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Abstract

We briefly discuss a few open problems in the study of various models of testing graph
properties, focusing on the query complexity of the various tasks. In the dense graph model, we
discuss several open problems, including:

• Determining the complexity of testing triangle-freeness.

• Characterizing the class of properties that are testable within extremely low complexity.

Turning to the bounded-degree graph model, we discuss several open problems, including:

• Characterizing the class of properties that are testable within size-oblivious complexity.

• Determining the complexity of graph isomorphism.

In each of the foregoing models, we also discuss a favorite open problem that was recently
resolved. Lastly, we discuss the vast lack of knowledge with respect to testing graph properties
in the general graph model.
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Introduction

In the last couple of decades, the area of property testing has attracted much attention (see, e.g.,
a recent textbook [13]). Loosely speaking, property testing typically refers to sub-linear time
probabilistic algorithms for deciding whether a given object has a predetermined property or is far
from any object having this property. Such algorithms, called testers, obtain local views of the
object by making adequate queries; that is, the object is modeled as a function and the testers get
oracle access to this function (and thus may be expected to work in time that is sub-linear in the
size of the object).

A significant portion of the foregoing research has been devoted to testing graph properties in
three different models: the dense graph model (introduced in [19] and reviewed in [13, Chap. 8]), the
bounded-degree graph model (introduced in [21] and reviewed in [13, Chap. 9]), and the general
graph model (introduced in [34, 29] and reviewed in [13, Chap. 10]). These three models have
received different levels of attention, and are commonly believed to have reached different levels of
understanding; nevertheless, interesting open problem abound in each of them. In this memo, we
describe a few of these open problems, with an unavoidable and obvious biased towards our own
work (which reflect our own directions of interest).

Each of the three foregoing models is defined by specifying the type of queries that testers may
make (to the tested graph) and a measure of distance between graphs (with respect to which the
performance of the testers is evaluated). For example, in the dense graph model, queries refer to
the existence of edges between specified pairs of vertices (i.e., adjacency queries), and the distance
between graphs refers to the fraction of vertex-pairs on which the two graphs differ. Each of these
three models will be defined at the beginning of the section devoted to its review.

Two versions of each model. Like most results in the area (esp., when allowing two-sided error
(see Appendix A)), the open problems that we review are valid both for the “standard version”
of the foregoing three models as well as (for its restriction) to the natural model of “size-oblivious
testers” (to be defined below). Both versions, which are described below, are natural special cases
of a general framework presented in [15], which we briefly recall next.

Our starting point is the observation that, in all three models, it is commonly postulated that
the vertex-set consists of {1, 2, ..., n}, where n is a natural number that is given explicitly to the
tester, whereas in general one may be interested in corresponding graphs over any vertex-set. The
foregoing simplified assumption is made in almost all studies of these models; yet, as observed
in [15], this loses no generality, provided that (1) the tester can sample the vertex-set, and (2) the
tester is explicitly given the size of the vertex-set.1

Having explicitly stated the two foregoing conditions that allow to extend testers of the simplified
model to more general settings, we observe that these conditions are of fundamentally different
nature. The first condition (i.e., sampleability of the vertex-set) seems essential to testing any non-
trivial property, whereas the second condition (i.e., knowledge of the (exact) size of the vertex-set)
may be relaxed and even avoided altogether in many cases.

For example, all graph-partition properties (see [19]) and all subgraph-free properties are
testable in a general version of the dense graph model in which only the first condition holds.
This is the case since the original testers (presented in [19] and [3], resp.) merely use the de-
scription of the vertex-set only in order to sample it. Needless to say, it follows that the query

1See Observations 1.2, 2.2, and 3.2 in [15].
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complexities of these (non-adaptive)2 testers are oblivious of the size of the graph (and depend only
on the proximity parameter), but (as observed by [5]) the converse does not hold (i.e., testers of
size-oblivious query complexity may depend on the size of the graph for their verdict (see also [27])).

On the other hand, when the query complexity depends on the size of the graph, the tester
needs to obtain at least a sufficiently good approximation of the said size. Typically, such an
approximation suffices, as in the case of the bipartite tester for the bounded-degree and general
graph models [22, 29]. Note, however, that an approximation of the size of the graph can be
obtained, with high probability, by sampling; this yields (adaptive) testers of complexity that is at
least a square root of the number of vertices.

In light of the above, we highlight two cases regarding the (a priori) knowledge of the size of
the vertex-set (where in all cases the tester is given access to samples drawn from the vertex-set):

1. The tester is explicitly given the exact size of the vertex-set.

As shown in [15, Obs. 1.2, 2.2, and 2.3], this (“exact size”) case is essentially reducible to
the simplified case in which the vertex-set equals {1, 2, ..., n} and n is explicitly given to the
tester.

Hence, this version will be called the standard version.

2. The tester is not given explicitly any information regarding the size of the vertex-set.

Such testers will be called size-oblivious, and the corresponding version (of the testing model)
will be called the size-oblivious version.

