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Abstract

An interactive proof system is called doubly-efficient if the prescribed prover strategy can be im-
plemented in polynomial-time and the verifier’s strategy can be implemented in almost-linear-time.
Such proof systems, introduced by Goldwasser, Kalai, and Rothblum (JACM, 2015), make the ben-
efits of interactive proof system available to real-life agents who are restricted to polynomial-time
computation.

We survey some of the known results regarding doubly-efficient interactive proof system. We
start by presenting two simple constructions for t-no-CLIQUE (due to Goldreich and Rothblum
(ECCC, TR17-018 and TR18-046)), where the first construction offers the benefit of being general-
ized to any “locally characterizable” set, and the second construction offers the benefit of preserving
the combinatorial flavor of the problem. We then turn to two more general constructions of doubly-
efficient interactive proof system: the proof system for sets having (uniform) bounded-depth circuits
(due to Goldwasser, Kalai and Rothblum (JACM, 2015)), and the proof system for sets that are
recognized in polynomial-time and small space (due to Reingold, Rothblum, and Rothblum (STOC,
2016)). Our presentation of the GKR construction is quite complete (and is somewhat different
from the original presentation), but for the RRR construction we only provide an overview.
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Chapter 1

Introduction

The notion of interactive proof systems, put forward by Goldwasser, Micali, and Rackoff [28], and
the demonstration of their power by Lund, Fortnow, Karloff, and Nisan [35] and Shamir [44] are
among the most celebrated achievements of complexity theory. Recall that an interactive proof
system for a set S is associated with an interactive verification procedure, V , that can be made
to accept any input in S but no input outside of S. That is, there exists an interactive strategy
for the prover that makes V always accept any input in S, but no strategy can make V accept an
input outside of S, except with negligible probability. (See Appendix A.1 for a formal definition of
interactive proofs, and [19, Chap. 9] for a wider perspective.)

The original definition does not restrict the complexity of the strategy of the prescribed prover
and the constructions of [35, 44] use prover strategies of high complexity. This fact limits the
applicability of these proof systems in practice. (Nevertheless, such proof systems may be actually
applied when the prover knows something that the verifier does not know, such as an NP-witness to
an NP-claim; this is beneficial when the proof system offers an advantage (over NP-proof systems)
such as being zero-knowledge [28, 22].)

1.1 The notion of doubly-efficient interactive proof systems

Seeking to make interactive proof systems available for a wider range of applications, Goldwasser,
Kalai and Rothblum put forward a notion of doubly-efficient interactive proof systems (also called
interactive proofs for muggles [27] and interactive proofs for delegating computation [42]). In these
proof systems the prescribed prover strategy can be implemented in polynomial-time and the veri-
fier’s strategy can be implemented in almost-linear-time. That is, doubly-efficient interactive proof
systems are restricted by two additional efficiency requirements:

Prover’s efficiency requirement: The prescribed prover strategy (referred to in the com-
pleteness condition) should be implemented in polynomial-time.

Verifier’s efficiency requirement: The verifier strategy should be implemented in almost-
linear time.

(We stress that unlike in argument systems, the soundness condition holds for all possible cheating
strategies (not only for feasible ones).)1

1See further discussion in Section 1.5.
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Restricting the prescribed prover to run in polynomial-time implies that such systems may exist
only for sets in BPP , whereas a polynomial-time verifier can check membership in such sets by itself.
However, restricting the verifier to run in almost-linear-time implies that something can be gained
by interacting with a more powerful prover, even though the latter is restricted to polynomial-time.

The potential applicability of doubly-efficient interactive proof systems was demonstrated by
Goldwasser, Kalai and Rothblum [27], who constructed such proof systems for any set that has
log-space uniform circuits of small depth (e.g., log-space uniform NC). A recent work of Reingold,
Rothblum, and Rothblum [42] provided doubly-efficient (constant-round) proof systems for any
set that can be decided in polynomial-time and small amount of space (e.g., for all sets in SC).
These two results are actually incomparable. The two constructions will be reviewed in Chapters 3
and 4, respectively, but before doing so we shall consider simpler constructions (see Section 1.2 and
Chapter 2).

Terminology: We keep the term almost linear vague on purpose, but whenever appropriate we
shall spell-out a specific interpretation of it. The most strict interpretation is that a function
f : N → N is almost linear if f(n) = Õ(n) = poly(log n) · n. This interpretation is suitable for
Chapter 3 and most of Chapter 2 (i.e., for the results of [27] and [24, 25], resp). In contrast,
Chapter 4 (following [42]) uses a much more liberal interpretation by which a sequence of functions
of the form fǫ : N → N (representing the complexities of a sequence of constructions) is almost
linear if fǫ(n) = O(n1+ǫ) for every ǫ > 0. We mention that these interpretations have been used in
the past also in other settings (see discussion in [20, Sec. 13.3.3]).

1.2 Doubly-efficient NP-proof systems

For starters, we mention that doubly-efficient interactive proof systems exist for some sets in P
that are believed not to have almost-linear decision procedures (or at least are not known to have
such procedures). Examples include perfect matching and t-CLIQUE, for any constant t ≥ 3. In
these cases, the proof systems are actually of the NP-type. The point is that in each of these cases,
an easily verified NP-witness (i.e., one that can be verified in almost-linear time) can be found in
polynomial-time.

The foregoing assertion is quite evident for perfect matching, by virtue of the known matching
algorithms and the fact that checking whether a set of edges is a perfect matching in a given graph
can be done in linear time. The same hold for the maximum flow problem, by virtue of the min-
cut dual. More generally, morally, the same holds for linear programming (again by duality; i.e.,
by checking the feasibility of the dual program).2 Turning to fixed-parameter problems, such as
t-CLIQUE, let us now consider the (popular) sets

t-CLIQUE: The set of n-vertex graphs that contain a clique of size t.

t-SUM: The set of n-long sequences of integers, say, in [−nt+3, nt+3], that contain t elements that
sum-up to zero.

2Formally, issues may arise with respect to the length of the description of the solutions to the primal and dual
programs, but these issues can be resolved by padding the input to that length (which seems quite natural in this
context).
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t-OV: The set of n-long sequences of vectors over GF(2)log
2 n that contain t vectors such that their

coordinate-wise multiplication yields the all-zero vector.

In all cases, the NP-witness is a set of t elements, which can be found in time
(n

t

)
and verified in

poly(t·log n)-time. Recall that t-CLIQUE is conjectured to require time nc′·t, where c′ is any constant
smaller than one third of the Boolean matrix multiplication exponent (see, e.g., [1]), and that 3-SUM
is conjectured to require almost quadratic time (see, e.g., [40], which promoted it), whereas t-OV
generalizes the Orthogonal Vectors problem (see [6]).3 Furthermore, t-CLIQUE isW[1]-complete [15],
solving it in time no(t) refutes the ETH [13], and lower bounds for t-SUM are known to follow from
lower bounds for t-CLIQUE (see [2]).

In general, the class of sets having doubly-efficient NP-proof systems is a subclass of P ∩
Ntime(L̃), where L̃ denotes the set of almost-linear functions. (Indeed, the class of sets having
doubly-efficient NP-proof systems consists of all sets S ∈ Ntime(L̃) associated with a witness

relation R such that given x ∈ S we can find y ∈ R(x)
def
= {w : (x,w)∈R} in polynomial-time.)4

As in the case of IP-versus-NP , the question is what can be gained by allowing the verifier to be
interactive, toss coins, and rule by statistical evidence. That is, moving beyond doubly-efficient
NP-proof systems, we focus on the power of doubly-efficient interactive proof systems.

