
Secure Multi-Party Computation(Final (incomplete) Draft, Version 1.4)Oded GoldreichDepartment of Computer Science and Applied MathematicsWeizmann Institute of Science, Rehovot, Israel.June 1998, revised October 27, 2002



PrefaceMore than ten years have elapsed since the �rst completeness theorems for two-party and multi-partyfault-tolerant computation have been announced (by Yao and Goldreich, Micali and Wigderson,respectively). Analogous theorems have been proven in a variety of models, yet full proofs of theabovementioned basic results (i.e., for the \computational model" as well as for the \private channelmodel") are not to be found. This manuscript attempts to redeem this sour state of a�airs, at leastas far as the \computational model" goes.AcknowledgmentsFirstly, I'd like to thank Silvio Micali and Avi Wigderson, my co-authors to the work on which most ofthis manuscript is based. Secondly, I'd like to thank Ran Canetti for the many things I have learnedfrom him regarding multi-party computation. Thank also to Hagit Attiya, Mihir Bellare, BennyChor, Sha� Goldwasser, Leonid Levin, and Ronen Vainish for related discussions held throughoutthe years. Lastly, thanks to Yehuda Lindell for pointing out several errors in previous versions.DedicationTo Amir Herzberg and Hugo Krawczyk who demanded that this manuscript be written.A WarningThis is a working draft. It is certainly full of various minor aws, but is hoped and believed tocontain no serious ones. The focus is on general constructions and on the proof that they satisfya reasonable de�nition of security, which is not necesarily an ultimate one. A reader seeking anextensive de�nitional treatment of secure multi-party computation, should look for it elsewhere.Final NoticeI do not intend to produce a polished version of this work. Whatever is here su�ces for the originalpurpose of providing full proofs of the abovementioned basic results (for the \computational model").This revision as well as previous ones is con�ned to pointing out (but not correcting) some (minor)aws or gaps in the original text. I do not plan to post additional revisions. A better exposition(bene�ting from composition theorems for the malicious model) will appear in a forthcoming text-book, drafts of which are available on-line [40]. In particular, the draft of the relevant chapterof [40] subsumes the current manuscript in all aspects.
1



Contents
1 Introduction and Preliminaries 41.1 A Tentative Introduction : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 41.1.1 Overview of the De�nitions : : : : : : : : : : : : : : : : : : : : : : : : : : : : 41.1.2 Overview of the Known Results : : : : : : : : : : : : : : : : : : : : : : : : : : 51.1.3 Aims and nature of the current manuscript : : : : : : : : : : : : : : : : : : : 61.1.4 Organization of this manuscript : : : : : : : : : : : : : : : : : : : : : : : : : : 61.2 Preliminaries (also tentative) : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 71.2.1 Computational complexity : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 71.2.2 Two-party and multi-party protocols : : : : : : : : : : : : : : : : : : : : : : : 101.2.3 Strong Proofs of Knowledge : : : : : : : : : : : : : : : : : : : : : : : : : : : : 112 General Two-Party Computation 142.1 De�nitions : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 142.1.1 The semi-honest model : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 162.1.2 The malicious model : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 202.2 Secure Protocols for the Semi-Honest Model : : : : : : : : : : : : : : : : : : : : : : : 232.2.1 A composition theorem : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 242.2.2 The OTk1 protocol { de�nition and construction : : : : : : : : : : : : : : : : : 272.2.3 Privately computing c1 + c2 = (a1 + a2) � (b1 + b2) : : : : : : : : : : : : : : 292.2.4 The circuit evaluation protocol : : : : : : : : : : : : : : : : : : : : : : : : : : 302.3 Forcing Semi-Honest Behavior : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 322.3.1 The compiler { motivation and tools : : : : : : : : : : : : : : : : : : : : : : : 332.3.2 The compiler { the components : : : : : : : : : : : : : : : : : : : : : : : : : : 372.3.2.1 Augmented coin-tossing into the well : : : : : : : : : : : : : : : : : 372.3.2.2 Input Commitment Protocol : : : : : : : : : : : : : : : : : : : : : : 452.3.2.3 Authenticated Computation Protocol : : : : : : : : : : : : : : : : : 482.3.3 The compiler itself : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 512.3.3.1 The e�ect of the compiler : : : : : : : : : : : : : : : : : : : : : : : : 532.3.3.2 On the protocols underlying the proof of Theorem 2.2.13 : : : : : : 592.3.3.3 Conclusion { Proof of Theorem 2.3.1 : : : : : : : : : : : : : : : : : : 633 General Multi-Party Computation 643.1 De�nitions : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 653.1.1 The semi-honest model : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 653.1.2 The two malicious models : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 662



3.1.2.1 The �rst malicious model : : : : : : : : : : : : : : : : : : : : : : : : 673.1.2.2 The second malicious model : : : : : : : : : : : : : : : : : : : : : : 693.2 Construction for the Semi-Honest Model : : : : : : : : : : : : : : : : : : : : : : : : : 703.2.1 A composition theorem : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 713.2.2 Privately computing Pi ci = (Pi ai) � (Pi bi) : : : : : : : : : : : : : : : : : 733.2.3 The multi-party circuit evaluation protocol : : : : : : : : : : : : : : : : : : : 743.3 Forcing Semi-Honest Behavior : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 773.3.1 Changing the communication model : : : : : : : : : : : : : : : : : : : : : : : 773.3.2 The �rst complier : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 803.3.2.1 Multi-party coin-tossing into the well : : : : : : : : : : : : : : : : : 813.3.2.2 Multi-party input-commitment protocol : : : : : : : : : : : : : : : : 833.3.2.3 Multi-party authenticated-computation protocol : : : : : : : : : : : 843.3.2.4 The compiler itself : : : : : : : : : : : : : : : : : : : : : : : : : : : : 843.3.2.5 Analysis of the compiler : : : : : : : : : : : : : : : : : : : : : : : : : 863.3.3 The second complier : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 873.3.3.1 Veri�able Secret Sharing : : : : : : : : : : : : : : : : : : : : : : : : 883.3.3.2 The compiler itself : : : : : : : : : : : : : : : : : : : : : : : : : : : : 903.3.3.3 Analysis of the compiler : : : : : : : : : : : : : : : : : : : : : : : : : 924 Extensions and Notes 984.1 Reactive systems : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 984.2 Perfect security in the private channels model : : : : : : : : : : : : : : : : : : : : : : 1004.3 Other models : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1014.4 Other concerns : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1014.5 Bibliographic Notes : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1024.6 Di�erences among the various versions : : : : : : : : : : : : : : : : : : : : : : : : : : 104Bibliography 105

3



Chapter 1Introduction and PreliminariesThe current contents of this chapter is tentative. The main part of the introduction is reproducedwith minor revisions from [41].1.1 A Tentative IntroductionA general framework for casting cryptographic (protocol) problems consists of specifying a randomprocess which maps m inputs to m outputs. The inputs to the process are to be thought of as localinputs of m parties, and the m outputs are their corresponding local outputs. The random processdescribes the desired functionality. That is, if the m parties were to trust each other (or trust someoutside party), then they could each send their local input to the trusted party, who would computethe outcome of the process and send each party the corresponding output. The question addressedin this manuscript is to what extent can this trusted party be \emulated" by the mutually distrustfulparties themselves.1.1.1 Overview of the De�nitionsFor simplicity, we consider in this overview only the special case where the speci�ed process isdeterministic and the m outputs are identical. That is, we consider an arbitrary m-ary function andm parties which wish to obtain the value of the function on their m corresponding inputs. Eachparty wishes to obtain the correct value of the function and prevent any other party from gaininganything else (i.e., anything beyond the value of the function and what is implied by it).We �rst observe that (one thing which is unavoidable is that) each party may change its local in-put before entering the protocol. However, this is unavoidable also when the parties utilize a trustedparty. In general, the basic paradigm underlying the de�nitions of secure multi-party computationsamounts to saying that situations which may occur in the real protocol, can be simulated in theideal model (where the parties may employ a trusted party). Thus, the \e�ective malfunctioning" ofparties in secure protocols is restricted to what is postulated in the corresponding ideal model. Thespeci�c de�nitions di�er in the speci�c restrictions and/or requirements placed on the parties in thereal computation. This is typically reected in the de�nition of the corresponding ideal model { seeexamples below. 4



An example { computations with honest majority: Here we consider an ideal model inwhich any minority group (of the parties) may collude as follows. Firstly this minority shares itsoriginal inputs and decided together on replaced inputs1 to be sent to the trusted party. (The otherparties send their respective original inputs to the trusted party.) When the trusted party returnsthe output, each majority player outputs it locally, whereas the colluding minority may computeoutputs based on all they know (i.e., the output and all the local inputs of these parties). A securemulti-party computation with honest majority is required to emulate this ideal model. That is,the e�ect of any feasible adversary which controls a minority of the players in the actual protocol,can be essentially simulated by a (di�erent) feasible adversary which controls the correspondingplayers in the ideal model. This means that in a secure protocol the e�ect of each minority groupis \essentially restricted" to replacing its own local inputs (independently of the local inputs of themajority players) before the protocol starts, and replacing its own local outputs (depending only onits local inputs and outputs) after the protocol terminates. (We stress that in the real executionthe minority players do obtain additional pieces of information; yet in a secure protocol they gainnothing from these additional pieces of information.)Secure protocols according to the above de�nition may even tolerate a situation where a minorityof the parties aborts the execution. An aborted party (in the real protocol) is simulated by a party(in the ideal model) which aborts the execution either before supplying its input to the trustedparty (in which case a default input is used) or after supplying its input. In either case, themajority players (in the real protocol) are able to compute the output although a minority abortedthe execution. This cannot be expected to happen when there is no honest majority (e.g., in atwo-party computation) [26].Another example { two-party computations: In light of the above, we consider an ideal modelwhere each of the two parties may \shut-down" the trusted (third) party at any point in time. Inparticular, this may happen after the trusted party has supplied the outcome of the computationto one party but before it has supplied it to the second. A secure multi-party computation allowingabort is required to emulate this ideal model. That is, each party's \e�ective malfunctioning" in asecure protocol is restricted to supplying an initial input of its choice and aborting the computationat any point in time. We stress that, as above, the choice of the initial input of each party may notdepend on the input of the other party.1.1.2 Overview of the Known ResultsGeneral plausibility results: Assuming the existence of trapdoor permutations, one may providesecure protocols for any two-party computation (allowing abort) [72] as well as for any multi-partycomputations with honest majority [45]. Thus, a host of cryptographic problems are solvable assum-ing the existence of trapdoor permutations. Speci�cally, any desired (input{output) functionalitycan be enforced, provided we are either willing to tolerate \early abort" (as de�ned above) or canrely on a majority of the parties to follow the protocol. Analogous plausibility results were sub-sequently obtained in a variety of models. In particular, we mention secure computations in theprivate channels model [9, 22], in the presence of mobile adversaries [60], and for an adaptivelychosen set of corrupted parties [18].1 Such replacement may be avoided if the local inputs of parties are veri�able by the other parties. In such a case,a party (in the ideal model) has the choice of either joining the execution of the protocol with its correct local inputor not join the execution at all (but it cannot join with a replaced local input). Secure protocols emulating this idealmodel can be constructed as well. 5



We view the above results as asserting that very wide classes of problems are solvable in principle.However, we do not recommend using the solutions derived by these general results in practice. Forexample, although Threshold Cryptography (cf., [28, 34]) is merely a special case of multi-partycomputation, it is indeed bene�cial to focus on its speci�cs.1.1.3 Aims and nature of the current manuscriptOur presentation is aimed at providing an accessible account of the most basic results regardinggeneral secure multi-party computation. We focus on the \computational model", assuming the ex-istence of trapdoor permutations. We provide almost full proofs for the plausibility results mentionedabove { secure protocols for any two-party (and in fact multi-party) computation allowing abort,as well as for any multi-party computations with honest majority. We briey mention analogousresults in other models.We do not attempt to provide the most general de�nitions and the most general tools. Thischoice is best demonstrated in our composition theorems { they are minimal and tailored for ourpurposes, rather than being general and of utmost applicability. (Actually, in some cases we refrainfrom presenting an explicit composition theorem and derive a result by implicit composition of asubprotocol inside a bigger one.) Another example is our focus on the \static model" where the set ofdishonest parties is �xed before the execution of the protocol starts,2 rather than being determinedadaptively during the execution of the protocol. Alternative presentations aimed at such generalityare provided in [49, 56, 2, 14, 15, 16].Likewise, no attempt is made to present the most e�cient versions possible for the said results. Incontrary, in many cases we derive less e�cient constructions due to our desire to present the materialin a modular manner. This is best demonstrated in our non-optimized compilers { especially thoseused (on top of one another) in the multi-party case. As we view the general results presented hereas mere claims of plausibility (see above), we see little point in trying to optimize them.1.1.4 Organization of this manuscriptChoices were made here too. In particular, we chose to present the two-party case �rst (see Chap-ter 2), and next to extend the ideas to the multi-party case (see Chapter 3). Thus, the readerinterested in the multi-party case cannot skip Chapter 2. We hope that such a reader will appreci-ate that the two-party case is a good warm-up towards the m-party case, for general m. Actually,most ideas required for the latter can be presented in the case m = 2, and such a presentation isless cumbersome and allows to focus on the essentials.Within each chapter, we start with a treatment of the relatively easy case of semi-honest behavior,and next proceed to \force" general malicious parties to behave in a semi-honest manner. We believethat even a reader who views the semi-honest model as merely a mental experiment will appreciatethe gain obtained by breaking the presentation in this way.Previous versions: The �rst version of this manuscript was made public in June 1998, althoughit was not proofread carefully enough. Thus, we chose to make available a working draft whichmay have some errors rather than wait till the draft undergoes su�ciently many passes of criticalreading. We intend to continue to revise the manuscript while making these revisions public. Inorder to minimize the confusion cause by multiple versions, starting from the �rst revision (i.e.,2 We stress that the set of dishonest parties is determined after the protocol is speci�ed.6



Version 1.1), each version will be numbered. For further details on how this version di�ers fromprevious ones, see Section 4.6.1.2 Preliminaries (also tentative)We recall some basic de�nitions regarding computational complexity and multi-party protocols.More importantly, we present and sustain a stronger than usual de�nition of proof of knowledge.1.2.1 Computational complexityThroughout this manuscript we model adversaries by (possibly non-uniform) families of polynomial-size circuits. Here, we call the circuit family C = fCng uniform if there exists a poly(n)-timealgorithm than on input n produces the circuit Cn. The latter circuit operates on inputs of lengthn. The non-uniform complexity treatment is much simpler than the uniform analogue for several rea-sons. Firstly, de�nitions are simpler { one may quantify over all possible inputs (rather than considerpolynomial-time constructible input distributions). Secondly, auxiliary inputs (which are essentialfor various composition theorems) are implicit in the treatment; they can always be incorporatedinto non-uniform circuits.We take the liberty of associating the circuit family C = fCng with the particular circuit ofrelevance. That is, we write C(x) rather than Cjxj(x); we may actually de�ne C(x) def= Cjxj(x).Furthermore, we talk of polynomial-time transformations of (in�nite and possibly non-uniform)circuit families. What we mean by saying that the transformation T maps fCng into fC 0ng is thatC 0n = T (Cn), for every n.Negligible functions. A function � : N 7! [0; 1] is called negligible if for every positive polynomialp, and all su�ciently large n's, �(n) < 1=p(n).Probability ensembles. A probability ensemble indexed by S � f0; 1g� is a family, fXwgw2S, sothat each Xw is a random variable (or distribution) which ranges over (a subset of) f0; 1gpoly(jwj).Typically, we consider S = f0; 1g� and S = f1n : n 2 Ng (where, in the latter case, we sometimeswrite S = N). We say that two such ensembles, X def= fXwgw2S and Y def= fYwgw2S, are identicallydistributed, and write X � Y . if for every w 2 S and every �Pr [Xw=�] = Pr [Yw=�]Such X and Y are said to be statistically indistinguishable if for some negligible function � : N 7! [0; 1]and all w 2 S, X� jPr [Xw=�]� Pr [Yw=�]j < �(jwj)In this case we write X s� Y . Clearly, for every probabilistic process F , if fXwgw2S s� fYwgw2Sthen fF (Xw)gw2S s� fF (Yw)gw2S.Computational indistinguishability. We consider the notion of indistinguishability by (possiblynon-uniform) families of polynomial-size circuits.7



De�nition 1.2.1 (computational indistinguishability): Let S � f0; 1g�. Two ensembles (indexedby S), X def= fXwgw2S and Y def= fYwgw2S, are computationally indistinguishable (by circuits) if forevery family of polynomial-size circuits, fDngn2N, there exists a negligible function � : N 7! [0; 1]so that jPr [Dn(w;Xw)=1]� Pr [Dn(w; Yw)=1]j < �(jwj)In such a case we write X c� Y .Actually, it is not necessary to provide the distinguishing circuit (i.e., Dn above) with the index ofthe distribution. That is,Proposition 1.2.2 Two ensembles (indexed by S), X def= fXwgw2S and Y def= fYwgw2S, are com-putationally indistinguishable if and only if for every family polynomial-size circuits, fCngn2N, everypolynomial p(�), and all su�ciently long w 2 SjPr [Cn(Xw)=1]� Pr [Cn(Yw)=1] j < 1p(jwj) (1.1)Proof: Clearly if X c� Y then Eq. (1.1) holds (otherwise, let Dn(w; z) def= Cn(z)). The otherdirection is less obvious. Assuming that X and Y are not computationally indistinguishable, wewill show that, for some polynomial-sized fCngn2N, Eq. (1.1) does not hold either. Speci�cally, letfDngn2N be a family of (polynomial-size) circuits, p be a polynomial, and S0 an in�nite subset of Sso that for every w 2 S0jPr [Dn(w;Xw)=1]� Pr [Dn(w; Yw)=1] j � 1p(jwj)We consider an in�nite sequence, w1; w2; : : :, so that wn 2 S0 if S0 \ f0; 1gn 6= ; and wn = 0n (orany other n-bit long string) otherwise. Incorporating wn into Dn, we construct a circuit Cn(z) def=Dn(wn; z) for which Eq. (1.1) does not hold.Comments: Computational indistinguishable is a proper relaxation of statistically indistinguishable(i.e., X s� Y implies X c� Y , but not necessarily the other way around). Also, for every fam-ily of polynomial-size circuits, C = fCngn2N, if fXwgw2S c� fYwgw2S then fCjwj(Xw)gw2S c�fCjwj(Yw)gw2S.Trapdoor Permutations. A su�cient computational assumption for all constructions used inthis text is the existence of trapdoor permutations. Loosely speaking, these are collections of one-way permutations, ff�g, with the extra property that f� is e�ciently inverted once given as auxiliaryinput a \trapdoor" for the index �. The trapdoor of index �, denoted by t(�), can not be e�cientlycomputed from �, yet one can e�ciently generate corresponding pairs (�; t(�)).Author's Note: Actually, we will need an enhanced notion of hardness. Speci�cally, in-verting should be infeasible also when given coins that yield the target pre-image. Seefurther notes below.De�nition 1.2.3 (collection of trapdoor permutations, enhanced): A collection of permutations,with indices in I � f0; 1g�, is a set ff� : D� 7! D�g�2I so that each f� is 1-1 on the correspondingD�. Such a collection is called a trapdoor permutation if there exists 4 probabilistic polynomial-timealgorithms G;D; F; F�1 so that the following �ve conditions hold.8



1. (index and trapdoor generation): For every n,Pr[G(1n) 2 I � f0; 1g�] > 1� 2�n2. (sampling the domain): For every n 2 N and � 2 I \ f0; 1gn,(a) Pr[D(�) 2 D�] > 1� 2�n. Thus, without loss of generality, D� � f0; 1gpoly(j�j).(b) Conditioned on D(�) 2 D�, the output is uniformly distributed in D�. That is, for everyx 2 D�, Pr[D(�) = x jD(�) 2 D�] = 1jD�j3. (e�cient evaluation): For every n 2 N , � 2 I \ f0; 1gn and x 2 D�,Pr[F (�; x) = f�(x)] > 1� 2�n4. (hard to invert): For every family of polynomial-size circuits, fCngn2N, every positive polyno-mial p(�), and all su�ciently large n'sPr [Cn(fIn(Xn); In) = Xn] < 1p(n)where In is a random variable describing the distribution of the �rst element in the output ofG(1n), and Xn is uniformly distributed in DIn .Author's Note: In fact we need a stronger (or enhanced) condition. First note thatthe above condition can be recast asPr �Cn(Xn; In) = f�1In (Xn)� < 1p(n)We strengthen this requirment by providing the inverting algorithm with the coinsused to generate Xn, rather than with Xn itself. Speci�cally, suppose that Xn =D(In) = D(In; Rn), where Rn is uniformly distributed in f0; 1gpoly(n). Then, werequire that Pr �Cn(Rn; In) = f�1In (D(In; Rn))� < 1p(n)(for every family of polynomial-size circuits, fCngn2N).5. (inverting with trapdoor): For every n 2 N , every pair (�; t) in the range of G(1n), and everyx 2 D�, Pr[F�1(t; f�(x)) = x] > 1� 2�nWe mention that (enhanced) trapdoor permutations can be constructed based on the Intractabilityof Factoring Assumption (or more precisely the infeasibility of factoring Blum integers; that is, theproducts of two primes each congruent to 3 mod 4). Any collection as above can be modi�ed tohave a (uniform) hard-core predicate (cf., [43]); that is, a Boolean function which is easy to computebut hard to predict from the image of the input under the permutation.9



De�nition 1.2.4 (hard-core for a collection of trapdoor permutations): Let ff� : D� 7! D�g�2Ibe a collection of trapdoor permutations as above. We say that b : f0; 1g� 7! f0; 1g if a hard-core forthis collection if the following two conditions hold.1. (e�cient evaluation): There exists a polynomial-time algorithm which on input x returns b(x).2. (hard to predict): For every family of polynomial-size circuits, fCngn2N, every positive poly-nomial p(�), and all su�ciently large n'sPr [Cn(fIn(Xn); In) = b(Xn)] < 12 + 1p(n)where In is a random variable describing the distribution of the �rst element in the output ofG(1n), and Xn is uniformly distributed in DIn .Author's Note: This condition should be stengthened in a corresponding way. Thatis, we require thatPr �Cn(Rn; In) = b(f�1In (D(In; Rn)))� < 12 + 1p(n)(for every family of polynomial-size circuits, fCngn2N).Commitment schemes. For simplicity of exposition, we utilize a stringent notion of a commit-ment scheme { for more general de�nition see [38]. Loosely speaking, here a commitment scheme isa randomized process which maps a single bit into a bit-string so that (1) the set of possible imagesof the bit 0 is disjoint from the set of possible images of the bit 1, and yet (2) the commitment to 0is computationally indistinguishable from the commitment to 1.De�nition 1.2.5 (commitment scheme): A commitment scheme is a uniform family of probabilisticpolynomial-size circuits, fCng, satisfying the following two conditions.1. (perfect unambiguity): For every n the supports of Cn(0) and Cn(1) are disjoint.2. (computational secrecy): The probability ensembles fCn(0)gn2N and fCn(1)gn2N are compu-tationally indistinguishable.We denote by Cn(b; r) the output of Cn on input bit b using the random sequence r. Thus, the �rstitem can be reformulated as asserting that for every n 2 N and every r; s 2 f0; 1g�, it holds thatCn(0; r) 6= Cn(1; s).Commitment schemes can be constructed given any 1-1 one-way function (and in particular given atrapdoor permutation).1.2.2 Two-party and multi-party protocolsTwo-party protocols may be de�ned as pairs of interactive Turing machines (cf., [38]). However, weprefer to use the intuitive notion of a two-party game. This in turn corresponds to the standardmessage-passing model.For multi-party protocols we use a synchronous model of communication. For simplicity weconsider a model in which each pair of parties is connected by a reliable and private (or secret)10



channel. The issues involved in providing such channels are beyond the scope of this exposition.Some of them { like establishing secret communication over insecure communication lines (i.e.,by using encryption schemes), establishing party's identi�cation, and maintaining authenticity ofcommunication { are well-understood (even in case the search for more e�cient solutions is veryactive). In general, as the current exposition does not aim at e�ciency (but rather at establishingfeasibility) the issue of practical emulation of our idealized communication model over a realistic one(rather then the mere feasibility of such emulation) is irrelevant.To simplify the exposition of some constructions of multi-party protocols (in Section 3.3), wewill augment the communication model by a broadcast channel on which each party can send amessage which arrives to all parties (together with the sender identity). We assume, without loss ofgenerality, that in every communication round only one (predetermined) party sends messages. Sucha broadcast channel can be implemented via an (authenticated) Byzantine Agreement protocol, thusproviding an emulation of our model on a more standard one (in which a broadcast channel doesnot exist).1.2.3 Strong Proofs of KnowledgeOf the standard de�nitions of proofs of knowledge, the one most suitable for our purposes is thede�nition which appears in [6, 38]. (Other de�nitions, such as of [69, 33], are not adequate atall; see discussion in [6].) However, the de�nition presented in [6, 38], relies in a fundamental wayon the notion of expected running-time. We thus prefer the following more stringent de�nition inwhich the knowledge extractor is required to run in strict polynomial-time (rather than in expectedpolynomial-time).De�nition 1.2.6 (System of strong proofs of knowledge): Let R be a binary relation. We say thatan e�cient strategy V is a strong knowledge veri�er for the relation R if the following two conditionshold.� Non-triviality: There exists an interactive machine P so that for every (x; y) 2 R all possibleinteractions of V with P on common-input x and auxiliary-input y are accepting.� Strong Validity: There exists a negligible function � : N 7! [0; 1] and a probabilistic (strict)polynomial-time oracle machine K such that for every strategy P and every x; y; r 2 f0; 1g�,machine K satis�es the following condition:Let Px;y;r be a prover strategy, in which the common input x, auxiliary input y andrandom-coin sequence r have been �xed, and denote by p(x) the probability that theinteractive machine V accepts, on input x, when interacting with the prover speci�edby Px;y;r. Now, if p(x) > �(jxj) then, on input x and access to oracle Px;y;r, withprobability at least 1� �(jxj), machine K outputs a solution s for x. That is,3If p(x) > �(jxj) then Pr[(x;KPx;y;r (x))2R] > 1� �(jxj) (1.2)The oracle machine K is called a strong knowledge extractor.3 Our choice to bound the failure probability of the extractor by �(jxj) is rather arbitrary. What is importantis to have this failure probability be a negligible function of jxj. Actually, in case membership in the relation Rcan be determined in polynomial-time, one may reduce the failure probability from 1 � 1poly(n) to 2�poly(n), whilemaintaining the polynomial running-time of the extractor.11



An interactive pair (P; V ) so that V is a strong knowledge veri�er for a relation R and P is amachine satisfying the non-triviality condition (with respect to V and R) is called a system for strongproofs of knowledge for the relation R.Some zero-knowledge proof (of knowledge) systems for NP are in fact strong proofs of knowledge. Inparticular, consider n sequential repetitions of the following basic proof system for the HamiltonianCycle (HC) problem (which is NP-complete). We consider directed graphs (and the existence ofdirected Hamiltonian cycles), and employ a commitment scheme fCng as above.Construction 1.2.7 (Basic proof system for HC):� Common Input: a directed graph G = (V;E) with n def= jV j.� Auxiliary Input to Prover: a directed Hamiltonian Cycle, C � E, in G.� Prover's �rst step (P1): The prover selects a random permutation, �, of the vertices of G, andcommits to the entries of the adjacency matrix of the resulting permuted graph. That is, itsends an n-by-n matrix of commitments so that the (�(i); �(j))th entry is Cn(1) if (i; j) 2 E,and Cn(0) otherwise.� Veri�er's �rst step (V1): The veri�er uniformly selects � 2 f0; 1g and sends it to the prover.� Prover's second step (P2): If � = 0 then the prover sends � to the veri�er along with therevealing (i.e., preimages) of all n2 commitments. Otherwise, the prover reveals to the veri�eronly the commitments to n entries (�(i); �(j)) with (i; j) 2 C. (By revealing a commitment c,we mean supply a preimage of c under Cn; that is, a pair (�; r) so that c = Cn(�; r).)� Veri�er's second step (V2): If � = 0 then the veri�er checks that the revealed graph is indeedisomorphic, via �, to G. Otherwise, the veri�er just checks that all revealed values are 1 andthat the corresponding entries form a simple n-cycle. (Of course in both cases, the veri�erchecks that the revealed values do �t the commitments.) The veri�er accepts if and only if thecorresponding condition holds.The reader may easily verify that sequentially repeating the above for n times yields a zero-knowledgeproof system for HC, with soundness error 2�n. We argue that the resulting system is also a strongproof of knowledge of the Hamiltonian cycle. Intuitively, the key observation is that each applicationof the basic proof system results in one of two possible situations depending on the veri�er choice, �.In case the prover answers correctly in both cases, we can retrieve an Hamiltonian cycle in the inputgraph. On the other hand, in case the prover fails in both cases, the veri�er will reject regardlessof what the prover does from this point on. This observation suggests the following construction ofa strong knowledge extractor (where we refer to repeating the basic proof systems n times and set�(n) = 2�n).Strong knowledge extractor for Hamiltonian cycle: On input G and access to the prover-strategy oracle P �, we proceed in n iterations, starting with i = 1. Initially, T (the transcript sofar), is empty.1. Obtain the matrix of commitments, M , from the prover strategy (i.e., M = P �(T )).2. Extract the prover's answer to both possible veri�er moves. Each of these answers may becorrect (i.e., passing the corresponding veri�er check) or not.12



3. If both answers are correct then we recover a Hamiltonian cycle. In this case the extractoroutputs the cycle and halts.4. In case a single answer, say the one for value �, is correct and i < n, we let T  (T; �), andproceed to the next iteration (i.e., i i+ 1). Otherwise, we halt with no output.It can be easily veri�ed that if the extractor halts with no output in iteration i < n then the veri�er(in the real interaction) accepts with probability zero. Similarly, if the extractor halts with no outputin iteration n then the veri�er (in the real interaction) accepts with probability 2�n. Thus, wheneverp(G) > 2�n, the extractor succeeds in recovering a Hamiltonian cycle (with probability 1).

13



Chapter 2General Two-Party ComputationOur ultimate goal is to design two-party protocols which may withstand any feasible adversarialbehavior. We proceed in two steps. First we consider a benign type of adversary, called semi-honest,and construct protocols which are secure with respect to such an adversary. Next, we show how toforce parties to behave in a semi-honest manner. That is, we show how to transform any protocol,secure in the semi-honest model, into a protocol which is secure against any feasible adversarialbehavior.We note that the semi-honest model is not merely an important methodological locus, but mayalso provide a good model of certain settings.Organization In Section 2.1 we de�ne the framework for the entire chapter. In particular, wede�ne two-party functionalities and some simplifying assumptions, the semi-honest model (see Sec-tion 2.1.1) and the general malicious model (see Section 2.1.2). In Section 2.2 we describe theconstruction of protocols for the semi-honest model, and in Section 2.3 a compiler which transformsprotocols from the latter model to protocols secure in the general malicious model.2.1 De�nitionsA two-party protocol problem is casted by specifying a random process which maps pairs of inputs(one input per each party) to pairs of outputs (one per each party). We refer to such a process asthe desired functionality, denoted f : f0; 1g� � f0; 1g� 7! f0; 1g� � f0; 1g�. That is, for every pairof inputs (x; y), the desired output-pair is a random variable, f(x; y), ranging over pairs of strings.The �rst party, holding input x, wishes to obtain the �rst element in f(x; y); whereas the secondparty, holding input y, wishes to obtain the second element in f(x; y).A special case of interest is when both parties wish to obtain a predetermined function, g, of thetwo inputs. In this case we have f(x; y) def= (g(x; y); g(x; y))Another case of interest is when the two parties merely wish to toss a fair coin. This case canbe casted by requiring that, for every input pair (x; y), we have f(x; y) uniformly distributed overf(0; 0); (1; 1)g. Finally, as a last example, we mention highly asymmetric functionalities of the form14



f(x; y) def= (f 0(x; y); �), where f 0f0; 1g� � f0; 1g� 7! f0; 1g� is a randomized process and � denotesthe empty string.Whenever we consider a protocol for securely computing f , it is implicitly assumed that theprotocol is correct provided that both parties follow the prescribed program. That is, the joint outputdistribution of the protocol, played by honest parties, on input pair (x; y), equals the distributionof f(x; y).Simplifying conventions. To simplify the exposition we make the following three assumptions:1. The protocol problem has to be solved only for inputs of the same length (i.e., jxj = jyj).2. The functionality is computable in time polynomial in the length of the inputs.3. Security is measured in terms of the length of the inputs.The above conventions can be greatly relaxed, yet each represent an essential issue which must beaddressed.Observe that making no restriction on the relationship among the lengths of the two inputs,disallows the existence of secure protocols for computing any \non-degenerate" functionality. Thereason is that the program of each party (in a protocol for computing the desired functionality) musteither depend only on the length of the party's input or obtain information on the counterpart'sinput length. In case information of the latter type is not implied by the output value, a secureprotocol \cannot a�ord" to give it away.1 An alternative to the above convention is to restrict theclass of functionalities to such where the length of each party's input is included in the counterpart'soutput. One can easily verify that the two alternative conventions are in fact equivalent.We now turn to the second convention (assumption). Certainly, the total running-time of a(secure) two-party protocol for computing the functionality cannot be smaller than the time requiredto compute the functionality (in the ordinary sense). Arguing as above, one can see that we needan a-priori bound on the complexity of the functionality. A more general approach would be tohave this bound given explicitly to both parties as an auxiliary input. In such a case, the protocolcan be required to run for time bounded by a �xed polynomial in this auxiliary parameter (i.e., thetime-complexity bound of f). Using standard padding and assuming that a good upper bound of thecomplexity of f is time-constructible, we can reduce this general case to the special case discussedabove: Given a general functionality, g, and a time bound t : N 7! N , we introduce the functionalityf((x; 1i); (y; 1j)) def= � g(x; y) if i = j = t(jxj) = t(jyj)(?;?) otherwisewhere ? is a special symbol. Now, the problem of securely computing g reduces to the problem ofsecurely computing f .Finally, we turn to the third convention (assumption). Indeed, a more general convention wouldbe to have a security parameter which determines the security of the protocol. This general al-ternative is essential for allowing \secure" computation of �nite functionalities (i.e., functionalitiesde�ned on �nite input domains). We may accommodate the general convention using the specialcase, postulated above, as follows. Suppose that we want to compute the functionality f , on inputpair (x; y) with security (polynomial in) the parameter s. Then we introduce the functionalityf 0((x; 1s); (y; 1s)) def= f(x; y) ;1 The situation is analogous to the de�nition of secure encryption, where it is required that the message length bepolynomially-related to the key length. 15



and consider secure protocols for computing f 0. Indeed, this reduction corresponds to the realisticsetting where the parties �rst agree on the desired level of security and then proceed to computethe function using this level (of security).The �rst convention, revisited. An alternative way of postulating the �rst convention is toconsider only functionalities, f : f0; 1g�� f0; 1g� 7! f0; 1g�� f0; 1g�, which satisfy f(x; y) = (?;?)whenever jxj 6= jyj. That is, such functionalities have the formf(x; y) def= � f 0(x; y) if jxj = jyj(?;?) otherwisewhere f 0 is an arbitrary functionality. Actually, in some cases it will be more convenient to considerfunctionalities of arbitrary length relationship, determined by a 1-1 function ` : N 7! N . Suchfunctionalities have the form f(x; y) def= � f 0(x; y) if jxj = `(jyj)(?;?) otherwisewhere f 0 is an arbitrary functionality. Even more generally, we may consider functionalities which aremeaningfully de�ned only for input pairs satisfying certain (polynomial-time computable) relations.Let R � [n2N(f0; 1g`(n)�f0; 1gn) be such a relation and f 0 be as above, then we may consider thefunctionality f(x; y) def= � f 0(x; y) if (x; y) 2 R(?;?) otherwise2.1.1 The semi-honest modelLoosely speaking, a semi-honest party is one who follows the protocol properly with the exceptionthat it keeps a record of all its intermediate computations. Actually, it su�ces to keep the internalcoin tosses and all messages received from the other party. In particular, a semi-honest party tossesfair coins (as instructed by its program), and sends messages according to its speci�ed program (i.e.,as a function of its input, outcome of coin tosses, and incoming messages). Note that a semi-honestparty corresponds to the \honest veri�er" in de�nitions of zero-knowledge.In addition to the role of honest-parties in our exposition, they do constitute a model of in-dependent interest. In particular, in reality deviating from the speci�ed program { which may beinvoked inside a complex application software { may be more di�cult than merely recording thecontents of some communication registers. Furthermore, records of these registers may be availablethrough some standard activities of the operating system. Thus, whereas totally-honest behavior(rather than semi-honest one) may be hard to enforce, semi-honest behavior may be assumed inmany settings.The semi-honest model is implicit in the following de�nition of privacy. Loosely speaking, thede�nition says that a protocol privately computes f if whatever a semi-honest party can be ob-tained after participating in the protocol, could be essentially obtained from the input and outputavailable to that party. This is stated using the simulation paradigm. Furthermore, it su�ces to(e�ciently) \simulate the view" of each (semi-honest) party, since anything which can be obtainafter participating in the protocol is obtainable from the view.De�nition 2.1.1 (privacy w.r.t semi-honest behavior): Let f : f0; 1g��f0; 1g� 7! f0; 1g��f0; 1g�be a functionality, where f1(x; y) (resp., f2(x; y)) denotes the �rst (resp., second) element of f(x; y),16



and � be a two-party protocol for computing f .2 The view of the �rst (resp., second) party duringan execution of � on (x; y), denoted view�1 (x; y) (resp., view�2 (x; y)), is (x; r;m1; :::;mt) (resp.,(y; r;m1; :::;mt), where r represent the outcome of the �rst (resp., second) party's internal cointosses, and mi represent the ith message it has received. The output of the �rst (resp., second) partyduring an execution of � on (x; y), denoted output�1 (x; y) (resp., output�2 (x; y)), is implicit inthe party's view of the execution.� (deterministic case) For a deterministic functionality f , we say that � privately computes f ifthere exist polynomial-time algorithms, denoted S1 and S2, such thatfS1(x; f1(x; y))gx;y2f0;1g� c� fview�1 (x; y)gx;y2f0;1g� (2.1)fS2(y; f2(x; y))gx;y2f0;1g� c� fview�2 (x; y)gx;y2f0;1g� (2.2)where jxj = jyj.� (general case) We say that � privately computes f if there exist polynomial-time algorithms,denoted S1 and S2, such thatf(S1(x; f1(x; y)); f2(x; y))gx;y c� f(view�1 (x; y);output�2 (x; y))gx;y (2.3)f(f1(x; y); S2(y; f2(x; y)))gx;y c� f(output�1 (x; y);view�2 (x; y))gx;y (2.4)where, again, jxj = jyj. We stress that above view�1 (x; y), view�2 (x; y), output�1 (x; y) andoutput�2 (x; y), are related random variables, de�ned as a function of the same random exe-cution.Consider �rst the deterministic case: Eq. (2.1) (resp., Eq. (2.2)) asserts that the view of the �rst(resp., second) party, on each possible input, can be e�ciently simulated based solely on its inputand output.3 Next note that the formulation for the deterministic case coincides with the generalformulation as applied to deterministic functionalities; since, in an protocol � which computes f , itholds that output�i (x; y) = fi(x; y), for each party i and any pair of inputs (x; y).In contrast to the deterministic case, augmenting the view of the semi-honest party by the outputof the other party is essential when randomized functionalities are concerned. Note that in this case,for a protocol � which computes a randomized functionality f , it does not necessarily hold thatoutput�i (x; y) = fi(x; y), since each is a random variable. Indeed, these two random variables areidentically distributed but this does not su�ce for asserting, for example, that Eq. (2.1) impliesEq. (2.3). A disturbing counter-example follows: Consider the functionality (1n; 1n) 7! (r;?),where r is uniformly distributed in f0; 1gn, and consider a protocol in which Party 1 uniformlyselects r 2 f0; 1gn, sends it to Party 2, and outputs r. Clearly, this protocol computes the abovefunctionality, alas intuitively we should not consider this computation private (since Party 2 learnsthe output although it is not supposed to know it). The reader may easily construct a simulatorwhich satis�es Eq. (2.2) (i.e., S2(1n) outputs a uniformly chosen r), but not Eq. (2.4).2 By saying that � computes (rather than privately computes) f , we mean that the output distribution of theprotocol (when played by honest or semi-honest parties) on input pair (x; y) is identically distributed as f(x; y).3 Observe the analogy to the de�nition of a zero-knowledge protocol (w.r.t honest veri�er): The functionality (inthis case) is a function f(x; y) = (�; (x;�L(x))), where �L is the characteristic function of the language L, the �rstparty is playing the prover, and � is a zero-knowledge interactive proof for L (augmented by having the prover send(x; �L(x)) and abort in case x =2 L). Note that the above functionality allows the prover to send x to the veri�er whichignores its own input (i.e., y). The standard zero-knowledge condition essentially asserts Eq. (2.2), and Eq. (2.1) holdsby the de�nition of an interactive proof (i.e., speci�cally, by the requirement that the veri�er is polynomial-time).17