We stress that, unlike in [16], we confine ourselves here to the case that the sampling device provides
uniformly and independently distributed vertices in the tested graph.3

On characterizations. When seeking a characterization of the class of graph properties having
a specified complexity, we seek a criteria that will make it significantly easier (than the definition
of the class) to determine whether a property belongs to the class. On the other hand, we are
willing to restrict the class of graph properties to natural subclasses that are defined in general
terms (e.g., properties in P or NP, properties that admit tester of significantly higher complexity,
etc). Likewise, it may be easier to provide characterization for the size-oblivious versions of the
models.

On natural problems. We consider an object to be natural with respect to a specific setting if it
was considered before in a significantly different setting. Specifically, a graph property is considered
natural in the context of demonstrating the non-emptiness of a complexity class if it was considered
before in studies that do not refer to that class. For example, all graph properties that are explicitly
mentioned in this memo (e.g., triangle-freeness, graph isomorphism) are natural.

2A tester is called non-adaptive if it determines its queries based solely on its input parameters and internal
randomness, but independently of answers obtained to prior queries; in other words, a non-adaptive tester determines
all its queries (a priori) before making any query.

3In contrast, in [16], we considered more general models in which the tester obtains samples that are arbitrarily
distributed in the vertex-set. In this case, the definition of the distance between graphs is modified to reflect this
vertex distribution; such a modification is not required in the current memo.
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Sticking to the basics. We avoid the temptation of considering ramifications and variants of the
basic model of property testing. Specific variants that we do not discuss include tolerant testing
and distance approximation [35], proximity-oblivious testers [24], and sample-based testers [25].
Each of these variants gives rise to many interesting open problems.

In contrast to the foregoing decision to narrow our scope, we include in this memo brief reviews
of two open problems that were resolved recently. See paragraphs at the end of Sections 1 and 2.

Standard conventions. By graphs we mean simple (labeled) graphs; that is, self-loops and
multiple edges are not allowed. A graph property is a set of graphs that is closed under isomorphism;
that is, if the graph G is in the graph property Π, then so is every graph that is isomorphic to G.
Throughout this memo, the proximity parameter is always denoted ε.

Organization. The following three sections present open problems of the three aforementioned
models of testing graph properties. In Section 1 we consider the dense graph model (a.k.a. the
adjacency matrix model), in Section 2 we consider the bounded-degree graph model (a.k.a. the
bounded incidence lists model), and in Section 3 we consider the general graph model. The defini-
tional parts of these sections contain some repetitions in order to enable reading them independently
of one another. We stress that all open problems refer both to the standard and to the size-oblivious
versions of the models. In Appendix A, we show that some known results that seem to rely on
providing the tester with the size of the graph can actually be emulated by size-oblivious testers.

1 Testing Graph Properties in the Dense Graph Model

Here we consider the standard and the size-oblivious versions of the notion of property testing in
the dense graph model (a.k.a. the adjacency matrix model, which was introduced in [19] and is
reviewed in [13, Chap. 8]).

In this model, a graph of the form G = (V,E) is represented by its adjacency predicate g : V ×
V → {0, 1}; that is, g(u, v) = 1 if and only if u and v are adjacent in G (i.e., {u, v} ∈ E). Distance
between graphs (over the same vertex-set) is measured in terms of their foregoing representation;
that is, as the fraction of (the number of) entries on which they disagree (over |V |2). The tester is
given oracle access to the representation of the input graph (i.e., to the adjacency predicate g) as
well as to a device that returns uniformly distributed elements in the graph’s vertex-set. As usual,
the tester is also given the proximity parameter ε, which determined when graphs are considered
“far apart” (i.e., see the notion of ε-far in Definition 1.1).

In addition, in the standard version, the tester is also given the size of the vertex-set as auxiliary
input. Hence, the explicit inputs given to it are |V | and ε. In the size-oblivious version, the tester
only gets ε as an explicit input.

Definition 1.1 (property testing in the dense graph model): A tester for the graph property Π (in
the standard version of the dense graph model) is a probabilistic oracle machine T that, on input a
proximity parameter ε > 0 and size parameter |V |, and access to two oracles, an adjacency predicate
g : V ×V → {0, 1} and a device denoted Samp(V ) that samples uniformly in V , satisfies the following
two conditions:
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1. The tester accepts each graph G = (V,E) in Π with probability at least 2/3; that is, for every g :
V×V → {0, 1} representing a graph in Π (and every ε > 0), it holds that Pr[T g,Samp(V )(|V |, ε)=
1] ≥ 2/3.

2. Given ε > 0 and oracle access to any graph G that is ε-far from Π, the tester rejects with
probability at least 2/3; that is, for every ε > 0 and g : V ×V → {0, 1} that represents a graph
that is ε-far from Π, it holds that Pr[T g,Samp(V )(|V |, ε)=0] ≥ 2/3, where the graph represented
by g : V × V → {0, 1} is ε-far from Π if for every g′ : V × V → {0, 1} that represents a graph
in Π it holds that |{(u, v) ∈ V 2 : g(u, v) 6= g′(u, v)}| > ε · |V |2.