1.3 The power of doubly-efficient interactive proof systems

The bulk of this survey is devoted to demonstrating the power of doubly-efficient interactive proof
systems. We shall start by presenting two different (doubly-efficient interactive) proof systems for
t-no-CLIQUE (i.e., the complement of t-CLIQUE). These proof systems (presented in Sections 2.1
and 2.3) are considerably simpler than the proof systems that can be derived from the general
results captured by Theorems 1.1 and 1.2 (and presented in Chapters 3 and 4).5

Before turning to these more general results, we briefly discuss the two doubly-efficient inter-
active proof systems for t-no-CLIQUE . One of these systems (i.e., the one presented in Section 2.3)
proceeds in t rounds such that, in the ith round, a claim regarding the number of (t− i+ 1)-cliques
in a graph is reduced to a claim regarding the number of (t − i)-cliques in a related graph. Hence,
in each iteration, a natural computational problem is reduced to a closely related computational
problem, while preserving the combinatorial flavor of the original problem. This proof system can
also handle varying t, yielding an alternative interactive proof system for #P.

The idea that underlies the other proof system for t-no-CLIQUE (presented in Section 2.1) can
be applied to a natural class of “locally characterizable” sets (defined in Section 2.2, following [24,

3Indeed, the Orthogonal Vectors problem corresponds to the case of t = 2. Our formulation of t-OV is different
but equivalent to the one in [6], where the sequence of vectors is partitioned into t equal parts and a yes-instance
has to take a single vector from each part.

4Formally, S has a doubly-efficient NP-proof system if and only if there exists a relation R such that

1. if (x, y) ∈ R, then |y| is almost linear in |x|;

2. S = {x : ∃w s.t. (x,w)∈R};

3. there exists a polynomial-time algorithm that, on input x ∈ S, outputs an element of {w : (x,w)∈R};

4. there exists an almost-linear time algorithm that, on input (x, y), decides whether or not (x, y) ∈ R.

5The two simple proof systems for t-no-CLIQUE are due to [24, Sec. 3] and [25, Sec. 2], resp., whereas Theorems 1.1
and 1.2 are due to [27] and [42], resp.
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Sec. 5]). This class, which contains t-no-CLIQUE, is a subclass of NC ∩ SC. This means that
doubly-efficient interactive proof systems for locally characterizable sets can be obtained from
either Theorem 1.1 or Theorem 1.2, but the point of presenting the direct proof systems for locally
characterizable sets (in Section 2.2) is that they are considerably simpler than those obtained by
either Theorem 1.1 or Theorem 1.2. Still, the latter theorems yield the most general results known
regarding doubly-efficient interactive proof systems.

Theorem 1.1 (doubly-efficient interactive proof systems for log-space uniform NC [27]): Every
set that is decidable by a family of log-space uniform circuits of depth d such that d(n) = Õ(n),
has a doubly-efficient interactive proof system. Furthermore, the proof system uses O(log n) · d(n)
rounds, and the verifier runs in Õ(n+ d(n))-time.

Although circuit size and depth is related to time and space [10], this relation is not tight enough
to relate NC and SC.6 Hence, Theorem 1.1 is incomparable to the following

Theorem 1.2 (doubly-efficient interactive proof systems for SC [42]): Every set that is decidable
by an algorithm that runs in polynomial time and has space complexity s such that s(n) <

√
n, has

a doubly-efficient interactive proof system. Furthermore, for any constant δ > 0, the proof system
uses exp(Õ(1/δ)) rounds, and verifier runs in (Õ(n) + s(n)2 · nδ)-time.

As noted in [42], Theorem 1.2 can be extended to randomized algorithms by first reducing their
randomness complexity to linear (using adequate pseudorandom generators), and then letting the
verifier toss coins for the derived algorithm and send the outcomes to the prover (asking it to prove
membership in the corresponding residual set).7 A begging open problem is whether the upper
bound of s(n)2 can be replaced by s(n); that is,

Problem 1.3 (a possible quantitative improvement of Theorem 1.2): Does every set that is decid-
able by an algorithm that runs in polynomial time and linear space have a doubly-efficient interactive
proof system?

Another intriguing question is whether the round complexity in Theorem 1.2 can be reduced to
poly(1/δ).

We mention that all the aforementioned proof systems, which will be surveyed in the subsequent
chapters, are of the public-coin type.8 Note that the known transformation of general interactive
proof systems to public-coin ones does not apply to doubly-efficient interactive proof systems, since
the resulting prover strategy is not efficient and this seems inherent [48]. This begs the question of
whether general systems (i.e., ones that are not of the public-coin type) can offer some advantages
in the context of doubly-efficient interactive proof systems.

6The point is that the translations between depth and space do not preserve polynomial bounds on the size
and time, respectively. Specifically, SC can be emulated by uniform circuits of polylogarithmic depth (and quasi-
polynomial size), whereas log-space uniform NC can be emulated by algorithms of polylogarithmic space complexity
(that run in quasi-polynomial time).

7When applied to a randomized algorithm with two-sided error this yields an interactive proof system with two-
sided error (a.k.a imperfect completeness (see Appendix A.1)). Recall, however, that we our focus is on interactive
proof systems with perfect completeness (as in Definition A.1); such proof systems are obtained here when applying
the foregoing reduction to a randomized algorithm that always accepts yes-instances. A similar comment holds with
respect to all subsequent statements about BPP (see, e.g., Theorem 1.4 and Section 1.5); that is, when considering
proof systems of perfect completeness, one may replace BPP by coRP .

8In the public coin model, at each round, the verifier tosses a predetermined number of coins and sends the
outcome to the prover (see discussion at the end of Appendix A.1).
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1.4 An upper bound on doubly-efficient interactive proof systems

As stated upfront, doubly-efficient interactive proof systems exists only for sets in BPP . This
is the case, since a decision procedure can just emulate the interaction between the prescribed
polynomial-time prover (and the polynomial-time verifier). Using the hypothesis that the verifier
runs in almost linear time, it follows that such sets are decidable in almost linear space. This is
the case since the hypothesis implies that the communication and the verifier’s randomness are (at
most) almost-linear (in the length of the input), and the same holds for the space complexity of the
verifier. Hence, a machine of almost linear space complexity can decide membership in the set by
emulating all possible interactions. For future reference, let us state the conclusion of the foregoing
discussion.

Theorem 1.4 (upper bound): Every set that has a doubly-efficient interactive proof system can
be decided in BPP ∩Dspace(ℓ̃), where ℓ̃ is an almost linear function.

Note that even if Theorem 1.2 is improved as suggested in Problem 1.3, a gap will remain between
it and Theorem 1.4, since TiSp(T, s) is not necessarily equal Time(T ) ∩ Space(s). Hence, another
begging open problem is whether the power of doubly-efficient interactive proof systems is captured
by TiSp(poly, s) or by BPP ∩ Space(s) (or by neither).

Problem 1.5 (on the gap between Theorems 1.2 and 1.4): Prove or provide evidence against at
least one of the following conjectures:

1. For s(n) = Õ(n), every set in P ∩ Dspace(s) has a doubly-efficient interactive proof system.
Even establishing the claim for some s(n) = ω(log n) would be interesting.9

2. Every set that has a doubly-efficient interactive proof system can be decided by a probabilistic
algorithm that runs in polynomial time and almost linear space.

