
Pseudorandom Generators: A PrimerOded GoldreichDepartment of Computer Science and Applied MathematicsWeizmann Institute of Science, Rehovot, Israel.July 1, 2008

Contents
Preface 11 Introduction 31.1 The Third Theory of Randomness : : : : : : : : : : : : : : : : : : : 41.2 Organization : 61.3 Standard Conventions : 61.4 The General Paradigm : 81.4.1 Three fundamental aspects : : : : : : : : : : : : : : : : : : : 81.4.2 Notational conventions : 91.4.3 Some instantiations of the general paradigm : : : : : : : : : : 102 General-Purpose Pseudorandom Generators 112.1 The Basic De�nition : 112.2 The Archetypical Application : 132.3 Computational Indistinguishability : : : : : : : : : : : : : : : : : : : 152.3.1 The general formulation : 152.3.2 Relation to statistical closeness : : : : : : : : : : : : : : : : : 162.3.3 Indistinguishability by Multiple Samples : : : : : : : : : : : : 172.4 Amplifying the stretch function : 202.5 Constructions : 212.5.1 Background: one-way functions : : : : : : : : : : : : : : : : : 212.5.2 A simple construction : 232.5.3 An alternative presentation : : : : : : : : : : : : : : : : : : : 232.5.4 A necessary and su�cient condition : : : : : : : : : : : : : : 252.6 Non-uniformly strong pseudorandom generators : : : : : : : : : : : : 252.7 Stronger (Uniform-Complexity) Notions : : : : : : : : : : : : : : : : 272.7.1 Fooling stronger distinguishers : : : : : : : : : : : : : : : : : 272.7.2 Pseudorandom Functions : 282.8 Conceptual re
ections : 303 Derandomization of Time-Complexity Classes 323.1 De�ning Canonical Derandomizers : : : : : : : : : : : : : : : : : : : 323.2 Constructing Canonical Derandomizers : : : : : : : : : : : : : : : : : 353.2.1 The construction and its consequences : : : : : : : : : : : : : 35I

3.2.2 Analyzing the construction (i.e., proof of Theorem 3.5) : : : : 373.2.3 Construction 3.4 as a general framework : : : : : : : : : : : : 393.3 Re
ections Regarding Derandomization : : : : : : : : : : : : : : : : 404 Space-Bounded Distinguishers 424.1 De�nitional Issues : 424.2 Two Constructions : 454.2.1 Sketches of the proofs of Theorems 4.2 and 4.3 : : : : : : : : 464.2.2 Derandomization of space-complexity classes : : : : : : : : : 495 Special Purpose Generators 525.1 Pairwise-Independence Generators : : : : : : : : : : : : : : : : : : : 535.1.1 Constructions : 535.1.2 Applications (a brief review) : : : : : : : : : : : : : : : : : : 555.2 Small-Bias Generators : 565.2.1 Constructions : 575.2.2 Applications (a brief review) : : : : : : : : : : : : : : : : : : 585.2.3 Generalization : 595.3 Random Walks on Expanders : 605.3.1 Background: expanders and random walks on them : : : : : 605.3.2 The generator : 62Notes 63Bibliography 67

II

Preface Indistinguishable things are identical.1G.W. Leibniz (1646{1714)This primer to the theory of pseudorandomness is based on a fresh view at thequestion of randomness, which has been taken by complexity theory. Underlyingthis view is the postulate that a distribution is random (or rather pseudorandom)if it cannot be told apart from the uniform distribution by any e�cient procedure.Thus, (pseudo)randomness is not an inherent property of an object, but is rathersubjective to the observer.At the extreme, this approach says that the question of whether the worldis deterministic or allows for some free choice (which may be viewed as sources ofrandomness) is irrelevant. What matters is how the world looks to us and to variouscomputationally bounded devices. That is, if some phenomenon looks random thenwe may just treat it as if it were random. Likewise, if we can generate sequencesthat cannot be told apart from the uniform distribution by any e�cient procedure,then we can use these sequences in any e�cient randomized application instead ofthe ideal coin tosses that are postulated in the design of this application.The pivot of the foregoing approach is the notion of computational indistin-guishability, which refers to pairs of distributions that cannot be told apart bye�cient procedures. The most fundamental incarnation of this notion associatese�cient procedures with polynomial-time algorithms, but other incarnations thatrestrict attention to other classes of distinguishing procedures also lead to impor-tant insights. Likewise, the e�ective generation of pseudorandom objects, whichis of major concern, is actually a general paradigm with numerous useful incar-nations (which di�er in the computational complexity limitations imposed on thegeneration process).Pseudorandom generators are e�cient deterministic procedures that stretchshort random seeds into longer pseudorandom sequences. Thus, a generic formula-tion of pseudorandom generators consists of specifying three fundamental aspects {the stretch measure of the generators; the class of distinguishers that the generators1This is Leibniz's Principle of Identity of Indiscernibles. Leibniz admits that counterexamplesto this principle are conceivable but will not occur in real life because God is much too benev-olent. We thus believe that he would have agreed to the theme of this text, which asserts thatindistinguishable things should be considered as if they were identical.1

are supposed to fool (i.e., the algorithms with respect to which the computationalindistinguishability requirement should hold); and the resources that the generatorsare allowed to use (i.e., their own computational complexity).The archetypical case of pseudorandom generators refers to e�cient generatorsthat fool any feasible procedure; that is, the potential distinguisher is any proba-bilistic polynomial-time algorithm, which may be more complex than the generatoritself (which, in turn, has time-complexity bounded by a �xed polynomial). Thesegenerators are called general-purpose, because their output can be safely used inany e�cient application. Such (general-purpose) pseudorandom generators exist ifand only if one-way functions exist.In contrast to such (general-purpose) pseudorandom generators, for the pur-pose of derandomization a relaxed de�nition of pseudorandom generators su�ces.In particular, for such a purpose, one may use pseudorandom generators that aresomewhat more complex than the potential distinguisher (which represents a ran-domized algorithm to be derandomized). Following this approach, adequate pseu-dorandom generators yield a full derandomization of BPP (i.e., BPP = P), andsuch generators can be constructed based on the assumption that some problemsin E have no sub-exponential size circuits.It is also bene�cial to consider pseudorandom generators that fool space-boundeddistinguishers and generators that exhibit some limited random behavior (e.g., out-putting a pair-wise independent or a small-bias sequence). Such (special-purpose)pseudorandom generators can be constructed without relying on any computationalcomplexity assumption.Note: The study of pseudorandom generators is part of complexity theory (cf,e.g., [19]); in fact, the current primer is an abbreviated (and somewhat revised)version of [19, Chap. 8].

2

Chapter 1IntroductionThe \question of randomness" has been puzzling thinkers for ages. Aspects of thisquestion range from philosophical doubts regarding the existence of randomness(in the world) and re
ections on the meaning of randomness (in our thinking) totechnical questions regarding the measuring of randomness. Among many otherthings, the second half of the 20th century has witnessed the development of threetheories of randomness, which address di�erent aspects of the foregoing question.The �rst theory (cf., [13]), initiated by Shannon [51], views randomness as rep-resenting lack of information, which in turn is modeled by a probability distributionon the possible values of the missing data. Indeed, Shannon's Information Theoryis rooted in probability theory. Information Theory is focused at distributions thatare not perfectly random (i.e., encode information in a redundant manner), andcharacterizes perfect randomness as the extreme case in which the information con-tents is maximized (i.e., in this case there is no redundancy at all). Thus, perfectrandomness is associated with a unique distribution { the uniform one. In par-ticular, by de�nition, one cannot (deterministically) generate such perfect randomstrings from shorter random seeds.The second theory (cf., [33, 34]), initiated by Solomonov [52], Kolmogorov [30],and Chaitin [11], views randomness as representing lack of structure, which in turnis re
ected in the length of the most succinct (e�ective) description of the object.The notion of a succinct and e�ective description refers to a process that trans-forms the succinct description to an explicit one. Indeed, this theory of random-ness is rooted in computability theory and speci�cally in the notion of a universallanguage (equiv., universal machine or computing device). It measures the ran-domness (or complexity) of objects in terms of the shortest program (for a �xeduniversal machine) that generates the object.1 Like Shannon's theory, KolmogorovComplexity is quantitative and perfect random objects appear as an extreme case.However, following Kolmogorov's approach one may say that a single object, ratherthan a distribution over objects, is perfectly random. Still, by de�nition, one can-not (deterministically) generate strings of high Kolmogorov Complexity from short1We mention that Kolmogorov's approach is inherently intractable (i.e., Kolmogorov Com-plexity is uncomputable). 3

random seeds.1.1 The Third Theory of RandomnessThe third theory, which is the focus of the current primer, views randomness asan e�ect on an observer and thus as being relative to the observer's abilities (ofanalysis). The observer's abilities are captured by its computational abilities (i.e.,the complexity of the processes that the observer may apply), and hence this the-ory of randomness is rooted in complexity theory. This theory of randomness isexplicitly aimed at providing a notion of randomness that, unlike the previous twonotions, allows for an e�cient (and deterministic) generation of random stringsfrom shorter random seeds. The heart of this theory is the suggestion to view ob-jects as equal if they cannot be told apart by any e�cient procedure. Consequently,a distribution that cannot be e�ciently distinguished from the uniform distributionwill be considered random (or rather called pseudorandom). Thus, randomness isnot an \inherent" property of objects (or distributions) but is rather relative toan observer (and its computational abilities). To illustrate this perspective, let usconsider the following mental experiment.Alice and Bob play \head or tail" in one of the following four ways. Ineach of them, Alice
ips an unbiased coin and Bob is asked to guess itsoutcome before the coin hits the
oor. The alternative ways di�er bythe knowledge Bob has before making his guess.In the �rst alternative, Bob has to announce his guess before Alice
ipsthe coin. Clearly, in this case Bob wins with probability 1=2.In the second alternative, Bob has to announce his guess while the coinis spinning in the air. Although the outcome is determined in principleby the motion of the coin, Bob does not have accurate information onthe motion. Thus we believe that, also in this case, Bob wins withprobability 1=2.The third alternative is similar to the second, except that Bob hasat his disposal sophisticated equipment capable of providing accurateinformation on the coin's motion as well as on the environment e�ectingthe outcome. However, Bob cannot process this information in time toimprove his guess.In the fourth alternative, Bob's recording equipment is directly con-nected to a powerful computer programmed to solve the motion equa-tions and output a prediction. It is conceivable that in such a case Bobcan substantially improve his guess of the outcome of the coin.We conclude that the randomness of an event is relative to the information andcomputing resources at our disposal. At the extreme, even events that are fullydetermined by public information may be perceived as random events by an ob-server that lacks the relevant information and/or the ability to process it. Our4

focus will be on the lack of su�cient processing power, and not on the lack of su�-cient information. The lack of su�cient processing power may be due either to theformidable amount of computation required (for analyzing the event in question)or to the fact that the observer happens to be very limited.A natural notion of pseudorandomness arises { a distribution is pseudorandomif no e�cient procedure can distinguish it from the uniform distribution, where ef-�cient procedures are associated with (probabilistic) polynomial-time algorithms.This speci�c notion of pseudorandomness is indeed the most fundamental one, andmuch of this text is focused on it. Weaker notions of pseudorandomness arise aswell { they refer to indistinguishability by weaker procedures such as space-boundedalgorithms, constant-depth circuits, etc. Stretching this approach even further onemay consider algorithms that are designed on purpose so not to distinguish evenweaker forms of \pseudorandom" sequences from random ones (where such algo-rithms arise naturally when trying to convert some natural randomized algorithminto deterministic ones; see Chapter 5).The foregoing discussion has focused at one aspect of the pseudorandomnessquestion { the resources or type of the observer (or potential distinguisher). An-other important aspect is whether such pseudorandom sequences can be generatedfrom much shorter ones, and at what cost (or complexity). A natural approachrequires the generation process to be e�cient, and furthermore to be �xed be-fore the speci�c observer is determined. Coupled with the aforementioned strongnotion of pseudorandomness, this yields the archetypical notion of pseudorandomgenerators { those operating in (�xed) polynomial-time and producing sequencesthat are indistinguishable from uniform ones by any polynomial-time observer. Inparticular, this means that the distinguisher is allowed more resources than thegenerator. Such (general-purpose) pseudorandom generators (discussed in Chap-ter 2) allow to decrease the randomness complexity of any e�cient application,and are thus of great relevance to randomized algorithms and cryptography. Theterm general-purpose is meant to emphasize the fact that the same generator isgood for all e�cient applications, including those that consume more resourcesthan the generator itself.Although general-purpose pseudorandom generators are very appealing, thereare important reasons for considering also the opposite relation between the com-plexities of the generation and distinguishing tasks; that is, allowing the pseudo-random generator to use more resources (e.g., time or space) than the observer ittries to fool. This alternative is natural in the context of derandomization (i.e.,converting randomized algorithms to deterministic ones), where the crucial step isreplacing the random input of an algorithm by a pseudorandom input, which in turncan be generated based on a much shorter random seed. In particular, when de-randomizing a probabilistic polynomial-time algorithm, the observer (to be fooledby the generator) is a �xed algorithm. In this case employing a more complexgenerator merely means that the complexity of the derived deterministic algorithmis dominated by the complexity of the generator (rather than by the complexity ofthe original randomized algorithm). Needless to say, allowing the generator to usemore resources than the observer that it tries to fool makes the task of designing5

pseudorandom generators potentially easier, and enables derandomization resultsthat are not known when using general-purpose pseudorandom generators. Theusefulness of this approach is demonstrated in Chapters 3 through 5.We note that the goal of all types of pseudorandom generators is to allow thegeneration of \su�ciently random" sequences based on much shorter random seeds.Thus, pseudorandom generators o�er signi�cant saving in the randomness complex-ity of various applications (and in some cases eliminating randomness altogether).Saving on randomness is valuable because many applications are severely limited intheir ability to generate or obtain truly random bits. Furthermore, typically, gener-ating truly random bits is signi�cantly more expensive than standard computationsteps. Thus, randomness is a computational resource that should be considered ontop of time complexity (analogously to the consideration of space complexity).1.2 OrganizationWe start by presenting some standard conventions (see Section 1.3). Next, inSection 1.4, we present the general paradigm underlying the various notions ofpseudorandom generators. The archetypical case of general-purpose pseudoran-dom generators is presented in Chapter 2. We then turn to alternative notionsof pseudorandom generators: generators that su�ce for the derandomization ofcomplexity classes such as BPP are discussed in Chapter 3; pseudorandom gen-erators in the domain of space-bounded computations are discussed in Chapter 4;and special-purpose generators are discussed in Chapter 5.The text is organized to facilitate the possibility of focusing on the notion ofgeneral-purpose pseudorandom generators (presented in Chapter 2). This notionis most relevant to computer science at large. Furthermore, the technical detailspresented in Chapter 2 are relatively simpler than those presented in Chapters 3and 4.The current primer is an abbreviated (and somewhat revised) version of [19,Chap. 8]. Additional connections between randomness and computation are dis-cussed in other chapters of [19].Preliminaries. We assume a basic familiarity with elementary probability theoryand randomized algorithms (see, e.g., [38]). In particular, standard conventionsregarding random variables (presented next) will be extensively used.1.3 Standard ConventionsThroughout the entire text we refer only to discrete probability distributions.Speci�cally, the underlying probability space consists of the set of all strings of acertain length `, taken with uniform probability distribution. That is, the samplespace is the set of all `-bit long strings, and each such string is assigned proba-bility measure 2�`. Traditionally, random variables are de�ned as functions fromthe sample space to the reals. Abusing the traditional terminology, we use the6

term random variable also when referring to functions mapping the sample spaceinto the set of binary strings. We often do not specify the probability space, butrather talk directly about random variables. For example, we may say that X is arandom variable assigned values in the set of all strings such that Pr[X=00] = 14and Pr[X = 111] = 34 . (Such a random variable may be de�ned over the samplespace f0; 1g2 such that X(11) = 00 and X(00) = X(01) = X(10) = 111.) Oneimportant case of a random variable is the output of a randomized process (e.g., aprobabilistic polynomial-time algorithm).All our probabilistic statements refer to random variables that are de�ned be-forehand. Typically, we may write Pr[f(X) = 1], where X is a random variablede�ned beforehand (and f is a function). An important convention is that all oc-currences of the same symbol in a probabilistic statement refer to the same (unique)random variable. Hence, if B(�; �) is a Boolean expression depending on two vari-ables, and X is a random variable then Pr[B(X;X)] denotes the probability thatB(x; x) holds when x is chosen with probability Pr[X=x]. For example, for everyrandom variableX , we have Pr[X=X] = 1. We stress that if we wish to discuss theprobability that B(x; y) holds when x and y are chosen independently with identi-cal probability distribution, then we will de�ne two independent random variableseach with the same probability distribution. Hence, if X and Y are two indepen-dent random variables then Pr[B(X;Y)] denotes the probability that B(x; y) holdswhen the pair (x; y) is chosen with probability Pr[X=x] � Pr[Y =y]. For example,for every two independent random variables, X and Y , we have Pr[X = Y] = 1only if both X and Y are trivial (i.e., assign the entire probability mass to a singlestring).Throughout the entire text, Un denotes a random variable uniformly distributedover the set of all strings of length n. Namely, Pr[Un=�] equals 2�n if � 2 f0; 1gnand equals 0 otherwise. We often refer to the distribution of Un as the uniformdistribution (neglecting to qualify that it is uniform over f0; 1gn). In addition, weoccasionally use random variables (arbitrarily) distributed over f0; 1gn or f0; 1g`(n),for some function ` :N!N . Such random variables are typically denoted by Xn,Yn, Zn, etc. We stress that in some cases Xn is distributed over f0; 1gn, whereas inother cases it is distributed over f0; 1g`(n), for some function ` (which is typically apolynomial). We often talk about probability ensembles, which are in�nite sequenceof random variables fXngn2N such that each Xn ranges over strings of lengthbounded by a polynomial in n.Statistical di�erence. The statistical distance (a.k.a variation distance) betweenthe random variables X and Y is de�ned as12 �Xv jPr[X = v]� Pr[Y = v]j = maxS fPr[X 2 S]� Pr[Y 2 S]g: (1.1)We say that X is �-close (resp., �-far) to Y if the statistical distance between themis at most (resp., at least) �. 7

1.4 The General ParadigmWe advocate a uni�ed view of various notions of pseudorandom generators. Thatis, we view these notions as incarnations of a general abstract paradigm, to be pre-sented in this section. A reader who is interested only in one of these incarnations,may still use this section as a general motivation towards the speci�c de�nitionsused later. On the other hand, some readers may prefer reading this section afterstudying one of the speci�c incarnations.
Gen

seed output sequence

a truly random sequence
?Figure 1.1: Pseudorandom generators { an illustration.1.4.1 Three fundamental aspectsA generic formulation of pseudorandom generators consists of specifying three fun-damental aspects { the stretch measure of the generators; the class of distinguishersthat the generators are supposed to fool (i.e., the algorithms with respect to whichthe computational indistinguishability requirement should hold); and the resourcesthat the generators are allowed to use (i.e., their own computational complexity).Let us elaborate.Stretch function: A necessary requirement from any notion of a pseudorandomgenerator is that the generator is a deterministic algorithm that stretches shortstrings, called seeds, into longer output sequences.2 Speci�cally, this algorithmstretches k-bit long seeds into `(k)-bit long outputs, where `(k) > k. The function` : N ! N is called the stretch measure (or stretch function) of the generator. Insome settings the speci�c stretch measure is immaterial (e.g., see Section 2.4).Computational Indistinguishability: A necessary requirement from any no-tion of a pseudorandom generator is that the generator \fools" some non-trivialalgorithms. That is, it is required that any algorithm taken from a predeterminedclass of interest cannot distinguish the output produced by the generator (when thegenerator is fed with a uniformly chosen seed) from a uniformly chosen sequence.2Indeed, the seed represents the randomness that is used in the generation of the outputsequences; that is, the randomized generation process is decoupled into a deterministic algorithmand a random seed. This decoupling facilitates the study of such processes.8

Thus, we consider a class D of distinguishers (e.g., probabilistic polynomial-timealgorithms) and a class F of (threshold) functions (e.g., reciprocals of positive poly-nomials), and require that the generator G satis�es the following: For any D 2 D,any f 2 F , and for all su�ciently large k's it holds thatjPr[D(G(Uk)) = 1] � Pr[D(U`(k)) = 1] j < f(k) ; (1.2)where Un denotes the uniform distribution over f0; 1gn, and the probability is takenover Uk (resp., U`(k)) as well as over the coin tosses of algorithm D in case it isprobabilistic. The reader may think of such a distinguisher, D, as of an observerthat tries to tell whether the \tested string" is a random output of the generator(i.e., distributed as G(Uk)) or is a truly random string (i.e., distributed as U`(k)).The condition in Eq. (1.2) requires that D cannot make a meaningful decision;that is, ignoring a negligible di�erence (represented by f(k)), D's verdict is thesame in both cases.3 The archetypical choice is that D is the set of all probabilisticpolynomial-time algorithms, and F is the set of all functions that are the reciprocalof some positive polynomial.Complexity of Generation: This aspect refers to the complexity of the gen-erator itself, when viewed as an algorithm. The archetypical choice is that thegenerator has to work in polynomial-time (i.e., make a number of steps that ispolynomial in the length of its input { the seed). Other choices will be discussedas well. We note that placing no computational requirements on the generator(or, alternatively, imposing very mild requirements such as upper-bounding therunning-time by a double-exponential function), yields \generators" that can foolany subexponential-size circuit family.41.4.2 Notational conventionsWe will consistently use k for denoting the length of the seed of a pseudorandomgenerator, and `(k) for denoting the length of the corresponding output. In somecases, this makes our presentation a little more cumbersome (since a more naturalpresentation may specify some other parameters and let the seed-length be a func-tion of the latter). However, our choice has the advantage of focusing attention onthe fundamental parameter of pseudorandom generation process { the length of therandom seed. We note that whenever a pseudorandom generator is used to \de-randomize" an algorithm, n will denote the length of the input to this algorithm,and k will be selected as a function of n.3The class of threshold functions F should be viewed as determining the class of noticeableprobabilities (as a function of k). Thus, we require certain functions (i.e., those presented at thel.h.s of Eq. (1.2)) to be smaller than any noticeable function on all but �nitely many integers. Wecall the former functions negligible. Note that a function may be neither noticeable nor negligible(e.g., it may be smaller than any noticeable function on in�nitely many values and yet larger thansome noticeable function on in�nitely many other values).4This fact can be proved via the probabilistic method; see [19, Exer. 8.1].9

1.4.3 Some instantiations of the general paradigmTwo important instantiations of the notion of pseudorandom generators relate topolynomial-time distinguishers.1. General-purpose pseudorandom generators correspond to the case that thegenerator itself runs in polynomial-time and needs to withstand any prob-abilistic polynomial-time distinguisher, including distinguishers that run formore time than the generator. Thus, the same generator may be used safelyin any e�cient application. (This notion is treated in Chapter 2.)2. In contrast, pseudorandom generators intended for derandomization may runmore time than the distinguisher, which is viewed as a �xed circuit havingsize that is upper-bounded by a �xed polynomial. (This notion is treated inChapter 3.)In addition, the general paradigm may be instantiated by focusing on the space-complexity of the potential distinguishers (and the generator), rather than on theirtime-complexity. Furthermore, one may also consider distinguishers that merelyre
ect probabilistic properties such as pair-wise independence, small-bias, and hit-ting frequency.