The tester is said to have one-sided error probability if it always accepts graphs in Π; that is, for every
g : V ×V → {0, 1} representing a graph in Π (and ε > 0), it holds that Pr[T g,Samp(V )(|V |, ε)=1] = 1.
The size-oblivious version is obtained by not providing the tester with |V |; that is, a size-oblivious
tester is only given the proximity parameter ε > 0 (and access to the oracles g : V × V → {0, 1}
and Samp(V )).

The query complexity of a tester for Π is a function (of the parameters n and ε) that represents the
number of queries made by the tester on the worst-case n-vertex graph, when given the proximity
parameter ε. Our focus in this section will be on cases in which the query complexity only depends
on the proximity parameter (i.e., size-oblivious query complexity), but other cases will also be
considered at the end.

Well known open problems. The most famous open problem in the area is determining the
query complexity of testing triangle-freeness (and other subgraph-freeness problems). It is known
that this testing problem has query complexity that only depends on ε (see [3]), but the gap be-
tween the known lower and upper bounds is striking. On the one hand, Alon has proved that
the complexity must grow faster than any polynomial in 1/ε; specifically, the lower bound is
exp(Ω(log(1/ε))2) [2]. On the other hand, Fox proved an upper bound that is a tower of O(log(1/ε))
exponents [12].

Open Problem 1.2 (the complexity of testing triangle-freeness): What is the query complexity
of testing the set of graphs that contain no triangles.

Indeed, the same question arises for testing H-freeness (i.e., having no subgraph that is isomor-
phic to H), for any non-bipartite graph H. (In contrast, the case of bipartite graphs H is well-
understood [13, Exer. 8.13].) The complexity of testing induced subgraph freeness is also wide
opened.

Another notoriously hard challenge is characterizing the class of graph properties that can be
tested in query complexity poly(1/ε).

Open Problem 1.3 (the class of properties of poly(1/ε) query complexity): Provide a character-
ization of the class of properties that can be tested using poly(1/ε) queries.

Of special interest (and possibly easier to analyze) are the special cases of query complexity Õ(1/ε2)
and Õ(1/ε). Turning to an even vaguer challenge, it would be nice to provide an intuitive explana-
tion as to why H-freeness (for non-bipartite H) is harder to test than 3-Coloring (and any of the
generalized partition problems); see [3, 2] versus [19].
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A more refined look at the complexity of testing. A tester is called non-adaptive if it deter-
mines its queries based solely on its input parameters and internal randomness, but independently
of answers obtained to prior queries; in other words, a non-adaptive tester determines all its queries
(a priori) before making any query. Otherwise, the tester is called adaptive. For a fixed graph prop-
erty Π, we denote by q = qΠ the general (i.e., adaptive) query complexity of testing Π, and by
Q = QΠ the corresponding non-adaptive query complexity. Recall that, for every Π, it holds that
Q = O(q2) (see [3, 26]). Now, while Problem 1.3 seems a tall call, it may be more feasible to
provide characterizations of much more modest classes. For example.

Open Problem 1.4 (the class of properties of extremely low complexity): Provide a characteriza-
tion of the class of properties that can be tested by non-adaptive testers of Õ(1/ε) query complexity.

We mention that this class is known to contain all sets of graphs that are obtained by (possibly
unbalanced) blow-ups of a fixed graph [6].

One-sided vs two-sided error testing. One source of the gap between the complexity of
one-sided and two-sided error testing is the mere formulation of the property: Properties that
have an explicit quantitative nature such as the set of graphs having a clique (resp., a cut) of
density at least ρ exhibit a significant gap between their one-sided and two-sided error query
complexity, whereas such gaps do not exist with respect to analogous properties that have a more
qualitative nature such as 3-Colorability [19]. More interesting cases of such complexity gaps refer
to properties that are defined in qualitative terms such as H-freeness, for any fixed bipartite graph
H. In that specific case, testing is possible with O(1/ε) queries (and two-sided error) by using an
approximation of the edge-density in the tested graph [2] (see also [13, Exer. 8.13.2]), but one-sided
error testing typically requires significantly higher query complexity [13, Exer. 8.13.3]. Intuitively,
in this case, the property is approximated by an easier-to-test property, and a two-sided error tester
may capitalize on that fact (while a one-sided error tester can not do so). We wonder if something
more systematic and appealing can be said about this subject.

Other levels of query complexity. We mention that, although known hierarchy theorems
establish the existence of properties with quite arbitrary query complexity (for testing) [20, 14],
identifying natural properties of different query complexity levels is an interesting challenge. Of
particular interest are complexities of the type Q1(n, ε) = poly(ε−1 log n), Q2(n, ε) = exp(1/ε), and
Q3(n, ε) = O(nc · F (1/ε)) for arbitrary c ∈ (0, 2) and F : N → N. Indeed, a notable example is
provided by [11] who semi-determined the query complexity of (two versions of the problem) of
testing graph isomorphism; specifically, ignoring factors of ε, they showed that:

1. The query complexity of testing isomorphism to a fixed n-vertex graph is Θ̃(n1/2).4

2. The query complexity of testing isomorphism between two n-vertex graphs is between Ω̃(n)
and O(n1+o(1)).5

In addition, for one-sided error testing, tight bounds were shown (i.e., Θ̃(n) and Θ̃(n3/2), respec-
tively).

