
Testing Monotonicity �Oded GoldreichyDept. of Computer Scienceand Applied MathematicsWeizmann Institute of ScienceRehovot, Israeloded@wisdom.weizmann.ac.il
Sha� GoldwasserzLab for Computer ScienceMIT545 Technology Sq.Cambridge, MA 02139shafi@theory.lcs.mit.eduEric LehmanLab for Computer ScienceMIT545 Technology Sq.Cambridge, MA 02139e lehman@theory.lcs.mit.edu

Dana RonxDept. of EE { SystemsTel Aviv UniversityRamat Aviv, Israeldanar@eng.tau.ac.il Alex SamorodnitskyDIMACS CenterRutgers UniversityPiscataway, NJ 08854salex@av.rutgers.eduJuly 15, 1999AbstractWe present a (randomized) test for monotonicity of Boolean functions. Namely, given theability to query an unknown function f : f0; 1gn 7! f0; 1g at arguments of its choice, thetest always accepts a monotone f , and rejects f with high probability if it is �-far from beingmonotone (i.e., every monotone function di�ers from f on more than an � fraction of the domain).The complexity of the test is O(n=�).The analysis of our algorithm relates two natural combinatorial quantities that can be mea-sured with respect to a Boolean function; one being global to the function and the other beinglocal to it. A key ingredient is the use of a switching (or sorting) operator on functions.

�A preliminary (and weaker) version of this work appeared in[21]yWork done while visiting LCS, MIT.zSupported in part by DARPA grant DABT63-96-C-0018 an in part by a Guastella fellowship.xThis work was done while visiting LCS, MIT, and was supported by an ONR Science Scholar Fellowship at theBunting Institute.

1 IntroductionIn this work we address the problem of testing whether a given Boolean function is monotone. Afunction f : f0; 1gn 7! f0; 1g is said to be monotone if f(x) � f(y) for every x � y, where � denotesthe natural partial order among strings (i.e., x1 � � � xn � y1 � � � yn if xi � yi for every i and xi < yifor some i). The testing algorithm can request the value of the function on arguments of its choice,and is required to distinguish monotone functions from functions that are far from being monotone.More precisely, the testing algorithm is given a distance parameter � > 0, and oracle access to anunknown function f mapping f0; 1gn to f0; 1g. If f is a monotone then the algorithm should acceptit with probability at least 2=3, and if f is at distance greater than � from any monotone functionthen the algorithm should reject it with probability at least 2=3. Distance between functions ismeasured in terms of the fraction of the domain on which the functions di�er. The complexitymeasures we focus on are the query complexity and the running time of the testing algorithm.We present a randomized algorithm for testing the monotonicity property whose query com-plexity and running time are linear in n and 1=�. The algorithm performs a simple local test: Itveri�es whether monotonicity is maintained for randomly chosen pairs of strings that di�er exactlyon a single bit. In our analysis we relate this local measure to the global measure we are interestedin | the minimum distance of the function to any monotone function.1.1 PerspectiveProperty Testing, as explicitly de�ned by Rubinfeld and Sudan [31] and extended in [22], is bestknown by the special case of low degree testings1 [13, 20, 31, 30, 5] which plays a central role in theconstruction of probabilistically checkable proofs (pcp) [7, 6, 18, 4, 3, 30, 5]. The recognition thatproperty testing is a general notion has been implicit in the context of pcp: It is understood thatlow degree tests as used in this context are actually codeword tests (in this case of BCH codes),and that such tests can be de�ned and performed also for other error-correcting codes such as theHadamard Code [3, 10, 11, 8, 9, 29, 32], and the \Long Code" [9, 25, 26, 32].For as much as error-correcting codes emerge naturally in the context of pcp, they do not seemto provide a natural representation of familiar objects whose properties we may wish to investigate.That is, one can certainly encode any given object by an error-correcting code | resulting in a(legitimate yet) probably unnatural representation of the object | and then test properties ofthe encoded object. However, this can hardly be considered as a \natural test" of a \naturalphenomena". For example, one may indeed represent a graph by applying an error correctingcode to its adjacency matrix (or to its incidence list), but the resulting string is not the \naturalrepresentation" of the graph.The study of Property Testing as applied to natural representation of (non-algebraic) objectswas initiated in [22]. In particular, Property Testing as applied to graphs has been studied in [22, 23,24] { where the �rst work considers the adjacency matrix representation of graphs (most adequatefor dense graphs), and the latter works consider the incidence list representation (adequate forsparse graphs).In this work we consider property testing as applied to the most generic (i.e., least structured)object { an arbitrary Boolean function. In this case the choice of representation is \forced" uponus.1That is, testing whether a function (over some �nite �eld) is a polynomial of some bounded degree d, or whetherit di�ers signi�cantly from any such polynomial. 1

1.2 MonotonicityIn interpreting monotonicity it is useful to view Boolean functions over f0; 1gn as subsets of f0; 1gn,called concepts. This view is the one usually taken in the PAC Learning literature. Each positionin f1; : : : ; ng corresponds to a certain attribute, and a string x = x1 � � � xn 2 f0; 1gn represents aninstance where xi = 1 if and only if the instance x has the ith attribute. Thus, a concept (subset ofinstances) is monotone if the presence of additional attributes maintains membership of instancesin the concept (i.e., if instance x is in the concept C then any instance resulting from x by addingsome attributes is also in C).The class of monotone concepts is quite general and rich. On the other hand, monotonicitysuggests a certain aspect of simplicity. Namely, each attribute has a uni-directional e�ect on thevalue of the function. Thus, knowing that a concept is monotone may be useful in various appli-cations. In fact, this form of simplicity is exploited by Angluin's learning algorithm for monotoneconcepts [2], which uses membership queries and has complexity that is linear in the number ofterms in the DNF representation of the target concept.We note that an e�cient tester for monotonicity is useful as a preliminary stage before em-ploying Angluin's algorithm. As is usually the case, Angluin's algorithm relies on the premise thatthe unknown target concept is in fact monotone. It is possible to simply apply the learning algo-rithm without knowing whether the premise holds, and hope that either the algorithm will succeednonetheless in �nding a good hypothesis or detect that the target is not monotone. However, dueto the dependence of the complexity of Angluin's algorithm on the number of terms of the targetconcept's DNF representation, it may be much more e�cient to �rst test whether the function isat all monotone (or close to it).1.3 The natural monotonicity testIn this paper we show that a tester for monotonicity is obtained by repeating the following O(n=�)times: Uniformly select a pair of strings at Hamming distance 1 and check if monotonicity issatis�ed with respect to the value of f on these two strings. That is,Algorithm 1: On input n; � and oracle access to f : f0; 1gn 7! f0; 1g, repeat the following stepsup to n=� times1. Uniformly select x 2 f0; 1gn and i 2 f1; :::; ng.2. Obtain the values of f(x) and f(y), where y results from x by ipping the ith bit.3. If x; y; f(x); f(y) demonstrate that f is not monotone then reject.That is, if either (x�y) ^ (f(x)>f(y)) or (y�x) ^ (f(y)>f(x)) then reject.If all iterations were completed without rejecting then accept.Theorem 1 Algorithm 1 is a testing algorithm for monotonicity. Furthermore, if the function ismonotone then Algorithm 1 always accepts.Theorem 1 asserts that a (random) local check (i.e., Step 3 above) can establish the existence of aglobal property (i.e., the distance of f to the set of monotone functions). Actually, Theorem 1 isproven by relating two quantities referring to the above: Given f : f0; 1gn 7! f0; 1g, we denote by�M(f) the fraction of pairs of n-bit strings, di�ering on one bit, which violate the monotonicity con-dition (as stated in Step 3). We then de�ne �M(f) to be the distance of f from the set of monotone2

functions (i.e., the minimum over all monotone functions g of jfx : f(x) 6= g(x)gj=2n). Observingthat Algorithm 1 always accepts a monotone function, Theorem 1 follows from Theorem 2, statedbelow.Theorem 2 For any f : f0; 1gn 7!f0; 1g,�M(f) � �M(f)n :On the other hand,Proposition 3 For every function f : f0; 1gn 7!f0; 1g, �M(f) � �M(f)=2.Thus, for every function f �M(f)n � �M(f) � 2 � �M(f) (1)A natural question that arises is that of the exact relation between �M(�) and �M(�). We observethat this relation is not simple; that is, it does not depend only on the values of �M and �M.Moreover, we show that both the lower and the upper bound of Equation (1) may be attained (upto a constant factor).Proposition 4 For every c < 1, there exists c0 < 1 so that for any su�ciently large n, and forany � such that 2�c�n � � � 12 :1. There exists a function f : f0; 1gn 7!f0; 1g such that � � �M(f) � 2� and�M(f) = 2n � �M(f) :2. There exists a function f : f0; 1gn 7!f0; 1g such that (1� o(1)) � � � �M(f) � 2��M(f) = (1� o(1)) � (1� c) � �M(f) :Perspective. Analogous quantities capturing local and global properties of functions were ana-lyzed in the context of linearity testing. For a function f : f0; 1gn 7! f0; 1g (as above), one mayde�ne �lin(f) to be its distance from the set of linear functions and �lin(f) to be the fraction ofpairs, (x; y) 2 f0; 1gn�f0; 1gn for which f(x)+f(y) 6= f(x�y). A sequence of works [13, 10, 11, 8]has demonstrated a fairly complex behavior of the relation between �lin and �lin. The interestedreader is referred to [8].Previous Bound on �M(f). This paper is the journal version of [21]. In [21], a weaker version ofTheorem 2 was proved. In particular it was shown that �M(f) =
� �M(f)n2 log(1=�M(f))�, thus yieldinga testing algorithm whose complexity grows quadratically with n instead of linearly (as done here).Furtheremore, the proof was more involved and the techniques did not lend themselves to obtain theresults presented subsequently for testing monotonicity over domain alphabets other than f0; 1g.
3