Author's Note: Unfortunately, the rest of the text is somewhat hand-waving when refer-ring to the above issue (regarding randomized functionalities). However, most of the textfocuses on deterministic functionalities, and so the point is moot. In the cases where wedo deal with randomized functionalities, the simulators do satisfy the stronger require-ments asserted by Eq. (2.3){(2.4), but this fact is not explicitly referred to in the text.This de�ciency will be corrected in future revisions.Alternative formulation. It is instructive to recast the above de�nitions in terms of the general(\ideal-vs-real") framework discussed in Section 1.1 and used extensively in the case of arbitrarymalicious behavior. In this framework we �rst consider an ideal model in which the (two) real partiesare joined by a (third) trusted party, and the computation is performed via this trusted party. Nextone considers the real model in which a real (two-party) protocol is executed (and there exist notrusted third parties). A protocol in the real model is said to be secure with respect to certainadversarial behavior if the possible real executions with such an adversary can be \simulated" inthe ideal model. The notion of simulation here is di�erent than above: The simulation is not ofthe view of one party via a traditional algorithm, but rather a simulation of the joint view of bothparties by the execution of an ideal model protocol.According to the general methodology (framework), we should �rst specify the ideal modelprotocol. Here, it consists of each party sending its input to the trusted party (via a secure privatechannel), the third party computing the corresponding output-pair and sending each output to thecorresponding party. The only adversarial behavior allowed here is for one of the parties to conductan arbitrary polynomial-time computation based on its input and the output it has received. Theother party merely outputs the output it has received.4 Next, we turn to the real model. Here, thereis a two-party protocol and the adversarial behavior is restricted to be semi-honest. That is, oneparty may conduct an arbitrary polynomial-time computation based on its view of the execution (asde�ned above). A secure protocol in the (real) semi-honest model is such that for every semi-honestbehavior of one of the parties, we can simulate the joint outcome (of their computation) by anexecution in the ideal model (where also one party is semi-honest and the other is honest). Actually,we need to augment the de�nition so to account for a-priori information available to semi-honestparties before the protocol starts. This is done by supplying these parties with auxiliary inputs, orequivalently by viewing them as possibly non-uniform circuits of polynomial-size. Thus, we have {De�nition 2.1.2 (security in the semi-honest model): Let f : f0; 1g� � f0; 1g� 7! f0; 1g� � f0; 1g�be a functionality, where f1(x; y) (resp., f2(x; y)) denotes the �rst (resp., second) element of f(x; y),and � be a two-party protocol for computing f .� Let C = (C1; C2) be a pair of polynomial-size circuit families representing adversaries in theideal model. Such a pair is admissible (in the ideal model) if for at least one Ci we haveCi(I; O) = O. The joint execution under C in the ideal model on input pair (x; y), denotedidealf;C(x; y), is de�ned as (C1(x; f1(x; y)); C2(y; f2(x; y))).(That is, Ci is honest { it just outputs fi(x; y)).� Let C = (C1; C2) be a pair of polynomial-size circuit families representing adversaries inthe real model. Such a pair is admissible (in the real model) if for at least one i 2 f1; 2gwe have Ci(V ) = O, where O is the output implicit in the view V . The joint execution4 Thus, unless the party's output incorporates the party's input, this input is not available to an honest party afterthe computation. 18



of � under C in the real model on input pair (x; y), denoted real�;C(x; y), is de�ned as(C1(view�1 (x; y)); C2(view�2 (x; y))).(Again, Ci is honest { it just outputs fi(x; y)).Protocol � is said to securely compute f in the semi-honest model (secure w.r.t f and semi-honest be-havior) if there exists a polynomial-time computable transformation of pairs of admissible polynomial-size circuit families A = (A1; A2) for the real model into pairs of admissible polynomial-size circuitfamilies B = (B1; B2) for the ideal model so thatfidealf;B(x; y)gx;y s.t. jxj=jyj c� freal�;A(x; y)gx;y s.t. jxj=jyjObserve that the de�nition of the joint execution in the real model prohibits both parties (honestand semi-honest) to deviate from the strategies speci�ed by �. The di�erence between honest andsemi-honest is merely in their actions on the corresponding local views of the execution: An honestparty outputs only the output-part of the view (as speci�ed by �), whereas a semi-honest party mayoutput an arbitrary (feasibly computable) function of the view.It is not hard to see that De�nitions 2.1.1 and 2.1.2 are equivalent. That is,Proposition 2.1.3 Let � be a protocol for computing f . Then, � privately computes f if and onlyif � securely computes f in semi-honest model.Proof Sketch: Suppose �rst that � securely computes f in semi-honest model (i.e., satis�es De�ni-tion 2.1.2). Without loss of generality, we show how to simulate the �rst party view. We de�ne thefollowing admissible adversary A = (A1; A2) for the real model: A1 is merely the identity transfor-mation and A2 maps its view to the corresponding output (as required by de�nition of an admissiblepair). Let B = (B1; B2) be the ideal-model adversary guaranteed by De�nition 2.1.2. Then, B1 (inrole of S1) satis�es Eq. (2.3). Note that B1 is polynomial-time computable from the circuit familiesA1; A2, which in turn are uniform. Thus, the simulation is via a uniform algorithm as required.Now, suppose that � privately computes f , and let S1 and S2 be as guaranteed in De�nition 2.1.1.Let A = (A1; A2) be an admissible pair for the real-model adversaries. Without loss of generality,we assume that A2 merely maps the view (of the second party) to the corresponding output (i.e.,f2(x; y)). Then, we de�ne B = (B1; B2) so that B1(x; z) def= A1(S1(x; z)) and B2(y; z) def= z. Clearly,B can be constructed in polynomial-time given A, and the following holdsreal�;A(x; y) = (A1(view�1 (x; y)); A2(view�2 (x; y)))= (A1(view�1 (x; y));output�2 (x; y))c� (A1(S1(x; f1(x; y)); f2(x; y))= (B1(x; f1(x; y)); B2(y; f2(x; y)))= idealf;B(x; y)The above is inaccurate (in its treatment of computational indistinguishability), however, a preciseproof can be easily derived following standard paradigms (of dealing with computationally indistin-guishable ensembles). 19



Conclusion: The above proof demonstrates that the alternative formulation of De�nition 2.1.2 ismerely a cumbersome form of the simpler De�nition 2.1.1. We stress again that the reason we havepresented the cumbersome form is the fact that it follows the general framework of de�nitions ofsecurity which is used for less benign adversarial behavior. In the rest of this chapter, whenever wedeal with the semi-honest model (for two-party computation), we will used De�nition 2.1.1.2.1.2 The malicious modelWe now turn to consider arbitrary feasible deviation of parties from a speci�ed two-party protocol.A few preliminary comments are in place. Firstly, there is no way to force parties to participatein the protocol. That is, a possible malicious behavior may consists of not starting the executionat all, or, more generally, suspending (or aborting) the execution in any desired point in time. Inparticular, a party can abort at the �rst moment when it obtains the desired result of the computedfunctionality. We stress that our model of communication does not allow to condition the receiptof a message by one party on the concurrent sending of a proper message by this party. Thus, notwo-party protocol can prevent one of the parties to abort when obtaining the desired result andbefore its counterpart also obtains the desired result. In other words, it can be shown that perfectfairness { in the sense of both parties obtaining the outcome of the computation concurrently { is notachievable in two-party computation. We thus give up on such fairness altogether. (We commentthat partial fairness is achievable, but postpone the discussion of this issue to a later chapter.)Another point to notice is that there is no way to talk of the correct input to the protocol. Thatis, a party can alway modify its local input, and there is no way for a protocol to prevent this. (Westress that both phenomena did not occur in the semi-honest model, for the obvious reason thatparties were postulated not to deviate from the protocol.)To summarize, there are three things we cannot hope to avoid.1. Parties refusing to participate in the protocol (when the protocol is �rst invoked).2. Parties substituting their local input (and entering the protocol with an input other than theone provided to them).3. Parties aborting the protocol prematurely (e.g., before sending their last message).The ideal model. We now translate the above discussion into a de�nition of an ideal model. Thatis, we will allow in the ideal model whatever cannot be possibly prevented in any real execution. Analternative way of looking at things is that we assume that the the two parties have at their disposala trusted third party, but even such a party cannot prevent speci�c malicious behavior. Speci�cally,we allow a malicious party in the ideal model to refuse to participate in the protocol or to substituteits local input. (Clearly, neither can be prevent by a trusted third party.) In addition, we postulatethat the �rst party has the option of \stopping" the trusted party just after obtaining its part ofthe output, and before the trusted party sends the other output-part to the second party. Such anoption is not given to the second party.5 Thus, an execution in the ideal model proceeds as follows(where all actions of the both honest and malicious party must be feasible to implement).5 This asymmetry is due to the non-concurrent nature of communication in the model. Since we postulate that thetrusted party sends the answer �rst to the �rst party, the �rst party (but not the second) has the option to stop thethird party after obtaining its part of the output. The second party, can only stop the third party before obtainingits output, but this is the same as refusing to participate.20



Inputs: Each party obtains an input, denoted z.Send inputs to trusted party: An honest party always sends z to the trusted party. A maliciousparty may, depending on z, either abort or sends some z0 2 f0; 1gjzj to the trusted party.Trusted party answers �rst party: In case it has obtained an input pair, (x; y), the trustedparty (for computing f), �rst replies to the �rst party with f1(x; y). Otherwise (i.e., in case itreceives only one input), the trusted party replies to both parties with a special symbol, ?.Trusted party answers second party: In case the �rst party is malicious it may, depending onits input and the trusted party answer, decide to stop the trusted party. In this case thetrusted party sends ? to the second party. Otherwise (i.e., if not stopped), the trusted partysends f2(x; y) to the second party.Outputs: An honest party always outputs the message it has obtained from the trusted party. Amalicious party may output an arbitrary (polynomial-time computable) function of its initialinput and the message it has obtained from the trusted party.The ideal model computation is captured in the following de�nition.6De�nition 2.1.4 (malicious adversaries, the ideal model): Let f : f0; 1g� � f0; 1g� 7! f0; 1g� �f0; 1g� be a functionality, where f1(x; y) (resp., f2(x; y)) denotes the �rst (resp., second) element off(x; y). Let C = (C1; C2) be a pair of polynomial-size circuit families representing adversaries inthe ideal model. Such a pair is admissible (in the ideal malicious model) if for at least one i 2 f1; 2gwe have Ci(I) = I and Ci(I; O) = O. The joint execution under C in the ideal model (on input pair(x; y)), denoted idealf;C(x; y), is de�ned as follows� In case C2(I) = I and C2(I; O) = O (i.e., Party 2 is honest),(C1(x;?) ; ?) if C1(x) = ? (2.5)(C1(x; f1(C1(x); y);?) ; ?) if C1(x) 6= ? and C1(x; f1(C1(x); y)) = ? (2.6)(C1(x; f1(C1(x); y)) ; f2(C1(x); y)) otherwise (2.7)� In case C1(I) = I and C1(I; O) = O (i.e., Party 1 is honest),(? ; C2(y;?)) if C2(y) = ? (2.8)(f1(x; y) ; C2(y; f2(x;C2(y))) otherwise (2.9)Eq. (2.5) represents the case where Party 1 aborts before invoking the trusted party (and outputs astring which only depends on its input; i.e., x). Eq. (2.6) represents the case where Party 1 invokesthe trusted party with a possibly substituted input, denoted C1(x), and aborts while stopping thetrusted party right after obtaining the output, f1(C1(x); y). In this case the output of Party 1depends on both its input and the output it has obtained from the trusted party. In both thesecases, Party 2 obtains no output (from the trusted party). Eq. (2.7) represents the case where6 In the de�nition, the circuits C1 and C2 represent all possible actions in the model. In particular, C1(x) = ?represents a decision of Party 1 not to enter the protocol at all. In this case C1(x;?) represents its local-output.The case C1(x) 6= ?, represents a decision to hand an input, denoted C1(x), to the trusted party. Likewise, C1(x; z)and C1(x; z;?), where z is the answer supplied by the trusted party, represents the actions taken by Party 1 afterreceiving the trusted party answer. 21



Party 1 invokes the trusted party with a possibly substituted input, and allows the trusted partyto answer to both parties (i.e., 1 and 2). In this case, the trusted party computes f(C1(x); y), andParty 1 outputs a string which depends on both x and f1(C(x); y). Likewise, Eq. (2.8) and Eq. (2.9)represent malicious behavior of Party 2; however, in accordance to the above discussion, the trustedparty �rst supplies output to Party 1 and so Party 2 does not have an option analogous to Eq. (2.6).Execution in the real model. We next consider the real model in which a real (two-party)protocol is executed (and there exist no trusted third parties). In this case, a malicious partymay follow an arbitrary feasible strategy; that is, any strategy implementable by polynomial-sizecircuits. In particular, the malicious party may abort the execution at any point in time, and whenthis happens prematurely, the other party is left with no output. In analogy to the ideal case, weuse circuits to de�ne strategies in a protocol.De�nition 2.1.5 (malicious adversaries, the real model): Let f be as in De�nition 2.1.4, and � bea two-party protocol for computing f . Let C = (C1; C2) be a pair of polynomial-size circuit familiesrepresenting adversaries in the real model. Such a pair is admissible (w.r.t �) (for the real maliciousmodel) if at least one Ci coincides with the strategy speci�ed by �. The joint execution of � under Cin the real model (on input pair (x; y)), denoted real�;C(x; y), is de�ned as the output pair resultingof the interaction between C1(x) and C2(y).In the sequel, we will assume that the circuit representing the real-model adversary (i.e., the Ciwhich does not follow �) is deterministic. This is justi�ed by standard techniques: See discussionfollowing De�nition 2.1.6.Security as emulation of real execution in the ideal model. Having de�ned the ideal andreal models, we obtain the corresponding de�nition of security. Loosely speaking, the de�nitionasserts that a secure two-party protocol (in the real model) emulates the ideal model (in which atrusted party exists). This is formulated by saying that admissible adversaries in the ideal-model areable to simulate (in the ideal-model) the execution of a secure real-model protocol (with admissibleadversaries).De�nition 2.1.6 (security in the malicious model): Let f and � be as in De�nition 2.1.5, Protocol� is said to securely compute f (in the malicious model) if there exists a polynomial-time computabletransformation of pairs of admissible polynomial-size circuit families A = (A1; A2) for the real model(of De�nition 2.1.5) into pairs of admissible polynomial-size circuit families B = (B1; B2) for theideal model (of De�nition 2.1.4) so thatfidealf;B(x; y)gx;y s.t. jxj=jyj c� freal�;A(x; y)gx;y s.t. jxj=jyjWhen the context is clear, we sometimes refer to � as an implementation of f .Implicit in De�nition 2.1.6 is a requirement that in a non-aborting (real) execution of a secureprotocol, each party \knows" the value of the corresponding input on which the output is obtained.This is implied by the equivalence to the ideal model, in which the party explicitly hands the (possiblymodi�ed) input to the trusted party. For example, say Party 1 uses the malicious strategy A1 andthat real�;A(x; y) is non-aborting. Then the output values correspond to the input pair (B1(x); y),where B1 is the ideal-model adversary derived from the real-model adversarial strategy A1.22



Justi�cation for considering only deterministic real-adversaries. As stated above, we willassume throughout our presentation that the adversaries in the real (execution) model are deter-ministic. Intuitively, (non-uniform) deterministic adversaries are as powerful, with respect to breachof security, as randomized adversaries { since one may just consider (and �x) the \best possible"choice of coins for a randomized adversary. However, as the above de�nition of security requires to(e�ciently) transform adversaries for the real model into adversaries for the ideal model, one maywonder whether a transformation which applies to deterministic adversaries necessarily applies torandomized adversaries. We claim that this is indeed the case.Proposition 2.1.7 Let T be a polynomial-time transformation applicable to single-input circuits.Then, there exists a transformation T 0 applicable to two-input circuits so that for every such circuitcircuit, C(�; �), and for every possible input pair, (x; r), to C, it holdsT 0(C)(x; r) = T (Cr)(x)where Cr is the circuit obtained from C by �xing the second input to be r, and T 0(C) (resp., T (Cr))is the two-input (resp., one-input) circuit obtained by applying the transformation T 0 (resp., T ) tothe two-input circuit C (resp., one-input circuit Cr).Thus, for every transformation for deterministic circuits (modeled above by single-input circuits),we can derive an \equivalent" transformation for randomized circuits (modeled above by two-inputcircuits).Proof Sketch: Given a transformation T , consider the universal function, fT : (f0; 1g�)3 7! f0; 1g�,where fT is de�ned as follows, on triples (C; x; r), with C being a two-input circuit.� Let Cr be the circuit obtained from C by �xing its second input to be r.� Let C 0 = T (Cr) be the circuit obtained from Cr by applying the transformation T .� Then, fT (C; x; r) equals C 0(x).Note that fT is computable in (uniform) polynomial-time (and hence circuits computing it can beconstructed in polynomial-time). Given a two-input circuit, C, the transformation T 0 proceeds asfollows.1. Constructs a circuit for computing fT (on inputs of the adequate length { determined by C).2. Fix the appropriate inputs of the above circuit to equal the bits in the description of C.3. Output the resulting circuit, denoted fT;C .Note that T 0(C)(x; r) = fT;C(x; r) = fT (C; x; r) = T (Cr)(x), and so the claim follows.2.2 Secure Protocols for the Semi-Honest ModelWe present a method of constructing private protocols (w.r.t semi-honest behavior) for any givenfunctionality. The construction takes a Boolean circuit representing the given functionality andproduces a protocol for evaluating this circuit. The circuit evaluation protocol, presented in sub-section 2.2.4, scans the circuit from the input wires to the output wires, processing a single gate in23



each basic step. When entering each basic step, the parties hold shares of the values of the inputwires, and when the step is completed they hold shares of the output wire. Thus, evaluating thecircuit \reduces" to evaluating single gates on values shared by both parties.Our presentation is modular: We �rst de�ne an appropriate notion of a reduction, and showhow to derive a private protocol for functionality g, given a reduction of the (private computationof) g to the (private computation of) f together with a protocol for privately computing f . Inparticular, we reduce the private computation of general functionalities to the private computationof deterministic functionalities, and thus focus on the latter.We next consider, without loss of generality, the evaluation of Boolean circuits with and andxor gates of fan-in 2. Actually, we �nd it more convenient to consider the corresponding arithmeticcircuits over GF(2), where multiplication corresponds to and and addition to xor. A value v isshared by the two parties in the natural manner (i.e., the sum of the shares is v). Thus, proceedingthrough an addition gate is trivial, and we concentrate on proceeding through a multiplication gate.The generic case is that the �rst party holds a1; b1 and the second party holds a2; b2, where a1 + a2is the value of one input wire and b1 + b2 is the value of the other input wire. What we want is toprovide each party with a \random" share of the value of the output wire; that is, a share of thevalue (a1 + a2) � (b1 + b2). In other words we are interested in privately computing the followingrandomized functionality((a1; b1); (a2; b2)) 7! (c1; c2) (2.10)where c1 + c2 = (a1 + a2) � (b1 + b2). (2.11)That is, (c1; c2) is uniformly chosen among the solutions to c1 + c2 = (a1 + a2) � (b1 + b2). Theabove functionality has a �nite domain, and can be solved (generically) by reduction to a variant ofOblivious Transfer (OT). This variant is de�ned below, and it is shown that it can be implementedassuming the existence of trapdoor one-way permutations.The actual presentation proceeds bottom-up. We �rst de�ne reductions between (two-party)protocol problems (in the semi-honest model). Next we de�ne and implement OT, show how to useit for securely computing a single multiplication gate, and �nally for securely computing the entirecircuit.2.2.1 A composition theoremIt is time to de�ne what we mean by saying that private computation of one functionality reducesto the private computation of another functionality. Our de�nition is a natural extension of thestandard notion of reduction in the context of ordinary (i.e., one party) computation. Recall thatstandard reductions are de�ned in terms of oracle machines. Thus, we need to consider two-partyprotocols with oracle access. Here the oracle is invoked by both parties, each supplying it with oneinput (or query), and it responses with a pair of answers, one per each party. We stress that theanswer-pair depends on the query-pair.De�nition 2.2.1 (protocols with oracle access): A oracle-aided protocol is a protocol augmented bya pair of oracle-tapes, per each party, and oracle-call steps de�ned as follows. Each of the partiesmay send a special oracle request message, to the other party, after writing a string { called thequery { on its write-only oracle-tape. In response, the other party writes a string, its query, on itsown oracle-tape and respond to the �rst party with a oracle call message. At this point the oracleis invoked and the result is that a string, not necessarily the same, is written by the oracle on theread-only oracle-tape of each party. This pair of strings is called the oracle answer.24



De�nition 2.2.2 (reductions):� An oracle-aided protocol is said to be using the oracle-functionality f , if the oracle answers areaccording to f . That is, when the oracle is invoked with �rst party query q1 and second partyquery q2, the answer-pair is distributed as f(q1; q2).� An oracle-aided protocol using the oracle-functionality f is said to privately compute g if thereexist polynomial-time algorithms, denoted S1 and S2, satisfying Eq. (2.1) and Eq. (2.2), re-spectively, where the corresponding views are de�ned in the natural manner.� An oracle-aided protocol is said to privately reduce g to f , if it privately computes g when usingthe oracle-functionality f . In such a case we say that g is privately reducible to f ,We are now ready to state a composition theorem for the semi-honest model.Theorem 2.2.3 (Composition Theorem for the semi-honest model, two parties): Suppose that g isprivately reducible to f and that there exists a protocol for privately computing f . Then there existsa protocol for privately computing g.Proof Sketch: Let �gjf be a oracle-aided protocol which privately reduces g to f , and let �f bea protocol which privately computes f . We construct a protocol � for computing g in the naturalmanner; that is, starting with �gjf , we replace each invocation of the oracle by an execution of�f . Denote the resulting protocol by �. Clearly, � computes g. We need to show that it privatelycomputes g.For each i = 1; 2, let Sgjfi and Sfi be the corresponding simulators for the view of party i (i.e.,in �gjf and �f , respectively). We construct a simulation Si, for the view of party i in �, in thenatural manner. That is, we �rst run Sgjfi and obtain the view of party i in �gjf . This view includesqueries made by party i and corresponding answers. (Recall, we have only the part of party i in thequery-answer pair.) Invoking Sfi on each such \partial query-answer" we �ll-in the view of party ifor each of these invocations of �f .It is left to show that Si indeed generates a distribution indistinguishable from the view of partyi in actual executions of �. Towards this end, we introduce an imaginary simulator, denoted Ii. Thisimaginary simulator invokes Sgjfi , but augment the view of party i with views of actual executionsof protocol �f on the corresponding query-pairs. (The query-pair is completed in an arbitraryconsistent way.) Observe that the outputs of Ii and Si are computationally indistinguishable; orelse one may distinguish the distribution produced by Sfi and the actual view of party i in �f (byincorporating a possible output of Sgjfi into the distinguisher). On the other hand, the output of Iimust be computationally indistinguishable from the view of party i in �; or else one may distinguishthe output of Sgjfi from the view of party i in �gjf (by incorporating a possible view of party i inthe actual execution of �f into the distinguisher). The theorem follows.Comment: The simplicity of the above proof is due to the fact that semi-honest behavior is rathersimple. In particular, the execution of a semi-honest party in an oracle-aided protocol is not e�ectedby the replacement of the oracle by an real subprotocol. (Note that this may not be the case whenmalicious parties are discussed.)
25



Application { reducing private computation of general functionalities to deterministicones. Given a general functionality g, we �rst write it in a way which makes the randomizationexplicit. That is, we let g(r; (x; y)) denote the value of g(x; y) when using coin tosses r 2 f0; 1gpoly(jxj)(i.e., g(x; y) is the randomized process consisting of uniformly selecting r 2 f0; 1gpoly(jxj), anddeterministically computing g(r; (x; y))). Next, we privately reduce g to f , where f is de�ned asfollows f((x1; r1); (x2; r2)) def= g(r1 � r2; (x1; x2)) (2.12)Applying Theorem 2.2.3, we conclude that the existence of a protocol for privately computingthe deterministic functionality f implies the existence of a protocol for privately computing therandomized functionality g. For sake of future reference, we explicitly state the reduction of privatelycomputing g to privately computing f (i.e, the oracle-aided protocol for g given f).Proposition 2.2.4 (privately reducing a randomized functionality to deterministic one): Let g be arandomized functionality, and f be as de�ned in Eq. (2.12). Then the following oracle-aided protocolprivately reduces g to f .Inputs: Party i gets input xi 2 f0; 1gn.Step 1: Party i uniformly selects ri 2 f0; 1gpoly(jxij).Step 2: Party i invokes the oracle with query (xi; ri), and records the oracle response.Outputs: Each party outputs the oracle's response.Proof: Clearly, the above protocol, denoted �, computes g. To show that � privately computes gwe need to present a simulator for each party view. The simulator for Party i, denoted Si, is theobvious one. On input (xi; vi), where xi is the local input to Party i and vi is its local output, thesimulator uniformly selects ri 2 f0; 1gm, and outputs (xi; ri; vi), where m = poly(jxij). To see thatthis output is distributed identically to the view of Party i, we note that for every �xed x1; x2 andr 2 f0; 1gm, we have vi = gi(r; (x1; x2)) if and only if vi = fi((x1; r1); (x2; r2)), for any pair (r1; r2)satisfying r1 � r2 = r. Let �i be a random variable representing the random choice of Party i inStep 1, and � 0i denote the corresponding choice made by the simulator Si. Then, for every �xedx1; x2; ri and v = (v1; v2)Pr � view�i (x1; x2) = (xi; ri; vi)output�3�i(x1; x2) = v3�i � = Pr[(�i = ri) ^ (f((x1; �1); (x2; �2)) = v)]= 2�m � jfr3�i : f((x1; r1); (x2; r2)) = vgj2m= 2�m � jfr : g(r; (x1; x2)) = vgj2m= Pr[(� 0i = ri) ^ (g(x1; x2) = v)]= Pr � Si(xi; gi(x1; x2)) = (xi; ri; vi)^ g3�i(x1; x2) = v3�i �and the claim follows.
26



2.2.2 The OTk1 protocol { de�nition and constructionThe following version of the Oblivious Transfer functionality is a main ingredient of our construction.Let k be a �xed integer (k = 4 will do for our purpose), and let b1; b2; :::; bk 2 f0; 1g and i 2 f1; :::; kg.Then, OTk1 is de�ned as OTk1((b1; b2; :::; bk); i) = (�; bi) (2.13)This functionality is clearly asymmetric. Traditionally the �rst player, holding input (b1; b2; :::; bk)is called the sender and the second player, holding the input i 2 f1; :::; kg is called the receiver.Intuitively, the goal is to transfer the ith bit to the receiver, without letting the receiver obtainknowledge of any other bit and without letting the sender obtain knowledge of the identity of thebit required by the receiver.Using any trapdoor permutation, ffigi2I , we present a protocol for privately computing OTk1 .The description below refers to the algorithms guaranteed by such a collection (see De�nition 1.2.3),and to a hard-core predicate b for such a collection (see De�nition 1.2.4). We denote the sender (�rstparty) by S and the receiver (second party) by R. As discussed in the beginning of this chapter,since we are dealing with a �nite functionality, we want the security to be stated in terms of anauxiliary security parameter, n, presented to both parties in unary.Construction 2.2.5 (Oblivious Transfer protocol for semi-honest model):Inputs: The sender has input (b1; b2; :::; bk) 2 f0; 1gk, the receiver has input i 2 f1; 2; :::; kg, andboth parties have the auxiliary security parameter 1n.Step S1: The sender uniformly selects a trapdoor pair, (�; t), by running the generation algorithm,G, on input 1n. That is, it uniformly selects a random-pad, r, for G and sets (�; t) = G(1n; r).It sends � to the receiver.Step R1: The receiver uniformly and independently selects e1; :::; ek 2 D�, sets yi = f�(ei) andyj = ej for every j 6= i, and sends (y1; y2; :::; yk) to the sender. That is,1. It uniformly and independently selects e1; :::; ek 2 D�, by invoking the domain samplingalgorithm k times, on input �. Speci�cally, it selects random pads, rj 's, for D and setsej = D(�; rj), for j = 1; :::; k.2. Using the evaluation algorithm, the sender sets yi = f�(ei).3. For j 6= i, it sets yj = ej .4. The receiver sends (y1; y2; :::; yk) to the sender.(Thus, the receiver knows f�1� (yi) = ei, but cannot predict b(f�1� (yj)) for any j 6= i.)Step S2: Upon receiving (y1; y2; :::; yk), using the inverting-with-trapdoor algorithm and the trapdoort, the sender computes xj = f�1� (yj), for every j 2 f1; :::; kg. It sends (b1 � b(x1); b2 �b(x2); :::; bk � b(xk)) to the receiver.Step R2: Upon receiving (c1; c2; :::; ck), the receiver locally outputs ci � b(ei).We �rst observe that the above protocol correctly computes OTk1 : This is the case since the receiver'slocal output satis�es ci � b(ei) = (bi � b(xi))� b(ei)= bi � b(f�1� (f�(ei)))� b(ei)= bi 27



We show below that the protocol indeed privately computes OTk1 . Intuitively, the sender getsno information from the execution since, for any possible value of i, the senders sees the samedistribution { a sequence of uniformly and independently selected elements of D�. Intuitively, thereceiver gains no computational knowledge from the execution since, for j 6= i, the only data it hasregarding bj is the triplet (�; ej ; bj� b(f�1� (ej))), from which it is infeasible to predict bj better thanby a random guess. A formal argument is indeed due and given next.Proposition 2.2.6 Suppose that ffigi2I constitutes a trapdoor permutation. Then, Construc-tion 2.2.5 constitutes a protocol for privately computing OTk1 (in the semi-honest model).Proof Sketch: We will present a simulator for the view of each party. Recall that these sim-ulators are given the local input and output of the party, which by the above includes also thesecurity parameter. We start with the sender. On input (((b1; :::; bk); 1n); �), this simulator selects� (as in Step S1), and uniformly and independently generates y1; :::; yk 2 D�. Let r denote thesequence of coins used to generate �, and assume without loss of generality that the inverting-with-trapdoor algorithm is deterministic (which is typically the case anyhow). Then the simulator outputs(((b1; :::; bk); 1n); r; (y1; :::; yk)), where the �rst element represents the party's input, the second itsrandom choices, and the third { the message it has received. Clearly, this output distribution isidentical to the view of the sender in the real execution.We now turn to the receiver. On input ((i; 1n); bi), the simulator proceeds as follows.1. Emulating Step S1, the simulator uniformly selects a trapdoor pair, (�; t), by running thegeneration algorithm on input 1n.2. As in Step R1, it uniformly and independently selects r1; :::; rk for the domain sampler D, andsets ej = D(�; rj) for j = 1; :::; k. Next, it sets yi = f�(ei) and yj = ej , for j 6= i.3. It sets ci = bi � b(ei), and uniformly selects cj 2 f0; 1g, for j 6= i.4. Finally, it outputs ((i; 1n); (r1; :::; rk); (�; (c1; :::; ck))), where the �rst element represents theparty's input, the second its random choices, and the third { the two messages it has received.Note that, except for the sequence of cj 's, this output is distributed identically to the correspondingpre�x of the receiver's view in the real execution. Furthermore, the above holds even if we includethe bit ci = bi�b(ei) = bi�b(f�1� (yi)) (and still exclude the other cj 's). Thus, the two distributionsdi�er only in the following aspect: For j 6= i, in the simulation cj is uniform and independentof anything else, whereas in the real execution cj equals b(f�1� (yj)) = b(f�1� (ej)). However, it isimpossible to distinguish the two cases (as the distinguisher is not given the trapdoor and b is ahard-core predicate of ff�g�).Author's Note: The above description is imprecise since we need to simulate the party'scoins, which in the general case are the sequence of random coins used by the domainsampling algorithm (rather than the selected elements themselves). Here is where weneed the enhanced notion of trapdoor permuation.
28



value of (a2; b2) (0; 0) (0; 1) (1; 0) (1; 1)OT-input 1 2 3 4value of output c1 + a1b1 c1 + a1 � (b1 + 1) c1 + (a1 + 1) � b1 c1 + (a1 + 1) � (b1 + 1)Figure 2.1: The value of the output of Party 2 as a function of the values of its own inputs (repre-sented in the columns), and the inputs and output of Party 1 (i.e., a1; b1; c1). The value with whichParty 2 enters the Oblivious Transfer protocol (i.e., 1 + 2a2 + b2) is shown in the second row, andthe value of the output (of both OT and the entire protocol) is shown in the third. Note that ineach case, the output of Party 2 equals c1 + (a1 + a2) � (b1 + b2).2.2.3 Privately computing c1 + c2 = (a1 + a2) � (b1 + b2)We now turn to the functionality de�ned in Eq. (2.10){(2.11). Recall that the arithmetics is inGF(2). We privately reduce the computation of this (�nite) functionality to the computation ofOT41.Construction 2.2.7 (privately reducing the computation of Eq. (2.10){(2.11) to OT41):Inputs: Party i holds (ai; bi) 2 f0; 1g� f0; 1g, for i = 1; 2.Step 1: The �rst party uniformly selects c1 2 f0; 1g.Step 2 { Reduction: The parties invoke OT41, where Party 1 plays the sender and party 2 playsthe receiver. The input to the sender is the 4-tuple(c1 + a1b1 ; c1 + a1 � (b1 + 1) ; c1 + (a1 + 1) � b1 ; c1 + (a1 + 1) � (b1 + 1)) ; (2.14)and the input to the receiver is 1 + 2a2 + b2 2 f1; 2; 3; 4g.Outputs: Party 1 outputs c1, whereas Party 2 output the result obtained from the OT41 invocation.We �rst observe that the above reduction is valid; that is, the output of Party 2 equals c1 + (a1 +a2) � (b1 + b2). This follows from inspecting the truth table in Figure 2.1, which depicts the valueof the output of Party 2, as a function of its own inputs and a1; b1; c1. We stress that the outputpair, (c1; c2), is uniformly distributed among the pairs for which c1+ c2 = (a1+ a2) � (b1+ b2) holds.Thus, each of the local outputs (i..e, of either Party 1 or Party 2) is uniformly distributed, althoughthe two local-outputs are dependent of one another (as in Eq. (2.11)).It is also easy to see that the reduction is private. That is,Proposition 2.2.8 Construction 2.2.7 privately reduces the computation of Eq. (2.10){(2.11) toOT41.Proof Sketch: Simulators for the oracle-aided protocol of Construction 2.2.7 are easily constructed.Speci�cally, the simulator of the view of Party 1, has input ((a1; b1); c1) (i.e., the input and outputof Party 1), which is identical to the view of Party 1 in the execution (where c1 serves as coins toParty 1). Thus the simulation is trivial (i.e., by identity transformation). The same holds also forthe simulator of the view of Party 2 { it gets input ((a1; b1); c1 + (a1 + a2) � (b1 + b2)), which isidentical to the view of Party 2 in the execution (where c1 + (a1+ a2) � (b1+ b2) serves as the oracleresponse to Party 2). We conclude that the view of each party can be perfectly simulated (rather29



than just be simulated in a computationally indistinguishable manner), and the proposition follows.As an immediate corollary to Propositions 2.2.8 and 2.2.6, and the Composition Theorem (Theo-rem 2.2.3), we obtain.Corollary 2.2.9 Suppose that trapdoor permutation exist. Then the functionality of Eq. (2.10){(2.11) is privately computable (in the semi-honest model).2.2.4 The circuit evaluation protocolWe now show that the computation of any deterministic functionality, which is expressed by anarithmetic circuit over GF(2), is privately reducible to the functionality of Eq. (2.10){(2.11). Recallthat the latter functionality corresponds to a private computation of a multiplication gates overinputs shared by both parties. We thus refer to this functionality as the multiplication gate emulation.Our reduction follows the overview presented in the beginning of this section. In particular, thesharing of a bit-value v between both parties means a uniformly selected pair of bits (v1; v2) so thatv = v1+v2, where �rst party holds v1 and the second holds v2. Our aim is to propagate, via privatecomputation, shares of the input wires of the circuit into shares of all wires of the circuit, so that�nally we obtain shares of the output wires of the circuit.We will consider an enumeration of all wires in the circuit. The input wires of the circuit, n pereach party, will be numbered 1; 2::::; 2n so that, for j = 1; :::; n, the jth input of party i correspondsto the (i� 1) � n+ jth wire.7 The wires will be numbered so that the output wires of each gate havea larger numbering than its input wires. The output-wires of the circuit are clearly the last ones.For sake of simplicity we assume that each party obtains n output bits, and that the output bits ofthe second party correspond to the last n wires.Construction 2.2.10 (privately reducing any deterministic functionality to multiplication-gateemulation):Inputs: Party i holds the bit string x1i � � �xni 2 f0; 1gn, for i = 1; 2.Step 1 { Sharing the inputs: Each party splits and shares each of its input bits with the otherparty. That is, for every i = 1; 2 and j = 1; :::; n, party i uniformly selects a bit rji and sendsit to the other party as the other party's share of input wire (i� 1) �n+ j. Party i sets its ownshare of the (i� 1) � n+ jth input wire to xji + rji .Step 2 { Circuit Emulation: Proceeding by the order of wires, the parties use their shares of thetwo input wires to a gate in order to privately compute shares for the output wire of the gate.Suppose that the parties hold shares to the two input wires of a gate; that is, Party 1 holds theshares a1; b1 and Party 2 holds the shares a2; b2, where a1; a2 are the shares of the �rst wireand b1; b2 are the shares of the second wire. We consider two cases.Emulation of an addition gate: Party 1 just sets its share of the output wire of the gateto be a1 + b1, and Party 2 sets its share of the output wire to be a2 + b2.7 Our treatment ignores the likely case in which the circuit uses the constant 1. (The constant 0 can always beproduced by adding any GF(2) value to itself.) However, the computation of a circuit which uses the constant 1can be privately reduced to the computation of a circuit which does not use the constant 1. Alternatively, we mayaugment Step 1 below so that the shares of the wire carrying the constant 1 are (arbitrarily) computed so that theysum-up to 1 (e.g., set the share of the �rst party to be 1 and the share of the second party to be 0).30



