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ABSTRACT

Recent approaches to the notions of randomness and proofs are surveyed. The new notions differ from

the traditional ones in being subjective to the capabilities of the observer rather than reflecting "ideal" entities.

The new notion of randomness regards probability distributions as equal if they cannot be told apart by

efficioent procedures. This notion is constructive and is suited for many applications. The new notion of a

proof allows the introduction of the notion ofzero-knowledge proofs: convincing arguments which yield

nothing but the validity of the assertion.

The new approaches to randomness and proofs are based on basic concepts and results from the theory

of resource-bounded computation. In order to make the survey as accessible as possible, we have presented

elements of the theory of resource bounded computation (but only to the extent required for the description of

the new approaches).

This survey is not intended to provide an account of the more traditional approaches to randomness (e.g.

Kolmogorov Complexity) and proofs (i.e. traditional logic systems). Whenever these approaches are

described it is only in order to confront them with the new approaches.

hhhhhhhhhhhhhhhh
Appears inThe Universal Turing Machine: A Half-Century Survey, R. Herken ed., Kammerer/Unverzagt
Verlag and Oxford University Press, 1987.
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1. INTRODUCTION

When talking about a universal Turing machine, it isimplicitly postulated that the input-output relation

of the machine (i.e. the function it computes) is the only aspect of the machine that we are interested in. This

postulate is naturally imposed upon us, when viewing Turing machines asmeansfor defining whatever "can

be automaticallycomputed". However, when viewing Turing machines (i.e. the computation devices them-

selves) as thesubjectof an investigation, concentration on their input-output relation should be considered a

behaviouristic approach.

Recent research treads in computational complexity (i.e. the theory of resource-bounded computation)

have even a stronger behaviouristic flavour. In these works, one does not consider the input-output relation of

a Turing machine, but rather its effect on an (arbitrary) observer (i.e. another Turing machine) with certain

natural resource bounds.

Typically, the results we will survey state that the input-output behaviour of "ontologically" different

machines, look the same to any suitably resource-bounded observer. For example, pseudorandom sequences

are defined to be indistinguishable inpolynomial-timefrom truly random sequences, although the first may be

generated using substantially fewer coin tosses. Another example is the zero-knowledge proofs, which have

the remarkable property of being both convincing and "reproducible" in a slightly weaker sense by parties

which do not have a "real proof".
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2. BACKGROUND : RESOURCE − BOUNDED COMPUTATION

We begin this section by recalling the definitions ofP, NP and BPP − the complexity classes

corresponding to deterministic, non-deterministic and probabilisticpolynomial-timecomputations. We con-

tinue by presenting the definition of one-way functions, which plays a central role in the construction of pseu-

dorandom generators and in the general results concerning zero-knowledge proofs.

The theory of resource bounded computations is developed in terms of asymptotic behaviour. Typi-

cally, we will consider the number of steps taken by a Turing machine as a function of its input length, bound

this function from above by a "smoother" function, and ask whether the bound is (or can be) a polynomial.

This convention allows us to disregard special (short) inputs on which the machine may behave exceptionally

good, and helps us concentrate on the "typical" behaviour of the machine.

2.1. Deterministic Polynomial-Time Computations

Traditionally in computer science, deterministicpolynomial-time computations are associated with

efficient computations. (Throughout the article, apolynomial-time computationmeans a computations in

which the number of elementary computing steps is bounded by a polynomial in the length of the input.)

This association stems from the acceptability ofdeterminististiccomputing steps andpolynomial-timecom-

putations as feasible in practice. The preference of deterministic computing steps (over non-deterministic

ones) is self evident.Polynomial-timecomputations are advocated as efficient due to the moderate growing

rate of polynomials and due to the correspondence between problems which areknownto have "practically

efficient" solutions and thoseknownto havepolynomial-timesolutions.

Deterministicpolynomial-timecomputations are captured by the complexity classP (P stands forPoly-

nomial). The complexity classP is defined as the set of languages satisfying for eachL ∈ P there exists a

Turing machineM and a polynomialp (.) such that the following two conditions hold:

1) On input a bit stringx (x ∈ {0,1} * ), machineM halts after at mostp ( | x | ) steps, where| x | is the length

of the stringx.

2) On inputx, machineM halts in anaccepting stateif and only if x ∈ L. (Otherwise it halts in a "rejecting

state".)

2.2. Non-deterministic Polynomial-Time Computations

Another interesting complexity class is the set of languages recognizable by non-deterministic(1)

polynomial-timeTuring machines denotedNP (NP stands forNon-deterministicPolynomial-time). Namely,

a languageL is in NP if there exists a non-deterministic machineM and a polynomialp (.) satisfying:
hhhhhhhhhhhhhhhh
1) A non-deterministic Turing machine has a transition function which goes from the current local
configuration to a (finite)set of possiblelocal configurations, rather than going from the current local
configuration to the next local configuration.
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1) On inputx ∈ {0,1} * , machineM halts after at mostp ( | x | ) steps.

2) On inputx, thereexistsa computation ofM halting in an accepting state if and only ifx ∈ L. (Otherwise

all computations halt in a rejecting state.)

Equivalently, a languageL is in NP, if there exists a Boolean predicatePL :{0,1} * ×{0,1} * →{0,1} such that

PL is computable in (deterministic)polynomial-timeandx ∈ L if and only if there exists ay of length polyno-

mial in |x| satisfyingPL(x,y)=1. (The stringy can be thought of as encoding the non-deterministic choices of

machineM above.) Thus,NP consists of the set of languages for which there exist short proofs of member-

ship that can be efficiently verified. Both classes (P andNP) are defined in terms of decision problems (i.e.

"is x in the setS?"). Equivalent formulations in terms of search problems (i.e. "givenx find y such that (x,y)

are in the relationR") are obvious.P can be viewed as the class of search problems for which a solution (i.e.

a string satisfying the relation with the input) can be found in (deterministic)polynomial-time;while NP can

be viewed as the class of problems for which a solution, once found, can be verified in (deterministic)

polynomial-time.

It is widely believed thatP ≠ NP. Settling this conjecture is certainly the most intriguing open problem

in Theoretical Computer Science. If true,P ≠ NP means that there are search problems for which verifying

the validity of a solution is substantially easier than coming up with a solution. The vast variety of problems

which areNP-complete, but are not known to be inP, is considered a support to theP ≠ NP conjecture. A

language isNP-completeif it is in NP and every language inNP is polynomially-reducibleto it (see

definition below). Hence, if someNP-complete language is inP thenNP = P.

Definition: A languageL is polynomially-reducibleto the languageL′ if there exist a deterministic

polynomial-timeTuring machineM so thatx ∈ L if and only if M (x) ∈ L′.

Traditionally in Computer Science, NP-completeness proofs for languages are considered evidence to

the intractability of the corresponding decision problem, since ifP ≠ NP then membership in no NP-

complete language can be determined in (deterministic)polynomial-time. Among the languages shown to be

NP-Complete areSatisfiability(of propositional formulae), theTraveling Salesman Problemas well as many

otheroptimizationproblems, andGraph Colourabilityas well as many other combinatorial problems.

2.3. Probabilistic Polynomial-Time Computations

Recent treads in computer science regard random computing steps as feasible. Following this approach,

we consider computations which can be carried out byProbabilistic polynomial-timeTuring machines as

modeling efficient computations. A probabilistic Turing machine is an "extended" Turing machine that

(based on its local configuration) chooses its next move at random (with uniform probability distribution)

among a finite number of possibilities. (In a deterministic Turing machine, the next move is determined by

the local configuration.) Without loss of generality, we assume that the number of possibilities (for the next

local configuration) is either 1 or 2. One can then view the machine as tossing an unbiased coin before each
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move and determining the next move using the outcome of the coin. On inputx, the output of a probabilistic

Turing machineM is a random variable defined over the probability space of all possible internal coin tosses.