4Indeed, the fixed graph version is a “massively parametrized” property [32].
5The upper bound is due to [33], improving over the Õ(n5/4) bound of [11].
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A recently resolved open problem. Recall that, for every Π, it holds that Q = O(q2), where
q = qΠ denotes the general (i.e., adaptive) query complexity of testing Π, and Q = QΠ denotes the
corresponding non-adaptive query complexity. A recent work [28] proves that this bound is almost
tight, in general; that is, there exists Π such that Q = Ω̃(q2). Furthermore, for every c ∈ [1, 2], there
exists Π such that Q = Θ(qc) up to factors that are polylogarithmic in the size of the graph and
polynomial in the proximity parameter. We wonder whether such results can be obtain without
the latter slackness and for more natural graph properties. We mention that partial results of this
type were reported previously in [23] (e.g., for q = Õ(1/ε) and c = 4/3).

2 Testing Graph Properties in the Bounded-Degree Graph Model

Here we consider the standard and the size-oblivious versions of the notion of property testing in
the bounded-degree graph model (a.k.a. the bounded incidence lists model, which was introduced
in [21] and is reviewed in [13, Chap. 9]).

The bounded-degree graph model refers to a fixed (constant) degree bound, denoted d ≥ 2.
In this model, a graph G = (V,E) of maximum degree d is represented by the incidence function
g : V × [d]→ V ∪ {⊥} such that g(v, j) = u ∈ V if u is the jth neighbor of v and g(v, j) = ⊥ 6∈ V
if v has less than j neighbors.6 Distance between graphs is measured in terms of their foregoing
representation; that is, as the fraction of (the number of) different array entries (over d|V |).

As in the dense graph model, the tester is given oracle access to the representation of the input
graph (i.e., to the incidence function g) as well as to a device that returns uniformly distributed
elements in the graph’s vertex-set. As usual, the tester is also given the proximity parameter ε.
In addition, in the standard version, the tester is also given the size of the vertex-set as auxiliary
input. Hence, the explicit inputs given to it are |V | and ε. In the size-oblivious version, the tester
only gets ε as an explicit input.

Definition 2.1 (property testing in the bounded-degree graph model): A tester for the graph
property Π (in the standard version of the bounded-degree graph model) is a probabilistic oracle
machine T that, on input a proximity parameter ε > 0 and size parameter |V |, and access to two
oracles, an incidence function g : V × [d] → V ∪ {⊥} and a device denoted Samp(V ) that samples
uniformly in V , satisfies the following two conditions:

1. The tester accepts each graph G = (V,E) in Π with probability at least 2/3; that is, for every
g : V ×[d]→ V ∪{⊥} representing a graph in Π (and ε > 0), it holds that Pr[T g,Samp(V )(|V |, ε)=
1] ≥ 2/3.

2. Given ε > 0 and oracle access to any graph G that is ε-far from Π, the tester rejects with
probability at least 2/3; that is, for every ε > 0 and g : V × [d] → V ∪ {⊥} that represents
a graph that is ε-far from Π, it holds that Pr[T g,Samp(V )(|V |, ε) = 0] ≥ 2/3, where the graph
represented by g : V × [d]→ V ∪ {⊥} is ε-far from Π if for every g′ : V × [d]→ V ∪ {⊥} that
represents a graph in Π it holds that |{(v, j) ∈ V × [d] : g(v, j) 6= g′(v, j)}| > ε · d|V |.

The tester is said to have one-sided error probability if it always accepts graphs in Π; that is, for every
g : V ×[d]→ V ∪{⊥} representing a graph in Π (and ε > 0), it holds that Pr[T g,Samp(V )(|V |, ε)=1] =

6For simplicity, we adopt the standard convention by which the neighbors of v appear in arbitrary order in the

sequence (g(v, 1), ..., g(v,deg(v))), where deg(v)
def
= |{j ∈ [d] : g(v, j) 6= ⊥}|.
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1. The size-oblivious version is obtained by not providing the tester with |V |; that is, a size-oblivious
tester is only given the proximity parameter ε > 0 (and access to the oracles g : V × [n]→ V ∪ {⊥}
and Samp(V )).

The query complexity of a tester for Π is a function (of the parameters d, n and ε) that represents
the number of queries made by the tester on the worst-case n-vertex graph of maximum degree d,
when given the proximity parameter ε. Fixing d, we typically ignore its effect on the complexity
(equiv., treat d as a hidden constant). Our focus in this section will be on cases in which the query
complexity depends both on the proximity parameter and the size parameter, but we start with the
case in which the complexity depends only on the proximity parameter (i.e., size-oblivious query
complexity).

Open Problem 2.2 (classes of properties of size-oblivious query complexity): Characterize the
class of properties that can be tested within complexity that depends only on the proximity parameter.

Several natural properties that admit testers of size-oblivious query complexity are surveyed in [13,
Sec. 9.2 and 9.5]. In particular, subgraph freeness, degree regularity, connectivity, and cycle-freeness
can be tested in query complexity poly(1/ε). In addition, a recent result of [31] asserts that all
minor-closed properties can be tested in query complexity poly(1/ε). Indeed, it is hard to find a
common theme among these properties, but still one may suggest the following problem.