Emulation of a multiplication gate: Shares of the output wire of the gate are obtained byinvoking the oracle for the functionality of Eq. (2.10){(2.11), where Party 1 supplies theinput (query-part) (a1; b1), and Party 2 supplies (a2; b2). When the oracle responses, eachparty sets its share of the output wire of the gate to equal its part of the oracle answer.Step 3 { Recovering the output bits: Once the shares of the circuit-output wires are com-puted, each party sends its share of each such wire to the party with which the wire is associ-ated. That is, the shares of the last n wires are send by Party 1 to Party 2, whereas the sharesof the preceding n wires are sent by Party 2 to Party 1. Each party recovers the correspondingoutput bits by adding-up the two shares; that is, the share it had obtained in Step 2 and theshare it has obtained in the current step.Outputs: Each party locally outputs the bits recovered in Step 3.For starters, let us verify that the output is indeed correct. This can be shown by induction onthe wires of the circuits. The induction claim is that the shares of each wire sum-up to the correctvalue of the wire. The base case of the induction are the input wires of the circuits. Speci�cally,the (i� 1) � n+ jth wire has value xji and its shares are rji and rji + xji (indeed summing-up to xji ).For the induction step we consider the emulation of a gate. Suppose that the values of the inputwires (to the gate) are a and b, and that their shares a1; a2 and b1; b2 indeed satisfy a1+a2 = a andb1 + b2 = b. In case of an addition gate, the shares of the output wire were set to be a1 + b1 anda2 + b2, indeed satisfying(a1 + b1) + (a2 + b2) = (a1 + a2) + (b1 + b2) = a+ bIn case of a multiplication gate, the shares of the output wire were set to be c1 and c2, so thatc1 + c2 = (a1 + a2) � (b1 + b2). Thus, c1 + c2 = a � b as required.Privacy of the reduction. We now turn to show that Construction 2.2.10 indeed privatelyreduces the computation of a circuit to the multiplication-gate emulation. That is,Proposition 2.2.11 (privately reducing circuit evaluation to multiplication-gate emulation): Con-struction 2.2.10 privately reduces the evaluation of arithmetic circuits over GF(2) to the functionalityof Eq. (2.10){(2.11).Proof Sketch: Simulators for the oracle-aided protocol of Construction 2.2.10 are constructed asfollows. Without loss of generality we present a simulator for the view of Party 1. This simulatorgets the party's input x11; :::; xn1 , as well as its output, denoted y1; :::; yn. It operates as follows.1. The simulator uniformly selects r11 ; :::; rn1 and r12 ; :::; rn2 , as in Step 1. (The rj1's will be used asthe coins of Party 1, which are part of the view of the execution, whereas the rj2's will be usedas the message Party 1 receives at Step 1.) For each j � n, the simulator sets xj1 + rj1 as theparty's share of the value of the jth wire. Similarly, for j � n, the party's share of the n+ jthwire is set to rj2.This completes the computation of the party's shares of all circuit-input wires.2. The party's shares for all other wires are computed, iteratively gate-by-gate, as follows.� The share of the output-wire of an addition gate is set to be the sum of the shares of theinput-wires of the gate. 31



� The share of the output-wire of a multiplication gate is uniformly selected in f0; 1g.(The shares computed for output-wires of multiplication gates will be used as the answersobtained, by Party 1, from the oracle.)3. For each wire corresponding to an output, denoted yj , available to Party 1, the simulator setsmj to be the sum of the party's share of the wire with yj .4. The simulator outputs (x11; :::; xn1 ); (y1; :::; yn); (r11 ; :::; rn1 ); V 1; V 2; V 3)where V 1 = (r12 ; :::; rn2 ) correspond to the view of Party 1 in Step 1 of the protocol, the stringV 2 equals the concatenation of the bits selected for the output-wires of multiplication gates(corresponding to the party's view of the oracle answers in Step 2), and V 3 = (m1; :::;mn)(corresponding to the party's view in Step 3 { that is, the messages it would have obtainedfrom Party 2 in the execution).We claim that the output of the simulation is distributed identically to the view of Party 1 in theexecution of the oracle-aided protocol. The claim clearly holds with respect to the �rst four partsof the view; that is, the party's input (i.e., x11; :::; xn1 ), output (i.e., y1; :::; yn), internal coin-tosses(i.e., r11 ; :::; rn1 ), and the message obtained from Party 2 in Step 1 (i.e., r12 ; :::; rn2 ). Also, by de�nitionof the functionality of Eq. (2.10){(2.11), the oracle-answers to each party are uniformly distributedindependently of the parts of the party's queries. Thus, this part of the view of Party 1 is uniformlydistributed, identically to V 2. It follows, that also all shares held by Party 1, are set by the simulatorto have the same distribution as they have in a real execution. This holds, in particular, for theshares of the output wires held by Party 1. Finally, we observe that both in the real execution andin the simulation, these latter shares added to the messages sent by Party 2 in Step 3 (resp., V 3)must yield the corresponding bits of the local-output of Party 1. Thus, conditioned on the view sofar, V 3 is distributed identically to the messages sent by Party 2 in Step 3. We conclude that thesimulation is perfect (not only computationally indistinguishable), and so the proposition follows.Conclusion. As an immediate corollary to Proposition 2.2.11, Corollary 2.2.9, and the Composi-tion Theorem (Theorem 2.2.3), we obtain.Corollary 2.2.12 Suppose that trapdoor permutation exist. Then any deterministic functionalityis privately computable (in the semi-honest model).Thus, by the discussion following Theorem 2.2.3 (i.e., speci�cally, combining Proposition 2.2.4,Corollary 2.2.12, and Theorem 2.2.3), we haveTheorem 2.2.13 Suppose that trapdoor permutation exist. Then any functionality is privately com-putable (in the semi-honest model).2.3 Forcing Semi-Honest BehaviorOur aim is to use Theorem 2.2.13 in order to establish the main result of this chapter; that is,32



Theorem 2.3.1 (main result for two-party case): Suppose that trapdoor permutation exist. Thenany two-party functionality can be securely computable (in the malicious model).This theorem will be established by compiling any protocol for the semi-honest model into an\equivalent" protocol for the malicious model. Loosely speaking, the compiler works by introducingmacros which force each party to either behave in a semi-honest manner or be detected { hence thetitle of the current section. (In case a party is detected as cheating, the protocol aborts.)2.3.1 The compiler { motivation and toolsWe are given a protocol for the semi-honest model. In this protocol, each party has a local input anduses a uniformly distributed local random-pad. Such a protocol may be used to privately computea functionality (either a deterministic or a probabilistic one), but the compiler does not refer to thisfunctionality. The compiler is supposed to produce an equivalent protocol for the malicious model.So let us start by considering what a malicious party may do (beyond whatever a semi-honest partycan do).1. A malicious party may enter the actual execution of the protocol with an input di�erentfrom the one it is given (i.e., \substitute its input"). As discussed in Section 2.1.2, this isunavoidable. What we need to guarantee is that this substitution is done obliviously of theinput of the other party; that is, that the substitution only depends on the original input.Jumping ahead, we mention that the input-commitment phase of the compiler is aimed atachieving this goal. The tools used here are commitment schemes (see De�nition 1.2.5) andstrong zero-knowledge proofs of knowledge (see Section 1.2.3).2. A malicious party may try to use a random-pad which is not uniformly distributed as postulatedin the semi-honest model. What we need to do is force the party to use a random-pad (for theemulated semi-honest protocol) which is uniformly distributed.The coin-generation phase of the compiler is aimed at achieving this goal. The tool used hereis a coin-tossing into the well protocol, which in turn uses tools as above.3. A malicious party may try to send messages di�erent than the ones speci�ed by the original(semi-honest model) protocol. So we need to force the party to send messages as speci�ed byits (already committed) local-input and random-pad.The protocol emulation phase of the compiler is aimed at achieving this goal. The tool usedhere is zero-knowledge proof systems (for NP-statements).Before presenting the compiler, let us recall some tools we will use, all are known to exist assumingthe existence of one-way 1-1 functions.� Commitment schemes as de�ned in De�nition 1.2.5. We denote by Cn(b; r) the commitmentto the bit b using security parameter n and randomness r 2 f0; 1gn. Here we assume, forsimplicity, that on security parameter n the commitment scheme utilizes exactly n randombits.� Zero-knowledge proofs of NP-assertions. We rely on the fact that there exists such proofsystems in which the prover strategy can be implemented in probabilistic polynomial-time,when given an NP-witness as auxiliary input. We stress that by the above we mean proofsystems with negligible soundness error. 33



� Zero-knowledge proofs of knowledge of NP-witnesses. We will use the de�nition of a strongproof of knowledge (see De�nition 1.2.6). We again rely on the analogous fact regardingthe complexity of adequate prover strategies: That is, strong proofs of knowledge which arezero-knowledge exists for any NP-relation, and furthermore, the prover strategy can be im-plemented in probabilistic polynomial-time, when given an NP-witness as auxiliary input (seeConstruction 1.2.7).Another tool which we will use is an augmented version of coin-tossing into the well. For sake ofself-containment, we �rst present the de�nition and implementation of the standard (vanilla) notion.The augmented version is presented in the next subsection.De�nition 2.3.2 (coin-tossing into the well, vanilla version): A coin-tossing into the well protocolis a two-party protocol for securely computing (in the malicious model) the randomized functionality(1n; 1n) 7! (b; b), where b is uniformly distributed in f0; 1g.Thus, in spite of malicious behavior by any one party, a non-aborting execution of a coin-tossing-into-the-well protocol ends with both parties holding the same uniformly selected bit b. Recallthat our de�nition of security allows (b;?) to appear as output in case Party 1 aborts. (It wouldhave been impossible to securely implement this functionality if the de�nition had not allowed thisslackness; see [26].) The following protocol and its proof of security are not used in the rest of thismanuscript. However, we believe that they are instructive towards what follows.8Construction 2.3.3 (a coin-tossing-into-the-well protocol): Using a commitment scheme, fCngn2N :Inputs: Both parties get security parameter 1n.Step C1: Party 1 uniformly selects � 2 f0; 1g and s 2 f0; 1gn, and sends c def= Cn(�; s) to Party 2.Step C2: Party 2 uniformly selects �0 2 f0; 1g, and sends �0 to Party 1. (We stress than anypossible response { including abort { of Party 2, will be interpreted by Party 1 as a bit.)9Step C3: Party 1 sets b = � � �0, and sends (�; s; b) to Party 2.Step C4: Party 2 veri�ers that indeed b = ���0 and c = Cn(�; s). Otherwise, it aborts with output?.Outputs: Both parties sets their local output to b.Intuitively, Steps C1{C2 are to be viewed as \tossing a coin into the well". At this point the valueof the coin is determined (as either a random value or a illegal one), but only one party knows (\cansee") this value. Clearly, if both parties are honest then they both output the same uniformly chosenbit, recovered in Steps C3{C4.Proposition 2.3.4 Suppose that fCngn2N is a commitment scheme. Then, Construction 2.3.3constitutes a coin-tossing-into-the-well protocol.8 The uninterested reader may skip to Section 2.3.2.9 Thus, by convention, we prevent Party 2 from aborting the execution.
34



Proof Sketch: We need to show how to (e�ciently) transform any admissible circuit pair, (A1; A2),for the real model into a corresponding pair, (B1; B2), for the ideal model. We treat separately each ofthe two cases { de�ned by which of the parties is honest. Recall that we may assume for simplicitythat the adversary circuit is deterministic (see discussion at the end of Section 2.1.2). Also, forsimplicity, we omit the input 1n is some places.We start with the case that the �rst party is honest. In this case B1 is determined, and wetransform the real-model adversary A2 into an ideal-model adversary B2. Machine B2 will runmachine A2 locally, obtaining the messages A2 would have sent in a real execution of the protocoland feeding it with messages that it expects to receive. Recall that B2 gets input 1n.1. B2 send 1n to the trusted party and obtain the answer bit b (which is uniformly distributed).2. B2 tries to generate an execution view (of A2) ending with output b. This is done by repeatingthe following steps at most n times:(a) B2 uniformly select � 2 f0; 1g and s 2 f0; 1gn, and feeds A2 with c def= Cn(�; s). Recallthat A2 always responds with a bit, denoted �0.(b) If ���0 = b then B2 feed A2 with the supposedly execution view, (c; (�; s; b)), and outputswhatever A2 does. Otherwise, it continues to the next iteration.In case all n iterations were completed unsuccessfully (i.e., without output), B2 outputs aspecial failure symbol.We need to show that for the coin-tossing functionality, f , and � of Construction 2.3.3,fidealf;B(1n; 1n)gn2N c� freal�;A(1n; 1n)gn2NIn fact, we will show that the two ensembles are statistically indistinguishable. We start by showingthat the probability that B2 outputs failure is exponentially small. This is shown by provingthat for every b 2 f0; 1g, each iteration of Step 2 succeeds with probability approximately 1=2.Such an iteration succeeds if and only if � � �0 = b, that is, if A2(Cn(�; s)) = b � �, where(�; s) 2 f0; 1g� f0; 1gn is uniformly chosen. We havePr�;s[A2(Cn(�; s)) = b� �] = 12 � Pr[A2(Cn(0)) = b] + 12 � Pr[A2(Cn(1)) = b� 1]= 12 + 12 � (Pr[A2(Cn(0)) = b]� Pr[A2(Cn(1)) = b])Using the hypothesis that Cn is a commitment scheme, the second term above is a negligible func-tion in n, and so our claim regarding the probability that B2 outputs failure follows. Next, weshow that conditioned on B2 not outputting failure, the distribution idealf;B(1n; 1n) is statis-tically indistinguishable from the distribution real�;A(1n; 1n). Both distributions have the form(b ; A2(Cn(�; s); (�; s; b))), with b = � � A2(Cn(�; s)), and thus both are determined by the (�; s)-pairs. In real�;A(1n; 1n), all pairs are equally likely (i.e., each appears with probability 2�(n+1));whereas in idealf;B(1n; 1n) each pair (�; s) appears with probability12 � 1jSA2(Cn(�;s))�� j (2.15)35



where Sb def= f(x; y) : A2(Cn(x; y))� x = bg.10 Observe that (by the above), for every b 2 f0; 1g anduniformly distributed (�; s) 2 f0; 1g � f0; 1gn, the event (�; s) 2 Sb occurs with probability whichis negligiblly close to 1=2. Thus, jSA2(Cn(�;s))�� j = (1 � �(n)) � 12 � 2n+1, where � is a negligiblefunction. It follows that the value of Eq. (2.15) is (1� �(n)) � 2�(n+1), and so real�;A(1n; 1n) andidealf;B(1n; 1n) are statistically indistinguishable.We now turn to the case where the second party is honest. In this case B2 is determined,and we transform A1 into B1 (for the ideal model). On input 1n, machine B1 runs machine A1locally, obtaining messages A1 would have sent in a real execution of the protocol and feeding itwith messages that it expects to receive.1. B1 invokes A1 (on input 1n). In case A1 aborts (or acts improperly) in Step C1, we let B1 abortbefore invoking the trusted party. Otherwise, suppose that A1 sends message c (supposedly cis a commitment by Cn). Recall that c may be in the range of Cn(�) for at most one � 2 f0; 1g.2. Machine B1 tries to obtain the answers of A1 (in Step C3) to both possible messages sent inStep C2.(a) B1 feeds A1 with the message 0 and records the answer which is either abort or (�; s0; b0).The case in which either c 6= Cn(�; s0) or b0 6= � � 0 is treated as if A1 has aborted.(b) Rewinding A1 to the beginning of Step C2, machine B1 feeds A1 with the message 1 andrecords the answer which is either abort or (�; s1; b1). (Again, the case in which eitherc 6= Cn(�; s1) or b1 6= � � 1 is treated as abort.)If A1 aborts in both cases, machine B1 aborts (before invoking the trusted party). Otherwise,we proceed as follows, distinguishing two cases.Case 1: A1 answers properly (in the above experiment) for a single 0-1 value, denoted �0.Case 2: A1 answers properly for both values. (Note that the value � returned in both casesis identical since c must be in the range of Cn(�).)3. Machine B1 sends 1n to the trusted party, which responses with a uniformly selected valueb 2 f0; 1g. Recall that the trusted party has not responded to Party 2 yet, and that B1 hasthe option of stopping the trusted party before it does so.4. In Case 1, machine B1 stops the trusted party if b 6= � � �0, and otherwise allows it to sendb to Party 2. In Case 2, machine B1 sets �0 = b � �, and allows the trusted party to send bto Party 2. Next, B1 feeds �0 to A1, which responds with the Step C3 message (�; s�0 ; b�0),where b�0 = � � �0 = b.5. Finally, B1 feed A1 with the execution view, (1n; �0), and outputs whatever A1 does.We now show that idealf;B(1n; 1n) and real�;A(1n; 1n) are actually identically distributed. Con-sider �rst the case where A1 (and so B1) never aborts. In this case we have,idealf;B(1n; 1n) = (A1(1n; � � b) ; b)real�;A(1n; 1n) = (A1(1n; �0) ; � � �0)10 The pair (�; s) appears as output i� the trusted party answers with A2(Cn(�; s)) � � (which happens withprobability 1=2) and the pair is selected in Step 2a. Note that the successful pairs, selected in Step 2a and passingthe condition in Step 2b, are uniformly distributed in SA2(Cn(�;s))��.36



where �0 and b are uniformly distributed in f0; 1g, and � is determined by c = A1(1n). Observe that�0 is distributed uniformly independently of �, and so � � �0 is uniformly distributed over f0; 1g.We conclude that (A1(1n; � � b) ; b) and (A1(1n; � � (� � �0)) ; � � �0) are identically distributed.Next, consider the case that B1 always aborts (due to improper A1 behavior in either Step C1or Step C3). In this case, B1 aborts before invoking the trusted party, and so both ensembles areidentical (i.e., both equal (A1(1n;?);?)). Since A1 is deterministic (see above), the only case leftto consider is where A1 acts properly in Step C1 and responses properly (in Step C3) to a singlevalue, denoted �0. In this case, the real execution of � is completed only if Party 2 sends �0 as itsStep C2 message (which happens with probability 1=2). Similarly, in the ideal model, the executionis completed (without B1 aborting) if the trusted party answers with b = ���0 (which happens withprobability 1=2).11 In both cases, the complete joint execution equals (A1(1n; �0) ; � � �0), whereasthe aborted joint execution equals (A1(1n; �0 � 1;?) ; ?).2.3.2 The compiler { the componentsIn analogy to the three phases mentioned in the motivating discussion, we present subprotocolfor input-commitment, coin-generation, and emulation of a single step. We start with the coin-generation protocol, which is actually an augmentation of the above coin-tossing into the well pro-tocol. (Alternatively, the reader may start with the simpler input-commitment and single-step-emulation protocols, presented in x2.3.2.2 and x2.3.2.3, respectively.)We note that (like the functionality of De�nition 2.3.2) all functionalities de�ned in this sub-section are easy to compute privately (i.e., to compute securely in the semi-honest model). Ouraim, however, is to present (for later use in the compiler) protocols for securely computing thesefunctionalities in the malicious model.All the construction presented in this subsection utilize zero-knowledge proofs of various types,which in turn exists under the assumption that commitment schemes exists. We neglect to explic-itly state this condition in the propositions, which should be read as stating the security of thecorresponding constructions given proof systems as explicitly speci�ed in the latter.2.3.2.1 Augmented coin-tossing into the wellWe augment the above coin-tossing-into-the-well protocol so to �t our purposes. The augmentationis in providing the second party (as output) with a commitment to the coin-outcome obtained bythe �rst party, rather than providing it with coin outcome itself.12De�nition 2.3.5 (coin-tossing into the well, augmented): An augmented coin-tossing into the wellprotocol is a two-party protocol for securely computing (in the malicious model) the following ran-domized functionality with respect to some �xed commitment scheme, fCngn2N,(1n; 1n) 7! ((b; r); Cn(b; r)) (2.16)where (b; r) is uniformly distributed in f0; 1g� f0; 1gn.11 Recall that � and �0 are determined by the Step C1 message.12 The reason we use the term `augmentation' rather than `modi�cation' is apparent from the implementationbelow: The augmented protocol is actually obtained by augmenting the vanilla protocol. Furthermore, it is easy toobtain the vanilla version from the augmented one, and going the other way around requires more work (as can beseen below). 37



Eq. (2.16) actually speci�es coin-tossing with respect to a commitment scheme fCng. De�nition 2.3.5allows fCng to be arbitrary, but �xed for the entire protocol. The string r included in the outputof Party 1, allows it to later prove (in zero-knowledge) statements regarding the actual bit-value, b,committed (to Party 2).In the following construction the commitment scheme fCng of Eq. (2.16) is used for internal steps(i.e., Step C1) of the protocol (in addition to determining the output).13Construction 2.3.6 (an augmented coin-tossing-into-the-well protocol):Inputs: both parties get security parameter 1n.Step C1: The parties invoke a truncated/augmented version of the vanilla coin-tossing protocoln+ 1 times so to generate uniformly distributed bits, b0; b1; :::; bn, known to Party 1.Speci�cally, for j = 0; 1; :::; n, the parties execute the following four steps:14Step C1.1: Party 1 uniformly selects (�j ; sj) 2 f0; 1g � f0; 1gn, and sends cj def= Cn(�j ; sj)to Party 2.Step C1.2: The parties invoke a zero-knowledge strong-proof-of-knowledge so that Party 1plays the prover and Party 2 plays the veri�er. The common input to the proof systemis cj , the prover gets auxiliary input (�j ; sj), and its objective is to prove that it knows(x; y) such that cj = Cn(x; y) (2.17)In case the veri�er rejects the proof, Party 2 aborts with output ?.(As in Construction 2.3.3, any possible response { including abort { of Party 2 duringthe execution of the protocol { and speci�cally this step { will be interpreted by a honestParty 1 as a canonical legitimate message.)Step C1.3: Party 2 uniformly selects �0j 2 f0; 1g, and sends �0j to Party 1. (Again, anypossible response { including abort { of Party 2, will be interpreted by Party 1 as a bit.)Step C1.4: Party 1 sets bj = �j � �0j .Step C2: Party 1 sets b = b0 and r = b1b2 � � � bn, and sends c def= Cn(b; r) to Party 2.Step C3: The parties invoke a zero-knowledge proof system so that Party 1 plays the prover andParty 2 plays the veri�er. The common input to the proof system is (c0; c1; :::; cn; �00; �01; :::; �0n; c),the prover gets auxiliary input (�0; �1; :::; �n; s0; s1; :::; sn), and its objective is to prove thatthere exists (x0; x1; :::; xn; y0; y1; :::; yn) such that(8j cj = Cn(xj ; yj)) ^ (c = Cn(x0 � �00; (x1 � �01) � � � (xn � �0n))) (2.18)In case the veri�er rejects the proof, Party 2 aborts with output ? (otherwise its output will bec). (Again, any possible response { including abort { of Party 2 during the execution of thisstep, will be interpreted by Party 1 as a canonical legitimate message.)13 Clearly, one could have used a di�erent commitment scheme for Step C1.14 Reversing the order of Steps C1.2 and C1.3 makes each iteration, as well as its emulation in the proof of securitybelow, more similar to the vanilla coin-tossing protocol of Construction 2.3.3. However, the proof of security issomewhat simpli�ed by the order used here. 38



Outputs: Party 1 sets its local output to (b; r), and Party 2 sets its local output to c.Observe that the speci�ed strategies are indeed implementable in polynomial-time. In particular,in Steps C1.2 and C3, Party 1 supplies the prover subroutine with the adequate NP-witnesseswhich indeed satisfy the corresponding claims. We rely on the fact that given an NP-witness asauxiliary input, a prover strategy which always convinces the prescribed veri�er can be implementedin probabilistic polynomial-time. It follows that if both parties are honest then neither aborts andthe output is as required by Eq. (2.16).Proposition 2.3.7 Suppose that fCngn2N is a commitment scheme. Then Construction 2.3.6 con-stitutes an augmented coin-tossing-into-the-well protocol.Proof Sketch: We need to show how to (e�ciently) transform any admissible circuit pair, (A1; A2),for the real model into a corresponding pair, (B1; B2), for the ideal model. We treat separately eachof the two cases { de�ned by which of the parties is honest.We start with the case that the �rst party is honest. In this case B1 is determined, and wetransform (the real-model adversary) A2 into (an ideal-model adversary) B2. Machine B2 will runmachine A2 locally, obtaining the messages A2 would have sent in a real execution of the protocoland feeding it with messages that it expects to receive. The following construction is di�erent fromthe analogous construction used in the proof of of Proposition 2.3.4. Recall that B2 gets input 1n.1. B2 send 1n to the trusted party and obtain the answer c (where c = Cn(b; r) for a uniformlydistributed (b; r) 2 f0; 1g� f0; 1gn).2. B2 generates a transcript which seems computationally indistinguishable from an executionview (of A2) ending with output c as above. This is done by emulating Steps C1 and C3 asfollows.Emulating Step C1: For j = 0; 1; :::; n, machine B2 proceeds as follows(a) B2 uniformly select �j 2 f0; 1g and sj 2 f0; 1gn, and feeds A2 with cj def= Cn(�j ; sj).(b) B2 invokes the simulator guaranteed for the zero-knowledge proof-of-knowledge sys-tem (of Step C1.2), on input cj , using A2(Tj�1; cj) as a possible malicious veri�er,where A2(Tj�1; cj) denotes the behavior of A2 in the jth iteration of Step C1.2, giventhat it has received cj in the current iteration of Step C1.1 and that Tj�1 denotesthe transcript of the previous iterations of Step C1.2.Denote the obtained simulation transcript by Tj = Tj(cj ; Tj�1).(c) Next, B2 obtains from A2 its Step C1.3 message, which by our convention is alwaysa bit, denoted �0j . (We may consider this bit to be a part of Tj .)Emulating Step C3: B2 invokes the simulator guaranteed for the zero-knowledge proof system(of Step C3), on input c, using A2(Tn; c) as a possible malicious veri�er, where A2(Tn; c)denotes the behavior of A2 in Step C3, given that it has received c in Step C2, and thatTn denotes the transcript of (all iterations of) Step C1. Denote the obtained simulationtranscript by T = T (c; Tn).3. Finally, B2 feed A2 with T , and outputs whatever A2 does.We need to show that for the functionality, f , of Eq. (2.16) and � of Construction 2.3.6,fidealf;B(1n ; 1n)gn2N c� freal�;A(1n ; 1n)gn2N (2.19)39



There are two di�erences between real�;A(1n ; 1n) and idealf;B(1n ; 1n). Firstly, in the real ex-ecution the output of Party 1 (i.e.,(b; r)) equals (�0 � �00; (�1 � �01) � � � (�n � �0n)), whereas in theideal-model it (i.e., (b; r)) is uniformly distributed independently of everything else. Secondly, in theideal model simulations of zero-knowledge proof systems replace their actual execution. To show thatthe two ensemble are nevertheless computationally indistinguishable we consider a hybrid ensemble,denoted mentalB(1n), which is de�ned by the following mental experiment. Loosely speaking, themental experiment behaves as B2 except that it obtains the pair (b; r) corresponding to the trustedparty answer c = Cn(b; r) and emulates Step C1 so that �0��00 = b and (�1��01) � � � (�n��0n) = r,rather than being independent as in the execution of B2. Note that B2 does not get the pair (b; r),and so could not possibly perform the procedure de�ned as a mental experiment below.The mental experiment di�ers from B2 only in the emulation of Step C1, which is conducted given(b; r) as auxiliary input. We set b0 = b and bj to be the jth bit of r, for j = 1; :::; n.For j = 0; 1; :::; n, given bj , we try to generate an execution view (of A2 in the jthiteration of Step C1) ending with outcome bj (for Party 1). This is done by repeatingthe following steps at most n times:(a) We uniformly select �j 2 f0; 1g and sj 2 f0; 1gn, and feeds A2 with cj def= Cn(�j ; sj).(b) We run the zero-knowledge simulator for A2(Tj�1; cj), as B2 does, and obtain fromA2 its Step C1.3 message, denoted �0j .(c) If �j � �0j = bj then we record the values cj and Tj (as B2 does), and successfullycomplete the emulation of the current (i.e., jth) iteration of Step C1.Otherwise, we continue to the next attempt to generate such an emulation.In case all n attempts (for some j 2 f0; 1; :::; ng) were completed unsuccessfully (i.e.,without recording a pair (cj ; Tj)), the mental experiment is said to have failed.By the proof of Proposition 2.3.4, each attempt succeeds with probability approximately 1=2,15 andso we may ignore the exponentially (in n) rare event in which the mental experiment fails. Thus,we may write mentalB(1n) = ((b; r) ; MA2(b; r))where (b; r) is uniformly distributed and MA2(b; r) is the outcome of the mental experiment whengiven (the auxiliary input) (b; r). Turning to real�;A(1n ; 1n) and using again the proof of Proposi-tion 2.3.4,16 we recall that each of the bits in the output of Party 1 (i.e., (b; r)) is distributed almostuniformly in f0; 1g, and the same holds for each bit conditioned on the value of all previous bits.Thus, we may write real�;A(1n ; 1n) = ((b; r) ; RA2(b; r))where the distribution of (b; r) is statistically indistinguishable from the uniform distribution overf0; 1g� f0; 1gn, and RA2(b; r) is the output of the second party in real�;A(1n ; 1n) conditioned onthe �rst party outputting (b; r). The only di�erence between MA2(b; r) and RA2(b; r) is that in the�rst distribution the output of zero-knowledge simulators replace the transcript of real executions ap-pearing in the second distribution. Thus, the two ensembles are computationally indistinguishable.15 Speci�cally, we use the fact that jSaj � 2n, where Sa def= f(x; y) : x�A2(Cn(x; y)) = ag � f0; 1g � f0; 1gn.16 Speci�cally, we use the fact that jSaj = (1��(n)) �2n, where Sa is as in the previous footnote and � is a negligiblefunction. 40



Speci�cally, we use the fact that the standard formulation of zero-knowledge guarantees computa-tionally indistinguishable simulations also in the presence of auxiliary inputs. Considering (b; r) asauxiliary input, it follows that for every �xed (b; r) the distributions MA2(b; r) and RA2(b; r) areindistinguishable by polynomial-size circuits. Thus, we havefmentalB(1n)gn2N c� freal�;A(1n ; 1n)gn2N (2.20)On the other hand, using the hypothesis that the commitment scheme used in Step C1 is secure,one can prove that fmentalB(1n)gn2N c� fidealf;B(1n ; 1n)gn2N (2.21)First, we write idealf;B(1n ; 1n) = ((b; r) ; IA2(b; r))where (b; r) is uniformly distributed and IA2(b; r) is the output of B2 (equiv., A2) conditioned on thetrusted party answering Party 1 with (b; r). We will show that for any �xed (b; r) 2 f0; 1g�f0; 1gn,no poly(n)-circuit can distinguish IA2(b; r) from MA2(b; r). Recall that IA2(b; r) from MA2(b; r) areidentical except to the way c0; c1; :::; cn are generated. In the �rst distribution each cj is generatedby uniformly selecting (�; s) 2 f0; 1g � f0; 1gn, and setting cj = Cn(�; s); whereas in the seconddistribution cj is generated by uniformly selecting among the (�; s)'s (in f0; 1g � f0; 1gn) whichsatisfy ��A2(Tj�1; Cn(�; s)) = bj (and setting cj = Cn(�; s)).17 The rest of the argument is aimedat showing that these two types of distributions (on commitments) are computationally indistin-guishable. This is quite intuitive; yet a proof is provided below. Consequently, no poly(n)-circuitcan distinguish IA2(b; r) from MA2(b; r), and Eq. (2.21) follows.Abusing notation a little,18 we need to prove that Xan and Yn are computationally indistinguish-able, where Sa def= f(x; y) : A2(Cn(x; y)) � x = ag, and Xan (resp., Yn) denote the distribution ofCn(�; s) where (�; s) is uniformly distributed in Sb (resp., in f0; 1g�f0; 1gn). (Yn represents the wayeach cj is distributed in IA2(b; r), whereas Xbjn represents the way cj is distributed in MA2(b; r).)To prove the latter assertion, let D be an arbitrary polynomial-size circuit representing a potentialdistinguisher, and let A def= A2. Then, for some negligible function �, we havePr[D(Xan) = 1] = Pr(�;s)2f0;1g�f0;1gn [D(Cn(�; s)) = 1 jA(Cn(�; s)) = � � a]= 2 � Pr(�;s)2f0;1g�f0;1gn [(D(Cn(�; s)) = 1) ^ (A(Cn(�; s)) = � � a)]� �(n)where the second equality is due to Pr(�;s)2f0;1g�f0;1gn [A(Cn(�; s)) = � � a] = 12�2�(n) . Thus,Pr[D(Xan) = 1] = Prs2f0;1gn [(D(Cn(0; s)) = 1) ^ (A(Cn(0; s)) = 0� a)]+ Prs2f0;1gn [(D(Cn(1; s)) = 1) ^ (A(Cn(1; s)) = 1� a)]� �(n)= Prs2f0;1gn [D(Cn(1; s)) = 1] + �(n)� �(n)where �(n) is de�ned as the di�erence between Prs2f0;1gn [(D(Cn(0; s)) = 1) ^ (A(Cn(0; s)) = a)]and Prs2f0;1gn [(D(Cn(1; s)) = 1) ^ (A(Cn(1; s)) = a)]. Observe that j�(n)j is a negligible function,or else one may combine A and D and obtain a small circuit distinguishing Cn(0) from Cn(1) (in17 Recall b0 = b and bj is the jth bit of r, for j = 1; :::; n.18 The abuse in in writing A2(c) as a shorthand for A2(Tj�1; c).41



contradiction to our hypothesis regarding the commitment scheme Cn). Thus, for some negligiblefunction �0, we havePr[D(Xan) = 1] = Pr[D(Cn(1)) = 1]� �0(n)= Pr�2f0;1g[D(Cn(�)) = 1]� �0(n)� �0(n)= Pr[D(Yn) = 1]� 2�0(n)and so, by the above discussion, Eq. (2.21) follows. Combining Eq. (2.20) and Eq. (2.21), we establishEq. (2.19) as required.We now turn to the case where the second party is honest. In this case B2 is determined, and wetransform (real-model) A1 into (ideal-model) B1. Machine B1 will run machine A1 locally, obtainingmessage it would have sent in a real execution of the protocol and feeding it with messages that itexpects to receive. Our construction augments the one presented in the proof of Proposition 2.3.4,by using the strong proof-of-knowledge in order to extract, for each j, the bit �j being committedin Step C1.1 (by the corresponding cj). The regular proof system is used as a guarantee that thecommitment, c, sent in Step C3 indeed satis�es c = Cn(b0; b1 � � � bn). Recall that B1 gets input 1n.1. B1 sends 1n to the trusted party and obtains a uniformly distributed (b; r) 2 f0; 1g� f0; 1gn.We stress that the trusted party has not answered to Party 2 yet, and that B1 still has theoption of stopping the trusted party before it does so.2. B1 sets b0 = b and bj as the jth bit of r, for j = 1; :::; n. It now tries to generate an execution ofStep C1 which matches these bits (i.e., with respect to the setting in Step C1.3). Speci�cally,for each j = 0; 1; :::; n, it tries to extract �j , by using the strong knowledge extractor associatedwith the proof system of Step C1.2, and sets the �0j accordingly. (We remark that since bj isuniformly distributed so is �0j .) Alongside, machine B1 produces a view of A1 of the executionof Step C1. Details follow.For j = 0; 1; :::; n, machine B1 proceeds as follows (in emulating the jth iteration of Step C1):(a) B1 obtains from A1 the Step C1.1 message, denoted cj . In case A1 aborts (or acts im-properly) in the current iteration of Step C1.1, we let B1 abort (outputting the transcriptof the truncated execution).(b) B1 emulates the veri�er in an execution of the strong proof-of-knowledge of Step C1.2using A1 as the prover. In case the veri�er rejects, B1 aborts (outputting the transcriptof the truncated execution). Otherwise, it records the transcript of the execution (of theproof-of-knowledge system), denoted Tj .(c) B1 invokes the strong knowledge extractor to obtain a pair, (�j ; sj), so that cj =Cn(�j ; sj). In case the extraction fails, B1 aborts.(d) B1 sets �0j = �j � bj , and feeds it (together with Tj) to A1. This sets A1 for the nextiteration.3. In case A1 aborts (or acts improperly) in Step C2, we let B1 abort (outputting the transcriptof the truncated execution). Otherwise, suppose that A1 sends message c (supposedly c =Cn(b; r)). 42