Equivalently, probabilistic Turing machines can be viewed as deterministic machines with two inputs: the

ordinary input, and an auxiliary "random input". One then considers the probability distributions defined by

fixing the first input and letting the auxiliary input assume all possible values with equal probability.

In particular, the complexity classBPP (BPPstands forBounded-away-errorProbabilisticPolynomial-

time) is defined as the set of languages such that for everyL ∈ BPP there exists a probabilistic polynomial-

time Turing machineM satisfying the following two conditions:

1) Prob(M (x) = 1) > 2⁄3 if x ∈ L.

2) Prob(M (x) = 0) > 2⁄3 if x ∈| L.

It should be stressed that this definition is robust under substitution of2⁄3 by either1⁄2+p ( | x | ) or 1−2−p ( | x | ),

wherep (.) is an arbitrary positive polynomial. The following thesis captures the association of "efficient

computation" with probabilisticpolynomial-timecomputations.

Thesis: BPP correspond to the set of problems which can be solved "efficiently".

2.4. One-way Functions

It is generally believed thatP ≠ NP, and furthermore thatBPP ≠ NP. However, this does not neces-

sarily mean that coming-up with hard instances of a "hard" language is easy. (Such instances exist, but may

be hard to find.) The reader should note that bothNP andBPP consider the worst-case complexity of prob-

lems, not their average-case complexity. For the results in this article we need a stronger assumption thanNP

≠ BPP: namely that there are problems which are hard on most (or at least on a "non-negligible" portion) of

the instances. This is formulated in terms of the infeasibility of inverting functions, which are easy to evalu-

ate (in the forward direction).

Definition 1: A function f :{0,1} * →{0,1} * is calledone-wayif the following two conditions hold:

1) There exist a (deterministic)polynomial-timeTuring machine that on inputx outputsf (x).

2) Forany probabilisticpolynomial-timeTuring machineM′, any constantc > 0, and sufficiently largen

ProbI
L M′(f (x),1n) ∈ f −1(f (x)) M

O <
nc

1hhh ,

where the probability is taken over allx’s of lengthn and the internal coin tosses ofM′, with uniform

probability distribution.

Remark: The role of 1k in the above definition is to allow machineM to run in time polynomial in the length of the

preimage it is supposed to find. (Otherwise, any function which shrinks the input more than by a polynomial amount will
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be considered one-way.)

Motivation to the notion of a negligible fraction: In the definition above, we have required that any machine trying to

invert the function will succeed only on a "negligible" fraction of the inputs. We callnegligibleany function µ(.) that

remains smaller than 1 when multiplied by any polynomial We callnegligibleany function µ(.) that remains smaller than

1 when multiplied by any polynomial (i.e. for every polynomialp (.) the limit of µ(n).p (n), whenn grows to infinity, is

0). We ignore events which occur with negligible probability (as a function of the input length) since they are unlikely

to occur even when repeating the experiment polynomially many times. On the other hand, events which occur with

non-negligible probability will occur with almost certainty when repeating the experiment for a reasonable (i.e. polyno-

mial) number of times. Thus, our notion of an "experiment" with a negligible success probability is robust (under poly-

nomial number of repetitions of the experiment).

Motivation for considering infinitely many input lengths: The notion of a polynomial-time Turing machine is mean-

ingful only when considering infinitely many input lengths. (Otherwise one can always choose a polynomial which

bounds the running time of a machine that halts on all inputs in some finite set.) Furthermore, for any instance lengthl,

there exists a Turing machineMl which successfully inverts the function on all instancesx of length l within

| x | + | f (x) | steps (machineMl just incorporates in its transition function the inverses for all instances in this finite set).

The same happens whenever we consider the inversion task for a finite set of instance lengths. Both technical difficulties

are resolved when considering an infinite set of input lengths.

Assumption: There exist one-way functions.Furthermore, there exist one-way 1-1 functions.

The following three number theoretic 1-1 functions are widely believed to be one-way :

Ex1) Modular Exponentiation : In particular, letp be a prime andg be a primitive element ofZp
* (the multiplicative

group modulop). DefineME (p,g,x)=(p,g,y), wherey is the result of reducinggx modulo p. Inverting ME is

known as theDiscrete Logarithm Problem.

Ex2) RSA: Let p andq be primes,N=p.q ande be relatively prime toφ(N)=(p−1).(q−1). DefineRSA(N,e,x)=(N,e,y),

wherey equalsxe modN.

Ex3) Modular Squaring : In particular, let p and q be primes both congruent to 3 mod 4, andN=p.q. Define

MS(N,x)=(N,y), wherey equalsx2 modN. (To make this function one-to-one, restrictx to be a quadratic residue

moduloN.) InvertingMS(N, .) is computationally equivalent to factoringN; that is, the problems are reducible to

one another through probabilistic polynomial-time transformations.

Remark: The requirement, in condition 2 of Definition 1, that the inverting machine succeeds only a negiligible frac-

tion of the instances of that particular length can be relaxed to requiring that the machine fails on some non-negligible

fraction. Namely,

(2′) There exists a constantc >0 such that forany probabilistic polynomial-time Turing machineM′ and sufficiently

largen

ProbI
L M′(f (x),1n) ∈| f−1(f (x)) M

O > n −c,

where the probability is taken as above.

The relaxed form is equivalent to the original Definition 1, both with respect to the existence of arbitrary one-way func-

tions (one-way 1-1 functions), and with respect to the above three particular functions being one-way.
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3. RANDOMNESS

In this section, we survey a recent behaviouristic approach to randomness. In this approach a probabil-

ity distribution is considered "pseudorandom" if no "efficient procedure" can distinguish it from the uniform

probability distribution. Remarkably, pseudorandomness so defined is expandable in the sense that (assuming

the existence of 1-1 one-way functions) short pseudorandom sequences can bedeterministically and

efficiently expanded into much longer pseudorandom sequences.

3.1. Definition of Pseudorandom Distributions

A key definition in this approach is that of the infeasibility of distinguishing between two probability

distributions. This behaviouristic definition, views distributions as equal if they cannot be told apart by any

probabilisticpolynomial-timetest. Such atestreceives as input a single string and outputs some statistics of

the input. With no loss of generality, we may assume that the test outputs a single bit, which may be inter-

preted as a guess of the distribution from which the input was chosen. One considers the probability that, on

input taken from the first distribution (resp. second distribution), the test outputs 1. If these two probabilities

only differ by a negligible amount then the corresponding distributions are regarded as indistinguishable by

this test.

Preliminaries (Probability Ensembles): Aprobability distribution is a function,π, from strings to non-

negative reals such that
α ∈ {0,1} *

Σ π(α) = 1. A probability ensembleindexed byI is a sequence,Π = { πi } i ∈ I , of

probability distributions. Throughout the entire article, we adopt the convention that the probability distribu-

tions in an ensemble assign non-zero probability only to strings of length polynomial in the length of the

index of the distribution.

Motivation to defining ensembles: Probability ensembles are defined so that we can consider the asymptotic behaviour

of arbitrary polynomial-time Turing machines on inputs taken from a probability distribution.