Open Problem 2.3 (the class of properties of poly(1/ε) query complexity): Provide a character-
ization of the class of properties that can be tested using poly(1/ε) queries.

As in the dense graph model, of special interest (and possibly easier to analyze) are the special
cases of query complexity Õ(1/ε2) and Õ(1/ε). (Note, however, that here we do not consider
non-adaptive testers, since their power is extremely limited in the current model [13, Thm. 9.2].)

Turning to size-dependent query complexity, we wonder whether sublinear query complexity
is possible for testing graph isomorphism. We actually, refer to two version of the problem: The
(massively parametrized [32]) version in which one is required to test for isomorphism to a fixed
large graph, and the version of testing isomorphism between two input graphs.

Open Problem 2.4 (testing graph isomorphism): What is the query complexity of testing iso-
morphism to a fixed large graph? Ditto for testing isomorphism between two input graphs.

Recall that the following lower bounds are known for these two versions [17].

1. The query complexity of testing isomorphism to a fixed n-vertex graph is Ω̃(n1/2).

2. The query complexity of testing isomorphism between two n-vertex graphs is Ω̃(n2/3).

The lower bounds are shown by using graphs that have connected components of size poly(log n),
and in this case the lower bounds are tight (up to a multiplicative factor of poly(log n)/ε2) [17]. A
seemingly related problem is that of testing the set of graphs that have only a trivial automorphism
(a.k.a asymmetric graphs).

Open Problem 2.5 (testing asymmetric graphs): What is the query complexity of testing the set
of asymmetric graph?

Some partial results are presented in [18].

7



One-sided vs two-sided error testing. As in the case of the dense graph model, we wonder
if something systematic and appealing can be said about this subject. An interesting example of a
property having a qualitative formulation and a quantitative approximation that seems responsible
for the gap between the complexity of one-sided and two-sided error testing is cycle-freeness (see [21,
8]). See also [30, 31], which refer to any minor-free properties.

Other levels of query complexity. We mention that, although known hierarchy theorems
establish the existence of properties with quite arbitrary query complexity (for testing) [20, 14],
identifying natural properties of different query complexity levels is an interesting challenge. Of
particular interest are complexities of the type Q1(n, ε) = poly(ε−1 log n), Q2(n, ε) = exp(1/ε), and
Q3(n, ε) = O(nc · F (1/ε)) for arbitrary c ∈ (0, 0.5) ∪ (0.5, 1) and F : N→ N. (Indeed, the values of
c ∈ {0, 0.5, 1} are excluded, since for these values we do know of natural properties.)

A recently resolved open problem. In relation to Problem 2.2, a recent work [1] disproves a
favorite conjecture of ours that asserted that all “generalized subgraph freeness” properties (see [24,
Def. 5.1]) have proximity-oblivious tester, which in turn implies that they could be tested within
complexity that depends only on the proximity parameter. In fact, Adler, Kohler, and Peng [1]
prove that some generalized subgraph freeness properties are not testable within complexity that
depends only on the proximity parameter.

The notion of generalized subgraph freeness is aimed to capture what one can see by exploring
a constant-radius neighborhood of a vertex in a graph. The issue is that some vertices are fully
explored (i.e., one sees all their neighbors), whereas for others (at the boundary of the exploration)
one may only encounter them but not all their neighbors. Formally, we consider marked graphs,
which are graphs in which each vertex is marked either full or partial. Such a marked graph H =
([h], F ) can be embedded in a graph G = ([N ], E) if there exists a 1-1 mapping φ : [h]→ [N ] such
that for every i ∈ [h] the following two conditions hold:

1. If i is marked full, then φ yields a bijection between the set of neighbors of i in H and the set
of neighbors of φ(i) in G. That is, in this case ΓG(φ(i)) = φ(ΓH(i)), where ΓX(v) denotes
the set of neighbors of v in the graph X, and φ(S) = {φ(v) : v∈S}.

2. If i is marked partial, then φ yields an injection of the set of neighbors of i in H to the set of
neighbors of φ(i) in G. That is, in this case ΓG(φ(i)) ⊇ φ(ΓH(i)).

The graph G is called H-free if H cannot be embedded in G (i.e., there is no embedding of H in G
that satisfies the foregoing conditions). For a set of marked graphs F , a graph G is called F-free if
for every F ∈ F the graph G is F -free.7

Indeed, the standard notion of (non-induced) subgraph freeness is a special case of generalized
subgraph freeness, obtained by considering the corresponding marked graph in which all vertices
are marked partial.8 Introducing vertices that are marked full adds a new type of constraint;

7The original formulation of [24, Def. 5.1], allows also a third marking, called semi-full, with the semantics that if
i is marked semi-full, then ΓG(φ(i)) ∩ φ([h]) = φ(ΓH(i)) (i.e., φ yields a bijection between the set of neighbors of i
in H and the set of neighbors of φ(i) in the subgraph of G induced by φ([h])). However, as pointed out in [24], this
seemingly more expressive formulation is actually equivalent to the one presented here.

