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Abstract

For a constant t ∈ N, we consider the problem of counting the number of t-cliques mod 2
in a given graph. We show that this problem is not easier than determining whether a given
graph contains a t-clique, and present a simple worst-case to average-case reduction for it.
The reduction runs in linear time when graphs are presented by their adjacency matrices, and
average-case is with respect to the uniform distribution over graphs with a given number of
vertices.

The foregoing results were previously obtained by Boix-Adsera, Brennan, and Bresler (FOCS’19),
using a more complex worst-case to average-case reduction. The current note has the advantage
of providing a short and self-contained presentation of the foregoing results.

An early version of this note appeared as TR20-104 of ECCC. At that time, we were unaware
of the fact that the main results were essentially proved before by Boix-Adsera, Brennan, and
Bresler [BBB19].

1 Introduction

For a constant integer t ≥ 3, finding t-cliques in graphs and determining their mere existence are
archetypical computational problems within the frameworks of parameterized complexity and fine
grained complexity (see, e.g., [FG06] and [W15], resp.). The complexity of counting the number of
t-cliques has also been studied (see, e.g., [GR18, BBB19]). In this note, we consider a variant of
the latter problem; specifically, the problem of counting the number of t-cliques mod 2.

Determining the number of t-cliques mod 2 in a given graph is potentially easier than deter-
mining the number of t-cliques in the same graph. On the other hand, as shown in Theorem 1,
determining the said number mod 2 is not easier (in the worst-case sense) than determining whether
or not a graph contains a t-clique. Hence, the worst-case complexity of counting t-cliques mod 2
lies between the worst-case complexity of counting t-cliques and the worst-case complexity of de-
termining the existence of t-cliques. Consequently, as far as worst-case complexity is concerned,
using the “counting mod 2 problem” as proxy for the “existence problem” is at least as justified as
using the “counting problem” as such a proxy.

It is widely believed that the worst-case complexity of all the aforementioned problems is poly-
nomially related to the complexity of the straightforward algorithm that scans all t-subsets of the
vertex set. Recent works [GR18, BBB19], to be reviewed in Section 1.1, have related the average-
case complexity of the counting problem to its worst-case complexity. Our main result is closely
related to this line of work, but it enjoys a much simpler proof.
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Our main result (presented in Theorem 2) is an efficient worst-case to average-case reduction
for counting t-cliques mod 2. The reduction in efficient in the sense that it runs in linear time
when graphs are presented by their adjacency matrices. We stress that average-case is with respect
to the uniform distribution over graphs with a given number of vertices, and it yields the correct
answer (with high probability) whenever the average-case solver is correct on at least a 1 − 2−t

2

fraction of the instances. In other words, the average-case solver should have error rate at most
2−t

2
. The question of whether the same result holds with respect to significantly higher error rates,

and ultimately with error rate 0.49, is left open.

1.1 Relation and comparison to prior work

Efficient worst-case to average-case reductions were presented before for the related problem of
counting t-cliques (over the integers). Specifically, Goldreich and Rothblum provided such a reduc-
tion with respect to a relatively simple distribution over graphs with a given number of vertices,
alas not the uniform distribution [GR18]. On the other hand, their reduction works even when the
average-case solver has error rate that approaches 1; specifically, its error rate on n-vertex graphs
may be as large as 1− 1

poly(logn) = 1−o(1). In contrast, Boix-Adsera, Brennan, and Bresler provided
an efficient worst-case to average-case reduction with respect to the uniform distribution, but their
reduction can only tolerate a vanishing error rate [BBB19, Thm. II.8]; specifically, its error rate on
n-vertex graphs is required to be 1/poly(log n) = o(1).

Hence, our worst-case to average-case reduction, which is for a related (but different) problem,
matches the better aspects of the aforementioned results (see Table 1): It refers to the uniform dis-
tribution (as [BBB19, Thm. II.8]), and tolerates a constant error rate (which is better than [BBB19,
Thm. II.8] but worse than [GR18]).

As stated in the abstract, it turns out that a similar result was proved before by Boix-Adsera,
Brennan, and Bresler [BBB19, Thm. II.9], using a more complicated reduction (which is due to
their obtaining this result by modifying the approach they used to obtain their other results).1

problem distribution error rate where

counting relatively simple 1− 1/poly(log n) = 1− o(1) [GR18]

counting uniform 1/poly(log n) = o(1) [BBB19, Thm. II.8]

counting mod 2 uniform exp(−Õ(t2)) = Ω(1) [BBB19, Thm. II.9]

counting mod 2 uniform exp(−t2) = Ω(1) Theorem 2

Table 1: Comparison of different worst-case to average-case reductions for variants of the t-CLIQUE
problem, for the constant t, where n denotes the number of vertices. The first column indicates the
version being treated, the second indicates the distribution for which average-case is considered,
and the third indicates the error rate allowed for the average-case solver.