Definition 2 (PolynomialIndistinguishability- finite version): LetΠ1 = { π1,i } i ∈ I andΠ2 = { π2,i } i ∈ I be two

probability ensembles each indexed by elements ofI. Let T be a probabilisticpolynomial-timeTuring

machine (hereafter called atest). The test gets two inputs: an indexi and a stringα. Denote byp1
T (i ) the pro-

bability that, on input indexi and a stringα chosen according to the distributionπ1,i , the testT outputs 1 (i.e.,

p1
T (i ) =

α
Σπ1,i (α).Prob(T (i,α)=1)). Similarly, p2

T (i ) denotes the probability that, on inputi and a string

chosen according to the distributionπ2,i , the testT outputs 1. We say thatΠ1 andΠ2 arepolynomially indis-

tinguishableif for all probabilisticpolynomial-timetestsT, all constantsc >0 and all sufficiently largei ∈ I

| p1
T (i ) − p2

T (i ) | < | i | −c.

Motivation to having the index as an auxiliary input to the test: In the above definition, giving the index as auxiliary

input to the test is not essential. However, in subsequent definitions presented in this article this convention plays an

important technical role. For the sake of uniformity of definitions, we adopt this convention all along.
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A probabilistic interpretation of Definition 2: Two probability distributionsπ1 andπ2 are equal if they assign identi-

cal probability mass to the same string (i.e. if for allα ∈ {0,1} * , π1(α) = π2(α) ). Two distributions arestatistically close

if they assign "about the same" mass to the same subsets of strings (i.e. if for allS⊆ {0,1} * , the difference between the

sums
α ∈ S
Σ π1(α) and

α ∈ S
Σ π2(α) is negligible). Loosely speaking, two distributions are polynomial indistinguishable if they

assign "about the same" probability mass to any efficiently recognizable set of strings.

An important special case of indistinguishable ensembles is that of probability ensembles which are

polynomially indistinguishable from a uniform probability emsemble. These ensembles are called pseudoran-

dom since, for all practical purposes, they are as good as truly unbiased coin tosses. This is clearly a

behaviouristic point of view.

Definition 3 (Pseudorandom Distributions - finite version): Letl :{0,1} * →N be a (length) function (mapping

strings to integers),π0,i
l denote the uniform probability distribution on the set {0,1}l (i ), andΠ0

l = { π0,i
l } i ∈ I .

Let Π1 = { π1,i } i ∈ I be a probability ensemble indexed byI. We say thatΠ1 is pseudorandomif it is polyno-

mially indistinguishable fromπ0
l , for some length functionl.

The above definitions (2 and 3) are titled "finite version" because each of the probability distributions

(in the ensembles considered) is a function fromfinite strings to non-negative reals. The infinite version of

these definitions considers instead distributions oninfinite bit-sequences (infinite strings). For the infinite ver-

sions, we need to modify the definition of polynomially indistinguishable distributions, so that the tests run in

time polynomial in the length of the first input (the index), while the second input may be infinite. (Here, the

first input is essential in order to define the running time of the test!) Another modification, is in definingπ0,i

as a uniform distribution over the set of infinite strings. The technical details are omitted.

3.2. On the Expandability of Pseudorandom Distributions

Having defined pseudorandom ensembles, it is natural to ask whether such ensembles do exist. The

answer is trivially affirmative, since the uniform ensemble is pseudorandom (being indistinguishable from

itself!). However, this answer is of no interest. We would like to know whether ensembles which are not uni-

form, and furthermore are notstatisticallyclose to uniform, can be pseudorandom. Furthermore, can such

ensembles be constructed using less coin tosses than the length of the strings in their support(2)? As we shall

see in this section, assuming the existence of one-way 1-1 functions, the answer to both questions is

affirmative. A key definition capturing the second question follows.

Definition 4 (Pseudorandom Generator): Letp (.) be a polynomial satisfyingp (n)≥n+1. Let G be a deter-

ministic polynomial-timeTuring machine that on input anyn-bit string, outputs a string of lengthp (n). Let ni

denote the unary encoding of the integern. We say thatG is a pseudorandom generatorif the probability

ensemble defined by it is pseudorandom. Here, the ensemble defined byG is {Gni} where a stringy has
hhhhhhhhhhhhhhhh
2) Thesupportof a probability distribution is the set of elements which are assigned non-zero probability.
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probability m.2−n in the distributionGni if there are exactlym strings of lengthn such that feeding each of

them toG yields the outputy.

Motivation to the unary encoding of the length: The length of the seed toG (i.e. n) is encoded in unary so that the

strings in the support ofGni have length polynomial inn ( = | ni | ).

Feeding a pseudorandom generators with seeds taken from a uniform distribution (over {0,1}n), yields a

pseudorandom distribution. The following Theorem states that feeding a pseudorandom generator with seeds

taken from a pseudorandom distribution yields a pseudorandom distribution over longer strings.

Theorem 1: Suppose thatΠ1={ π1,i } i ∈ I is a pseudorandom ensemble, andG is a pseudorandom generator.

Then the ensembleΠ2={ π2,i } i ∈ I , whereπ2,i is defined by feedingG with inputs according to the distribution

π1,i , is also pseudorandom.

Proof’s Idea: Assume to the contrary that there exists a (polynomial-time) testT distinguishing betweenΠ2 and the

uniform distribution. Then at least one of the following two statements hold:

1) The testT also distinguishes {Gni} from the uniform distribution (in contradiction toG being a pseudorandom gen-

erator).

2) The testT can be modified into a testT′ (which first appliesG to the tested string and then runsT on the result) so

thatT′ distinguishΠ1 from the uniform distribution (thus contradicting the hypothesis thatΠ1 is pseudorandom).

`

We return to the fundamental question ofwhether pseudorandom generators do exist.We will see that,

under the assumption that one-way 1-1 functions exist, the answer isyes. The following definitions and

results are used in order to prove thisimplication. In particular, the equivalence of Definition 3 and

Definition 5 plays an important role in proving the pseudorandomness of the construction presented below.

Definition 5 concerns the feasibility of predicting the next bit in a string, which is taken from some distribu-

tion. The predictor is given only a prefix of the string. The question is whether there exists an efficient pred-

ictor which succeeds with probability non-negligibly greater than1⁄2.

Definition 5 (Unpredictability): LetΠ1 = { π1,i } i ∈ I be a probability ensemble indexed byI. Let M be a pro-

babilistic polynomial-timeTuring machine that on inputsi andy outputs a single bit (called theguess). Let

bit (α,r ) denote ther-th bit of the stringα, andpref (α,r ) denote the prefix consisting of the firstr bits of the

string α (i.e. pref(α,r ) = bit (α,1)bit (α,2)...bit (α,r )). We say that the machineM predicts the next bitof Π1

if for somec >0 and infinitely manyi’s

ProbI
LM (i,pref (α,r )) = bit (α,r +1)MO ≥

2
1hh + | i | −c,

where the probability space is that of the stringα chosen according top1,i , the integerr chosen at random

with uniform distribution in {0,1,...,| α | −1} and the internal coin tosses ofM. We say thatΠ1 is unpredict-

able if there existno probabilisticpolynomial-timemachineM which predicts the next bit ofΠ1.
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Definition 5 can be viewed as a special case of Definition 3. Any predictor can be easily converted into

a test which outputs 1 if and only if the guess of the predictor is correct. The resulting test will distinguish an

ensemble from the uniform ensemble if and only if the original predictor’s guesses are non-negligibly better

than "random". Interestingly, the special case is not less powerful. Namely, each successful distinguisher can

be converted into a successful predictor.