4. B1 emulates the veri�er in an execution of the proof system of Step C3 using A1 as the prover.In case the veri�er rejects, B1 aborts (outputting the transcript of the truncated execution).Otherwise, machine B1 records the transcript of the execution (of the proof system), denotedT .5. In case machine B1 did not abort so far, it allows the trusted party to answer to Party 2.6. Finally, B1 feeds A1 with the execution view so far (i.e., T ), and outputs whatever A1 does.Recall that in case B1 has aborted due to the emulated Party 2 detecting improper behaviorof A1, it did so while outputting A1's view of an aborting execution.We now show that fidealf;B(1n ; 1n)gn2N s� freal�;A(1n ; 1n)gn2N (2.22)The statistical di�erence is due to two cases corresponding to the two proof systems in use. The �rstcase is that A1 succeeds to convince the strong knowledge-veri�er (played by Party 2 in Step C1)that it knows an opening of some cj (i.e., a preimage (�j ; sj) of cj under Cn), and still the knowledge-extractor failed to �nd such an opening. The second case is that A1 succeeds to convince Party 2playing the veri�er of Step C3 that c = Cn(b0; b1 � � � bn) (where the bj 's are as above { equal �j��0j),and yet this is not the case. By de�nition of these proof systems, such events may occur only withnegligible probability. Details follow.Discussion { the statistical di�erence in Eq. (2.22): As stated above, the potential di�erence is due totwo sources (or cases). The �rst case is that A1 convinces A2 in the real execution of some iterationof Step C1.2, but B1 (using the strong knowledge-extractor) fails to extract the corresponding NP-witness. Let � be the negligible function referred to in De�nition 1.2.6. Then there are two sub-casesto consider.1. A1 convinces A2 with probability at most �(n). In this case there is no guarantee with respectto extraction of the NP-witness. However, in this case, with probability at least 1 � �(n),Party 2 aborts in the real model. Thus, the fact that in the ideal model, Party 2 aborts withprobability at least 1��(n) raises no problem. To summarize, the statistical di�erence in thiscase is bounded above by �(n).2. A1 convinces A2 with probability greater than �(n). In this case, we are guaranteed that theextraction succeeds with very high probability; speci�cally, with probability at least 1� �(n).Thus, ignoring the negligiblly-rare event of failure, in this case we can match each non-abortingexecution in the real model by a corresponding non-aborting execution in the ideal model. Notethat the unambiguity property of the commitment scheme guarantees that each extracted bit,�j , is the correct one. To summarize, the statistical di�erence in this case is also boundedabove by �(n).We stress the essential role of the strong notion of a proof-of-knowledge (as de�ned in De�nition 1.2.6)in the above argument. This de�nition provides a negligible function, denoted �, so that wheneverthe convincing probability exceeds �(n) { extraction succeeds with overwhelmingly high probability.For further discussion see Section 1.2.3. The second potential source of statistical di�erence inEq. (2.22) is that A1 convinces A2 in the real execution of Step C3, but yet c 6= Cn(b; r), where (b; r)are as are supposed to be (uniquely) determined in Step C2. By the soundness property of the proofsystem used in Step C3, in the latter case (i.e., c 6= Cn(b; r)) the real execution is non-aborting withnegligible probability and the same holds for the simulation in the ideal model.43



Discussion { the case where A1 never lies in the proof systems: We next consider the case where A1never tries to prove false statements in either Step C1 or Step C3. Furthermore, we assume that inthis case the extraction always succeeds (which is indeed the case when using an extractor of zerofailure probability, as provided in Section 1.2.3). In this case, we show that idealf;B(1n; 1n) andreal�;A(1n; 1n) are identically distributed. We �rst use the hypothesis that A1 does not try to lie inthe proof system of Step C3. Using the the hypothesis that the commitment scheme is unambiguous,it follows that the (cj ; �0j) pairs sent in Step C1 uniquely de�ne the bj 's, and so uniquely de�ne avalue c = Cn(b; r) for which Eq. (2.18) can be satis�ed. Thus, both in the real execution and in theideal model, Party 2 outputs the Step C2 message of A1; that is, c = Cn(b; r), where b and r are asdetermined is Step C1. Also note that both in the real execution and in the ideal model, the pair(b; r) is uniformly distributed over f0; 1g� f0; 1gn. As for the output of Party 1, we claim that B1exactly emulates A1. Looking at the construction of B1, we note that the only possible deviationof B1 from emulating A1 may occur when it tries to extract the bits �j , for j = 0; 1; :::; n. We �rstnote that in case extraction succeeds, it always yields the correct value (again, by unambiguity ofthe commitment scheme). Finally, by the case hypothesis, A1 always convinces the veri�er (in theiterations of Step C1.2) and extraction always succeeds.The actual proof of Eq. (2.22): The real argument proceeds top down. That is, we start by consideringwhat happens in the iterations of the real execution of Step C1 versus its emulation. Suppose thatwe are now at the jth iteration (and that B1 did not abort so far). The message cj obtained by B1from A1 is exactly the one sent by A1 in the current iteration of Step C1.1. We now consider theprobability, denoted pj , that A1 convinces the veri�er in the strong proof-of-knowledge conductedin the current iteration of Step C1.2. (Indeed, pj depends on the view of A1 of the execution sofar, but we omit this dependency from the notation.) We consider two cases, with respect to thenegligible function � referred to in De�nition 1.2.6.1. Suppose pt > �(n). In this case, with probability at least 1 � �(n), machine B1 succeeds(using the strong knowledge-extractor) to obtain the (unique) bit �j so that cj is in the rangeof Cn(�j). In such a case, setting �0j = �j � bj , where bj as obtained from the trusted partyis uniformly distributed, machine B1 perfectly emulates Step C1.3. Thus, with probability atleast (1 � �(n)) � pt, machine B1 perfectly emulates a non-aborting execution of the currentiteration (of Step C1) by A1. Also, with probability at least (1 � pt), machine B1 perfectlyemulates an aborting execution of the current iteration (of Step C1) by A1. Thus, the emulationof the current iteration of Step C1 is statistically indistinguishable from the real execution (i.e.,the statistical di�erence is at most �(n)).2. Suppose pt � �(n). Again, real execution of the current iteration of Step C1 aborts withprobability 1�pt, which in this case is negligiblly close to 1. In emulating the current iterationof Step C1, with probability 1 � pj we perfectly emulate an aborting execution, but there isno guarantee as to what happens otherwise. However, the uncontrolled behavior occurs onlywith probability pt � �(n). Thus, again, the emulation of the current iteration of Step C1 isstatistically indistinguishable from the real execution.We conclude that the emulation of Step C1 by B2 is statistically indistinguishable from the realexecution of Step C1 by A1. We next turn to consider the execution (and emulation) of Step C3,assuming { o� course { that the execution (and emulation) of Step C1 did not abort. Let b0; b1; :::; bnbe bits as determined in a correct execution of Step C1.4. Note that assuming that the emulationdid not abort, these bits are well-de�ned and actually equal the bits provided (to B1) by the trustedparty. Let c be the message sent by A1 in Step C2. We consider two cases.44



1. c = Cn(b0; b1 � � � bn). In this case the emulation of Steps C2 and C3, as conducted by B1, isperfect. Note that this does not necessarily mean that the emulation does not abort, as itmay abort whenever the real execution does. (This may happen when A1 fails to convinceParty 2 in the real execution, an event which may happen as A1 is arbitrary.) We stress thatin case B1 does not abort, the trusted party hands Cn(b0; b1 � � � bn) = c to Party 2 (in the idealmodel), and so B2 outputs c { exactly as A2 does in the real execution.2. c 6= Cn(b0; b1 � � � bn). In this case, the emulation of rejecting (and so aborting) executions ofStep C3 is perfect. Recall that by the soundness of the proof system accepting executionsoccur only with negligible probability. Indeed, these executions are not correctly emulated byB1 (as the answer provided to Party 2 in the ideal model di�ers from the message A2 receivesfrom A1, and consequently the output of Party 2 di�er in the two models). However, sincenon-aborting executions in this case occur with negligible probability, the emulation of theexecution is statistically indistinguishable from the real execution.Thus, in the worst case, the emulation conducted by B1 is statistically indistinguishable from thereal execution as viewed by A1. Eq. (2.22) follows and does the proposition.2.3.2.2 Input Commitment ProtocolLet fCngn2N be a commitment scheme. Our goal is to have Party 1 commit to its input using thisscheme. To facilitate the implementation we make the randomization to be used for the commitmentbe outside the protocol (functionality). In typical applications, the input x will be given by a high-level protocol which also generates r at random. For simplicity, we consider the basic case where xis a bit. ((x; r); 1n) 7! (�;Cn(x; r)) (2.23)At �rst glance, one may say that Eq. (2.23) is obviously implementable by just letting Party 1 applythe commitment scheme to its input and send the result to Party 2. However, this naive suggestiondoes not guarantee that the output is in the range of the commitment scheme, and so is not securein the malicious model. Furthermore, a secure implementation of the functionality requires thatParty 1 \knows" a preimage of the commitment value output by Party 2 (see discussion followingDe�nition 2.1.6). Thus, the naive protocol must be augmented by Party 1 proving to Party 2 (inzero-knowledge) that it knows such a preimage. The resulting protocol follows.Construction 2.3.8 (input-bit commitment protocol):Inputs: Party 1 gets input (�; r) 2 f0; 1g � f0; 1gn, and Party 2 gets input 1n.Step C1: Party 1 sends c def= Cn(�; r) to Party 2.Step C2: The parties invoke a zero-knowledge strong-proof-of-knowledge so that Party 1 plays theprover and Party 2 plays the veri�er. The common input to the proof system is c, the provergets auxiliary inputs (�; r), and its objective is to prove that it knows (x; y) such thatc = Cn(x; y) (2.24)In case the veri�er rejects the proof, Party 2 aborts with output ? (otherwise the output willbe c). (Again, any possible response { including abort { of Party 2 during the execution of thisstep, will be interpreted by Party 1 as a canonical legitimate message.)45



Outputs: Party 2 sets its local output to c. (Party 1 has no output.)Observe that the speci�ed strategies are indeed implementable in polynomial-time. In particular,in Step C2, Party 1 supplies the prover subroutine with the NP-witness (�; r) which indeed satis�esEq. (2.24) (with x = � and y = r). Also, using the non-triviality condition of the proof systemit follows that if both parties are honest then neither aborts and the output is as required. Wecomment that the above protocol does not rely on fCng being a commitment scheme, and remainsvalid for any family of functions ffn : f0; 1g � f0; 1gn 7! f0; 1gpoly(n)gn2N.Proposition 2.3.9 Construction 2.3.8 securely computes (in the malicious model) the functionalityEq. (2.23), where fCn : f0; 1g� f0; 1gn 7! f0; 1gpoly(n)gn2N.Proof Sketch: Again, we need to show how to (e�ciently) transform any admissible circuit pair,(A1; A2), for the real model into a corresponding pair, (B1; B2), for the ideal model. We treatseparately each of the two cases { de�ned by which of the parties is honest.We start with the case that the �rst party is honest. In this case B1 is determined, and wetransform (the real-model adversary) A2 into (an ideal-model adversary) B2, which uses A2 as asubroutine. Recall that B2 gets input 1n.1. B2 send 1n to the trusted party and obtain the commitment value c (which equals Cn(�; r)for (�; r) handed by Party 1).2. B2 invokes the simulator guaranteed for the zero-knowledge proof system, on input c, usingA2 as a possible malicious veri�er. Denote the obtained simulation transcript by S = S(c).3. Finally, B2 feed A2 with the supposedly execution view, (c; S) and outputs whatever A2 does.We need to show that for the functionality, f , of Eq. (2.23) and � of Construction 2.3.8,fidealf;B((�; r) ; 1n)gn2N; (�;r)2f0;1g�f0;1gn c� freal�;A((�; r) ; 1n)gn2N; (�;r)2f0;1g�f0;1gn (2.25)Let R(�; r) denote the veri�er view of the real interaction on common input Cn(�; r), prover'sauxiliary input (�; r), and veri�er played by B2. Then,real�;A((�; r) ; 1n) = (? ; A2(R(�; r)))idealf;B((�; r) ; 1n) = (? ; A2(S(Cn(�; r))))However, by the standard formulation of zero-knowledge { which guarantees computationally indis-tinguishable simulations also in the presence of auxiliary inputs { we have that ((�; r); S(Cn(�; r)))and ((�; r); R(�; r)) are computationally indistinguishable for any �xed (�; r), and so Eq. (2.25)follows.We now turn to the case where the second party is honest. In this case B2 is determined, and wetransform (real-model) A1 into (ideal-model) B1, which uses A1 as a subroutine. Recall that B1gets input (�; r) 2 f0; 1g� f0; 1gn.1. B1 invokes A1 on input (�; r). In case A1 aborts (or acts improperly) in Step C1, we let B1abort before invoking the trusted party. Otherwise, suppose that A1 sends message c (i.e.,c = A1(�; r)). (Supposedly c is in the range of Cn.)46



2. Machine B1 tries to obtain the a preimage of c under Cn. Towards this end, B1 uses theknowledge-extractor associated with the proof system of Step C2. Speci�cally, using the strongknowledge-extractor, B1 tries to extract from A1 a pair (x; y) satisfying Eq. (2.24). In casethe extractor succeeds, B1 sets �0 = x and r0 = y. If the extraction fails, machine B1 aborts(before invoking the trusted party). Otherwise, we proceed as follows.3. Machine B1 now emulates an execution of Step C2. Speci�cally, it lets A1(�; r) play theprover and emulates the (honest) veri�er interacting with it (i.e., behaves as A2). In case theemulated veri�er rejects, machine B1 aborts (before invoking the trusted party). Otherwise,it sends (�0; r0) to the trusted party, and allows it to respond to Party 2. (The response willbe Cn(�0; r0) = c.)4. Finally, B1 feed A1 with the execution view, which consists of the prover's view of the emulationof Step C2 (produced in Step 3 above), and outputs whatever A1 does.We now show thatfidealf;B((�; r) ; 1n)gn2N; (�;r)2f0;1g�f0;1gn s� freal�;A((�; r) ; 1n)gn2N; (�;r)2f0;1g�f0;1gn (2.26)The statistical di�erence is due to the case where A1 succeeds to convince the strong knowledge-veri�er (played by A2) that it knows a preimage of c under Cn and still the knowledge-extractorfailed to �nd such a preimage. By de�nition of strong knowledge-veri�ers, such an event may occuronly with negligible probability. Loosely speaking, the rest of the argument shows that, ignoring therare case in which extraction fails although the knowledge-veri�er (played by A2) is convinced, thedistributions idealf;B((�; r); 1n) and real�;A((�; r); 1n) are identical.Consider �rst, for simplicity, the case where B1 never aborts (i.e., never stops the trusted party).In this case, both in the real execution and in the ideal model, Party 2 outputs the Step C1 messageof A1; that is, A1(�; r). Thus, they both equal (A1((�; r); T ) ; A1(�; r)), where T represents the(distribution of the) prover's view of an execution of Step C2, on common input c, in which theprover is played by A1(�; r).Next, consider the case that A1 always aborts (i.e., either it aborts in Step C1 or it neverconvinces the veri�er in Step C2). In this case, B1 aborts before invoking the trusted party, andso both ensembles are identical (i.e., both equal (A1((�; r);?);?)). Since A1 is deterministic, weare left with the case in which A1 appears to behave properly in Step C1 and, in Step C2, machineA1(�; r) convinces Party 2 with some probability, denoted p, taken over the moves of Party 2. Weconsider two cases, with respect to the negligible function � referred to in De�nition 1.2.6.1. Suppose p > �(n). In this case, by de�nition of a strong proof of knowledge, with probabilityat least 1��(n), machine B1 has successfully extracted (�0; r0) in Step 2. Thus, the situationis as in the simple case (above), except that with probability 1� p, the joint execution in thereal model ends up aborting. In the ideal model a joint execution is aborting with probability1� p � �(n) (actually, the probability is at least 1� p and at most 1� p + �(n)). As in thesimple case (above), non-aborting executions are distributed identically in both models. (Thesame holds with respect to aborting executions which equal (A1((�; r);?);?) in both models.)2. Suppose that p � �(n). Again, in the real model the abort probability is 1 � p, which inthis case is negligiblly close to 1. In the ideal model we are only guaranteed that abortingexecutions occur with probability at least 1� p, which su�ces for us (recalling that abortingexecutions are equal in both models, and noting that they occur with probability at least1� �(n) in both models). 47



We conclude that in both cases the distributions are statistically indistinguishable, and the propo-sition follows.2.3.2.3 Authenticated Computation ProtocolLet f : f0; 1g� � f0; 1g� 7! f0; 1g� and h : f0; 1g� 7! f0; 1g� be polynomial-time computable.Intuitively, our goal is to force Party 1 to send f(�; �) to Party 2, where � is known to both parties,� is known to Party 1, and h(�) { which determines � in case h is 1-1 { is known to Party 2. Thatis, we are interested in the functionality((�; �); (h(�); �)) 7! (�; f(�; �)) (2.27)The above formulation makes acute a issue which is present also in all previous functionalitiesconsidered: What happens if the parties provide inputs which do not satisfy the relations postulatedabove (i.e., Party 1 provides input (�; �) and Party 2 provides (0; �0) where either � 6= �0 orh(�) 6= 0). Our convention is that in this case the output is (?;?) (see discussion in the preambleto Section 2.1).To facilitate the implementation, we assume that the function h is one-to-one, as will be thecase in our applications. This allows us to use (ordinary) zero-knowledge proofs, rather than strong(zero-knowledge) proofs-of-knowledge. We also assume, for simplicity, that for some polynomial pand all �'s, the function h satis�es jh(�)j = p(j�j).19The functionality of Eq. (2.27) is implemented by having Party 1 send f(�; �) to Party 2, andthen prove in zero-knowledge the correctness of the value sent (with respect to the common input(h(�); �)). Note that this statement is of the NP-type and that Party 1 has the NP-witness. Actually,the following protocol is the archetypical application of zero-knowledge proof systems.Construction 2.3.10 (authenticated computation protocol):Inputs: Party 1 gets input (�; �) 2 f0; 1g��f0; 1g�, and Party 2 gets input (u; �), where u = h(�).Step C1: Party 1 sends v def= f(�; �) to Party 2.Step C2: The parties invoke a zero-knowledge proof system so that Party 1 plays the prover andParty 2 plays the veri�er. The common input to the proof system is (v; u; �), the prover getsauxiliary inputs �, and its objective is to prove that9x s.t. (u = h(x)) ^ (v = f(x; �)) (2.28)(We stress that the common input is supplied by the veri�er, which sets the �rst element tobe the message received in Step C1, and the two other elements to be as in its input.) Theproof system employed has negligible soundness error. In case the veri�er rejects the proof,Party 2 aborts with output ? (otherwise the output will be v). (Again, any possible response {including abort { of Party 2 during the execution of this step, will be interpreted by Party 1 asa canonical legitimate message.)Outputs: Party 2 sets its local output to v. (Party 1 has no output.)19 This assumption can be enforced by rede�ning h so that h(�) def= h(�) � 0p(j�j)�jh(�)j, where p(j�j) � 1 is anupper bound on the time-complexity of the original h. 48



Observe that the speci�ed strategies are indeed implementable in polynomial-time. In particular, inStep C2, Party 1 supplies the prover subroutine with the NP-witness � so that Eq. (2.28) is satis�edwith x = �. Also, using the completeness condition of the proof system it follows that if both partiesare honest then neither aborts and the output is as required. We stress that, unlike the previoustwo protocols, the current protocol only utilizes an ordinary (zero-knowledge) proof system (ratherthan a strong proof-of-knowledge).Proposition 2.3.11 Suppose that the function h is one-to-one. Then, Construction 2.3.10 securelycomputes (in the malicious model) the functionality Eq. (2.27).Proof Sketch: Again, we need to show how to (e�ciently) transform any admissible circuit pair,(A1; A2), for the real model into a corresponding pair, (B1; B2), for the ideal model. We treatseparately each of the two cases { de�ned by which of the parties is honest. Assume, for simplicity,that j�j = j�j.We start with the case that the �rst party is honest. In this case B1 is determined, and wetransform (the real-model adversary) A2 into (an ideal-model adversary) B2, which uses A2 as asubroutine. Recall that B2 gets input (u; �), where u = h(�).1. B2 send (u; �) to the trusted party and obtain the value v, which equals f(�; �) for (�; �)handed by Party 1.2. B2 invokes the simulator guaranteed for the zero-knowledge proof system, on input v, usingA2 as a possible malicious veri�er. Denote the obtained simulation transcript by S = S(v).3. Finally, B2 feed A2 with the supposedly execution view, (v; S) and outputs whatever A2 does.Repeating the analogous arguments of the previous proofs, we conclude that for the functionality,f , of Eq. (2.27) and � of Construction 2.3.10,fidealf;B((�; �) ; (h(�); �))gn2N; �;�2f0;1gn c� freal�;A((�; �) ; (h(�); �))gn2N; �;�2f0;1gnWe now turn to the case where the second party is honest. In this case B2 is determined, and wetransform (real-model) A1 into (ideal-model) B1, which uses A1 as a subroutine. Recall that B1gets input (�; �) 2 f0; 1gn � f0; 1gn.1. B1 invokes A1 on input (�; �). In case A1 aborts (or acts improperly) in Step C1, we let B1abort before invoking the trusted party. Otherwise, suppose that A1 sends message v (i.e.,v = A1(�; �)).2. MachineB1 checks that v supplied in Step 1 indeed satis�es Eq. (2.28) with respect to u = h(�),where (�; �) are as above (i.e., the input to B1). This is done by emulating the proof systemof Step C2 so that A1(�; �) plays the prover and B1 plays the (honest) veri�er (i.e., behavesas A2). Recall that this proof system has negligible soundness error, and so if v does notsatisfy Eq. (2.28) this is detected with probability 1� �(n), where � is a negligible function.If the veri�er (played by B1) rejects then machine B1 aborts (before invoking the trustedparty). Otherwise, we proceed assuming that v satis�es Eq. (2.28). Note that since h is 1-1and Eq. (2.28) is satis�ed it must be the case that v = f(h�1(u); �) = f(�; �).2020 We comment that if h were not 1-1 and a strong proof-of-knowledge (rather than an ordinary proof system) wasused in Step C2 then one could have inferred that Party 1 knows an �0 so that h(�0) = u and v = f(�0; �), but �0does not necessarily equal �. Sending (�0; �) to the trusted party in the next step, we would have been �ne, as itwould have (also) meant that the trusted party's respond to Party 2 is v.49



3. Machine B1 sends (�; �) to the trusted party, and allows it to respond to Party 2. (Theresponse will be f(�; �) = v.)4. Finally, B1 feed A1 with the execution view, which consists of the prover's view of the emulationof Step C2 (produced in Step 2 above), and outputs whatever A1 does.We now show thatfidealf;B((�; �) ; (h(�); �))gn2N; �;�2f0;1gn s� freal�;A((�; �) ; (h(�); �))gn2N; �;�2f0;1gn (2.29)The statistical di�erence is due to the case where A1 succeeds to convince the veri�er (played byA2) that it v satis�es Eq. (2.28), and yet this claim is false. By soundness of the proof system, thisevent happens only with negligible probability. The rest of the argument is a simpli�ed version ofthe corresponding parts of the previous proofs. Speci�cally, assuming that v satis�es Eq. (2.28), weshow that idealf;B((�; �); (h(�); �)) and real�;A((�; �); (h(�); �)) are identically distributed.Consider �rst, the case that A1 always aborts in Step C1 (or is detected to behave improperly {which is treated as abort). In this case, B1 aborts before invoking the trusted party, and so bothensembles are identical (i.e., both equal (A1((�; �);?);?)). Since A1 is deterministic, we are leftwith the case in which A1 appears to behave properly in Step C1 and, in Step C2, machine A1(�; �)convinces Party 2 with some probability, denoted p, taken over the moves of Party 2. We considertwo cases, with respect to the soundness error-bound function � associated with the proof system.We stress that such an explicit function can be associated with all standard zero-knowledge proofsystems, and here we use a system for which � is negligible. For example, we may use a system witherror bound �(n) def= 2�n.1. Suppose p > �(n). In this case, by the soundness condition, it must be the case that A1(�; �) =f(�; �) (since in this case v def= A1(�; �) satis�es Eq. (2.28) and so v = f(h�1(�); �) = f(�; �)).Thus, in both the real and the ideal model, with probability p, the joint execution is non-aborting and equals (A1((�; �); T ) ; A1(�; �)), where T represents the (distribution of the)prover's view of an execution of Step C2, on common input (h(�); �; f(�; �)), in which theprover is played by A1(�; �). Also, in both models, with probability 1� p, the joint executionis aborting and equal (A1((�; �);?);?). Thus, in this case the distributions in Eq. (2.29) areidentical.2. Suppose that p � �(n). Again, in both models aborting executions are identical and occur withprobability 1�p (as the ideal model aborts only during a single emulation of the real model). Inthis case we have no handle on the non-aborting executions in the ideal model (as A1(�; �) maybe arbitrary), but we do not care since these occur with negligible probability (i.e., p � �(n)).Thus, in this case the distributions in Eq. (2.29) are statistically indistinguishable.The proposition follows.Authenticated Computation Protocol, generalized. Actually, we will use a slightly moregeneral functionality in which h is a randomized process rather than a function. Alternatively,we consider a two-argument function h (rather than a single argument one), and the followingfunctionality. ((�; r; �); (h(�; r); �)) 7! (�; f(�; �)) (2.30)50



Analogously to above, we make the assumption that h is 1-1 with respect to its �rst argument; thatis, for every � 6= �0 and any r; r0 we have h(�; r) 6= h(�0; r0). Construction 2.3.10 generalizes in theobvious way and we obtain.Proposition 2.3.12 Suppose that the function h : f0; 1g� � f0; 1g� 7! f0; 1g� satis�es that forevery � 6= �0, the sets fh(�; r) : r 2 f0; 1g�g and fh(�0; r) : r 2 f0; 1g�g are disjoint. Then, thefunctionality of Eq. (2.30) can be securely computed (in the malicious model).Proof Sketch: For clarity, we reproduce the generalized protocol.Inputs: Party 1 gets input (�; r; �) 2 (f0; 1g�)3, and Party 2 gets input (u; �), where u = h(�; r).Step C1: As before, Party 1 sends v def= f(�; �) to Party 2.Step C2: As before, the parties invoke a zero-knowledge proof system so that Party 1 plays theprover and Party 2 plays the veri�er. The common input to the proof system is (v; u; �), theprover gets auxiliary inputs (�; r), and its objective is to prove that9x; y s.t. (u = h(x; y)) ^ (v = f(x; �)) (2.31)In case the veri�er rejects the proof, Party 2 aborts with output ? (otherwise the output willbe v). (Again, any possible response { including abort { of Party 2 during the execution ofthis step, will be interpreted by Party 1 as a canonical legitimate message.)Outputs: As before, Party 2 sets its local output to v. (Party 1 has no output.)The fact that this generalized protocol securely computes the functionality Eq. (2.30) is proven byfollowing the proof of Proposition 2.3.11. The only thing to notice is that the �rst element of apreimage in the range of h is still uniquely de�ned.2.3.3 The compiler itselfWe are now ready to present the compiler. Recall that we are given a protocol, �, for the semi-honest model, and we want to generate an \equivalent" protocol �0 for the malicious model. Themeaning of the term `equivalent' will be clari�ed below. We assume, without loss of generality, thaton any input of length n, each party to � tosses c(n) = poly(n) coins.Construction 2.3.13 (The two-party compiler): Given a protocol, �, for the semi-honest model,the compiler produces a protocol, �0, for the malicious model. Following is a speci�cation of theresulting protocol �0.Inputs: Party 1 gets input x = x1x2 � � �xn 2 f0; 1gn and Party 2 gets input y = y1y2 � � � yn 2f0; 1gn.Input-commitment phase: Each of the parties commits to each of its input bits by using a se-cure implementation of the input-commitment functionality of Eq. (2.23). Recall that theseexecutions should be preceded by the \committing party" selecting a randomization for thecommitment scheme Cn. That is, for i = 1 to n, the parties do:2121 The order in which these 2n commitments are run is immaterial. Here we chose an arbitrary one. The sameholds for the protocols in the next phase. 51



� Party 1 uniformly selects �1i 2 f0; 1gn, and invokes a secure implementation of the input-commitment functionality of Eq. (2.23), playing Party 1 with input (xi; �1i ). Party 2 playsthe role of Party 2 in Eq. (2.23) with input 1n. Party 2 obtains the output Cn(xi; �1i ).� Analogously, Party 2 uniformly selects �2i 2 f0; 1gn, and invokes a secure implementationof the input-commitment functionality of Eq. (2.23), playing Party 1 with input (yi; �2i ).Party 1 plays the role of Party 2 in Eq. (2.23) Party 1 obtains the output Cn(yi; �2i ).Note that each party now holds a string which uniquely determines the n-bit long input ofthe other party. Speci�cally, Party 1 (resp., Party 2) holds Cn(y1; �21); :::; Cn(yn; �2n) (resp.,Cn(x1; �11); :::; Cn(xn; �1n)). In addition, each party, holds an NP-witness for the value of theinput committed to by the sequence held by the other party; that is, Party i holds the witness�i1; :::; �in.Coin-generation phase: The parties generate random-pad for the emulation of �. Each partyobtains the bits of the random-pad to be held by it, whereas the other party obtains commit-ments to these bits. The party holding the bit also obtains the randomization used in thesecommitments, to be used as an NP-witness to the correctness of the committed value. Thisis done by invoking a secure implementation of the (augmented) coin-tossing functionality ofEq. (2.16). Speci�cally, the coin-tossing protocol is invoked 2c(n) times, c(n) times in each ofthe two directions.That is, for i = 1 to c(n), the parties do� Party 1 invokes a secure implementation of the coin-tossing functionality of Eq. (2.16)playing Party 1 with input 1n. Party 2 plays the role of Party 2 in Eq. (2.16) withinput 1n. Party 1 obtains a pair, (r1i ; !1i ), and Party 2 obtains the corresponding outputCn(r1i ; !1i ).Party 1 sets the ith bit of the random-pad for the emulation of � to be r1i , and recordsthe corresponding NP-witness. Party 2 records Cn(r1i ; !1i ).� Party 2 invokes a secure implementation of the coin-tossing functionality of Eq. (2.16)playing Party 1 with input 1n. Party 1 plays the role of Party 2 in Eq. (2.16) withinput 1n. Party 2 obtains a pair, (r2i ; !2i ), and Party 1 obtains the corresponding outputCn(r2i ; !2i ).Party 2 sets the ith bit of the random-pad for the emulation of � to be r2i , and recordsthe corresponding NP-witness. Party 1 records Cn(r2i ; !2i ).Each party, sets the random-pad for � to be the concatenation of the corresponding bits. Thatis, for j = 1; 2, Party j sets rj = rj1rj2 � � � rjc(n).Note that each party holds a string which uniquely determines the random-pad of the otherparty.Protocol emulation phase: The parties use a secure implementation of the authenticated-computationfunctionality of Eq. (2.30) in order to emulate each step of protocol �. The party which is sup-posed to send a message plays the role of Party 1 in Eq. (2.30) and the party which is supposedto receive it plays the role of Party 2. The inputs �; r; � and the functions h; f , for the func-tionality of Eq. (2.30), are set as follows: 52



� The string � is set to equal the concatenation of the party's original input and its random-pad, the string r is set to be the concatenation of the corresponding randomizations usedin the commitments and h(�; r) equals the concatenation of the commitments themselves.That is, suppose the message is supposed to be sent by Party j in � and that its input isz (i.e., z = x if j = 1 and z = y otherwise). Then� = (z; rj) ; where rj = rj1rj2 � � � rjc(n)r = (�j1�j2 � � � �jn; !j1!j2 � � �!jc(n))h(�; r) = (Cn(z1; �j1); Cn(z2; �j2); :::; Cn(zn; �jn) ;Cn(rj1; !j1); Cn(rj2; !j2); :::; Cn(rjc(n); !jc(n)))Note that h indeed satis�es h(�; r) 6= h(�0; r0) for all � 6= �0 and all r; r0.� The string � is set to equal the concatenation of all previous messages sent by the otherparty.� The function f is set to be the computation which determines the message to be sent in �.Note that this message is computable in polynomial-time from the party's input (denotedz above), its random-pad (denoted rj), and the messages it has received so far (i.e., �).Aborting: In case any of the protocols invoked in any of the above phases terminates in an abortstate, the party (or parties) obtaining this indication aborts the execution, and sets its outputto ?. Otherwise, outputs are as follows.Outputs: At the end of the emulation phase, each party holds the corresponding output of the partyin protocol �. The party just locally outputs this value.We note that the compiler is e�cient. That is, given the code of a protocol �, the compiler producesthe code of �0 in polynomial-time. Also, in case both parties are honest, the input-output relationof �0 is identical to that of �.2.3.3.1 The e�ect of the compilerAs will be shown below, given a protocol as underlying the proof of Theorem 2.2.13, the compilerproduces a protocol which securely computes the same function. Thus, for any functionality f , thecompiler transforms a protocol for privately computing f (in the semi-honest model) into a protocolfor securely computing f (in the malicious model). The above su�ces to establish our main result(i.e., Theorem 2.3.1), yet it does not say what the compiler does when given an arbitrary protocol(i.e., one not produced as above). In order to analyze the action of the compiler, in general, weintroduce the following model which is a hybrid of the semi-honest and the malicious models.22 Wecall this new model, which may be of independent interest, the augmented semi-honest model.De�nition 2.3.14 (the augmented semi-honest model): Let � be a two-party protocol. An aug-mented semi-honest behavior (w.r.t �) for one of the parties is a (feasible) strategy which satis�esthe following conditions.22 Indeed, Theorem 2.3.1 will follow as a special case of the general analysis of the compiler provided below. Ourtreatment decouples the e�ect of the compiler from properties of protocols which when compiled (by the compiler)yield a secure in the malicious model implementation of a desired functionality. This footnote is clari�ed by the textbelow. 53



Entering the execution: Depending on its initial input, denoted z, the party may abort beforetaking any step in the execution of �. Otherwise, again depending on z, it enter the executionwith any input z0 2 f0; 1gjzj of its choice. From this point on z0 is �xed.Proper selection of random-pad: The party selects the random-pad to be used in � uniformlyamong all strings of the length speci�ed by �. That is, the selection of the random-pad isexactly as speci�ed by �.Proper message transmission or abort: In each step of �, depending on its view so far, theparty may either abort or send a message as instructed by �. We stress that the message iscomputed as � instructs based on input z0, the random-pad selected above, and all messagesreceived so far.Output: At the end of the interaction, the party produces an output depending on its entire view ofthe interaction. We stress that the view consists of the initial input z, the random-pad selectedabove, and all messages received so far.A pair of polynomial-size circuit families, C = (C1; C2), is admissible w.r.t � in the augmentedsemi-honest model if one family implements � and the other implements an augmented semi-honestbehavior w.r.t �.Intuitively, the compiler transforms any protocol � into a protocol �0 so that executions of �0 inthe malicious model correspond to executions of � in the augmented semi-honest model. That is,Proposition 2.3.15 (general analysis of the two-party compiler): Let �0 be the protocol producedby the compiler of Construction 2.3.13, when given the protocol �. Then, there exists a polynomial-time computable transformation of pairs of polynomial-size circuit families A = (A1; A2) admissible(w.r.t �0) for the (real) malicious model (of De�nition 2.1.5) into pairs of polynomial-size circuitfamilies B = (B1; B2) admissible w.r.t � for the augmented semi-honest model (of De�nition 2.3.14)so that freal�;B(x; y)gx;y s.t. jxj=jyj c� freal�0;A(x; y)gx;y s.t. jxj=jyjProposition 2.3.15 will be applied to protocols as underlying the proof of Theorem 2.2.13. Aswe shall see (in x2.3.3.2 below), for these speci�c protocols, the augmented semi-honest model(of De�nition 2.3.14) can be emulated by the ideal malicious model (of De�nition 2.1.4). Thus,Theorem 2.3.1 will follow (since, schematically speaking, for every functionality f there exist �and �0 so that idealf;malicious(x; y) equals real�;aug-semi-honest(x; y), which in turn equalsreal�0;malicious(x; y)). Thus, Theorem 2.3.1 is proven by combining the properties of the com-piler, as stated in Proposition 2.3.15, with the properties of speci�c protocols to be compiled by it.We believe that this decoupling clari�es the proof. We start by establishing Proposition 2.3.15.Proof Sketch: Given a circuit pair, (A1; A2), admissible w.r.t �0 for the real malicious model, wepresent a corresponding pair, (B1; B2), admissible w.r.t � for the augmented semi-honest model.Denote by hon the identity of the honest party and by mal the identity of the malicious party(mal = 1 if hon = 2 and mal = 2 otherwise). Then, Bhon is determined, and we transform (themalicious adversary) Amal into (an augmented semi-honest adversary) Bmal, which uses Amal as asubroutine. Actually, machine Bmal will use Amal as well as the ideal-model (malicious) adversariesderived from the behavior of Amal in the various subprotocols invoked by �0. Furthermore, machineBmal will also emulate the behavior of the trusted party in these ideal-model emulations (without54



communicating with any trusted party { there is no trusted party in the augmented semi-honestmodel). Thus, the following description contains an implicit special-purpose composition theorem.23On input z = z1z2 � � � zn 2 f0; 1gn, machine Bmal behaves as follows.Entering the execution: Bmal invokes Amal on input z, and decides whether to enter the pro-tocol, and if so { with what input. Towards this end, machine Bmal emulates execution ofthe input-committing phase of �0, using Amal (as subroutine). Machine Bmal supplies Amalwith the messages it expects to see, thus emulating a honest Party hon in �0, and obtainsthe messages sent by Amal. Speci�cally, it emulates the executions of the input-commitmentprotocol, which securely computes the functionality Eq. (2.23), in attempt to obtain the bitscommitted to by Amal. The emulation of each such execution is done by using the maliciousideal-model adversary derived from (the real malicious adversary) Amal. Details follow.� In an execution of the input-commitment protocol where Party hon commits to an inputbit, say its ith bit, machine Bmal tries to obtain the corresponding commitment (for futureusage in emulation of message-transmission steps). First Bmal emulates the uniformselection (by Party hon) of �honi 2 f0; 1gn. Machine Bmal will use an arbitrary value, say0, for the ith bit of Party hon (as the real value is unknown to Bmal). Next, machine Bmalderives the ideal-model adversary, denoted A0mal, which corresponds to the behavior ofAmal { given the history so far { in the corresponding execution of the input-commitmentprotocol.Invoking the ideal-model adversary A0mal, and emulating both the honest (ideal-model)Party hon and the trusted party, machine Bmal obtains the outputs of both parties (i.e.,the commitment handed to Party mal). That is, machine Bmal obtains the message thatA0mal would have sent to the trusted party (i.e., 1n), emulate the sending of message(0; �honi ) by Party hon, and emulates the response of the trusted oracle, echoni , whereechoni = Cn(0; �honi ). (See de�nition of the functionality Eq. (2.23).)In case the emulated machines did not abort, machine Bmal records �honi , and concate-nates the emulation of the input-commitment protocol (i.e., the �nal view of Party mal asoutput by A0mal) to the history of the execution of Amal. (Indeed, the emulated text maynot be distributed as a transcript of a pre�x of real execution of Amal, but the former iscomputationally indistinguishable from the latter.)� In an execution of the input-commitment protocol where Party mal commits to an inputbit, say its ith bit, machine Bmal tries to obtain the corresponding bit as well as thecommitment to it. First Bmal derives the ideal-model adversary, denoted A0mal, whichcorresponds to the behavior of Amal { given the history so far { in the correspondingexecution of the input-commitment protocol.Machine Bmal uniformly selects �mali 2 f0; 1gn, invokes A0mal on input (zi; �mali ),24and emulating both the honest (ideal-model) Party hon and the trusted party, machine23 It is indeed our choice neither to make this composition theorem explicit nor to state a general-purpose com-position theorem for the malicious model. We believe that the implicit composition is easy to understand, whereasan explicit statement would require some technicalities which { at a last account { will not make the proof easier tofollow.24 Machine A0mal may, indeed, ignore this input altogether and act according to other strings which may beincorporated in its description. Giving input to A0mal merely mimics the situation in which this party is honest,which is not the case here. In fact, one could have de�ned adversaries to have no input at all (as they are non-uniformand so can incorporate whatever input we wish anyhow).55