1.4 Monotonicity testing based on random examplesAlgorithm 1 makes essential use of queries. We show that this is no coincidence { any monotonicitytester that utilizes only uniformly and independently chosen random examples, must have muchhigher complexity.Theorem 5 For any � = O(n�3=2), any tester for monotonicity that only utilizes random examplesmust use at least
(p2n=�) such examples.Interestingly, this lower bound is tight (up to a constant factor).Theorem 6 There exists a tester for monotonicity which only utilizes random examples and usesat most O(p2n=�) examples, provided � > n2 � 2�n. For � � n2 � 2�n, the algorithm uses at mostO(n �p2n=�) examples. Furthermore, the algorithm runs in time poly(n) �p2n=�.We note that the above tester is signi�cantly faster than any learning algorithm for the class of allmonotone concepts when the allowed error is O(1=pn): Learning (under the uniform distribution)requires
(2n=pn) examples (and even that number of queries) [27].21.5 Extensions1.5.1 Other Domain AlphabetsLet � be a �nite alphabet, and <� a (total) order on �. Then we can extend the notion ofmonotonicity to Boolean functions over �n, in the obvious manner: Namely, a function f : �n 7!f0; 1g is said to be monotone if f(x) � f(y) for every x �� y, where x1 � � � xn �� y1 � � � yn if xi �� yifor every i and xi <� yi for some i.A straightforward generalization of our algorithm yields a testing algorithm for monotonicityof functions over �n with complexity O �j�j � n� �. By modifying the algorithm we can obtain adependence on j�j that is only logarithmic instead of linear. By an alternative modi�cation wecan remove the depedence on j�j completely at the cost of increasing the dependence on n=� fromlinear to quadratic.1.5.2 Other RangesWe may further extend the notion of monotonicity to �nite ranges other than f0; 1g: Let � be a�nite set and <� a (total) order on �. We say that a function : �n 7! � is monotone if f(x) �� f(y)for every x �� y. We show that every algorithm for testing monotonicity of Boolean function thatworks by observing pairs of strings selected according to some �xed distribution (as our algorithmsdo), can be transformed to testing monotonicity of functions over any �nite range �. The increasein the complexity of the algorithm is by a multiplicative factor of j�j. Recently, Doddis, Lehmanand Raskhodnikova have devised a transformation whose dependency on the size of the range isonly logarithmic [16].2The claim follows by considering all possible concepts that contain all instances having bn=2c + 1 or more 1's,no instances having bn=2c � 1 or less 1's, and any subset of the instances having exactly bn=2c 1's. In contrast,\weak learning" [28] is possible in polynomial time. Speci�cally, the class of monotone concepts can be learned inpolynomial time with error at most 1=2 �
(1=pn) (though no polynomial-time learning algorithm can achieve anerror of 1=2� !(log(n)=pn)) [12]). 4

1.5.3 Testing Unateness.A function f : f0; 1gn 7! f0; 1g is said to be unate if for every i 2 f1; : : : ; ng, exactly one of thefollowing holds: whenever the ith bit is ipped from 0 to 1 then the value of f does not decrease; orwhenever the ith bit is ipped from 1 to 0 then the value of f does not decrease. Thus, unatenessis a more general notion than monotonicity. We show that our algorithm for testing monotonicityof Boolean functions over f0; 1gn can be extended to test whether a function is unate or far fromany unate function at an additional cost of a (multiplicative) factor of pn. The de�nition ofunateness can also be extended to functions over larger domain alphabets and larger ranges, andour algorithms extend to these cases as well.1.6 TechniquesOur main results are proved using shifting of Boolean functions (subsets of f0; 1gn). Various shiftingtechniques play an important role in extremal set theory (cf., [19] as well as [1, 15]). A typicalapplication is for showing that a function has a certain property. This is done by shifting thefunction so that the resulting function is simpler to analyze, whereas shifting does not introducethe propetry in question.Our applications are di�erent. We shift the function to make it monotone, while using a\charging" operator to account for the number of changes made by the shifting process. This\charge" is on one hand related to the distance of the function from being monotone, and on theother hand related to the local check conducted by our testing algorithm.Actually we will be using several names for the same procedure { sorting and switching willalso make an appearance.1.7 Related WorkThe \spot-checker for sorting" presented in [17, Sec. 2.1] implies a tester for monotonicity withrespect to functions from any fully ordered domain to any fully ordered range, having query andtime complexities that are logarithmic in the size of the domain. We note that this problemcorresponds to the special case of n = 1 of the extension discussed in Subsection 1.5 (to generaldomains and ranges).1.8 An Open ProblemOur algorithm (even for the case f : f0; 1gn 7! f0; 1g), has a linear dependence on the dimensionof the input, n. As shown in Proposition 4, this dependence on n is unavoidable in the case of ouralgorithm. However, it is an interesting open problem whether other algorithms may have signi�-cantly lower query (and time) complexities, and in particular have query complexity independentof n. A candidate alternative algorithm inspects pairs of strings (x; y), where x is chosen uniformlyin f0; 1gn, and y is chosen as follows: First select an index (weight) w 2 f0; : : : ; ng with probability�nw� � 2�n, and then select y uniformly among the strings having w 1's, and being comparable to x(i.e., y � x or y � x).OrganizationTheorem 2 is proved in Section 3. Propositions 3 and 4 are proved in Section 4. The extensionto domains alphabets and ranges other than f0; 1g, is presented in Section 5, and the extension to5

testing Unateness is described in Section 6. Theorems 5 and 6 are proved in Section 7.2 PreliminariesFor any pair of functions f; g : f0; 1gn ! f0; 1g, we de�ne the distance between f and g, denoted,dist(f; g), to be the fraction of instances x 2 f0; 1gn on which f(x) 6= g(x). In other words, dist(f; g)is the probability over a uniformly chosen x that f and g di�er on x. Thus, �M(f) as de�ned in theintroduction is the minimum, taken over all monotone functions g of dist(f; g).A general formulation of Property Testing was suggested in [22], but here we consider a specialcase formulated previously in [31].De�nition 1 (property tester): Let P = [n�1Pn be a subset (or a property) of Boolean functions,so that Pn is a subset of the functions mapping f0; 1gn to f0; 1g. A (property) tester for P is aprobabilistic oracle machine3, M , which given n, a distance parameter � > 0 and oracle access toan arbitrary function f : f0; 1gn 7!f0; 1g satis�es the following two conditions:1. The tester accepts f if it is in P :If f 2 Pn then Prob(Mf (n; �)=1) � 23 .2. The tester rejects f if it is far from P :If dist(f; g) > � for every g 2 Pn ; then Prob(Mf (n; �)=1) < 13 .Testing based on random examples. In case the queries made by the tester are uniformly andindependently distributed in f0; 1gn, we say that it only uses examples. Indeed, a more appealingway of looking as such a tester is as an ordinary algorithm (rather than an oracle machine) which isgiven as input a sequence (x1; f(x1)); (x2; f(x2)); ::: where the xi's are uniformly and independentlydistributed in f0; 1gn.3 Proof of Theorem 2In this section we show how every function f can be transformed into a monotone function g. Byde�nition of �M(f), the number of modi�cation performed in the transformation must be at least�M(f) � 2n. On the other hand, we shall be able to upper bound the number of modi�cations by�M(f) � n � 2n, thus obtaining the bound on �M(f) stated in Theorem 2.For any i 2 f1; : : : ; ng, we say that a function f is monotone in dimension i, if for every� 2 f0; 1gi�1 and � 2 f0; 1gn�i, f(� 0�) � f(� 1�). For a set of indices T � f1; : : : ; ng, we saythat f is monotone in dimensions T, if for every i 2 T, the function f is monotone in dimensioni. We next de�ne a switch operator, Si which transforms any function f to a function Si(f) thatis monotone in dimension i.De�nition 2 For every i 2 f1; : : : ; ng, the function Si(f) : f0; 1gn 7! f0; 1g is de�ned as follows:For every � 2 f0; 1gi�1 and every � 2 f0; 1gn�i, if f(� 0�) > f(� 1�) then Si(f)(� 0�) = f(� 1�),and Si(f)(� 1�) = f(� 0�). Otherwise, Si(f) is de�ned as equal to f on the strings � 0� and � 1�.3 Alternatively, one may consider a RAM model of computation, in which trivial manipulation of domain andrange elements (e.g., reading/writing an element and comparing elements) is performed at unit cost.6