Theorem 2: Let Π1 be a probability ensemble. ThenΠ1 is pseudorandom if and only if it is unpredictable.

Proof’s Idea: Assume thatT is a test which distinguishesπ1,i from the uniform distribution. We consider the behaviour

of T when fed with strings taken from thehybrid distributionsH i
( j ), whereH i

( j ) is defined as the distribution resulting by

taking the firstj bits of a string chosen fromπ1,i and letting the other bits be uniformly distributed. There must be two

adjacent hybrids,H i
( j ) andH i

( j +1), which are distinguishable byT. The j +1st bit is predicted using this "gap".̀

The notion of a hard-core predicate (presented below) plays a central role in the construction of pseu-

dorandom generators. Intuitively, a hard-core of a functionf is a predicate (b (x)) which is easy to evaluate

(on inputx) but hard to even approximate when given the value of the function (f (x)). Recall thatf is one-

way if it is easy to evaluate (i.e. computef (x) from x) but hard to invert (i.e. computex from f (x)). Thus,

the hard-core maintains in a strong sense both the easyness (in the forward direction) and the hardness (in the

backward direction) of the function.

Definition 6 (Hard-core Predicate): Letf :{0,1} * →{0,1} * andb :{0,1} * →{0,1}. The predicateb is said to

bea hard-coreof the functionf if the following two conditions hold

1) There is a deterministicpolynomial-timeTuring machine that on inputx returnsb (x).

2) There isno probabilisticpolynomial-timeTuring machineM′ such that for somec >0 and infinitely

manyn

ProbI
L M′(f (x)) = b (x) M

O ≥ 1/2 + n−c,

where the probability is taken over all possible choices ofx ∈ {0,1} n and the internal coin tosses ofM′

with uniform probability distribution.

Clearly, if the predicateb is a hard-core of the 1-1 functionf then f is hard to invert. Assuming that

either of the functions presented in subsection 2.4 is one-way, predicates which constitutes corresponding

hard-core can be presented. For example, the least significant bit is a hard-core ofRSA (i.e., given

RSA(N,e,x) one cannot efficiently predict the least significant bit ofx). In fact, every one-way functionf can

be "transformed" into a one-way functionf′ with a corresponding hard-core predicateb′. Thus, unpredicta-

bility and computational difficulty play dual roles.

Theorem 3: If there exist one-way functions (resp. one-way 1-1 functions) then there exist one-way functions

(resp. one-way 1-1 functions) with a hard-core predicate.
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Proof’s Idea: The proof uses the observation that iff is one-way then there must be a bit in its argumentx that cannot

be efficiently predicted fromf (x) with success probability greater than 1−1/ | x | . (Otherwise, with constant probability,

all the bits of the argument can be predicted correctly and the argument can be retrieved.) Letb (i,x) denote theith bit of

x. For | x1 | = | x2 | = ...= | xn3 | =n, define

f′(x1,x2,...,xn3) = f (x1)f (x2)...f (xn3),

b′(x1,x2,...,xn3) =
I
J
L i =1
Σ
n

j =1
Σ
n2

b (i,x(i −1).n2+ j ) mod2
M
J
O
.

It can be shown that the predicateb′ is a hard-core off′. The proofdoes notreduce to showing that a (sufficiently long)

sequence of biased and independent 0-1 random variables has sum mod 2 which is almost unbiased (since the prediction

errors on the various predicates are not random variables)!`

Having a one-way 1-1 function with a hard-core predicate suffices for the following construction of

pseudorandom generators.

Construction 1: Let f be a one-way 1-1 function andb a hard-core predicate off. We define the following

polynomial-timeTuring machineG. On inputx, machineG computes the bitsbi =b (f (i )(x)), where 1≤i ≤2 | x |

and f (i ) denotes the functionf iteratively appliedi times. MachineG outputsb2 | x |
...b2b1.

Lemma 1: Let f, b andG be as in Construction 1. Then {Gni} defined as in Definition 4 is unpredictable.

Proof’s Idea: An efficient predictor of the sequence defined above can be easily converted into a machineM that on

input f (x) guessesb (x) with success probability greater than 1/2. On input f (x), machineM computes the sequence

b (f (k)(x)),...,b (f (2)(x)),b (f (x)) and obtains a prediction forb (x). `

Combining Theorem 3, Lemma 1 and Theorem 2, we get

Theorem 4: If there exist one-way 1-1 functions then there exist pseudorandom generators.

3.3. Discussion

Before presenting further extensions and applications of the above approach to randomness, let us dis-

cuss several conceptual aspects.

Behavioristic versus Ontologic

The behaviouristic nature of the above approach to randomness is best demonstrated by confronting this

approach with the Kolmogorov-Chaitin approach to randomness. Loosely speaking, a string isKolmogorov-

randomif its length equals the length of the shortest program producing it. This shortest program may be

considered the "true explanation" to the phenomenon described by the string. A Kolmogorov-random string

is thus a string which does not have a substantially simpler (i.e. shorter) explanation than itself. Considering

the simplest explanation of a phenomenon is certainly an ontologic approach. In contrast, considering the

effect of phenomena on certain objects, as underlying the definition of pseudorandomness (above), is a

behaviouristic approach.
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Furthermore, assuming the existence of one-way 1-1 functions, there exist probability distributions

which are not uniform (and are not evenstatisticallyclose to a uniform distribution) that nevertheless are

indistinguishable from a uniform distribution (by any efficient method). Thus, distributions which are onto-

logically very different, are considered equivalent by the behaviouristic point of view taken in the definitions

above.

A Relativistic View of Randomness

Pseudorandomness is defined above in terms of its observer. It is a distribution which cannot be told

apart from a uniform distribution by any efficient (i.e.polynomial-time)observer. Thus, pseudorandomness

is subjective to the abilities of the observer. To illustrate this point consider the followingmental experiment.

Alice and Bob want to play "head or tail" in one of the following four ways. In all of them Alice flips an unbiased

coin and Bob is asked to guess its outcome before the coin rests on the floor. The alternative ways differ by the

knowledge Bob has before making his guess. In the first way, Bob has to announce his guess before Alice flips the

coin. Clearly, in this way Bob wins with probability 1/2. In the second way, Bob has to announce his guess while

the coin is spinning in the air. Although the outcome isdetermined in principleby the motion of the coin, Bob

does not have accurate information on the motion and thus we believe that also in this case Bob wins with proba-

bility 1/2. The third way is similar to the second, except that Bob has at his disposal sophisticated equipment

capable of providing accurateinformationon the coin’s motion as well as on the environment effecting the out-

come. However, Bob cannot process this information in time to improve his guess. In the fourth way, Bob’s

recording equipment is directly connected to apowerful computerprogrammed to solve the motion equations and

output a prediction. It is conceivable that in such a case Bob can improve his guess of the outcome of the coin sub-

stantially.

We conclude that the randomness of an event is relative to the information and computing resources at our

disposal. Pseudorandom ensembles are unpredictable by probabilisticpolynomial-timemachines (associated

with feasible computations), but may be predictable by infinitely powerful machines (not at our disposal!).

Effectiveness and Applicability

Another interesting property of the above approach to randomness is that it is effective in the following

two senses: First, one may construct an efficient (universal) test that distinguishes pseudorandom distribu-

tions from ones which are not pseudorandom. In contrast, the problem of determining whether a string is

Kolmogorov-random is undecidable. Second, assuming the existence of one-way 1-1 functions, long pseu-

dorandom strings can be efficiently anddeterministicallygenerated from much shorter pseudorandom strings.

Clearly, this cannot be the case with Kolmogorov-random strings.