Bmal obtains the outputs of both parties (i.e., the commitment handed to Party hon).A key point is that machine Bmal has obtained, while emulating the trusted party, theinput handed by A0mal to the trusted party. We denote this input by (z0i; s). That is,machine Bmal obtains the message (z0i; s) that A0mal would have sent to the trusted party(which may di�er from (zi; �mali )), emulates the sending of message 1n by Party hon, andemulates the response of the trusted oracle, ecmali = Cn(z0i; s).In case the emulated machines did not abort, machine Bmal records the pair (z0i;ecmali ),and concatenates the emulation of the input-commitment protocol (i.e., the �nal view ofParty mal as output by A0mal) to the history of the execution of Amal.� If Amal aborts in any of these executions then Bmal aborts the entire execution. Other-wise, Bmal sets z0 = z01z02 � � � z0n, ecmal = ecmal1 ecmal2 � � � ecmaln , and �hon = �hon1 �hon2 � � � �honn .In case Bmal did not abort, it enters protocol � with input z0.Note that this entire step is implemented in polynomial-time, and the resulting z0 dependsonly on z (the initial input of Bmal).Selection of random-pad: Bmal selects its random-pad uniformly in f0; 1gc(n) (as speci�es by �),and emulates the execution of the coin-generation phase of �0 ending with this outcome, so asto place Amal in the appropriate state towards the protocol-emulation phase. To achieve thelatter goal, machine Bmal supplies Amal with the messages it expects to see, thus emulatinga honest Party hon in �0, and obtains the messages sent by Amal. Speci�cally, it emulates theexecutions of the (augmented) coin-tossing protocol, which securely computes the functionalityEq. (2.16), so that these executions end with the desired coin outcome. The emulation of eachsuch execution is done by using the malicious ideal-model adversary derived from (the realmalicious adversary) Amal. The fact that in these emulations machine Bmal also emulates thetrusted party allows it to set the outcome of the coin-tossing to �t the above selection of therandom-pad. Alternatively, one may think of Bmal as \honestly" emulating the trusted party(i.e., which sets the outcome uniformly), and setting the random-pad to equal the result ofthese random outcomes. In any case, the random-pad is selected uniformly and independentlyof any thing else. Details follow.� Machine Bmal selects its random-pad, rmal = rmal1 rmal2 � � � rmalc(n) , uniformly in f0; 1gc(n).� In ith execution of the coin-tossing protocol in which Party hon obtains the outcome of thecoin-toss, machine Bmal tries to obtain the outcome as well as the randomness used byParty hon when committing to it. First, machine Bmal derives the ideal-model adversary,denoted A0mal, which corresponds to the behavior of Amal { given the history so far {in the corresponding execution of the coin-tossing protocol. Invoking the ideal-modeladversary A0mal, and emulating both the honest (ideal-model) Party hon and the trustedparty, machine Bmal obtains the outputs of both parties (i.e., both the coin value andthe randomness handed to Party hon and a commitment handed to Party mal).That is, machine Bmal obtains the message that A0mal would have sent to the trustedparty (i.e., 1n), emulates the sending of message 1n by Party hon, and emulates theresponse of the trusted oracle, ((rhoni ; !honi ); choni ), where (rhoni ; !honi ) 2 f0; 1g�f0; 1gnis uniformly distributed and choni = Cn(rhoni ; !honi ). (See de�nition of the functionalityEq. (2.16).) 56



In case the emulated machines did not abort, machine Bmal records the pair (rhoni ; !honi ),and concatenates the emulation of the coin-tossing protocol (i.e., the �nal view of Party malas output by A0mal) to the history of the execution of Amal.� In ith execution of the coin-tossing protocol in which Party mal is supposed to obtain theoutcome of the coin-toss, machine Bmal tries to generate an execution ending with thecorresponding bit of rmal. First Bmal derives the ideal-model adversary, denoted A0mal,which corresponds to the behavior ofAmal { given the history so far { in the correspondingexecution of the coin-tossing protocol. It invokes A0mal and emulating both the honest(ideal-model) Party hon and the trusted party, machine Bmal obtains the outputs ofboth parties (i.e., both the coin value handed to Party mal and a commitment handed toParty hon).That is, machine Bmal obtains the message that A0mal would have sent to the trustedparty (i.e., 1n), emulates the sending of message 1n by Party hon, and emulates theresponse of the trusted oracle, ((rmali ; !mali ); cmali ), where (rmali ; !mali ) 2 f0; 1g�f0; 1gnis uniformly distributed and cmali = Cn(rmali ; !mali ).In case the emulated machines did not abort, machine Bmal records the value cmali , andconcatenates the emulation of the coin-tossing protocol (i.e., the �nal view of Party malas output by A0mal) to the history of the execution of Amal.� If Amal aborts in any of these executions then Bmal aborts the entire execution.In case Bmal did not abort, it will use rmal as its random-pad in its the subsequent steps ofprotocol �. It also sets cmal = cmal1 cmal2 � � � cmalc(n) and !hon = !hon1 !hon2 � � �!honc(n) .Note that this entire step is implemented in polynomial-time, and rmal is selected uniformlyin f0; 1gc(n) independent of anything else.Subsequent steps { message transmission: Machine Bmal now enters the actual execution of�. It proceeds in this real execution along with emulating the corresponding executions ofthe authenticated-computation functionality of Eq. (2.30). In a message-transmission step byParty hon in �, machine Bmal obtains from Party hon (in the real execution of �) a message,and emulates an execution of the authenticated-computation protocol resulting in this messageas output. In a message-transmission step by Party mal in �, machine Bmal computes themessage to be sent to Party hon (in �) as instructed by �, based on the input z0 determinedabove, the random-pad rmal selected above, and the messages obtained so far from Party hon(in �). In addition, Bmal emulates an execution of the authenticated-computation protocolresulting in this message as output. The emulation of each execution of the authenticated-computation protocol, which securely computes the functionality Eq. (2.30), is done by usingthe malicious ideal-model adversary derived from (the real malicious adversary) Amal. Thefact that in these emulations machine Bmal also emulates the trusted party allows it to set theoutcome of the authenticated-computation protocol to �t the message being delivered. Detailsfollow.� In a message-transmission step by Party hon in �, machine Bmal �rst obtains fromParty hon (in the real execution of �) a message, denoted msg. Next, machine Bmalderives the ideal-model adversary, denoted A0mal, which corresponds to the behavior ofAmal { given the history so far { in the corresponding execution of the authenticated-computation protocol (executed by protocol �0).57



Invoking the ideal-model adversary A0mal, and emulating both the honest (ideal-model)Party hon and the trusted party, machine Bmal sets the trusted-party reply to equalmsg. When emulating Party hon, machine Bmal sends the trusted party the message((0n; rhon); (�hon; !hon); �), where 0n is the dummy input used for Party hon, the stringrhon represents the random-pad (as recorded above), �hon; !hon are randomizations usedin the corresponding commitments, and � represents the the messages received receivedso far by Party hon (as resulted in the previous emulated executions).We comment that the emulation is carried out so to produce output msg which does notnecessarily equal the output of the authenticated-computation functionality of Eq. (2.30)on the corresponding inputs. However, the machine A0mal used in the emulation cannotdistinguish the two cases (since the inputs which it gets in the two cases { commitmentsto the corresponding inputs of Party hon { are computationally indistinguishable).In case machine A0mal aborts the emulation, machine Bmal aborts the entire execution of�. Finally, Bmal concatenates the emulation of the authenticated-computation protocol(i.e., the �nal view of Party mal as output by A0mal) to the history of the execution ofAmal.� In a message-transmission step by Party mal in �, machine Bmal �rst computes themessage to be sent according to �. This message is computed based on the input z0determined above, the random-pad rmal (as recorded above), and the messages receivedso far (from Party hon in execution of �). Denote the resulting message by msg. Next,machine Bmal derives the ideal-model adversary, denoted A0mal, which corresponds tothe behavior of Amal { given the history so far { in the corresponding execution of theauthenticated-computation protocol.Invoking the ideal-model adversary A0mal, and emulating both the honest (ideal-model)Party hon and the trusted party, machine Bmal determines the answer of the trustedparty. When emulating Party hon, machine Bmal sends the trusted party the message((ecmal; cmal); �) where ecmal; cmal are the commitments recorded above, and � repre-sents the the messages received received so far by Party mal (as resulted in the previousemulated executions).In case the answer of the trusted party (emulated by Bmal) di�ers from msg, machineBmal aborts the entire execution of �.25 Otherwise, Bmal sends msg to Party hon (in�), and concatenates the emulation of the authenticated-computation protocol (i.e., the�nal view of Party mal as output by A0mal) to the history of the execution of Amal.� If Amal aborts in any of these executions then Bmal aborts the entire execution.Note that each message-transmission step is implemented in polynomial-time. Each messagesent by Bmal is computed as instructed by �, and the decision whether to abort or proceed istaken by Bmal based on its input, its random-pad, and the messages it has received so far.Output: Assuming machine Bmal has not aborted the execution, it just outputs whatever machineAmal outputs given the execution history composed above.25 Alternatively, we may abort whenever Amal supplies the trusted party (emulated by Bmal) with input whichdoes not �t the input computed by Bmal based on z0 and rmal recorded above and the messages obtained so far fromParty hon. 58



Clearly, machine Bmal (described above) implements an augmented semi-honest behavior with re-spect to �. It is left to show thatfreal�0;A(x; y)gx;y s.t. jxj=jyj c� freal�;B(x; y)gx;y s.t. jxj=jyj (2.32)There are two di�erences between the two ensembles referred to in Eq. (2.32):1. In the �rst distribution (i.e., real�0;A(x; y)), secure protocols implementing the input-commitment,coin-tossing and authenticated-computation functionalities (of Eq. (2.23), Eq. (2.16) and Eq. (2.30),respectively) are executed; whereas in the second distribution (i.e., real�;B(x; y)) these exe-cutions are emulated using the corresponding ideal-model adversaries.2. The emulation of Eq. (2.30) (in real�;B(x; y)) is performed with a potentially wrong Party malinput.However, by the fact that the above protocols are secure, all emulations are computationally indis-tinguishable from the real executions. Furthermore, the inputs given to Party mal in the emulationof Eq. (2.30) are computationally indistinguishable from the correct ones, and so the correspondingoutputs are computational indistinguishable too. Observing that the output of Party hon in bothcases is merely the corresponding output of � on input (x0; y0), where (x0; y0) = (x; z0) if hon = 1and (x0; y0) = (z0; y) otherwise, Eq. (2.32) follows.2.3.3.2 On the protocols underlying the proof of Theorem 2.2.13We now show that for the protocols underlying the proof of Theorem 2.2.13, there is an clear cor-respondence between the augmented-semi-honest model and the malicious-ideal-model. Recall thateach such protocol is designed (and guaranteed) to privately compute some desired functionality.Thus, a real semi-honest execution of this protocol corresponds to an ideal semi-honest computationof the functionality. However, these protocol have the salient property of allowing to transformthe wider class of augmented-semi-honest executions into the wider class of ideal malicious com-putations. Recall that the augmented semi-honest model allows two things which go beyond thesemi-honest model: (1) oblivious substitution of inputs, and (2) abort. The �rst type of behaviorhas a correspondence in the malicious ideal model, and so poses no problem. To account for thesecond type of behavior, we need to match an aborting execution in the augmented semi-honestmodel with an aborting execution in the ideal malicious model. Here is where the extra property ofthe speci�c protocols, underlying the proof of Theorem 2.2.13, comes to help { see below.Proposition 2.3.16 (on the protocols underlying the proof of Theorem 2.2.13): Let � be a protocolwhich privately computes the functionality f . Furthermore, suppose that � was produced as follows.1. First, the private computation of f was reduced to the private computation of a deterministicfunctionality, f 0, using the protocol of Proposition 2.2.4.2. Next, Construction 2.2.10 was applied to a circuit computing f 0, resulting in an oracle-aidedprotocol.3. Finally, the oracle was implemented using Corollary 2.2.9.59



Then, there exists a polynomial-time computable transformation of pairs of polynomial-size circuitfamilies B = (B1; B2) admissible w.r.t � for the augmented semi-honest model (of De�nition 2.3.14)into pairs of polynomial-size circuit families C = (C1; C2) admissible for the ideal malicious model(of De�nition 2.1.4) so thatfreal�;B(x; y)gx;y s.t. jxj=jyj c� fidealf;C(x; y)gx;y s.t. jxj=jyjProof Sketch: We use the following property of the simulators of the (view of a semi-honest party)in protocol � (produced as above). These simulators, hereafter referred to as two-stage simulators,acts as follows.Input to simulator: A pair (z; v), where z is the initial input of the semi-honest party and v thecorresponding local output.Simulation Stage 1: Based on z, the simulator generates a transcript corresponding to the viewof the semi-honest party in a truncated execution of �, where the execution is truncated justbefore the last message is received by the semi-honest party.We stress that this truncated view, denoted T , is produced without using v.Simulation Stage 2: Based on T and v, the simulator produces a string corresponding to the lastmessage received by the semi-honest party. The simulator then outputs the concatenation ofT and this message.The reader may easily verify that protocol �, produced as in the hypothesis of this proposition,indeed has two-stage simulators. This is done by observing that the simulators for � are basicallyderived from the simulators of Construction 2.2.10. (The simulators used in Proposition 2.2.4 andCorollary 2.2.9 merely prepend and expand, respectively, the transcripts produced by the simulatorof Construction 2.2.10.) Turning to the protocol of Construction 2.2.10, we note that Steps 1and 2 of this protocol are simulated without having the corresponding output (see the proof ofProposition 2.2.11). This corresponds to Stage 1 in the de�nition of a two-stage simulator. Theoutput is only needed to simulate Step 3 which consists of two messages-transmissions (one fromParty 2 to Party 1 and the second in the other direction). The latter corresponds to Stage 2 in thede�nition of a two-stage simulator.Next we show that for any protocol having two-stage simulators, the transformation claimed inthe current proposition holds. Given a circuit pair, (B1; B2), admissible w.r.t � for the augmentedsemi-honest model, we construct a circuit pair, (C1; C2), which is admissible for the ideal maliciousmodel as follows. We distinguish two cases { according to which of the parties is honest. Thedi�erence between these cases amount to the possibility of (meaningfully) aborting the executionafter receiving the last message { a possibility which exists for a dishonest Party 1 but not for adishonest Party 2.We start with the case where Party 2 is totally honest (and Party 1 possibly dishonest). In thiscase C2 is determined, and we need to transform the augmented semi-honest real adversary B1 intoa malicious ideal-model adversary C1. The latter operates as follows, using the two-stage simulator,denoted S1, provided for semi-honest executions of � (which privately computes f). Recall that C1gets input x 2 f0; 1gn.1. First, C1 computes the substituted input with which B1 enters �. That is, x0 = B1(x).60



2. Next, C1 invokes the �rst stage of the simulator S1, to obtain the view of a truncated executionof � by a semi-honest party having input x0. That is, T = S1(x0).Machine C1 extracts from T the random-pad, denoted r, of Party 1. This pad correspond tothe random-pad used by B1.3. Using T , machine C1 emulates the execution of B1 on input x0 and random-pad r, up to thepoint where Party 1 is to receive the last message. Towards this end, C1 feeds B1 with inputx0 and random-pad r (i.e., it substitutes r as the random-pad of B1 making it deterministic),and sends B1 messages as appearing in the corresponding locations in T .Note that B1 may abort in such an execution, but in case it does not abort the messages itsends equal the corresponding messages in T (as otherwise one could e�ciently distinguish thesimulation from the real view).4. In case B1 has aborted the execution, machine C1 aborts the execution before invoking thetrusted party. Otherwise, it invokes the trusted party with input x0, and obtains a response,denoted v.We stress that C1 still has the option of stopping the trusted party before it answers Party 2.5. Next, C1 invokes the second stage of the simulator S1, to obtain the last message sent toParty 1. It supplies the simulator with the input x0 and the output v and obtains the lastmessage, denoted msg.6. Machine C1 now emulates the last step of B1 by supplying it with the message msg. In case B1aborts, machine C1 prevents the trusted party from answering Party 2, and aborts. Otherwise,machine C1 allows the trusted party to answer Party 2.7. The output of C1 is set to be the output of B1, regardless if B1 has aborted or completed theexecution.We need to show thatfreal�;B(x; y)gx;y s.t. jxj=jyj c� fidealf;C(x; y)gx;y s.t. jxj=jyj (2.33)Suppose �rst, for simplicity, that machine B1 never aborts. In such a case, by de�nition of S1,freal�;B(x; y)gn2N; x;y2f0;1gn � f(B1(view�1 (B1(x); y)) ; output�2 (B1(x); y))gn2N; x;y2f0;1gnc� f(B1(S1(B1(x); f1(B1(x); y))) ; f2(B1(x); y))gn2N; x;y2f0;1gn� f(C1(x; f1(C1(x); y)) ; f2(C1(x); y))gn2N; x;y2f0;1gn� fidealf;C(x; y)gn2N; x;y2f0;1gnNext, suppose that B1 always aborts after receiving the last message, and before sending its lastmessage to Party 2. In this case, we havefreal�;B(x; y)gn2N; x;y2f0;1gn � f(B1(view�1 (B1(x); y)) ; ?)gn2N; x;y2f0;1gnc� f(B1(S1(B1(x); f1(B1(x); y))) ; ?)gn2N; x;y2f0;1gn� f(C1(x; f1(C1(x); y);?) ; ?)gn2N; x;y2f0;1gn� fidealf;C(x; y)gn2N; x;y2f0;1gn61



As a �nal illustration, consider the third extreme case in which B1 always aborts before receivingthe last message. Herefreal�;B(x; y)gn2N; x;y2f0;1gn � f(B1(truncated-view�1 (B1(x); y)) ; ?)gn2N; x;y2f0;1gnc� f(B1(S1(B1(x)) ; ?)gn2N; x;y2f0;1gn� f(C1(x;?) ; ?)gn2N; x;y2f0;1gn� fidealf;C(x; y)gn2N; x;y2f0;1gnIn the general case, machine B1 may abort in certain executions in varying places { in particularsometimes before obtaining the last message or just after it (and before sending its last message).The �rst type of abort depends on the view of B1 in partial executions truncated before it receivesthe last message, whereas the second type depends also on the last message it receives. For bothtype of abort, the behavior in the two cases (real�;B(x; y) and idealf;C(x; y)) is determined byB1 based on a pair of computational indistinguishable ensembles (i.e., the real view of an executionversus a simulated one). Thus, Eq. (2.33) follows.Next, suppose that Party 1 is honest. In this case C1 is determined, and we need to transform theaugmented semi-honest real adversary B2 into a malicious ideal-model adversary C2. The latteroperates as follows, using the two-stage simulator, denoted S2, provided for semi-honest executionsof the private computation of f . (The di�erence w.r.t the previous case is in the last 3 steps of theemulation.) Recall that C2 gets input y 2 f0; 1gn.1. First, C2 computes the substituted input with which B2 enters �. That is, y0 = B2(y).2. Next, C2 invokes the �rst stage of the simulator S2, to obtain the view of a truncated executionof � by a semi-honest party having input y0. That is, T = S2(y0).Machine C2 extracts from T the random-pad, denoted r, of Party 2. This pad correspond tothe random-pad used by B2.3. Using T , machine C2 emulates the execution of B2 on input y0 and random-pad r, up to thepoint where Party 2 is to receive the last message. Towards this end, C2 feeds B2 with inputy0 and random-pad r (i.e., it substitutes r as the random-pad of B2 making it deterministic),and sends B2 messages as appearing in the corresponding locations in T .Note that B2 may abort in such an execution, but in case it does not abort the messages itsends equal the corresponding messages in T (as otherwise one could e�ciently distinguish thesimulation from the real view).4. In case B2 has aborted the execution, machine C2 aborts the execution before invoking thetrusted party. Otherwise, it invokes the trusted party with input y0, and obtains a response,denoted v.(Unlike the case where Party 1 is semi-honest, since the trusted party answers Party 1 �rst,Party 2 does not have the option of stopping the trusted party before it answers Party 2. Yet,we do not need this option either, since in case.)5. Next, C2 invokes the second stage of the simulator S2, to obtain the last message sent toParty 2. It supplies the simulator with the input y0 and the output v and obtains the lastmessage, denoted msg.(Note that Party 2 has already sent its last message, and so the execution of C2 ends here.)62



6. The output of C2 is set to be the output of B2, regardless if B2 has aborted or completed theexecution.We again need to show that Eq. (2.33) holds. The argument is analogous to the one applied forParty 1. Speci�cally, in the simple case where machine B2 never aborts, we havefreal�;B(x; y)gn2N; x;y2f0;1gn � f(output�1 (x;B2(y)) ; B2(view�2 (x;B2(y))))gn2N; x;y2f0;1gnc� f(f1(x;B2(y)) ; B2(S2(y; f2(x;B2(y)))))gn2N; x;y2f0;1gn� f(f1(x;C2(y)) ; C2(y; f2(x;C2(y))))gn2N; x;y2f0;1gn� fidealf;C(x; y)gn2N; x;y2f0;1gnand the proposition follows.2.3.3.3 Conclusion { Proof of Theorem 2.3.1Theorem 2.3.1 follow by combining Propositions 2.3.15 and 2.3.16. Speci�cally, let � be the protocolproduced as in Proposition 2.3.16 when given the functionality f , and �0 be the protocol compiledfrom � by Construction 2.3.13. Furthermore, let A be admissible for the real malicious model,let B be (admissible w.r.t � in the augmented semi-honest model) produced by the transforma-tion in Proposition 2.3.15, and C be (admissible for the ideal malicious model) produced by thetransformation in Proposition 2.3.16. Thenfidealf;C(x; y)gx;y s.t. jxj=jyj c� freal�;B(x; y)gx;y s.t. jxj=jyjc� freal�0;A(x; y)gx;y s.t. jxj=jyjas required by Theorem 2.3.1.

63



Chapter 3General Multi-Party ComputationOur presentation proceeds as in the previous chapter. Again, our ultimate goal is to design protocolswhich may withstand any feasible adversarial behavior. We proceed in two steps. First we consider abenign type of adversary, called semi-honest, and construct protocols which are secure with respectto such an adversary. The de�nition of this type of adversary is very much the same as in thetwo-party case. However, in case of general adversary behavior we consider two models. The �rstmodel of malicious behavior mimics the treatment of adversaries in the two-party case; it allowsthe adversary to control even a majority of the parties, but does not consider the unavoidable earlyabort phenomena as a violation of security. The second model of malicious behavior we assume thatthe adversary can control only a strict minority of the parties. In this model, which would havebeen vacuous in the two-party case, early abort phenomena may be e�ectively prevented. We showhow to transform protocols secure in the semi-honest model into protocols secure in each of the twomalicious-behavior models. As in the two-party case, this is done by forcing parties (in each of thelatter models) to behave in an e�ectively semi-honest manner.The constructions are obtained by suitable modi�cations of the constructions used in the two-party case. Actually, the construction of multi-party protocols for the semi-honest model is a minormodi�cation of the construction used in the two-party case. The same holds for the compilationof protocols for the semi-honest model into protocols for the �rst malicious model. In compilingprotocols for the semi-honest model into protocols for the second malicious model, a new ingredient {Veri�able Secret Sharing (VSS) { is used to \e�ectively prevent" minority parties from aborting theprotocol prematurely. Actually, we shall compile protocols secure in the �rst malicious model intoprotocols secure in the second malicious model.As in the two-party case, we believe that the semi-honest model is not merely an importantmethodological locus, but also provides a good model of certain settings.Organization: In Section 3.1 we de�ne the framework for the entire chapter. In particular, we de-�ne multi-party functionalities, the semi-honest model, and the two malicious models. In Section 3.2we describe the construction of protocols for the semi-honest model, and in Section 3.3 compilerswhich transform protocols from the latter model to protocols secure in each of the two maliciousmodels.
64



3.1 De�nitionsA multi-party protocol problem is casted by specifying a random process which maps sequences ofinputs (one input per each party) to sequences of outputs (one per each party). Let m denote thenumber of parties. It will be convenient to think of m as being �xed, alas one can certainly think ofit as an additional parameter. An m-ary functionality, denoted f : (f0; 1g�)m 7! (f0; 1g�)m, is thusa random process mapping string sequences of the form x = (x1; :::; xm) into sequences of randomvariables, f1(x); :::; fm(x). The semantics is that, for every i, the ith party, initially holds an inputxi, and wishes to obtain the ith element in f(x1; :::; xm), denoted fi(x1; :::; xm). The discussions andsimplifying conventions made in Section 2.1 apply in the current context too. Most importantly, weassume throughout this section that all parties hold inputs of equal length; that is, jxij = jxj j.We comment that it is natural to discuss multi-party functionalities which are \uniform" in thesense that there exists an algorithm for uniformly computing them for each value of m (and ofcourse each m-sequence). One such functionality is the \universal functionality" which is given adescription of a circuit as well as a corresponding sequence of inputs. (For example, the circuitmay be part of the input of each party, and in case these circuits are not identical the value of thefunctionality is de�ned as a sequence of ?'s.) Indeed, a universal functionality is natural to consideralso in the two-party case, but here (in view of the extra parameter m) its appeal is enhanced.The de�nitions presented below (both for the semi-honest and the two malicious models) pre-suppose that honest parties may communicate in secrecy (i.e., or put di�erently, we assume thatadversaries do not tape communication lines between honest parties). This assumption can be re-moved at the expense of further complicating the notations. Furthermore, the issue of providingsecret communication (via encryption schemes) is well understood, and may thus be decoupled fromthe current exposition. Speci�cally, this means that protocols constructed in the sequel need to befurther compiled using encryption schemes if one wishes to withstand wire-tapping attacks by anadversary. Similarly, we assume that messages sent between honest parties arrive intact, whereasone may want to consider adversaries which may inject messages on the communication line betweenhonest parties. Again, this can be counteracted by use of well-understood paradigms { in this casethe use of signature schemes.The de�nitions presented below are all \static" in the sense that the set of dishonest parties is�xed before the execution of the protocol starts, rather than being determined adaptively during theexecution of the protocol. (We stress that in either cases honest parties may not necessarily knowwhich parties are dishonest.) The di�erence between the static model of security considered in thischapter and the \adaptive" model (considered in Section 4.3) becomes crucial when the number ofparties (i.e., m) is treated as a parameter, rather than being �xed.For simplicity of exposition, we assume throughout our exposition that m is �xed. At the end ofeach subsection, we comment on what is needed in order to derive de�nitions when m is a parameter.3.1.1 The semi-honest modelThis model is de�ned exactly as in the two-party case. Recall that a semi-honest party is onewho follows the protocol properly with the exception that it keeps a record of all its intermediatecomputations. Loosely speaking, a multi-party protocol privately computes f if whatever a set(or coalition) of semi-honest parties can be obtained after participating in the protocol, could beessentially obtained from the input and output available to these very parties. Thus, the onlydi�erence between the current de�nition and the one used in the two-party case is that we considerthe gain of a coalition (rather than of a single player) from participating in the protocol.65



De�nition 3.1.1 (privacy w.r.t semi-honest behavior): Let f : (f0; 1g�)m 7! (f0; 1g�)m be an m-ary functionality, where fi(x1; :::; xm), denotes the ith element of f(x1; ::; xm). For I = fi1; :::; itg �[m] def= f1; :::;mg, we let fI(x1; :::; xm) denote the subsequence fi1(x1; :::; xm); :::; fit(x1; :::; xm). Let� be an m-party protocol for computing f .1 The view of the ith party during an execution of � onx = (x1; :::; xm), denoted view�i (x), is de�ned as in De�nition 2.1.1, and for I = fi1; :::; itg, we letview�I (x) def= (I;view�i1(x); :::;view�it(x)).� (deterministic case) In case f is a deterministic m-ary functionality, we say that � privatelycomputes f if there exist polynomial-time algorithm, denoted S, such that for every I as abovefS(I; (xi1 ; :::; xit ); fI(x))gx2(f0;1g�)m c� fview�I (x)gx2(f0;1g�)m (3.1)� (general case) We say that � privately computes f if there exist polynomial-time algorithm,denoted S, such that for every I as abovef(S(I; (xi1 ; :::; xit); fI(x)); f(x))gx2(f0;1g�)m c� f(view�I (x);output�(x))gx2(f0;1g�)m (3.2)where output�(x) denote the output sequence of all parties during the execution representedin view�I (x).Eq. (3.2) asserts that the view of the parties in I can be e�ciently simulated based solely on theirinputs and outputs. The de�nition above can be easily adapted to deal with a varying parameter m.This is hinted by our order of quanti�cation (i.e., \exists an algorithm S so that for any I").2 Wealso note that the simulator can certainly handle the trivial cases in which either I = [m] or I = ;.Author's Note: For further discussion of the extended formulation used in case of ran-domized functionalities, the reader is referred to an analogous discussion in Section 2.1.Again, the rest of the text is somewhat hand-waving when referring to the above issue(regarding randomized functionalities). However, most of the text focuses on deter-ministic functionalities, and so the point is moot. In the cases where we do deal withrandomized functionalities, the simulators do satisfy the stronger requirements assertedby Eq. (3.2), but this fact is not explicitly referred to. This de�ciency will be correctedin future revisions.3.1.2 The two malicious modelsWe now turn to consider arbitrary feasible deviation of parties from a speci�ed multi-party protocol.As mentioned above, one may consider two alternative models:1. A model in which the number of parties which deviate from the protocol is arbitrary. Thetreatment of this case follows the treatment given in the two-party case. In particular, in thismodel one cannot prevent malicious parties from aborting the protocol prematurely, and thede�nition of security has to account for this if it is to have a chance of being met.1 As in Section 2.1, by saying that � computes (rather than privately computes) f , we mean that the outputdistribution of the protocol (when played by honest or semi-honest parties) on the input sequence (x1; :::; xm) isidentically distributed as f(x1; :::; xm).2 Note that for a �xed m it may make as much sense to reverse the order of quanti�ers (i.e., require that \for everyI exists an algorithm SI"). 66



2. A model in which the number of parties which deviate from the protocol is strictly less thanhalf the total number of parties. The de�nitional treatment of this case is simpler than thetreatment given in the two-party case. In particular, one may { in some sense { (e�ectively)prevent malicious parties from aborting the protocol prematurely.3 Consequently, the de�ni-tion of security is \freed" from the need to account for early stopping, and thus is simpler.We further assume (towards achieving a higher level of security) that malicious parties may com-municate (without being detected by the honest parties), and may thus coordinate their maliciousactions. Actually, it will be instructive to think of all malicious parties as being controlled by oneadversary. Our presentation follows the ideal-vs-real emulation paradigm introduced in the previouschapters. The di�erence between the two malicious models is reected in a di�erence in the corre-sponding ideal models, which capture the behavior which a secure protocol is aimed at achieving.The di�erent bound on the number of malicious parties (in the two model) is translated into theonly di�erence between the corresponding real models (or, rather, a di�erence in the adversariesallowed as per each malicious model).Discussion. The above alternative models gives rise to two appealing and yet fundamentallyincomparable notions of security. Put in other words, there is a trade-o� between willing to put-upwith early-abort (i.e., not consider it a breach of security), and requiring the protocol to be robustagainst malicious coalitions controlling a majority of all parties. The question of which notion ofsecurity to prefer depends on the application or the setting. In some settings one may prefer to beprotected from malicious majorities, while giving-up the guarantee that parties cannot abort theprotocol prematurely (while being detected doing so). On the other hand, in settings in which astrict majority of the parties can be trusted to follow the protocol, one may obtain the bene�t ofe�ectively preventing parties to abort the protocol prematurely.Convention. The adversary will be represented as a family of polynomial-size circuits. Such acircuit will capture the actions of the adversary in each of the models. Typically, the adversarywill be given as input the set of parties it controls, denoted I , the local inputs of these parties,denoted xI , and additional inputs as adequate (e.g., the local outputs of parties, or messages theyhave received in the past, etc.). However, we will omit I from the list of inputs to the circuit.(Alternatively, I could be incorporated into the circuit, but we prefer to have it explicit so that onecan refer to it.)3.1.2.1 The �rst malicious modelFollowing the discussion in Section 2.1.2, we conclude that three things cannot be avoided in the�rst malicious model:1. Malicious parties may refuse to participate in the protocol (when the protocol is �rst invoked).2. Malicious parties may substituting their local input (and enter the protocol with an inputother than the one provided to them from the outside).3. Malicious parties may abort the protocol prematurely (e.g., before sending their last message).3 As we shall see, the assumption that malicious parties are in minority opens the door to e�ectively preventingthem from aborting the protocol immaturely. This will be achieved by having the majority players have (together!)enough information so to be able to emulate the minority players in case the latter have decided to abort.67



Accordingly, the ideal model is derived by a straightforward generalization of De�nition 2.1.4. Inlight of this similarity, we allow ourself to be quite terse. To simplify the exposition, we assume that,for every I , �rst the trusted party supplies the adversary with the I-part of the output (i.e., thevalue of fI), and only then may answer the other parties (at the adversary's discretion).4 Actually,as in the two-party case, the adversary has the ability to prevent the trusted party from answeringall parties only in case it controls Party 1.De�nition 3.1.2 (malicious adversaries, the ideal model { �rst model): Let f : (f0; 1g�)m 7!(f0; 1g�)m be an m-ary functionality, I = fi1; :::; itg � [m], and (x1; :::; xm)I = (xi1 ; :::; xit). Apair (I; C), where I � [m] and C is a polynomial-size circuit family represents an adversary in theideal model. The joint execution under (I; C) in the ideal model (on input x = (x1; :::; xm)), denotedideal(1)f;(I;C)(x), is de�ned as follows(C(xI ;?) ; ?; :::;?) if C(xI) = ? (3.3)(C(xI ; fI(C(xI); x�I );?) ; ?; :::;?) if C(xI) 6= ?, 1 2 I and yI = ? (3.4)where yI def= C(xI ; fI(C(xI); x�I)).(C(xI ; fI(C(xI); x�I)) ; f�I(C(xI); x�I)) otherwise (3.5)where �I def= [m] n I.Eq. (3.3) represents the case where the adversarymakes some party (it controls) abort before invokingthe trusted party. Eq. (3.4) represents the case where the trusted party is invoked with possiblysubstituted inputs, denoted C(xI), and is halted right after supplying the adversary with the I-partof the output, denoted yI = fI(C(xI); x�I). This case is allowed only when 1 2 I , and so Party 1can always be \blamed" when this happens.5 Eq. (3.5) represents the case where the trusted partyis invoked with possibly substituted inputs (as above), but is allowed to answer all parties.De�nition 3.1.3 (malicious adversaries, the real model): Let f be as in De�nition 3.1.2, and �be an m-party protocol for computing f . The joint execution of � under (I; C) in the real model (oninput sequence x = (x1; :::; xm)), denoted real�;(I;C)(x), is de�ned as the output sequence resultingof the interaction between the m parties where the messages of parties in I are computed accordingto C and the messages of parties not in I are computed according to �.In the sequel, we will assume that the circuit representing the real-model adversary is deterministic.This is justi�ed by standard techniques: See discussion following De�nition 2.1.6. Having de�nedthe ideal and real models, we obtain the corresponding de�nition of security.De�nition 3.1.4 (security in the �rst malicious model): Let f and � be as in De�nition 3.1.3,Protocol � is said to securely compute f (in the �rst malicious) if there exists a polynomial-timecomputable transformation of polynomial-size circuit families A = fAng for the real model (of De�-nition 3.1.3) into polynomial-size circuit families B = fBng for the ideal model (of De�nition 3.1.2)so that for every I � [m]fideal(1)f;(I;B)(x)gn2N ; x2(f0;1gn)m c� freal�;(I;A)(x)gn2N ; x2(f0;1gn)m4 A less signi�cant simpli�cation is having the m-sequence of outputs not be presented in the \correct" order; thatis, the outputs are presented so that the outputs of malicious parties appear �rst followed by the outputs of honestparties, whereas (unless I = f1; :::; tg) the order should have been di�erent (i.e., the output of party i should havebeen in location i).5 In fact, in the protocols presented below, early abort is always due to malicious behavior of Party 1. ByDe�nition 3.1.4 (below), this translates to malicious behavior of Party 1 in the ideal model.68