We mention that the second conjecture contradicts the conjecture that log-space uniform circuits
of linear depth and polynomial size cannot be emulated by polynomial-time algorithms of almost-
linear space complexity, since Theorem 1.1 provides doubly-efficient interactive proof systems for
the former. Can stronger evidence be brought against the second conjecture? On the other hand,
we propose a milder form of the second conjecture asserting that every set that has a constant-round
doubly-efficient interactive proof system can be decided by a probabilistic algorithm that runs in
polynomial time and almost linear space.

1.5 On doubly-efficient argument systems

Recall that argument systems are defined as interactive proof systems with the exception that
the soundness condition is replaced by a computational soundness condition. That is, while the
(standard) soundness condition requires that no cheating strategy can make the prover accept false
assertions, except with negligible probability, the computational soundness condition only requires

9Note that, by Theorem 1.1, the claim holds for any s(n) = O(log n), since L is contained in log-space uniform
NC.
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the infeasibility of cheating (i.e., that cheating strategies that can be implemented by polynomial
size circuits may only fool the verifier with negligible probability).10

Doubly-efficient argument systems for any set in BPP are implicit in Kilian’s argument system
for sets in NP , which relies on collision resistance hashing [32].11 This system uses a constant
number of rounds. Furthermore, assuming the existence of computational PIR schemes [33], every
set in BPP has a two-message doubly-efficient argument system [30, 31, 11].12 On the other hand,
any set having a doubly-efficient argument system is in BPP (since we can decide membership in
such a set by emulating the interaction between the prescribed prover and verifier strategies).13

The fact that argument systems are always asserted by relying on an intractability assumption
is no coincidence, since these asserted systems do not satisfy the information theoretic soundness
requirement. In fact, the existence of an argument system that is not an interactive proof system
(i.e., does not satisfy standard soundness) implies a complexity separation (which is not known
unconditionally). Specifically:

Theorem 1.6 (arguments that are not proofs imply separations): Let V be a verifier strat-
egy for an argument system for a set S, and suppose that V does not satisfy the (information
theoretic) soundness requirement. Then, PSPACE is not contained in P/poly. In particular,
BPP 6= PSPACE .14

In other words, Theorem 1.6 asserts that a gap between information theoretic soundness and
computational soundness means a gap between computationally unbounded (prover) strategies
and computationally bounded (prover) strategies. Recalling that, in the current setting (of fooling
a probabilistic polynomial-time verifier), the former can be implemented in PSPACE , whereas the
computational restriction refers to P/poly, the main claim follows (and BPP 6= PSPACE follows,
since BPP ⊂ P/poly).

Proof: Assume, for simplicity and without loss of generality, that in the said argument system each
message of the prover consists of a single bit, and let f : {0, 1}∗×{0, 1}∗ → {0, 1} denote an optimal
prover strategy with respect to this system (i.e., f(x, γ) is the message sent by the prover on common
input x after receiving the sequence of verifier messages described in the communication transcript
γ). Then, f ∈ PSPACE , since an optimal prover strategy (w.r.t a probabilistic polynomial-time
verifier) can be implemented in polynomial space. On the other hand, f 6∈ P/poly, since otherwise
a polynomial size circuit could implement the optimal strategy (for convincing V ), and so there
will be no gap between the information theoretic soundness and the computational soundness of
this proof system.

10Polynomial size circuits are preferred over probabilistic polynomial-time algorithms in order to account for auxil-
iary information that may be available to the prover (esp., when used as a subroutine inside a higher-level application).

11The claim is evident for sets in P , whereas proving membership in BPP-sets can be reduced to proving member-
ship in P-set as follows. First note that the hypothesis (i.e., the existence of collision resistance hashing) implies the
existence of one-way functions, and hence of pseudorandom generators [29]. Using such a generator, we can reduce
the randomness complexity of the decision procedures for BPP to linear, and let the verifier send a random-tape for
such a procedure (as part of its first message). Hence, it suffices to verify a claim that refers to the residual set, which
is in P .

12The result of [31], which builds on [30], uses a computational PIR of quasi-polynomial security. The assumption
was weakened to standard (polynomial security) by [11]. The original results that are stated for P can be extended
to BPP (cf. Footnote 11).

13The validity of this decision procedure refers only to the probability that the prescribed prover convinces the
(prescribed) verifier.

14Note that BPP 6= PSPACE implies BPP ⊂ PSPACE, since BPP ⊆ PSPACE.
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1.6 Preliminaries: The Sum-Check protocol

The Sum-Check protocol, designed by Lund, Fortnow, Karloff, and Nisan [35], is a key ingredient
in some of the constructions that we present. In particular, it will used in Sections 2.1 and 2.2 as
well as in Chapter 3.

Fixing a finite field F and a set H ⊂ F (e.g., H may be a two-element set), we consider an
m-variate polynomial P : Fm → F of individual degree d. Given a value v, the Sum-Check protocol
is used to prove that ∑

σ1,...,σm∈H

P (σ1, ..., σm) = v, (1.1)

assuming that the verifier can evaluate P by itself. The Sum-Check protocol proceeds in m iter-
ations, such that in the ith iteration the number of summations (over H) decreases from m−i+1 to
m−i. Specifically, the ith iteration starts with a claim of the form

∑
σi,...,σm∈H P (r1, ..., ri−1, σi, ..., σm) =

vi−1, where r1, ..., ri−1 and vi−1 are as determined in prior iterations (with v0 = v), and ends with
a claim of the form

∑
σi+1,...,σm∈H P (r1, ..., ri, σi+1, ..., σm) = vi, where ri and vi are determined in

the ith iteration. Initializing the process with v0 = v, in the ith iteration the parties act as follows.

Prover’s move: The prover computes a univariate polynomial of degree d over F

Pi(z)
def
=

∑

σi+1,...,σm∈H

P (r1, ..., ri−1, z, σi+1, ..., σm), (1.2)

where r1, ..., ri−1 are as determined in prior iterations, and sends Pi to the verifier (claiming
that

∑
σ∈H Pi(σ) = vi−1).

Verifier’s move: Upon receiving a degree d polynomial, denoted P̃ , the verifier checks that∑
σ∈H P̃ (σ) = vi−1 and rejects if inequality holds. Otherwise, it selects ri uniformly in

F , and sends it to the prover, while setting vi ← P̃ (ri).

If all m iterations are completed successfully (i.e., without the verifier rejecting in any of them),
the verifier conducts a final check. It computes the value of P (r1, ..., rm) and accepts if and only if
this value equals vm.

Clearly, if Eq. (1.1) holds (and the prover acts according to the protocol), then the verifier
accepts with probability 1. Otherwise, no matter what the prover does, the verifier accepts with
probability at most m·d/|F|, because in each iteration if the prover provides the correct polynomial,
then the verifier rejects (since

∑
σ∈H Pi(σ) = Pi−1(ri−1) 6= vi−1), and otherwise the (degree d)

polynomial sent agrees with Pi on at most d points.15

The complexity of verification is dominated by the complexity of evaluating P (on a single
point). As for the prescribed prover, it may compute the relevant Pi’s by interpolation, which is
based on computing the value of P at (d + 1) · |H|m−i points, for each i ∈ [m]. (That is, the
polynomial Pi is computed by obtaining its values at d + 1 points, where the value of Pi at each
point is obtained by summing the values of P at |H|m−i points.)16

15If Pi does not satisfy the current claim (i.e.,
P

σ∈H Pi(σ) 6= vi−1), then the prover can avoid upfront rejection

only if it sends eP 6= Pi. But in such a case, eP and Pi (both being degree d polynomials) may agree on at most d

points. Hence, if the chosen ri ∈ F is not one of these points, it holds that vi = eP (ri) 6= Pi(ri), which means that
the next iteration will also start with a false claim. Hence, starting with a false claim (i.e.,

P

σ∈H P1(σ) 6= v0 since
Eq. (1.1) does not hold), with probability at least 1 −m · d/|F|, after m iterations we reach a false claim regarding
the value of P at a single point.