The existence of pseudorandom generators has applications to the construction of efficient probabilistic

algorithms (Turing machines). Such algorithms maintain the same performance when substituting their inter-

nal coin tosses by pseudorandom sequences. Thus, for every constantε>0, the number of truly random bits

required in apolynomial-timecomputation on inputx can be decreased (frompoly( | x | )) to | x | ε.



- 13 -

Randomness and Computational Difficulty

Randomness and computational difficulty play dual roles. This was pointed out already when discuss-

ing one-way functions and hard-core predicates. The relationship between pseudorandom generators and

one-way computations is even a better illustration of this point. We have shown above that the existence of

one-way 1-1 functions implies the existence of pseudorandom generators. On the other hand, one can readily

verify that any pseudorandom generator constitutes a one-way function.

3.4. Further Extension: Pseudorandom Functions or Experimenting with the Random Source

In the previous subsection we have(implicitly) modelled phenomena as single events (bit strings). This

model suffices for describing phenomena in which the observer is passive: he can only record the events

which occur. A more powerful model allows the observer to conduct experiments. Namely, "feed" the

phenomenon with some values and measure the events which correspond to these values. Modelling a

phenomenon as a function from events to events (or as a function from environment values to actions) is thus

natural and useful. As in the previous subsections, we will present definitions for a pair of indistinguishable

phenomena, a pseudorandom phenomenon and a generator of the latter. In other words, we will present

definitions forindistinguishabilityof functions, pseudorandom functions, and pseudorandom function genera-

tors.

For our definition of indistinguishable function ensembles we consider Turing machines with oracles.

These machines are able, in addition to the traditional computing steps, to makeoracle queries: place a string

on a special tape and read an "answer" in the next step. Loosely speaking, we will say that two function

ensembles are indistinguishable if anypolynomial-timeoracle Turing machine cannot distinguish the case

that its oracle is a function taken from the first ensemble and the case that the oracle is a function taken from

the second.

Definition 7 (Indistinguishabilityof Functions, Pseudorandom Functions and Function Generators):

Let F1={ F1,i } i ∈ I andF2={ F2,i } i ∈ I be two function ensembles, whereF j,i is a probability distribution on the

functions f :{0,1} | i | →{0,1}. We say thatF1 andF2 arepolynomially indistinguishableif for every proba-

bilistic polynomial-timeoracle machineM, every constantc >0 and all sufficiently largei ∈ I

| p1
M (i ) − p2

M (i ) | < | i | −c,

wherep j
M(i ) is the probability thatM outputs 1 on inputi when querying an oracle randomly chosen from the

distributionF j,i .

The function ensembleF={ Fi } i ∈ I is pseudorandomif it is polynomially indistinguishable from the ensemble

H={ Hi } i ∈ I , whereHi is the uniform probability distribution on the set of functionsf :{0,1} | i | →{0,1}.

We say thatF={ Fni} is a pseudorandom function generatorif the following three conditions hold:
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1) There exists a probabilisticpolynomial-timemachineM1 that, on inputni, randomly selects a functionf

from the distributionFni, and outputs a (succinct) description off (denotedf̃).

2) There exists a (deterministic)polynomial-time machine M2 that, on input f̃ (a description of

f :{0,1} n→{0,1}) and a stringx ( ∈ {0,1} n), outputsf (x). That is,M2( f̃,x) = f (x).

3) The ensembleF is pseudorandom.

Similar definitions apply to function ensembles consisting of distributionsFi on functions

f :{0,1} | i | →{0,1} | i | . Furthermore, one can easily transform ensembles of the first kind to ones of the

second type, and vice versa.

As in subsection 3.2, we now ask whether there exist non-trivial ensembles of pseudorandom functions,

and furthermore whether such ensembles can be efficiently generated. It turns out that this question reduces

to the question handled in subsection 3.2. Namely,

Theorem 5: Pseudorandom function generators exist if and only if pseudorandom generators exist.

Proof’s Idea: The "only if" direction of Theorem 5 is easy. The generator first usesM 1 to get anf̃ and next usesM 2 to

evaluatef (1), f (2),... The "if" direction of the Theorem also has a constructive proof. The construction proceeds in

two steps: First one uses an arbitrary pseudorandom generator to construct a pseudorandom generatorG that doubles the

length of its input. Next,G is used to construct a pseudorandom function in the following manner. LetG0(x) denote the

first | x | bits output byG on inputx, andG1(x) denote the last| x | bits output byG on inputx. Extend the above nota-

tion so that for every bitσ and bit stringα, Gασ(x) = Gα(Gσ(x)). Now, let fx(y) = Gy(x), and Fni is the distribution

obtained by pickingx uniformly among alln bit strings and using the resulting functionfx. It can be shown thatF so

defined is a pseudorandom function generator. It is interesting to note that this is not the case if we letfx(y) = Gx(y). `

Further Discussion

It is interesting to point out the analogy between the above definition of pseudorandom functions and

Turing’s famous "test of intelligence". (In Turing’s test of intelligence, one is interacting arbitrarily with an

unknown entity which is either a human or a machine. The machine is said to be (pseudo)intelligent if the

tester cannot distinguish the two cases.) In both settings one interacts with an unknown function in order to

latter determine the "nature" of this function. Failure to determine the "true nature" is interpreted as a proof

that the difference in nature is of no importance (as far as functionality goes...).

Pseudorandom functions can not be predicted, even not in the following weak sense: any probabilistic

polynomial-timeoracle Turing machine cannot predict the value of the oracle on an unasked query better than

50-50, when the oracle is a pseudorandom function. This resembles the following quotation of Turing:

I have set up on a Manchester computer a small programme using only 1000 units of storage, whereby the

machine supplied with one sixteen figure number replies with another within two seconds. I would defy anyone to

learn from these replies sufficient about the programme to be able to predict any replies to untried values.
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3.5. Applications to Cryptography

The most obvious application of pseudorandomness to cryptography is makingone-time padsa feasible

and secure encryption method. One-time pads are the simplest and safest private-key cryptosystem. A clear-

text is encrypted by XORing(3) its bits with the currently initial segment of the (randomly selected) key, and

the resulting ciphertext is decrypted by XORing its bits with the very segment of the key. Each segment of

the key is deleted after use, and thus no information about the cleartext can be extracted from the ciphertext.

The drawback of one-time pads is that the length of the key in use must equals or even exceed the length of

the messages sent. Namely, in order tosecretlypass a message of lengthl one must exchange secretly

another message of lengthl. This is not satisfactory both from a theoretical and practical point of view, since

the aim is to achieve high level of security in a much lower "cost". In practice, "pseudorandom sequences"

are used instead of the randomly selected key of the one-time pad,but security can no longer be asserted.

Assuming the existence of pseudorandom bit generators (in the sense discussed in section 3.2), one can

replace the key of the one-way pad by a pseudorandom sequence andprove that the resulting cryptosystem is

secure in the following sense:whatever can be efficiently computed from the ciphertext can be efficiently

computed without it.In other words, as far aspolynomial-timecomputations are concerned, no information

about the cleartext isrevealedfrom the ciphertext.