10

Chapter 2General-PurposePseudorandom GeneratorsRandomness is playing an increasingly important role in computation: It is fre-quently used in the design of sequential, parallel and distributed algorithms, andit is of course central to cryptography. Whereas it is convenient to design such al-gorithms making free use of randomness, it is also desirable to minimize the usageof randomness in real implementations. Thus, general-purpose pseudorandom gen-erators (as de�ned next) are a key ingredient in an \algorithmic tool-box" { theyprovide an automatic compiler of programs written with free usage of randomnessinto programs that make an economical use of randomness.Organization of this chapter. Since this is a relatively long chapter, a shortroad-map seems in place. In Section 2.1 we provide the basic de�nition of general-purpose pseudorandom generators, and in Section 2.2 we describe their archetypicalapplication (which was eluded to in the former paragraph). In Section 2.3 we pro-vide a wider perspective on the notion of computational indistinguishability thatunderlies the basic de�nition, and in Section 2.4 we justify the little concern (shownin Section 2.1) regarding the speci�c stretch function. In Section 2.5 we addressthe existence of general-purpose pseudorandom generators. In Section 2.6 we mo-tivate and discuss a non-uniform version of computational indistinguishability. Weconclude by reviewing other variants and re
ecting on various conceptual aspectsof the notions discussed in this chapter (see Sections 2.7 and 2.8, resp.).2.1 The Basic De�nitionLoosely speaking, general-purpose pseudorandom generators are e�cient determin-istic programs that expand short randomly selected seeds into longer pseudorandombit sequences, where the latter are de�ned as computationally indistinguishablefrom truly random sequences by any e�cient algorithm. Identifying e�ciency withpolynomial-time operation, this means that the generator (being a �xed algorithm)11

works within some �xed polynomial-time, whereas the distinguisher may be anyalgorithm that runs in polynomial-time. Thus, the distinguisher is potentially morecomplex than the generator; for example, the distinguisher may run in time thatis cubic in the running-time of the generator. Furthermore, to facilitate the de-velopment of this theory, we allow the distinguisher to be probabilistic (whereasthe generator remains deterministic as stated previously). We require that suchdistinguishers cannot tell the output of the generator from a truly random string ofsimilar length, or rather that the di�erence that such distinguishers may detect (or\sense") is negligible. Here a negligible function is a function that vanishes fasterthan the reciprocal of any positive polynomial.1De�nition 2.1 (general-purpose pseudorandom generator): A deterministic polynomial-time algorithm G is called a pseudorandom generator if there exists a stretch func-tion, ` : N!N (satisfying `(k) > k for all k), such that for any probabilisticpolynomial-time algorithm D, for any positive polynomial p, and for all su�cientlylarge k's it holds thatjPr[D(G(Uk)) = 1] � Pr[D(U`(k)) = 1] j < 1p(k) (2.1)where Un denotes the uniform distribution over f0; 1gn and the probability is takenover Uk (resp., U`(k)) as well as over the internal coin tosses of D.Thus, De�nition 2.1 is derived from the generic framework (presented in Sec-tion 1.4) by taking the class of distinguishers to be the set of all probabilisticpolynomial-time algorithms, and taking the class of (noticeable) threshold functionsto be the set of all functions that are the reciprocals of some positive polynomial.2Indeed, the principles underlying De�nition 2.1 were discussed in Section 1.4 (andwill be further discussed in Section 2.3).We note that De�nition 2.1 does not make any requirement regarding the stretchfunction ` : N!N , except for the generic requirement that `(k) > k for all k.Needless to say, the larger ` is, the more useful the pseudorandom generator is. Ofcourse, ` is upper-bounded by the running-time of the generator (and hence by apolynomial). In Section 2.4 we show that any pseudorandom generator (even onehaving minimal stretch `(k) = k+1) can be used for constructing a pseudorandomgenerator having any desired (polynomial) stretch function. But before doing so, werigorously discuss the \saving in randomness" o�ered by pseudorandom generators,and provide a wider perspective on the notion of computational indistinguishabilitythat underlies De�nition 2.1.1De�nition 2.1 requires that the functions representing the distinguishing gap of certain algo-rithms should be smaller than the reciprocal of any positive polynomial for all but �nitely manyk's, and the former functions are called negligible. The notion of negligible probability is ro-bust in the sense that any event that occurs with negligible probability will occur with negligibleprobability also when the experiment is repeated a \feasible" (i.e., polynomial) number of times.2The latter choice is naturally coupled with the association of e�cient computation withpolynomial-time algorithms: An event that occurs with noticeable probability occurs almostalways when the experiment is repeated a \feasible" (i.e., polynomial) number of times.12

2.2 The Archetypical ApplicationWe note that \pseudo-random number generators" appeared with the �rst com-puters, and have been used ever since for generating random choices (or samples)for various applications. However, typical implementations use generators that arenot pseudorandom according to De�nition 2.1. Instead, at best, these generatorsare shown to pass some ad-hoc statistical test (cf., [29]). We warn that the factthat a \pseudo-random number generator" passes some statistical tests, does notmean that it will pass a new test and that it will be good for a future (untested)application. Needless to say, the approach of subjecting the generator to somead-hoc tests fails to provide general results of the form \for all practical purposesusing the output of the generator is as good as using truly unbiased coin tosses." Incontrast, the approach encompassed in De�nition 2.1 aims at such generality, andin fact is tailored to obtain it: The notion of computational indistinguishability,which underlines De�nition 2.1, covers all possible e�cient applications and guar-antees that for all of them pseudorandom sequences are as good as truly randomones. Indeed, any e�cient randomized algorithm maintains its performance whenits internal coin tosses are substituted by a sequence generated by a pseudorandomgenerator. This substitution is spell-out next.Construction 2.2 (typical application of pseudorandom generators): Let G be apseudorandom generator with stretch function ` :N!N . Let A be a probabilisticpolynomial-time algorithm, and � :N!N denote its randomness complexity. De-note by A(x; r) the output of A on input x and coin tosses sequence r 2 f0; 1g�(jxj).Consider the following randomized algorithm, denoted AG:On input x, set k = k(jxj) to be the smallest integer such that `(k) ��(jxj), uniformly select s 2 f0; 1gk, and output A(x; r), where r is the�(jxj)-bit long pre�x of G(s).That is, AG(x; s) = A(x;G0(s)), for jsj = k(jxj) = argminif`(i) � �(jxj)g, whereG0(s) is the �(jxj)-bit long pre�x of G(s).Thus, using AG instead of A, the randomness complexity is reduced from � to`�1 ��, while (as we show next) it is infeasible to �nd inputs (i.e., x's) on which thenoticeable behavior of AG is di�erent from the one of A. For example, if `(k) = k2,then the randomness complexity is reduced from � to p�. We stress that thepseudorandom generator G is universal; that is, it can be applied to reduce therandomness complexity of any probabilistic polynomial-time algorithm A.Proposition 2.3 Let A, � and G be as in Construction 2.2, and suppose that� : N ! N is 1-1. Then, for every pair of probabilistic polynomial-time algorithms,a �nder F and a tester T , every positive polynomial p and all su�ciently long n'sXx2f0;1gn Pr[F (1n) = x] � j�A;T (x) j < 1p(n) (2.2)13

where �A;T (x) def= Pr[T (x;A(x; U�(jxj))) = 1] � Pr[T (x;AG(x; Uk(jxj))) = 1], andthe probabilities are taken over the Um's as well as over the internal coin tosses ofthe algorithms F and T .Algorithm F represents a potential attempt to �nd an input x on which the outputof AG is distinguishable from the output of A. This \attempt" may be benignas in the case that a user employs algorithm AG on inputs that are generatedby some probabilistic polynomial-time application. However, the attempt mayalso be adversarial as in the case that a user employs algorithm AG on inputsthat are provided by a potentially malicious party. The potential tester, denotedT , represents the potential use of the output of algorithm AG, and captures therequirement that this output be as good as a corresponding output produced by A.Thus, T is given x as well as the corresponding output produced either by AG(x) def=A(x; Uk(jxj)) or by A(x) = A(x; U�(jxj)), and it is required that T cannot tell thedi�erence. In the case that A is a probabilistic polynomial-time decision procedure,this means that it is infeasible to �nd an x on which AG decides incorrectly (i.e.,di�erently than A). In the case that A is a search procedure for some NP-relation,it is infeasible to �nd an x on which AG outputs a wrong solution.Proof Sketch: The proposition is proven by showing that any triple (A;F; T)violating the claim can be converted into an algorithm D that distinguishes theoutput of G from the uniform distribution, in contradiction to the hypothesis. Thekey observation is that for every x 2 f0; 1gn it holds that�A;T (x) = Pr[T (x;A(x; U�(n)))=1]� Pr[T (x;A(x;G0(Uk(n))))=1]; (2.3)where G0(s) is the �(n)-bit long pre�x of G(s). Thus, a method for �nding a stringx such that j�A;T (x)j is large yields a way of distinguishing U`(k(n)) from G(Uk(n));that is, given a sample r 2 f0; 1g`(k(n)) and using such a string x 2 f0; 1gn, thedistinguisher outputs T (x;A(x; r0)), where r0 is the �(n)-bit long pre�x of r. Indeed,we shall show that the violation of Eq. (2.2), which refers to Ex F (1n)[j�A;T (x)j],yields a violation of the hypothesis that G is a pseudorandom generator (by �ndingan adequate string x and using it). This intuitive argument requires a slightlycareful implementation, which is provided next.As a warm-up, consider the following algorithm D. On input r (taken fromeither U`(k(n)) or G(Uk(n))), algorithm D �rst obtains x F (1n), where n can beobtained easily from jrj (because � is 1-1 and 1n 7! �(n) is computable via A).Next, D obtains y = A(x; r0), where r0 is the �(jxj)-bit long pre�x of r. Finally Doutputs T (x; y). Note that D is implementable in probabilistic polynomial-time,and that D(U`(k(n))) � T (Xn; A(Xn; U�(n))) ; where Xn def= F (1n)D(G(Uk(n))) � T (Xn; A(Xn; G0(Uk(n)))) ; where Xn def= F (1n).Using Eq. (2.3), it follows that Pr[D(U`(k(n))) = 1] � Pr[D(G(Uk(n))) = 1] equalsE[�A;T (F (1n))], which implies that E[�A;T (F (1n))] must be negligible (because14

otherwise we derive a contradiction to the hypothesis that G is a pseudoran-dom generator). This yields a weaker version of the proposition asserting thatE[�A;T (F (1n))] is negligible (rather than that E[j�A;T (F (1n))j] is negligible).In order to prove that E[j�A;T (F (1n))j] (rather than to E[�A;T (F (1n))]) isnegligible, we need to modify D a little. Note that the source of trouble is that�A;T (�) may be positive on some x's and negative on others, and thus it may be thecase that E[�A;T (F (1n))] is small (due to cancelations) even if E[j�A;T (F (1n))j]is large. This di�culty can be overcome by determining the sign of �A;T (�) onx = F (1n) and changing the outcome of D accordingly; that is, the modi�ed Dwill output T (x;A(x; r0)) if �A;T (x) > 0 and 1�T (x;A(x; r0)) otherwise. Thus, ineach case, the contribution of x to the distinguishing gap of the modi�ed D will bej�A;T (x)j. We further note that if j�A;T (x)j is small then it does not matter muchwhether we act as in the case of �A;T (x) > 0 or in the case of �A;T (x) � 0. Thus,it su�ces to correctly determine the sign of �A;T (x) in the case that j�A;T (x)jis large, which is certainly a feasible (approximation) task. Details can be foundin [19, Sec. 8.2.2].Conclusion. Although Proposition 2.3 refers to standard probabilistic polynomial-time algorithms, a similar construction and analysis applied to any e�cient ran-domized process (i.e., any e�cient multi-party computation). Any such processpreserves its behavior when replacing its perfect source of randomness (postulatedin its analysis) by a pseudorandom sequence (which may be used in the implemen-tation). Thus, given a pseudorandom generator with a large stretch function, onecan considerably reduce the randomness complexity of any e�cient application.2.3 Computational IndistinguishabilityIn this section we spell-out (and study) the de�nition of computational indistin-guishability that underlies De�nition 2.1.2.3.1 The general formulationThe (general formulation of the) de�nition of computational indistinguishabilityrefers to arbitrary probability ensembles. Here a probability ensemble is an in�nitesequence of random variables fZngn2N such that each Zn ranges over strings oflength that is polynomially related to n (i.e., there exists a polynomial p such thatfor every n it holds that jZnj � p(n) and p(jZnj) � n). We say that fXngn2N andfYngn2N are computationally indistinguishable if for every feasible algorithm A thedi�erence dA(n) def= jPr[A(Xn) = 1] � Pr[A(Yn) = 1]j is a negligible function in n.That is:De�nition 2.4 (computational indistinguishability): The probability ensemblesfXngn2N and fYngn2N are computationally indistinguishable if for every probabilis-tic polynomial-time algorithm D, every positive polynomial p, and all su�ciently15

large n, jPr[D(Xn)=1]� Pr[D(Yn)=1]j < 1p(n) (2.4)where the probabilities are taken over the relevant distribution (i.e., either Xn orYn) and over the internal coin tosses of algorithm D. The l.h.s. of Eq. (2.4), whenviewed as a function of n, is often called the distinguishing gap ofD, where fXngn2Nand fYngn2N are understood from the context.We can think of D as representing somebody who wishes to distinguish two distri-butions (based on a given sample drawn from one of the distributions), and thinkof the output \1" as representing D's verdict that the sample was drawn accordingto the �rst distribution. Saying that the two distributions are computationally in-distinguishable means that if D is a feasible procedure then its verdict is not reallymeaningful (because the verdict is almost as often 1 when the sample is drawn fromthe �rst distribution as when the sample is drawn from the second distribution).We comment that the absolute value in Eq. (2.4) can be omitted without a�ectingthe de�nition, and we will often do so without warning.In De�nition 2.1, we required that the probability ensembles fG(Uk)gk2N andfU`(k)gk2N be computationally indistinguishable. Indeed, an important specialcase of De�nition 2.4 is when one ensemble is uniform, and in such a case we callthe other ensemble pseudorandom.2.3.2 Relation to statistical closenessTwo probability ensembles, fXngn2N and fYngn2N, are said to be statistically close(or statistically indistinguishable) if for every positive polynomial p and all su�-cient large n the variation distance between Xn and Yn is bounded above by 1=p(n).Clearly, any two probability ensembles that are statistically close are computa-tionally indistinguishable. Needless to say, this is a trivial case of computationalindistinguishability, which is due to information theoretic reasons. In contrast,we shall be interested in non-trivial cases (of computational indistinguishability),which correspond to probability ensembles that are statistically far apart.Indeed, as claimed in Section 1.4 (see [19, Exer. 8.1]), there exist probabilityensembles that are statistically far apart and yet are computationally indistinguish-able. However, at least one of the two probability ensembles in this unconditionalexistential claim is not polynomial-time constructible.3 We shall be much moreinterested in non-trivial cases of computational indistinguishability in which bothensembles are polynomial-time constructible. An important example is provided bythe de�nition of pseudorandom generators. As we shall see (in Theorem 2.14), theexistence of one-way functions implies the existence of pseudorandom generators,which in turn implies the existence of polynomial-time constructible probabilityensembles that are statistically far apart and yet are computationally indistin-guishable. We mention that this su�cient condition is also necessary (cf., [15]).3We say that fZngn2N is polynomial-time constructible if there exists a polynomial-timealgorithm S such that S(1n) and Zn are identically distributed.16

2.3.3 Indistinguishability by Multiple SamplesThe de�nition of computational indistinguishability (i.e., De�nition 2.4) refers todistinguishers that obtain a single sample from one of the two relevant probabilityensembles (i.e., fXngn2N and fYngn2N). A very natural generalization of De�ni-tion 2.4 refers to distinguishers that obtain several independent samples from suchan ensemble.De�nition 2.5 (indistinguishability by multiple samples): Let s :N!N be polynomially-bounded. Two probability ensembles, fXngn2N and fYngn2N, are computationallyindistinguishable by s(�) samples if for every probabilistic polynomial-time algorithm,D, every positive polynomial p(�), and all su�ciently large n's���Pr hD(X(1)n ; :::; X(s(n))n)=1i� Pr hD(Y (1)n ; :::; Y (s(n))n)=1i��� < 1p(n)where X(1)n through X(s(n))n and Y (1)n through Y (s(n))n are independent random vari-ables such that each X(i)n is identical to Xn and each Y (i)n is identical to Yn.It turns out that, in the most interesting cases, computational indistinguishabilityby a single sample implies computational indistinguishability by any polynomialnumber of samples. One such case is the case of polynomial-time constructibleensembles. We say that the ensemble fZngn2N is polynomial-time constructible ifthere exists a polynomial-time algorithm S such that S(1n) and Zn are identicallydistributed.Proposition 2.6 Suppose that X def= fXngn2N and Y def= fYngn2N are both polynomial-time constructible, and s be a positive polynomial. Then, X and Y are computa-tionally indistinguishable by a single sample if and only if they are computationallyindistinguishable by s(�) samples.Clearly, for every polynomial s � 1, computational indistinguishability by s(�)samples implies computational indistinguishability by a single sample. We nowprove that, for e�ciently constructible ensembles, indistinguishability by a singlesample implies indistinguishability by multiple samples.4 The proof provides asimple demonstration of a central proof technique, known as the hybrid technique,which is a special case of the so-called reducibility argument (cf, e.g., [17, Sec. 2.3.3]or [19, Sec. 7.1.2]).Proof Sketch:5 Using the counter-positive, we show that the existence of an ef-�cient algorithm that distinguishes the ensembles X and Y using several samples,implies the existence of an e�cient algorithm that distinguishes the ensembles Xand Y using a single sample. That is, starting from the distinguishability of s(n)-long sequences of samples (either drawn all from Xn or drawn all from Yn), weconsider hybrid sequences such that the ith hybrid consists of i samples of Xn fol-lowed by s(n)�i samples of Yn. Note that the \homogeneous" sequences (which we4The requirement that both ensembles are polynomial-time constructible is essential; see, [23].5For more details see [17, Sec. 3.2.3]. 17

assumed to be distinguishable) are the extreme hybrids (i.e., the �rst and last hy-brids). The key observation is that distinguishing the extreme hybrids (towards thecontradiction hypothesis) implies distinguishing neighboring hybrids, which in turnyields a procedure for distinguishing single samples of the two original distributions(contradicting the hypothesis that these two distributions are indistinguishable bya single sample). Details follow.Suppose, towards the contradiction, that D distinguishes s(n) samples of Xnfrom s(n) samples of Yn, with a distinguishing gap of �(n). Denoting the ithhybrid by H in (i.e., H in = (X(1)n ; :::; X(i)n ; Y (i+1)n ; :::; Y (s(n))n)), this means that Ddistinguishes the extreme hybrids (i.e., H0n and Hs(n)n) with gap �(n). It followsthat D distinguishes a random pair of neighboring hybrids (i.e., D distinguishesH in from H i+1n , for a randomly selected i) with gap at least �(n)=s(n): the reasonbeing that Ei2f0;:::;s(n)�1g �Pr[D(H in) = 1]� Pr[D(H i+1n) = 1]�= 1s(n) � s(n)�1Xi=0 �Pr[D(H in) = 1]� Pr[D(H i+1n) = 1]� (2.5)= 1s(n) � �Pr[D(H0n) = 1]� Pr[D(Hs(n)n) = 1]� = �(n)s(n) :The key step in the argument is transforming the distinguishability of neighbor-ing hybrids into distinguishability of single samples of the original ensembles (thusderiving a contradiction). Indeed, using D, we obtain a distinguisher D0 of singlesamples: Given a single sample, algorithm D0 selects i 2 f0; :::; s(n) � 1g at ran-dom, generates i samples from the �rst distribution and s(n)� i� 1 samples fromthe second distribution, invokes D with the s(n)-samples sequence obtained whenplacing the input sample in location i+1, and answers whatever D does. That is,on input z and when selecting the index i, algorithm D0 invokes D on a samplefrom the distribution (X(1)n ; :::; X(i)n ; z; Y (i+2)n ; :::; Y (s(n))n). Thus, the constructionof D0 relies on the hypothesis that both probability ensembles are polynomial-timeconstructible. The analysis of D0 is based on the following two facts:1. When invoked on an input that is distributed according to Xn and selectingthe index i 2 f0; :::; s(n) � 1g, algorithm D0 behaves like D(H i+1n), because(X(1)n ; :::; X(i)n ; Xn; Y (i+2)n ; :::; Y (s(n))n) � H i+1n .2. When invoked on an input that is distributed according to Yn and selectingthe index i 2 f0; :::; s(n) � 1g, algorithm D0 behaves like D(H in), because(X(1)n ; :::; X(i)n ; Yn; Y (i+2)n ; :::; Y (s(n))n) � H in.Thus, the distinguishing gap of D0 (between Yn and Xn) is captured by Eq. (2.5),and the claim follows.The hybrid technique { a digest: The hybrid technique constitutes a specialtype of a \reducibility argument" in which the computational indistinguishability18

of complex ensembles is proved using the computational indistinguishability of basicensembles. The actual reduction is in the other direction: e�ciently distinguishingthe basic ensembles is reduced to e�ciently distinguishing the complex ensembles,and hybrid distributions are used in the reduction in an essential way. The followingthree properties of the construction of the hybrids play an important role in theargument:1. The complex ensembles collide with the extreme hybrids. This property isessential because our aim is proving something that relates to the complexensembles (i.e., their indistinguishability), while the argument itself refers tothe extreme hybrids.In the proof of Proposition 2.6 the extreme hybrids (i.e., Hs(n)n andH0n) collidewith the complex ensembles that represent s(n)-ary sequences of samples ofone of the basic ensembles.2. The basic ensemble are e�ciently mapped to neighboring hybrids. This prop-erty is essential because our starting hypothesis relates to the basic ensem-bles (i.e., their indistinguishability), while the argument itself refers directlyto the neighboring hybrids. Thus, we need to translate our knowledge (i.e.,computational indistinguishability) of the basic ensembles to knowledge (i.e.,computational indistinguishability) of any pair of neighboring hybrids. Typ-ically, this is done by e�ciently transforming strings in the range of a basicdistribution into strings in the range of a hybrid such that the transforma-tion maps the �rst basic distribution to one hybrid and the second basicdistribution to the neighboring hybrid.In the proof of Proposition 2.6 the basic ensembles (i.e., Xn and Yn) weree�ciently transformed into neighboring hybrids (i.e., H i+1n and H in, respec-tively). Recall that, in this case, the e�ciency of this transformation reliedon the hypothesis that both the basic ensembles are polynomial-time con-structible.3. The number of hybrids is small (i.e., polynomial). This property is essentialin order to deduce the computational indistinguishability of extreme hybridsfrom the computational indistinguishability of each pair of neighboring hy-brids. Typically, the \distinguishability gap" established in the argumentlosses a factor that is proportional to the number of hybrids. This is due tothe fact that the gap between the extreme hybrids is upper-bounded by thesum of the gaps between neighboring hybrids.In the proof of Proposition 2.6 the number of hybrids equals s(n) and theaforementioned loss is re
ected in Eq. (2.5).We remark that in the course of an hybrid argument, a distinguishing algorithmreferring to the complex ensembles is being analyzed and even invoked on arbi-trary hybrids. The reader may be annoyed of the fact that the algorithm \wasnot designed to work on such hybrids" (but rather only on the extreme hybrids).However, an algorithm is an algorithm: once it exists we can invoke it on inputs ofour choice, and analyze its performance on arbitrary input distributions.19