16Specifically, the value of Pi at p is obtained from the values of P at the points (r1, ..., ri−1, p, σ), where σ ∈ Hm−i.
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1.7 Organization

In Chapter 2 we present simple constructions of doubly-efficient interactive proof systems for t-
no-CLIQUE, as well as for a natural class that contains it and is contained in uniform NC (and also
in SC). These proof systems are due to Goldreich and Rothblum [24, 25]. In Chapter 3 we present
the proof systems of Goldwasser, Kalai and Rothblum [27], which are applicable to sets that are
recognized by small depth circuits (e.g., uniform NC). In Chapter 4 we provide an outline of the
proof systems of Reingold, Rothblum, and Rothblum [42], which are applicable to sets recognized
in polynomial-time and small space (e.g., sets in SC).

As hinted in the foregoing paragraph, Chapter 2 is much easier to read than Chapters 3 and 4.
Furthermore, while Chapters 2 and 3 provide full expositions of the claimed proof systems, Chap-
ter 4 provides only an overview of the claimed proof system (while referring the interested reader
to the 70-page description in the original work [42]).

Each of the following three chapters starts with several overview paragraphs that outline the
contents of the chapter. Furthermore, Chapters 3 and 4 proceed with overview sections (see Sec-
tions 3.1 and 4.1, respectively).

We conclude (in Chapter 5) with an attempt to provide a high-level digest of the four funda-
mentally different proof systems reviewed above and with some speculations regarding the study
of interactive proof systems at large.

Conventions: We assume that the verifier (resp., prover) has direct access to the common input;
that is, each bit in the input can be read in unit cost. Unless explicitly stated differently, all
logarithms are to base 2.
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Chapter 2

Simple doubly-efficient interactive
proof systems

In this chapter, we present simple constructions of doubly-efficient interactive proof systems for
sets in P that are believed to have relatively high complexity. Specifically, two such constructions
are presented for t-no-CLIQUE (i.e., the set of n-vertex graphs that do not contain a clique of size
t). Generalizing one of these two constructions, we also present a generic construction of doubly-
efficient interactive proof systems for sets in a natural class, which on the one hand contains t-
no-CLIQUE and on the other hand is contained in NC∩SC. Hence, doubly-efficient interactive proof
systems for sets in the former class can be obtained from either Theorem 1.1 or Theorem 1.2, but
the constructions presented in the current chapter are considerably simpler than the constructions
reviewed in Chapters 3 and 4 (towards proving Theorems 1.1 and 1.2, resp.).

As stated above, we shall present two different doubly-efficient interactive proof systems for
t-no-CLIQUE. The first proof system, which is due to Goldreich and Rothblum [24, Sec. 3] and is
presented in Section 2.1, uses the Sum-Check protocol (reviewed in Section 1.6). This proof system
is based on the observation that membership of an n-vertex graph in t-no-CLIQUE can be captured
by the sum of the evaluations of an explicit low degree polynomial at nt points, and that this
polynomial can be evaluated in almost-linear time (in the size of the graph). Hence, applying the
Sum-Check protocol yields the desired proof system. Following [24, Sec. 5], the same strategy can
be applied to a natural class of “locally characterizable” sets, defined in Section 2.2, yielding a
generic proof system for any locally-characterizable set.

The second construction of doubly-efficient interactive proof systems for t-no-CLIQUE, which
originates in [25, Sec. 2] and is presented in Section 2.3, does not use the Sum-Check protocol.
The interactive proof proceeds in t iterations such that in the ith iteration verifying the number
of (t − i + 1)-cliques in a graph is reduced to verifying the number of (t − i)-cliques in a related
graph. Hence, in each iteration, a natural computational problem is reduced to a closely related
computational problem, while preserving the combinatorial flavor of the original problem. The
resulting t-round interactive proof systems extends also to varying t = t(n), yielding alternative
interactive proof systems for sets in #P. Furthermore, on input an n-vertex graph, the prescribed
prover strategy can be implemented in Õ(n2)-time when given oracle access to counting (t(n)− 1)-
cliques in poly(t(n)) · Õ(n)-vertex graphs.
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Organization. Section 2.1 presents the first proof system for t-no-CLIQUE. The generic con-
struction for any locally-characterizable set is presented in Section 2.2: The corresponding class is
defined in Section 2.2.1, the basic construction appear in Section 2.2.2, and ramifications appear
in Sections 2.2.3 and 2.2.4.1 Section 2.3 presents the second proof system for t-no-CLIQUE.

2.1 The first construction for t-no-CLIQUE

For a parameter t ∈ N, given a graph G = ([n], E), the problem we consider is determining whether
there exist t vertices such that the subgraph induced by them is a clique; that is, does there exist
distinct v1, ..., vt ∈ [n] such that

∧
j,k∈[t]:j<k χvj ,vk

, where χu,v = 1 if and only if {u, v} ∈ E. (Our
focus is on simple graphs, and so we assume that χv,v = 0 for every v ∈ [n].)

We actually consider the set of yes-instances (i.e., graphs having a t-clique), denoted t-CLIQUE,
and the set of no-instances, denoted t-no-CLIQUE. As outlined in Section 1.2, the set t-CLIQUE has
an NP-proof system that uses proofs of length t log n. We shall present a doubly-efficient interactive
proof for the set t-no-CLIQUE.

Fixing a generic graph G = ([n], E) (and recalling that χu,v = 1 if and only if {u, v} ∈ E), we
consider the arithmetic expression

∑

v(1),...,v(t)∈[n]

∏

j,k∈[t]:j<k

χv(j),v(k) . (2.1)

Observe that Eq. (2.1) is zero if and only if G is in t-no-CLIQUE. Hence, proving that G is in
t-no-CLIQUE reduces to proving that the sum of nt terms evaluates to zero, and the Sum-Check
protocol seems adequate for this task, except that the expression is over the integers (rather than
over a finite field) and a generic term (in Eq. (2.1)) is not expressed as a polynomial in v(1), ..., v(t).