Other applications of pseudorandomness to Cryptography use the construction of pseudorandom func-

tions (Theorem 5, section 3.4). For example, it is possible to produce unforgeablemessage authentication

tagsand time-stamps. Assume two partiesA andB, sharing a secret key, communicate over a channel tam-

pered by an adversaryC. The adversary may inject messages on the channel. The parties would like to be

able to verify that a message has arrived from their counterpart, and not from the adversary. It is suggested

that in order to authenticate a messageM, partyA just applies the pseudorandom functionf to M, and sends

f (M) as the authentication tag ofM. PartyB may then verify the validity of this authentication tag, being

confident that the message has been sent byA (and not injected byC). We stress that iff is a pseudorandom

function then the above scheme isprovably secure in the following sense:even if C gets polynomially many

authentication tags to messages of his choice he cannot produce in polynomial-time an authentication tag to

any other message.

hhhhhhhhhhhhhhhh
3) XORing two bit strings means applying exclusive-or (XOR) to each pair of corresponding bits.
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4. INTERACTIVE PROOFS

In this section we survey a recent behaviouristic approach to the notion of an (efficiently verifiable)

proof. In this approach, a proof system for proving membership in a languageL is a two-party protocol for a

proverand averifierso that the prover can convince the verifier to acceptx (with high probability) if and only

if x ∈ L.

4.1. Definition of Interactive Proofs

Before defining the notion of an interactive proof, we define the notion of an interactive pair of Turing

machines, which captures the intuitive notion of a two-party protocol.

Definition 8 (Pair of Interactive Turing machines): Aninteractive Turing machine (ITM)is a six-tape deter-

ministic Turing machine with a read-onlyinput tape, a read-onlyrandom tape, a read/writework tape, a

read-onlycommunication tape, a write-onlycommunication tape, and a write-onlyoutput tape. The string

which appears on the input tape is called theinput. The contents of the random tape can be thought of as the

outcomes of unbiased coin tosses. The string which appears on the output tape when the machine halts is

called theoutput. The contents of the write-only communication tape can be thought of as messages sent by

the machine; while the contents of the read-only communication tape can be thought of as messages received

by the machine.

An interactive pair of Turing machinesis a pair of ITMs which share their communication tapes so that the

read-only (communication) tape of the first machine is the write-only (communication) tape of the second

machine, and vice versa. LetM1 andM2 be an interacting pair of ITMs, then [M2(x2),M1(x1)] denotes the

output ofM1 on inputx1, whenM2 has inputx2.

Intuitively, an interactive proof system for a languageL is a two-party protocol for a "powerful"prover

and a probabilisticpolynomial-timeverifier satisfying the following two conditions with respect to the com-

mon input, denotedx. If x ∈ L then with very high probability the verifier is "convinced" of this fact, when

interacting with the prover. Ifx ∈| L then no matter what the prover does, he cannot fool the verifier (into

believing that "x is in L"), except for with very low probability. The first condition is referred to as thecom-

pletenesscondition, while the second condition is referred to assoundness

Definition 9 (Interactive Proof): Aninteractive proof for a language Lis a pair of ITMsP andV satisfying

the following conditions:

0) On inputx machineV make at mostp ( | x | ) steps, wherep (.) is a fixed polynomial.

1) Completeness: For every constantc>0, and all sufficiently longx ∈ L

ProbI
L[P (x),V (x)] = 1MO ≥ 1− | x | −c.
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2) Soundness: For every constantc>0, every ITMP′, all sufficiently longx ∈| L, and everyy ∈ {0,1} * ,

ProbI
L[P′(y),V (x)] = 0MO ≥ 1− | x | −c.

Denote byIP the class of languages having interactive proofs.

Remarks: Note that it does not suffice to require that the verifier cannot be fooled by the predetermined

prover (such a mild condition would have presupposed that the "prover" is a trusted oracle).NP is a special

case of interactive proofs, where the interaction is trivial and the verifier tosses no coins.

Example of an interactive proof

To illustrate the definition of an interactive proof we present an interactive proof forGraph Non-Isomorphism.

The input is a pair of graphsG1 andG2, and one is required to prove that there exists no 1-1 edge-invariant mapping of

the vertices of the first graph to the vertices of the second graph. (A mappingπ from the vertices ofG1 to the vertices of

G2 is edge-invariantif the nodesv andu are adjacent inG1 if and only if the nodesπ(v) andπ(u) are adjacent inG2.)

It is interesting to note that no short NP-proofs are known for this problem; namely Graph Non-Isomorphism isnot

knownto be inNP.

The interactive proof proceeds as follows: The verifier chooses at random one of the two input graphs, sayGα

(α ∈ {1,2}). The verifier creates a random isomorphic copy ofGα and sends it to the prover, which is supposed to

answer withβ ∈ {1,2}. The verifier interpretsβ = α as evidence that the graphs are not isomorphic; whileβ ≠ α leads

him to reject. This is repeated several times (with independent random choices!) to collect stochastic evidence. The

verifier accepts (the graphs as non-isomorphic) if and only if all of the provers responses are correct.

If the two graphs are not isomorphic, the prover has no difficulty to always answer correctly (i.e. aβ equal toα),

and thus the completeness condition is met. If the two graphs are isomorphic it is impossible to distinguish a random

isomorphic copy of the first from a random isomorphic copy of the second, and the probability that the prover answers

correctly to one "query" is at most 1/2. The probability that the prover answers correctly allt queries is≤ 2−t and the

soundness condition is satisfied.

4.2. Discussion

The terminology of interactive proofs explicitly deals with the two fundamental computational tasks

related to proof systems: producing a proof and verifying the validity of a proof. For many yearsNP was

consideredthe formulationof "whatever can be efficiently verified". This stemmed from the traditional asso-

ciation of deterministicpolynomial-timecomputation with efficient computation. The growing acceptability

of probabilisticpolynomial-timecomputations as reflecting efficient computations is the basis of the more

recent formalization (namelyIP) of "whatever can be efficiently verified". As we regard random computing

steps as feasible, there is no reason not to allow the verifier to make such steps. Following our convention of

disregarding events that occur with negligible probability, we disregard the probability of error in such proofs.

(Objections to this approach are discussed in the sequel.) Also, there seem to be no reason to restrict the

interaction between the prover and verifier, as long as the verifier remains efficient in term of (the length of)

the claim to be proven. In fact, a hierarchy of complexity classes, parametrized by the number of messages

exchanged between the prover and verifier, seems to emerge. Namely,IP(f (.)) denotes the class of languages
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having interactive proofs in which up tof ( | x | ) messages are exchanged on inputx.

The definition of interactive proofs does not meet the traditional notion of a "proof", which disallows

the possibility of error. The fact that in an interactive proof an error may occur only with an overwhelmingly

small probability does not overrole the objection of a purist (namely that "this is not a proof"). But even the

purist must agree that an interactive proof captures the intuitive notion of a convincing argument. Any rea-

sonable person, trusting his own coin tosses, will believe statements "proved" through means of an interactive

proof and ignore the overwhelmingly small possibility of an error. Ignoring errors which may occur with

overwhelmingly small probability is clearly a behaviouristic approach to life. In other words, as far as all

practical purposes are concerned, an interactive proof is as good as a "real proof" (i.e. anNP proof).

Another possible objection to interactive proofs is that they are not "transferrable", but rather convince

only a party that either actively participates in them (as a verifier) or believes that the verifier’s "random

moves" were unpredictable by the prover. (Consider for example the interactive proof for Graph Non-

Isomorphism: if the prover can predict the verifier’s coin tosses then he can answer correctly even if the

graphs are isomorphic.)

In going from NP to interactive proofs (i.e.IP) we gave away certainty and transferrability of the

"proof". Does this buy us anything?UnlessIP ⊆ BPP (and henceNP ⊆ BPP), the answer is affirmative as

interactive proofs allow us to introduce (non-trivially) the notion of zero-knowledge proofs (see next section).