2.4 Amplifying the stretch functionRecall that the de�nition of pseudorandom generators (i.e., De�nition 2.1) makesa minimal requirement regarding their stretch; that is, it is only required thatthe output of such generators is longer than their input. Needless to say, we seekpseudorandom generators with a much more signi�cant stretch, �rstly because thestretch determines the saving in randomness obtained via Construction 2.2. It turnsout (see Construction 2.7) that pseudorandom generators of any stretch function(and in particular of minimal stretch `1(k) def= k + 1) can be easily converted intopseudorandom generators of any desired (polynomially bounded) stretch function,`. On the other hand, since pseudorandom generators are required (by De�ni-tion 2.1) to run in polynomial time, their stretch must be polynomially bounded.Construction 2.7 Let G1 be a pseudorandom generator with stretch function`1(k) = k+1, and ` be any polynomially bounded stretch function that is polynomial-time computable. Let G(s) def= �1�2 � � ��`(jsj) (2.6)where x0 = s and xi�i = G1(xi�1), for i = 1; :::; `(jsj). That is, �i is the last bit ofG1(xi�1) and xi is the jsj-bit long pre�x of G1(xi�1).Needless to say, G is polynomial-time computable and has stretch `. An alternativeconstruction is obtained by iteratively applying G on increasingly longer inputlengths (see [19, Exer. 8.11]).Proposition 2.8 Let G1 and G be as in Construction 2.7. Then G constitutes apseudorandom generator.Proof Sketch: The proposition is proven using the hybrid technique, presentedand discussed in Section 2.3. Here (for i = 0; :::; `(k)) we consider the hybriddistributions H ik de�ned by H ik def= U (1)i � g`(k)�i(U (2)k);where � denotes the concatenation of strings, gj(x) denotes the j-bit long pre�x ofG(x), and U (1)i and U (2)k are independent uniform distributions (over f0; 1gi andf0; 1gk, respectively). The extreme hybrids (i.e., H0k and Hkk) correspond to G(Uk)and U`(k), whereas distinguishability of neighboring hybrids can be worked intodistinguishability of G1(Uk) and Uk+1. Details follow.Suppose that one could distinguish H ik from H i+1k . De�ning F (z) (resp., L(z))as the �rst jzj�1 bits (resp., last bit) of z, and using gj(s) = L(G1(s))�gj�1(F (G1(s)))(for j � 1), we haveH ik � U (1)i � L(G1(U (2)k)) � g(`(k)�i)�1(F (G1(U (2)k)))and H i+1k = U (10)i+1 � g`(k)�(i+1)(U (2)k)� U (1)i � L(U (20)k+1) � g(`(k)�i)�1(F (U (20)k+1)):20

Now, incorporating the generation of U (1)i and the evaluation of g`(k)�i�1 into thedistinguisher, it follows that we distinguish G1(U (2)k) from U (20)k+1, in contradictionto the pseudorandomness of G1. For further details see [19, Sec. 8.2.4] (or [17,Sec. 3.3.3]).Conclusion. In view of the foregoing, when talking about the mere existence ofpseudorandom generators, in the sense of De�nition 2.1, we may ignore the speci�cstretch function.2.5 ConstructionsThe constructions surveyed in this section \transform" computational di�culty, inthe form of one-way functions, into generators of pseudorandomness. We thus startby reviewing the de�nition of one-way functions as well as some related results.2.5.1 Background: one-way functionsOne-way functions are functions that are easy to compute but hard to invert (inan average-case sense).De�nition 2.9 (one-way functions): A function f :f0; 1g�!f0; 1g� is called one-way if the following two conditions hold:1. Easy to evaluate: There exist a polynomial-time algorithm A such that A(x) =f(x) for every x 2 f0; 1g�.2. Hard to invert: For every probabilistic polynomial-time algorithm A0, everypositive polynomial p, and all su�ciently large n,Prx2f0;1gn [A0(f(x); 1n) 2 f�1(f(x))] < 1p(n) (2.7)where the probability is taken uniformly over the possible choices of x 2f0; 1gn and over the internal coin tosses of algorithm A0.Algorithm A0 is given the auxiliary input 1n so as to allow it to run in time poly-nomial in the length of x, which is important in case f drastically shrinks its input(e.g., jf(x)j = O(log jxj)). Typically (and, in fact, without loss of generality), thefunction f is length preserving, in which case the auxiliary input 1n is redundant.Note that A0 is not required to output a speci�c preimage of f(x); any preimage(i.e., element in the set f�1(f(x))) will do. (Indeed, in case f is 1-1, the string x isthe only preimage of f(x) under f ; but in general there may be other preimages.)It is required that algorithm A0 fails (to �nd a preimage) with overwhelming prob-ability, when the probability is also taken over the input distribution. That is, fis \typically" hard to invert, not merely hard to invert in some (\rare") cases.21

On hard-core predicates. Recall that saying that a function f is one-waymeans that given a typical y (in the range of f) it is infeasible to �nd a preimage ofy under f . This does not mean that it is infeasible to �nd partial information aboutthe preimage(s) of y under f . Speci�cally, it may be easy to retrieve half of the bitsof the preimage (e.g., given a one-way function f consider the function f 0 de�nedby f 0(x; r) def= (f(x); r), for every jxj= jrj). We note that hiding partial informa-tion (about the function's preimage) plays an important role in the constructionof pseudorandom generators (as well as in other advanced constructs). With thismotivation in mind, we will show that essentially any one-way function hides spe-ci�c partial information about its preimage, where this partial information is easyto compute from the preimage itself. This partial information can be considereda \hard core" of the di�culty of inverting f . Loosely speaking, a polynomial-timecomputable (Boolean) predicate b, is called a hard-core of a function f if no feasiblealgorithm, given f(x), can guess b(x) with success probability that is non-negligiblybetter than one half.De�nition 2.10 (hard-core predicates): A polynomial-time computable predicateb : f0; 1g� ! f0; 1g is called a hard-core of a function f if for every probabilisticpolynomial-time algorithm A0, every positive polynomial p(�), and all su�cientlylarge n's Prx2f0;1gn [A0(f(x))=b(x)] < 12 + 1p(n)where the probability is taken uniformly over the possible choices of x 2 f0; 1gn andover the internal coin tosses of algorithm A0.Note that for every b : f0; 1g� ! f0; 1g and f : f0; 1g� ! f0; 1g�, there exist obviousalgorithms that guess b(x) from f(x) with success probability at least one half (e.g.,the algorithm that, obliviously of its input, outputs a uniformly chosen bit). Also, ifb is a hard-core predicate (of any function) then it follows that b is almost unbiased(i.e., for a uniformly chosen x, the di�erence jPr[b(x)=0]� Pr[b(x)=1]j must be anegligible function in n).Since b itself is polynomial-time computable, the failure of e�cient algorithms toapproximate b(x) from f(x) (with success probability that is non-negligibly higherthan one half) must be due either to an information loss of f (i.e., f not beingone-to-one) or to the di�culty of inverting f . For example, for � 2 f0; 1g andx0 2f0; 1g�, the predicate b(�x0) = � is a hard-core of the function f(�x0) def= 0x0.Hence, in this case the fact that b is a hard-core of the function f is due to the factthat f loses information (speci�cally, the �rst bit: �). On the other hand, in thecase that f loses no information (i.e., f is one-to-one) a hard-core for f may existonly if f is hard to invert. In general, the interesting case is when being a hard-coreis a computational phenomenon rather than an information theoretic one (whichis due to \information loss" of f). It turns out that any one-way function has amodi�ed version that possesses a hard-core predicate.Theorem 2.11 (a generic hard-core predicate): For any one-way function f , theinner-product mod 2 of x and r, denoted b(x; r), is a hard-core of f 0(x; r) =(f(x); r). 22

In other words, Theorem 2.11 asserts that, given f(x) and a random subset S �[jxj], it is infeasible to guess �i2Sxi signi�cantly better than with probability 1=2,where x = x1 � � �xn is uniformly distributed in f0; 1gn.2.5.2 A simple constructionIntuitively, the de�nition of a hard-core predicate implies a potentially interestingcase of computational indistinguishability. Speci�cally, as will be shown in Proposi-tion 2.12, if b is a hard-core of the function f , then the ensemble ff(Un) �b(Un)gn2Nis computationally indistinguishable from the ensemble ff(Un) � U 01gn2N. Further-more, if f is 1-1 then the foregoing ensembles are statistically far apart, and thusconstitute a non-trivial case of computational indistinguishability. If f is alsopolynomial-time computable and length-preserving, then this yields a constructionof a pseudorandom generator.Proposition 2.12 (A simple construction of pseudorandom generators): Let b bea hard-core predicate of a polynomial-time computable 1-1 and length-preservingfunction f . Then, G(s) def= f(s) � b(s) is a pseudorandom generator.Proof Sketch: Considering a uniformly distributed s 2 f0; 1gn, we �rst note thatthe n-bit long pre�x of G(s) is uniformly distributed in f0; 1gn, because f inducesa permutation on the set f0; 1gn. Hence, the proof boils down to showing thatdistinguishing f(s) �b(s) from f(s) ��, where � is a random bit, yields contradictionto the hypothesis that b is a hard-core of f (i.e., that b(s) is unpredictable from f(s)).Intuitively, the reason is that such a hypothetical distinguisher also distinguishesf(s) � b(s) from f(s) � b(s), where � = 1��, whereas distinguishing f(s) � b(s) fromf(s) � b(s) yields an algorithm for predicting b(s) based on f(s). For further detailssee [19, Sec. 8.2.5.1] (or [17, Sec. 3.3.4]).Combining Theorem 2.11, Proposition 2.12 and Construction 2.7, we obtain thefollowing corollary.Theorem 2.13 (A su�cient condition for the existence of pseudorandom gener-ators): If there exists 1-1 and length-preserving one-way function then, for everypolynomially bounded stretch function `, there exists a pseudorandom generator ofstretch `.Digest. The main part of the proof of Proposition 2.12 is showing that the (nextbit) unpredictability of G(Uk) implies the pseudorandomness of G(Uk). The factthat (next bit) unpredictability and pseudorandomness are equivalent, in general,is proven explicitly in the alternative proof of Theorem 2.13 provided next.2.5.3 An alternative presentationLet us take a closer look at the pseudorandom generators obtained by combiningConstruction 2.7 and Proposition 2.12. For a stretch function ` : N!N , a 1-123

one-way function f with a hard-core b, we obtainG(s) def= �1�2 � � ��`(jsj) ; (2.8)where x0 = s and xi�i = f(xi�1)b(xi�1) for i = 1; :::; `(jsj). Denoting by f i(x)the value of f iterated i times on x (i.e., f i(x) = f i�1(f(x)) and f0(x) = x), werewrite Eq. (2.8) as followsG(s) def= b(s) � b(f(s)) � � � b(f `(jsj)�1(s)) : (2.9)The pseudorandomness of G is established in two steps, using the notion of (nextbit) unpredictability. An ensemble fZkgk2N is called unpredictable if any proba-bilistic polynomial-time machine obtaining a (random)6 pre�x of Zk fails to predictthe next bit of Zk with probability non-negligibly higher than 1=2. Speci�cally, weestablish the following two results.1. A general result asserting that an ensemble is pseudorandom if and only ifit is unpredictable. Recall that an ensemble is pseudorandom if it is compu-tationally indistinguishable from a uniform distribution (over bit strings ofadequate length).Clearly, pseudorandomness implies polynomial-time unpredictability, but herewe actually need the other direction, which is less obvious. Still, using ahybrid argument, one can show that (next-bit) unpredictability implies in-distinguishability from the uniform ensemble. (Hint: The ith hybrid consistsof the i-bit long pre�x of the distribution at hand augmented by an adequatenumber of totally random bits.)2. A speci�c result asserting that the ensemble fG(Uk)gk2N is unpredictablefrom right to left. Equivalently, G0(Un) is polynomial-time unpredictable(from left to right (as usual)), where G0(s) = b(f `(jsj)�1(s)) � � � b(f(s)) � b(s)is the reverse of G(s).Using the fact that f induces a permutation over f0; 1gn, observe that the (j+1)-bit long pre�x of G0(Uk) is distributed identically to b(f j(Uk)) � � � b(f(Uk))�b(Uk). Thus, an algorithm that predicts the j + 1st bit of G0(Un) based onthe j-bit long pre�x of G0(Un) yields an algorithm that guesses b(Un) basedon f(Un).Needless to say, G is a pseudorandom generator if and only if G0 is a pseudoran-dom generator. We mention that Eq. (2.9) is often referred to as the Blum-MicaliConstruction.76For simplicity, we de�ne unpredictability as referring to pre�xes of a random length (dis-tributed uniformly in f0; :::; jZkj�1g). A more general de�nition allows the predictor to determinethe length of the pre�x that it reads on the
y. This seemingly stronger notion of unpredictabilityis actually equivalent to the one we use, because both notions are equivalent to pseudorandomness.7Given the popularity of the term, we deviate from our convention of not specifying credits inthe main text. Indeed, this construction originates in [9].24

2.5.4 A necessary and su�cient conditionRecall that given any one-way 1-1 length-preserving function, we can easily con-struct a pseudorandom generator. Actually, the 1-1 (and length-preserving) re-quirement may be dropped, but the currently known construction { for the generalcase { is quite complex.Theorem 2.14 (On the existence of pseudorandom generators): Pseudorandomgenerators exist if and only if one-way functions exist.To show that the existence of pseudorandom generators imply the existence ofone-way functions, consider a pseudorandom generator G with stretch function`(k) = 2k. For x; y 2 f0; 1gk, de�ne f(x; y) def= G(x), and so f is polynomial-timecomputable (and length-preserving). It must be that f is one-way, or else one candistinguish G(Uk) from U2k by trying to invert f and checking the result: invertingf on the distribution f(U2k) corresponds to operating on the distribution G(Uk),whereas the probability that U2k has an inverse under f is negligible.The interesting direction of the proof of Theorem 2.14 is the construction ofpseudorandom generators based on any one-way function. Since the known proof isquite complex, we only provide a very rough overview of some of the ideas involved.We mention that these ideas make extensive use of adequate hashing functions.We �rst note that, in general (when f may not be 1-1), the ensemble f(Uk)may not be pseudorandom, and so Construction 2.12 (i.e., G(s) = f(s)b(s), whereb is a hard-core of f) cannot be used directly. One idea underlying the knownconstruction is hashing f(Uk) to an almost uniform string of length related to itsentropy.8 But \hashing f(Uk) down to length comparable to the entropy" meansshrinking the length of the output to, say, k0 < k. This foils the entire pointof stretching the k-bit seed. Thus, a second idea underlying the construction iscompensating for the loss of k�k0 bits by extracting these many bits from the seedUk itself. This is done by hashing Uk, and the point is that the (k � k0)-bit longhash value does not make the inverting task any easier. Implementing these ideasturns out to be more di�cult than it seems, and indeed an alternative constructionwould be most appreciated.2.6 Non-uniformly strong pseudorandom gener-atorsRecall that we said that truly random sequences can be replaced by pseudorandomsequences without a�ecting any e�cient computation that uses these sequences.The speci�c formulation of this assertion, presented in Proposition 2.3, refers torandomized algorithms that take a \primary input" and use a secondary \random8This is done after guaranteeing that the logarithm of the probability mass of a value of f(Uk)is typically close to the entropy of f(Uk). Speci�cally, given an arbitrary one-way function f 0,one �rst constructs f by taking a \direct product" of su�ciently many copies of f 0. For example,for x1; :::; xk2=3 2 f0; 1gk1=3 , we let f(x1; :::; xk2=3) def= f 0(x1); :::; f 0(xk2=3).25

input" in their computation. Proposition 2.3 asserts that it is infeasible to �nd aprimary input for which the replacement of a truly random secondary input by apseudorandom one a�ects the �nal output of the algorithm in a noticeable way.This, however, does not mean that such primary inputs do not exist (but ratherthat they are hard to �nd). Consequently, Proposition 2.3 falls short of yieldinga (worst-case)9 \derandomization" of a complexity class such as BPP. To obtainsuch results, we need a stronger notion of pseudorandom generators, presentednext. Speci�cally, we need pseudorandom generators that can fool all polynomial-size circuits, and not merely all probabilistic polynomial-time algorithms.10De�nition 2.15 (strong pseudorandom generator { fooling circuits): A determin-istic polynomial-time algorithm G is called a non-uniformly strong pseudorandomgenerator if there exists a stretch function, ` : N!N , such that for any familyfCkgk2N of polynomial-size circuits, for any positive polynomial p, and for all suf-�ciently large k'sjPr[Ck(G(Uk)) = 1] � Pr[Ck(U`(k)) = 1] j < 1p(k)Using such pseudorandom generators, we can \derandomize" BPP.Theorem 2.16 (derandomization of BPP): If there exists non-uniformly strongpseudorandom generators then BPP is contained in T">0Dtime(t"), where t"(n) def=2n" .Proof Sketch: For any S 2 BPP and any " > 0, we let A denote a probabilisticpolynomial-time decision procedure for S and G denote a non-uniformly strongpseudorandom generator stretching n"-bit long seeds into poly(n)-long sequences(to be used by A as secondary input when processing a primary input of length n).Combining A and G, we obtain an algorithm A0 = AG (as in Construction 2.2).We claim that A and A0 may signi�cantly di�er in their (expected probabilistic)decision on at most �nitely many inputs, because otherwise we can use these inputs(together with A) to derive a (non-uniform) family of polynomial-size circuits thatdistinguishes G(Un") and Upoly(n), contradicting the the hypothesis regarding G.Speci�cally, an input x on which A and A0 di�er signi�cantly yields a circuit Cx that9Indeed, Proposition 2.3 yields an average-case derandomization of BPP . In particular, forevery polynomial-time constructible ensemble fXngn2N, every Boolean function f 2 BPP , andevery " > 0, there exists a randomized algorithm A0 of randomness complexity r"(n) = n" suchthat the probability that A0(Xn) 6= f(Xn) is negligible. A corresponding deterministic (exp(r")-time) algorithm A00 can be obtained, as in the proof of Theorem 2.16, and again the probabilitythat A00(Xn) 6= f(Xn) is negligible, where here the probability is taken only over the distributionof the primary input (represented by Xn). In contrast, worst-case derandomization, as capturedby the assertion BPP � Dtime(2r"), requires that the probability that A00(Xn) 6= f(Xn) is zero.10Needless to say, strong pseudorandom generators in the sense of De�nition 2.15 satisfy the ba-sic de�nition of a pseudorandom generator (i.e., De�nition 2.1). We comment that the underlyingnotion of computational indistinguishability (by circuits) is strictly stronger than De�nition 2.4,and that it is invariant under multiple samples (regardless of the constructibility of the underlyingensembles). 26

distinguishes G(Ujxj") and Upoly(jxj), by letting Cx(r) = A(x; r).11 Incorporatingthe �nitely many \bad" inputs into A0, we derive a probabilistic polynomial-timealgorithm that decides S while using randomness complexity n".Finally, emulating A0 on each of the 2n" possible random sequences (i.e., seedsto G) and ruling by majority, we obtain a deterministic algorithm A00 as required.That is, let A0(x; r) denote the output of algorithm A0 on input x when using coinsr 2 f0; 1gn". Then A00(x) invokes A0(x; r) on every r 2 f0; 1gn" , and outputs 1 ifand only if the majority of these 2n" invocations have returned 1.We comment that stronger results regarding derandomization of BPP are pre-sented in Section 3.On constructing non-uniformly strong pseudorandom generators. Non-uniformly strong pseudorandom generators (as in De�nition 2.15) can be con-structed using any one-way function that is hard to invert by any non-uniformfamily of polynomial-size circuits, rather than by probabilistic polynomial-timemachines. In fact, the construction in this case is simpler than the one employedin the uniform case (i.e., the construction underlying the proof of Theorem 2.14).2.7 Stronger (Uniform-Complexity) NotionsThe following two notions represent strengthening of the standard de�nition ofpseudorandom generators (as presented in De�nition 2.1). Non-uniform versionsof these notions (strengthening De�nition 2.15) are also of interest.2.7.1 Fooling stronger distinguishersOne strengthening of De�nition 2.1 amounts to explicitly quantifying the resources(and success gaps) of distinguishers. We choose to bound these quantities as afunction of the length of the seed (i.e., k), rather than as a function of the lengthof the string that is being examined (i.e., `(k)). For a class of time bounds T (e.g.,T = ft(k) def= 2cpkgc2N) and a class of noticeable functions (e.g., F = ff(k) def=1=t(k) : t 2 T g), we say that a pseudorandom generator, G, is (T ;F)-strong if forany probabilistic algorithm D having running-time bounded by a function in T(applied to k)12, for any function f in F , and for all su�ciently large k's, it holdsthat jPr[D(G(Uk)) = 1] � Pr[D(U`(k)) = 1] j < f(k):An analogous strengthening may be applied to the de�nition of one-way functions.Doing so reveals the weakness of the known construction that underlies the proofof Theorem 2.14: It only implies that for some " > 0 (" = 1=8 will do), for any11Indeed, in terms of the proof of Proposition 2.3, the �nder F consists of a non-uniform familyof polynomial-size circuits that print the \problematic" primary inputs that are hard-wired inthem, and the corresponding distinguisher D is thus also non-uniform.12That is, when examining a sequence of length `(k) algorithm D makes at most t(k) steps,where t 2 T . 27