The first problem is easy to handle: we can just use a finite field F of prime size greater than
nt (and consider Eq. (2.1) as an expression in F). The second problem is more acute: we wish to
represent a choice from the sequence of values (χu,w)u,w∈[n], which may be viewed as a function
χ : [n] × [n] → {0, 1}, as a (low degree) polynomial (in the description of this choice). The way
to do it is to identify [n] with {0, 1}ℓ, where ℓ = log2 n, and to consider a low-degree extension
of the function χ : {0, 1}ℓ × {0, 1}ℓ → {0, 1}. Specifically, we consider a multi-linear polynomial
χ̂ : Fℓ ×Fℓ → F such that χ̂(y, z) = χ(y, z) for every y, z ∈ {0, 1}ℓ. The latter polynomial can be
written as the sum, over all α, β ∈ {0, 1}ℓ, of EQ(αβ, yz)·χ(y, z), where EQ : F2ℓ×F2ℓ → F is a multi-
linear polynomial that satisfies EQ(αβ, yz) = 1 if yz = αβ and EQ(αβ, yz) = 0 if yz ∈ {0, 1}2ℓ \{αβ}
(for every α, β ∈ {0, 1}ℓ).2 Indeed, EQ(γ, x) =

∏
i(γixi + (1 − γi)(1 − xi)), which means that the

polynomial χ̂ : Fℓ ×Fℓ → F can be written as

χ̂(y, z) =
∑

α,β∈{0,1}ℓ

∏

i∈[ℓ]

(yiαi + (1− yi)(1− αi)) ·
∏

i∈[ℓ]

(ziβi + (1− zi)(1− βi)) · χα,β.

1Although the generic construction for the class of locally-characterizable sets, which is presented in Section 2.2.2,
almost meets the parameters of construction tailored for t-no-CLIQUE, we present the latter construction first (in
Section 2.1). This is done since the construction tailored for t-no-CLIQUE is simpler (and actually more efficient).

2Hence, the value of the sum
P

α,β∈{0,1}ℓ EQ(αβ, yz) · χ(y, z) at yz ∈ {0, 1}2ℓ is determined by the only term

associated with the pair (α, β) that satisfies EQ(αβ, yz) = 1 (i.e., αβ = yz), whereas all other terms vanish. Note that
EQ(γ, x) =

Q

i(γixi + (1 − γi)(1 − xi)) equals 1 if γ = x ∈ {0, 1}2ℓ, since in this case each factor evaluates to 1, and
equals 0 if γ 6= x are both in {0, 1}2ℓ, since in this case at least one of the factors evaluates to 0.
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(There is some abuse of notation here: In the first two occurrences, α and β are viewed as elements
of Fℓ, which happen to reside in {0, 1}ℓ ⊂ Fℓ, whereas in the last occurrence α and β are viewed
as elements of [n] ≡ {0, 1}ℓ.)

Hence, fixing a generic graph G = ([n], E) and letting ℓ = log n, we consider a finite field F of
prime size greater than nt, and identify {0, 1} with the set H containing the zero and one elements
of F . Using this identification (and recalling that χu,v = 1 if and only if {u, v} ∈ E), we define a
polynomial P : (Fℓ)t → F such that

P (z(1), ..., z(t)) =
∏

j,k∈[t]:j<k

∑

α,β∈Hℓ

EQ(αβ, z(j)z(k)) · χα,β (2.2)

where EQ(γ, z) =
∏

i∈[2ℓ](ziγi + (1− zi)(1− γi)). (2.3)

Note that for each z ∈ (Hℓ)t it holds that P (z) ∈ {0, 1}, and that P (z) = 1 if and only if z describes
a sequence of t distinct vertices that induces a clique in G = ([n], E). (This holds since, for distinct
v(1), ..., v(t) ∈ Hℓ, it holds that P (v(1), ..., v(t)) = 1 if and only if {v(j), v(k)} ∈ E for every j < k.)3

Note that P has individual degree O(t), and that it is straightforward to evaluate P in time
O(t2 · 22ℓ · ℓ) = Õ(t2 · n2). Also, for γ, z ∈ H2ℓ, it holds that EQ(γ, z) = 1 if γ = z and EQ(γ, z) = 0
otherwise. Hence, for z ∈ Htℓ, it holds that P (z) =

∏
j,k∈[t]:j<k χz(j),z(k).

The key observation is that the graph G is a no-instance if and only if for all z ∈ (Hℓ)t it
holds that P (z) = 0. Hence, we obtain an interactive proof system (for the set of no-instances) by
applying the Sum-Check protocol to the claim

∑
z∈(Hℓ)t P (z) = 0.

The complexity of the verifier’s strategy is dominated by the evaluation of P (as defined in
Eq. (2.2)), which reduces to

(
t
2

)
computations of sums having the form

∑

α,β∈Hℓ

EQ(αβ, r(j)r(k)) · χα,β (2.4)

where j < k ∈ [t] and r(1) · · · r(t) ∈ (Fℓ)t are determined in the execution of the Sum-Check
protocol. Writing Eq. (2.4) as

∑
(α,β)∈H2ℓ∩E EQ(αβ, r(j)r(k)), we can evaluate this sum in time

O(|E| · ℓ) = Õ(|E|+ n).
Turning our attention to the complexity of proving, recall that the prover strategy in the Sum-

Check protocol is dominated by the complexity of evaluating the polynomial P at O(t2 · ℓ) · |H|tℓ =
Õ(nt) points, where the first factor represents the degree of P (as defined in Eq. (2.2)) and the
second factor represents the number of terms in the sum

∑
z∈(Hℓ)t P (z). Hence, the prover’s

complexity is definitely bounded by Õ(nt · |E|). A closer inspection reveals that we can do better
(cf. [24, Sec. 3]); that is, the prover strategy can be implemented in Õ(nt)-time. Hence, we get

Proposition 2.1 (doubly-efficient interactive proof systems for t-no-CLIQUE): For every constant
t, the set t-no-CLIQUE has a doubly-efficient interactive proof system. Specifically, on input G =
([n], E), the verifier runs in Õ(|G|)-time and the prescribed prover runs in Õ(nt)-time. Furthermore,
the proof system uses logarithmically many rounds.

Indeed, the point of Proposition 2.1 is that is the simplicity of its proof; that is, the fact that it
is proved by merely applying the Sum-Check protocol to the claim

∑
z∈(Hℓ)t P (z) = 0, where P is

defined in Eq. (2.2).

3Also, if v(j) = v(k) for some j < k, then P (v(1), ..., v(t)) = 0, since χv(j),v(k) = 0.
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Related works. As stated upfront, the foregoing construction is reproduced from the work of
Goldreich and Rothblum [24]. This proof system is comparable to system presented by Thaler [46].
In addition, several recent works [12, 51, 9] constructed non-interactive proof systems for t-no-CLIQUE
and related problems. For a detailed discussion, the interested reader is referred to [24, Sec. 1.1].
We also mention that, as discussed in [24, Sec. 1.1], the foregoing proof system is not only simpler
than those of [27, 42] (which will be reviewed in Chapters 3 and 4, respectively), but also yields
better round complexity.

2.2 A generic construction for locally-characterizable sets

In this section we present simple constructions of proof systems for a natural sub-class of NC ∩SC,
which is believed not to be in Dtime(p) for any fixed polynomial p. Loosely speaking, this class
consists of all sets that can be locally-characterized by the conjunction of polynomially many local
conditions that can be expressed by Boolean formulae of polylogarithmic size (see definition in
Section 2.2.1). The following result will become precise once the definition of locally-characterizable
sets (i.e., Definition 2.3) is in place.

Theorem 2.2 (doubly-efficient interactive proof systems for locally-characterizable sets): Every
locally-characterizable set has a simple doubly-efficient interactive proof system. Specifically, on
input of length n, the verifier runs in Õ(n)-time and the strategy of the prescribed prover can be
implemented in Õ(nc+1)-time, where nc denotes the number of local conditions in the characteriza-
tion. Furthermore, the interactive proof system uses public coins, has logarithmic round-complexity,
and uses polylogarithmic communication.