1In addition, the error rate that they tolerate is lower; specifically, they can tolerate error rate O(log t)−t2 (rather

than 2−t2).
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1.2 Techniques

In contrast to [GR18] and [BBB19, Thm. II.8], which relate the t-clique counting problem to the
evaluation of lower degree polynomials over large and medium sized fields, we related the counting
mod 2 problem to low degree polynomials over GF(2). This relation allows us to present reductions
that are much simpler than those presented in [GR18, BBB19]. The point is that there is a simple
bi-directional connection between counting t-cliques mod 2 in n-vertex graphs and computing a
specific (degree

(
t
2

)
) polynomial of the entries of a generic n-by-n matrix. This relation is captured

by Eq. (1); and, given this relation, Theorems 1 and 2 are quite straightforward.
Specifically, given that the counting mod 2 problem is captured by a low degree polynomial

over GF(2), the worst-case to average-case reduction coincides with the standard self-correction
procedure for such polynomials. That is, the value of a degree d polynomial p : GF(2)m → GF(2)
at any point is reconstructed based on its value at 2d+1−2 points, where each of the latter points is
uniformly distributed in GF(2)m but the points are related (see, e.g., [AKKLR, Lem. 1]).2 Hence,
if the error rate of the average-case solver is smaller than 2−d−3, then this reduction yields the
correct value with probability at least 3/4, which establishes Theorem 2.

As noted above, we leave open the problem of improving the error rate that can be tolerated
by a worst-case to average-case reduction (for counting t-cliques mod 2). We note that tolerating
an error rate that approaches 0.5 presupposes that approximately half of the n-vertex graphs have
an odd number of t-cliques (unless finding t-cliques can be done in Õ(n2)-time). This is indeed the
case, as can be seen from a general result of Kolaitis and Kopparty [KK13, Thm. 3.2].

2 Formal statements and proofs

For a fixed integer t ≥ 3 and a graph G, we denote by CC(t)(G) the number of t-cliques in G, and let

CC
(t)
2 (G)

def
= (CC(t)(G) mod 2) denote the parity of this number. We often represent n-vertex graphs

by their adjacency matrices; hence, CC
(t)
2 (A) = CC

(t)
2 (G), where A is the adjacency matrix of G, and

it follows that

CC
(t)
2 (A) =

 ∑
i1<···<it∈[n]

∏
j<k∈[t]

Aij ,ik

 mod 2, (1)

where Au,v is the (u, v)th entry of A (indicating whether or not {u, v} is an edge in G).
Before presenting our main result, which relates the average-case and the worst-case complexities

of computing CC
(t)
2 , we recall that computing CC

(t)
2 is not easier (in the worst-case) than determining

whether the input graph contains a t-clique. This fact was proved in [BBB19, Lem. A.1], and the
proof is similar to the proof of [WWWY, Lem. 2.1].3

Theorem 1 (deciding the existence of t-cliques reduces to computing CC
(t)
2 ): For every integer

t ≥ 3, there is a randomized reduction of determining whether a given n-vertex graph contains a

t-clique to computing CC
(t)
2 on n-vertex graphs such that the reduction runs in time O(n2), makes

exp(t2) queries, and has error probability at most 1/3.

2These 2d+1−2 points are obtained by all (non-zero) linear combinations of the input point and d random points,
while also excluding the input point itself.

3A result of similar nature appears in [AFW20, Thm. 2].
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Proof: Consider a randomized reduction that, on input G = ([n], E), flips each edge to a non-edge

with probability 0.5, leaves non-edges intact, and returns the value of CC
(t)
2 on the resulting graph;

that is, the reduction generates a random subgraph of G, denoted G′, and returns CC
(t)
2 (G′).

To analyze the output of the foregoing procedure (on input G), consider a (symmetric) n-by-n

matrix X such that xi,j is a variable if {i, j} ∈ E and xi,j = 0 otherwise. We view CC
(t)
2 (X), which

is defined as in Eq. (1), as a multivariate polynomial over GF(2), and observe that it has degree at

most
(
t
2

)
. The key observation is that CC

(t)
2 (X) is a non-zero polynomial if and only if the graph G

contains a t-clique (i.e.,CC(t)(G) > 0). Hence, the foregoing reduction can be viewed as returning

the value of CC
(t)
2 (X) on a random (symmetric) assignment to the variables in X. It follows that the

reduction always returns 0 if CC(t)(G) = 0, and returns 1 with probability at least 2−(t
2) otherwise

(i.e., when CC(t)(G) > 0). The latter assertion is due to the Schwartz–Zippel for small fields (i.e.,
for GF(2)).4 Applying the foregoing reduction for exp(t2) times, the claim follows.