T and F , the existence of \(T ;F)-strong one-way functions" implies the existenceof (T 0;F 0)-strong pseudorandom generators, where T 0 = ft0(k) def= t(k")=poly(k) :t 2 T g and F 0 = ff 0(k) def= poly(k) � f(k") : f 2 Fg. What we would like tohave is an analogous result with T 0 = ft0(k) def= t(
(k))=poly(k) : t 2 T g andF 0 = ff 0(k) def= poly(k) � f(
(k)) : f 2 Fg.2.7.2 Pseudorandom FunctionsRecall that pseudorandom generators provide a way to e�ciently generate longpseudorandom sequences from short random seeds. Pseudorandom functions areeven more powerful: they provide e�cient direct access to the bits of a huge pseu-dorandom sequence (which is not feasible to scan bit-by-bit). More precisely, apseudorandom function is an e�cient (deterministic) algorithm that given an k-bitseed, s, and an k-bit argument, x, returns an k-bit string, denoted fs(x), such thatit is infeasible to distinguish the values of fs, for a uniformly chosen s 2 f0; 1gk,from the values of a truly random function F : f0; 1gk ! f0; 1gk. That is, the(feasible) testing procedure is given oracle access to the function (but not its ex-plicit description), and cannot distinguish the case it is given oracle access to apseudorandom function from the case it is given oracle access to a truly randomfunction.De�nition 2.17 (pseudorandom functions): A pseudorandom function (ensemble),is a collection of functions ffs :f0; 1gjsj!f0; 1gjsjgs2f0;1g� that satis�es the follow-ing two conditions:1. (e�cient evaluation) There exists an e�cient (deterministic) algorithm thatgiven a seed, s, and an argument, x 2 f0; 1gjsj, returns fs(x).2. (pseudorandomness) For every probabilistic polynomial-time oracle machine,M , every positive polynomial p and all su�ciently large k's��Pr[MfUk (1k) = 1]� Pr[MFk(1k) = 1] �� < 1p(k)where Fk denotes a uniformly selected function mapping f0; 1gk to f0; 1gk.One key feature of pseudorandom functions is that they can be generated andshared by merely generating and sharing their seed; that is, a \random looking"function fs : f0; 1gk ! f0; 1gk, is determined by its k-bit seed s. Thus, parties wish-ing to share a \random looking" function fs (determining 2k-many values), merelyneed to generate and share among themselves the k-bit seed s. (For example, oneparty may randomly select the seed s, and communicate it, via a secure channel,to all other parties.) Sharing a pseudorandom function allows parties to determine(by themselves and without any further communication) random-looking valuesdepending on their current views of the environment (which need not be knowna priori). To appreciate the potential of this tool, one should realize that sharinga pseudorandom function is essentially as good as being able to agree, on the
y,28

on the association of random values to (on-line) given values, where the latter aretaken from a huge set of possible values. We stress that this agreement is achievedwithout communication and synchronization: Whenever some party needs to asso-ciate a random value to a given value, v 2 f0; 1gk, it will associate to v the (same)random value rv 2 f0; 1gk (by setting rv = fs(v), where fs is a pseudorandomfunction agreed upon beforehand). Concretely, the foregoing idea underlies theconstruction of secure private-key encryption and message-authentication schemesbased on pseudorandom functions (cf. [18, Sec. 5.3.3&6.3.1]). In addition to nu-merous applications in cryptography, pseudorandom functions were also used toderive negative results in computational learning theory [56] and in the study ofcircuit complexity (cf., Natural Proofs [46]).Theorem 2.18 (How to construct pseudorandom functions): Pseudorandom func-tions can be constructed using any pseudorandom generator.Proof Sketch:13 Let G be a pseudorandom generator that stretches its seed by afactor of two (i.e., `(k) = 2k), and let G0(s) (resp., G1(s)) denote the �rst (resp.,last) jsj bits in G(s). LetG�jsj����2�1(s) def= G�jsj(� � �G�2 (G�1(s)) � � �);de�ne fs(x1x2 � � �xk) def= Gxk���x2x1(s), and consider the function ensemble ffs :f0; 1gjsj!f0; 1gjsjgs2f0;1g� . Pictorially, the function fs is de�ned by k-step walksdown a full binary tree of depth k having labels at the vertices. The root of thetree, hereafter referred to as the level 0 vertex of the tree, is labeled by the strings. If an internal vertex is labeled r then its left child is labeled G0(r) whereas itsright child is labeled G1(r). The value of fs(x) is the string residing in the leafreachable from the root by a path corresponding to the string x.We claim that the function ensemble ffsgs2f0;1g� is pseudorandom. The proofuses the hybrid technique (cf. Section 2.3): The ith hybrid, denotedH ik, is a functionensemble consisting of 22i�k functions f0; 1gk ! f0; 1gk, each determined by 2irandom k-bit strings, denoted s = hs�i�2f0;1gi . The value of such function hs atx = ��, where j�j = i, is de�ned to equal G�(s�). Pictorially, the function hsis de�ned by placing the strings in s in the corresponding vertices of level i, andlabeling vertices of lower levels using the very rule used in the de�nition of fs.The extreme hybrids correspond to our indistinguishability claim (i.e., H0k � fUkand Hkk is a truly random function), and the indistinguishability of neighboringhybrids follows from our indistinguishability hypothesis. Speci�cally, we show thatthe ability to distinguish H ik from H i+1k yields an ability to distinguish multiplesamples of G(Uk) from multiple samples of U2k (by placing on the
y, halves of thegiven samples at adequate vertices of the i+ 1st level).Variants. Useful variants (and generalizations) of the notion of pseudorandomfunctions include Boolean pseudorandom functions that are de�ned over all strings13See details in [17, Sec. 3.6.2]. 29

(i.e., fs : f0; 1g� ! f0; 1g) and pseudorandom functions that are de�ned for otherdomains and ranges (i.e., fs : f0; 1gd(jsj) ! f0; 1gr(jsj), for arbitrary polynomiallybounded functions d; r : N ! N). Various transformations between these variantsare known (cf. [17, Sec. 3.6.4] and [18, Apdx. C.2]).2.8 Conceptual re
ectionsWe highlight several conceptual aspects of the foregoing computational approachto randomness. Some of these aspects are common to other instantiation of thegeneral paradigm (esp., the one presented in Chapter 3).Behavioristic versus Ontological. The behavioristic nature of the computa-tional approach to randomness is best demonstrated by confronting this approachwith the Kolmogorov-Chaitin approach to randomness. Loosely speaking, a stringis Kolmogorov-random if its length equals the length of the shortest program pro-ducing it. This shortest program may be considered the \true explanation" tothe phenomenon described by the string. A Kolmogorov-random string is thus astring that does not have a substantially simpler (i.e., shorter) explanation thanitself. Considering the simplest explanation of a phenomenon may be viewed as anontological approach. In contrast, considering the e�ect of phenomena on certaindevices (or observations), as underlying the de�nition of pseudorandomness, is abehavioristic approach. Furthermore, there exist probability distributions that arenot uniform (and are not even statistically close to a uniform distribution) and nev-ertheless are indistinguishable from a uniform distribution (by any e�cient device).Thus, distributions that are ontologically very di�erent, are considered equivalentby the behavioristic point of view taken in the de�nition of computational indistin-guishability.A relativistic view of randomness. We have de�ned pseudorandomness interms of its observer. Speci�cally, we have considered the class of e�cient (i.e.,polynomial-time) observers and de�ned as pseudorandom objects that look ran-dom to any observer in that class. In subsequent chapters, we shall consider re-stricted classes of such observers (e.g., space-bounded polynomial-time observersand even very restricted observers that merely apply speci�c tests such as lineartests or hitting tests). Each such class of observers gives rise to a di�erent notionof pseudorandomness. Furthermore, the general paradigm (of pseudorandomness)explicitly aims at distributions that are not uniform and yet are considered as suchfrom the point of view of certain observers. Thus, our entire approach to pseu-dorandomness is relativistic and subjective (i.e., depending on the abilities of theobserver).Randomness and Computational Di�culty. Pseudorandomness and com-putational di�culty play dual roles: The general paradigm of pseudorandomnessrelies on the fact that placing computational restrictions on the observer gives rise30

to distributions that are not uniform and still cannot be distinguished from uni-form distributions. Thus, the pivot of the entire approach is the computationaldi�culty of distinguishing pseudorandom distributions from truly random ones.Furthermore, many of the constructions of pseudorandom generators rely either onconjectures or on facts regarding computational di�culty (i.e., that certain com-putations that are hard for certain classes). For example, one-way functions wereused to construct general-purpose pseudorandom generators (i.e., those working inpolynomial-time and fooling all polynomial-time observers). Analogously, as weshall see in Sec. 3.2.3, the fact that parity function is hard for polynomial-sizeconstant-depth circuits can be used to generate (highly non-uniform) sequencesthat fool such circuits.Randomness and Predictability. The connection between pseudorandomnessand unpredictability (by e�cient procedures) plays an important role in the analysisof several constructions (cf. Sections 2.5 and 3.2). Here, we wish to highlight theintuitive appeal of this connection.

31

Chapter 3Derandomization ofTime-Complexity ClassesLet us take a second look at the process of derandomization that underlies theproof of Theorem 2.16. First, a pseudorandom generator was used to shrinkthe randomness-complexity of a BPP-algorithm, and then derandomization wasachieved by scanning all possible seeds to this generator. A key observation re-garding this process is that there is no point in insisting that the pseudorandomgenerator runs in time that is polynomial in its seed length. Instead, it su�cesto require that the generator runs in time that is exponential in its seed length,because we are incurring such an overhead anyhow due to the scanning of all pos-sible seeds. Furthermore, in this context, the running-time of the generator maybe larger than the running time of the algorithm, which means that the genera-tor need only fool distinguishers that take less steps than the generator. Theseconsiderations motivate the following de�nition of canonical derandomizers.3.1 De�ning Canonical DerandomizersRecall that in order to \derandomize" a probabilistic polynomial-time algorithm A,we �rst obtain a functionally equivalent algorithm AG (as in Construction 2.2) thathas (signi�cantly) smaller randomness-complexity. Algorithm AG has to maintainA's input-output behavior on all (but �nitely many) inputs. Thus, the set of therelevant distinguishers (considered in the proof of Theorem 2.16) is the set of allpossible circuits obtained from A by hard-wiring any of the possible inputs. Such acircuit, denoted Cx, emulates the execution of algorithm A on input x, when usingthe circuit's input as the algorithm's internal coin tosses (i.e., Cx(r) = A(x; r)).Furthermore, the size of Cx is quadratic in the running-time of A on input x, andthe length of the input to Cx equals the running-time of A (on input x).1 Thus,1Indeed, we assume that algorithm A is represented as a Turing machine and refer to thestandard emulation of Turing machines by circuits. Thus, the aforementioned circuit Cx has sizethat is at most quadratic in the running-time of A on input x, which in turn means that Cx has32

the size of Cx is quadratic in the length of its own input, and the pseudorandomgenerator in use (i.e., G) needs to fool each such circuit. Recalling that we mayallow the generator to run in exponential-time (i.e., time that is exponential in thelength of its own input (i.e., the seed))2, we arrive at the following de�nition.De�nition 3.1 (pseudorandom generator for derandomizing BPtime(�))3: Let ` ::N!N be a monotonically increasing function. A canonical derandomizer of stretch` is a deterministic algorithm G that satis�es the following two conditions.1. On input a k-bit long seed, G makes at most poly(2k � `(k)) steps and outputsa string of length `(k).2. For every circuit Dk of size `(k)2 it holds thatjPr[Dk(G(Uk)) = 1] � Pr[Dk(U`(k)) = 1] j < 16 : (3.1)The circuit Dk represents a potential distinguisher, which is given an `(k)-bit longstring (sampled either from G(Uk) or from U`(k)). When seeking to derandomizean algorithm A of time-complexity t, the aforementioned `(k)-bit long string repre-sents a possible sequence of coin tosses of A, when invoked on a generic (primary)input of length n = t�1(`(k)). Thus, for any x 2 f0; 1gn, considering the circuitDk(r) = A(x; r), where jrj = t(n) = `(k), we note that Eq. (3.1) implies thatAG(x) = A(x;G(Uk)) maintains the majority vote of A(x) = A(x; U`(k)). On theother hand, the time-complexity of G implies that the straightforward deterministicemulation of AG(x) takes time 2k � (poly(2k � `(k))+ t(n)), which is upper-boundedby poly(2k � `(k)) = poly(2`�1(t(n)) � t(n)). This yields the following (conditional)derandomization result.Proposition 3.2 Let `; t : N!N be monotonically increasing functions and let`�1(t(n)) denote the smallest integer k such that `(k) � t(n). If there exists acanonical derandomizer of stretch ` then, for every time-constructible t ::N!N , itholds that BPtime(t) � Dtime(T), where T (n) = poly(2`�1(t(n)) � t(n)).size that is at most quadratic in the length of its own input. (In fact, the circuit size can be madealmost-linear in the running-time of A, by using a better emulation [45].) We note that manysources use the �ctitious convention by which the circuit size equals the length of its input; this�ctitious convention can be justi�ed by considering a (suitably) padded input.2Actually, in De�nition 3.1 we allow the generator to run in time poly(2k`(k)), rather than intime poly(2k). This is done in order not to trivially rule out generators of super-exponential stretch(i.e., `(k) = 2!(k)). However, the condition in Eq. (3.1) does not allow for super-exponentialstretch (or even for `(k) = !(2k)). Thus, in retrospect, the two formulations are equivalent(because poly(2k`(k)) = poly(2k) for `(k) = 2O(k)).3Fixing a model of computation, we denote by BPtime(t) the class of decision problems that aresolvable by a randomized algorithm of time complexity t that has two-sided error 1=3. Using 1/6 asthe \threshold distinguishing gap" (in Eq. (3.1)) guarantees that if Pr[Dk(U`(k)) = 1] � 2=3 (resp.,Pr[Dk(U`(k)) = 1] � 1=3) then Pr[Dk(G(Uk)) = 1] > 1=2 (resp., Pr[Dk(G(Uk)) = 1] < 1=2).As we shall see, this su�ces for a derandomization of BPtime(t) in time T , where T (n) =poly(2`�1(t(n)) � t(n)) (and we use a seek of length k = `�1(t(n))).33

Proof Sketch: Just mimic the proof of Theorem 2.16, which in turn uses Con-struction 2.2. (Recall that given any randomized algorithm A and generator G,Construction 2.2 yields an algorithm AG of randomness-complexity `�1 � t andtime-complexity poly(2`�1�t) + t.)4 Observe that the complexity of the result-ing deterministic procedure is dominated by the 2k = 2`�1(t(jxj)) invocations ofAG(x; s) = A(x;G(s)), where s 2 f0; 1gk, and each of these invocations takestime poly(2`�1(t(jxj)) + t(jxj). Thus, on input an n-bit long string, the determinis-tic procedure runs in time poly(2`�1(t(n)) � t(n)). The correctness of this procedure(which takes a majority vote among the 2k invocations of AG) follows by combiningEq. (3.1) with the hypothesis that Pr[A(x)=1] is bounded-away from 1=2. Speci�-cally, using the hypothesis jPr[A(x)=1]� (1=2)j � 1=6, it follows that the majorityvote of (AG(x; s))s2f0;1gk equals 1 if and only if Pr[A(x) = 1] > 1=2. Indeed, theimplication is due to Eq. (3.1), when applied to the circuit Cx(r) = A(x; r) (whichhas size at most jrj2).The goal. In light of Proposition 3.2, we seek canonical derandomizers withstretch that is as large as possible. The stretch cannot be super-exponential (i.e.,it must hold that `(k) = O(2k)), because there exists a circuit of size O(2k � `(k))that violates Eq. (3.1) whereas for `(k) = !(2k) it holds that O(2k � `(k)) < `(k)2.Thus, our goal is to construct a canonical derandomizer with stretch `(k) = 2
(k).Such a canonical derandomizer will allow for a \full derandomization of BPP":Theorem 3.3 If there exists a canonical derandomizer of stretch `(k) = 2
(k),then BPP = P.Proof: Using Proposition 3.2, we get BPtime(t) � Dtime(T), where T (n) =poly(2`�1(t(n)) � t(n)) = poly(t(n)).Re
ections: Recall that a canonical derandomizer G was de�ned in a way thatallows it to have time-complexity tG that is larger than the size of the circuits thatit fools (i.e., tG(k) > `(k)2 is allowed). Furthermore, tG(k) > 2k was also allowed.Thus, if indeed tG(k) = 2
(k) (as is the case in Section 3.2), then G(Uk) can bedistinguished from U`(k) in time 2k � tG(k) = poly(tG(k)) by trying all possibleseeds.5 We stress that the latter distinguisher is a uniform algorithm (and it worksby invoking G on all possible seeds). In contrast, for a general-purpose pseudoran-dom generator G (as discussed in Chapter 2) it holds that tG(k) = poly(k), while4Actually, given any randomized algorithm A and generator G, Construction 2.2 yields analgorithm AG that is de�ned such that AG(x; s) = A(x;G0(s)), where jsj = `�1(t(jxj)) and G0(s)denotes the t(jxj)-bit long pre�x of G(s). For simplicity, we shall assume here that `(jsj) = t(jxj),and thus use G rather than G0. Note that given n we can �nd k = `�1(t(n)) by invokingG(1i) for i = 1; :::; k (using the fact that ` :N!N is monotonically increasing). Also note that`(k) = O(2k) must hold (see Footnote 2), and thus we may replace poly(2k � `(k)) by poly(2k).5We note that this distinguisher does not contradict the hypothesis that G is a canonicalderandomizer, because tG(k) > `(k) de�nitely holds whereas `(k) � 2k typically holds (and so2k � tG(k) > `(k)2). 34

for every polynomial p it holds that G(Uk) is indistinguishable from U`(k) in timep(tG(k)).3.2 Constructing Canonical DerandomizersThe fact that canonical derandomizers are allowed to be more complex than thecorresponding distinguisher makes some of the techniques of Chapter 2 inapplicablein the current context. For example, the stretch function cannot be ampli�edas in Section 2.4. On the other hand, the techniques developed in the currentsection are inapplicable to Chapter 2. For example, the pseudorandomness ofsome canonical derandomizers (i.e., the generators of Construction 3.4) holds evenwhen the potential distinguisher is given the seed itself. This amazing phenomenoncapitalizes on the fact that the distinguisher's time-complexity does not allow forrunning the generator on the given seed.3.2.1 The construction and its consequencesAs in Section 2.5, the construction presented next transforms computational di�-culty into pseudorandomness, except that here both computational di�culty andpseudorandomness are of a somewhat di�erent form than in Section 2.5. Specif-ically, here we use Boolean predicates that are computable in exponential-timebut are strongly inapproximable; that is, we assume the existence of a Booleanpredicate and constants c; " > 0 such that for all but �nitely many m, the (resid-ual) predicate f : f0; 1gm ! f0; 1g is computable in time 2cm but for any cir-cuit C of size 2"m it holds that Pr[C(Um) = f(Um)] < 12 + 2�"m. (Needless tosay, " < c.) Such predicates exist under the assumption that the class E (whereE = Sc>0Dtime(2c�n)) contains predicates of (almost-everywhere) exponentialcircuit complexity [26]. With these preliminaries, we turn to the construction ofcanonical derandomizers with exponential stretch.Construction 3.4 (The Nisan-Wigderson Construction):6 Let f :f0; 1gm!f0; 1gand S1; :::; S` be a sequence of m-subsets of f1; :::; kg. Then, for s 2 f0; 1gk, we letG(s) def= f(sS1) � � � f(sS`) (3.2)where sS denotes the projection of s on the bit locations in S � f1; :::; jsjg; that is,for s = �1 � � ��k and S = fi1; :::; img, we have sS = �i1 � � ��im .Letting k vary and `;m : N ! N be functions of k, we wish G to be a canoni-cal derandomizer and `(k) = 2
(k). One (obvious) necessary condition for this tohappen is that the sets must be distinct, and hence m(k) =
(k); consequently,f must be computable in exponential-time. Furthermore, the sequence of setsS1; :::; S`(k) must be constructible in poly(2k) time. Intuitively, the function fshould be strongly inapproximable, and furthermore it seems desirable to use a set6Given the popularity of the term, we deviate from our convention of not specifying credits inthe main text. This construction originates in [40, 43].35

system with relatively small pairwise intersections (because this restricts the over-lap among the various inputs to which f is applied). Interestingly, these conditionsare essentially su�cient.Theorem 3.5 (analysis of Construction 3.4): Let �; �;
; " > 0 be constants sat-isfying " > (2�=�) +
, and consider the functions `;m; T :: N!N such that`(k) = 2�k, m(k) = �k, and T (n) = 2"n. Suppose that the following two conditionshold:1. There exists an exponential-time computable function f :f0; 1g�!f0; 1g suchthat for every family of T -size circuits fCngn2N and all su�ciently large nit holds that Pr[Cn(Un) 6= f(Un)] � 12 + 1T (n) (3.3)In this case we say that f is T -inapproximable.2. There exists an exponential-time computable function S : N�N ! 2N suchthat(a) For every k and i 2 [`(k)], it holds that S(k; i) � [k] and jS(k; i)j =m(k).(b) For every k and i 6= j, it holds that jS(k; i) \ S(k; j)j �
 �m(k).Then, using G as de�ned in Construction 3.4 with Si = S(k; i), yields a canonicalderandomizer with stretch `.Before proving Theorem 3.5 we mention that, for any
 > 0, a function S as inCondition 2 does exist for some m(k) =
(k) and `(k) = 2
(k); see [19, Exer. 8.19].We also recall that T -inapproximable predicates do exist under the assumptionthat E has (almost-everywhere) exponential circuit complexity (see [26] or [19,Sec. 8.2.1]). Thus, combining such functions f and S and invoking Theorem 3.5, weobtain a canonical derandomizer with exponential stretch based on the assumptionthat E has (almost-everywhere) exponential circuit complexity. Combining thiswith Theorem 3.3, we get the �rst part of the following theorem.Theorem 3.6 (derandomization of BPP, revisited):1. Suppose that E contains a decision problem that has almost-everywhere expo-nential circuit complexity (i.e., there exists a constant "0 > 0 such that, forall but �nitely many m's, any circuit that correctly decides this problem onf0; 1gm has size at least 2"0m). Then, BPP = P.2. Suppose that, for every polynomial p, the class E contains a decision problemthat has circuit complexity that is almost-everywhere greater than p. ThenBPP is contained in T">0Dtime(t"), where t"(n) def= 2n".
36