We mention that that using different settings of parameters yields a general trade-off between the
computational complexity and the number of communication rounds (see Theorem 2.6). The class
of “locally-characterizable” sets contains two t-parametrized problems that are widely believed not
to be in, say, Dtime(nt/2):

t-no-CLIQUE: The set of n-vertex graphs that do not contain a clique of size t.

t-no-SUM: The set of n-long sequences of integers that contain no t elements that sum-up to zero.4

(Indeed, the aforementioned sets are the complements of the sets called t-CLIQUE and t-SUM, which
are popular candidates for “hardness in P” [50].) Recall that a direct construction of a proof
system for t-no-CLIQUE was presented in Section 2.1, with a corresponding prover strategy that can
be implemented in time Õ(nt). An analogous (but more cumbersome) construction for t-no-SUM
appears in [24, Sec. 4].

2.2.1 A natural class: locally-characterizable sets

Loosely speaking, a set is said to be locally-characterizable if membership in it can be expressed
by the conjunction of polynomially many local conditions such that the conditions as well as the
relevant locations can be computed by Boolean formulae of polylogarithmic size (i.e., the functions
φn and πn,j’s in Definition 2.3).

4Alternatively, we may consider sequences of positive integers and ask if they contain a t-subset that sums-up to
target integer, which is also given as part of the input.
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This definition is related but different from the definition of “local characterization” that is
often used in the property testing literature (see, Sudan’s survey [45]). Most importantly, on the
one hand, the latter definition does not specify the complexity of the “local characterization” (i.e.,
the functions φn and πn,j’s in Definition 2.3).5 On the other hand, typically, in the context of
property testing, the number of locations in each “local condition” is postulated to be a constant,
whereas in Definition 2.3 this number is polylogarithmic (see the polynomial p).

Definition 2.3 (locally-characterizable sets): A set S is locally-characterizable if there exist a con-
stant c, a polynomial p and a polynomial-time algorithm that on input n outputs poly(log n)-sized
formulae φn : [n]p(log n) × {0, 1}p(log n) → {0, 1} and πn,1, ..., πn,p(log n) : {0, 1}c log n → [n] such that,

for every x ∈ {0, 1}n, it holds that x ∈ S if and only if for all w ∈ {0, 1}c log n

Φx(w)
def
= φn(πn,1(w), ..., πn,p(log n)(w), xπn,1(w), ..., xπn,p(log n)(w)) (2.5)

equals 0.

(To simplify the rest of our exposition, we require that, in case of inputs in S the predicate φn

evaluates to 0 (rather than to 1). On the other hand, for sake of intuition, we preferred to feed the
predicate with the locations πn,1(w), ..., πn,p(log n)(w) rather that with the index of the condition
(denoted w).)6

Looking at Definition 2.3, note that each value of w ∈ {0, 1}c log n yields a local condition that
refers to polylogarithmically many locations in the input (i.e., the locations πn,1(w), ..., πn,p(log n)(w) ∈
[n]). This local condition is captured by φn, and in its general form it depends both on the selected
locations and on the value of the input bits at these locations. A simplified form, which suffices
in many cases, uses a local condition that only depends on the values of the input bits in these
locations (i.e., φn : [n]p(log n) × {0, 1}p(log n) → {0, 1} only depends on the p(log n)-bit long suffix).

The simplified form (in which φn : {0, 1}p(log n) → {0, 1}) suffices for capturing the specific
problems mentioned above. Specifically, for fixed t ∈ N, when representing n-vertex graphs by their
adjacency matrix, denoted x = (xr,c)r,c∈[n], the t-CLIQUE problem is captured by Φx(i1, ..., it) =

∧j<kxij ,ik ; that is, we use φn2 : {0, 1}t2 → {0, 1} and πn2,(j,k) : {0, 1}t log n → [n]× [n] (for j, k ∈ [t])
such that φn2(σ1,1, ..., σt,t) = ∧j<kσj,k and πn2,(j,k)(i1, ..., it) = (ij , ik). Likewise, considering n-long
sequences over [−m,m] (where m = poly(n)), with some abuse of notation, the t-SUM problem is
captured by Φx(i1, ..., it) = 1 if and only if

∑
j∈[t] xij = 0; that is, we use φn : [m]t → {0, 1} such that

φn(z1, ..., zt) = TruthValue(
∑

j∈[t] zj = 0) and πn,j : {0, 1}t log n → [n] such that πn,j(i1, ..., it) = ij
(for each j ∈ [t]).

Note that the complement of every locally-characterizable set has a doubly-efficient interactive
proof system. In this proof system, on input x ∈ {0, 1}n, letting ℓ′ = cℓ = c log n, the prover
finds an adequate w ∈ {0, 1}ℓ′ , sends it to the verifier, who retrieves the bits xπn,1(w), ..., xπn,p(ℓ)(w)

and evaluates φn on them. Indeed, in this NP-proof system, the prover runs in time 2ℓ′ · Õ(|x|) =
poly(|x|), whereas the verifier runs in poly(log |x|)-time (given direct access to the input). On the
other hand, the set itself (i.e., every locally-characterizable set) has a doubly-efficient interactive

5In addition, the notion used in property testing does not restrict the number of local conditions (i.e., the domain
of Φx), although such an upper bound can be assumed without loss of generality (cf. [20, Exer. 1.21]).

6Note that w can be extracted from the sequence of locations if we extend the latter with c dummy elements.
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proof systems (since computing the function
∑

w∈{0,1}ℓ′ Φx(w), where Φx is as in Eq. (2.5), is in

SC, and so the proof system of [42] can be used).7 Here we present a much simpler construction.

2.2.2 Proof of Theorem 2.2

Let S be a locally characterizable set, and c, p as well as φn, πn,j,k,Φx be as in Definition 2.3.
Letting ℓ = log n, we associate [n] with {0, 1}ℓ, and derive from each πn,j : {0, 1}cℓ → [n] Boolean
formulae πn,j,1, ..., πn,j,ℓ : {0, 1}cℓ → {0, 1} such that πn,j,k(w) is the kth bit of πn,j(w). We may
assume, without loss of generality, that the depth of each of the formulae (i.e., φn and the πn,j,k’s)
is logarithmic in their size (which is poly(ℓ)).8

Next, for a finite field F of size poly(n) > nc and H = {0, 1} ⊂ F , we construct arithmetic
formulae φ̂n : F (ℓ+1)·p(ℓ) → F and π̂n,j,k : Fcℓ → F such that φ̂n (resp., π̂n,j,k) agrees with φn on
Hℓ·p(ℓ)+p(ℓ) (resp., with πn,j,k on Hcℓ). These arithmetic formulae are constructed by replacing each
Boolean gate by the corresponding arithmetic gate, while preserving the topology of the formulae.
The crucial point is that these arithmetic formulae preserve the depth of the Boolean counterparts,
which equals O(log poly(ℓ)) (where ℓ = log n), and so the degrees of the functions that they compute
is upper-bounded by D = poly(log n) ≪ |F|. (Note that F is chosen so that the latter inequality
holds.) Now, letting π̂n,j : Fcℓ → Fℓ such that π̂n,j(z) = (π̂n,j,1(z), ..., π̂n,j,ℓ(z)), we consider the

function Φ̂x : Fcℓ → F (i.e., an extension of Φx) such that

Φ̂x(z)
def
= φ̂n(π̂n,1(z), ..., π̂n,p(ℓ)(z),X1, ...,Xp(ℓ)) (2.6)

where Xj =
∑

α∈{0,1}ℓ EQ(π̂n,j(z), α) · xα (2.7)

and, as in Eq. (2.3), EQ(y, α) =
∏

i∈[ℓ](yiαi+(1−yi)(1−αi)). That is, the value of Φ̂x(z) is obtained

by feeding to φ̂n : F (ℓ+1)·p(ℓ) → F the (p(ℓ) · ℓ + p(ℓ))-long sequence consisting of the p(ℓ) · ℓ-long
sequence (π̂n,1(z), ..., π̂n,p(log n)(z)) ∈ (Fℓ)p(ℓ) and the p(ℓ)-long sequence whose jth location contains
the field element

∑
α∈{0,1}ℓ EQ(π̂n,j(z), α) · xα.

