier always accepts when = € L,
then the new verifier V' accepts only if all repetitions of the original protocols end accepting.
The error probabilities in this case decrease from (¢5,0) to (¢!,0). In the case where the
original interactive proof was not one sided, the verifier counts the number of original inter-
actions that end with the original verifier accepting. The new verifier accepts if this number
is greater than 64'(;7_5” -t. In order to compute the new error probabilities we may apply
the Chernoff bound and get an upper bound on the new error probabilities which depends
on t, on the difference between 1 — ¢, and ¢;, and of-course on ¢, and ¢. themselves.

Next, we apply the transformation of Section 4 (“from statistical to perfect knowledge
complexity”) and get a new interactive proof (P”, V") for L which has knowledge complexity

29

k—1+logyl + 1+ [logy(l-1)], where the additional 1 + [log,(/-?)] term comes from the
transformation. Finally, if the resulting parameters of (P”, V") satisfy the conditions stated
in Theorem 3, then we get that the language L is in BPPNT . Let us provide full details for
the special (yet important) case of one sided error (i.e., e, = 0).

In the special case of one-sided error, we end up using Theorem 3 for an interactive proof
with knowledge complexity k + log, [+ [log,(/-¢)] and (one-sided) error probability e’
Thus, we get the following theorem for statistical knowledge complexity:

Theorem 4 Suppose that a language L has an interactive proof of statistical knowledge
complexity k(n), one-sided error probability e;(n), and with length I(n) so that there exists a
polynomial p(n) for which the following inequality holds

1

ELETaE

1
> e, (n)[om)/RG] 4 L
2 &(n) p(n)

Then L € BPPNP,

30