Indeed, our focus is on Part 1, and Part 2 is stated for sake of a wider perspective.Both parts are special cases of a more general statement that can be proved byusing a generalization of Theorem 3.5 that refers to arbitrary functions `;m; T :N!N (instead of the exponential functions in Theorem 3.5) that satisfy `(k)2 +eO(`(k) � 2m0(k)) < T (m(k)), where m0(k) replaces
 � m(k). We note that Part 2of Theorem 3.6 supersedes Theorem 2.16. We also mention that, as in the case ofgeneral-purpose pseudorandom generators, the hardness hypothesis used in eachpart of Theorem 3.6 is necessary for the existence of a corresponding canonicalderandomizer.Additional comment. The two parts of Theorem 3.6 exhibit two extreme cases:Part 1 (often referred to as the \high end") assumes an extremely strong circuitlower-bound and yields \full derandomization" (i.e., BPP = P), whereas Part 2(often referred to as the \low end") assumes an extremely weak circuit lower-boundand yields weak but meaningful derandomization. Intermediate results (relying onintermediate lower-bound assumptions) can be obtained via the aforementionedgeneralization, but tight trade-o�s are obtained di�erently (cf., [54]).3.2.2 Analyzing the construction (i.e., proof of Theorem 3.5)Using the time complexity upper-bounds on f and S, it follows that G can becomputed in exponential time. Thus, our focus is on showing that fG(Uk)g cannotbe distinguished from fU`(k)g by circuits of size `(k)2; speci�cally, that G satis�esEq. (3.1). In fact, we will prove that this holds for G0(s) = s � G(s); that is, Gfools such circuits even if they are given the seed as auxiliary input. (Indeed, thesecircuits are smaller than the running time of G, and so they cannot just evaluateG on the given seed.)We start by presenting the intuition underlying the proof. As a warm-up sup-pose that the sets (i.e., S(k; i)'s) used in the construction are disjoint. In such acase (which is indeed impossible because k < `(k) �m(k)), the pseudorandomness ofG(Uk) would follow easily from the inapproximability of f , because in this case Gconsists of applying f to non-overlapping parts of the seed. In the actual construc-tion being analyzed here, the sets (i.e., S(k; i)'s) are not disjoint but have relativelysmall pairwise intersection, which means that G applies f on parts of the seed thathave relatively small overlap. Intuitively, such small overlaps guarantee that thevalues of f on the corresponding inputs are \computationally independent" (i.e.,having the value of f at some inputs x1; :::; xi does not help in approximating thevalue of f at another input xi+1). This intuition will be backed by showing that,when �xing all bits that do not appear in the target input (i.e., in xi+1), the formervalues (i.e., f(x1); :::; f(xi)) can be computed at a relatively small computationalcost. Thus, the values f(x1); :::; f(xi) do not (signi�cantly) facilitate the task ofapproximating f(xi+1). With the foregoing intuition in mind, we now turn to theactual proof.The actual proof employs a reducibility argument; that is, assuming towardsthe contradiction that G0 does not fool some circuit of size `(k)2, we derive a37

contradiction to the hypothesis that the predicate f is T -inapproximable. Theargument utilizes the relation between pseudorandomness and unpredictability (cf.Section 2.5). Speci�cally, any circuit that distinguishes G0(Uk) from U`(k)+k withgap 1=6, yields a next-bit predictor of similar size that succeeds in predicting thenext bit with probability at least 12 + 16`0(k) > 12 + 17`(k) , where the factor of `0(k) =`(k) + k < (1 + o(1)) � `(k) is introduced by the hybrid technique (cf. Eq. (2.5)).Furthermore, given the non-uniform setting of the current proof, we may �x a bitlocation i+ 1 for prediction, rather than analyzing the prediction at a random bitlocation. Indeed, i � k must hold, because the �rst k bits of G0(Uk) are uniformlydistributed. In the rest of the proof, we transform the foregoing predictor into acircuit that approximates f better than allowed by the hypothesis (regarding theinapproximability of f).Assuming that a small circuit C 0 can predict the i+1st bit of G0(Uk), when giventhe previous i bits, we construct a small circuit C for approximating f(Um(k)) oninput Um(k). The point is that the i+1st bit of G0(s) equals f(sS(k;j+1)), where j =i� k � 0, and so C 0 approximates f(sS(k;j+1)) based on s; f(sS(k;1)); :::; f(sS(k;j)),where s 2 f0; 1gk is uniformly distributed. Note that this is the type of thing thatwe are after, except that the circuit we seek may only get sS(k;j+1) as input.The �rst observation is that C 0 maintains its advantage when we �x the bestchoice for the bits of s that are not at bit locations Sj+1 = S(k; j + 1) (i.e., thebits s[k]nSj+1). That is, by an averaging argument, it holds thatmaxs02f0;1gk�m(k)fPrs2f0;1gk [C 0(s; f(sS1); :::; f(sSj)) = f(sSj+1) j s[k]nSj+1 = s0]g� p0 def= Prs2f0;1gk [C 0(s; f(sS1); :::; f(sSj)) = f(sSj+1)]:Recall that by the hypothesis p0 > 12+ 17`(k) . Hard-wiring the �xed string s0 into C 0,and letting �(x) denote the (unique) string s satisfying sSj+1 = x and s[k]nSj+1 = s0,we obtain a circuit C 00 that satis�esPrx2f0;1gm(k) [C 00(x; f(�(x)S1); :::; f(�(x)Sj)) = f(x)] � p0:The circuit C 00 is almost what we seek. The only problem is that C 00 gets as inputnot only x, but also f(�(x)S1); :::; f(�(x)Sj), whereas we seek an approximator off(x) that only gets x.The key observation is that each of the \missing" values f(�(x)S1); :::; f(�(x)Sj)depend only on a relatively small number of the bits of x. This fact is due to thehypothesis that jSt\Sj+1j �
 �m(k) for t = 1; :::; j, which means that �(x)St is anm(k)-bit long string in which mt def= jSt \ Sj+1j bits are projected from x and therest are projected from the �xed string s0. Thus, given x, the value f(�(x)St) canbe computed by a (trivial) circuit of size eO(2mt); that is, by a circuit implementinga look-up table on mt bits. Using all these circuits (together with C 00), we willobtain the desired approximator of f . Details follow.We obtain the desired circuit, denoted C, that T -approximates f as follows. Thecircuit C depends on the index j and the string s0 that are �xed as in the foregoinganalysis. Recall that C incorporates (eO(2
�jxj)-size) circuits for computing x 7!38

f(�(x)St), for t = 1; :::; j. On input x 2 f0; 1gm(k), the circuit C computes thevalues f(�(x)S1); :::; f(�(x)Sj), invokesC 00 on input x and these values, and outputsthe answer as a guess for f(x). That is,C(x) = C 00(x; f(�(x)S1); :::; f(�(x)Sj)) = C 0(�(x); f(�(x)S1); :::; f(�(x)Sj)):By the foregoing analysis, Prx[C(x) = f(x)] � p0 > 12 + 17`(k) , which is lower-bounded by 12 + 1T (m(k)) , because T (m(k)) = 2"m(k) = 2"�k � 22�k � 7`(k),where the �rst inequality is due to " > 2�=� and second inequality is due to`(k) = 2�k. The size of C is upper-bounded by `(k)2+`(k) � eO(2
�m(k))� eO(`(k)2 �2
�m(k)) = eO(22��(m(k)=�)+
�m(k)) � T (m(k)), where the last inequality is due toT (m(k)) = 2"m(k) � eO(2(2�=�)�m(k)+
�m(k)) (which in turn uses " > (2�=�) +
).Thus, we derived a contradiction to the hypothesis that f is T -inapproximable.This completes the proof of Theorem 3.5.3.2.3 Construction 3.4 as a general frameworkThe Nisan{Wigderson Construction (i.e., Construction 3.4) is actually a generalframework, which can be instantiated in various ways. Some of these instantiations,which are based on an abstraction of the construction as well as of its analysis, arebrie
y reviewed next.We �rst note that the generator described in Construction 3.4 consists of ageneric algorithmic scheme that can be instantiated with any predicate f . Fur-thermore, this algorithmic scheme, denoted G, is actually an oracle machine thatmakes (non-adaptive) queries to the function f , and thus the combination (of Gand f) may be written as Gf . Likewise, the proof of pseudorandomness of Gf (i.e.,the bulk of the proof of Theorem 3.5) is actually a general scheme that, for everyf , yields a (non-uniform) oracle-aided circuit C that approximates f by using anoracle call to any distinguisher for Gf (i.e., C uses the distinguisher as a black-box).The circuit C does depends on f (but in a restricted way). Speci�cally, C containslook-up tables for computing functions obtained from f by �xing some of the inputbits (i.e., look-up tables for the functions f(�(�)St)'s). The foregoing abstractionsfacilitate the presentation of the following instantiations of the general frameworkunderlying Construction 3.4Derandomization of constant-depth circuits. In this case we instantiateConstruction 3.4 using the parity function in the role of the inapproximable pred-icate f , noting that parity is indeed inapproximable by \small" constant-depthcircuits. With an adequate setting of parameters we obtain pseudorandom gen-erators with stretch `(k) = exp(k1=O(1)) that fool \small" constant-depth circuits(see [40]). The analysis of this construction proceeds very much like the proofof Theorem 3.5. One important observation is that incorporating the (straightfor-ward) circuits that compute f(�(x)St) into the distinguishing circuit only increasesits depth by two levels. Speci�cally, the circuit C uses depth-two circuits that com-pute the values f(�(x)St)'s, and then obtains a prediction of f(x) by using thesevalues in its (single) invocation of the (given) distinguisher.39

The resulting pseudorandom generator, which use a seed of polylogarithmiclength (equiv., `(k) = exp(k1=O(1))), can be used for derandomizing RAC0 (i.e.,random AC0), analogously to Theorem 3.3. Thus, we can deterministically ap-proximate, in quasi-polynomial-time and up-to an additive error, the fraction ofinputs that satisfy a given (constant-depth) circuit. Speci�cally, for any constantd, given a depth-d circuit C, we can deterministically approximate the fraction ofthe inputs that satisfy C (i.e., cause C to evaluate to 1) to within any additiveconstant error7 in time exp((log jCj)O(d)). Providing a deterministic polynomial-time approximation, even in the case d = 2 (i.e., CNF/DNF formulae) is an openproblem.Derandomization of probabilistic proof systems. A di�erent (and moresurprising) instantiation of Construction 3.4 utilizes predicates that are inapprox-imable by small circuits having oracle access to NP . The result is a pseudorandomgenerator robust against two-move public-coin interactive proofs (which are as pow-erful as constant-round interactive proofs). The key observation is that the analysisof Construction 3.4 provides a black-box procedure for approximating the under-lying predicate when given oracle access to a distinguisher (and this procedure isvalid also in case the distinguisher is a non-deterministic machine). Thus, undersuitably strong (and yet plausible) assumptions, constant-round interactive proofscollapse to NP . We note that a stronger result, which deviates from the foregoingframework, has been subsequently obtained (cf. [37]).Construction of randomness extractors. An even more radical instantiationof Construction 3.4 was used to obtain explicit constructions of randomness ex-tractors (see [50]). In this case, the predicate f is viewed as (an error correctingencoding of) a somewhat random function, and the construction makes sense be-cause it refers to f in a black-box manner. In the analysis we rely on the fact thatf can be approximated by combining relatively little information (regarding f)with (black-box access to) a distinguisher for Gf . For further details see either [53]or [50] (or [19, Apdx. D.4]).3.3 Re
ections Regarding DerandomizationPart 1 of Theorem 3.6 is often summarized by saying that (under some reasonableassumptions) randomness is useless. We believe that this interpretation is wrongeven within the restricted context of traditional complexity classes, and is bluntlywrong if taken outside of the latter context. Let us elaborate.7We mention that in the special case of approximating the number of satisfying assignmentof a DNF formula, relative error approximations can be obtained by employing a determinis-tic reduction of relative error approximation to additive constant error approximation (see [16,Apdx. B.1.1] or [19, x6.2.2.1]). Thus, using a pseudorandom generator that fools DNF formu-lae, we can deterministically obtain a relative (rather than additive) error approximation to thenumber of satisfying assignment in a given DNF formula.40

Taking a closer look at the proof of Theorem 3.3 (which underlies Theorem 3.6),we note that a randomized algorithm A of time-complexity t is emulated by adeterministic algorithm A0 of time complexity t0 = poly(t). Further noting thatA0 = AG invokes A (as well as the canonical derandomizer G) for
(t) times(because `(k) = O(2k) implies 2k =
(t)), we infer that t0 =
(t2) must hold.Thus, derandomization via (Part 1 of) Theorem 3.6 is not really for free.More importantly, we note that derandomization is not possible in various dis-tributed settings, when both parties may protect their con
icting interests by em-ploying randomization. Notable examples include most cryptographic primitives(e.g., encryption) as well as most types of probabilistic proof systems (e.g., PCP).Additional settings where randomness makes a di�erence (either between impossi-bility and possibility or between formidable and a�ordable cost) include distributedcomputing (see [6]), communication complexity (see [31]), parallel architectures(see [32]), sampling (see, e.g., [19, Apdx. D.3]), and property testing (see, e.g., [19,Sec. 10.1.2]).

41

Chapter 4Space-BoundedDistinguishersIn the previous two chapters we have considered generators that output sequencesthat look random to any e�cient procedures, where the latter were modeled bytime-bounded computations. Speci�cally, in Chapter 2 we considered indistin-guishability by polynomial-time procedures. A �ner classi�cation of time-boundedprocedures is obtained by considering their space-complexity; that is, restrictingthe space-complexity of time-bounded computations. This restriction leads to thenotion of pseudorandom generators that fool space-bounded distinguishers. In-terestingly, in contrast to the notions of pseudorandom generators that were con-sidered in Chapters 2 and 3, the existence of pseudorandom generators that foolspace-bounded distinguishers can be established without relying on computationalassumptions.Prerequisites: Technically speaking, the current chapter is self-contained, butvarious de�nitional choices are justi�ed by reference to the standard de�nitions ofspace-bounded randomized algorithms. Thus, a review of that model (as providedin, e.g., [19, Sec. 6.1.5]) is recommended as conceptual background for the currentchapter.4.1 De�nitional IssuesOur main motivation for considering space-bounded distinguishers is to develop anotion of pseudorandomness that is adequate for space-bounded randomized algo-rithms. That is, such algorithms should essentially maintain their behavior whentheir source of internal coin tosses is replaced by a source of pseudorandom bits(which may be generated based on a much shorter random seed). We thus startby recalling and reviewing the natural notion of space-bounded randomized algo-rithms. 42

Unfortunately, natural notions of space-bounded computations are quite subtle,especially when non-determinism or randomization are concerned (see [19, Sec. 5.3]and [19, Sec. 6.1.5], respectively). Two major de�nitional issues regarding random-ized space-bounded computations are the need for imposing explicit time boundsand the type of access to the random tape.1. Time bounds: The question is whether or not the space-bounded machinesare restricted to time-complexity that is at most exponential in their space-complexity.1 Recall that such an upper-bound follows automatically in thedeterministic case, and can be assumed without loss of generality in the non-deterministic case, but it does not necessarily hold in the randomized case.Furthermore, failing to restrict the time-complexity of randomized space-bounded machines makes them unnatural and unintentionally too strong(e.g., capable of emulating non-deterministic computations with no overheadin term of space-complexity).Seeking a natural model of randomized space-bounded algorithms, we postu-late that their time-complexity must be at most exponential in their space-complexity.2. Access to the random tape: Recall that randomized algorithms may be mod-eled as machines that are provided with the necessary randomness via a spe-cial random-tape. The question is whether the space-bounded machine hasuni-directional or bi-directional (i.e., unrestricted) access to its random-tape.(Allowing bi-directional access means that the randomness is recorded \forfree"; that is, without being accounted for in the space-bound.)Recall that uni-directional access to the random-tape corresponds to the nat-ural model of an on-line randomized machine, which determines its movesbased on its internal coin tosses (and thus cannot record its past coin tosses\for free"). Thus, we consider uni-directional access.2Hence, we focus on randomized space-bounded computation that have time-complexitythat is at most exponential in their space-complexity and access their random-tapein a uni-directional manner.When seeking a notion of pseudorandomness that is adequate for the foregoingnotion of randomized space-bounded computations, we note that the correspond-ing distinguisher is obtained by �xing the main input of the computation andviewing the contents of the random-tape of the computation as the only input ofthe distinguisher. Thus, in accordance with the foregoing notion of randomizedspace-bounded computation, we consider space-bounded distinguishers that have a1Alternatively, one can ask whether these machines must always halt or only halt with prob-ability approaching 1. It can be shown that the only way to ensure \absolute halting" is to havetime-complexity that is at most exponential in the space-complexity. (In the current discussionas well as throughout this chapter, we assume that the space-complexity is at least logarithmic.)2We note that the fact that we restrict our attention to uni-directional access is instrumen-tal in obtaining space-robust generators without making intractability assumptions. Analogousgenerators for bi-directional space-bounded computations would imply hardness results of a break-through nature in the area. 43

uni-directional access to the input sequence that they examine. Let us consider thetype of algorithms that arise.We consider space-bounded algorithms that have a uni-directional access to theirinput. At each step, based on the contents of its temporary storage, such analgorithm may either read the next input bit or stay at the current location on theinput, where in either case the algorithm may modify its temporary storage. Tosimplify our analysis of such algorithms, we consider a corresponding non-uniformmodel in which, at each step, the algorithm reads the next input bit and updateits temporary storage according to an arbitrary function applied to the previouscontents of that storage (and to the new bit). Note that we have strengthened themodel by allowing arbitrary (updating) functions, which can be implemented by(non-uniform) circuits having size that is exponential in the space-bound, ratherthan using (updating) functions that can be (uniformly) computed in time that isexponential in the space-bound. This strengthening is motivated by the fact thatthe known constructions of pseudorandom generators remain valid also when thespace-bounded distinguishers are non-uniform and by the fact that non-uniformdistinguishers arise anyhow in derandomization.The computation of the foregoing non-uniform space-bounded algorithms (orautomata)3 can be represented by directed layered graphs, where the vertices ineach layer correspond to possible contents of the temporary storage and transitionbetween neighboring layers corresponds to a step of the computation. Foreseeingthe application of this model for the description of potential distinguishers, weparameterize these layered graphs based on the index, denoted k, of the relevantensembles (e.g., fG(Uk)gk2N and fU`(k)gk2N). That is, we present both the inputlength, denoted ` = `(k), and the space-bound, denoted s(k), as functions of theparameter k. Thus, we de�ne a non-uniform automaton of space s : N!N (anddepth ` : N!N) as a family, fDkgk2N, of directed layered graphs with labelededges such that the following conditions hold:� The digraph Dk consists of `(k) + 1 layers, each containing at most 2s(k)vertices. The �rst layer contains a single vertex, which is the digraph's (single)source (i.e., a vertex with no incoming edges), and the last layer contains allthe digraph's sinks (i.e., vertices with no outgoing edges).� The only directed edges in Dk are between adjacent layers, going from layeri to layer i + 1, for i � `(k). These edges are labeled such that each (non-sink) vertex of Dk has two (possibly parallel) outgoing directed edges, onelabeled 0 and the other labeled 1.The result of the computation of such an automaton, on an input of adequate length3We use the term automaton (rather than algorithm or machine) in order to remind the readerthat this computing device reads its input in a uni-directional manner. Alternative terms that maybe used are \real-time" or \on-line" machines. We prefer not using the term \on-line" machinein order to keep a clear distinction from randomized (on-line) algorithms that have free accessto their input (and on-line access to a source of randomness). Indeed, the automata considerhere arise from the latter algorithms by �xing their primary input and considering the randomsource as their (only) input. We also note that the automata considered here are a special caseof Ordered Binary Decision Diagrams (OBDDs; see [57]).44