Observe that x ∈ S if and only if the sum
∑

w∈{0,1}cℓ Φ̂x(w) equals 0, where we rely on F being

larger than 2cℓ. Hence, verifying the claim x ∈ S reduces to verifying
∑

w∈{0,1}cℓ Φ̂x(w) = 0, which
can be performed by invoking the Sum-Check protocol.

Note that, in this case, the Sum-Check protocol performs cℓ iterations (i.e., it is applied only to
the outer sum

∑
w∈{0,1}cℓ Φ̂x(w)), and the verifier evaluates the residual expression, which amounts

to evaluating the π̂n,j’s and φ̂n as well as computing poly(ℓ) sums of 2ℓ terms each (which corre-
spond to the internal sum

∑
α∈{0,1}ℓ EQ(π̂n,j(z), α) · xα). The prover’s computation is dominated

by computing a sum of 2cℓ terms, where each term requires a computation of the type conducted
by the verifier. Recalling that 2ℓ = n, it follows that the verifier runs in almost-linear-time (i.e.,
it runs in Õ(n)-time), whereas the prover runs in polynomial-time (i.e., it runs in Õ(nc+1)-time).
This completes the proof of Theorem 2.2.

Comment: Applied to the t-no-SUM problem, the foregoing generic construction yields a proof
system of complexity that is comparable to that of the tailored proof system presented in [24,

7Alternatively, if the algorithm guaranteed by Definition 2.3 uses linear space (i.e., O(log n) space), then computing
P

w∈{0,1}ℓ′ Φx(w) is in log-space uniform NC, and one can use the proof system of [27].
8Note that the transformation to this form can be performed in polynomial time, whereas the relevant formulae

are of poly(log n)-size.
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Sec. 4]. In case of t-no-CLIQUE, the generic construction yields a verifier that runs in time that
is almost linear in the size of the adjacency matrix, whereas the tailored proof system (presented
in Section 2.1) yields a verifier that runs in time that is almost linear in the number of edges.9

Furthermore, the prover’s complexity in this generic construction is n times slower than that of the
tailored proof system (as optimized in [24, Sec. 3]).

Remark 2.4 (a relaxation of Definition 2.3): Theorem 2.2 holds also when relaxing the notion of
locally-characterizable sets such that the poly(log n)-sized formulae are required to be generated in
Õ(n)-time, rather than in poly(log n)-time. Actually, the foregoing proof remains intact even if the
said formulae may depend on x itself, but we consider the class as defined in Definition 2.3 more
natural.

Remark 2.5 (counting the number of violated conditions): The foregoing interactive proof system
is applicable also to the task of verifying the number of violated conditions. The same applies also
to the problem-tailored proof system presented in Section 2.1. Note that the number of violated
conditions in t-no-CLIQUE is the number of t-cliques in the graph.

2.2.3 A round complexity versus computational complexity trade-off

By using a setH of arbitrary size (rather thanH ≡ {0, 1}), we obtain a general trade-off between the
computational complexity and the number of communication rounds in doubly-efficient interactive
proof system for locally-characterizable sets. Specifically, the computational complexity (for each
party) increases by a factor of Õ(|H|), whereas the number of rounds is decreased by a factor of
log |H|.

Theorem 2.6 (Theorem 2.2, generalized): Every locally-characterizable set has a simple doubly-
efficient interactive proof system. Specifically, on input of length n and using a parameter h ≤ n, we
get public-coin interactive proof systems of round-complexity O(logh n), verification time Õ(h · n),
and proving time Õ(h · nc+1).

In particular, setting h = nǫ for any constant ǫ > 0, yields a constant-round interactive proof
of verification time Õ(n1+ǫ). On the other hand, using h = log n maintains the computational
complexity bounds of Theorem 2.2 (i.e., Õ(n)-time verification and Õ(nc+1)-time prover strategy)
while using o(log n) rounds of communication.

Proof: Letting d = log h, we use H = [2d] ≡ {0, 1}d but maintain ℓ = log n. Fixing x ∈ {0, 1}n,
let Φ̂x : Fcℓ → F be the low degree polynomial derived in the proof of Theorem 2.2, and recall
that

∑
w∈{0,1}cℓ Φ̂x(w) = 0 if and only if x is in the (corresponding locally characterizable) set.

Wishing to replace the sum over {0, 1}cℓ by a sum over Hcℓ/d, we wish to map H to d-long binary
sequences (and extend this mapping to a mapping of the form F 7→ Fd). This is done by the
mapping ψ : H → {0, 1}d, or rather by its low degree extension ψ̂ : F → Fd, which is defined as
follows

ψ̂(z) =
∑

α∈H




∏

β∈H\{α}

β − z
β − α


 · ψ(α), (2.8)

9The improved complexity is due to the fact that, in the case of t-no-CLIQUE, where the graph G = ([n], E) is
represented by an n-by-n matrix (xj,k)j,k∈[n], the sum

P

α∈[n]×[n] EQ(bπn,j(z), α) · xα can be replaced by the sum
P

α∈E EQ(bπn,j(z), α) · xα.
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where ψ(α) ∈ {0, 1}d ⊂ Fd is a d-long sequence that represents the binary expansion of α (where α
is viewed as a d-bit long string). Indeed, ψ̂ is a d-long sequence of univariate polynomials (of degree
|H| − 1) over F , and ψ̂ maps elements of H to d-long sequences over {0, 1} ⊂ F . Next, extend the
definition of ψ̂ to (cℓ/d-long) sequences over F such that ψ̂(α1, ..., αcℓ/d) = (ψ̂(α1), ..., ψ̂(αcℓ/d)).

10

Now, define Φ̂′
x : Fcℓ/d → F such that Φ̂′

x(z) = Φ̂x(ψ̂(z)), and note that
∑

w∈Hcℓ/d Φ̂′
x(w) = 0 if

and only if x is in the set.
Invoking the Sum-Check protocol on the claim that the sum

∑
w∈Hcℓ/d Φ̂′

x(w) equals 0, yields
a protocol that performs cℓ/d iterations. The computational complexities of the corresponding
strategies increase by a factor of Õ(|H|), due to the composition with ψ̂, since this composition
increases the degree of some polynomials (by a factor of |H|) as well as the complexity of conducting
certain computations. Specifically, the verifier evaluates the residual expression (i.e., Φ̂′

x(r) for some
r ∈ Fcℓ/d), which amounts to evaluating the π̂n,j’s and φ̂n as well as computing poly(ℓ) sums of

|H|ℓ/d = 2ℓ terms each (i.e., terms of the form EQ(π̂n,j(ψ̂(r)), α)·xα for some j and α ∈ {0, 1}ℓ ≡ [n]),

but here evaluating these terms also requires evaluating ψ̂ (at the point r). (As before, the prover’s
computation is dominated by computing a sum of |H|cℓ/d = 2cℓ terms, where each term requires a
computation of the type conducted by the verifier.)