When the context is clear, we sometimes refer to � as an implementation of f .We stress that the resulting adversary in the ideal model (i.e., B) controls exactly the same set ofparties (i.e., I) as the adversary in the real model (i.e., A).3.1.2.2 The second malicious modelIn the second model, where malicious players are in strict minority, the early-abort phenomenacan be e�ectively prevented. Thus, in this case, there is no need to \tolerate" early-abort andconsequently our de�nition of security requires \proper termination" of executions. This is reectedin the de�nition of the ideal model, which actually becomes simpler. However, since the de�nitiondi�ers more substantially from the two-party one, we present it in more detail (than done in thepresentation of the �rst malicious model).The ideal model. Again, we will allow in the ideal model whatever cannot be possibly preventedin any real execution.6 Speci�cally, we allow a malicious party in the ideal model to refuse toparticipate in the protocol or to substitute its local input. (Clearly, neither can be prevent by atrusted third party.) Thus, an execution in the ideal model proceeds as follows (where all actions ofthe both honest and malicious parties must be feasible to implement).Inputs: Each party obtains an input; the one of Party i is denoted zi.Send inputs to trusted party: An honest party always sends z to the trusted party. The mali-cious minority parties may, depending on their inputs, z1; :::; zt, either abort or sends modi�edz0i 2 f0; 1gjzij to the trusted party.Trusted party answers the parties: In case it has obtained a valid input sequence, x = (x1; :::; xm),the trusted party computes f(x), and replies to the ith party with fi(x), for i = 1; :::;m. Oth-erwise, the trusted party replies to all parties with a special symbol, ?.Outputs: An honest party always outputs the message it has obtained from the trusted party. Themalicious minority parties may output an arbitrary (polynomial-time computable) function oftheir initial inputs and the messages they have obtained from the trusted party.The ideal model computation is captured in the following de�nition, where the circuit C representthe coordinated activities of all malicious parties as impersonated by a single adversary. To simplifythe exposition, we treat the case in which malicious parties refuse to enter the protocol as if they havesubstituted their inputs by some special value, denoted ?. (The functionality f can be extendedso that if any of the inputs equals ? then all outputs are set to ?.) Thus, there is a single case toconsider: All parties send (possibly substituted) inputs to the trusted party, who always responses.De�nition 3.1.5 (malicious adversaries, the ideal model { second model): Let f : (f0; 1g�)m 7!(f0; 1g�)m be an m-ary functionality, I = fi1; :::; itg � [m], and (x1; :::; xm)I = (xi1 ; :::; xit). Apair (I; C), is called admissible if t < n=2 and C = fCngn2N is a family of polynomial-size circuits.The joint execution under (I; C) in the ideal model (on input sequence x = (x1; :::; xm)), denotedideal(2)f;(I;C)(x), is de�ned as follows(C(xI ; fI(C(xI ); x�I)) ; f�I(C(xI ); x�I)) (3.6)6 Recall that an alternative way of looking at things is that we assume that the the parties have at their disposala trusted third party, but even such a party cannot prevent speci�c malicious behavior.69



where �I def= [m] n I.Note that (again) the m-sequence of outputs is not presented in the \correct" order; that is, theoutputs are presented so that the outputs of malicious parties appear �rst followed by the outputs ofhonest parties, whereas (unless I = f1; :::; tg) the order should have been di�erent (i.e., the outputof party i should have been in location i). This convention simpli�es the presentation, while havingno signi�cant impact on the essence. In the sequel we will refer to the pair (I; C) as an adversary.(Note that I can indeed be incorporated into C.)Execution in the real model. We next consider the real model in which a real (multi-party)protocol is executed (and there exist no trusted third parties). In this case, a malicious parties mayfollow an arbitrary feasible strategy; that is, any strategy implementable by polynomial-size circuits.Again, we consider these parties as being controlled by a single adversary, which is represented bya family of polynomial-size circuits. The resulting de�nition is exactly the one used in the �rstmalicious model (i.e., De�nition 3.1.3), except that here we will only consider minority coalitions(i.e., jI j < m=2).Security as emulation of real execution in the ideal model. Having de�ned the ideal andreal models, we obtain the corresponding de�nition of security. Loosely speaking, the de�nitionasserts that a secure multi-party protocol (in the real model) emulates the ideal model (in which atrusted party exists). This is formulated by saying that admissible adversaries in the ideal-model areable to simulate (in the ideal-model) the execution of a secure real-model protocol (with admissibleadversaries). Note that the following de�nition di�ers from De�nition 3.1.4 in two aspects: Firstly,it quanti�es only on minority collisions (i.e., jI j < m=2); and, secondly, it refers to the second idealmodel (i.e., ideal(2)) rather than to the �rst (i.e., ideal(1)).De�nition 3.1.6 (security in the second malicious model, assuming honest majority): Let f and� be as in De�nition 3.1.3, Protocol � is said to securely compute f (in the second maliciousmodel) if there exists a polynomial-time computable transformation of polynomial-size circuit familiesA = fAng for the real model (of De�nition 3.1.3) into polynomial-size circuit families B = fBng forthe ideal model (of De�nition 3.1.5) so that for every I � [m] with jI j < m=2fideal(2)f;(I;B)(x)gn2N ; x2(f0;1gn)m c� freal�;(I;A)(x)gn2N ; x2(f0;1gn)mWhen the context is clear, we sometimes refer to � as an implementation of f .To deal with m as a parameter (rather than a �xed constant), one needs to consider sequences (ofstrings) so that both the length of individual strings as well as the number of strings may vary.Adversaries will be de�ned as families of circuits having two parameters (i.e., C = fCm;ngn;m2N),and polynomial-size would mean polynomial in both n and m. Clearly, all these extensions pose noreal problem (beyond the usage of even more cumbersome notations).3.2 Construction for the Semi-Honest ModelOur construction of private multi-party protocols (i.e., secure versus semi-honest behavior) for anygiven multi-argument functionality follows the presentation of the two-party case. For simplicity,70



we think of the number of parties m as being �xed. The reader may verify that the dependency ofour constructions on m is at most polynomial.Our protocol construction adapts the one used in the two-party case (see Section 2.2). Thatis, we consider a GF(2) circuit for evaluating the m-ary functionality f , and start by letting eachparty share its input bits with all other parties so that the sum of all shares equals the input bit.Going from the input wires to the output wires, we proceed to privately compute shares of each wirein the circuit so that the sum of the shares equals the correct value. We are faced with only oneproblem: When evaluating a multiplication gate of the circuit, we have party i holding bits ai andbi, and we need to conduct a private computation so that this party ends-up with a random bit ciand (Pmi=1 ai) � (Pmi=1 bi) =Pmi=1 ci holds. More precisely, we are interested in privately computingthe following randomized m-ary functionality((a1; b1); :::; (am; bm)) 7! (c1; :::; cm) uniformly in f0; 1gm (3.7)subject to Pmi=1 ci = (Pmi=1 ai) � (Pmi=1 bi). (3.8)Thus, all that we need to do on top of Section 2.2 is to provide a private m-party computation ofthe above functionality. This is done by privately reducing, for arbitrary m, the computation ofEq. (3.7){(3.8) to the computation of the same functionality in case m = 2, which in turn coincideswith Eq. (2.10){(2.11). But �rst we need to de�ne an appropriate notion of reduction. Indeed, thenew notion of reduction is merely a generalization of the notion presented in Section 2.2.3.2.1 A composition theoremWe wish to generalize the notion of reduction presented in Section 2.2 (in the context of two-party(semi-honest) computation). Here the reduction is an m-party protocol which may invoke a k-aryfunctionality in its oracle calls, where k � m. In case k < m, an oracle call needs to specify alsothe set of parties who are to provide the corresponding k inputs. Actually, the oracle call needsto specify the order of these parties (i.e., which party should supply which input, etc.). (We notethat the ordering of parties needs to be speci�ed also in case k = m, and indeed this was doneimplicitly in Section 2.2, where the convention was that the party who makes the oracle is requestis the one supplying the �rst input. In case k > 2 such a convention does not determine thecorrespondence between parties and roles, and thus we use below an explicit mechanism for de�ningthe correspondence.)De�nition 3.2.1 (m-party protocols with k-ary oracle access): As in the two-party case, a oracle-aided protocol is a protocol augmented by a pair of oracle-tapes, per each party, and oracle-call stepsde�ned as follows. Each of the m parties may send a special oracle request message, to all otherparties. The oracle request message contains a sequence of k distinct parties, called the requestsequence, which are to supply queries in the current oracle call. In response, each party speci�ed inthe request sequence writes a string, called its query, on its own write-only oracle-tape. At this pointthe oracle is invoked and the result is that a string, not necessarily the same, is written by the oracleon the read-only oracle-tape of each of the k speci�ed parties. This k-sequence of strings is calledthe oracle answer.One may assume, without loss of generality, that the party who invokes the oracle is the one whoplays the role of the �rst party in the reduction (i.e., the �rst element in the request sequence isalways the identity of the party which requests the current oracle call).71



De�nition 3.2.2 (reductions):� An m-party oracle-aided protocol is said to be using the k-ary oracle-functionality f , if theoracle answers are according to f . That is, when the oracle is invoked with request sequence(i1; :::; ik), and the query-sequence q1; :::; qk is supplied by parties i1; :::; ik, the answer-sequenceis distributed as f(q1; :::; qk). Speci�cally, party ij in the m-party protocol (the one whichsupplied qj), is the one which obtains the answer part fj(q1; :::; qk).� An m-party oracle-aided protocol using the k-ary oracle-functionality f is said to privatelycompute g if there exists a polynomial-time algorithm, denoted S, satisfying Eq. (3.2), wherethe corresponding views are de�ned in the natural manner.� An m-party oracle-aided protocol is said to privately reduce the m-ary functionality g to thek-ary functionality f , if it privately computes g when using the oracle-functionality f . In sucha case we say that g is privately reducible to f ,We are now ready to generalize Theorem 2.2.3:Theorem 3.2.3 (Composition Theorem for the semi-honest model, multi-party case): Suppose thatthe m-ary functionality g is privately reducible to the k-ary functionality f , and that there exists ak-party protocol for privately computing f . Then there exists an m-party protocol for privatelycomputing g.Proof Sketch: The construction supporting the theorem is identical to the one used in the proofof Theorem 2.2.3: Let �gjf be a oracle-aided protocol which privately reduces g to f , and let �f bea protocol which privately computes f . Then, a protocol � for computing g is derived by startingwith �gjf , and replacing each invocation of the oracle by an execution of �f . Clearly, � computesg. We need to show that it privately computes g.We consider an arbitrary set I � [m] of semi-honest parties in the execution of �. Note that, fork < m (unlike the situation in the two-party case), the set I may induce di�erent sets of semi-honestparties in the di�erent executions of �f (replacing di�erent invocations of the oracle). Still our\uniform" de�nition of simulation (i.e., uniform over all possible sets of semi-honest parties) keepsus away from trouble. Speci�cally, let Sgjf and Sf be the simulators guaranteed for �gjf and �f ,respectively. We construct a simulation S, for �, in the natural manner. On input (I; xI ; fI(x)) (seeDe�nition 3.1.1), we �rst run Sgjf (I; xI ; fI(x)), and obtain the view of the semi-honest coalition Iin �gjf . This view includes sequence of all oracle-call requests made during the execution as wellas the sequence of parties which supplies query-parts in each such call. The view also containsthe query-parts supplied by the parties in I as well as the corresponding responses. For each suchoracle-call, we denote by J the subset of I which supplied query-parts in this call, and just invokeSf providing it with the subset J as well as with the corresponding J-parts of queries and answers.Thus, we �ll-up the view of I in the current execution of �f . (Recall that Sf can also handle thetrivial cases in which either jJ j = k or jJ j = 0.)It is left to show that S indeed generates a distribution indistinguishable from the view of semi-honest parties in actual executions of �. As in the proof of Theorem 2.2.3, this is done by introducingan imaginary simulator, denoted S0. This imaginary simulator invokes Sgjf , but augment the view ofthe semi-honest parties with views of actual executions of protocol �f on the corresponding query-sequences. (The query-sequences is completed in an arbitrary consistent way.) As in the proof ofTheorem 2.2.3, one can show that the outputs of S0 and S are computationally indistinguishable andthat the output of S0 is computationally indistinguishable from the view of the semi-honest partiesin �. The theorem follows. 72



3.2.2 Privately computing Pi ci = (Pi ai) � (Pi bi)We now turn to the m-ary functionality de�ned in Eq. (3.7){(3.8). Recall that the arithmetic is thatof GF(2), and so �1 = +1 etc. The key observation is that mXi=1 ai! � mXi=1 bi! = mXi=1 aibi + X1�i<j�m (aibj + ajbi) (3.9)= (1� (m� 1)) � mXi=1 aibi + X1�i<j�m(ai + aj) � (bi + bj)= m � mXi=1 aibi + X1�i<j�m(ai + aj) � (bi + bj) (3.10)where the last equality relies on the speci�cs of GF(2). Now, looking at Eq. (3.10), we observethat each party, i, may compute (by itself) the term m � aibi, whereas each 2-subset, fi; jg, mayprivately compute shares to the term (ai + aj) � (bi + bj), by invoking Corollary 2.2.9. This leads tothe following construction.Construction 3.2.4 (privately reducing the m-party computation of Eq. (3.7){(3.8) to the two-party computation of Eq. (2.10){(2.11)):Inputs: Party i holds (ai; bi) 2 f0; 1g� f0; 1g, for i = 1; :::;m.Step 1 { Reduction: Each pair of parties, (i; j), where i < j, invokes the 2-ary functionality ofEq. (2.10){(2.11). Party i provides the input pair, (ai; bi), whereas Party j provides (aj ; bj).Let us denote the oracle respond to Party i by cfi;jgi , and the respond to Party j by cfi;jgj .Step 2: Party i sets ci = maibi +Pj 6=i cfi;jgi .Outputs: Party i outputs ci.We �rst observe that the above reduction is valid; that is, the output of all parties indeed sum-upto what they should. It is also easy to see that the reduction is private. That is,Proposition 3.2.5 Construction 3.2.4 privately reduces the computation of the m-ary functionalitygiven by Eq. (3.7){(3.8) to the computation of the 2-ary functionality given by Eq. (2.10){(2.11).Proof Sketch: We construct a simulator, denoted S, for the view of parties in the oracle-aidedprotocol, denoted �, of Construction 2.2.7. Given a set of semi-honest parties, I = fi1; :::; itg (witht < m), and a sequence of inputs (ai1 ; bi1); ::::; (ait ; bit) and outputs ci1 ; :::; cit , the simulator proceedsas follows.1. For each pair, (i; j), where both i; j 2 I , it uniformly selects cfi;jgi 2 f0; 1g and sets cfi;jgj =cfi;jgi + (ai + aj) � (bi + bj).2. Let �I def= [m] n I , and let ` be the largest element in �I . (Such an ` 2 [m] exists since jI j < m).For each i 2 I and each j 2 �I n f`g, the simulator uniformly selects cfi;jgi 2 f0; 1g. Finally, itsets cfi;`gi to ci +maibi +Pj 62fi;`g cfi;jgi . 73



3. The simulator outputs all cfi;jgi 's generated above.We claim that the output of the simulator is distributed identically to the view of the parties in Iduring the execution of the oracle-aided protocol. That is, we claim that for every such I and everyx = ((a1; b1); :::; (am; bm)), S(I; xI ; fI(x)) � view�I (x) (3.11)Note that fI(x) is uniformly distributed over f0; 1gt. The same holds also for the outputs of I in� (by looking at the contribution of the ci;`i 's to the output of i 2 I). So we may consider the twodistributions in Eq. (3.11), when conditioned on any sequence of parties' outputs, ci1 ; :::; cit . In sucha case, we show that the views of parties in I (during an execution of �) are distributed exactlyas in the simulation. Speci�cally, for i; j 2 I , the oracle answer on ((ai; bi); (aj ; bj)) is uniformlydistributed over a pair of bits summing-up to (ai + aj) � (bi + bj) (which is exactly what happensin the simulation). Similarly, for every i 2 I , the answers obtained in the m � 1 oracle invocationswill be uniform over the sequences agreeing with the above and summing-up to ci + maibi. Theproposition follows.As an immediate corollary to Proposition 3.2.5, Corollary 2.2.9, and the Composition Theorem(Theorem 3.2.3), we obtainCorollary 3.2.6 Suppose that trapdoor permutation exist. Then the m-ary functionality of Eq. (3.7){(3.8) is privately computable (in the m-party semi-honest model).3.2.3 The multi-party circuit evaluation protocolFor sake of completeness, we explicitly present the m-party analogue of the protocol of Section 2.2.4.Speci�cally, we show that the computation of any deterministic functionality, which is expressed byan arithmetic circuit over GF(2), is privately reducible to the functionality of Eq. (3.7){(3.8).Our reduction follows the overview presented in the beginning of this section. In particular, thesharing of a bit-value v between m parties means a uniformly selected m-sequence of bits (v1; :::; vm)so that v =Pmi=1 vi, where the ith party holds vi. Our aim is to propagate, via private computation,shares of the input wires of the circuit into shares of all wires of the circuit, so that �nally we obtainshares of the output wires of the circuit.We will consider an enumeration of all wires in the circuit. The input wires of the circuit, n pereach party, will be numbered 1; 2::::;m �n so that, for j = 1; :::; n, the jth input of Party i correspondsto the (i� 1) � n+ jth wire. The wires will be numbered so that the output wires of each gate havea larger numbering than its input wires. The output-wires of the circuit are the last ones. For sakeof simplicity we assume that each party obtains n output bits, and that the jth output bit of the ithparty corresponds to wire N � (m+ 1� i) � n+ j, where N denotes the size of the circuit.Construction 3.2.7 (privately reducing any deterministic m-ary functionality to the functionalityof Eq. (3.7){(3.8), for any m � 2):Inputs: Party i holds the bit string x1i � � �xni 2 f0; 1gn, for i = 1; :::;m.Step 1 { Sharing the inputs: Each party splits and shares each of its input bits with all otherparties. That is, for every i = 1; :::;m and j = 1; :::; n, and every k 6= i, party i uniformlyselects a bit r(i�1)n+jk and sends it to party k as the party's share of input wire (i� 1) � n+ j.Party i sets its own share of the (i� 1) � n+ jth input wire to xji +Pk 6=i r(i�1)n+jk .74



Step 2 { Circuit Emulation: Proceeding by the order of wires, the parties use their shares of thetwo input wires to a gate in order to privately compute shares for the output wire of the gate.Suppose that the parties hold shares to the two input wires of a gate; that is, for i = 1; :::;m,Party i holds the shares ai; bi, where a1; :::; am are the shares of the �rst wire and b1; :::; bm arethe shares of the second wire. We consider two cases.Emulation of an addition gate: Each party, i, just sets its share of the output wire of thegate to be ai + bi.Emulation of a multiplication gate: Shares of the output wire of the gate are obtained byinvoking the oracle for the functionality of Eq. (3.7){(3.8), where Party i supplies theinput (query-part) (ai; bi). When the oracle responses, each party sets its share of theoutput wire of the gate to equal its part of the oracle answer.Step 3 { Recovering the output bits: Once the shares of the circuit-output wires are com-puted, each party sends its share of each such wire to the party with which the wire isassociated. That is, for i = 1; :::;m and j = 1; :::; n, each party sends its share of wireN � (m+1� i) �n+ j to Party i. Each party recovers the corresponding output bits by adding-up the corresponding m shares; that is, the share it had obtained in Step 2 and the m�1 sharesit has obtained in the current step.Outputs: Each party locally outputs the bits recovered in Step 3.For starters, let us verify that the output is indeed correct. This can be shown by induction onthe wires of the circuits. The induction claim is that the shares of each wire sum-up to the correctvalue of the wire. The base case of the induction are the input wires of the circuits. Speci�cally,the (i� 1) � n+ jth wire has value xji and its shares indeed sum-up to xji . For the induction step weconsider the emulation of a gate. Suppose that the values of the input wires (to the gate) are a andb, and that their shares a1; :::; am and b1; :::; bm indeed satisfy Pi ai = a and Pi bi = b. In case ofan addition gate, the shares of the output wire set to be a1 + b1; :::; am + bm indeed satisfyingXi (ai + bi) =  Xi ai!+ Xi bi! = a+ bIn case of a multiplication gate, the shares of the output wire were set to be c1; :::; cm, so thatPi ci = (Pi ai) � (Pi bi) holds. Thus, Pi ci = a � b as required.Privacy of the reduction. Analogously to Proposition 2.2.11, we now show that Construc-tion 3.2.7 indeed privately reduces the computation of a circuit to the multiplication-gate emulation.That is,Proposition 3.2.8 Construction 3.2.7 privately reduces the evaluation of arithmetic circuits overGF(2), representing an m-ary deterministic functionality, to the functionality of Eq. (3.7){(3.8).Proof Sketch: In proving this proposition, for any set I � [m], we need to simulate the joint viewof the parties in I = fi1; :::; itg. This is done by direct analogy to the proof of Proposition 2.2.11,where m = 2 (and where we have considered, without loss of generality, I = f1g).The simulator gets the inputs, denoted x1i1 ; :::; xni1 ; :::; x1it ; :::; xnit , as well as the outputs, denotedy1i1 ; :::; yni1 ; :::; y1it ; :::; ynit , to the parties in I . It operates as follows.75



1. The simulator uniformly selects coins for each party in I , as done in Step 1 of the protocol.These coins determine the messages to be sent to other parties in I as well as the party's sharesof its own inputs (as in Step 1). Speci�cally, the share of Party i, where i 2 I , of the inputwire corresponding to xji is set to equal the sum of all other shares (of this wires) with xji .Finally, the simulator selects uniformly values to be used as Step 1 incoming-messages eachparty in I has received from parties in �I def= [m] n I (as shares of these parties' inputs).This completes the computation of the shares of all circuit-input wires held by parties in I .2. The shares, held by the parties in I , of all other wires are computed, iteratively gate-by-gate,as follows.� The share of each party i 2 I in the output-wire of an addition gate is set to be the sumof its shares of the input-wires of the gate.� The share of each party i 2 I in the output-wire of a multiplication gate is uniformlyselected in f0; 1g.(The shares computed for output-wires of multiplication gates will be used as the answersobtained, by parties in I , from the oracle.)3. For each wire corresponding to an output, denoted yji , available to Party i in I , the simulatoruniformly selects a sequence of m bits among the sequences which match the shares (of thiswire) held by parties in I and sum-up to yji . (In case jI j = m � 1, this sequence is uniquelydetermined.)4. The simulator outputs the concatenation of the above xji 's and yji 's with the coins generated foreach party in I and the incoming-messages and oracle-answers generated for it. In particular,the latter include the messages generated in Step 1 (simulating Step 1 of the protocol), theconcatenation of the bits selected for the output-wires of multiplication gates (correspondingto the party's view of the oracle answers in Step 2), and the sequences generated in Step 3(corresponding to the party's view in Step 3 of the protocol).Analogously to the proof of Proposition 2.2.11, one may verify that the output of the simulation isdistributed identically to the view of parties I in the execution of the oracle-aided protocol. Theproposition follows.Conclusion. As an immediate corollary to Proposition 3.2.8, Corollary 3.2.6, and the CompositionTheorem (Theorem 3.2.3), we obtain.Corollary 3.2.9 Suppose that trapdoor permutation exist. Then any deterministic m-ary function-ality is privately computable (in the m-party semi-honest model).Furthermore, as in Section 2.2, we may privately reduce the computation of a general (randomized)m-ary functionality, g, to the computation of the deterministic m-ary functionality, f , de�ned byf((x1; r1); :::; (xm; rm)) def= g(�mi=1ri; (x1; :::; xm)) (3.12)where g(r; x) denote the value of g(x) when using coin tosses r 2 f0; 1gpoly(jxj) (i.e., g(x) is the ran-domized process consisting of uniformly selecting r 2 f0; 1gpoly(jxj), and deterministically computingg(r; x)). Combining this reduction with Corollary 3.2.9 and Theorem 3.2.3, we have76



Theorem 3.2.10 Suppose that trapdoor permutation exist. Then any m-ary functionality is pri-vately computable (in the m-party semi-honest model).3.3 Forcing Semi-Honest BehaviorOur aim is to use Theorem 3.2.10 in order to establish the main result of this chapter; that is,Theorem 3.3.1 (main result for multi-party case): Suppose that trapdoor permutation exist. Thenany m-ary functionality can be securely computable in each of the two malicious models.The theorem will be established in two steps. Firstly, we compile any protocol for the semi-honestmodel into an \equivalent" protocol for the �rst malicious model. The compiler is very similar tothe one used in the two-party case. Next, we compile any protocol for the �rst malicious modelinto an \equivalent" protocol for the second malicious model. The heart of the second compiler is aprimitive alien to the two-party case { Veri�able Secret Sharing (VSS).For simplicity, we again think of the number of parties m as being �xed. The reader may againverify that the dependency of our constructions on m is at most polynomial.3.3.1 Changing the communication modelTo simplify the exposition of the multi-party compilers, we describe them as producing protocols fora communication model consisting of a single broadcast channel (and no point-to-point links). Weassume, without loss of generality, that in each communication round only one (predetermined) partymay send a message and that this message arrives to all processors. Such a broadcast channel canbe implemented via an (authenticated) Byzantine Agreement protocol, thus providing an emulationof our model on the standard point-to-point model (in which a broadcast channel does not exist).We stress that indeed the �rst compiler, as presented below, transforms protocols which aresecure in the semi-honest point-to-point model (of private channels) into protocols secure in the(�rst) malicious broadcast model. Actually, we �rst preprocess protocols secure in the semi-honestpoint-to-point model into protocols secure in the semi-honest broadcast-channel model, and only thenapply the two compilers, each taking and producing protocols in the broadcast-channel model (alassecure against di�erent types of adversaries). Thus, the full sequence of transformations establishingTheorem 3.3.1 based on Theorem 3.2.10 is as follows� Precompiling a protocol �0 which privately computes a functionality f in the point-to-pointmodel (of the previous section), into a protocol �00 which privately computes f in the broadcastmodel (where no private point-to-point channels exist).� Using the �rst compiler (of Section 3.3.2) to transform �00 (secure in the semi-honest model)into a protocol �01 secure in the �rst malicious model.We stress that both �00 and �01 operate and are evaluated for security in a communicationmodel consisting of a single broadcast channel. The same holds also for �02 mentioned next.� Using the second compiler (of Section 3.3.3) to transform �01 (secure in the �rst maliciousmodel) into a protocol �02 secure in the second malicious model.� Postcompiling each of the protocols �01 and �02, which are secure in the �rst and secondmalicious models when communication is via a broadcast channel, into corresponding protocols,77



�1 and �2, for the standard point-to-point model. That is, �1 (resp., �2) securely computesf in the �rst (resp., second) malicious model in which communication is via point-to-pointchannels.We note that security holds even if the adversary is allowed to wire-tap the (point-to-point)communication lines between honest parties.We start by discussing the security de�nitions for the broadcast communication model, and present-ing the precompiler and the postcompiler mentioned above. Once this is done, we turn to the realcore of this section { the two compilers which operate on protocols in the broadcast channel.De�nitions. Indeed, security in the broadcast model was not de�ned above. However, the threerelevant de�nitions for the broadcast communication model are easily derived from the correspond-ing de�nitions given in Section 3.1, assuming a point-to-point communication model. Speci�cally, inde�ning security in the semi-honest model one merely includes the entire transcript of the commu-nication over the (single) broadcast channel in the party's view. Similarly, when de�ning securityin the two malicious models one merely notes that the \real execution model" (i.e., real�;(I;C))changes (as the protocol is now executed over a di�erent communication media), whereas the \idealmodel" (i.e., ideal(1)f;(I;C) or ideal(2)f;(I;C)) remains intact.Precompiler. It is easy to (securely) emulate over a (single) broadcast channel any protocol �for the (private) point-to-point communication model. All one needs to do is use a secure public-keyencryption scheme. That is, each party randomly generates a pair of encryption/decryption keys,posts the encryption-key on the broadcast channel, and keeps the decryption-key secret. Any partyinstructed (by �) to send a message, msg, to Party i, encrypts msg using the encryption-key posted byParty i, and places the resulting ciphertext on the broadcast channel (indicating that it is intendedfor Party i). Party i recovers msg by using its decryption-key, and proceeds as directed by �. Denotethe resulting protocol by �0. Note that we merely consider the e�ect of this transformation in thesemi-honest model.Proposition 3.3.2 (precompiler): Suppose that trapdoor permutation exist. Then any m-ary func-tionality is privately computable in the broadcast communication model.Proof Sketch: Let f be anm-ary functionality, and � be a protocol (guaranteed by Theorem 3.2.10)for privately computing f in the point-to-point communication model. Given a trapdoor permu-tation, we construct a secure public-key encryption scheme and use it to transform � into �0 asdescribed above. To simulate the view of parties in an execution of �0 (taking place in the broadcastcommunication model), we �rst simulate their view in an execution of � (taking place in the point-to-point communication model). We then encrypt each message sent by a party in the semi-honestcoalition, as this would be done in an execution of �0. Note that we know both the message andthe corresponding encryption-key. We do the same for messages received by semi-honest parties.All that remain is to deal with messages, which we may not know, sent between two honest parties.Here we merely place an encryption of an arbitrary message. This concludes the description of the\broadcast-model" simulator.The analysis of the latter simulator combines the guarantee given for the \point-to-point simu-lator" and the guarantee that the encryption scheme is secure. That is, ability to distinguish theoutput of the \broadcast-model" simulator from the execution view (in the broadcast model) yieldseither (1) ability to distinguish the output of the \point-to-point" simulator from the execution view78



(in the point-to-point model) or (2) ability to distinguish encryptions under the above public-keyencryption scheme. In both cases we reach contradiction to our hypothesis.Postcompiler. Here we go the other way around. We are given a protocol which securely com-putes (in one of the two malicious models) some functionality, where the protocol uses a broadcastchannel. We wish to convert this protocol into an equivalent one which works in a point-to-pointcommunication model. (Actually, we do not go all the way back, as we do not assume these point-to-point lines to provide private communication.) Thus, all we need to do is emulate a broadcastchannel over a point-to-point network and in the presence of malicious parties { which reduces tosolving the celebrated Byzantine Agreement problem. However, we have signature schemes at ourdisposal and so we merely need to solve the much easier problem known as authenticated ByzantineAgreement. For sake of self-containment we de�ne the problem and present a solution.Authenticated Byzantine Agreement: Suppose a synchronous point-to-point model of commu-nication and a signature scheme infrastructure. That is, each party knows the veri�cation-key ofall other parties. Party 1 has an input bit, denoted �, and the objective is to let all honest partiesagree on the value of this bit. In case Party 1 is honest, they must agree on its actual input, butotherwise they may agree on any value (as long as they agree).Construction 3.3.3 (Authenticated Byzantine Agreement): Let m denote the number of parties.We assume that the signature scheme in use has signature length which depends only of the securityparameter, and not on the length of the message to be signed.71. Phase 0: Party 1 should sign its input and sends it to all parties.2. Phase i = 1; :::;m: Each honest party (other than Party 1) proceeds as follows:(a) It inspects the messages it has received at Phase i � 1. Such a message is admissible ifit has the form (v; sp0 ; sp1 ; :::; spi�1), where p0 = 1, all pj 's are distinct, and for everyj = 0; :::; i � 1, the string spj is accepted as a signature to (v; sp0 ; sp1 ; :::; spj�1 ) relativeto the veri�cation key of party pj . Such an admissible message is called an authentic(v; i� 1)-message or an authentic v-message.(We comment that pi�1 is di�erent from the identity of the processing party, receivingthe message.)(b) If the party �nds an authentic (v; i� 1)-message among these messages then it signs thisauthentic (v; i� 1)-message, appends the signature to it, and sends the resulting messageto all parties.8Note that the resulting message is an authentic (v; i)-message.3. Each honest party (other than Party 1) evaluates the situation as follows:� If it has received both an authentic 0-message and an authentic 1-message then it decidesthat Party 1 is malicious and outputs a default value, say 0.7 Such a signature scheme can be constructed given any one-way function. In particular, one signs the hash-valueof the message under a universal one-way hashing function [58]. Maintaining short signatures is important in thisapplication since we are going to iteratively sign messages consisting of the concatenation of an original message andprior signatures.8 For sake of e�ciency, one may instruct the party not to process this authentic (v; i � 1)-message in case it hasseen an authentic (v; j)-message for any j < i� 1 in a prior phase.79



� If for a single v 2 f0; 1g it has received an authentic v-message then it outputs the valuev.� If it has never received an authentic v-message, for any v 2 f0; 1g, then it decides thatParty 1 is malicious and outputs a default value, say 0.The protocol can be easily adapted to handle non-binary input values. For sake of e�ciency, onemay instruct honest parties to forward at most two authentic messages (as this su�ces to establishthat Party 1 is malicious).Proposition 3.3.4 (Authenticated Byzantine Agreement): Assuming that the signature scheme inuse is unforgeable, Construction 3.3.3 satis�es the following two conditions:1. It is infeasible to make any two honest parties output di�erent values.2. If Party 1 is honest then it is infeasible to make any honest party output a value di�erent fromthe input of Party 1.Proof Sketch: Suppose that in Phase i, some honest party sees an authentic (v; i � 1)-message.For this to happen we must have i � 1 � m. Then, it will send an authentic (v; i)-message in thisphase and so all honest parties will see an authentic (v; i)-message in Phase i+1, where i+ 1 � m.Thus, if an honest party see a single (or both possible) authentic v-message then so do all otherhonest parties, and Part 1 follows. Part 2 follows by noting that if Party 1 is honest and has inputv then all honest parties see an authentic (v; 0)-message. Furthermore, none can see an authenticv0-message, for v0 6= v.Author's Note: As observed in [55], repeated invocations of Authenticated ByzantineAgreement are secure only if a high-level process can provide them with distuinct iden-ti�ers. In our case, the postcompiler should provide each invocation of AuthenticatedByzantine Agreement with a distinct ID that will is required to appear in all signedstrings. This will prevent an adversary from using signatures produced in one invocationin its attack on another invocation.3.3.2 The �rst complierWe follow the basic structure of the compiler presented in Section 2.3, and the reader is referredthere for further discussion. Adapting that compiler to the multi-party setting merely requiresgeneralizing the implementation of each of the three phases. Following is a high-level description ofthe multi-party protocols generated by the (multi-party) compiler. Recall that all communication,both in the input protocol as well as in the one resulting from the compilation, is conducted merelyby posting messages on a single broadcast channel.Input-commitment phase: Each of the parties commits to each of its input bits. This will bedone using a multi-party version of the input-commitment functionality of Eq. (2.23).Intuitively, malicious parties may (abort or) substitute their inputs during this phase, but theymay do so depending only on the value of the inputs held by (all) malicious parties.Coin-generation phase: The parties generate random-pads for each of the parties. These padsare intended to serve as the coins of the corresponding parties in their emulation of the semi-honest protocol. Each party obtains the bits of the random-pad to be held by it, whereas the80



other parties obtains commitments to these bits. This will be done using a multi-party versionof coin-tossing functionality of Eq. (2.16).Intuitively, malicious parties may abort during this phase, but otherwise they end-up with auniformly distributed random-pad.Protocol emulation phase: The parties emulate the execution of the semi-honest protocol withrespect to the input committed in the �rst phase and the random-pads selected in the sec-ond phase. This will be done using a multi-party version of the authenticated-computationfunctionality of Eq. (2.30).In order to implement the above phases, we de�ne the natural extensions of the coin-tossing, input-commitment and authenticated-computation functionalities (of the two-party case), and presentsecure implementations of them in the current (�rst malicious) multi-party model. The originalde�nitions and constructions are obtained by setting m = 2.3.3.2.1 Multi-party coin-tossing into the wellWe extend De�nition 2.3.5 (from m = 2) to arbitrary m, as follows.De�nition 3.3.5 (coin-tossing into the well, multi-party version): An m-party coin-tossing intothe well is an m-party protocol for securely computing (in the �rst malicious model) the followingrandomized functionality with respect to some �xed commitment scheme, fCngn2N,(1n; :::; 1n) 7! ((b; r); Cn(b; r); :::; Cn(b; r)) (3.13)where (b; r) is uniformly distributed in f0; 1g� f0; 1gn.Construction 2.3.6 generalizes naturally to the multi-party setting. In the generalization we usethe fact that the zero-knowledge proofs (and proof of knowledge) employed are of the public-coin(a.k.a Arthur-Merlin) type. That is, the role of the veri�er in these proof systems is restricted totossing coins, sending their outcome to the prover, and evaluating a predetermined predicate at theend of the interaction. Thus, anybody seeing the transcript of the interaction (i.e., the sequence ofmessages exchanged over the broadcast channel) can determine whether the veri�er has accepted orrejected the proof.Construction 3.3.6 (Construction 2.3.6, generalized):Inputs: Each party gets security parameter 1n.Convention: Any deviation from the protocol, by a party other than Party 1, will be interpretedas a canonical legitimate message. In case Party 1 aborts or is detected cheating, all honestparties halt outputting the special symbol ?.Step C1: The parties generate uniformly distributed bits, b0; b1; :::; bn, known to Party 1.Speci�cally, for j = 0; 1; :::; n, the parties execute the following four steps:Step C1.1: Party 1 uniformly selects (�j ; sj) 2 f0; 1g � f0; 1gn, and places cj def= Cn(�j ; sj)on the broadcast channel. 81