(i.e., length ` where Dk has ` + 1 layers), is de�ned as the vertex (in last layer)reached when following the sequence of edges that are labeled by the correspondingbits of the input. That is, on input x = x1 � � �x`, in the ith step (for i = 1; :::; `) wemove from the current vertex (which resides in the ith layer) to one of its neighbors(which resides in the i+1st layer) by following the outgoing edge labeled xi. Usinga �xed partition of the vertices of the last layer, this de�nes a natural notion ofa decision (by Dk); that is, we write Dk(x) = 1 if on input x the automaton Dkreached a vertex that belongs to the �rst part of the aforementioned partition.De�nition 4.1 (indistinguishability by space-bounded automata):� For a non-uniform automaton, fDkgk2N, and two probability ensembles, fXkgk2Nand fYkgk2N, the function d :N! [0; 1] de�ned asd(k) def= jPr[Dk(Xk) = 1]� Pr[Dk(Yk) = 1]jis called the distinguishability-gap of fDkg between the two ensembles.� Let s : N!N and " : N ! [0; 1]. A probability ensemble, fXkgk2N, iscalled (s; ")-pseudorandom if for any non-uniform automaton of space s(�),the distinguishability-gap of the automaton between fXkgk2N and the corre-sponding uniform ensemble (i.e., fUjXkjgk2N) is at most "(�).� A deterministic algorithm G of stretch function ` is called an (s; ")-pseudorandomgenerator if the ensemble fG(Uk)gk2N is (s; ")-pseudorandom. That is, everynon-uniform automaton of space s(�) has a distinguishing-gap of at most "(�)between fG(Uk)gk2N and fU`(k)gk2N.Thus, when using a random seed of length k, an (s; ")-pseudorandom generatoroutputs a sequence of length `(k) that looks random to observers having spaces(k). Note that s(k) � k is a necessary condition for the existence of (s; 0:5)-pseudorandom generators, because a non-uniform automaton of space s(k) > kcan recognize the image of a generator (which contains at most 2k strings of length`(k) > k). More generally, there is a trade-o� between k � s(k) and the stretch `of (s; ")-pseudorandom generators (i.e., `(k) = O("(k) � k � 2k�s(k)) for "(k) � 1=2).Note: We stated the space-bound of the potential distinguisher (as well as thestretch function) in terms of the seed-length, denoted k, of the generator. Incontrast, other sources present a parameterization in terms of the space-bound ofthe potential distinguisher, denoted m. The translation is obtained by using m =s(k), and we shall provide it subsequent to the main statements of Theorems 4.2and 4.3.4.2 Two ConstructionsIn contrast to the case of pseudorandom generators that fool time-bounded distin-guishers, pseudorandom generators that fool space-bounded distinguishers can be45

constructed without relying on any computational assumption. The following twotheorems exhibit two rather extreme cases of a general trade-o� between the space-bound of the potential distinguisher and the stretch function of the generator.4 Westress that both theorems fall short of providing parameters as achieved by a non-constructive argument, but they refer to relatively e�cient constructions. We startwith an attempt to maximize the stretch.Theorem 4.2 (stretch exponential in the space-bound for s(k) = pk): For everyspace constructible function s :N!N , there exists an (s; 2�s)-pseudorandom gen-erator of stretch function `(k) = min(2k=O(s(k)); 2s(k)). Furthermore, the generatorworks in space that is linear in the length of the seed, and in time that is linear inthe stretch function.In other words, for every t � m, we have a generator that takes a random seedof length k = O(t �m) and produce a sequence of length 2t that looks random toany (non-uniform) automaton of space m (up to a distinguishing-gap of 2�m). Inparticular, using a random seed of length k = O(m2), one can produce a sequence oflength 2m that looks random to any (non-uniform) automaton of space m. Thus,one may replace random sequences used by any space-bounded computation, bysequences that are e�ciently generated from random seeds of length quadratic inthe space bound. The common instantiation of the latter assertion is for log-spacealgorithms. In Sec. 4.2.2, we apply Theorem 4.2 (and its underlying ideas) forthe derandomization of space-complexity classes such as BPL (i.e., the log-spaceanalogue of BPP). Theorem 4.2 itself is proved in Sec. 4.2.1.We now turn to the case where one wishes to maximize the space-bound of po-tential distinguishers. We warn that Theorem 4.3 only guarantees a subexponentialdistinguishing gap (rather than the exponential distinguishing gap guaranteed inTheorem 4.2). This warning is voiced because failing to recall this limitation hasled to errors in the past.Theorem 4.3 (polynomial stretch and linear space-bound): For any polynomialp and for some s(k) = k=O(1), there exists an (s; 2�ps)-pseudorandom genera-tor of stretch function p. Furthermore, the generator works in linear-space andpolynomial-time (both stated in terms of the length of the seed).In other words, we have a generator that takes a random seed of length k = O(m)and produce a sequence of length poly(m) that looks random to any (non-uniform)automaton of space m. Thus, one may convert any randomized computation uti-lizing polynomial-time and linear-space into a functionally equivalent randomizedcomputation of similar time and space complexities that uses only a linear numberof coin tosses.4.2.1 Sketches of the proofs of Theorems 4.2 and 4.3In both cases, we start the proof by considering a generic space-bounded distin-guisher and show that the input distribution that this distinguisher examines can4These two results have been \interpolated" in [5]: There exists a parameterized family of\space fooling" pseudorandom generators that includes both results as extreme special cases.46

be modi�ed (from the uniform distribution into a pseudorandom one) without hav-ing the distinguisher notice the di�erence. This modi�cation (or rather a sequenceof modi�cations) yields a construction of a pseudorandom generator, which is onlyspelled-out at the end of the argument.Sketch of the proof of Theorem 4.2 (see details in [41])The main technical tool used in this proof is the \mixing property" of pairwiseindependent hash functions (see, e.g., [19, Apdx. D.2]). A family of functions Hn,which map f0; 1gn to itself, is calledmixing if for every pair of subsetsA;B � f0; 1gnfor all but very few (i.e., exp(�
(n)) fraction) of the functions h 2 Hn, it holdsthat Pr[Un 2 A ^ h(Un) 2 B] � jAj2n � jBj2n (4.1)where the approximation is up to an additive term of exp(�
(n)).We may assume, without loss of generality, that s(k) =
(pk), and thus `(k) �2s(k) holds. For any s(k)-space distinguisher Dk as in De�nition 4.1, we consideran auxiliary \distinguisher" D0k that is obtained by \contracting" every block ofn def= �(s(k)) consecutive layers in Dk, yielding a directed layered graph with`0 def= `(k)=n < 2s(k) layers (and 2s(k) vertices in each layer). Speci�cally,� each vertex in D0k has 2n (possibly parallel) directed edges going to variousvertices of the next level; and� each such edge is labeled by an n-bit long string such that the directed edge(u; v) labeled �1�2 � � ��n in D0k replaces the n-edge directed path between uand v in Dk that consists of edges labeled �1; �2; ::::; �n.The graph D0k simulates Dk in the obvious manner; that is, the computation of D0kon an input of length `(k) = `0 �n is de�ned by breaking the input into consecutivesubstrings of length n and following the path of edges that are labeled by thecorresponding n-bit long substrings.The key observation is that D0k cannot distinguish between a random `0 � n-bitlong input (i.e., U`0�n � U (1)n U (2)n � � �U (`0)n) and a \pseudorandom" input of the formU (1)n h(U (1)n)U (2)n h(U (2)n) � � �U (`0=2)n h(U (`0=2)n), where h 2 Hn is a (suitably �xed)hash function. To prove this claim, we consider an arbitrary pair of neighboringvertices, u and v (in layers i and i+1, respectively), and denote by Lu;v � f0; 1gnthe set of the labels of the edges going from u to v. Similarly, for a vertex w atlayer i+2, we let L0v;w denote the set of the labels of the edges going from v to w.By Eq. (4.1), for all but very few of the functions h 2 Hn, it holds thatPr[Un 2 Lu;v ^ h(Un) 2 L0v;w] � Pr[Un 2 Lu;v] � Pr[Un 2 L0v;w] ; (4.2)where \very few" and � are as in Eq. (4.1). Thus, for all but exp(�
(n)) fractionof the choices of h 2 Hn, replacing the coins in the second transition (i.e., thetransition from layer i+1 to layer i+2) with the value of h applied to the outcomesof the coins used in the �rst transition (i.e., the transition from layer i to i + 1),47

approximately maintains the probability that D0k moves from u to w via v. Using aunion bound (on all triples (u; v; w) as in the foregoing), we note that, for all but23s(k) � `0 � exp(�
(n)) fraction of the choices of h 2 Hn, the foregoing replacementapproximately maintains the probability that D0k moves through any speci�c two-edge path of D0k.Using `0 < 2s(k) and a suitable choice of n = �(s(k)), it holds that 23s(k) � `0 �exp(�
(n)) < exp(�
(n)), and thus all but \few" functions h 2 Hn are good forapproximating all these transition probabilities. (We stress that the same h can beused in all these approximations.) Thus, at the cost of extra jhj random bits, wecan reduce the number of true random coins used in transitions on D0k by a factorof two, without signi�cantly a�ecting the �nal decision of D0k (where again we usethe fact that `0 � exp(�
(n)) < exp(�
(n)), which implies that the approximationerrors do not accumulate to too much). In other words, at the cost of extra jhjrandom bits, we can e�ectively contract the distinguisher to half its length whileapproximately maintaining the probability that the distinguisher accepts a randominput. That is, �xing a good h (i.e., one that provides a good approximation tothe transition probability over all 23s(k) � `0 two-edge paths), we can replace thetwo-edge paths in D0k by edges in a new distinguisher D00k (which depends on h)such that an edge (u;w) labeled r 2 f0; 1gn appears in D00k if and only if, for somev, the path (u; v; w) appears in D0k with the �rst edge (i.e., (u; v)) labeled r andthe second edge (i.e., (v; w)) labeled h(r). Needless to say, the crucial point is thatPr[D00k(U(`0=2)�n)=1] approximates Pr[D0k(U`0�n)=1].The forgoing process can be applied to D00k resulting in a distinguisher D000k ofhalf the length, and so on. Each time we contract the current distinguisher by afactor of two, and do so by randomly selecting (and �xing) a new hash function.Thus, repeating the process for a logarithmic (in the depth of D0k) number of timeswe obtain a distinguisher that only examines n bits, at which point we stop. Intotal, we have used t def= log2(`0=n) < log2 `(k) random hash functions. This meansthat we can generate a (pseudorandom) sequence that fools the original Dk byusing a seed of length n+ t � log2 jHnj. Using n = �(s(k)) and an adequate familyHn (which, in particular, satis�es jHnj = 2O(n)), we obtain the desired (s; 2�s)-pseudorandom generator, which indeed uses a seed of length O(s(k) � log2 `(k)) = k.Rough sketch of the proof of Theorem 4.3 (see details in [44])The main technical tool used in this proof is a suitable randomness extractor (see,e.g., [50] or [19, Apdx. D.4]), which is indeed a much more powerful tool thanhashing functions. The basic idea is that when the distinguisher Dk is at some\distant" layer, say at layer t =
(s(k)), it typically \knows" little about the ran-dom choices that led it there. That is, Dk has only s(k) bits of memory, whichleaves out t � s(k) bits of \uncertainty" (or randomness) regarding the previousmoves. Thus, much of the randomness that led Dk to its current state may be\re-used" (or \recycled"). To re-use these bits we need to extract almost uniformdistribution on strings of su�cient length out of the aforementioned distribution48

(over f0; 1gt) that has entropy5 at least t� s(k). Furthermore, such an extractionrequires some additional truly random bits, yet relatively few such bits. In partic-ular, using k0 =
(log t) bits towards this end, the extracted bits are exp(�
(k0))away from uniform.The gain from the aforementioned recycling is signi�cant if recycling is repeatedsu�ciently many times. Towards this end, we break the k-bit long seed into twoparts, denoted r0 2 f0; 1gk=2 and (r1; :::; r3pk), where jrij = pk=6, and set n = k=3.Intuitively, r0 will be used for determining the �rst n steps, and it will be re-used(or recycled) together with ri for determining the steps i � n+1 through (i+1) �n.Looking at layer i�n, we consider the information regarding r0 that is \known" toDk(when reaching a speci�c vertex at layer i�n). Typically, the conditional distributionof r0, given that we reached a speci�c vertex at layer i �n, has (min-)entropy greaterthan 0:99 � ((k=2) � s(k)). Using ri (as a seed of an extractor applied to r0), wecan extract 0:9 � ((k=2)� s(k)� o(k)) > k=3 = n bits that are almost-random (i.e.,2�
(pk)-close to Un) with respect toDk, and use these bits for determining the nextn steps. Hence, using k random bits, we produce a sequence of length (1+3pk)�n >k3=2 that fools automata of space bound, say, s(k) = k=10. Speci�cally, using anextractor of the form Ext : f0; 1gpk=6 � f0; 1gk=2 ! f0; 1gk=3, we map the seed(r0; r1; :::; r3pk) to the output sequence (r0;Ext(r1; r0); :::;Ext(r3pk; r0)). Thus, weobtained an (s; 2�
(ps))-pseudorandom generator of stretch function `(k) = k3=2.In order to obtain an arbitrary polynomial stretch rather than a speci�c poly-nomial stretch (i.e., `(k) = k3=2), we iteratively compose generators as above withthemselves (for a constant number of times). The basic composition combinesan (s1; "1)-pseudorandom generator of stretch function `1, denoted G1, with an(s2; "2)-pseudorandom generator of stretch function `2, denoted G2. On inputs 2 f0; 1gk, the resulting generator �rst computes G1(s), parses G1(s) into t con-secutive k0-bit long blocks, where k0 = s1(k)=2 and t = `1(k)=k0, and appliesG2 to each block (outputting the concatenation of the t results). This generator,denoted G, has stretch `(k) = t � `2(k0), and for s1(k) = �(k) we have `(k) =`1(k) � `2(
(k))=O(k). The pseudorandom of G can be established via a hybrid ar-gument (which refers to the intermediate hybrid distribution G2(U (1)k0) � � �G2(U (t)k0)and uses the fact that the second step in the computation of G can be performedby a non-uniform automaton of space s1=2).4.2.2 Derandomization of space-complexity classesAs a direct application of Theorem 4.2, we obtain that BPL � Dspace(log2), whereBPL denotes the log-space analogue of BPP. (Recall that NL � Dspace(log2),but it is not known whether or not BPL � NL.)6 A stronger derandomizationresult can be obtained by a �ner analysis of the proof of Theorem 4.2.5Actually, a stronger technical condition needs and can be imposed on the latter distribution.Speci�cally, with overwhelmingly high probability, at layer t, automaton Dk is at a vertex that canbe reached in more than 20:99�(t�s(k)) di�erent ways. In this case, the distribution representinga random walk that reaches this vertex has min-entropy greater than 0:99 � (t � s(k)).6Indeed, the log-space analogue of RP, denoted RL, is contained in NL � Dspace(log2), andthus the fact that Theorem 4.2 implies RL � Dspace(log2) is of no interest.49

Theorem 4.4 BPL � SC, where SC denotes the class of decision problems thatcan be solved by deterministic algorithms that run in polynomial-time and polylogarithmic-space.Thus, BPL (and in particularRL � BPL) is placed in a class not known to containNL. Another such result was subsequently obtained in [49]: Randomized log-spacecan be simulated in deterministic space o(log2); speci�cally, in space log3=2. Wemention that the archetypical problem of RL has been recently proved to be in L(see [47]).Sketch of the proof of Theorem 4.4 (see details in [42])We are going to use the generator construction provided in the proof of Theo-rem 4.2, but show that the main part of the seed (i.e., the sequence of hash func-tions) can be �xed (depending on the distinguisher at hand). Furthermore, this�xing can be performed in polylogarithmic space and polynomial-time. Speci�cally,wishing to derandomize a speci�c log-space computation (which refers to a speci�cinput), we �rst obtain the corresponding distinguisher, denoted D0k, that representsthis computation (as a function of the outcomes of the internal coin tosses of thelog-space algorithm). The key observation is that the question of whether or nota speci�c hash function h 2 Hn is good for a speci�c D0k can be determined inspace that is linear in n = jhj=2 and logarithmic in the size of D0k. Indeed, thetime-complexity of this decision procedure is exponential in its space-complexity.It follows that we can �nd a good h 2 Hn, for a given D0k, within these complexities(by scanning through all possible h 2 Hn). Once a good h is found, we can alsoconstruct the corresponding graph D00k (in which edges represent two-edge pathsin D0k), again within the same complexity. Actually, it will be more instructive tonote that we can determine a step (i.e., an edge-traversal) in D00k by making twosteps (edge-traversals) in D0k. This will allow to �x a hash function for D00k , and soon. Details follow.The main claim is that the entire process of �nding a sequence of t def= log2 `0(k)good hash functions can be performed in space t �O(n+log jDkj) = O(n+log jDkj)2and time poly(2n�jDkj); that is, the time-complexity is sub-exponential in the space-complexity (i.e., the time-complexity is signi�cantly smaller than than the genericbound of exp(O(n + log jDkj)2)). Starting with D(1)k = D0k, we �nd a good (forD(1)k) hashing function h(1) 2 Hn, which de�nes D(2)k = D00k . Having found (andstored) h(1); :::; h(i) 2 Hn, which determine D(i+1)k , we �nd a good hashing functionh(i+1) 2 Hn for D(i+1)k by emulating pairs of edge-traversals on D(i+1)k . Indeed,a key point is that we do not construct the sequence of graphs D(2)k ; :::; D(i+1)k ,but rather emulate an edge-traversal in D(i+1)k by making 2i edge-traversals in D0k,using h(1); :::; h(i): The (edge-traversal) move � 2 f0; 1gn starting at vertex v ofD(i+1)k translates to a sequence of 2i moves starting at vertex v of D0k, where themoves are determined by the 2i-long sequence (of n-bit strings)h(0i)(�); h(0i�201)(�); h(0i�210)(�); h(0i�211)(�); :::; h(1i)(�);50

where h(�i����1) is the function obtained by the composition of a subsequence of thefunctions h(i); :::; h(1) determined by �i � � ��1. Speci�cally, h(�i����1) equals h(it0) �� � � � h(i2) � h(i1), where i1 < i2 < � � � < it0 and fij : j=1; :::; t0g = fj : �j=1g.Recall that the ability to perform edge-traversals on D(i+1)k allows to determinewhether a speci�c function h 2 Hn is good for D(i+1)k . This is done by consideringall the relevant triples (u; v; w) inD(i+1)k , computing for each such (u; v; w) the threequantities (i.e., probabilities) appearing in Eq. (4.2), and deciding accordingly.Trying all possible h 2 Hn, we �nd a function (to be denoted h(i+1)) that is goodfor D(i+1)k . This is done while using an additional storage of s0 = O(n + log jD0kj)(on top of the storage used to record h(1); :::; h(i)), and in time that is exponentialin s0. Thus, given D0k, we �nd a good sequence of hash functions, h(1); :::; h(t), intime exponential in s0 and while using space s0 + t � log2 jHnj = O(t � s0). Sucha sequence of functions allows us to emulate edge-traversals on D(t+1)k , which inturn allows to (deterministically) approximate the probability that D0k accepts arandom input (i.e., the probability that, starting at the single source vertex of the�rst layer, automaton D0k reaches some accepting vertex at the last layer). Thisapproximation is obtained by computing the corresponding probability in D(t+1)kby traversing all 2n edges.To summarize, givenD0k, we can (deterministically) approximate the probabilitythat D0k accepts a random input in O(t � s0)-space and exp(O(s0 + n))-time, wheres0 = O(n+ log jD0kj) and t < log2 jD0kj. Recalling that n = �(log jD0kj), this meansO(log jD0kj)2-space and poly(jD0kj)-time. We comment that the approximation canbe made accurate up to an additive term of 1=poly(jD0kj), but an additive term of1=6 su�ces here.