Another possible gain of interactive proofs is that they allow to prove membership in languagesnot knownto

be inNP (e.g. Graph Non-Isomorphism). (Proving that IP ≠ NP is way out of the "current state of the art" as

it will imply that NP is strictly contained inPSPACE.)

An interesting question regarding interactive proofs is what ingredients or parameters determine their

power. The most important discovery in this direction is that restricting the verifier to only send the prover

the outcome of his coin tosses, does not decrease the power of the proof system. In other words, whatever can

be proven with a verifier that cleaverly chooses his "questions", can be proven with a verifier that chooses his

"questions" at random. (The above restricted type of interactive proof is calledan Arthur Merlin game.)

Another result is that increasing the number of interactions by amultiplicative factor does not increase the

power of the system (i.e. for every constantc >0 and functionf, IP(f (.)) = IP(c.f (.)) ). In particular, an

interaction in which the verifier gets an answer to one randomly chosen question is as powerful as an interac-

tion consisting of a bounded sequence of questions and answers. Finally, one can show that the error proba-

bility in the completeness condition (of Definition 9) is not essential, while the error probability in the sound-

ness condition is essential (unlessNP = IP).
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5. ZERO - KNOWLEDGE PROOFS

In this section, we survey the notion of zero-knowledge proofs. To examplify this notion consider the

set (i.e. language) of satisfyable propositional formulae. An easy way to convince apolynomial-timeverifier

that a formulaψ is satisfiable is to demonstrate a truth assignment which satisfiesψ. This proof, however,

reveals much more than the fact thatψ is satisfiable: it yields a satisfying assignment. The reader should note

that, unlessP≠ NP, a satisfying assignment is hard to get even if one knows that such an assignment does

exist. Thus, the verifier in the above proof obtains (from the prover) knowledge which he could not compute

by himself, even if he believed thatψ is satisfiable. In a zero-knowledge proof, the verifier will be convinced

that ψ is satisfiable without getting a satisfying assignment nor obtaining any knowledge about the formula

which is not attainable from the formula itself and the fact that it is satisfiable. Thus, the verifier in a zero-

knowledge proof is essentially in the same situation as if he is told by a trusted oracle thatψ is satisfiable.

5.1. Definition of Zero-Knowledge Proofs

Intuitively, a zero-knowledge proof is a proof which yields nothing but its validity. This means that for

all practical purposes, "whatever" can be done after interacting with a zero-knowledge prover, can be done

when just believing that the assertion he claims is indeed valid. (In "whatever" we mean not only the compu-

tation of functions but also the generation of probability distributions.) Thus, zero-knowledge is a property of

the predetermined prover. It is the robustness of the prover against attempts of the verifier to extract

knowledge via interaction. Note that the verifier may deviate arbitrarily (but inpolynomial-time)from the

predetermined program. This is captured by the formulation sketched below.

Denote by [P,V* (x)] the probability distribution generated by a machineV* which interacts with (the

prover)P on inputx ∈ L. We say that the proof system iszero-knowledgeif for all probabilistic polynomial-

time interactive machinesV* , there exists a probabilisticpolynomial-timemachineMV* that on inputx pro-

duces a probability distributionMV* (x) such that {MV* (x)} x ∈ L and {[P,V* (x)]} x ∈ L are polynomially-

indistinguishable. (We stress thatMV* is an ordinary machine which does not interact withP or any other

machine.)

As we argued in section 3,polynomially-indistinguishableprobability distributions should be con-

sidered equal for all practical purposes. It follows that thepolynomially-indistinguishabiltyof [P,V* (x)] and

MV* (x) suffices for saying that nothing substantial is gained by interacting with the prover, except of course

conviction in the validity of the assertionx ∈ L.

Example of a zero-knowledge proof

To illustrate the above definition we present anzero-knowledgeinteractive proof forGraph Isomorphism(see

definition of the problem in subsection 4.1). Before doing so let us stress that the isomorphism between the two graphs

does constitute a proof for the fact that they are isomorphic, but that this proof is unlikely to be zero-knowledge (as it

will imply that the problem of finding an isomorphism between a pair of graphs is inBPP).
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Our zero-knowledge proof proceeds as follows: The prover creates a random isomorphic copy of the first graph

(G1). The verifier chooses at random one of the two input graphs, and asks the prover to present an isomorphism

between the chosen graph and the graph sent by the prover. If the prover fails to present such an isomorphism the

verifier rejects. This is repeated several times (with independent random choices!) to collect stochastic evidence. The

verifier accepts (the graphs as isomorphic) if and only if all of the provers responses are correct.

If the two graphs are isomorphic, and the prover knows an isomorphism between them, he has no difficulty to

always answer correctly. If the two graphs are not isomorphic it is impossible to answer both possible questions of the

verifier. If the verifier chooses hist questions randomly then the probability that the prover answers correctly all of them

is ≤ 2−t.

Following is a very rough sketch of the argument that the above proof is indeed zero-knowledge. One can simu-

late the conversations between the prover and a verifier by selecting at random one of the two input graphs and creating

a random isomorphic copy of it. If the verifier would have asked to see that isomorphism, we can supply it. Otherwise,

we repeat the process with new independent random choices. The expected number of repetitions needed to simulate

one round of prover-verifier conversation is 2. The distribution created by taking only the successful repetitions equals

the distribution of the original prover-verifier conversations.

5.2. Discussion

The definition of zero-knowledge presupposes that probabilisticpolynomial-timeis for "free". Namely,

a conversation between the prover and the verifier which can be simulated by the verifier himself in proba-

bilistic polynomial-timecontains no knowledge. Thus,implicitly, knowledge is regarded as the result of a

computation which is infeasible for the verifier himself.

Randomness and interaction are essential to the non-triviality of the notion of zero-knowledge. It can

be shown that zero-knowledge proofs in which the verifier either tosses no coins or asks no questions exist

only for languages inBPP. Note that such zero-knowledge proofs are of no interest since every language in

BBP has a trivial zero-knowledge proof in which the prover sends nothing to the verifier!

The definition of zero-knowledge seems somewhat paradoxical: these proofs yield no knowledge in the

sense that they can be constructed by the verifier who believes the statement, and yet these proofs do convince

him. The "paradox" is resolved by noting that it is not the text of the conversation that convinces the verifier,

but rather the fact that this conversation was held "on line". When constructing such a conversation text by

himself the verifier works "off line", concatenating parts of possible conversations while deleting other parts.

5.3. Proving any NP Statement in Zero-Knowledge

In providing zero-knowledge proofs to any language inNP, we use the notion ofNP-completeness (see

section 2.2). Namely, we provide a zero-knowledge proof for oneNP-complete language (denotedL0) and

derive such proofs for any otherL ( ∈ NP) language by using the polynomial reduction ofL to L0. In

presenting a zero-knowledge proof forL0, we use any secure encryption scheme (in the sense of Goldwasser

and Micali [GM]). The existence of such schemes is guaranteed by our assumption that one-way 1-1 func-

tions exist.
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As the basis for the construction (i.e. the languageL0), we use the set of 3-colourability graphs. The

languageGraph 3-Colourabilityconsists of the set of graphs, the vertices of which can be coloured using

three colours such that no two adjacent vertices are assigned the same colour.

A Zero-Knowledge Proof for Graph 3-Colourability

The common input to the following protocol is a graphG(V,E), whereV={1,2,...,n} is the vertex set

and E ⊆ V×V is the edge set. In the following protocol, the prover needs only to be a probabilistic

polynomial-timemachine which gets a proper 3-colouring ofG as an auxiliary input. Let us denote this

colouring byφ (φ:V→{1,2,3} ). Let m= | E | .