Let U def= f(x; y) : x and y di�er on a single bit and x � yg (2)be the set of neighboring pairs, and let�(f) = f(x; y) : (x; y) 2 Uand f(x) > f(y)g (3)be the set of violating (neighboring) pairs. Hence, jUj = 12 � 2n � n, and by de�nition of �(f), wehave �(f) = j�(f)jjUj . Let Di(f) def= fx : Si(f)(x) 6= f(x)g, so that Di(f) is twice the number of pairsin �(f) that di�er on the ith bit (and Pni=1Di(f) = 2 � j�(f)j). We show:Lemma 7 For every f : f0; 1gn 7! f0; 1g and j 2 [n], we have:1. If f is monotone in dimensions T � [n] then Sj(f) is monotone in dimensions T [fjg;2. For every 1 � i 6= j � n, Dj(Si(f)) � Dj(f).We prove the lemma momentarily. First we show how Theorem 2 follows. Let g =Sn(Sn�1(� � � (S1(f)) � � �). By successive application of the �rst item of Lemma 7, the function gis monotone, and hence dist(f; g) � �M(f). By successive applications of the second item,Di(Si�1(� � � (S1(f)) � � �) � Di(Si�2(� � � (S1(f)) � � �) � � � � � Di(f) (4)and so dist(f; g) � 2�n � nXi=1Di(Si�1(� � � (S1(f)) � � �) � 2�n � nXi=1Di(f) : (5)Therefore, nXi=1Di(f) � dist(f; g) � 2n � �M(f) � 2n (6)On the other hand, by de�nition of Di(f),nXi=1Di(f) = 2 � j�(f)j = 2 � �M(f) � jUj = �M(f) � 2n � n (7)where U and �(f) were de�ned in Equations (2) and (3), respectively. Theorem 2 follows bycombining Equations (6) and (7).Proof of Lemma 7: A key observation is that for every i 6= j, the e�ect of Sj on monotonicity off in dimension i (resp., the e�ect of Si on Dj(�)) can be analyzed by considering separately eachrestriction of f at the other coordinates.Item 1. Clearly, Sj(f) is monotone in dimension j. We show that Sj(f) is monotone in anydimension i 2 T. Fixing any i 2 T, and assuming without loss of generality, that i < j, we �x any� 2 f0; 1gi�1, � 2 f0; 1gj�i�1 and 2 f0; 1gn�j , and consider the function f 0(��) def= f(�� � �).Clearly f 0 is monotone in dimension 1 and we need to show that so is S2(f 0). In other words, considerthe 2-by-2 zero-one matrix whose (�; �)-entry is f 0(� �). Our claim thus amounts to saying thatif one sorts the rows of a 2-by-2 matrix which is column-sorted then the columns remain sorted.This is easily veri�ed by a simple case analysis. For a more general argument, concerning any d�dzero-one matrix, see the proof of Lemma 8. 7

Item 2. Fixing i; j; �; �; and de�ning f 0 as above, here we need to show thatD2(S1(f 0)) � D2(f 0).Again, we consider the 2-by-2 zero-one matrix whose (�; �)-entry is f 0(� �). The current claimamounts to saying that for any such matrix if we sort the columns then the number of unsortedrows cannot increase. (Recall that D2 equals twice the number of unsorted rows.) The claim iseasily veri�ed by a simple case analysis. For a more general argument, concerning any d�2 zero-onematrix, see the proof of Lemma 8. (We note that the claim is false for d � d zero-one matrices,starting at d � 4 as well as for 2-by-2 matrices over f0; 1; 2g.)4 Proofs of Propositions 3 and 4Below we prove the propositions concerning the other relations between �M(f) and �M(f) that werestated in the introduction.Proof of Propositions 3: Let us �x f and consider the set �(f) of its violating pairs (as de�nedin Equation (3)). In order to make f monotone, we must modify the value of f on at least onestring in each violating pair. Since each string belongs to at most n violating pairs, the number ofstrings whose value must be modi�ed (i.e., �M(f) � 2n) is at leastj�(f)jn = �M(f) � jUjn = �M(f) � �12 � 2n � n�n = �M(f)2 � 2n(where U is as de�ned in Equation (2)). and the proposition follows.Comment: For each string z, if f(z) = 0 then at most all pairs (x; z) 2 U are violating, and iff(z) = 1, then at most all pairs (z; y) 2 U are violating. The number of former pairs equals thenumber of 1's in z and the number of latter pairs equals the number of 0's in z. Since all but asmall fraction of strings have roughly n=2 1's and n=2 0's, the above bound can be improved toyield �M � (1� o(1)) � �M(f), provided �M(f) � 2�cn for any constant c < 1>Proof of Proposition 4: It will be convinient to view the Boolean Lattice as a directedlayered graph Gn. Namely, each string in f0; 1gn corresponds to a vertex in Gn. For everyvertex y = y1 : : : yn, and for every i such that yi = 1, there is an edge directed from y tox = y1 : : : yi�10yi+1 : : : yn. Thus Gn is simply a directed version of the hypercube graph. Werefer to all vertices corresponding to strings having exactly i 1's as belonging to the ith layer ofGn, denoted Li. By de�nition of the edges in the graph, there are only edges between consecutivelayers. For any function f : f0; 1gn 7! f0; 1g, we say that an edge from y to x is violating withrespect to f , if f(x) > f(y) (which implies that (x; y) 2 �(f)). The fraction of violating edges(among all 12 � 2n � n edges), is by de�nition �M(f).We start by proving both items for the case where � = 12 �O(1pn).Item 1. Let f = gn be de�ned on f0; 1gn in the following way: gn(x) = 1 if x1 = 0, and gn(x) = 0if x1 = 1 (thus gn is the \dictatorship" function). By de�nition of gn, for every � 2 f0; 1gn�1, theedge (1�; 0�) is a violating edge with respect to gn, and there are no other violating edges (sincefor every edge (y; x) such that x1 = y1, we have gn(x) = gn(y).) Since the number of violating edgesis 2n�1 (as there is a single edge for each � 2 f0; 1gn), and the total number of edges is 12 � 2n � n,we have �M(gn) = 2n�112 �2n�n = 1n 8

On the other hand, we next show that �M(gn) = 12 . Clearly, �M � 12 as the all 0 function ismonotone and at distance 12 from gn. It remains to show that we cannot do better. To this end,observe that the violating edges, of which there are 2n�1, de�ne a matching between C def= fy 2f0; 1gn : y1 = 1g and C def= fx 2 f0; 1gn : x1 = 0g (where for every � 2 f0; 1gn�1, y = 1� ismatched with x = 0�). To make gn monotone, we must modify the value of gn on at least onevertex in each matched pair, and since these pairs are disjoint the claim follows.Item 2. Let f = hn : f0; 1gn 7! f0; 1g be the (symmetric) function that has value 0 on allvertices belonging to layers Li where i is even, and has value 1 on all vertices belonging to layersLi where i is odd (i.e., hn is the parity function). Since all edges going from even layers to oddlayers are violating edges, �M(hn) = 1=2. We next show that �M(hn) � 12 � O(1pn) (where onceagain, �M(hn) � 12 since it is at distance at most 1=2 either from the all-0 function or the all-1function). Consider any pair of adjacent layers such that the top layer is labeled 0 (so that all edgesbetween the two layers are violating edges). It can be shown (cf. [14, Chap. 2, Cor. 4]) using Hall'sTheorem, that for any such pair of adjacent layers, there exists a perfect matching between thesmallest among the two layers and a subset of the larger layer. The number of unmatched verticesis hence Pdn=2ei=1 j jL2ij � jL2i�1j j+ 1 (where Ln+1 def= ;, and the +1 is due to the all 0 string). Thissum can be bounded by2 + 2 � dn=4eXi=1 j jL2ij � jL2i�1j j = 2 + 2 � dn=4eXi=1 jL2ij � jL2i�1j � 2 + 2 � jLdn=2ej = O(2n=pn)Thus, we have (1� o(1)) � 2n�1 disjoint violating edges. Since we must modify the value of at leastone end-point of each violating edge, �M(hn) 2 [0:5 � o(1); 0:5] and the claim follows.To generalize the above two constructions for smaller � we do the following. For each value of� we consider a subset S � f0; 1gn, such that all strings in S have a certain number of leading 0's,and the size of S is roughly 2� � 2n. Thus there is a 1-to-1 mapping between S and f0; 1gn0 for acertain n0, and S induces a subgraph of Gn that is isomorphic to Gn0 . For both case we de�ne f onS analogously to the way it was de�ned above on f0; 1gn, and let f be 1 everywhere else. We arguethat the values of �M(f) and �M(f) are determined by the value of f on S, and adapt the boundswe obtained above. Details follow.Item 1. Let n0 = n�blog(1=(2�))c, and consider the set S of all strings whose �rst n�n0 bits areset to 0 (thus forming a sub-cube of the n-dimensional cube). The size of the set S is at least 2� �2nand at most 4� � 2n. Clearly the subgraph of Gn induced by vertices in S is isomorphic to Gn0 . Forevery x = 0n�n0 2 S (where 2 f0; 1gn0), we let f(x) = gn0(), (where gn0 : f0; 1gn0 7! f0; 1g isas de�ned in the special case of Item 1 above), and for every x =2 S, we let f(x) = 1. Therefore,for every x 2 S and y =2 S, either x � y or x and y are incomprable. This implies that theclosest monotone functions di�ers from f only on S, and all violating edges (with respect to f) arebetween vertices in S. Therefore, �M(f) = �M(hn0)�2n02n = jSj=22n (which ranges between � and 2�), and�M(f) = �M(hn0)�2n0n0=22nn=2 = jSj=22n�n=2 . So �M(f) = 2�M(f)n , as desired.Item 2. Here we let n0 = n � blog(1=(2�))c, and de�ne S as in Item 1. Thus, 2� � 2n �jSj � 4� � 2n. For every x = 0n�n0 2 S (where 2 f0; 1gn0), we let f(x) = hn0(), (wherehn0 : f0; 1gn0 7! f0; 1g is as de�ned in Item 2 above), and for every x =2 S, we let f(x) = 1.Therefore, �M(f) = �M(gn0)�2n02n = (12� 1pn0)�jSj2n (which is greater than (1 � o(1))� � 2n and less than9