51

Chapter 5Special Purpose GeneratorsThe pseudorandom generators considered so far were aimed at decreasing theamount of randomness utilized by any algorithm of certain time and/or spacecomplexity (or even fully derandomizing the corresponding complexity class). Forexample, we considered the derandomization of classes such as BPP and BPL. Inthe current chapter our goal is less ambitious. We only seek to derandomize (ordecrease the randomness of) speci�c algorithms or rather classes of algorithms thatuse their random bits in certain (restricted) ways. For example, the algorithm'scorrectness may only require that its sequence of coin-tosses (or \blocks" in such asequence) are pairwise-independent. Indeed, the restrictions that we shall considerhere have a concrete and \structural" form, rather than the abstract complexitytheoretic forms considered in previous chapters.The aforementioned restrictions induce corresponding classes of very restricteddistinguishers, which in particular are much weaker than the classes of distinguish-ers considered in previous chapters. These very restricted types of distinguishersinduce correspondingly weak types of pseudorandom generators (which producesequences that fool these distinguishers). Still, such generators have many appli-cations (both in complexity theory and in the design of algorithms).We start with the simplest of these generators: the pairwise-independence gen-erator, and its generalization to t-wise independence for any t�2. Such generatorsperfectly fool any distinguisher that only observe t locations in the output sequence.This leads naturally to almost pairwise (or t-wise) independence generators, whichalso fool such distinguishers (albeit non-perfectly). The latter generators are im-plied by a stronger class of generators, which is of independent interest: the small-bias generators. Small-bias generators fool any linear test (i.e., any distinguisherthat merely considers the xor of some �xed locations in the input sequence). We�nally turn to the Expander Random Walk Generator: this generator produces asequence of strings that hit any dense subset of strings with probability that isclose to the hitting probability of a truly random sequence.11Related notions such as samplers, dispersers, and extractors are not treated here (althoughthey were treated in [16, Sec. 3.6] and [19, Apdx. D.3&D.4]).52

Comment regarding our parameterization: To maintain consistency withprior chapters, we continue to present the generators in terms of the seed length,denoted k. Since this is not the common presentation for most results presented inthe sequel, we provide (in footnotes) the common presentation in which the seedlength is determined as a function of other parameters.5.1 Pairwise-Independence GeneratorsPairwise (resp., t-wise) independence generators fool tests that inspect only two(resp., t) elements in the output sequence of the generator. Such local tests areindeed very restricted, yet they arise naturally in many settings. For example, sucha test corresponds to a probabilistic analysis (of a procedure) that only relies on thepairwise independence of certain choices made by the procedure. We also mentionthat, in some natural range of parameters, pairwise independent sampling is as goodas sampling by totally independent sample points (see, e.g., [19, Apdx. D.1.2.4]).A t-wise independence generator of block-length b :N!N (and stretch function`) is a relatively e�cient deterministic algorithm (e.g., one that works in time poly-nomial in the output length) that expands a k-bit long random seed into a sequenceof `(k)=b(k) blocks, each of length b(k), such that any t blocks are uniformly andindependently distributed in f0; 1gt�b(k). That is, denoting the ith block of the gen-erator's output (on seed s) by G(s)i, we require that for every i1 < i2 < � � � < it(in [`(k)=b(k)]) it holds thatG(Uk)i1 ; G(Uk)i2 ; :::; G(Uk)it � Ut�b(k): (5.1)We note that this condition holds even if the inspected t blocks are selected adap-tively. In case t = 2, we call the generator pairwise independent.5.1.1 ConstructionsIn the �rst construction, we refer to GF(2b(k)), the �nite �eld of 2b(k) elements,and associate its elements with f0; 1gb(k).Proposition 5.1 (t-wise independence generator):2 Let t be a �xed integer andb; `; `0 :N!N such that b(k) = k=t, `0(k) = `(k)=b(k) > t and `0(k) � 2b(k). Let�1; :::; �`0(k) be �xed distinct elements of the �eld GF(2b(k)). For s0; s1; :::; st�1 2f0; 1gb(k), letG(s0; s1; :::; st�1) def= 0@t�1Xj=0 sj�j1 ; t�1Xj=0 sj�j2 ; :::; t�1Xj=0 sj�j̀0(k)1A (5.2)where the arithmetic is that of GF(2b(k)). Then, G is a t-wise independence gen-erator of block-length b and stretch `.2In the common presentation of this t-wise independence generator, the length of the seed isdetermined as a function of the desired block-length and stretch. That is, given the parametersb and `0 � 2b, the seed length is set to t � b. 53

That is, given a seed that consists of t elements of GF(2b(k)), the generator outputsa sequence of `0(k) such elements. The proof of Proposition 5.1 is based on theobservation that, for any �xed v0; v1; :::; vt�1, the condition fG(s0; s1; :::; st�1)ij =vjgtj=1 constitutes a system of t linear equations over GF(2b(k)) (in the variabless0; s1; :::; st�1) such that the equations are linearly-independent. (Thus, linear inde-pendence of certain expressions yields statistical independence of the correspondingrandom variables.)A somewhat tedious comment. We warn that Eq. (5.2) does not provide afully explicit construction (of a generator). What is missing is an explicit rep-resentation of GF(2b(k)), which requires an irreducible polynomial of degree b(k)over GF(2). For speci�c values of b(k), a good representation does exist: e.g.,for d def= b(k) = 2 � 3e (with e being an integer), the polynomial xd + xd=2 + 1 isirreducible over GF(2).We note that a construction analogous to Eq. (5.2) works for every �nite �eld(e.g., a �nite �eld of any prime cardinality), but the problem of providing an explicitrepresentation of such a �eld remains non-trivial also in other cases (e.g., considerthe problem of �nding a prime number of size approximately 2b(k)). The latterfact is the main motivation for considering the following alternative constructionfor the case of t = 2.The following construction uses (random) a�ne transformations (as possibleseeds). In fact, better performance (i.e., shorter seed length) is obtained by us-ing a�ne transformations a�ected by Toeplitz matrices. A Toeplitz matrix is amatrix with all diagonals being homogeneous (see Figure 5.1); that is, T = (ti;j)is a Toeplitz matrix if ti;j = ti+1;j+1 for all i; j. Note that a Toeplitz matrix isdetermined by its �rst row and �rst column (i.e., the values of t1;j 's and ti;1's).
+ =

m(k)

b(k)

Figure 5.1: An a�ne transformation a�ected by a Toeplitz matrix.Proposition 5.2 (alternative pairwise independence generator, see Figure 5.1):3Let b; `; `0;m : N!N such that `0(k) = `(k)=b(k) and m(k) = dlog2 `0(k)e = k �3In the common presentation of this pairwise independence generator, the length of the seedis determined as a function of the desired block-length and stretch. That is, given the parametersb and `0, the seed length is set to 2b+ dlog2 `0e � 1.54

2b(k) + 1. Associate f0; 1gn with the n-dimensional vector space over GF(2), andlet v1; :::; v`0(k) be �xed distinct vectors in the m(k)-dimensional vector space overGF(2). For s 2 f0; 1gb(k)+m(k)�1 and r 2 f0; 1gb(k), letG(s; r) def= (Tsv1 + r ; Tsv2 + r ; :::; Tsv`0(k) + r) (5.3)where Ts is an b(k)-by-m(k) Toeplitz matrix speci�ed by the string s. Then, G is apairwise independence generator of block-length b and stretch `.That is, given a seed that represents an a�ne transformation de�ned by an b(k)-by-m(k) Toeplitz matrix and a b(k)-dimensional vector, the generator outputs asequence of `0(k) � 2m(k) strings, each of length b(k). Note that k = 2b(k) +m(k) � 1, and that the stretching property requires `0(k) > k=b(k). The proofof Proposition 5.2 is also based on the observation that linear independence ofcertain expressions yields statistical independence of the corresponding randomvariables: here fG(s; r)ij = vjg2j=1 is a system of 2b(k) linear equations over GF(2)(in Boolean variables representing the bits of s and r) such that the equations arelinearly-independent. We mention that a construction analogous to Eq. (5.3) worksfor every �nite �eld.A stronger notion of e�cient generation. Ignoring the issue of �nding arepresentation for a large �nite �eld, both the foregoing constructions are e�cientin the sense that the generator's output can be produced in time that is polynomialin its length. Actually, the aforementioned constructions satisfy a stronger notionof e�cient generation, which is useful in several applications. Speci�cally, thereexists a polynomial-time algorithm that given a seed, s 2 f0; 1gk, and a blocklocation i 2 [`0(k)] (in binary), outputs the ith block of the corresponding output(i.e., the ith block of G(s)). Note that, in the case of the �rst construction (capturedby Eq. (5.2)), this stronger notion depends on the ability to �nd a representationof GF(2b(k)) in poly(k)-time.4 Recall that this is possible in the case that b(k) isof the form 2 � 3e.5.1.2 Applications (a brief review)Pairwise independence generators do su�ce for a variety of applications (cf., [58]).Many of these applications are based on the fact that \Laws of Large Numbers"hold for sequences of trials that are pairwise independent (rather than totally in-dependent). This fact stems from the application of Chebyshev's Inequality, and isthe basis of the (rather generic) application to (\pairwise independent") sampling.As a concrete example, we mention the derandomization of a fast parallel algo-rithm for the Maximal Independent Set problem (as presented in [38, Sec. 12.3]).54For the basic notion of e�ciency, it su�ces to �nd a representation of GF(2b(k)) in poly(`(k))-time, which can be done by an exhaustive search in the case that b(k) = O(log `(k)).5The core of this algorithm is picking each vertex with probability that is inversely proportionalto the vertex's degree. The analysis only requires that these choices be pairwise independent.Furthermore, these choices can be (approximately) implemented by uniformly selecting values ina su�ciently large set. 55

In general, whenever the analysis of a randomized algorithm only relies on the hy-pothesis that some objects are distributed in pairwise independent manner, we mayreplace its random choices by a sequence of choices that is generated by a pairwiseindependence generator. Thus, pairwise independence generators su�ce for fool-ing distinguishers that are derived from some natural and interesting randomizedalgorithms.Referring to Eq. (5.2), we remark that, for any constant t � 2, the cost ofderandomization (i.e., going over all 2k possible seeds) is exponential in the block-length (because b(k) = k=t). On the other hand, the number of blocks is at mostexponential in the block-length (because `0(k) � 2b(k)), and so if a larger numberof blocks is needed, then we can arti�cially increase the block-length in order toaccommodate this (i.e., set b(k) = log2 `0(k)). Thus, the cost of derandomization ispolynomial in max(`0(k); 2b0(k)), where `0(k) denotes the desired number of blocksand b0(k) the desired block-length. (In other words, `0(k) denotes the desirednumber of random choices, and 2b0(k) represents the size of the domain of eachof these choices.) It follows that whenever the analysis of a randomized algorithmcan be based on a constant amount of independence between feasibly-many randomchoices, each taken within a domain of feasible size, then a feasible derandomizationis possible.5.2 Small-Bias GeneratorsAs stated in Sec. 5.1.2, O(1)-wise independence generators allow for the e�cientderandomization of any e�cient randomized algorithm the analysis of which is onlybased on a constant amount of independence between the bits of its random-tape.This restriction is due to the fact that t-wise independence generators of stretch` require a seed of length
(t � log `). Trying to go beyond constant-independencein such derandomizations (while using seeds of length that is logarithmic in thelength of the pseudorandom sequence) was the original motivation of the notion ofsmall-bias generators. Speci�cally, as we shall see in Sec. 5.2.2, small-bias genera-tors yield meaningful approximations of t-wise independence sequences (based onlogarithmic-length seeds).While the aforementioned type of derandomizations remains an important ap-plication of small-bias generators, the latter are of independent interest and havefound numerous other applications. In particular, small-bias generators fool \globaltests" that examine the entire output sequence and not merely a �xed number ofpositions in it (as in the case of limited independence generators). Speci�cally, asmall-bias generator produces a sequence of bits that fools any linear test (i.e., atest that computes a �xed linear combination of the bits).For " : N ! [0; 1], an "-bias generator with stretch function ` is a relativelye�cient deterministic algorithm (e.g., working in poly(`(k)) time) that expands ak-bit long random seed into a sequence of `(k) bits such that for any �xed non-empty set S � f1; :::; `(k)g the bias of the output sequence over S is at most"(k). The bias of a sequence of n (possibly dependent) Boolean random variables56

�1; :::; �n 2 f0; 1g over a set S � f1; ::; ng is de�ned as2 � ����Pr[�i2S�i = 1]� 12 ���� = jPr[�i2S�i = 1]� Pr[�i2S�i = 0]j: (5.4)The factor of 2 was introduced so to make these biases correspond to the Fouriercoe�cients of the distribution (viewed as a function from f0; 1gn to the reals).65.2.1 ConstructionsRelatively e�cient small-bias generators with exponential stretch and exponentiallyvanishing bias are known.Theorem 5.3 (small-bias generators):7 For some universal constant c > 0, let` :N!N and " :N! [0; 1] such that `(k) � "(k) � exp(k=c). Then, there exists an"-bias generator with stretch function ` operating in time that is polynomial in thelength of its output.In particular, we may have `(k) = exp(k=2c) and "(k) = exp(�k=2c). Three simpleconstructions of small-bias generators that satisfy Theorem 5.3 are known (see [3]).One of these constructions is based on Linear Feedback Shift Registers (LFSRs),where the seed of the generator is used to determine both the \feedback rule" andthe \start sequence" of the LFSR. Speci�cally, a feedback rule of a t-long LFSR isan irreducible polynomial of degree t over GF(2), denoted f(x) = xt +Pt�1j=0 fjxjwhere f0 = 1, and the (`-bit long) sequence produced by the corresponding LFSRbased on the start sequence s0s1 � � � st�1 2 f0; 1gt is de�ned as r0r1 � � � r`�1, whereri = � si if i 2 f0; 1; :::; t� 1gPt�1j=0 fj � ri�t+j if i 2 ft; t+ 1; :::; `� 1g (5.6)(see Figure 5.2). As stated previously, in the corresponding small-bias generatorthe k-bit long seed is used for selecting an almost uniformly distributed feedbackrule f (i.e., a random irreducible polynomial of degree t = k=2) and a uniformlydistributed start sequence s (i.e., a random t-bit string).8 The corresponding `(k)-bit long output r = r0r1 � � � r`(k)�1 is computed as in Eq. (5.6).6To see the correspondence replace f0; 1g by f�1g, and substitute xor by multiplication. Thebias with respect to a set S is thus written as�����Pr"Yi2S �i = +1# � Pr"Yi2S �i = �1#����� = �����E"Yi2S �i#�����; (5.5)which is merely the (absolute value of the) Fourier coe�cient corresponding to S.7In the common presentation of this generator, the length of the seed is determined as afunction of the desired bias and stretch. That is, given the parameters " and `, the seed lengthis set to c � log(`="). We comment that using [3] the constant c is merely 2 (i.e., k � 2 log2(`=")),whereas using [39] k � log2 `+ 4 log2(1=").8Note that an implementation of this generator requires an algorithm for selecting an almostrandom irreducible polynomial of degree t =
(k). A simple algorithm proceeds by enumeratingall irreducible polynomials of degree t, and selecting one of them at random. This algorithm canbe implemented (using t random bits) in exp(t)-time, which is poly(`(k)) if `(k) = exp(
(k)). Apoly(t)-time algorithm that uses O(t) random bits is described in [3, Sec. 8].57

r rr ri-ti-t-1 r ri-1 iri-t+1

f
0

f f
1 t-1

Σ

0 1

Figure 5.2: The LFSR small-bias generator (for t = k=2).A stronger notion of e�cient generation. As in Section 5.1.1, we note thatthe aforementioned constructions satisfy a stronger notion of e�cient generation,which is useful in several applications. That is, there exists a polynomial-timealgorithm that given a k-bit long seed and a bit location i 2 [`(k)] (in binary),outputs the ith bit of the corresponding output.5.2.2 Applications (a brief review)An archetypical application of small-bias generators is for producing short and ran-dom \�ngerprints" (or \digests") of strings such that equality/inequality amongstrings is (probabilistically) re
ected in equality/inequality between their corre-sponding �ngerprints. The key observation is that checking whether or not x = yis probabilistically reducible to checking whether the inner product modulo 2 ofx and r equals the inner product modulo 2 of y and r, where r is produced by asmall-bias generator G. Thus, the pair (s; v), where s is a random seed to G andv equals the inner product modulo 2 of z and G(s), serves as the randomized �n-gerprint of the string z. One advantage of this reduction is that only few bits (i.e.,the seed of the generator and the result of the inner product) needs to be \com-municated between x and y" in order to enable the checking. A related advantageis the low randomness complexity of this reduction, which uses jsj rather thanjG(s)j random bits, where jsj may be O(log jG(s)j). This low (i.e., logarithmic)randomness-complexity underlies the application of small-bias generators to theconstruction of PCP systems and amplifying reductions of gap problems regardingthe satis�ability of systems of equations (see, e.g., [19, Exer. 10.6]).Small-bias generators have been used in a variety of areas (e.g., inapproxima-tion, structural complexity, and applied cryptography; see references in [16, Sec3.6.2]). In addition, as shown next, small-bias generators seem an important toolin the design of various types of \pseudorandom" objects.
58

Approximate independence generators. As hinted at the beginning of thissection, small-bias is related to approximate versions of limited independence.9 Ac-tually, even a restricted type of "-bias (in which only subsets of size t(k) are requiredto have bias upper-bounded by ") implies that any t(k) bits in the said sequenceare 2t(k)=2 � "(k)-close to Ut(k), where here we refer to the variation distance (i.e.,Norm-1 distance) between the two distributions. (The max-norm of the di�erenceis bounded by "(k).)10 Combining Theorem 5.3 and the foregoing upper-bound,we obtain generators with exponential stretch (i.e., `(k) = exp(
(k))) that pro-duce sequences that are approximately
(k)-wise independent in the sense that anyt(k) =
(k) bits in them are 2�
(k)-close to Ut(k). Thus, whenever the analysis of arandomized algorithm can be based on a logarithmic amount of (almost) indepen-dence between feasibly-many binary random choices, a feasible derandomization ispossible (by using an adequate generator of logarithmic seed length).11Extensions to non-binary choices were considered in various works (see refer-ences in [16, Sec 3.6.2]). Some of these works also consider the related problem ofconstructing small \discrepancy sets" for geometric and combinatorial rectangles.t-universal set generators. Using the aforementioned upper-bound on the max-norm (of the deviation from uniform of any t locations), any "-bias generator yieldsa t-universal set generator, provided that " < 2�t. The latter generator outputssequences such that in every subsequence of length t all possible 2t patterns occur(i.e., each for at least one possible seed). Such generators have many applications.5.2.3 GeneralizationIn this section, we outline a generalization of the treatment of small-bias generatorsto the generation of sequences over an arbitrary �nite �eld. Focusing on the caseof a �eld of prime characteristic, denoted GF(p), we �rst de�ne an adequate notionof bias. Generalizing Eq. (5.5) (in Footnote 6), we de�ne the bias of a sequenceof n (possibly dependent) random variables �1; :::; �n 2 GF(p) with respect to thelinear combination (c1; :::; cn) 2 GF(p)n as

E h!Pni=1 ci�ii

, where ! denotes thepth (complex) root of unity (i.e., ! = �1 if p = 2). We mention that upper-bounds on the biases of �1; :::; �n (with respect to any non-zero linear combinations)yield upper-bounds on the distance ofPni=1 ci�i from the uniform distribution overGF(p).9We warn that, unlike in the case of perfect independence, here we refer only to the distributionon �xed bit locations.10Both bounds are derived from the Norm2 bound on the di�erence vector (i.e., the di�erencebetween the two probability vectors).11Furthermore, relying on the linearity of the construction presented in Proposition 5.1, we canobtain generators with double-exponential stretch (i.e., `(k) = exp(2
(k))) that are approximatelyt(k)-independent (in the foregoing sense). That is, we may obtain generators with stretch `(k) =22
(k) producing bit sequences in which any t(k) =
(k) positions have variation distance atmost "(k) = 2�
(k) from uniform; in other words, such generators may have seed-length k =O(t(k) + log(1="(k)) + log log `(k)). In the corresponding result for the max-norm distance, itsu�ces to have k = O(log(t(k)="(k)) + log log `(k)).59

We say that S � GF(p)n is an "-bias probability space if a uniformly selectedsequence in S has bias at most " with respect to any non-zero linear combinationover GF(p). (Whenever such a space is e�ciently constructible, it yields a corre-sponding "-biased generator.) We mention that the LFSR construction, outlinedin Sec. 5.2.1, generalizes to GF(p) and yields an "-bias probability space of size (atmost) p2e, where e = dlogp(n=")e. Such constructions can be used in applicationsthat generalize those in Sec. 5.2.2.5.3 Random Walks on ExpandersIn this section we review generators that produce a sequence of values by taking arandom walk on a large graph that has a small degree but an adequate \mixing"property. Such a graph is called an expander, and by taking a random walk (oflength `0) on it we generate a sequence of `0 values over its vertex set, while using arandom seed of length b+(`0�1) � log2 d, where 2b denotes the number of vertices inthe graph and d denotes its degree. This seed length should be compared againstthe `0 � b random bits required for generating a sequence of `0 independent samplesfrom f0; 1gb (or taking a random walk on a clique of size 2b). Interestingly, as weshall see, the pseudorandom sequence (generated by the said random walk on anexpander) behaves similarly to a truly random sequence with respect to hitting anydense subset of f0; 1gb. Let us start by de�ning this property (or rather by de�ningthe corresponding hitting problem).De�nition 5.4 (the hitting problem): A sequence of (possibly dependent) randomvariables, denoted (X1; :::; X`0), over f0; 1gb is ("; �)-hitting if for any (target) setT � f0; 1gb of cardinality at least " � 2b, with probability at least 1� �, at least oneof these variables hits T ; that is, Pr[9i s.t. Xi2T] � 1� �.Clearly, a truly random sequence of length `0 over f0; 1gb is ("; �)-hitting for � =(1� ")`0 . The aforementioned \expander random walk generator" (to be describednext) achieves similar behavior. Speci�cally, for arbitrary small c > 0 (whichdepends on the degree and the mixing property of the expander), the generator'soutput is ("; �)-hitting for � = (1 � (1 � c) � ")`0 . To describe this generator, weneed to discuss expanders.5.3.1 Background: expanders and random walks on themBy expander graphs (or expanders) of degree d and eigenvalue bound � < d, weactually mean an in�nite family of d-regular graphs, fGNgN2S (S� N), such thatGN is a d-regular graph over N vertices and the absolute value of all eigenvalues,save the biggest one, of the adjacency matrix of GN is upper-bounded by �. Forsimplicity, we shall assume that the vertex set of GN is [N] (although in someconstructions a somewhat more redundant representation is more convenient). Wewill refer to such a family as to a (d; �)-expander (for S). This technical de�nitionis related to the aforementioned notion of \mixing" (which refers to the rate at60

which a random walk starting at a �xed vertex reaches uniform distribution overthe graph's vertices).We are interested in explicit constructions of such graphs, by which we mean thatthere exists a polynomial-time algorithm that on input N (in binary), a vertex vin GN and an index i 2 f1; :::; dg, returns the ith neighbor of v. (We also requirethat the set S for which GN 's exist is su�ciently \tractable" { say that given anyn 2 N one may e�ciently �nd an s 2S such that n � s < 2n.) Several explicitconstructions of expanders are known (cf., e.g., [36, 35, 48]). Below, we rely on thefact that for every � > 0, there exist d and an explicit construction of a (d; � � d)-expander over f2b : b 2 Ng.12 The relevant (to us) fact about expanders is statednext.Theorem 5.5 (Expander Random Walk Theorem): Let G = (V;E) be an ex-pander graph of degree d and eigenvalue bound �. Consider taking a random walkon G by uniformly selecting a start vertex and taking `0�1 additional random stepssuch that at each step the walk uniformly selects an edge incident at the currentvertex and traverses it. Then, for any W � V and � def= jW j=jV j, the probabilitythat such a random walk stays in W is at most� ���+ (1� �) � �d�`0�1 (5.7)Thus, a random walk on an expander is \pseudorandom" with respect to the hittingproperty (i.e., when we consider hitting the set V nW and use " = 1� �); that is,a set of density " is hit with probability at least 1� �, where � = (1� ") � (1� "+(�=d) � ")`0�1 < (1� (1� (�=d)) � ")`0 . A proof of Theorem 5.5 is given in [28], whilea proof of an upper-bound that is weaker than Eq. (5.7) is outlined next.A weak version of the Expander RandomWalk Theorem: Using notationsas in Theorem 5.5, we claim that the probability that a random walk of length `0stays in W is at most (�+ (�=d)2)`0=2. In fact, we make a more general claim thatrefers to the probability that a random walk of length `0 intersectsW0�W1�� � ��W`0�1. The claimed upper-bound isp�0 � `0�1Yi=1 q�i + (�=d)2; (5.8)where �i def= jWij=jV j. In order to prove Eq. (5.8), we view the random walk as theevolution of a corresponding probability vector under suitable transformations. Thetransformations correspond to taking a random step in the graph and to passingthrough a \sieve" that keeps only the entries that correspond to the current setWi. The key observation is that the �rst transformation shrinks the componentthat is orthogonal to the uniform distribution, whereas the second transformationshrinks the component that is in the direction of the uniform distribution. Forfurther details, see [19, Apdx. E.2.1.3].12This can be obtained with d = poly(1=�). In fact d = O(1=�2), which is optimal, can beobtained too, albeit with graphs of sizes that are only approximately powers of two.61

5.3.2 The generatorUsing Theorem 5.5 and an explicit (2t; � � 2t)-expander, we obtain a generator thatproduces sequences that are ("; �)-hitting for � that is almost optimal.Proposition 5.6 (The Expander Random Walk Generator):13 For every constant� > 0, consider an explicit construction of (2t; � � 2t)-expanders for f2n : n2Ng,where t 2 N is a su�ciently large constant. For v 2 [2n] � f0; 1gn and i 2[2t] � f0; 1gt, denote by �i(v) the vertex of the corresponding 2n-vertex graphthat is reached from vertex v when following its ith edge. For b; `0 :N!N such thatk = b(k)+(`0(k)�1)�t < `0(k)�b(k), and for v0 2 f0; 1gb(k) and i1; :::; i`0(k)�1 2 [2t],let G(v0; i1; ::::; i`0(k)�1) def= (v0; v1; ::::; v`0(k)�1); (5.9)where vj = �ij (vj�1). Then, G has stretch `(k) = `0(k) � b(k), and G(Uk) is ("; �)-hitting for any " > 0 and � = (1� (1� �) � ")`0(k).The stretch of G is maximized at b(k) � k=2 (and `0(k) = k=2t), but maximizingthe stretch is not necessarily the goal in all applications. In many applications,the parameters n, " and � are given, and the goal is to derive a generator thatproduces ("; �)-hitting sequences over f0; 1gn while minimizing both the lengthof the sequence and the amount of randomness used by the generator (i.e., theseed length). Indeed, Proposition 5.6 suggests using sequences of length `0 �"�1 log2(1=�) that are generated based on a random seed of length n+O(`0).Expander random-walk generators have been used in a variety of areas (e.g.,PCP and inapproximability (see [8, Sec. 11.1]), cryptography (see [17, Sec. 2.6]),and the design of various types of \pseudorandom" objects.