Step C1.2: The parties invoke m�1 instances of a zero-knowledge strong-proof-of-knowledgeso that Party 1 plays the prover and each of the other m� 1 parties plays the veri�er inone of these invocations (i.e., in the ith invocation Party i + 1 plays the veri�er). Thecommon input to the proof system is cj , the prover gets auxiliary input (�j ; sj), and itsobjective is to prove that it knows (x; y) such thatcj = Cn(x; y) (3.14)We stress that all m � 1 invocations of the proof system takes place over the broadcastchannel, and so all parties may determine if the veri�er should accept or reject in eachof them. In case the veri�er should reject in any of these invocations of the proof system,all parties aborts with output ?.Step C1.3: For i = 2; :::;m, Party i uniformly selects �(i)j 2 f0; 1g, and places �(i)j on thechannel.Author's Note: As pointed out by Yehuda Lindell, Step C1.3 is wrong. It willonly work in case the adversary controls a single party. Otherwise, by controllingParties 1 and m, the adversary may determine the coin bj . What is needed is to�rst have each Party i execute steps analogous to C1.1 and C1.2, and only onceall these are done, each Party i (i > 1) reveals its bit �(i)j .Step C1.4: Party 1 sets bj = �j � (�mi=2�(i)j ).Step C2: Party 1 sets b = b0 and r = b1b2 � � � bn, and places c def= Cn(b; r) on the channel.Step C3: The parties invoke m�1 instances of a zero-knowledge proof system so that Party 1 playsthe prover and each of the other m�1 parties plays the veri�er (i.e., in the ith instance Party i+1 plays the veri�er). The common input to the proof system is (c0; c1; :::; cn; �00; �01; :::; �0n; c),where �0j def= �mi=2�(i)j , the prover gets auxiliary input (�0; �1; :::; �n; s0; s1; :::; sn), and its ob-jective is to prove that there exists (x0; x1; :::; xn; y0; y1; :::; yn) such that(8j cj = Cn(xj ; yj)) ^ (c = Cn(x0 � �00; (x1 � �01) � � � (xn � �0n))) (3.15)Again, all m � 1 invocations of the proof system takes place over the broadcast channel, andso all parties may determine if the veri�er should accept or reject in each of them. In casethe veri�er should reject in any of these invocations of the proof system, all parties aborts withoutput ?.Outputs: Party 1 sets its local output to (b; r), and each other party sets its local output to c,provided they did not halt with output ? before.The fact that the above protocol constitute an m-party coin-tossing protocol (as in De�nition 3.3.5)is established analogously to the proof of Proposition 2.3.7. Speci�cally, one distinguishes the casein which Party 1 is honest (i.e., 1 62 I) from the case in which Party 1 belongs to the maliciouscoalition. In the �rst case, all honest parties are shown to produce a proper output (and towardsthis end one relies again on the perfect completeness9 of the proof systems in use). In the secondcase, the special symbol ? may occur as output, but this is allowed by De�nition 3.1.2. Thus, wehave9 By perfect completeness we mean that, whenever the corresponding assertion does holds, the prover may convincethe veri�er with probability 1. 82



Proposition 3.3.7 Suppose that fCngn2N is a commitment scheme. Then Construction 3.3.6 se-curely implements the coin-tossing functionality of Eq. (3.13) (in the �rst malicious model).Proof Sketch: We employs one of the two strategies used in the proof of Proposition 2.3.7, de-pending on whether Party 1 is honest (i.e., 1 62 I) or not (i.e., 1 2 I).In case Party 1 is honest, the adversary strategy is transformed (from the real model to the idealone) as in the �rst transformation in the proof of Proposition 2.3.7. Note that the only \e�ective"communication in the protocol is between Party 1 and each of the other parties. Thus the argumentis essentially as in the two-party case.In case Party 1 belongs to the malicious parties (i.e., 1 2 I), the adversary strategy is obtainedanalogous to the second transformation in the proof of Proposition 2.3.7. In this case we merelyrely on the fact that there exists i 62 I , and conclude that since this party has executed the role ofveri�er properly the veri�er-acceptance indicates validity of the corresponding claim. The rest ofthe argument is essentially as in the two-party case, with one additional concern: Using the factthat honest parties abort based on the publically known decisions of the veri�er in all instances ofthe proof systems employed, we conclude that they either all output c = Cn(b; r) or all abort (i.e.,output ?).3.3.2.2 Multi-party input-commitment protocolWe extend the de�nition of the bit-committing functionality of Eq. (2.23) (from m = 2) to arbitrarym. Recall that, as before, fCngn2N is an arbitrary commitment scheme.((x; r); 1n; :::; 1n) 7! (�;Cn(x; r); :::; Cn(x; r)) (3.16)Construction 2.3.8 generalizes naturally to the multi-party setting.Construction 3.3.8 (multi-party input-bit commitment protocol):Inputs: Party 1 gets input (�; r) 2 f0; 1g � f0; 1gn, all other parties gets input 1n.Conventions: As in Construction 3.3.6.Step C1: Party 1 posts c def= Cn(�; r) on the broadcast channel.Step C2: The parties invoke m� 1 instances of a zero-knowledge strong-proof-of-knowledge so thatParty 1 plays the prover and each of the other m � 1 parties plays the veri�er in one of theinvocations. The common input to the proof system is c, the prover gets auxiliary inputs (�; r),and its objective is to prove that it knows (x; y) such that c = Cn(x; y). In case the veri�errejects the proof, all parties abort with output ? (otherwise the output will be c).Outputs: For i = 2; ::;m, Party i sets its local output to c.Again, correctness is established analogously to the two-party case (i.e., Proposition 2.3.9).Proposition 3.3.9 Suppose that trapdoor permutation exist. Then, Construction 3.3.8 securelycomputes (in the �rst malicious model) the functionality Eq. (3.16).Proof Sketch: Again, we employs one of the two strategies used in the proof of the correspondingtwo-party case (i.e., Proposition 2.3.9), depending on whether Party 1 is honest (i.e., 1 62 I) or not(i.e., 1 2 I). The adaptation is analogous to what was done in the proof of Proposition 3.3.7.83



3.3.2.3 Multi-party authenticated-computation protocolFinally, we extend the de�nition of the authenticated-computation functionality of Eq. (2.30) (fromm = 2) to arbitrary m. As in Eq. (2.30), we consider two two-argument functions, f; h : f0; 1g� �f0; 1g� 7! f0; 1g�, each being polynomial-time computable. Recall that h captures information on� available to all parties, whereas f captured the desired computation (which may also depend onan auxiliary input �).((�; r; �); (h(�; r); �); :::; (h(�; r); �)) 7! (�; f(�; �); :::; f(�; �)) (3.17)As before, we make the simplifying assumption that h is 1-1 with respect to its �rst argument; thatis, for every � 6= �0 and any r; r0 we have h(�; r) 6= h(�0; r0). The construction used in the proof ofProposition 2.3.12 generalizes in the obvious way and we obtain.Proposition 3.3.10 Suppose that trapdoor permutation exist, and that the function h : f0; 1g� �f0; 1g� 7! f0; 1g� satis�es that for every � 6= �0, the sets fh(�; r) : r 2 f0; 1g�g and fh(�0; r) : r 2f0; 1g�g are disjoint. Then, the functionality of Eq. (3.17) can be securely computed (in the �rstmalicious model).Proof Sketch: The desired protocol follows (using conventions as above).Inputs: Party 1 gets input (�; r; �), and each other party gets input (u; �), where u = h(�; r).Step C1: Party 1 posts v def= f(�; �) on the broadcast channel.Step C2: The parties invokem�1 instances of a zero-knowledge proof system so that Party 1 playsthe prover and each of the other m� 1 parties plays the veri�er in one of the invocations. Thecommon input to the proof system is (v; u; �), the prover gets auxiliary inputs (�; r), and itsobjective is to prove that Eq. (2.31) holds (i.e., there exists x; y s.t (u = h(x; y))^(v = f(x; �))).In case the veri�er rejects the proof, all parties abort with output ? (otherwise the output willbe c).Author's Note: These proofs are executed over the broadcast channel, and so allparties can check whether the veri�er has justi�ablly rejected. We use proof systemsof perfect complewteness and so a veri�er cannot justi�ablly reject when the assertionis valid and the prover is honest.Outputs: For every i = 2; :::;m, Party i sets its local output to v.The fact that the above protocol securely computed the functionality of Eq. (3.17) is established byadapting (as above) the proof presented in the two-party case.3.3.2.4 The compiler itselfWe are now ready to present the compiler. Recall that we are given a multi-party protocol, �, forthe semi-honest model, and we want to generate an \equivalent" protocol �0 for the �rst maliciousmodel. Recall that both the given protocol and the one generated operate in a communication modelconsisting of a single broadcast channel. The compiler is a generalization of the one presented inConstruction 2.3.13 (for m = 2), and the reader is referred there for additional clari�cations.84



Construction 3.3.11 (The �rst multi-party compiler): Given an m-party protocol, �, for the semi-honest model, the compiler produces the following m-party protocol, denoted �0, for the �rst maliciousmodel.Inputs: Party i gets input xi = xi1xi2 � � �xin 2 f0; 1gn.Input-commitment phase: Each of the parties commits to each of its input bits by using a secureimplementation of the input-commitment functionality of Eq. (3.16). These executions arepreceded by the \committing party" selecting a randomization for the commitment scheme Cn.That is, for i = 1; :::;m and j = 1; :::; n, Party i uniformly selects �ij 2 f0; 1gn, and invokesa secure implementation of the input-commitment functionality of Eq. (3.16), playing Party 1with input (xij ; �ij). The other parties play the role of the other parties in Eq. (2.23) withinput 1n, and obtain the output Cn(xij ; �ij). Party i records �ij , and each other party recordCn(xij ; �ij).Coin-generation phase: The parties generate random-pads for the emulation of �. Each partyobtains the bits of the random-pad to be held by it, whereas the other party obtains commitmentsto these bits. This is done by invoking a secure implementation of the coin-tossing functionalityof Eq. (3.13). Speci�cally, the coin-tossing protocol is invoked m � c(n) times, where c(n) is thelength of the random-pad required by one party in �.That is, for i = 1; :::;m and j = 1; :::; c(n), Party i invokes a secure implementation of thecoin-tossing functionality of Eq. (3.13) playing Party 1 with input 1n, and the other parties playthe other roles. Party i obtains a pair, (rij ; !ij), and each other party obtains the correspondingoutput Cn(rij ; !ij). Party i sets the jth bit of the random-pad for the emulation of � to be rij ,and records the corresponding NP-witness (i.e., !ij). Each other party records Cn(rij ; !ij). Inthe sequel, we let ri = ri1ri2 � � � ric(n) denote the random-pad generated for Party i.Protocol emulation phase: The parties use a secure implementation of the authenticated-computationfunctionality of Eq. (3.17) in order to emulate each step of protocol �. The party which is sup-posed to send a message plays the role of Party 1 in Eq. (3.17) and the other parties play theother roles. The inputs �; r; � and the functions h; f , for the functionality of Eq. (3.17), areset as follows:� The string � is set to equal the concatenation of the party's original input and its random-pad, the string r is set to be the concatenation of the corresponding randomizations usedin the commitments and h(�; r) equals the concatenation of the commitments themselves.That is, suppose the message is supposed to be sent by Party j in �. Then� = (xj ; rj) ; where rj = rj1rj2 � � � rjc(n) and xj = xj1xj2 � � �xjnr = (�j1�j2 � � � �jn; !j1!j2 � � �!jc(n))h(�; r) = (Cn(xj1; �j1); Cn(xj2; �j2); :::; Cn(xjn; �jn) ;Cn(rj1; !j1); Cn(rj2; !j2); :::; Cn(rjc(n); !jc(n)))Note that h indeed satis�es h(�; r) 6= h(�0; r0) for all � 6= �0 and all r; r0.� The string � is set to equal the concatenation of all previous messages sent (over thebroadcast channel) by all other parties.85



� The function f is set to be the computation which determines the message to be sent in �.Note that this message is computable in polynomial-time from the party's input (denotedxj above), its random-pad (denoted rj), and the previous messages posted so far (i.e., �).Aborting: In case any of the protocols invoked in any of the above phases terminates in an abortstate, the party (or parties) obtaining this indication aborts the execution, and sets its outputto ?. Otherwise, outputs are as follows.Outputs: At the end of the emulation phase, each party holds the corresponding output of the partyin protocol �. The party just locally outputs this value.We note that both the compiler and the protocols produced by it are e�cient, and that theirdependence on m is polynomially bounded.3.3.2.5 Analysis of the compilerThe e�ect of Construction 3.3.11 will be analyzed analogously to the e�ect of Construction 2.3.13.In view of this similarity we combine the two main steps in this analysis, and state the end result {Theorem 3.3.12 (Restating half of Theorem 3.3.1): Suppose that trapdoor permutation exist. Thenany m-ary functionality can be securely computable in the �rst malicious model (using only point-to-point communication lines). Furthermore, security holds even if the adversary can read all com-munication among honest players.Proof Sketch: We start by noting that the de�nition of the augmented semi-honest model (i.e.,De�nition 2.3.14) applies with any change to the multi-party context, also in case the communicationis via a single broadcast channel. Recall that the augmented semi-honest model allows parties toenter the protocol with modi�ed inputs (rather than the original ones), and abort the execution atany point in time. We stress that in the multi-party augmented semi-honest model, an adversarycontrols all non-honest parties and coordinates their input modi�cations and abort decisions. As inthe two-party case, other than these non-proper actions, the non-honest parties follow the protocol(as in the semi-honest model).We stress that unless stated di�erently, all subsequent statements will refer to the single broadcastchannel communication model. (Only at the very end of this proof, we pass to the point-to-pointcommunication model.)The �rst signi�cant part of the proof is showing that the compiler of Construction 3.3.11 trans-forms any protocol � into a protocol �0 so that executions of �0 in the (real) �rst malicious modelcan be emulated by executions of � in the augmented semi-honest model. This part is analogous toProposition 2.3.15, and its proof is analogous to the proof presented in the two-party case. That is,we transform any malicious adversary (A; I) (for executions of �0) into an augmented semi-honestadversary, (B; I). The construction of B out of A in analogous to the construction of Bmal outof Amal (carried out in the proof of Proposition 2.3.15): Speci�cally, B modi�es inputs accordingto the queries A makes in input-committing phase, uniformly selects random-pad (in accordance tothe coin-generation phase), and aborts in case the emulated machine does so. Thus, B which is anaugmented semi-honest adversary emulates the malicious adversary A.The second signi�cant part of the proof is essentially showing that the protocols generated byConstruction 3.2.7 have the property that their execution in the augmented semi-honest model canbe emulated in the ideal model of De�nition 3.1.2. Actually, there are two minor problems with theabove statement: 86



1. The statement is not quite true. Actually, the protocols generated by Construction 3.2.7 werenot full-speci�ed. What was not speci�ed and is crucial here is the order in which messagesare sent in Step 3 (i.e., the step in which output bits are recovered).To �t our goals, we now further specify Step 3 instructing that Party 1 is the last to send theshares he holds in an output wire of the circuit to the party associated with this wire. Giventhis speci�cation the above claim can be proven analogously to the proof of Proposition 2.3.16.Recall that they key property used in the proof is the fact that the execution view under thisprotocol can be simulated in two stages; the �rst stage depends only on the party's input(here it is the party's' inputs), whereas the second only produces the message correspondingto Step 3. This allows the adversary in the ideal model of De�nition 3.1.2 to emulate realexecutions in the augmented semi-honest model.2. The statement does not quite su�ce. As in the two-party case, we are not interested in theprotocols generated by Construction 3.2.7 but rather in protocols generated as follows:(a) First, the private computation of an arbitrary functionality is reduced to the privatecomputation of a deterministic functionality, using Eq. (3.12).(b) Next, Construction 3.2.7 is applied to the resulting circuit, giving an oracle-aided protocol.(c) Then, the oracle was implemented using Constructions 3.2.4 and 2.2.7.(d) Finally, the resulting protocol is precompiled as in the proof of Proposition 3.3.2.However, as observed in the proof of Proposition 2.3.16, none of these pre/post-processinge�ects the two-stage simulation property. Thus, the statement above does hold also for theprotocols produced in the four-step process described above.Let � denote a protocol, generated by the above four-step process, for privately computing agiven functionality f . Combining the above two parts, we conclude that when feeding � to thecompiler of Construction 3.3.11, the result is a protocol �0 so that executions of �0 in the (real) �rstmalicious model can be emulated in the ideal model of De�nition 3.1.2. Thus, �0 securely computesf in the �rst malicious model.We are almost done. The only problem is that �0 operates in the single broadcast channelcommunication model. This problem is resolved by the postcompiler mentioned in Section 3.3.1.Speci�cally, we implement the broadcast channel over the point-to-point communication model using(authenticated) Byzantine Agreement (cf., Construction 3.3.3).3.3.3 The second complierWe now show how to transform protocols for securely computing some functionality in the �rstmalicious model into protocols which securely computing it in the second malicious model. Westress that again all communication, both in the input protocol as well as in the one resulting fromthe compilation, is conducted merely by posting messages on a single broadcast channel.The current compiler has little to do with anything done in the two-party case. The onlysimilarities are in the technical level; that is, in using secure implementation of the authenticatedcomputation functionality, which in turn amounts to using zero-knowledge proofs. The main noveltyis in the use of a new ingredient { Veri�able Secret Sharing (VSS).Interestingly, we use secure in the �rst malicious model implementations of the authenticatedcomputation functionality (of Eq. (3.17)) and of VSS. It is what we add on top of these implemen-tations which makes the resulting protocol secure in the second malicious model. Following is a87



high-level description of the multi-party protocols generated by the current compiler. Recall thatthe input to the compiler is a protocol secure in the �rst malicious model, so the random-pad andactions refer to this protocol.10The sharing phase: Each party shares each bit of its input and random-pad, with all the parties sothat any strict majority of parties can retrieve the bit. This is done by using a new ingredient {Veri�able Secret Sharing (VSS).Intuitively, (minority) malicious parties are e�ectively prevented from abort the protocol bythe following convention:� If a party aborts the execution prior to completion of this phase, then the majority playerswill set its input and random-pad to some default value, and will carry out the execution(\on its behalf").� If a party aborts the execution after the completion of this phase, then the majorityplayers will reveal its input and random-pad, and will carry out the execution (\on itsbehalf").The fact that all communication is over a broadcast channel and the provisions above guaranteethat the (honest) majority players will always be in consensus.Protocol emulation phase: The parties emulate the execution of the original protocol with re-spect to the input and random-pads shared in the �rst phase. This will be done using a secure(in the �rst malicious model) implementation of the authenticated-computation functionalityof Eq. (3.17).We start by de�ning and implementing the only new tool needed { Veri�able Secret Sharing.3.3.3.1 Veri�able Secret SharingLoosely speaking, a Veri�able Secret Sharing scheme is (merely) a secure (in the �rst maliciousmodel) implementation of a secret sharing functionality. Thus, we �rst de�ne the latter functionality.De�nition 3.3.13 (secret sharing schemes): Let t � m be positive integers. A t-out-of-m secretsharing scheme is a pair of algorithms, Gm;t and Rm;t, satisfying the following conditions.� (syntax): The share-generation algorithm, Gm;t, is a probabilistic mapping of secret bits to m-sequences of shares; that is, Gm;t : f0; 1g 7! (f0; 1g�)m. The recovering algorithm, Rm;t, mapst-long sequences of pairs in [m]� f0; 1g� into a single bit, where [m] def= f1; :::;mg.� (the recovery condition): For any � 2 f0; 1g, any sequence (s1; :::; sm) in the range of Gm;t(�),and any t-subset fi1; :::; itg � [m], it holds thatRm;t((i1; si1); :::; (it; sit)) = �10 In our application, we will feed the current compiler with a protocol generated by the �rst compiler. Still therandom-pad and actions below refer to the compiled protocol, not the the semi-honest protocol from which it wascompiled.
88



� (the secrecy condition): For any (t � 1)-subset I = fi1; :::; it�1g � [m], and any n 2 N , thedistribution of the I-components of Gm;t(�) is independent of �.That is, for I = fi1; :::; it�1g � [m], let gI(�) be de�ned to equal ((i1; si1); :::; (it�1; sit�1)),when the value of Gm;t(�) is (s1; :::; sm). Then, we require that for any such IgI(0) � gI(1)It is well-known that secret sharing schemes do exists for any value of m and t. However, commonpresentations neglect some details such as the representation of the �eld used in the construction.For sake of self-containment, we present a fully speci�ed construction.Construction 3.3.14 (Shamir's t-out-of-m secret sharing scheme): Find11 the smallest prime num-ber bigger than m, denoted p, and consider arithmetic over the �nite �eld GF(p). The share gener-ating algorithm consists of uniformly selecting a degree t� 1 polynomial over GF(p) with free termequal �, and setting the ith share to be the value of this polynomial at i. The recovering algorithmconsists of interpolating the unique degree t � 1 polynomial which matches the given values, andoutputting its free term.Getting back to our subject matter, we haveDe�nition 3.3.15 (Veri�able Secret Sharing): A veri�able secret sharing scheme with parameters(m; t) is an m-party protocol which implements (i.e., securely computes in the �rst malicious model)the share-generation functionality of some t-out-of-m secret sharing scheme. That is, let Gm;t bea share-generation algorithm of some t-out-of-m secret sharing scheme. Then, the correspondingshare-generation functionality which the VSS securely computes is((�; 1n); 1n; :::; 1n) 7! Gm;t(�) (3.18)Actually, it will be more convenient to use an augmented notion of Veri�able Secret Sharing. Theaugmentation supplies each party with auxiliary input which determines the secret � and allowsParty 1 to latter conduct authenticated computations depending on this secret. Furthermore, eachparty is provided with an NP-proof of the validity of its share (relative to public information givento all). From this point on, when we say Veri�able Secret Sharing (or VSS), we mean the notionde�ned below (rather the the weaker form above).De�nition 3.3.16 (Veri�able Secret Sharing, revised { VSS): Let Gm;t be a share-generation al-gorithm of some t-out-of-m secret sharing scheme, producing shares of length `. Let fCng be abit commitment scheme, and de�ne Cn(�1 � � ��`; r1 � � � r`) def= Cn(�1; r1) � � �Cn(�`; r`). Consider thecorresponding (augmented) share-generation functionality((�; 1n); 1n; :::; 1n) 7! ((s; �); (s2; �2; c); :::; (sm; �2; c)) (3.19)where s def= (s1; :::; sm) Gm;t(�), (3.20)� = (�1; :::; �m) is uniformly chosen in f0; 1gm�`n, (3.21)and c = (Cn(s1; �1); :::; Cn(sm; �m)). (3.22)Then any m-party protocol which implements (i.e., securely computes in the �rst malicious model)Eq. (3.19){(3.22) is called a veri�able secret sharing scheme (VSS) with parameters (m; t).11 By the Fundamental Theorem of Number Theory, p � 2m. Thus, it can be found by merely (brute-force)factoring all integers between m+ 1 and 2m. 89



Observe that each party may demonstrate the validity of its primary share (i.e., the si) by revealingthe corresponding �i. We shall be particularly interested in VSS schemes with parameters (m; dm=2e)(i.e., t = dm=2e). The reason for this is that we assume throughout this section that the maliciousparties are in strict minority. Thus, by the secrecy requirement, setting t � m=2 guarantees thatthe minority parties are not able to obtain any information about the secret from their shares. Onthe other hand, by the recovery requirement, setting t � dm=2e guarantees that the majority partiesare able to e�ciently recover the secret from their shares. Thus, in the sequel, whenever we mentionVSS without specifying the parameters, we mean the VSS with parameters (m; dm=2e), where m isunderstood from the context.Clearly, by Theorem 3.3.12, Veri�able Secret Sharing schemes can be constructed provided thattrapdoor permutation exist. Actually, to establish this result we merely need to apply the �rstcompiler to the obvious semi-honest protocol in which Eq. (3.19){(3.22) is privately computed bymerely letting Party 1 invoke the share-generation algorithm Gm;t and send the corresponding sharesto each of the parties. For sake of subsequent reference we state the result.Proposition 3.3.17 Suppose that trapdoor permutation exist. Then, for every t � m, there existsa veri�able secret sharing scheme with parameters (m; t).3.3.3.2 The compiler itselfWe are now ready to present the compiler. Recall that we are given a multi-party protocol, �, for the�rst malicious model, and we want to generate an \equivalent" protocol �0 for the second maliciousmodel. Also recall that both the given protocol and the one generated operate in a communicationmodel consisting of a single broadcast channel.Construction 3.3.18 (The second multi-party compiler): Given an m-party protocol, �, for the�rst malicious model, the compiler produces the following m-party protocol, denoted �0, for thesecond malicious model.Inputs: Party i gets input xi 2 f0; 1gn.Random-pad: Party i gets (or uniformly selects) a random-pad, denoted ri 2 f0; 1gc(n).The sharing phase: Each party shares each bit of its input and random-pad, with all the parties,using a Veri�able Secret Sharing scheme.That is, for i = 1; :::;m and j = 1; :::; n+ c(n), Party i invokes a secure implementation of theVSS functionality of Eq. (3.19){(3.22), playing Party 1 with input (�; 1n), where � is the jthbit of xiri. The other parties play the role of the other parties in Eq. (3.19){(3.22) with input1n. (In case the parties supply di�erent values for 1n, the majority value { supported by thehonest parties { is used). Party i obtains output pair, (�ij ; !ij), and each other Party k obtainsa pair (skj;i; cij) so that the skj;i's are shares of a secret relative to Gm;dm=2e's random-pad �ij ,and cij is a sequence of commitments to the bits of �ij (using the random strings sequence !).Handling Abort: If a party aborts the execution prior to completion of this phase, then the otherparties set its input and random-pad to some default value, and will carry out the execution onits behalf. We stress that since the party's input and random-pad are now �xed and known toall parties, and since the entire execution takes place over a broadcast channel, all subsequentactions of the aborting party are determined. Thus, there is no need to send actual messageson its behalf. Each of the other parties may determine in solitude what these messages are.90



Protocol emulation phase: The parties emulate the execution of the protocol � with respect to theinput and random-pads shared in the �rst phase. This will be done using a secure (in the �rstmalicious model) implementation of the authenticated-computation functionality of Eq. (3.17).That is, Party i, which is supposed to send a message in �, plays the role of Party 1 inEq. (3.17) and the other parties play the other roles. The inputs �; r; � and the functions h; f ,for the functionality of Eq. (3.17), are set as follows:� The string � is set to equal the concatenation of the party's original input and its random-pad, and the string r is set to be the concatenation of the corresponding randomizationsobtained by this party when playing the role of Party 1 in the n + c(n) correspondinginvocations of the Veri�able Secret Sharing scheme. The value h(�; r) equals the concate-nation of the second elements obtained by the other parties in these invocations; that is,the commitment sequences cij 's. Then� = (xi; ri)r = ((�i1; !i1); (�i2; !ij); :::; (�in+c(n); !in+c(n)))h(�; r) = (Cn(�i1; !i1); Cn(�i2; !ij); :::; Cn(�in+c(n); !in+c(n))) ;where Cn(�1 � � ��`; r1 � � � r`) def= Cn(�1; r1) � � �Cn(�`; r`).Note that h indeed satis�es h(�; r) 6= h(�0; r0) for all � 6= �0 and all r; r0.� The string � is set to equal the concatenation of all previous messages sent (over thebroadcast channel) by all other parties.� The function f is set to be the computation which determines the message to be sent in �.Note that this message is computable in polynomial-time from the party's input (denotedxi above), its random-pad (denoted ri), and the previous messages posted so far (i.e., �).As in the sharing phase, the inputs with which the other parties are to enter the authenticated-computation functionality can be determined. Thus, in case the parties supply di�erent valuesfor (h(�; r); �) the majority value { supported by the honest parties { is used.Handling Abort: If a party aborts during the execution of this phase then the majority playerswill recover its input and random-pad, and carry out the execution on its behalf. We note thatthe completion of the sharing phase (and the de�nition of VSS) guarantee that the majorityplayer hold shares which yield the corresponding bits of the input and random-pad of anyparty. Furthermore, the correct shares are veri�able by each of the other parties, and soreconstruction of the initial secret is e�ciently implementable whenever a majority of partieswishes so. Also, by de�nition of the secure (in the �rst malicious model) implementation ofauthenticated-computation, it follows that the parties are always in consensus as to whether theemulated sender has aborted. In case it did, each honest party posts all the shares it has of bits(either input of random-pad) of the emulated sender, and recovers using the shares posted byother parties the input and random-pad of the emulated sender. Based on these, all subsequentactions of the aborting party are determined. Thus, as before, there is no need to send actualmessages on its behalf. Each of the parties may determine in solitude what these messages are.Outputs: At the end of the emulation phase, each party holds the corresponding output of the partyin protocol �. The party just locally outputs this value.91



We note that in the above we have somewhat modi�ed the de�nition of VSS and of Eq. (3.17).By the original formulation (following the conventions in Section 2.1), in case the functionality isnot de�ned for some input sequence, the output is de�ned as a sequence of ?'s. In the compilerabove we have adopted an alternative convention by which the input is \corrected" according tosome predetermined rule (e.g., majority vote was used above) to an input sequence for which thefunctionality is de�ned. One can easily verify that this alternative de�nition of functionalities canbe securely implemented as well (in the semi-honest and �rst malicious models).The abort-handling procedure of the protocol-emulation phase is described above as being im-plemented by having each honest party reveal the (si; �i) pair it has obtained in each VSS, and eachparty reconstructing the secret bit by �rst checking the validity of the si's against the commitmentsCn(si; �i), and using the valid si's in the reconstruction. An alternative implementation amountsto securely computing the recovery functionality associated with the above VSS; that is,((s; �); (s2; �2; c); :::; (sm; �2; c)) 7! (�; :::; �) (3.23)where the l.h.s of Eq. (3.23) is in the range of the VSS functionality applied to ((�; 1n); 1n; :::; 1n).In other words, � appears as output if there are t = dm=2e values ij 's so that the sij match thecorresponding commitments and � = Rm;t((i1; si1); :::; (it; sit)). Clearly, Eq. (3.23) can be securelyimplemented in the �rst malicious model, but one may show that the natural implementation is alsosecure in the second malicious model. (In the natural implementation we mean one which does notabort the execution, unless more than m� t parties abort.)Comment: We stress that when one applies the two (multi-party) compilers one after the other,the random-pad to which the second compiler refers is the one of the protocol for the �rst maliciousmodel (not the one of the original protocol of the semi-honest model). The random-pad of theprotocol compiled for the �rst malicious model includes the coins of the original protocol, the coinsgenerated by the precompiler (i.e., for selecting a public-key instance, and for running the encryptionand decryption algorithms), and the coins generated by the �rst compiler for the input-commit phaseand for the implementation of the various functionalities.Another comment: Applying the two compilers one after the other is indeed wasteful. Forexample, we enforce proper emulation (via the authenticated-computation functionality) twice; �rstwith respect to the semi-honest protocol, and next with respect to the protocol resulting from the�rst compiler. Thus, the proper emulation of the action of the semi-honest protocol is enforced twice;�rst with respect to the random-pad selected in the coin-generation phase of the �rst compiler, andnext with respect to the sharing of it. It follows that more e�cient protocols for the second maliciousmodel could be derived by omitting the authenticated-computation protocols generated by the �rstcompiler. Similarly, one can omit the input-commit phase in the �rst compiler.3.3.3.3 Analysis of the compilerOur aim is to establishTheorem 3.3.19 (Restating the second half of Theorem 3.3.1): Suppose that trapdoor permutationexist. Then any m-ary functionality can be securely computable in the second malicious model (usingonly point-to-point communication lines). Furthermore, security holds even if the adversary can readall communication among honest players. 92



As will be shown below, given a protocol as guaranteed by Theorem 3.3.12, the second compilerproduces a protocol which securely computes (in the second malicious model) the same functionality.Thus, for any functionality f , the compiler transforms protocols for securely computing f in the�rst malicious model (in the semi-honest model) into protocols for securely computing f in thesecond malicious model. This su�ces to establish Theorem 3.3.19, yet it does not say what thecompiler does when given an arbitrary protocol (i.e., one not provided by Theorem 3.3.12). In orderto analyze the action of the second compiler, in general, we introduce the following model which is ahybrid of the semi-honest and the malicious models. We call this new model, the second-augmentedsemi-honest model. Unlike the (�rst) augmented semi-honest model (used in the analysis of the �rstcompiler), the new model allows the dishonest party to select its random-pad arbitrarily, but doesnot allow it to abort.De�nition 3.3.20 (the second-augmented semi-honest model): Let � be a multi-party protocol. Acoordinated strategy for parties I is admissible as a second-augmented semi-honest behavior (w.r.t �)if the following holds.Entering the execution: Depending on their initial inputs and in coordination with each other,the parties in I may enter the execution with any input of their choice.Selection of random-pad: Depending on the above and in coordination with each other, the par-ties in I may set their random-pad arbitrarily.Proper message transmission: In each step of �, depending on its view so far, the designated(by �) party sends a message as instructed by �. We stress that the message is computedas � instructs based on the party's possibly modi�ed input, and its random-pad selected above,possibly not uniformly. That is, in case the party belongs to I we refer to its input and random-pad as set above.Output: At the end of the interaction, the parties in I produce outputs depending on their entireview of the interaction. We stress that the view consists of their initial inputs, their choice ofrandom-pads, and all messages they received.Intuitively, the compiler transforms any protocol � into a protocol �0 so that executions of �0 in thesecond malicious model correspond to executions of � in the second augmented semi-honest model.That is,Proposition 3.3.21 (general analysis of the second multi-party compiler): Let �0 be the m-partyprotocol produced by the compiler of Construction 3.3.18, when given the protocol �. Then, thereexists a polynomial-time computable transformation of of polynomial-size circuit families A intopolynomial-size circuit families B describing admissible behaviors (w.r.t �) in the second-augmentedsemi-honest model (of De�nition 3.3.20) so that for every I � [m] with jI j < m=2freal�;(I;B)(x)gx c� freal�0;(I;A)(x)gxProposition 3.3.21 will be applied to protocols which securely compute a functionality in the �rstmalicious model. As we shall see below, for such speci�c protocols, the second augmented semi-honestmodel (of De�nition 3.3.20) can be emulated by the second ideal malicious model (of De�nition 3.1.5).Thus, Theorem 3.3.19 will follow. We start by establishing Proposition 3.3.21.93



Proof Sketch: Given a circuit, A, representing an adversarial behavior (in the �rst maliciousmodel), we present a corresponding circuit, B, admissible w.r.t � for the second augmented semi-honest model. We stress two points. Firstly, whereas A may abort some parties, the adversaryB may not do so (as per De�nition 3.3.20). Secondly, we may assume that the number of partiescontrolled by A (and thus by B) is less than m=2 (as nothing is required otherwise).Machine B will use A as well as the ideal-model adversaries (as per De�nition 3.1.2) derivedfrom the behavior of A in the various subprotocols invoked by �0. Furthermore, machine B will alsoemulate the behavior of the trusted party in these ideal-model emulations (without communicatingwith any trusted party { there is no trusted party in the augmented semi-honest model). Thus, thefollowing description contains again an implicit special-purpose composition theorem (see discussionin the proof of Proposition 2.3.15).Entering the execution and selecting a random-pad: B invokes A (on the very input sup-plied to it), and decides with what input and random-pad to enter the execution of �. Towardsthis end, machine B emulates execution of the sharing phase of �0, using A (as subroutine).Machine B supplies A with the messages it expects to see, thus emulating the honest partiesin �0, and obtains the messages sent by the parties in I (i.e., those controlled by A).Speci�cally, B emulates the executions of the VSS protocol, in attempt to obtain the bitsshared by the parties in I . The emulation of each such VSS-execution is done by using themalicious ideal-model adversary derived from (the real malicious adversary) A. We stressthat in accordance to the de�nition of VSS (i.e., security in the �rst malicious model), theideal-model adversary derived from A is in the �rst malicious model, and may abort someparties. Note that (by De�nitions 3.1.4 and 3.1.2) this may happen only if the initiator ofthe VSS is dishonest. In case any of these executions initiated by some party aborts, allinput and random-pad bits of this party are set to the default value (as in the correspondingabort-handling of �0). Details follow.� In an execution of VSS initiated by an honest party (i.e., in which an honest party playsthe role of Party 1 in VSS), machine B obtains the corresponding augmented shares(available to I).12 Machine B will use an arbitrary value, say 0, as input for the currentemulation of the VSS (as the real value is unknown to B). Machine B derives the ideal-model adversary, denoted A0, which emulates to the behavior of A { given the history sofar { in the corresponding execution of VSS (in �0). We stress that since the initiatingparty of the VSS is honest, A0 cannot abort any party.Invoking the ideal-model adversary A0, and emulating both the honest (ideal-model)parties and the trusted party, machine B obtains the outputs of all parties (i.e., and inparticular the output of the initiating party). That is, machine B obtains the messagethat the parties controlled by A0 would have sent to the trusted party (i.e., 1n), emulatethe sending of message (0; 1n) by the initiating party, and emulates the response of thetrusted oracle (i.e., uniformly selects � 2 f0; 1g` and !, and computes the outputs as inEq. (3.19){(3.22)).Speci�cally, when emulating the jth VSS initiated by Party i, machine B generates andrecords (�ij ; !ij), and concatenates the emulation of the VSS (i.e., the �nal view of theparties in I as output by A0) to the history of the execution of A.12 These will be used in the emulation of future message-transmission steps.94