2� � 2n), and �M(f) = �M(gn0)�2n0n0=22nn=2 = jSj�n0=42n�n=2 . We thus have �M(f) = (1�o(1))�n0n � �M(f). Sincen0 > (1� c) � n� 3, the claim follows.5 Other Domain Alphabets and RangesAs de�ned in the introduction, for �nite sets � and � and orders <� and <� on � and �, re-spectively, we say that a function f : �n 7! � is monotone if f(x) �� f(y) for every x �� y,where x1 � � � xn �� y1 � � � yn if xi �� yi for every i and xi <� yi for some i. In this subsection wediscuss how our algorithm generalizes when � and � are not necessarily f0; 1g. We �rst considerthe generalization to j�j > 2 while maintaining � = f0; 1g, and later generalize to any �.5.1 General Domain AlphabetsLet f : �n 7! f0; 1g, where j�j = d. Without loss of generality, let � = f1; : : : ; dg. A straightfor-ward generalization of Algorithm 1 uniformly selects a set of strings, and for each string x selectedit uniformly select an index j 2 1; : : : ; n, and queries the function f on x and y, where y is obtainedfrom x by either incrementing or decrementing by one unit the value of xj . However, as we shallsee below, the number of strings that should be selected in order to obtain 2=3 success probability,grows linearly with d. Instead, we show how a modi�cation of the above algorithm, in which thedistribution on the pairs (x; y) is di�erent from the above, yields an improved performance. Bothalgorithms are special cases of the following algorithmic schema.Algorithm 2: The algorithm utilizes a distribution p : ��� 7! [0; 1], and depends on a functiont. Without loss of generality, p(k; `) > 0 implies k < `. On input n; � and oracle access tof : �n 7!f0; 1g, repeat the following steps up to t(n; �; j�j) times1. Uniformly select i 2 f1; :::; ng, � 2 �i�1, and � 2 �n�i.2. Select (k; `) according to the distribution p.3. If f(�k �) > f(� ` �) (that is, a violation of monotonicity is detected), then reject.If all iterations were completed without rejecting then accept.The above algorithm clearly generalizes the algorithm suggested at the beginning of this section(where t(n; �; d) = �(n � d=�) and the distribution p is uniform over f(k; k + 1) : 1 � k < dg).However, as we show below, we can select the distribution p so that t(n; �; d) = �(n� � log d) will do.Yet a third alternative (i.e., letting p be uniform over all pairs (k; `) with 1 � k < ` � d) allows tohave t(n; �; d) = O(n=�)2.Clearly, Algorithm 2 always accepts a monotone function (regardless of the distribution p inuse). Our analysis thus focuses on the case the function is not monotone.5.1.1 Reducing the analysis to the case n = 1We reduce the analysis of the performace of the above algorithm to its performance in the casen = 1. The key ingrediant in this reduction is a generalization of Lemma 7. As in the binary case,we describe operators by which any Boolean function over �n can be transformed into a monotonefunction. In particular we generalize the switch operator (which is now a sort operator) to dealwith the case d > 2. 10

De�nition 3 For every i 2 f1; : : : ; ng, the function Si(f) : �n 7! f0; 1g is de�ned as follows: Forevery � 2 �i�1 and every � 2 �n�i, we let Si(f)(� 1�); : : : ;Si(f)(� d�) be given the values off(� 1�); : : : ; f(� d�), in sorted order.Clearly, similarly to the binary case, for each i, the function Si(f) is monotone in dimension fig,where the de�nition of being monotone in a set of dimentions is as in the binary case.4 Thede�nitions of U and �(f) � U of the binary case (cf., Eq. (2) and (3)) may be extended in severaldi�erent ways. Speci�cally, for every i 2 [n] def= f1; :::; ng and every pair (k; `) 2 �2 so that k < `,we let Ui;(k;`) def= f(� k � ; � ` �) : � 2 �i�1 ; � 2 �n�ig (8)�i;(k;`)(f) def= f(x; y) 2 Ui;(k;`) : f(x) > f(y)g (9)In the binary case, U = [ni=1Ui;(1;2) and �(f) = [ni=1�i;(1;2)(f). Furthermore, Di(f) as de�ned inthe binary case, equals twice j�i;(1;2)(f)j.Lemma 8 (Lemma 7 generalized): For every f : �n 7! f0; 1g and j 2 [n], we have:1. If f is monotone in dimensions T � [n] then Sj(f) is monotone in dimensions T [fjg;2. For every i 2 [n] n fjg, and for every 1 � k < ` � dj�i;(k;`)(Si(f))j � j�i;(k;`)(f)jProof: As in the proof of Lemma 7, we may consider the function f restricted at all dimensionsbut the two in question. Again, the proof of the two items boil down to corresponding claims aboutsorting matrices.Item 1. Let i be some index in T, and assume without loss of generality that i < j. Again, we�x any � 2 �i�1, � 2 �j�i�1 and 2 �n�j, and consider the function f 0 : �2 7! f0; 1g de�ned byf 0(��) def= f(�� � �). Again, f 0 is monotone in dimension 1 and we need to show that so is S2(f 0)(as it is obvious that S2(f 0) is monotone in dimension 2). Our claim thus amounts to saying that ifone sorts the rows of a d-by-d matrix which is column-sorted then the columns remain sorted (thematrix we consider has its (�; �)-entry equal to f 0(� �)).Let M denote a (d-by-d zero-one) matrix in which each column is sorted. We observe that thenumber of 1's in the rows of M is monotoniclly non-decreasing (as each column contributes a unitto the 1-count of row k only if it contributes a unit to the 1-count of row k + 1). That is, if we letok denote the number of 1's in the kth row then ok � ok+1 for k = 1; :::; d� 1. Now suppose we sorteach row of M resulting in a matrix M 0. Then the kth row of M 0 is 0d�ok1ok , and it follows thatthe columns of M 0 remain sorted (as the k + 1st row of M 0 is 0d�ok+11ok+1 and ok � ok+1).Item 2. Fixing i; j; �; �; and de�ning f 0 as above, here we need to show that j�2;(k;`)(S1(f 0))j �j�2;(k;`)(f 0)j. The current claim amounts to saying that for any d � 2 zero-one matrix if we sortthe columns then the number of unsorted rows cannot increase. Note that the claim refers only tocolumns k and ` in the d-by-d matrix considred in Item 1, and that �2;(k;`) is the set of unsortedrows.4That is, for T � f1; : : : ; ng, we say that the function f : �n 7! f0; 1g is monotone in dimensions T if for everyi 2 T, every � 2 f0; 1gi�1; � 2 f0; 1gn�i, and every k = 1; :::; d� 1, it holds that f(�k �) � f(�k + 1 �).11

Let Q denote a (d-by-2 zero-one) matrix in which each column is sorted. Let o1 (resp., o2)denote the number of ones in the �rst (resp., second) column of Q. Then, the number of unsortedrows in Q is r(Q) def= o1 � o2 if o1 > o2 and r(Q) def= 0 otherwise. Let Q0 be any matrix with o1(resp., o2) 1's in its �rst (resp., second) column. Then we claim that the number of unsorted rowsin Q0 is at least r(Q). The claim is obvious in case r(Q) = 0. In case r(Q) > 1 we consider thelocation of the o1 1's in the �rst column of Q0. At most o2 of the corresponding rows in Q0 mayhave a 1-entry also in the second column (as the total of 1's in the second column is o2), and sothe remaining rows (which are at least o1 � o2 in number) are unsorted.With Lemma 8 at our disposal, we are ready to state and prove that the analysis of Algorithm 2(for any n) reduces to its analysis in the special case n = 1.Lemma 9 Let A denote a single iteration of Algorithm 2, and f : �n 7! f0; 1g. Then there existsfunctions fi;�;� : � 7! f0; 1g, for i 2 [n], � 2 f0; 1gi�1 and � 2 f0; 1gn�i, so that the following holds1. �M(f) � 2 �Pi Exp�;�(�M(fi;�;�)), where the expectation is taken uniformly over � 2 f0; 1gi�1and � 2 f0; 1gn�i.2. The probability that A rejects f is lower bounded by the expected value of Prob[A rejects fi;�;�],where the expectation is taken uniformly over i 2 [n], � 2 f0; 1gi�1 and � 2 f0; 1gn�i.In fact, Theorem 1 follows easily from the above lemma, since in the binary case Algorithm 2collapses to Algorithm 1 (as there is only one possible distribution p { the one assigning all weightto the single admissible pair (1; 2)). Also, in the binary case, for any f 0 : f0; 1g 7! f0; 1g, algorithmA rejects with probability exactly 2�M(f 0). Thus, the lemma implies that in the binary case, forany f : f0; 1gn 7! f0; 1g, algorithm A rejects with probability at leastExpi;�;�(Prob[A rejects fi;�;�]) = Expi;�;�(2�M(fi;�;�))� 1n � �M(f)The application of the above lemma in the non-binary case is less straightforward (as there theprobability that A rejects f 0 : � 7! f0; 1g is not necessarily 2�M(f 0)). Furthermore, algorithm Amay be one of in�nitely many possibilities, depending on the in�nitely many possible distributionsp. But let us �rst prove the lemma.Proof: For i = 1; :::; n+1, we de�ne fi def= Si�1 � � � S1(f). Thus, f1 � f , and by Item 1 of Lemma 8,we have that fn+1 is monotone. It follows that�M(f) � dist(f; fn+1) � nXi=1 dist(fi; fi+1) (10)Next, for i = 1; :::; n, � 2 f0; 1gi�1 and � 2 f0; 1gn�i, de�ne the function fi;�;� : � 7! f0; 1g, byfi;�;�(x) = f(�x�), for x 2 �. Throughout the proof, P�;� refers to summing over all (�; �)'s in�i�1��n�i, and Exp�;� refers to expectation over uniformly distributed (�; �) 2 �i�1��n�i. Weclaim that dist(fi; fi+1) � 2 � Exp�;�(�M(fi;�;�)) (11)This inequality is proven (below) by observing that fi+1 is obtained from fi by sorting, seperately,the elements in each fi;�;�. (The factor of 2 is due to the relationship beween the distance of a12