13In the common presentation of this generator, the length of the seed is determined as afunction of the desired block-length and stretch. That is, given the parameters b and `0, the seedlength is set to b+ (`0 � 1) � t. 62

NotesFigure 5.3 depicts some of the notions of pseudorandom generators discussed in thisprimer. We highlight a key distinction between the case of general-purpose pseudo-random generators (treated in Chapter 2) and the other cases (cf, e.g., Chapters 3and 4): in the former case the distinguisher is more complex than the generator,whereas in the latter cases the generator is more complex than the distinguisher.Speci�cally, a general-purpose generator runs in (some �xed) polynomial-time andneeds to withstand any probabilistic polynomial-time distinguisher. In fact, someof the proofs presented in Chapter 2 utilize the fact that the distinguisher caninvoke the generator on seeds of its choice. In contrast, the Nisan-Wigderson Gen-erator, analyzed in Theorem 3.5, runs more time than the distinguishers that ittries to fool, and the proof relies on this fact in an essential manner. Similarly, thespace-complexity of the space-resilient generators presented in Chapter 4 is higherthan the space-bound of the distinguishers that they fool.distinguisher's generator's stretch commentstype resources resources (i.e., `(k))gen.-purpose p(k)-time, 8 poly. p poly(k)-time poly(k) Assumes OWcanon. derand. 2k=O(1)-time 2O(k)-time 2k=O(1) Assumes EvCspace-bounded s(k)-space, s(k) < k O(k)-space 2k=O(s(k)) runs in timerobustness k=O(1)-space O(k)-space poly(k) poly(k) � `(k)t-wise indepen. inspect t positions poly(k) � `(k)-time 2k=O(t) (e.g., pairwise)small bias linear tests poly(k) � `(k)-time 2k=O(1) � "(k)expander \hitting" poly(k) � `(k)-time `0(k) � b(k)random walk (0:5; 2�`0(k)=O(1))-hitting for f0; 1gb(k), with `0(k) = ((k � b(k))=O(1)) + 1.By OW we denote the assumption that one-way functions exists, and by EvC we denote theassumption that the class E has (almost-everywhere) exponential circuit complexity.Figure 5.3: Pseudorandom generators at a glance.(The following historical notes do not mention several technical contributions thatplayed an important role in the development of the area. For further details, thereader is referred to [16, Chap. 3]. In fact, the current text is a revision of [16,Chap. 3], providing signi�cantly more details for the main topics, and omittingrelatively secondary material.) 63

The general paradigm of pseudorandom generators. Our presentation,which views vastly di�erent notions of pseudorandom generators as incarnationsof a general paradigm, has emerged mostly in retrospect. We note that, while thehistorical study of the various notions was mostly unrelated at a technical level,the case of general-purpose pseudorandom generators served as a source of inspi-ration to most of the other cases. In particular, the concept of computationalindistinguishability, the connection between hardness and pseudorandomness, andthe equivalence between pseudorandomness and unpredictability, appeared �rst inthe context of general-purpose pseudorandom generators (and inspired the devel-opment of \generators for derandomization" and \generators for space boundedmachines"). Indeed, the study of the special-purpose generators (see Chapter 5)was unrelated to all of these.General-purpose pseudorandom generators. The concept of computationalindistinguishability, which underlies the entire computational approach to random-ness, was suggested by Goldwasser and Micali [24] in the context of de�ning secureencryption schemes. Indeed, computational indistinguishability plays a key rolein cryptography (see [17, 18]). The general formulation of computational indis-tinguishability is due to Yao [59]. Using the hybrid technique of [24], Yao alsoobserved that de�ning pseudorandom generators as producing sequences that arecomputationally indistinguishable from the corresponding uniform distribution isequivalent to de�ning such generators as producing unpredictable sequences. Thelatter de�nition originates in the earlier work of Blum and Micali [9].Blum and Micali [9] pioneered the rigorous study of pseudorandom generatorsand, in particular, the construction of pseudorandom generators based on somesimple intractability assumption. In particular, they constructed pseudorandomgenerators assuming the intractability of the Discrete Logarithm Problem (overprime �elds). Their work also introduces basic paradigms that were used in allsubsequent improvements (cf., e.g., [59, 25]). We refer to the transformation ofcomputational di�culty into pseudorandomness, the use of hard-core predicates(also de�ned in [9]), and the iteration paradigm (cf. Eq. (2.9)).Theorem 2.14 (by which pseudorandom generators exist if and only if one-way functions exist) is due to H�astad, Impagliazzo, Levin and Luby [25], buildingon the hard-core predicate of [22] (see Theorem 2.11). Unfortunately, the currentproof of Theorem 2.14 is very complicated and un�t for presentation in this primer.Presenting a simpler and tighter (cf. Sec. 2.7) proof is indeed an important researchproject.Pseudorandom functions were de�ned and �rst constructed by Goldreich, Gold-wasser and Micali [20]. We also mention (and advocate) the study of a generaltheory of pseudorandom objects initiated in [21]. Finally, we mention that a moredetailed treatment of general-purpose pseudorandom generators is provided in [17,Chap. 3].Derandomization of time-complexity classes. As observed by Yao [59], anon-uniformly strong notion of pseudorandom generators yields non-trivial deran-64

domization of time-complexity classes. A key observation of Nisan [40, 43] is thatwhenever a pseudorandom generator is used in this way, it su�ces to require thatthe generator runs in time that is exponential in its seed length, and so the generatormay have running-time greater than the distinguisher (representing the algorithmto be derandomized). This observation motivates the de�nition of canonical de-randomizers as well as the construction of Nisan and Wigderson [40, 43], whichis the basis for further improvements culminating in [26]. Part 1 of Theorem 3.6(i.e., the so-called \high end" derandomization of BPP) is due to Impagliazzo andWigderson [26], whereas Part 2 (the \low end") is from [43].The Nisan{Wigderson Generator [43] was subsequently used in several waystranscending its original presentation. We mention its application towards foolingnon-deterministic machines (and thus derandomizing constant-round interactiveproof systems) and to the construction of randomness extractors (see [53] as wellas [50]).In contrast to the aforementioned derandomization results, which place BPP insome worst-case deterministic complexity class based on some non-uniform (worst-case) assumption, we now mention a result that places BPP in an average-casedeterministic complexity class based on a uniform-complexity (worst-case) assump-tion. We refer speci�cally to a theorem, which is due to Impagliazzo and Wigder-son [27] (but is not presented in the main text), that asserts the following: if BPPis not contained in EXP (almost everywhere) then BPP has deterministic sub-exponential time algorithms that are correct on all typical cases (i.e., with respectto any polynomial-time sampleable distribution).Pseudorandomness with respect to space-bounded distinguishers. Asstated in the �rst paper on the subject of \space-resilient pseudorandom genera-tors" [1],1 this research direction was inspired by the derandomization result ob-tained via the use of general-purpose pseudorandom generators. The latter result(necessarily) depends on intractability assumptions, and so the objective was iden-tifying natural classes of algorithms for which derandomization is possible withoutrelying on intractability assumptions (but rather by relying on intractability resultsthat are known for the corresponding classes of distinguishers). This objective wasachieved before for the case of constant-depth (randomized) circuits [40], but space-bounded (randomized) algorithms o�er a more appealing class that refers to naturalalgorithms. Fundamentally di�erent constructions of space-resilient pseudorandomgenerators were given in several works, but are superseded by the two incomparableresults mentioned in Section 4.2: Theorem 4.2 (a.k.a Nisan's Generator [41]) andTheorem 4.3 (a.k.a the Nisan{Zuckerman Generator [44]). These two results havebeen \interpolated" in [5]. Theorem 4.4 (BPL � SC) was proved by Nisan [42].Special Purpose Generators. The various generators presented in Chapter 5were not inspired by any of the other types of pseudorandom generator (nor even bythe generic notion of pseudorandomness). Pairwise-independence generator were1Interestingly, this paper is more frequently cited for the Expander Random Walk technique,which it has introduced. 65

explicitly suggested in [12] (and are implicit in [10]). The generalization to t-wiseindependence (for t � 2) is due to [2]. Small-bias generators were �rst de�nedand constructed by Naor and Naor [39], and three simple constructions were sub-sequently given in [3]. The Expander Random Walk Generator was suggested byAjtai, Komlos, and Szemer�edi [1], who discovered that random walks on expandergraphs provide a good approximation to repeated independent attempts to hit any�xed subset of su�cient density (within the vertex set). The analysis of the hittingproperty of such walks was subsequently improved, culminating in the bound citedin Theorem 5.5, which is taken from [28, Cor. 6.1].We mention that an alternative treatment of pseudorandomness, which putsmore emphasis on the relation between various techniques, is provided in [55].

66

Bibliography[1] M. Ajtai, J. Komlos, E. Szemer�edi. Deterministic Simulation in LogSpace.In 19th ACM Symposium on the Theory of Computing, pages 132{140, 1987.[2] N. Alon, L. Babai and A. Itai. A fast and Simple Randomized Algorithmfor the Maximal Independent Set Problem. J. of Algorithms, Vol. 7, pages567{583, 1986.[3] N. Alon, O. Goldreich, J. H�astad, R. Peralta. Simple Constructions of Almostk-wise Independent Random Variables. Journal of Random Structures andAlgorithms, Vol. 3, No. 3, pages 289{304, 1992. Preliminary version in 31stFOCS, 1990.[4] N. Alon and J.H. Spencer. The Probabilistic Method. John Wiley & Sons,Inc., 1992. Second edition, 2000.[5] R. Armoni. On the derandomization of space-bounded computations. Inthe proceedings of Random98, Springer-Verlag, Lecture Notes in ComputerScience (Vol. 1518), pages 49{57, 1998.[6] H. Attiya and J. Welch. Distributed Computing: Fundamentals, Simulationsand Advanced Topics. McGraw-Hill, 1998.[7] L. Babai, L. Fortnow, N. Nisan and A. Wigderson. BPP has Subexponen-tial Time Simulations unless EXPTIME has Publishable Proofs. ComplexityTheory, Vol. 3, pages 307{318, 1993.[8] M. Bellare, O. Goldreich and M. Sudan. Free Bits, PCPs and Non-Approximability { Towards Tight Results. SIAM Journal on Computing,Vol. 27, No. 3, pages 804{915, 1998. Extended abstract in 36th FOCS, 1995.[9] M. Blum and S. Micali. How to Generate Cryptographically Strong Sequencesof Pseudo-Random Bits. SIAM Journal on Computing, Vol. 13, pages 850{864, 1984. Preliminary version in 23rd FOCS, 1982.[10] L. Carter and M. Wegman. Universal Hash Functions. Journal of Computerand System Science, Vol. 18, 1979, pages 143{154.[11] G.J. Chaitin. On the Length of Programs for Computing Finite Binary Se-quences. Journal of the ACM, Vol. 13, pages 547{570, 1966.67

[12] B. Chor and O. Goldreich. On the Power of Two{Point Based Sampling.Jour. of Complexity, Vol 5, 1989, pages 96{106. Preliminary version dates1985.[13] T.M. Cover and G.A. Thomas. Elements of Information Theory. John Wiley& Sons, Inc., New-York, 1991.[14] O. Gaber and Z. Galil. Explicit Constructions of Linear Size Superconcen-trators. Journal of Computer and System Science, Vol. 22, pages 407{420,1981.[15] O. Goldreich. A Note on Computational Indistinguishability. InformationProcessing Letters, Vol. 34, pages 277{281, May 1990.[16] O. Goldreich. Modern Cryptography, Probabilistic Proofs and Pseudorandom-ness. Algorithms and Combinatorics series (Vol. 17), Springer, 1999.[17] O. Goldreich. Foundation of Cryptography: Basic Tools. Cambridge Univer-sity Press, 2001.[18] O. Goldreich. Foundation of Cryptography: Basic Applications. CambridgeUniversity Press, 2004.[19] O. Goldreich. Computational Complexity: A Conceptual Perspective. Cam-bridge University Press, 2008.[20] O. Goldreich, S. Goldwasser, and S. Micali. How to Construct RandomFunctions. Journal of the ACM, Vol. 33, No. 4, pages 792{807, 1986.[21] O. Goldreich, S. Goldwasser, and A. Nussboim. On the Implementation ofHuge Random Objects. In 44th IEEE Symposium on Foundations of Com-puter Science, pages 68{79, 2003.[22] O. Goldreich and L.A. Levin. Hard-core Predicates for any One-Way Func-tion. In 21st ACM Symposium on the Theory of Computing, pages 25{32,1989.[23] O. Goldreich and B. Meyer. Computational Indistinguishability { Algorithmsvs. Circuits. Theoretical Computer Science, Vol. 191, pages 215{218, 1998.Preliminary version by Meyer in Structure in Complexity Theory, 1994.[24] S. Goldwasser and S. Micali. Probabilistic Encryption. Journal of Computerand System Science, Vol. 28, No. 2, pages 270{299, 1984. Preliminary versionin 14th STOC, 1982.[25] J. H�astad, R. Impagliazzo, L.A. Levin and M. Luby. A Pseudorandom Gen-erator from any One-way Function. SIAM Journal on Computing, Volume28, Number 4, pages 1364{1396, 1999. Preliminary versions by Impagliazzoet. al. in 21st STOC (1989) and H�astad in 22nd STOC (1990).68

[26] R. Impagliazzo and A. Wigderson. P=BPP if E requires exponential circuits:Derandomizing the XOR Lemma. In 29th ACM Symposium on the Theoryof Computing, pages 220{229, 1997.[27] R. Impagliazzo and A. Wigderson. Randomness vs Time: Derandomizationunder a Uniform Assumption. Journal of Computer and System Science,Vol. 63 (4), pages 672-688, 2001.[28] N. Kahale. Eigenvalues and Expansion of Regular Graphs. Journal of theACM, Vol. 42 (5), pages 1091{1106, September 1995.[29] D.E. Knuth. The Art of Computer Programming, Vol. 2 (SeminumericalAlgorithms). Addison-Wesley Publishing Company, Inc., 1969 (�rst edition)and 1981 (second edition).[30] A. Kolmogorov. Three Approaches to the Concept of \The Amount Of In-formation". Probl. of Inform. Transm., Vol. 1/1, 1965.[31] E. Kushilevitz and N. Nisan. Communication Complexity. Cambridge Uni-versity Press, 1996.[32] F.T. Leighton. Introduction to Parallel Algorithms and Architectures: Arrays,Trees, Hypercubes. Morgan Kaufmann Publishers, San Mateo, CA, 1992.[33] L.A. Levin. Randomness Conservation Inequalities: Information and Inde-pendence in Mathematical Theories. Information and Control, Vol. 61, pages15{37, 1984.[34] M. Li and P. Vitanyi. An Introduction to Kolmogorov Complexity and itsApplications. Springer Verlag, August 1993.[35] A. Lubotzky, R. Phillips, and P. Sarnak. Ramanujan Graphs. Combinatorica,Vol. 8, pages 261{277, 1988.[36] G.A. Margulis. Explicit Construction of Concentrators. Prob. Per. Infor.,Vol. 9 (4), pages 71{80, 1973 (in Russian). English translation in Problemsof Infor. Trans., pages 325{332, 1975.[37] P.B. Miltersen and N.V. Vinodchandran. Derandomizing Arthur-MerlinGames using Hitting Sets. Computational Complexity, Vol. 14 (3), pages256{279, 2005. Preliminary version in 40th FOCS, 1999.[38] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge UniversityPress, 1995.[39] J. Naor and M. Naor. Small-bias Probability Spaces: E�cient Constructionsand Applications. SIAM Journal on Computing, Vol 22, 1993, pages 838{856.Preliminary version in 22nd STOC, 1990.[40] N. Nisan. Pseudorandom bits for constant depth circuits. Combinatorica,Vol. 11 (1), pages 63{70, 1991. 69

[41] N. Nisan. Pseudorandom Generators for Space Bounded Computation. Com-binatorica, Vol. 12 (4), pages 449{461, 1992. Preliminary version in 22ndSTOC, 1990.[42] N. Nisan. RL � SC. Computational Complexity, Vol. 4, pages 1-11, 1994.Preliminary version in 24th STOC, 1992.[43] N. Nisan and A. Wigderson. Hardness vs Randomness. Journal of Computerand System Science, Vol. 49, No. 2, pages 149{167, 1994. Preliminary versionin 29th FOCS, 1988.[44] N. Nisan and D. Zuckerman. Randomness is Linear in Space. Journal ofComputer and System Science, Vol. 52 (1), pages 43{52, 1996. Preliminaryversion in 25th STOC, 1993.[45] N. Pippenger and M.J. Fischer. Relations among complexity measures. Jour-nal of the ACM, Vol. 26 (2), pages 361{381, 1979.[46] A.R. Razborov and S. Rudich. Natural Proofs. Journal of Computer andSystem Science, Vol. 55 (1), pages 24{35, 1997. Preliminary version in 26thSTOC, 1994.[47] O. Reingold. Undirected ST-Connectivity in Log-Space. In 37th ACM Sym-posium on the Theory of Computing, pages 376{385, 2005.[48] O. Reingold, S. Vadhan, and A. Wigderson. Entropy Waves, the Zig-ZagGraph Product, and New Constant-Degree Expanders and Extractors. An-nals of Mathematics, Vol. 155 (1), pages 157{187, 2001. Preliminary versionin 41st FOCS, pages 3{13, 2000.[49] M. Saks and S. Zhou. BPHSPACE(S) � DSPACE(S3=2). Journal of Com-puter and System Science, Vol. 58 (2), pages 376{403, 1999. Preliminaryversion in 36th FOCS, 1995.[50] R. Shaltiel. Recent Developments in Explicit Constructions of Extractors. InCurrent Trends in Theoretical Computer Science: The Challenge of the NewCentury, Vol 1: Algorithms and Complexity, World scieti�c, 2004. (Editors:G. Paun, G. Rozenberg and A. Salomaa.) Preliminary version in Bulletin ofthe EATCS 77, pages 67{95, 2002.[51] C.E. Shannon. A mathematical theory of communication. Bell Sys. Tech.Jour., Vol. 27, pages 623{656, 1948.[52] R.J. Solomono�. A Formal Theory of Inductive Inference. Information andControl, Vol. 7/1, pages 1{22, 1964.[53] L. Trevisan. Extractors and Pseudorandom Generators. Journal of the ACM,Vol. 48 (4), pages 860{879, 2001. Preliminary version in 31st STOC, 1999.[54] C. Umans. Pseudo-random generators for all hardness. Journal of Computerand System Science, Vol. 67 (2), pages 419{440, 2003.70

[55] S. Vadhan. Lecture Notes for CS 225: Pseudorandomness, Spring 2007.Available from http://www.eecs.harvard.edu/�salil.[56] L.G. Valiant. A theory of the learnable. CACM, Vol. 27/11, pages 1134{1142,1984.[57] I. Wegener. Branching Programs and Binary Decision Diagrams { Theory andApplications. SIAM Monographs on Discrete Mathematics and Applications,2000.[58] A. Wigderson. The amazing power of pairwise independence. In 26th ACMSymposium on the Theory of Computing, pages 645{647, 1994.[59] A.C. Yao. Theory and Application of Trapdoor Functions. In 23rd IEEESymposium on Foundations of Computer Science, pages 80{91, 1982.

71