Theorem 2 (worst-case to average-case reduction for CC
(t)
2 ): For every integer t ≥ 3, there is a

randomized reduction of computing CC
(t)
2 on the worst-case n-vertex graph to correctly computing

CC
(t)
2 on at least a 1 − 2−t

2
fraction of the n-vertex graphs such that the reduction runs in time

O(n2), makes exp(t2) queries, and has error probability at most 1/3.

Proof: Setting d =
(
t
2

)
, consider the following random self-reduction of CC

(t)
2 . On input a symmetric

and non-reflective n-by-n matrix, A:

1. Select uniformly d random (symmetric and non-reflective) n-by-nmatrices, denotedR(1), ..., R(d),
and let R(0) = A.

2. Making adequate queries to CC
(t)
2 , return

∑
I⊆{0,1,...,d}:I 6={0} CC

(t)
2 (R(I)) mod 2, where R(I) def

=∑
i∈I R

(i) mod 2 and CC
(t)
2 (R(∅)) = 0.

Hence, the foregoing reduction performs 2d+1 − 2 < 2t
2

queries, and each of these queries (i.e.,
each R(I) for I 6∈ {∅, {0}}) is uniformly distributed over the set of all symmetric and non-reflective
n-by-n matrices.

We claim that, for any fixed R(0), R(1), ..., R(d), it holds that
∑

I⊆{0,1,...,d}:I 6={0} CC
(t)
2 (R(I)) equals

CC
(t)
2 (R(0)) mod 2. This claim is proved by considering the multivariate polynomial P (x0, x1, ..., xd)

over GF(2) that is defined to equal CC
(t)
2 (
∑d

i=0 xiR
(i)). Specifically, we use the following facts:

• For every b0, b1, ..., bd ∈ GF(2), it holds that P (b0, b1, ..., bd) = CC
(t)
2 (R({i:bi=1})); in particular,

P (0, 0, ..., 0) = 0 and P (1, 0, ..., 0) = CC
(t)
2 (R(0)).

• The polynomial P has degree
(
t
2

)
= d, because P (x0, x1, ..., xd) = CC

(t)
2 (L(x0, x1, ..., xd)) such

that L(x0, ..., xd) is a matrix of linear functions (i.e., the (u, v)th entry of L(x0, ..., xd) equals∑d
i=0R

(i)
u,vxi).

(Indeed, using Eq. (1), it follows that P = CC
(t)
2 (L) has degree

(
t
2

)
.)

4See [G17, Exer. 5.1]. (Alternatively, see [WWWY, Lem. 2.2].)
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• For any (d + 1)-variate polynomial of degree at most d over GF(2) it holds that the sum of
its evaluation over all 2d+1 points is 0 (see, e.g., [AKKLR, Lem. 1]).

This general fact can be seen by considering an arbitrary monomial M(x0, x1, ..., xd) =∏
i∈I xi, where I ⊂ {0, 1, .., d}. (Note that a monomial of P cannot contain all variables,

because P has degree at most d.) Now,∑
(b0,b1,...,bd)∈GF(2)d+1

M(b0, b1, ..., bd) =
∑

(b0,b1,...,bd)∈GF(2)d+1

∏
i∈I

bi

= 2d+1−|I| ·
∏
i∈I

∑
bi∈GF(2)

bi

which equals 0 (mod 2), since |I| ≤ d.

Combining the foregoing facts, it follows that
∑

I⊆{0,1,...,d}:I 6={0} CC
(t)
2 (R(I)) equals CC

(t)
2 (R0) (mod 2).

