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Abstract

In this paper we develop a property testing algorithm for the problem of testing
whether a directed geometric graph with bounded (out)degree is a (1 + δ)-spanner.

1 Introduction

Property testing is the computational task of deciding whether a given object has a pre-
determined property Π or is far away from every object with property Π. Thus, property
testing can be viewed as a relaxation of a standard decision problem. The main goal of
property testing is to develop randomized algorithms that perform this relaxed decision
task by only looking at a small part of the input object, i.e. we want to develop algorithms
whose running time is sublinear in the object's description size.

Property testing has been introduced by Rubinfeld and Sudan [30] and the study of
combinatorial properties has been initiated by Goldreich, Goldwasser, and Ron [23]. Since
then, property testing algorithms have been developed for properties of functions [22,
21, 11], properties of distributions [8, 7], algebraic properties [26], graph and hypergraph
properties [23, 3, 14, 10], and geometric properties. In this paper we continue the study of
property testing algorithms for geometric properties. Previous work on geometric property
testing includes testing algorithms for convexity of polygons [18], convexity [29], geometric
properties of point sets (for example convex position) and the Euclidean minimum spanning
tree [16, 15, 17], and clusterability of point sets [1, 15].

Our contribution In this work, we develop property testing algorithms for Euclidean
spanners. A weighted directed geometric graph (P,E) is a directed graph whose vertex set
is a set of points in the Euclidean space Rd and whose edge weights (lengths) are given by
the Euclidean distance of the vertices, i.e. edge [p, q〉 has length ‖p−q‖2. A graph is called
(1 + δ)-spanner, if for every pair of vertices p, q the shortest path distance dG(p, q) in G is
at most (1 + δ) · ‖p− q‖2, i.e. the shortest path distance in G is a good approximation of
the true distance of the points p and q. Euclidean spanners are a fundamental geometric
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graph structure as they can be used to approximately solve many geometric proximity
problems, and they �nd applications, for example, in the area of mobile ad-hoc networks.
Many di�erent constructions of Euclidean spanners are known. Euclidian spanners with a
linear number of edges can for example be constructed by using so-called Θ-graphs [13, 25]
or structures based on the well-separated pair decomposition [12, 28]. Also techniques to
construct spanners with bounded-degree are known [5]. For more details we refer to the
book [28]. We investigate the question whether a given graph is a Euclidean spanner.
The related question of computing the stretch factor of a given graph has recently been
studied in [4, 19, 27]. Additionally, Ahn et al. [2] discuss the problem to �nd an edge
whose removal leads to the smallest possible increase in the stretch factor, and Farshi et
al. [20] consider the question which edge should be added to receive the best decrease in
the stretch factor (both articles consider very special cases only).

We say that a geometric graph G is ε-far from a (1 + δ)-spanner, if one has to insert
more than εn edges into G to make it a (1 + δ)-spanner. A property tester is a randomized
algorithm that has to distinguish (1 + δ)-spanners from graphs which are ε-far from any
(1 + δ)-spanner using a sublinear number of queries to the graph, which is assumed to be
stored in adjacency list representation.

In this paper, we show that the property of being a (1 + δ)-spanner can be tested with
Õ
(
δ−3dε−3

√
n
)
queries for bounded (out)degree graphs.

2 Preliminaries

Let G = (P,E) be a directed geometric graph with vertex set P := {1, . . . , n} and edge set
E, where the vertices of P are points in the Rd and d ∈ N is a constant. We use [p, q〉 to
denote a directed edge from p to q. The length of an edge [p, q〉 is de�ned to be the Euclidean
distance ‖p−q‖2 between p, q, i. e. the edge lengths are induced by the positions of vertices.
We use dG(p, q) to denote the shortest path distance from p to q, i. e. dG(p, p) = 0,
dG(p, q) = ‖p−q‖2, if [p, q〉 ∈ E and dG(p, q) := minpaths Q from p to q

∑
[p′,q′〉∈Q dG(p′, q′) else.

We assume that G has an outdegree of at most D ∈ N and that it is stored in the adjacency
list model [24], i. e. we have access to a function fG : P × {1, . . . , D} → P ∪ {+}, where
fG(p, i) returns the i-th neighbor of vertex p if p has at least i neighbors and + otherwise.

De�nition 1 Let δ > 0 be a parameter. A geometric graph G is called a (1 + δ)-spanner,
if dG(p, q) ≤ (1 + δ)||q − p||2 for all pairs of vertices [p, q〉 ∈ P 2, p 6= q.

In this paper we will assume that 0 < δ < 1.

De�nition 2 Let G be a directed geometric graph and let 0 < ε < 1. A graph G is ε-far
from being a (1 + δ)-spanner, if one has to insert more than εn edges to make G a (1 + δ)-
spanner (note that there is no restriction to maintain the degree bound D). G is ε-close to
being a (1 + δ)-spanner, if it is not ε-far from it.

An algorithm A is called a property tester with one-sided error for the property of being
a (1 + δ)-spanner, if for any directed geometric graph G it outputs
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• true with a probability of 1, if G is a (1 + δ)-spanner

• false with probability at least 2/3, if G is ε-far from being a (1 + δ)-spanner

when it is given n, δ and ε as input and oracle access to fG. The query complexity of A is
the worst-case number of accesses to fG it needs.

3 The algorithm

Our algorithm for testing geometric spanners works as follows. We �rst sample a set of
s = Õ(

√
n

δO(1)εO(1) ) vertices p1, . . . , ps uniformly at random. Then we start a shortest path
computation from each vertex using Dijkstra's algorithm until O(log n/(εδ2d)) vertices have
been visited. We call this traversal Dijkstra traversal. Finally, we check for every sample
point pi if there exists another sample point pj within a distance of W/(1 + δ) such that
(1+δ)·‖pi−pj‖2 > dG′(pi, pj), where G

′ is the graph induced by the Dijkstra traversals, i.e.
G′ contains exactly the vertices and edges that have been visited during all such traversals,
and W is the maximal graph distance reached during the traversal.

UniformTester(n,G, δ, ε)

Sample s = Õ(δ−dε−2
√
n) points p1, . . . , ps from P u.i.d. without replacement

for i← 1 to s
Perform a Dijkstra traversal in G from pi until

s′ = Õ(δ−2dε−1) nodes have been visited
Let R be the set of vertices visited and let W = maxq∈R dG(pi, q)
forall points pj such that ‖pi − pj‖2 < 1

1+δ
·W

if the Dijkstra traversal did not reach pj or dG(pi, pj) ≥ (1 + δ)‖pi − pj‖2
return false

return true

Notice that this algorithm only tests small neighborhoods of certain points. At �rst glance
it seems unlikely that the spanner property can be tested by local investigations. Consider
the path depicted in Figure 1. If δ is chosen appropriately, then the spanner property
might be ful�lled for all pairs (vi, vj) except for (v1, v9). This means that the violation
cannot be found by sampling only parts of the path. Surprisingly, when distinguishing
spanners and graphs that are ε-far from being a spanner, the situation is di�erent. We
show that a geometric graph cannot be ε-far from being a spanner if it does only contain
`global' violations of the spanner property like the one in Figure 1.
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Figure 1: A curved path where the quotient of the distance in the graph and the euclidean
distance grows for increasing i.
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