vector to its sorted form and its distnace to monotone.) Thus,dn � dist(fi; fi+1) = X�;� jfx 2 � : fi(�x�) 6= fi+1(�x�)gj= X�;� jfx 2 � : fi;�;�(x) 6= Si(fi;�;�)(x)gj� X�;� 2d � �M(fi;�;�)where the inequality is justi�ed as follows. Consider a vector v 2 f0; 1gd, and let S(v) denote itssorted version. Then S(v) = 0z1d�z, where z denotes the number of zeros in v. Thus, for somee � 0, the vector v has e 1-entries within its z-pre�x and e 0-entries in its (d � z)-su�x. So thenumber of locations on which v and S(v) disagree is exactly 2e. On the other hand, consider anarbitrary perfect matching of the e 1-entries in the pre�x and the e 0-entries in the su�ce. To makev monotone one must alter at least one entry in each matched pair; thus, �M(v) � e=d.Combining Eq. (10) and (11), the �rst item of the lemma follows. In order to prove the seconditem, we use the de�nition of algorithm A and let �(E) = 1 if E holds and �(E) = 0 otherwise.Prob[A rejects f] = 1n � dn�1 nXi=1X� ; �Prob(k;`)�p[f(� k �) > f(� ` �)]= 1n � dn�1 nXi=1 X(k;`) p(k; `) �X� ; � �[f(�k �) > f(� ` �)]= 1n � dn�1 nXi=1 X(k;`) p(k; `) � j�i;(k;`)(f)jUsing Item 2 of Lemma 8, we havej�i;(k;`)(f)j � j�i;(k;`)(Si�1(f))j� � �� j�i;(k;`)(Si�1 � � � S1(f))jCombining the above with the de�nition of fi, we haveProb[A rejects f] � 1n � dn�1 nXi=1 X(k;`) p(k; `) �X� ; � �[fi(� k �) > fi(� ` �)]= 1n � dn�1 nXi=1X� ; � X(k;`) p(k; `) � �[fi;�;�(k) > fi;�;�(`)]= 1n � dn�1 nXi=1X� ; �Prob[A rejects fi;�;�]and the lemma follows.5.1.2 Algorithms for the case n = 1By the above reduction (i.e., Lemma 9), we may focus on designing algorithms for the case n = 1.The design of such algorithms amounts to the design of a probability distribution p : �2 7! [0; 1]13

(with support only on pairs (k; `) with k < `), and the speci�cation of the number of times thatthe basic iteration of Algorithm 2 is performed. We present three such algorithms, and analyze theperformance of a single iteration in them.Algorithm 2.1: This algorithm uses the uniform distribution over pairs (k; k+1), and t(n; �; d) =O(nd=�). That is, it uses the distribution p1 : ��� 7! [0; 1] de�ned by p1(k; k+1) = 1=(d� 1) fork = 1; :::; d � 1.Proposition 10 Let A1 denote a single iteration of Algorithm 2.1, and f 0 : � 7! f0; 1g. Then, theprobability that A1 rejects f 0 is at least 2d�1 � �M(f 0).The lower bound can be shown to be tight (by considering the function f 0 de�ned by f 0(x) = 1 ifx < d=2 and f(x) = 0 otherwise).Proof: If �M(f 0) > 0 then there exists a k 2 f1; :::; d � 1g so that f 0(k) = 1 and f(k + 1) = 0. Insuch a case A1 rejects with probability at least 1=(d � 1). On the other hand, �M(f 0) � 1=2, forevery f 0 : � 7! f0; 1g (by considering the distance to either the all-zero or the all-one function).Algorithm 2.2: This algorithm uses a distribution p2 : � � � 7! [0; 1] which is uniform ona set P to be de�ned below, and t(n; �; d) = O((n log d)=�). The set P consists of pairs (k; `),where 0 < ` � k � 2t and 2t is the largest power of 2 which divides either k or `. That is, letpower2(i) 2 f0; 1:::; log2 ig denote the largest power of 2 which divides i. Then,P def= f(k; `) 2 �� � : 0 < `� k � 2max(power2(k);power2(`))g (12)We mention that an algorithm of similar performance was presented and analyzed in [17, Sec. 2.1].Loosely speaking, their algorithm selects a pair (k; `) by �rst picking k uniformly in f1; :::; d � 1g,next selects t uniformly in f0; 1; :::; log2(d�k)g, and �nally selects ` uniformly in fk+1; :::; k+2tg\�.Proposition 11 Let A2 denote a single iteration of Algorithm 2.2, and f 0 : � 7! f0; 1g. Then, theprobability that A2 rejects f 0 is at least 1O(log d) � �M(f 0).Proof: We �rst show that jP j = O(d log d). This can be shown by charging each pair (k; `) 2 Pto the element divisible by the larger power of 2 (i.e., to k if power2(k) > power2(`) and to `otherwise), and noting that the charge incurred on each i is at most 2 � 2power2(i). It follows thatthe total charge is at most Pdi=1 2power2(i)+1 =Plog2 dj=0 d2j � 2j+1 = O(d log d).We say that a pair (k; `) 2 P (where k < `) is a violating pair (with respect to f 0), if f 0(k) >f 0(`). By de�nition, the probability that A2 rejects f 0 is the ratio between the number of violatingpairs in P (with respect to f 0), and the size of P . Thus, it remains to show that the former is
(�M(f) � d).In the following argument it will be convenient to view the indices 1; : : : ; d as vertices of a graphand the pairs in P as edges. Speci�cally, each pair (k; `), where k < ` corresponds to a directededge from k to `. We refer to this graph as GP .Claim 11.1: For every two vertices k and ` in GP , if k < ` then there is a directed path of lengthat most 2 from k to ` in GP .Proof of Claim: Let r = dlog de, and consider the binary strings of length r representing k and`. Let k = (xr�1; : : : ; x0) and ` = (yr�1; : : : ; y0). Let t be the highest index such that xt = 0 and14

yt = 1. Note that xi = yi for t < i < r. We claim that the vertex m = (xr�1; : : : ; xt+1; 1; 0; : : : 0) ison a path of length 2 from k to `. This follows from the de�nition of P , since m is divided by 2t,while both m� k = 2t �Pt�1i=0 xi2i � 2t and `�m =Pt�1i=0 yi2i < 2t. 2We now use the claim to provide a lower bound on the number of violating pairs. Let z = jfk :f 0(k) = 0gj. Then, the number of 1's in the z-pre�x of f 0 must equal the number of 0's in the(d� z)-su�ce. Let us denote this number by a, and by de�nition of �M(f 0) we have �M(f 0) � 2a=d.Consider a matching of the a 1's in the z-pre�x to the a 0's in the (d � z)-su�ce of f 0. By theabove claim, there is path of length at most 2 in GP between every matched pair. Clearly, thesepaths (being of length 2) are edge-disjoint. Since each path starts at a vertex of value 1 and endsat a vertex of value 0, it must contain an edge the corresponds to a violating pair. Thus, we obtaina � �M(f 0)d=2 violating pairs, and the proposition follows.Algorithm 2.3: This algorithm uses the uniform distribution over all admissible pairs, andt(n; �; d) = minfO(nd=�); O(n=�)2g. That is, it uses the distribution p3 : �� � 7! [0; 1] de�ned byp3(k; `) = 2=((d � 1)d) for 1 � k < ` � d.Proposition 12 Let A3 denote a single iteration of Algorithm 2.3, and f 0 : � 7! f0; 1g. Then, theprobability that A3 rejects f 0 is at least �M(f 0)2=2.The lower bound is tight upto a constant factor: For any integer e < d=2, consider the functionf 0(x) = 0 if x 2 fe + 1; :::; 2eg and f 0(x) = 1 otherwise (then �M(f 0) = e=d and A3 rejects f 0 i� itselects a pair in f1; :::; eg�fe+1; :::; 2eg, which happens with probability e2=((d�1)d=2) � 2�M(f 0)2).On the other hand, note that if �M(f 0) > 0 then �M(f 0) � 1=d and so the detection probability is atleast �M(f 0)=2d. This bound is also tight upto a constant factor (e.g., consider f 0(x) = 0 if x = 2and f(x) = 1 otherwise, then �M(f 0) = 1=d and A3 rejects f 0 i� it selects the pair (1; 2)).Proof: As in the proof of Lemma 8, let z be the number of zero's in f 0 and let 2e be the number ofmismatches between f 0 and its sorted form. Then �M(f 0) � 2e=d. On the other hand, consideringthe e 1-entries in the z-pre�x of f 0 and the e 0-entries in the (d � z)-su�x, we lower bound therejection probability by e2=((d�1)d=2) > 2(e=d)2. Combining the two, we conclude that A3 rejectsf 0 with probability at least 2 � (�M(f 0)=2)2.On the semi-optimality of Algorithm 2. We call an algorithm, within the framework ofAlgorithm 2, smooth if the number of repetitions (i.e., t(n; d; �)) is linear in ��1. Note that Al-gorithm 2.2 is smooth, whereas Algorithm 2.3 is not. We claim that Algorithm 2.2 is optimalin its dependence on d, among all smooth algorithms. The following argument is due to MichaelKrivilevich.Proposition 13 For any distribution p : ��� 7! [0; 1], with support only on pairs (k; `) such thatk < `, there exists a non-monotone f 0 : � 7! f0; 1g so thatProb(k;`)�p[f 0(k) > f 0(`)] � 2log2 d � �M(f 0)Proof: Let p be a distribution on pairs as above. We de�ne� def= maxf 0:�7!f0;1g s.t. �M(f 0)>0(Prob(k;`)�p[f 0(k) > f 0(`)]�M(f 0))
15