Thus, given oracle access to a program Π such that PrR[Π(R) = CC
(t)
2 (R)] ≥ 1 − ε, when

making queries to Π rather than to CC
(t)
2 , the foregoing reduction returns the correct value with

probability at least 1 − (2d+1 − 2) · ε (i.e., whenever all queries are answered correctly). Using
ε = 2−t

2
, we obtain a worst-case to average-case reduction that fails with probability less than

2d+1−t2 = 2−(t
2+t−2)/2 < 1/3 when given access to a procedure that is correct on at least a 1− 2−t

2

fraction of the instances.5

Remark 3 (the distribution of CC
(t)
2 (R) for random R): The proof of Theorem 2 implies that 2−t

2
<

PrR[CC
(t)
2 (R) = 1] < 1 − 2−t

2
. To see this, suppose towards the contradiction that PrR[CC

(t)
2 (R) =

b] ≥ 1− 2−t
2
for some b ∈ GF(2). Then, for every R0, using notation as in the proof, it holds that

PrR1,...,Rd

 ∑
I⊆{0,1,...,d}:I 6={0}

CC
(t)
2 (R(I)) ≡ 0 (mod 2)


≥ PrR1,...,Rd

[
(∀I ⊆ {0, 1, ..., d} \ {{0}, ∅}) CC(t)2 (R(I))=b

]
≥ 1− (2d+1 − 2) · 2−t2 > 0

where the last inequality uses 2d+1−t2 = 2−(t
2+t−2)/2 < 1. This implies Pr[CC

(t)
2 (R0) = 0] > 0 for

every R0, which implies CC
(t)
2 (R0) = 0 for every R0, which is impossible (e.g., when CC(t)(R0) = 1).

While Remark 3 only asserts that ER[CC
(t)
2 (R)] is bounded away from both 0 and 1, it is known to

be approximately 1/2. The latter fact follows as a special case of a general result of Kolaitis and
Kopparty [KK13, Thm. 3.2].6

Open Problem 4 (stronger worst-case to average-case reduction for CC
(t)
2 ): For every integer

t ≥ 3 and γ > 0.5, is there a randomized reduction of computing CC
(t)
2 on the worst-case n-vertex

graph to correctly computing CC
(t)
2 on at least a γ fraction of the n-vertex graphs such that the

reduction runs in time Õ(n2), and has error probability at most 1/3.

5Indeed, we can slightly improve the bound by using any constant ε < 2−d−2 = 2−(t2−t+4)/2.
6The original version of this note included proofs of the cases of t ∈ {3, 4}, since (at the time) we were unaware

of the results of Kolaitis and Kopparty [KK13].
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This strengthens Theorem 2 by requiring the reduction to tolerate error rate that is arbitrary close

to 0.5 rather than error rate exp(−t2). The fact that ER[CC
(t)
2 (R)] ≈ 0.5 may be viewed as a sanity

check for Problem 4, since |ER[CC
(t)
2 (R)]− 0.5| > δ would have implied that CC

(t)
2 can be computed

correctly in constant time on a 0.5 + δ fraction of the graphs

3 Conclusion

Like [BBB19, Thm. II.9], Theorem 2 asserts an efficient worst-case to average-case reduction for
counting t-cliques mod 2, where average-case is with respect to the uniform distribution over graphs

with the given number of vertices. Specifically, for any integer t ≥ 3, computing CC
(t)
2 on the worst-

case n-vertex graph is reducible (in O(n2)-time) to computing CC
(t)
2 correctly on a 1 − exp(−t2)

fraction of all n-vertex graphs.
We believe that Theorem 2, which has a very simple proof, is as interesting as an analogous

result that refers to counting t-cliques (i.e., computing CC(t)), because (as shown in Theorem 1

and [BBB19, Lem. A.1]), computing CC
(t)
2 is not easier than determining whether a given graph

contains a t-clique. The point is that the decisional problem (i.e., t-CLIQUE) is the one that has

received most attention in prior work, and results regarding either CC(t) or CC
(t)
2 are mostly proxies

for it (i.e., for results regarding t-CLIQUE). In particular, combining Theorems 1 and 2, it follows
that deciding t-CLIQUE on the worst-case n-vertex graph is reducible (in O(n2)-time) to computing

CC
(t)
2 correctly on a 1 − exp(−t2) fraction of all n-vertex graphs. (Recall that a similar result was

established in [BBB19], by combining [BBB19, Lem. A.1] and [BBB19, Thm. II.9].)
We note that [GR18] and [BBB19, Thm. II.8], which refer to the counting problem, fall short of

establishing results analogous to [BBB19, Thm. II.9] and Theorem 2: The results of [GR18] are not
for the uniform distribution (but rather for a relatively simple but different distribution), whereas
the result of [BBB19, Thm. II.8] holds for a notion of average-case that allows only a vanishing
error rate (i.e., the “average-case algorithm” is required to be correct on at least a 1 − 1

poly(logn)

fraction of the n-vertex graphs).
As stated in Problem 4, we leave open the problem of obtaining a result analogous to Theorem 2

for “average-case algorithms” that are correct on a γ fraction of the instances, for every constant
γ > 1/2.
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