8Similarly, the notion of induced subgraph freeness is a special case of generalized subgraph freeness; this is easiest
to see when allowing also semi-full marking (see Footnote 7), since then the effect of induced subgraph freeness is
obtained by using marked graph in which all vertices are marked semi-full.
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specifically, this constraint mandates the non-existence of neighbors that are outside the marked
subgraph.9 While [1] proves that generalized subgraph freeness properties may not be tested within
size-oblivious complexity, it leaves open the problem of determining the query complexity of testing
each of these properties.

3 Testing Graph Properties in the General Graph Model

Here we consider the standard and the size-oblivious versions of the notion of property testing in
the general graph model (which was introduced in [34, 29] and is reviewed in [13, Chap. 10]).

Unlike in the previous two models, here the representation of the graph is decoupled from the
definition of the (relative) distance between graphs. Following the discussion in [13, Sec. 10.1.2],
we define the relative distance between G = (V,E) and G′ = (V,E′) as the ratio of the symmetric
difference of E and E′ over max(|E|, |E′|) + |V |.

In this model, a graph G = (V,E) is redundantly represented by both its incidence function
g1 : V ×N→ V ∪{⊥} (alternatively, we may consider g1 : V × [b(|V |)]→ V ∪{⊥}, where b : N→ N
is some degree-bounding function)10 and its adjacency predicate g2 : V × V → {0, 1}; indeed,
as before, g1(v, j) = u ∈ V if u is the jth neighbor of v (and g1(v, j) = ⊥ if v has less than j
neighbors), and g2(u, v) = 1 if and only if {u, v} ∈ E. The tester is given oracle access to the
two representations of the input graph (i.e., to the functions g1 and g2) as well as to a device that
returns uniformly distributed elements in the graph’s vertex-set. As usual, the tester is also given
the proximity parameter ε. In addition, in the standard version, the tester is also given the size
of the vertex-set as auxiliary input. Hence, the explicit inputs given to it are |V | and ε. In the
size-oblivious version, the tester only gets ε as an explicit input.

Definition 3.1 (property testing in the general graph model, revised):11 A tester for the graph
property Π (in the standard version of the general graph model) is a probabilistic oracle machine T
that, on input ε and |V |, and access to three oracles, an incidence function g1 : V ×N→ V ∪ {⊥},
an adjacency predicate g2 : V × V → {0, 1}, and a device denoted Samp(V ) that samples uniformly
in V , satisfies the following two conditions:

1. The tester accepts each graph G = (V,E) in Π with probability at least 2/3; that is, for every
g1 : V × N→ V ∪ {⊥} and g2 : V × V → V ∪ {⊥} representing a graph in Π (and ε > 0), it
holds that Pr[T g1,g2,Samp(V )(|V |, ε)=1] ≥ 2/3.

2. Given ε > 0 and oracle access to any graph G that is ε-far from Π, the tester rejects
with probability at least 2/3; that is, for every ε > 0 and (g1, g2) such that g1 : V × N →
V ∪ {⊥} and g2 : V × V → V ∪ {⊥} represent a graph that is ε-far from Π, it holds that
Pr[T g1,g2,Samp(V )(|V |, ε) = 0] ≥ 2/3, where the graph G = (V,E) is ε-far from Π if for every

9For example, using vertices that are marked full, it is possible to disallow certain degrees in the graph. Thus,
the generalized notion of subgraph freeness includes properties that are not hereditary (e.g., regular graphs), whereas
induced and non-induced subgraph freeness are hereditary.

10In the first version of [15], we considered g1 : V × [|V | − 1] → V ∪ {⊥}, where |V | − 1 served as a trivial degree
bound. In retrospect, we feel that using such an upper bound is problematic, because it may allow the tester to
determine the number of vertices in the graph (assuming that querying g1 on an input that is not in its domain results
in a suitable indication). On the other hand, allowing an infinite representation of finite graphs is not problematic,
because the representation is not used as a basis for the definition of the relative distance between graphs.

11Here we follow [13, Def. 10.2], rather than [13, Def. 10.1]. See discussion in [13, Sec. 10.1.2].
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G′ = (V,E′) that represents a graph in Π it holds that the symmetric difference of E and E′

is greater than ε · (max(|E|, |E′|) + |V |).

The tester is said to have one-sided error probability if it always accepts graphs in Π. The size-
oblivious version is obtained by not providing the tester with |V |.

The query complexity of a tester for Π is a function (of the parameters n and ε) that represents the
number of queries made by the tester on the worst-case n-vertex graph, when given the proximity
parameter ε. It is also common to consider the query complexity as a function of additional
parameters such as the average degree of the graph’s vertices or the graph’s arboricity.

3.1 Preliminary thoughts

Two pivotal (related) problems in this model are estimating the average degree of the graph and
selecting random edges in it. Denoting the average vertex degree by d, both problems have query
(and time) complexity (Θ̃(n)/d)1/2; see [13, Sec. 10.3]. Note the more accurate picture that is
offered by considering the effect of d (in contrast to the Θ̃(n1/2) bounds (which hold when only
assuming d = Ω(1))). Furthermore, when taking also the arboricity into account, one gets upper
bounds of the form α · poly(log n)/d, where α ∈ [d, (d · n)1/2] denotes the graph’s arboricity [10].
The foregoing difference manifests itself when considering the complexity of testing cycle-freeness
(see Appendix B).