Our aim is to show that � � 2= log2 d. The key observation is that for any consecutive 2a indices,p has to assign a probability mass of at least � � a=d to pairs (k; `) where k is among the lowesta indices and ` among the higher a such indices. This observation is proven as follows. LetL;H be the low and high parts of the interval in question; that is, L = fs + 1; :::; s + ag andH = fs+a+1; :::; s+2sg, for some s 2 f0; :::; d�2ag. Consider the function f 0 de�ned by f 0(i) = 1if i 2 L [fs + 2a+ 1; :::; dg and f 0(i) = 0 otherwise. Then �M(f 0) = a=d. On the other hand, theonly pairs (k; `) with f 0(k) > f 0(`), are those satisfying k 2 L and ` 2 H. Thus, by de�nition of �,it must hold that � � Pr(k;`)�p[k 2 L & ` 2 H]=(a=d), and the observation follows.The rest of the argument is quite straightforward: Consider log2 d partitions of the interval[1; d], so that the ith partition is into consecutive segments of length 2i. For each segment in theith partition, probability p assign a probability mass of at least 2i�1�=d to pairs where one elementis in the low part of the segment and the other element is in the high part. Since these segmentsare disjoint and their number is d=2i, it follows that p assigns a probability mass of at least �=2 topairs among halfs of segments in the ith partition. These pairs are disjoint from pairs consideredin the other partitions and so we conclude that (log2 d) � �2 � 1. The proposition follows.5.1.3 Conclusions for general nCombining Lemma 9 with Propositions 11 and 12, we obtain.Theorem 14 Algorithm 2.2 and Algorithm 2.3 constitute testers of monotonicity for mappings�n 7! f0; 1g.� The query complexity of Algorithm 2.2 is O((n log d)=�).� The query complexity of Algorithm 2.3 is O(n=�)2.Both algorithms run in time O(q(n; d; �) � n log d), where q(n; d; �) is their query complexity.Proof: Both algorithms always accept monotone functions, and have complexities as stated. Fora = 2; 3, let �a(f) denote the rejection probability of a single iteration of Algorithm 2.a when givenaccess to a function f : �n 7! f0; 1g. Combining Lemma 9 and Proposition 11, we have�2(f) � Expi;�;�(�2(fi;�;�)) [By Part 2 of the lemma]� Expi;�;�(�M(fi;�;�)=O(log d)) [By the proposition]� �M(f)=O(log d)2n [By Part 1 of the lemma]which establishes the claim for Algorithm 2.2. Combining Lemma 9 and Proposition 11, we have�3(f) � Expi;�;�(�3(fi;�;�)) [By Part 2 of the lemma]� Expi;�;�(�M(fi;�;�)2=2) [By the proposition]where Expi;�;�(�M(fi;�;�)) � �M(f)=2n [By Part 1 of the lemma]So �3(f) is lower bounded by the minimum of 1N �PNj=1 x2j subject to 1N �PNj=1 xj � �M(f)=2n, whereall xj's are non-negative. The minimum is obtained when all xj's are equal, and this establishesthe claim for Algorithm 2.3.
16

5.2 General RangesSuppose we have an algorithm for testing monotonicity of functions f : �n 7! f0; 1g (where � isnot necessarily f0; 1g). Further assume (as is the case for all algorithms presented here), that thealgorithm works by selecting pairs of strings according to a particular distribution on pairs, andverifying that monotonicity is not violated on these pairs. We show how to extend such algorithmsto functions f : �n 7! � while losing a factor of j�j.Without loss of generality, let � = f0; : : : ; bg. The de�nition of �M extends in the natural way tofunctions f : �n 7! f0; 1; :::; bg. Given a function f : �n 7! f0; 1; :::; bg, we de�ne Boolean functionsfi : �n 7! f0; 1g, by letting fi(x) def= 1 if f(x) � i and fi(x) def= 0 otherwise, for i = 1; :::; b. For anyalgorithm A that tests monotonicity of Boolean functions as restricted above, and for any Booleanfunction f , let �AM(f) be the probability that the algorithm observes a violation when selecting asingle pair according to the distribution on pairs it de�nes. For f : �n 7! f0; 1; :::; bg, let �AM(f) bede�ned analogously.Lemma 15 Let f : �n 7! f0; :::; bg, and let fi's be as de�ned above.1. �M(f) �Pbi=1 �M(fi).2. �AM(f) � �AM(fi), for every i.Combining the two items and using the relationship between �AM and �M in the binary case (i.e.,say, �AM(fi) � �M(fi)=F , where F depends on j�j and n), we get�AM(f) � maxi f�AM(fi)g � 1b bXi=1 �AM(fi) � 1b bXi=1 �M(fi)F � 1b � �M(f)FHence, we may apply algorithm A (designed to test monotonicity of Boolean functions over generaldomain alphabets), to test monotonicy of functions to arbitrary range of size b + 1; we only needto increase the number of pairs that A selects by a multiplicative factor of b.Proof: To prove Item 2, �x any i and consider the set of violating pairs with respect to fi. Clearlyeach such pair is also a violating pair with respect to f (i.e., if x � y and fi(x) > fi(y) thenfi(x) = 1 whereas fi(y) = 0, and so f(x) � i > f(y)). Thus, any pair (x; y) that contributes to�AM(fi) also contributes to �AM(f).To prove Item 1, consider the Boolean monotone functions closest to the fi's. That is, for eachi, let gi be a Boolean monotone function closest to fi. Also, let g0 be the constant all-one function.Now, de�ne g : �n 7! f0; 1; :::; bg so that g(x) def= i if i is the largest integer in f0; 1; :::; bg so thatgi(x) = 1 (such i always exists as g0(x) = 1).First note that the distance of g from f is at most the sum of the distances of the gi's from thecorresponding fi's. This is the case since if g(x) 6= f(x) then there must exists an i 2 f1; :::; bg sothat gi(x) 6= fi(x) (since if gi(x) = fi(x) for all i's then g(x) = f(x) follows).Finally, we show that g is monotone (and so �M(f) � Pbi=1 �M(fi) follows). Suppose towardsthe contradiction that g(x) > g(y) for some x � y. Let i def= g(x) and j def= g(y) < i. Then byde�nition of g, we have gi(x) = 1 and gi(y) = 0, which contradicts the monotonicity of gi.
17

6 Testing whether a function is UnateBy our de�nition of monotonicity, a function f is monotone if, for any string, increasing any of itscoordinates does not decrease the value of the function. A more general notion is that of unatefunctions. For sake of brevity we focus on Boolean functions over f0; 1gn, and discuss other �nitedomain alphabets and ranges at the end of this section. A function f : f0; 1gn 7! f0; 1g is unate ifthere exists a sequence � = �1 : : : �n where each �i is one of the two permutation over f0; 1g, forwhich the following holds: For any two strings x = x1 � � � xn, and y = y1 � � � yn, if for every i wehave xi ��i yi, then f(x) � f(y), where <�i denotes the total order induced by �i on � (namely,b ��i b0 if and only if �i(b) � �i(b0)). We say in such a case the f is monotone with respect to �.In particular, if a function is monotone with respect to the sequence id; : : : ; id, where id is theidentity permutation (which induces the order 0 < 1), then we simply say that it is a monotonefunction, and if a function is monotone with respect to some �, then it is unate.Similarly to the algorithms presented for testing monotonicity, which search for evidence to non-monotonicity, the testing algorithm for unateness tries to �nd evidence to non-unateness. However,here it does not su�ce to �nd a pair of strings x; y that di�er on the ith bit such that x � y whilef(x) > f(y). Instead we check whether for some index i and for each of the two permutations �,there is a pair of strings, (x; y) that di�er only the ith bit, such that xi <� yi, while f(x) > f(y).Algorithm 3 (Testing Unateness): On input n; � and oracle access to f : f0; 1gn 7!f0; 1g, dothe following:1. Uniformly select m = O(n1:5=�) strings in f0; 1gn, denoted x1; : : : ; xm, and m indices inf1; : : : ; ng, denoted i1; : : : ; im.2. For each selected xj , obtain the values of f(xj) and f(yj), where yj results from xj by ippingthe ij-th bit.3. If unateness is found to be violated then reject.Violation occurs, if among the string-pairs fxj ; yjg, there exist two pairs and an index i, suchthat in both pairs the strings di�er on the ith bit, but in one pair the value of the functionincreases when the bit is ipped from 0 to 1, and in the other pair the value of the functionincreases when the bit is ipped from 1 to 0.If no contradiction to unateness was found then accept.Theorem 16 Algorithm 3 is a testing algorithm for unateness. Furthermore, if the function isunate, then Algorithm 3 always accepts.The furthermore clause is obvious, and so we focus on analyzing the behavior of the algorithm onfunctions which are �-far from unate.6.1 Proof of Theorem 16Our aim is to reduce the analysis of Algorithm 3 to Theorem 2. We shall use the following notation.For � = �1 � � � �n (where each �i is a permutation over f0; 1g), let �� denote the partial order onstrings with respect to �. Namely, x �� y if and only if for every index i, xi ��i yi. Let �M;�(f)denote the minimum distance between f and any function g that is monotone with respect to �,and let �M;�(f) denote the fraction of pairs x; y that di�er on a single bit such that x �� y but18