The following four steps are executedm2 times, each time using independent coin tosses.

1) The prover chooses a random permutation of the 3-colouring, encrypts it, and sends it to the verifier.

More specifically, the prover chooses at random a permutationπ ∈ Sym({(1,2,3}), encrypts (separately)

each element of the sequenceπ(φ(1)),π(φ(2)),...,π(φ(n)), and sends the resulting encrypted sequence to

the verifier.

2) The verifier chooses at random an edgee∈ E and sends it to the prover. (Intuitively, the verifier asks to

examine the colouring of the endpoints ofe∈ E.)

3) If e=(u,v) ∈ E then the prover reveals the colouring ofu andv and "proves" that they correspond to their

encryptions. Ife∈| E then the prover stops.

4) The verifier checks the "proof" provided in step (3). Also, the verifier checks that the colours revealed

are consistent (i.e.π(φ(u)) ≠ π(φ(v)), andπ(φ(u)),π(φ(v)) ∈ {1,2,3}). If either condition is violated the

verifier rejectsand stops. Otherwise the verifier continues to the next iteration.

If the verifier has completed allm2 iterations then itaccepts.

The reader can easily verify the following facts: If the graph is 3-colourable and both prover and

verifier follow the protocol then the verifier always accepts. If the graph is not 3-colourable and the verifier

follows the protocol then no matter how the prover plays, the verifier will reject with probability at least

(1−m−1)m2
= exp(−m). Thus, the above protocol constitutes an interactive proof system for 3-colourability.

Clearly, this protocol yields no knowledge to the specified verifier, since all he gets is a sequence of random

pairs. The proof that the protocol is indeed zero-knowledge (with respect toanyverifier) is much more com-

plex, and is omitted. We get,

Proposition: If there exist one-way 1-1 functions then there exist a zero-knowledge interactive proof system

for 3-colourability.
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Zero-Knowledge Proofs for all languages in NP

For every languageL in NP, there exist an efficient transformation of instances of the languageL to

instances of 3-colourability. This transformation is called areduction, and is guaranteed by the fact that 3-

colourability is NP-Complete. Incorporating the standard reductions into the protocol for graph 3-

colourability, we get

Theorem 6: If there exist one-way 1-1 functions then every NP language has a zero-knowledge interactive

proof system. Furthermore, in this proof system the prover is a probabilistic polynomial-time Turing machine

which gets an NP-proof as an auxiliary input.

Using Theorem 6, one can prove that any language inIP has a zero-knowledge proof. Thus, "whatever

is efficiently provable" is "efficiently provable in a zero-knowledge manner".

5.4. Applications to Cryptography

Theorem 6 (above) yields an extremely powerful tool for the design of cryptographic protocols: the

ability to prove any NP statement in a zero-knowledge manner. To better understand the relevance of this

tool, let us briefly discuss the setting in which cryptographic protocols arise.

A cryptographic protocol is a sequence of interactive programs to be executed bynon-trustingparties.

Each party has a local input unknown to the others, and hereafter referred to ashis secret. Typically, the pro-

tocol specifies actions to be taken by each of the parties based on his secret and previous messages. The pro-

tocol designer is thus faced with the following problem: how can one party verify that his counterpart has

computed the next message in accordance with the protocol? Verification is difficult since the verifier does

not know and is not supposed to know the secret of the transmitter. Zero-knowledge proofs for all NP state-

ments are the answer to this problem. The transmitter’s claim to having computed his message according to

the protocol is an NP statement (and furthermore, the transmitter knows an NP-proof to it). By Theorem 6,

this NP claim can be proven without yielding any knowledge of the prover’s secret!

The above suggests a powerful methodology for the design of cryptographic protocols. First design your

protocol assuming that all parties will follow it properly. Next compile the protocol using zero-knowledge

proofs to a protocol which maintains the correctness and privacy of the original protocol even when a minor-

ity of the parties display arbitrary adversarial behaviour. The details of the complier are beyond the scope of

this survey.
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6. CONCLUSIONS

The fact that pseudorandom generators and functions exist under a reasonable complexity theoretic

assumption (i.e. the existence of one-way 1-1 functions), must be considered at least aplausibility argument.

Thus, every reasoning overruling the existence of such generators must incorporate a demonstration that one-

way 1-1 functions do not exist. Thepossible existenceof pseudorandom generators does not allow us to con-

sider "unbounded" random behaviour as necessarily arising from an "unbounded" source of randomness, since

a pseudorandom generator may expand a "bounded" amount of randomness to an "unbounded" amount of

pseudorandomness. Furthermore, the possible existence of pseudorandom functions implies that a small

amount of randomness suffices in order to efficiently determine a random mapping from huge sets into huge

sets.

Also under the same complexity theoretic assumption, the folklore belief that onenecessarilygains

extra insight into a theorem by seeing its proof - is seriously shakened. Zero-knowledge proofs are proofs

which yield no such insight. Whatever one can efficiently learn from the proof, one can deduce as easily by

believing that the theorem is valid.

All the above was discovered through a behaviouristic approach to computational notions such as ran-

domness and proofs. We believe that a behaviouristic approach is justified when studying computing devices,

as much as it is unjustified when studying "thinking beings".
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BIBLIOGRAPHIC NOTES

For background on Computational Complexity consult an appropriate textbook such as [HU, ch. 12-13]

and [GJ].

The notion of one-way functions was first suggested in [DH], and the most famous candidate is due to

[RSA]. A 1-1 function which is one-way, unless factoring is easy appears in [R]. Definition 1 (one-way func-

tions), however, is a weaker form and is due to [Y1]. A special case of Definition 2 (indistinguishability) first

appeared in [GM], the general case is from [Y1]. Definitions 3 and 4 (pseudorandomness) are due to [Y1],

while Definition 5 (unpredictability) appears in [BM]. Theorem 2 (equivalence of Def’s 3 and 5) is implicit

in [Y1]. Definition 6 (hard-core predicate), Construction 1 (pseudorandom generator based on a hard-core

predicate) and Lemma 1 appear in [BM]. Theorem 3 (existence of hard-core predicates assuming one-way

1-1 functions) is implicit in [Y1], where a sketch of the proof of Theorem 4 (pseudorandom generator based

on one-way 1-1 functions) appears. A finer analysis, which uses a weaker (necessary and sufficient) condi-

tion, of Theorems 3 and 4 appears in [L]. Predicates which are hard-core of the particular number theoretic

functions mentioned in section 2.4, appear in [BM] and [ACGS]. Definition 7 (pseudorandom functions) and

Theorem 5 (pseudorandom generators imply pseudorandom function generators) appear in [GGM]. Further

developments appear in [LR].

Two different definitions of interactive proofs appear in [GMR] and [B], respectively. In section 4, we

have used the definition of [GMR]. The definition in [B] (Arthur Merlin games) is a special case of it. The

definitions were proven to be equivalent in [GS]. The interactive proof for Graph Non-Isomorphism ori-

ginates from [GMW1].

The definition of a zero-knowledge proof originates from [GMR], which contains also a more general

definition of the "amount of knowledge contained in a proof". The zero-knowledge proof for Graph Isomor-

phism as well as Theorem 6 (all NP languages have zero-knowledge proofs) appears in [GMW1]. (For a

definition of secure encryption functions see [GM].) The applications mentioned in section 5.4 appear in

[GMW1, GMW2]. Further developments appear in [Y2] and [GMW2].
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