� In an execution of VSS initiated by a party in I (i.e., a dishonest party plays the roleof Party 1 in VSS), machine B obtains the corresponding (input or random-pad) bit ofthe initiator as well as randomization used in the commitment to it. As before, �rst Bderives the ideal-model adversary, denoted A0, which corresponds to the behavior of A {given the history so far { in the corresponding execution of the VSS.Suppose that we are currently emulating the jth instance of VSS initiating by Party i,and the the jth bit in the initial input/random-pad of Party i is �. Then, B invokes A0on input (�; 1n), and emulating both the honest (ideal-model) parties and the trustedparty, machine B obtains the outputs of all parties (including the commitment handedto parties not in I). A key point is that machine B has obtained, while emulating thetrusted party, the input handed by A0 to the trusted party. This bit is recorded as thejth bit of Party i.In case the emulated machine did not abort the initiator, machine B records the abovebit as well as the randomization used by VSS in committing to it, and concatenates theemulation of the VSS to the history of the execution of A.If A aborts Party i in any of the invocation of VSS (initiated by it) then the input andrandom-pad of Party i are set to the default value (as in �0). Otherwise, they are de�nedas the concatenation of the bits of Party i, retrieved as above.Thus, inputs and random-pads are determined for all parties in I , depending only on theirinitial inputs. (All this is done before entering the execution of �.) Furthermore, the view ofmachine A in the sharing phase of �0 has been emulated, and the randomizations used in thesharing of all values have been recorded by B. (It su�ces to record the randomization usedby honest parties, and the commitments made by dishonest ones; these will be used in theemulation of the message-transmission steps of �0.)Subsequent steps { message transmission: Machine B now enters the execution of � (withinputs and random-pads for I-parties as determined above). It proceeds in this real executionof �, along with emulating the corresponding executions of the authenticated-computationfunctionality of Eq. (3.17) (which are invoked in �0).In a message-transmission step by an honest party in �, machine B obtains from this honestparty (in the real execution of �) a message, and emulates an execution of the authenticated-computation protocol resulting in this message as output. In a message-transmission step bydishonest party in �, machine B computes the message to be sent as instructed by �, basedon the input and random-pad determined above, and the messages obtained so far (in �). Inaddition, B emulates an execution of the authenticated-computation protocol resulting in thismessage as output. The emulation of each execution of the authenticated-computation proto-col, which securely computes (in the �rst malicious model) the functionality Eq. (3.17), is doneby using the malicious ideal-model adversary derived from A. The fact that in these emulationsmachine B also emulates the trusted party allows it to set the outcome of the authenticated-computation protocol to �t the message being delivered. The fact that a (dishonest) partymay abort some parties in these emulations of �0 does not e�ect the real execution of � (andis merely reected in the transcript of these emulations). Details follow.� In a message-transmission step by a honest party in �, machine B �rst obtains from thisparty (in the real execution of �) a message, denoted msg. This completes all that is donein this step w.r.t communication in �.95



Next, machine B proceeds in emulating the corresponding message-transmission subpro-tocol of �0. Firstly, machine B derives the ideal-model adversary, denoted A0, whichcorresponds to the behavior of A { given the history so far { in the corresponding ex-ecution of the authenticated-computation protocol (executed by protocol �0). Invokingthe ideal-model adversary A0, and emulating both the honest (ideal-model) parties andthe trusted party, machine B sets the trusted-party reply to equal msg. When emulatingthe initiator, machine B provides the trusted party with dummy values for the input andrandom-pad but with correct values for the publically available values (i.e., the previousmessage posted in the execution of �0).The emulation is carried out so to produce output msgwhich does not necessarily equal theoutput of the authenticated-computation functionality of Eq. (3.17) on the correspondinginputs. However, the machine A0 used in the emulation cannot distinguish the two cases(since the inputs which it gets in the two cases { commitments to the values known onlyto a honest party { are computationally indistinguishable). Finally, B concatenates theemulation of the authenticated-computation protocol to the history of the execution ofA. (Note that since the initiator of the authenticated-computation subprotocol is honest,abort is not possible here, by de�nition of the �rst ideal model.)� In a message-transmission step by a dishonest party in �, machine B �rst computesthe message to be sent according to �. This message is computed based on the inputand random-pad determined (and recorded) above, and the messages received so far (inexecution of �). Denote the resulting message by msg. Machine B completes the executionof this step in � by posting msg on the channel.Next, machine B proceeds in emulating the corresponding message-transmission subpro-tocol of �0. Firstly, machine B derives the ideal-model adversary, denoted A0. InvokingA0 and emulating both the honest (ideal-model) parties and the trusted party, machine Bproduces an emulation of the corresponding execution of the authenticated-computationprotocol.By our new convention regarding inputs presented to this protocol, it follows that thisemulation either produces the very message msg or aborts the sender. In the latter case, weemulate the abort-handling procedure of �0. In both cases, B concatenates the emulationof the authenticated-computation protocol (and possibly also the abort-handling) to thehistory of the execution of A.Note that each message-transmission step is implemented in polynomial-time. Each messageposted is computed exactly as instructed by �. (We stress again that the emulations of abortingin �0 have no e�ect on the execution of B in �.)Output: MachineB just outputs whatever machineA outputs given the execution history composed(emulated) as above.Clearly, machine B (described above) implements a second-augmented semi-honest behavior withrespect to �. It is left to show thatfreal�0;(I;A)(x)gx c� freal�;(I;B)(x)gx (3.24)There are two di�erences between the two ensembles referred to in Eq. (3.24):96



1. In the �rst distribution (i.e., real�0;(A;I)(x)), secure (in �rst malicious model) protocols im-plementing VSS and authenticated-computation (of Eq. (3.19){(3.22) and Eq. (3.17), respec-tively) are executed; whereas in the second distribution (i.e., real�;(B;I)(x)) these executionsare emulated using the corresponding ideal-model adversaries.2. The emulation of Eq. (3.17) in real�;(B;I)(x) is performed with a potentially wrong input.However, these di�erences are computationally indistinguishable, as shown in the analogous part ofthe proof of Proposition 2.3.15.Proof of Theorem 3.3.19: Given an m-ary functionality f , let � be an m-party protocol, asguaranteed by Theorem 3.3.12, for securely computing f in the �rst malicious model. (Actually,we need merely a protocol operating in the broadcast channel communication model.) We nowapply the compiler of Construction 3.3.18 to � and derive a protocol �0. By Proposition 3.3.21, anypolynomial-size circuit family A can be e�ciently transformed into a polynomial-size circuit familyB describing admissible behavior (w.r.t �) in the second-augmented semi-honest model so that forevery I � [m] with jI j < m=2freal�0;(I;A)(x)gx c� freal�;(I;B)(x)gx (3.25)Note that B represents a benign form of adversarial behavior which is certainly allowed by the�rst malicious model.13 Thus, by the guarantee regarding �, the circuit family B can be e�cientlytransformed into a polynomial-size circuit family C describing an adversary in the �rst ideal modelso that for every I � [m] freal�;(I;B)(x)gx c� fideal(1)f;(I;C)(x)gx (3.26)Note that since B does not abort any of the parties (as it operates in the second-augmented semi-honest model), neither does C. Thus, for this C, the �rst ideal model is equivalent to the second(i.e., ideal(1)f;(I;C)(x) � ideal(2)f;(I;C)(x)). Combining all the above, we get (for every I � [m]with jI j < m=2), freal�0;(I;A)(x)gx c� fideal(2)f;(I;C)(x)gx (3.27)We are almost done. The only problem is that �0 operates in the single broadcast channel communi-cation model. This problem is resolved by the postcompiler mentioned in Section 3.3.1. Speci�cally,we implement the broadcast channel over the point-to-point communication model using (authenti-cated) Byzantine Agreement (cf., Construction 3.3.3).
13 The malicious behavior of B amounts to replacing inputs and selecting a random-pad arbitrarily, rather thanuniformly. Otherwise, B follows the protocol �. 97



Chapter 4Extensions and NotesThis chapter is still in the process of writing, and the following should be considered merely asfragments.4.1 Reactive systemsThe main results of the previous chapters can be extended to reactive systems in which each partyinteracts with a high-level process (or application). The high-level process supplies each party witha sequence of inputs, one at a time, and expect to receive from the party corresponding outputs.That is, a reactive system goes through (an unbounded number of) iterations of the following type� Parties are given inputs for the current iteration. We denote the input given to Party i initeration j by x(j)i .� Depending on the current inputs, the parties are supposed to compute outputs for the currentiteration. That is, the outputs in iteration j are determined by the inputs of the jth iteration(i.e., the x(j)i 's for all i's).Arguably, a more general reactive system is one in which the outputs of the jth iteration may dependalso on previous iterations. In particular, one may require that the outputs of the jth iteration dependon the inputs of the jth iteration, as well as the outputs of all previous iterations. A more exibleand general way of casting a reactive system is to explicitly introduce a global state, and assertthat each iteration of the system depends on the global state and the current inputs, while possiblyupdating the global state. (The global state may include all past inputs and outputs.) Thus, weview reactive systems as iterating the following steps� Parties are given inputs for the current iteration (i.e., again, in the jth iteration Party i isgiven input x(j)i ). In addition, there is a global state: The global state at the beginning of thejth iteration is denoted s(j).� Depending on the current inputs and the global state, the parties are supposed to computeoutputs for the current iteration as well as update the global state. That is, the outputs initeration j are determined by the x(j)i 's, for all i's, and s(j). The new global state, s(j+1), isdetermined similarly (i.e., also based on x(j)i 's and s(j)).98



But who is to \hold" the global state? As our aim is secure computations, we do not want the globalstate to be held by any single party. Instead, the global state will be held by all of the parties, in a\secret sharing" manner. Thus, we need to modify the above exposition a little. In each iteration,each party will start with two inputs and end with two outputs: The �rst input (resp., output) isthe outside input (resp., output) of the current iteration, whereas the second input (resp., output)is the party's share in the starting (resp., ending) global state. Thus, we review reactive systems(for the third time), this time as iterating the following� Parties are given inputs for the current iteration, as well as shares in the current global state.That is, the jth iteration starts when each Party i is given the outside input x(j)i and holdsshare in the global state. The latter share is denoted s(j)i .� Depending on the current inputs and (the shares of) the global state, the parties are supposedto compute outputs for the current iteration as well as the (shares of the) new global state.That is, Party i obtains an output to be handed to the outside as well as an updated share,s(j+1)i , in an updated global state. (We stress that the computation conducted in the jthiteration depends only on the values (x(j)i ; s(j)i )i=1;:::;m.)This brings the problem of secure reactive computation quite close to the domain of problems dis-cussed in previous chapters, except that it is not clear what happens if a malicious party corrupts itsshare in the global state. To overcome the problem we should specify an error correcting mechanismfor the shares of the global state. This mechanism should be part of the functionality underlyingthe computation in each iteration. Details follow.The actual de�nition. We start by de�ning functionalities which capture the second point ofview described above. Such functionalities, referred to as idealized reactive functionalities capturedthe mapping of m inputs and one global state into corresponding outputs and a new global state.That is, an idealized reactive m-party functionality is a randomized process mapping (m + 1)-arytuples to (m + 1)-ary tuples, where the last element in each tuple corresponds to the global state.Let f be such a functionality, then the iterative process de�ned by f should be clear from the abovediscussion.1In order to de�ne the actual reactive functionality, we specify a randomized sharing process,denoted share, and an error-correcting recovery process, denoted reconst. A minimalistic requirementfrom these processes is that reconst(share(s)) = s holds for every s. In general, we will employ asharing/reconstruction process which has an error correction guarantee corresponding to the oneemployed by Secret Sharing schemes. Actually, if we employ a sharing process as in a Veri�able SecretSharing (see Section 3.3.3.1) then the reconstruction process is straightforward (since commitmentsto each share are public knowledge, as per De�nition 3.3.16). For simplicity, we just adopt thisconvention (i.e., sharing via VSS and reconstructing in the obvious way). Thus, employing a (t;m)-VSS we have for every (s1; :::; sm) in the range of share(�) and every (s01; :::; s0m) so that jfi : s0i =sigj � t, reconst(s01; :::; s0m) = s (4.1)1 Starting with a (possibly empty) initial global state, s(1), the iterations are as follows: In the jth iteration, eachParty i is handed an input, x(j)i , and hands back the ith element in y def= f(x(j)1 ; :::; x(j)1 ; s(j)). The global state in theend of the jth iteration (which serves as the start state for the next iteration; i.e., the state s(j+1)) is the last elementof y. 99



Given a (t;m)-VSS as above, we de�ne for every idealized functionality f , a corresponding reactivem-party functionality, denoted f 0, with threshold t. Intuitively, f 0 is an m-ary functionality whichtakes m pairs, each being an outside input and a share of a global state, and generates m pairs, eachbeing an outside output and a share of a new global state: f 0 �rst reconstructs the global state, thenapplies f to the outside inputs and the global state deriving outputs and a new global state, and�nally generates shares for the new global state. That is, for every input-sequence x1; :::; xm, everyglobal state s, and every (s01; :::; s0m) so that at least t of the s0i match the corresponding elements ofshare(s), f 0((x1; s01); :::; (xm; s0m)) def= ((y1; z1); :::; (ym; zm)) , where (4.2)(y1; :::; ym; z)  f(x1; :::; xm; reconst(s01; :::; s0m)) and (4.3)(z1; :::; zm)  share(z) (4.4)Interpreting the results. By the results of Chapter 3, the above reactive m-party functionalityis securely computable in the two malicious models (as well as in the semi-honest model).2 Thus,we conclude that any reactive computation can be conducted securely in each of the following threemodels:1. A semi-honest model in which any subset may collude (even when the colluding parties are inmajority). (Here we use a reactive m-party functionality with threshold m, a correspondingSecret Sharing scheme,3 and invoke Theorem 3.2.10.)2. A malicious model in which the honest parties are in majority. (Here we use a reactivem-partyfunctionality with threshold dm=2e, a corresponding VSS, and invoke Theorem 3.3.19.)3. A malicious model in which the honest parties may be in minority, but abort is not considereda violation of security. (Here we use a reactive m-party functionality with threshold m, acorresponding VSS, and invoke Theorem 3.3.12.)(We comment that deriving secure reactive systems via an oblivious invocation of the above theoremsis somewhat wasteful, since the sharing and reconstruction processes are done in the protocolsproduced by these theorems and so de�ning the reactive functionality is doing so will amount todoing sharing/reconstruction twice.)4.2 Perfect security in the private channels modelAs shown in Chapter 3, general secure multi-party computation is achievable provided that trapdoorpermutations exist. It can be easily shown that the general results regarding the �rst maliciousmodel (i.e., Theorem 3.3.12) imply the existence of one-way functions, and so some computationalassumption is (currently) necessary in obtaining them. The same holds for the result regarding two-party computation, even in the semi-honest model.4 However, the results regarding honest majority(i.e., Theorem 3.3.19) do not seem to imply the existence of one-way functions. Thus, the focus ofthis section is on what can be achieved without making computational assumptions.2 Recall that the results for the �rst malicious model (as well as for the semi-honest model) generalize the resultspresented in Chapter 2 for the case m = 2.3 There is no need to use VSS here.4 For example, a private implementation of the Oblivious Transfer functionality implies the existence of one-wayfunctions. 100



Moving away from computational assumptions requires and allows some changes in the model.Firstly, we can no longer say (as said in Section 3.1) that a model in which adversaries can tap thecommunication lines between honest parties is equivalent to one in which this is not allowed (orconsidered): We do not know how to emulate private channels on insecure ones without using aninitial set-up (such as shared one-time pads per each pair of parties) or computational assumptions.Thus, to allow any non-trivial result we must assume the existence of private channels between pairsof parties. But making such an assumption and refraining from the use tools which provide onlycomputational security, we may aim at a higher level of security { speci�cally, perfect (or almost-perfect) security. That is, in de�nitions such as De�nitions 3.1.1, 3.1.4 and 3.1.6, we may replacethe requirement that the relevant ensembles are computationally indistinguishable by requiring thatthey are statistically indistinguishable (or even identically distributed). Actually, in the maliciousmodels, one may even allow the adversaries to be computationally unbounded (i.e., be arbitrarycircuit families), but still insist that adversaries for the real model be e�ciently transformed intoadversaries for the ideal model.Main Results: We assume that honest parties are in majority, and that the adversaries cannottap the communication lines between the honest parties (i.e., \private channels"). We make nocomputational assumptions and our notions of privacy and security are information theoretic (asexplained above). The main results are1. Any m-party functionality can be privately computed in the semi-honest model (provided thatmore than 12m parties are honest).2. Anym-party functionality can be securely computed (in the second malicious model), providedthat more than 23m parties are honest.Postulating also the existence of a broadcast channel (on top of the private point-to-point channels),one can show that any m-party functionality can be securely computed (in the second maliciousmodel), provided that more than 12m parties are honest [62]. We note that the extra assumption isnecessary since the broadcast functionality cannot be securely computed in a malicious model wherem=3 parties are faulty (and computationally unbounded).Additional Results: We comment that few functions can be privately computed (in the privatechannel model) also when the honest parties are not in majority. In case of Boolean function theseare exactly the m-ary functions which can be written as the xor of m predicates, each applied to asingle argument [24].4.3 Other modelsAuthor's Note: Write about mobile adversaries, and adaptive securityAuthor's Note: Other settings include asynchronous, incoercible.4.4 Other concernsAuthor's Note: Number of rounds [72, 5, 54].Author's Note: relative fairness in case of dishonest majority...101



4.5 Bibliographic NotesMain sources. The main results presented in this manuscript are due to Yao [72] and Goldreich,Micali and Wigderson [44, 45], treating two-party and multi-party, respectively. The chronologicalorder is as follows. In the �rst paper by Goldreich et. al. [44], it was shown how to construct zero-knowledge proofs for any NP-assertion. The conference version of [44] also provided a rough sketchof the compilation of protocols for the semi-honest model into protocols for the malicious model,by \forcing" malicious parties to behave in a semi-honest manner. Assuming the intractability offactoring, Yao's paper [72] asserts the existence of secure protocols for computing any two-partyfunctionality (i.e., Theorem 2.3.1 above). The details of Yao's construction are taken from oralpresentations of his work. Finally, the construction of protocols for the semi-honest model (i.e.,Theorem 3.2.10 above) is due to the second paper of Goldreich et. al. [45]. Thus, Theorem 3.3.1 isobtained by combining [44, 45].Our presentation reverses the actual order in which all these results were discovered: Firstly, ourtreatment of the two-party case is derived, via some degeneration, from the treatment of the multi-party case. Secondly, we start by treating the semi-honest models, and only next compile protocolsfor this protocol into protocols for the (\full-edged") malicious models. We note that our treatmentis essentially symmetric, whereas Yao's original treatment of the two-party case [72] is asymmetric(with respect to the two parties). The latter asymmetry has its own merits as demonstrated in [5, 59].In constructing protocols for the semi-honest models, we follows the framework of Goldreich,Micali and Wigderson [45], while adapting important simpli�cations due to Haber and Micali(priv. comm., 1986) and Goldreich and Vainish [47]. In particular, Haber and Micali suggestedto consider arithmetic circuits over GF(2) rather than the (awkward) straight-line programs overpermutation groups considered in [45].5 The reduction of the private computation of the (multi-party) multiplication gate emulation to OT41 is due to [47]; in [45] the former was \implemented"by invoking Yao's general secure two-party computation result.6In presenting the \semi-honest to malicious" compilers (or the paradigm of \forcing" semi-honestbehavior), we follow the outline provided in [44, FOCS Ver., Sec. 4] and [45, Sec. 5]. The fundamentalrole of zero-knowledge proofs for any NP-assertion, coin-tossing-into-the-well, and veri�able secretsharing in these compilers has been noted in both sources.7 Otherwise, both sources are highly terseregarding these compilers and their analysis. Most of the current text is devoted to �lling up themissing details.Tools. A variety of cryptographic tools is used in establishing the main results of this manuscript.Firstly, we mention the prominent role of Oblivious Transfer in the protocols developed for the semi-honest model.8 An Oblivious Transfer was �rst suggested by Rabin [61], but our actual de�nitionand implementation follow the ideas of Even, Goldreich and Lempel [32] (as further developed inthe proceedings version of [44]).Several ingredients play a major role in the compilation of protocols secure in the semi-honestmodel into generally secure protocols (for the malicious models). These include zero-knowledge (ZK)5 The reason that this strange computation model was used in [45] has to do with preliminary stages of theirresearch. In general, too little thought was put into the writing of [45], and this speci�c technical oversight issymptomatic.6 Indeed, this brute-force solution of [45] is also indicative of the little thought put into the writing of [45].7 The fundamental role of (zero-knowledge) proofs-of-knowledge is not mentioned in the above sources, but wasknown to the authors at the time. Some indication to this fact can be derived from [25].8 This is true also for the original two-party solution of Yao [72]. Subsequent results, by Kilian [53] furtherdemonstrate the importance of Oblivious Transfer in this context.102



proofs and proofs-of-knowledge (POK), commitment schemes, veri�able secret sharing (VSS), andsecure coin-ipping.Commitment { Commitment schemes are implicit in [11] (and later papers such as [44]). It seemsthat an explicit de�nition was �rst given in [57], which shows how to construct such schemesbased on and one-way functions. The construction of commitment schemes based on 1-1 one-way functions is folklore (cf., [38]). The latter construction su�ces for the current text, whichanyhow assumes the existence of trapdoor permutations.Coin-ipping { The notion of coin-ipping-into-the-well was introduced and implemented by Blum [11].We follow him in our presentation of the vanilla versions (i.e., De�nition 2.3.2 and Construc-tion 2.3.3).ZK { Zero-knowledge proof systems were introduced by Goldwasser, Micali and Racko� [51]. Theconstruction of zero-knowledge proofs for any NP-assertion is due to Goldreich, Micali andWigderson [44]. Such proofs are the key-stone of the \forcing" paradigm, which in turn un-derlies the construction of the \semi-honest to malicious" compilers.POK { The concept of a proof-of-knowledge was introduced in [51], and a satisfactory de�nitionwas provided in [6]. It is folklore that all known zero-knowledge proofs for NP are actuallyproofs-of-knowledge of the NP-witness. To simplify the exposition, we have introduced herethe notion of strong proofs-of-knowledge, and observed that some known zero-knowledge proofsfor NP are actually strong proofs-of-knowledge of the NP-witness.VSS { Veri�able Secret Sharing was introduced by Chor, Goldwasser, Micali and Awerbuch [23],as an enhancement of Shamir's notion of secret sharing [67]. A relaxed notion with secrecythreshold far below the recovery threshold was implemented in [23], based on speci�c com-putational number theoretic assumptions. VSS with a single (arbitrary) threshold was �rstimplemented in [44] (by a direct application of the \forcing" paradigm).In addition, we also used secure public-key encryption schemes, as de�ned by Goldwasser and Mi-cali [50] and implemented based on any trapdoor permutation in [50, 70] (see also [12]), and signa-ture schemes as de�ned in [52] and implemented based on any trapdoor permutation in [7] (see also[52, 58, 65]).Other settings. The material in Section 4.1 is based on a terse high-level discussion in [45].The material in Section 4.2 (i.e., perfect security in the private channels model) is based mainlyon [9, 22]. In particular, these papers were the �rst to obtain general secure multi-party computationwithout making computational assumptions. In fact, an alternative exposition to ours could havebeen provided by �rst presenting results for the private channels model (with or without broadcast),and next compiling these results to a standard point-to-point network by using encryption (toemulate private channels) and possibly signatures (to emulate broadcast). We stress that the latterrefers only to multi-party computations with honest majority.Author's Note: Credits for section 4.3 include { mobile adversaries [60], asynchronous [8],adaptive [4, 18], incoercible [19].Author's Note: Credits for section 4.4 include { discussion of number of rounds [72, 5]and fairness [3, 49]. 103



De�nitional treatments. Our de�nitions follow the treatments of [49, 56, 2, 14, 15, 16], and aremost similar to those in [14, 15, 16]. From our point of view, which is focused on the constructions(i.e., the protocols and their proof of security), these alternative de�nitional treatments are quitesimilar. However, the reader is warned that, from a de�nitional point of view, [49, 56, 2, 14, 16]o�er quite di�erent perspectives (alas all very appealing). Contrary to the opinion of some of theauthors of [49, 56, 2, 14, 16], we do not believe that there exists one correct de�nitional approachto this complex issue of de�ning secure multi-party computation. The fact that two appealing andyet fundamentally incomparable notions of security were presented for m-party computations, withm > 2, should serve as a warning.4.6 Di�erences among the various versionsThe �rst version of this manuscript was made public on June 11th 1998. In doing so, we choseto make publically available a working draft which may have some errors, rather than wait till thedraft undergoes su�ciently many passes of critical reading. Subsequently, we have posted severalrevisions of the above, where each revision was given a version number. The �rst version is thus(retroactively) referred to as Version 1.0, and the current version is Version 1.4.First revision (Version 1.1): In Version 1.0, it was claimed that the \simulator-based" de�nitionof privately computing is equivalent to the de�nition derived under the \ideal-vs-real" paradigm (cf.,Proposition 2.1.3). This claim does hold for the computation of deterministic functionalities, butmay fail for randomized ones, unless one augments the \simulator-based" de�nition as done in thisversion. All constructions proven (in Version 1.0) to privately compute a randomized functionalityunder the weaker de�nition, do satisfy also the stonger de�nition (as shown in this version).Second revision (Version 1.2): Correcting a minor error in De�nition 2.1.1, and clarifying acouple of points.Third revision (Version 1.3): The original description of Step C1.3 in Construction 3.3.6 iswrong. (This was mainly due to careless extension of the two-party case and is easily corrected.)For the time being, we just explain the error and how to correct it.Current revision (Version 1.4, Final): Pointing out two additional aws in the original expo-sition. Firstly, as explained in [55], the postcompiler (of Sec. 3.3.1) needs to use session-indenti�ersin its invocations of authentiacted Byzantine Agreement. Secondly, the implementation of ObliviousTransfer (and all subsequent results) seem to required an enhanced notion of trapdoor permutations.For better presentation, the reader is referred to [40, Chap. 7].
104



Bibliography[1] W. Alexi, B. Chor, O. Goldreich and C.P. Schnorr. RSA/Rabin Functions: Certain Parts areAs Hard As the Whole. SIAM Journal on Computing, Vol. 17, April 1988, pages 194{209.[2] D. Beaver. Foundations of Secure Interactive Computing. In Crypto91, Springer-Verlag LectureNotes in Computer Science (Vol. 576), pages 377{391.[3] D. Beaver and S. Goldwasser. Multiparty computation with faulty majority. In Crypto89,Springer-Verlag Lecture Notes in Computer Science (Vol. 435), pages 589{590.[4] D. Beaver and S. Haber. Cryptographic Protocols Provably secure Against Dynamic Adver-saries. In Eurocrypt92, preproceedings 281{297.[5] D. Beaver, S. Micali and P. Rogaway. The Round Complexity of Secure Protocols. In 22ndACM Symposium on the Theory of Computing, pages 503{513, 1990.[6] M. Bellare and O. Goldreich. On De�ning Proofs of Knowledge. In Crypto92, Springer-VerlagLecture Notes in Computer Science (Vol. 740), pages 390{420.[7] M. Bellare and S. Micali. How to Sign Given Any Trapdoor Function. Journal of the ACM,Vol. 39, pages 214{233, 1992.[8] M. Ben-Or, R. Canetti and O. Goldreich. Asynchronous Secure Computation. In 25th ACMSymposium on the Theory of Computing, pages 52{61, 1993.[9] M. Ben-Or, S. Goldwasser and A. Wigderson. Completeness Theorems for Non-CryptographicFault-Tolerant Distributed Computation. In 20th ACM Symposium on the Theory of Com-puting, pages 1{10, 1988.[10] M. Blum. How to Exchange Secret Keys. ACM Trans. Comput. Sys., Vol. 1, pages 175{193,1983.[11] M. Blum. Coin Flipping by Phone. IEEE Spring COMPCOM, pages 133{137, February 1982.See also SIGACT News, Vol. 15, No. 1, 1983.[12] M. Blum and S. Goldwasser. An E�cient Probabilistic Public-Key Encryption Scheme whichHides all Partial Information. In Crypto84, Lecture Notes in Computer Science (Vol. 196)Springer-Verlag, pages 289{302.[13] M. Blum and S. Micali. How to Generate Cryptographically Strong Sequences of Pseudo-Random Bits. SIAM Journal on Computing, Vol. 13, pages 850{864, 1984. Preliminaryversion in 23rd IEEE Symposium on Foundations of Computer Science, 1982.105



[14] R. Canetti. Studies in Secure Multi-Party Computation and Applications. Ph.D. Thesis,Department of Computer Science and Applied Mathematics, Weizmann Institute of Science,Rehovot, Israel, June 1995.Available from from http://theory.lcs.mit.edu/�tcryptol /BOOKS/ran-phd.html.[15] R. Canetti. Modular composition of secure multi-party protocols. Unpublished manuscript,1997.[16] R. Canetti. Security and Composition of Multi-party Cryptographic Protocols. Record 98-18of the Theory of Cryptography Library, url http://theory.lcs.mit.edu/�tcryptol. June1998.[17] R. Canetti, C. Dwork, M. Naor and R. Ostrovsky. Deniable Encryption. In Crypto97, SpringerLecture Notes in Computer Science (Vol. 1294), pages 90{104.[18] R. Canetti, U. Feige, O. Goldreich and M. Naor. Adaptively Secure Multi-party Computation.In 28th ACM Symposium on the Theory of Computing, pages 639{648, 1996.[19] R. Canetti and R. Gennaro. Incoercible Multiparty Computation. In 37th IEEE Symposiumon Foundations of Computer Science, pages 504{513, 1996.[20] R. Canetti, S. Halevi and A. Herzberg. How to Maintain Authenticated Communication inthe Presence of Break-Ins. In 16th ACM Symposium on Principles of Distributed Computing,1997.[21] R. Canetti and A. Herzberg. Maintaining Security in the Presence of Transient Faults. InCrypto94, Springer-Verlag Lecture Notes in Computer Science (Vol. 839), pages 425{439.[22] D. Chaum, C. Cr�epeau and I. Damg�ard. Multi-party unconditionally Secure Protocols. In20th ACM Symposium on the Theory of Computing, pages 11{19, 1988.[23] B. Chor, S. Goldwasser, S. Micali and B. Awerbuch. Veri�able Secret Sharing and AchievingSimultaneity in the Presence of Faults. In 26th IEEE Symposium on Foundations of ComputerScience, pages 383{395, 1985.[24] B. Chor and E. Kushilevitz. A Zero-One Law for Boolean Privacy. SIAM J. on Disc. Math.,Vol. 4, pages 36{47, 1991.[25] B. Chor and M.O. Rabin. Achieving independence in logarithmic number of rounds. In 6thACM Symposium on Principles of Distributed Computing, pages 260{268, 1987.[26] R. Cleve. Limits on the Security of Coin Flips when Half the Processors are Faulty. In 18thACM Symposium on the Theory of Computing, pages 364{369, 1986.[27] A. De-Santis, Y. Desmedt, Y. Frankel and M. Yung. How to Share a Function Securely. In26th ACM Symposium on the Theory of Computing, pages 522{533, 1994.[28] Y. Desmedt and Y. Frankel. Threshold Cryptosystems. In Crypto89, Springer-Verlag LectureNotes in Computer Science (Vol. 435), pages 307{315.[29] W. Di�e, and M.E. Hellman. New Directions in Cryptography. IEEE Trans. on Info. Theory,IT-22 (Nov. 1976), pages 644{654. 106



[30] D. Dolev and A.C. Yao. On the Security of Public-Key Protocols. IEEE Trans. on Inform.Theory, Vol. 30, No. 2, pages 198{208, 1983.[31] S. Even and O. Goldreich. On the Security of Multi-party Ping-Pong Protocols. 24th IEEESymposium on Foundations of Computer Science, pages 34{39, 1983.[32] S. Even, O. Goldreich, and A. Lempel. A Randomized Protocol for Signing Contracts. CACM,Vol. 28, No. 6, 1985, pages 637{647.[33] U. Feige, A. Fiat and A. Shamir. Zero-Knowledge Proofs of Identity. Journal of Cryptology,Vol. 1, 1988, pages 77{94.[34] P.S. Gemmell. An Introduction to Threshold Cryptography. In CryptoBytes, RSA Lab., Vol. 2,No. 3, 1997.[35] R. Gennaro, M. Rabin and T. Rabin. Simpli�ed VSS and Fast-track Multiparty Computationswith Applications to Threshold Cryptography. In 17th ACM Symposium on Principles ofDistributed Computing, pages 101{112, 1998.[36] O. Goldreich. Lecture Notes on Encryption, Signatures and Cryptographic Protocol. Spring1989. Available from http : ==theory:lcs:mit:edu=� oded=ln89:html.[37] O. Goldreich. A Uniform Complexity Treatment of Encryption and Zero-Knowledge. Journalof Cryptology, Vol. 6, No. 1, pages 21{53, 1993.[38] O. Goldreich. Foundation of Cryptography { Fragments of a Book. February 1995. Avail-able from http://www.wisdom.weizmann.ac.il/�oded/foc-book.html. Superseeded by [39]and [40].[39] O. Goldreich. Foundation of Cryptography { Basic Tools. Cambridge University Press, 2001.[40] O. Goldreich. Foundation of Cryptography { Basic Appliactions. To appear. Extracts availablefrom http://www.wisdom.weizmann.ac.il/�oded/foc-vol2.html.[41] O. Goldreich. The Foundations of Modern Cryptograpy. In Crypto97, Springer Lecture Notesin Computer Science (Vol. 1294), pages 46{74.[42] O. Goldreich and H. Krawczyk. On the Composition of Zero-Knowledge Proof Systems. SIAMJournal on Computing, Vol. 25, No. 1, February 1996, pages 169{192.[43] O. Goldreich and L.A. Levin. Hard-core Predicates for any One-Way Function. In 21st ACMSymposium on the Theory of Computing, pages 25{32, 1989.[44] O. Goldreich, S. Micali and A. Wigderson. Proofs that Yield Nothing but their Validity orAll Languages in NP Have Zero-Knowledge Proof Systems. Journal of the ACM, Vol. 38,No. 1, pages 691{729, 1991. Preliminary version in 27th IEEE Symposium on Foundations ofComputer Science, 1986.[45] O. Goldreich, S. Micali and A. Wigderson. How to Play any Mental Game { A CompletenessTheorem for Protocols with Honest Majority. In 19th ACM Symposium on the Theory ofComputing, pages 218{229, 1987. 107



[46] O. Goldreich and Y. Oren. De�nitions and Properties of Zero-Knowledge Proof Systems.Journal of Cryptology, Vol. 7, No. 1, pages 1{32, 1994.[47] O. Goldreich and R. Vainish. How to Solve any Protocol Problem { An E�ciency Improvement.In Crypto87, Springer Verlag, Lecture Notes in Computer Science (Vol. 293), pages 73{86.[48] S. Goldwasser. Fault Tolerant Multi Party Computations: Past and Present. In 16thACM Symposium on Principles of Distributed Computing, 1997. Also available fromhttp : ==www:cs:cornell:edu=Info=People=chandra=podc97=newProgram:html.[49] S. Goldwasser and L.A. Levin. Fair Computation of General Functions in Presence of ImmoralMajority. In Crypto90, Springer-Verlag Lecture Notes in Computer Science (Vol. 537), pages77{93.[50] S. Goldwasser and S. Micali. Probabilistic Encryption. Journal of Computer and SystemScience, Vol. 28, No. 2, pages 270{299, 1984. Preliminary version in 14th ACM Symposium onthe Theory of Computing, 1982.[51] S. Goldwasser, S. Micali and C. Racko�. The Knowledge Complexity of Interactive ProofSystems. SIAM Journal on Computing, Vol. 18, pages 186{208, 1989. Preliminary version in17th ACM Symposium on the Theory of Computing, 1985.[52] S. Goldwasser, S. Micali, and R.L. Rivest. A Digital Signature Scheme Secure Against AdaptiveChosen-Message Attacks. SIAM Journal on Computing, April 1988, pages 281{308.[53] J. Kilian. Basing Cryptography on Oblivious Transfer. In 20th ACM Symposium on the Theoryof Computing, pages 20{31, 1988.[54] Y. Lindell. Parallel Coin-Tossing and Constant-Round Secure Two-Party Computation. InCrypto01, Springer Lecture Notes in Computer Science (Vol. 2139), pages 171{189, 2001.[55] Y. Lindell, A. Lysyanskaya and T. Rabin. On the Composition of Authenticated ByzantineAgreement. In 34th ACM Symposium on the Theory of Computing, pages 514{523, 2002.[56] S. Micali and P. Rogaway. Secure Computation. In Crypto91, Springer-Verlag Lecture Notesin Computer Science (Vol. 576), pages 392{404.[57] M. Naor. Bit Commitment using Pseudorandom Generators. Journal of Cryptology, Vol. 4,pages 151{158, 1991. Preliminary version in Crypto89, pages 123{132.[58] M. Naor and M. Yung. Universal One-Way Hash Functions and their Cryptographic Applica-tion. 21st ACM Symposium on the Theory of Computing, 1989, pages 33{43.[59] R. Ostrovsky, R. Venkatesan and M. Yung, \Secure Commitment Against Powerful Adversary:A Security Primitive based on Average Intractability. In Proceedings of the 9th Symposium onTheoretical Aspects of Computer Science, STACS92, pages 439{448.[60] R. Ostrovsky and M. Yung. How to Withstand Mobile Virus Attacks. In 10th ACM Symposiumon Principles of Distributed Computing, pages 51{59, 1991.[61] M.O. Rabin. How to Exchange Secrets by Oblivious Transfer. Tech. Memo TR-81, AikenComputation Laboratory, Harvard U., 1981.108



[62] T. Rabin and M. Ben-Or. Veri�able Secret Sharing and Multi-party Protocols with HonestMajority. In 21st ACM Symposium on the Theory of Computing, pages 73{85, 1989.[63] C. Racko� and D.R. Simon. Non-Interactive Zero-Knowledge Proof of Knowledge and Cho-sen Ciphertext Attack. In Crypto91, Springer-Verlag Lecture Notes in Computer Science(Vol. 576), pages 433{444.[64] R. Rivest, A. Shamir and L. Adleman. A Method for Obtaining Digital Signatures and PublicKey Cryptosystems. CACM, Vol. 21, Feb. 1978, pages 120{126.[65] J. Rompel. One-way Functions are Necessary and Su�cient for Secure Signatures. In 22ndACM Symposium on the Theory of Computing, 1990, pages 387{394.[66] C.E. Shannon. Communication Theory of Secrecy Systems. Bell Sys. Tech. J., Vol. 28, pages656{715, 1949.[67] A. Shamir. How to Share a Secret. CACM, Vol. 22, Nov. 1979, pages 612{613.[68] A. Shamir, R.L. Rivest, and L. Adleman. Mental Poker. MIT/LCS Report TM-125, 1979.[69] M. Tompa and H. Woll. Random Self-Reducibility and Zero-Knowledge Interactive Proofsof Possession of Information. University of California (San Diego), Computer Science andEngineering Department, Technical Report Number CS92-244, June 1992. Preliminary versionin 28th IEEE Symposium on Foundations of Computer Science, pages 472{482, 1987.[70] A.C. Yao. Theory and Application of Trapdoor Functions. In 23rd IEEE Symposium onFoundations of Computer Science, pages 80{91, 1982.[71] A.C. Yao. Protocols for secure computations (extended abstract). In 23rd IEEE Symposiumon Foundations of Computer Science, pages 160{164, 1982.[72] A.C. Yao. How to Generate and Exchange Secrets. In 27th IEEE Symposium on Foundationsof Computer Science, pages 162{167, 1986.

109