f(x) > f(y). For any f and �, consider the function f� de�ned by f�(x) = f(�1(x1) � � � �n(xn)).Then, �M;�(f) = �M(f�) and �M;�(f) = �M(f�). Hence, as a corollary to Theorem 2, we haveCorollary 17 For any f : f0; 1gn 7!f0; 1g, and for any sequence of permutations �,�M;�(f) � �M;�(f)n :Our next step is to link �M;�(f) to quantities which govern the behavior of Algorithm 3. For eachi 2 f1; : : : ; ng, and permutation � over f0; 1g, let i;�(f) denote the fraction, among all pairs ofstrings that di�er on a single bit, of the pairs x; y such that x and y di�er only on the ith bit,xi <� yi, and f(x) > f(y). In other words, i;�(f) is the fraction of pairs that can serve asevidence to f not being monotone with respect to any � = �1; :::; �n such that �i = �. Notethat in case f is monotone with respect to some �, then for every i, i;�i(f) = 0. More generally,�M;�(f) = Pni=1 i;�i(f) holds for every � (since each edge contributing to �M;�(f) contributes toexactly one i;�i(f)).The distance of f from the set of unate functions, denoted �U(f), is the minimum distance of fto any unate function; that is, �U(f) = min�(�M;�(f)). We next link the i;�(f)'s to �U(f).Lemma 18 Pni=1min�fi;�(f)g � �U(f)n .Proof: Let � = �1 : : : �n be de�ned as follows: �i = argmin�fi;�(f)g. The key observation is�M;�(f) = nXi=1 i;�i(f) = nXi=1min� fi;�(f)gwhere the �rst equality holds for any �, and the second follows from the de�nition of this speci�c�. Using the above equality and invoking Corollary 17, we havenXi=1min� fi;�(f)g = �M;�(f) � �M;�(f)n � �U(f)n :For each i, let �i;�(f) be the set of all pairs of strings x; y that di�er only on the ith bit, wherexi <� yi, and f(x) > f(y). Lemma 18 gives us a lower bound on the sum Pimin�fj�i;�jg. Toprove Theorem 16, it su�ces to show that if we uniformly select
(n1:5=�U(f)) pairs of strings thatdi�er on a single bit, then with probability at least 2=3, for some i we shall obtain both a pairbelonging to �i;id(f) and a pair belonging to �i;id(f) (where id is the permutation (1; 0)). Theabove claim is derived from the following technical lemma, which can be viewed as a generalizationof the Birthday Paradox .Lemma 19 Let S1; : : : ;Sn;T1; : : : ;Tn be disjoint subsets of belonging to a universe U. For eachi, let use denote by pi the probability that a uniformly selected element in U hits Si, and by qi theprobability that it hits Ti. Let � def= Pimin(pi; qi) > 0. Then, for some constant c, if we uniformlyselect 2c �pn=� elements in U, then with probability at least 2=3, for some i we shall obtain at leastone element in Si and one in Ti. 19

To derive the claim, let Si = �i;id(f) and Ti = �i;id(f). Then by Lemma 18, Pimin(pi; qi) ��U(f)=n. Now, using Lemma 19, the claim (and theorem) follow. So it remains to prove the lastlemma.Proof: Suppose, without loss of generality, that pi � qi, for every i. As a mental experiment, wepartition the sample of elements into two parts of equal size, c � pn=�. Let I be a random variabledenoting the (set of) indices of sets Si hit by the �rst part of the sample. We show below that withprobability at least 5=6 over the choice of the �rst part of the sample,Xi2I pi � �pn (13)The lemma then follows since, conditioned on Eq. (13) holding, the probability that the secondpart of the sample does not include any elements from Si2I Ti, is at most 1�Xi2I qi!c�pn=� � �1� �pn�c�pn=� < 16where the last inequality holds for an appropriate choice of c.To prove that Equation (13) holds with probability at least 5=6, we assume without loss ofgenerality that the sets Si are ordered according to size. Let S1; : : : ;Sk be all sets with probabilityweight at least �=2n each (i.e., p1 � : : : � pk � �=2n). Then, the total probability weight of allother sets Sk+1; : : : ;Sn is less than �=2, and Pki=1 pi � �=2 follows. We �rst observe that by a(multiplicative) Cherno� bound (for an appropriate choice of c), with probability at least 11=12,the �rst part of the sample contains at least 4 � pn elements in �S def= Ski=1 Si.Let I0 def= I \ f1; : : : ; kg. That is, I0 is a random variable denoting the indices of sets Si,i 2 f1; : : : ; kg that are hit by the �rst part of the sample. By the above, with probability atleast 11=12, we have jI0j � 4 � pn. Thus, it remains to prove the followingClaim: Conditioned on jI0j � 4 � pn, with probability at least 11=12, Pi2I0 pi � �pn .Proof: Since conditioned on an element belonging to �S it is uniformly distributed in that set,we may bound the probability of the above event, when selecting 4pn elements uniformly andindependently in �S. Consider the choice of the jth element from �S, and let I0j�1 denote the setof indices of sets hit by the the �rst j � 1 elements selected in �S. Going for j = 1; :::; 4pn, weconsider two cases. In case Pi2I0j�1 pi � 2�Pki=1 pipn , we are done since Pki=1 pi � �2 . Otherwise (i.e.,Pj�1i2I0j�1 pi < 2Pki=1 pi=pn � 1=pn), the probability that the jth element belongs to I0 n I0j�1 (i.e.,it hits a set in fS1; : : : ;Skg that was not yet hit), is at least 1 � 1=pn, which is at least 2=3 forn � 9. Observe that if we toss 4pn coins with bias 2=3 towards heads then with probability at least11=12 (provided n is big enough) we'll get at least 2pn heads. In our case, the heads correspondto getting a new element from �S, where each such element carries a pi weight of at least �=2n. Theclaim follows. 2The lemma follows, as indicated above.6.2 Testing Unateness over other Domain Alphabets and RangesFor �nite ordered sets � and �, we say that a function f : �n 7! � is unate if there exists asequence � = �1 : : : �n, where each �i is any one of the j�j! permutation over �, for which the20

following holds: For any two strings x = x1 � � � xn, and y = y1 � � � yn, if for every i we have xi ��i yi,then f(x) �� f(y), where <� is the order de�ned in �, and <�i denotes the total order induced by�i on � (namely, k ��i ` if and only if �i(k) � �i(`)).We show how to test unateness in case � = f0; 1g, using a hybrid of Algorithm 2.3 and Algo-rithm 3: The algorithm selects uniformly pairs (x; y) so that x and y di�er on a single coordiante,obtains the values f(x) and f(y), and constructs a partial order �i on � for each i. That is, ifthe algorithm sees a pair (x; y) such that xi 6= yi and f(x) < f(y) then it records that in the ithcoordinate xi <�i yi. The algorithm rejects if for some i it encounters a contradiction to the partialorder.De�ning i;�(f) analogously to the binary case, and using an argument as in Lemma 18 weobtain Pimin�fi;�(f)g =
(�U(f)=n)2. Thus, there exists an i so that i;�(f) =
(�U(f)2=n3)holds for all �'s. Thus, if the basic step of the algorithm is repeated O(n3��2U log(d!)) times, thenwith probability at least 2=3 all possible d! permuations are ruled out.We believe that the algorithm works well also in case of general �, maybe at the cost of a factorof j�j. Unfortunately, the argument used in Subsection 5.2 does not extend.7 Testing based on Random ExamplesIn this section we prove Theorems 5 and 6: establishing a lower bound on the sample complexityof such testers and a matching algorithm, respectively.7.1 A Lower bound on sample complexityLet M0 be as de�ned in the proof of Item 2 in Proposition 4. Recall that M0 has the property thatthere are no edges (in Gn) between pairs of vertices that both belong to M0 but are not matched toeach other (in M0). By possibly dropping edges from M0 we can obtain a matching M00 so that jM00jis even and of size 2� � 2n (recall that � = O(n�3=2)). Using M00 we de�ne two families of functions.A function in each of the two families is determined by a partition of M00 into two sets, A and B,of equal size.1. A function f in the �rst family is de�ned as follows� For every (v; u) 2 A, de�ne f(v) = 1 and f(u) = 0.� For every (v; u) 2 B, de�ne f(v) = 0 and f(u) = 1.� For x with w(x) � k, for which f has not been de�ned, de�ne f(x) = 1.� For x with w(x) � k � 1, for which f has not been de�ned, de�ne f(x) = 0.2. A function f in the second family is de�ned as follows� For every (v; u) 2 A, de�ne f(v) = 1 and f(u) = 1.� For every (v; u) 2 B, de�ne f(v) = 0 and f(u) = 0.� For x's on which f has not been de�ned, de�ne f(x) as in the �rst family.It is easy to see that every function in the second family is monotone, whereas for every functionf in the �rst family �M(f) = jBj=2n = �. Theorem 5 is established by showing that an algorithmwhich obtains o(pjBj) random examples cannot distinguish a function uniformly selected in the21