Taking the arboricity into account is one way of limiting the vast variety of graphs that may
occur in this general model. Even when fixing one’s attention to sparse graphs (say, of average
constant degree), there is a fundamental difference between graphs in which all vertices have ap-
proximately the same degree and graphs in which vertex degrees vary extremely (e.g., some vertices
have degree Ω(n1/2), whereas almost all other vertices have constant degree). Needless to say, global
properties may behave very differently in these two cases, frustrating attempts to present a single
result that holds for all cases.

We mention, however, that in some cases the aforementioned differences do not matter. One
such example is testing Bipartitness: Ignoring the polynomial dependence on 1/ε, this problem
has query complexity Θ̃(n1/2) both in the bounded-degree graph model [21, 22] and in the general
graph model [29], when assuming d = O(n1/2). (For d = Ω(n1/2), the complexity is (Θ̃(n)/d) [29].)

3.2 So what are the questions?

It seems that the first question to pose is what should be considered reasonable goals. Morally,
testing in the general graph model can only be harder than in the bounded-degree graph model 12,
and the first question is when can it actually be as good. In light of the above, we cannot expect
this to happen for general graphs, but it may be possible for graphs of bounded arboricity.

Open Problem 3.2 (from bounded degree to bounded arboricity): Suppose that property Π is
testable within complexity Q(n, ε) > 0 in the bounded-degree graph model.13 Provide an upper
bound on the complexity of testing Π in the general graph model under the promise that the tested

12This is definitely the case for downward monotone properties. More generally, it holds if being δ-close to the
property implies being O(ε)-close to a bounded-degree graph in the property

13The lower-bound on Q is aimed to prevent trivial counterexamples (i.e., properties that always or never hold in
a bounded-degree graph).
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graph has constant arboricity. For example, can the latter complexity be linear in Q(n, ε), while
permitting extra poly(log n) or 1/ε factors?

Valuable partial answers may refer to all natural graph properties for which sub-linear testing
results are known in the bounded-degree graph model. A counterexample may also be valuable,
alas less pleasing.

Appendix A: On deriving size-oblivious testers

In the appendix, we show that some known results that seem to rely on providing the tester with
the size of the graph can actually be emulated by size-oblivious testers (with two-sided error).

A.1 In the Dense Graph Model

Recall that the celebrated testers for subgraph-freeness [3] and generalized partition problems [19]
are actually size-oblivious. In contrast, the almost-trivial testers presented in [13, Sec.8.2.2] seem to
require knowledge of the size of the tested graph in order to determine their operation (i.e., whether
or not to explore the entire graph). We show that this knowledge can be gained by sampling, and
derive size-oblivious versions of the foregoing testers.

Specifically, as discussed in [13, Sec.8.2.2], graph properties can be almost-trivial to test either
because every graph is close to the property (e.g., Hamiltonicity) or because the property contains
only sparse graphs (e.g., Planarity). In both cases, trivial (or almost trivial) testing is possible
when the proximity parameter is larger that the covering-radius or the sparsity parameter, which
are stated in terms of the number of vertices in the graph, and otherwise one can afford to explore
the entire graph. We convert these testers to size-oblivious ones by using a sufficiently large (in
terms of ε) sample of vertices to decide in which situation we are, and act accordingly. Since this
decision is probabilistic, we end-up having two-sided error probability.

Theorem A.1 (almost-trivially due to small covering-radius of the property, a size-oblivious ver-
sion of [13, Prop. 8.3]): Let Π be a graph property and c ∈ (0, 2). If every n-vertex graph is n−c-close
to Π, then there exists a size-oblivious tester of query complexity (1/ε)2/c for Π.

Proof: On input ε > 0 and access to the graph G = (V,E), we first check whether or not ε ≥ |V |−c
(equiv., |V | ≥ (1/ε)1/c). We do so by taking a sample of Õ(1/ε)1/c) vertices and deciding positively

if we see at least t
def
= (1/ε)1/c vertices. In the latter case (i.e., seeing at least t vertices), we accept

without making any other queries. Otherwise (i.e., seeing less than t vertices), we query all the
vertex-pairs, and decide according to whether the induced subgraph is in Π.

If ε ≥ |V |−c, then (w.h.p.) the sample contain at least (1/ε)1/c vertices, which implies that
ε ≥ |V |−c, which in turn implies that G is ε-close to Π and so that we did well in accepting it. On
the other hand, if ε < |V |−c, then (w.h.p.) the sample contains all vertices of V , and in this case
we retrieve the graph G and decide correctly.