�rst family (which needs to be rejected with probability at least 2=3) from a function uniformlyselected in the second family (which needs to be accepted with probability at least 2=3). That is,we show that the statistical distance between two such samples is too small.Claim 20 The statistical di�erence between the distributions induced by the following two randomprocesses is bounded above by �m2 � � jM00j22n . The �rst process (resp., second process) is de�ne as follows� Uniformly select a function f in the �rst (resp., second) family.� Uniformly and independently select m strings, x1; :::; xm, in f0; 1gn.� Output (x1; f(x1)); :::; (xm; f(xm)).Proof: The randomness in both processes amounts to the choice of B (uniform among all (jM00j=2)-subsets of M00) and the uniform choice of the sequence of xi's. The processes di�er only in thelabelings of the xi's which are matched by M00, yet for u (resp., v) so that (u; v) 2 M00 the label of u(resp., v) is uniformly distributed in both processes. The statistical di�erence is due merely to thecase in which for some i; j the pair (xi; xj) resides in M00. The probability of this event is boundedby �m2 � times the probability that a speci�c pair (xi; xj) resides in M00. The latter probability equalsjM00j2n � 2�n. 2Conclusion. By the above claim, m < 2n=p3jM00j implies that the statistical di�erence betweenthese processes is less than m22 � jM00j22n < 1=6 and thus an algorithm utilizing m queries will fail towork for the parameter � = jBj=2n. Theorem 5 follows.7.2 A matching algorithmThe algorithm consists of merely emulating Algorithm 1. That is, the algorithm is given m def=O(p2n=�) uniformly selected examples and tries to �nd a violating pair as in Step 3 of Algorithm 1.We assume � > n4 � 2�n, or else the algorithm sets m = O(2n).Algorithm 4: Input n; � and (x1; f(x1)); :::; (xm ; f(xm)).1. Place all (xj ; f(xj))'s on a heap arranged according to any ordering on f0; 1gn.2. For j = 1; :::;m and i = 1; :::; n, try to retrieve from the heap the value y def= xj � 0i�110n�i.If successful then consider the values xj; y; f(xj); f(y) and in case they demonstrate that f isnot monotone then reject.If all iterations were completed without rejecting then accept.Analysis. Clearly, Algorithm 4 always accepts a monotone function, and can be implementedin time poly(n) � m. Using a Birthday Paradox argument, we show that for the above choice ofm = O(p2n=�), Algorithm 4 indeed rejects �-far from monotone functions with high probability.We merely need to show the following.Lemma 21 There exists a constant c so that the following holds. If m � c � p2n=�M(f) and ifthe xi's are uniformly and independently selected in f0; 1gn then Algorithm 4 rejects the functionf with probability at least 2=3. 22

Proof: We consider the sets U and �(f), as de�ned in the proof of Theorem 2 (see Eq. (2)and Eq. (3), respectively). By Theorem 2, we have j�(f)j � �M(f)n � jUj = �M(f) � 2�(n+1). Ourgoal is to lower bound the probability that the m-sample contains a pair in �(f). Towards thisend, we partition the sample into two equal parts, denoted x(1); :::; x(m=2) and y(1); :::; y(m=2), Fori; j 2 f1; :::;m=2g, we de�ne a 0-1 random variable �i;j so that �i;j = 1 if (x(i); y(j)) 2 �(f)and �i;j = 0 otherwise. Clearly, the �i;j's are identically distributed and we are interested in theprobability that at least one of them equals 1 (equiv., their sum is positive). Note that the �i;j'sare dependent random variables, but they are almost pairwise independent as shown below. We�rst show that the expected value of their sum is at least c2=8. Below, X and Y are independentrandom variables uniformly distributed over f0; 1gn.� def= Exp[�i;j] = PrX;Y [(X;Y) 2 �(f)] (14)= X(x;y)2�(f)PrX;Y [X = x & Y = y]= j�(f)j � �2�n�2 � �M(f) � 2�(n+1)Thus, Exp[Pi;j �i;j] � (m=2)2 ��M(f)2�(n+1) � c2=8, which for su�ciently large value of the constantc yields a big constant. It thus come at little suprise that the probability that Pi;j �i;j = 0 is verysmall. Details follows.Let �i;j def= �i;j � �. Using Chebishev's Inequality we havePr[Xi;j �i;j = 0] � Pr24������Xi;j �i;j������ � (m=2)2 � �35� Pi;j Exp[�2i;j](m=2)4 � �2 + 2 � Pi;j 6=k Exp[�i;j�i;k](m=2)4 � �2using Exp[�i;j�i0;j0] = Exp[�i;j] � Exp[�i0;j0] = 0, for every 4-tuple satisfying i 6= i0 and j 6= j0. The�rst term above is bounded byPi;j Exp[�2i;j](m=2)4 � �2 = Pi;j Exp[�i;j](m=2)4 � �2 = 1(m=2)2 � � � 8c2To bound the second term, we let X, Y and Z be independent random variables uniformly dis-tributed over f0; 1gn, and useXi;j 6=kExp[�i;j�i;k] � Xi;j 6=kExp[�i;j�i;k]= (m=2)3 � PrX;Y;Z [(X;Y) 2 �(f) & (X;Z) 2 �(f)]� (m=2)3 � jf(x; y; z) : (x; y) 2 �(f) & (x; z) 2 Ugj � �2�n�3� (m=2)3 � (j�(f)j � n) � 2�3n= (m=2)3 � � � n � 2�nCombining all the above, we getPr[Xi;j �i;j = 0] � 8c2 + 2 � (m=2)3 � � � n � 2�n(m=2)4�2� 8c2 + 8 � n � 2�ncp2n=� � �2�n23

Using � � n22�n, the second term is bounded by 8=c, and the lemma follows (for c � 25). 2AcknowledgmentsWe would like to thank Dan Kleitmann and Michael Krivilevich for helpful discussions. In partic-ular, Proposition 13 is due to Michael Krivilevich.References[1] N. Alon. On the density of sets of vectors. Discrete Mathematics, 46:199{202, 1983.[2] D. Angluin. Queries and concept learning. Machine Learning, 2(4):319{342, April 1988.[3] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof veri�cation and intractabilityof approximation problems. JACM, 45(3):501{555, 1998.[4] S. Arora and S. Safra. Probabilistic checkable proofs: A new characterization of NP. JACM,45(1):70{122, 1998.[5] S. Arora and S. Sudan. Improved low degree testing and its applications. In Proceedings ofSTOC97, pages 485{495, 1997.[6] L. Babai, L. Fortnow, L. Levin, and M. Szegedy. Checking computations in polylogarithmictime. In Proceedings of STOC91, pages 21{31, 1991.[7] L. Babai, L. Fortnow, and C. Lund. Non-deterministic exponential time has two-prover inter-active protocols. Computational Complexity, 1(1):3{40, 1991.[8] M. Bellare, D. Coppersmith, J. H�astad, M. Kiwi, and M. Sudan. Linearity testing in charac-teristic two. In Proceedings of FOCS95, pages 432{441, 1995.[9] M. Bellare, O. Goldreich, and M. Sudan. Free bits, PCPs and non-approximability { towardstight results. SIAM Journal on Computing, 27(3):804{915, 1998.[10] M. Bellare, S. Goldwasser, C. Lund, and A. Russell. E�cient probabilistically checkable proofsand applications to approximation. In Proceedings of STOC93, pages 294{304, 1993.[11] M. Bellare and M. Sudan. Improved non-approximability results. In Proceedings of STOC94,pages 184{193, 1994.[12] A. Blum, C. Burch, and J. Langford. On learning monotone Boolean functions. In Proceedingsof FOCS98, 1998.[13] M. Blum, M. Luby, and R. Rubinfeld. Self-testing/correcting with applications to numericalproblems. JACM, 47:549{595, 1993.[14] B. Bollob�as. Combinatorics. Cambridge University Press, 1986.[15] J. Bourgain, J. Kahn, G. Kalai, Y. Katznelson, and N. Linial. The inuence of variables inproduct spaces. Israel Journal of Mathematics, 77:55{64, 1992.[16] Y. Doddis, E. Lehman, and S. Raskhodnikova. Private Communication, 1999.24

[17] F. Ergun, S. Kannan, S. R. Kumar, R. Rubinfeld, and M. Viswanathan. Spot-checkers. InProceedings of STOC98, pages 259{268, 1998.[18] U. Feige, S. Goldwasser, L. Lov�asz, S. Safra, and M. Szegedy. Approximating clique is almostNP-complete. JACM, 43(2):268{292, 1996.[19] P. Frankl. The shifting technique in extremal set theory. Surveys in Combinatorics, 1987.London Mathematical Society Notes in Mathematics 123, Cambridge University Press.[20] P. Gemmell, R. Lipton, R. Rubinfeld, M. Sudan, and A. Wigderson. Self-testing/correctingfor polynomials and for approximate functions. In Proceedings of STOC91, pages 32{42, 1991.[21] O. Goldreich, S. Goldwasser, E. Lehman, and D. Ron. Testing monotonicity. In Proceedingsof FOCS98, 1998.[22] O. Goldreich, S. Goldwasser, and D. Ron. Property testing and its connection to learning andapproximation. JACM, 45(4):653{750, 1998. An extended abstract appeared in the proceedingsof FOCS96.[23] O. Goldreich and D. Ron. Property testing in bounded degree graphs. In Proceedings ofSTOC97, pages 406{415, 1997.[24] O. Goldreich and D. Ron. A sublinear bipartite tester for bounded degree graphs. In Proceed-ings of STOC98, pages 289{298, 1998. To appear in Combinatorica, 1999.[25] J. H�astad. Testing of the long code and hardness for clique. In Proceedings of STOC96, pages11{19, 1996.[26] J. H�astad. Getting optimal in-approximability results. In Proceedings of STOC97, pages 1{10,1997.[27] M. Kearns, M. Li, and L. Valiant. Learning boolean formulae. JACM, 41(6):1298{1328, 1994.[28] M. Kearns and L. Valiant. Cryptographic limitations on learning boolean formulae and �niteautomata. JACM, 41(1):67{95, 1994.[29] M. Kiwi. Probabilistically Checkable Proofs and the Testing of Hadamard-like Codes. PhDthesis, MIT, 1996.[30] R. Raz and S. Safra. A sub-constant error-probability low-degree test, and a sub-constanterror-probability PCP characterization of NP. In Proceedings of STOC97, pages 475{484,1997.[31] R. Rubinfeld and M. Sudan. Robust characterization of polynomials with applications toprogram testing. SIAM Journal on Computing, 25(2):252{271, 1996.[32] L. Trevisan. Recycling queries in pcps and in linearity tests. In Proceedings of STOC98, pages299{308, 1998.
25