Theorem A.2 (almost-trivially due to sparseness of graphs in the property, a size-oblivious version
of [13, Prop. 8.4]): Let Π be a graph property and c ∈ (0, 2). If every n-vertex graph in Π has at
most nc edges, then there exists a size-oblivious tester of query complexity (3/ε)2/(2−c) for Π.
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Proof Sketch: On input ε > 0 and access to the graph G = (V,E), we first check whether or not
ε > 3|V |−(2−c) (equiv., |V | > (3/ε)1/(2−c)). We do so by taking a sample of Õ(1/ε)1/(2−c)) vertices

and proceed according to whether or not we saw more than t
def
= (3/ε)1/(2−c) vertices. If we saw

more than t vertices, then we use O(1/ε) random queries to estimate the edge density of the graph
such that it distinguishes between density at least 2ε/3 and density at most ε/3. In the first case,
we rejects (since the graph is not sufficiently sparse), and in the second case we accepts (since the
graph is close enough to the empty graph, which is close enough to Π).14 Otherwise (i.e., if we saw
less than t vertices), we query all the vertex-pairs, and decide according to whether the induced
subgraph is in Π.

A.2 In the Bounded-Degree Graph Model

While almost-trivial testers of natural graph properties are less common in the bounded-degree
graph model (than in the dense graph model), such result do exist (and rely on the hypothesis that
the tester is given the number of vertices in the tested graph).15 We can adapt such testers to the
size-oblivious version by using ideas as in Section A.1.

A more interesting issue is that of testers in the standard version that use the number of
vertices in order to determine their operation. The archetypical example is the Bipartiteness tester
of [22]. Recall that when testing an n-vertex graph, this tester picks O(1/ε) random vertices, takes
poly(1/ε) · Õ(

√
n) random walks of length poly(ε−1 log n) from each of these vertices, and accepts

if and only if it sees no odd-length cycle (in the explored subgraph). It is quite evident that this
tester works as well also when obtaining only a constant factor approximation of n, whereas such
an approximation can be obtained by using O(

√
n) random vertices. The point is that we don’t

have to determine the number of samples beforehand; we rather keep sampling the vertex set untill
we seen enough collisions. Hence, we have

Theorem A.3 (size-oblivious version of the Bipartite tester): There exists a size-oblivious tester
for Bipartiteness that runs in expected poly(1/ε) · Õ(

√
n)-time. Furthermore, for any t ∈ N, the

tester runs at most t · poly(1/ε) · Õ(
√
n)-time.

Proof Sketch: We keep taking random samples (of the vertex set) till the number of collisions is
at least five. At this point, we set n to be the square of the number of samples used, and invoke
the Bipartiteness tester of [22] with this value of n.

Recall that the collision probability of sampling uniformly from the vertex-set V is 1/|V |, and
so the expected number of pairwise collisions seen among m samples is

(
m
2

)
/|V |. Observing that

the probability that n is set to be smaller than |V | is upper-bounded by the probability of seeing
at least five pairwise collisions among

√
|V | − 1 samples, we upper-bound the former probability

by (√|V |−1
2

)
5 · |V |

< 0.1.

On the other hand, using the fact that the sample-pairs are almost pairwise independent, one may
show that, with probability at least 0.9, it holds that O(

√
|V |) samples contain at least five pairwise

14If the edge density is higher than ε/3, then G has more than (ε/3) · |V |2 > |V |c edges, and G 6∈ Π follows. On
the other hand, if the edge density is smaller than 2ε/3, then G is 2ε/3-close to the empty graph, which implies that
G is ε-close to Π (since the empty graph is ε/3-close to Π).

15One example is the almost-trivial tester for symmetric graphs [18, end of Sec. 2].
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collisions, and in that case n is set to O(|V |). Furthermore, for any t > 1, the probability that the
tester runs t times longer than expected (equiv., n is set to O(t2 · |V |)) is at most exp(−t).16

Appendix B: On testing cycle freeness in the general graph model

Testing cycle-freeness (with two-sided error) in the bounded-degree graph model amounts to es-
timating the number of edges and the number of connected components (and comparing these
two estimates), where in the latter case we may focus on small connected components (see [13,
Sec. 9.2.5]). The simple procedure for estimating the number of small connected components is
easily adaptable to the general graph model (cf. [13, Sec. 10.2.1]). Specifically, we may select
t = O(1/ε2) start vertices uniformly at random, and start an exploration of the graph at each of
them, while suspending the exploration once s = O(1/ε) vertices are encountered. The number
of connected components is estimated as (1/t) ·

∑
i∈[t](n/ni), where ni ≤ s + 1 is the number of

vertices encountered in the ith exploration.17

This leaves us with the task of estimating the number of edges, which (as briefly discussed
in Section 3.1) is a pivotal task in the general graph model. As stated in Section 3.1, this task
can be performed in time α · poly(ε−1 log n)/d, where d denotes the average vertex degree, and
α ∈ [d, (d · n)1/2] denotes the arboricity of the graph. We stress that in the general case α/d =
O(n/d)1/2, whereas α/d = O(1) when α = O(d). This gap is manifested in the complexity of the
testing problem.

Proposition B.1 (testing cycle freeness in the general graph model): Assuming that d/ε =
poly(log n), the complexity of testing cycle freeness is Θ̃(n1/2) in the general case and poly(log n)
in the bounded arboricity case.

The lower bound in the general case can be demonstrated by observing that Ω(n1/2) queries are
needed to distinguish between an n-vertex graph that consists of a tree on n − n1/2 vertices and
n1/2 isolated vertices and the same tree augmented by an n1/2-vertex clique.
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