2.2.4 Extension to a wider class

As a motivation towards the following extension, we consider the problem of finding a dominating
set of constant size t. This problem does not seem to be locally characterizable in the sense of
Definition 2.3 (cf. [41]), but it definitely resides in the following class.

Definition 2.7 (locally ∀∃-characterizable sets): A set S is locally ∀∃-characterizable if there
exist constants c, c′, a polynomial p and an almost-linear time algorithm that on input 1n out-
puts poly(log n)-sized formulae φn : [n]p(log n) × {0, 1}p(log n) → {0, 1} and πn,1, ..., πn,p(log n) :

{0, 1}(c+c′) log n → [n] such that, for every x ∈ {0, 1}n, it holds that x ∈ S if and only if for all
w ∈ {0, 1}c log n there exists w′ ∈ {0, 1}c′ log n such that

Φx(w,w′)
def
= φn(πn,1(w,w

′), ..., πn,p(log n)(w,w
′), xπn,1(w,w′), ..., xπn,p(log n)(w,w′)) (2.9)

equals 0.

Like in Definition 2.3, sometimes one may use a simplified form in which φn only depends on its
p(log n)-bit long suffix. This simplification suffices for the characterizing the set of graphs not
having a dominating set of size t = O(1). Specifically, when representing n-vertex graphs by
their adjacency matrix x (augmented with 1’s on the diagonal), the t-dominating set problem is
captured by Φx(i1, ..., it, it+1) = ∨j∈[t]xij ,it+1; that is, x has no t-dominating set if and only if for
every w = (i1, ..., it) ∈ [n]t there exists w′ = it+1 ∈ [n] such that Φx(w,w

′) = 0 (i.e., we use
φn2 : {0, 1}t → {0, 1} and πn2,j : {0, 1}(t+1)·log n → [n] × [n] such that φn2(σ1, ..., σt) = ∨jσj and
πn2,j(i1, ..., it, it+1) = (ij , it+1) for j ∈ [t]).

Every locally ∀∃-characterizable set is in SC (resp., in NC) and so the existence of a doubly-
efficient interactive proof system for it (and its complement) follows by [42] (resp., by [27] if the
algorithm guaranteed by Definition 2.7 uses log-space). A direct construction that establishes the
following result is provided in [24, Sec. 5.4].

10Indeed, this extended bψ maps Fcℓ/d to (Fd)cℓ/d = Fcℓ.
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Theorem 2.8 (Theorem 2.2, extended): Every locally ∀∃-characterizable set has a simple doubly-
efficient interactive proof system. Specifically, on input of length n, the verifier runs in Õ(n)-time
and the strategy of the prescribed prover can be implemented in Õ(nc+c′+1)-time, where nc+c′ denotes
the number of local conditions in the characterization. Furthermore, the interactive proof system
uses public coins and has logarithmic round complexity.

Note that the complement of every locally ∀∃-characterizable set also has a doubly-efficient inter-
active proof system. In this proof system, on input x ∈ {0, 1}n, letting ℓ = log n, the prover finds
an adequate w ∈ {0, 1}cℓ, sends it to the verifier, and the parties engage in a doubly-efficient inter-

active proof of the residual claim that for every w′ ∈ {0, 1}c′ℓ it holds that Φx,w(w′)
def
= Φx(w,w′)

evaluates to 0. (Such a proof system is provided by Theorem 2.2.)

Remark 2.9 (beyond ∀∃-characterization): The notion of a locally ∀∃-characterizable set can be
further extended to allow for a constant number of (alternating) quantifiers; for example, a ∀∃∀-
characterization corresponds to the case that for all w ∈ {0, 1}c log n there exists w′ ∈ {0, 1}c′ log n

such that for all w′′ ∈ {0, 1}c′′ log n it holds that Φx(w,w′, w′′) = 0. The proof of Theorem 2.8
extends naturally to that case (cf. the proof of Toda’s Theorem [47]).

Lastly, we note the correspondence between the foregoing local characterizations and the levels of
a known hierarchy of parametrized complexity classes [16]. In particular, Definition 2.3 corresponds
to a class denoted W[1], and Definition 2.7 corresponds to W[2]. (In terms of the W-hierarchy, our
definitions are restricted in requiring that the “defining circuits” be more uniform.)

2.3 The second construction for t-no-CLIQUE

In this section we present an alternative interactive proof system for the number of t-cliques in a
graph, with a focus on the case t = O(1). The interactive proof proceeds in t iterations such that
in the ith iteration verifying the number of (t− i+ 1)-cliques in a graph is reduced to verifying the
number of (t− i)-cliques in a related graph. The reduction proceeds in two conceptual steps.

First, we reduce verifying the number of t′-cliques in G′ = ([n′], E′) to verifying, for each vertex
j ∈ [n′], the number of t′-cliques (in G′) that contain the vertex j, which equals the number of
(t′ − 1)-cliques in the graph induced by the neighbors of j. Next, we let the parties reduce the
latter n′ claims to a single claim regarding the number of (t′ − 1)-cliques in a new graph, which
has the same number of vertices as G′, where the reduction is via a single-round of (randomized)
interaction. That is, while the first step employs downwards reducibility, where the decreased
parameter is the size of the counted cliques, the second step employs batch verification (cf., [42] or
Chapter 4), where the verification of n′ claims is reduced to a verification of a single claim of the
same type.

Essentially, the foregoing batch verification is performed by considering an error correcting
encoding of the n′ graphs by a sequence of poly(n′) graphs, each having n′ vertices. The prover
sends a succinct description of the number of (t′ − 1)-cliques in these poly(n′) graphs, and the
verifier verifies that the sum of the values associated with the n′ first graphs equals the claim
regarding the number of t-cliques in G′. If so, then the verifier select one of the poly(n′) graphs
at random for the next iteration (in which it verifiers the number of (t′ − 1)-cliques in the selected
graph). Indeed, the crucial point is finding a suitable encoding scheme, and this will be presented
in the sequel.

18



We stress that the foregoing procedure does not use the sum-check protocol, and that each
iteration starts and ends with an intuitive combinatorial claim to be verified. (Algebra “raises its
ugly head” only in the encoding scheme, which utilizes a so-called multiplication code [36], and in
the fact that cliques are indicated by products of all corresponding “edge indicators”.) A concrete
advantage of the current interactive proof system over the one presented in Section 2.3 is that the
prover’s complexity is proportional to the complexity of counting t-cliques (which is lower than
n2.373·⌈t/3⌉) rather than being proportional to nt. The foregoing procedure works also for varying
t = t(n), yielding an alternative interactive proof system for #P.

Theorem 2.10 (interactive proof systems for counting cliques of given size): For an efficiently
computable function t : N → N, let St denote the set of pairs (G,N) such that the graph G =
([n], E) has N distinct t(n)-cliques. Then, St has a t-round (public coin) interactive proof system
in which the verifier’s running time is Õ(t(n)2 · n2), and the prover’s running time is Õ(t(n)2 ·
n1+ωmm·⌈(t(n)−1)/3⌉), where ωmm is the matrix multiplication exponent. Furthermore, the prover can be
implemented in poly(t(n))·Õ(n2)-time, when given access to an oracle for counting (t(n)−1)-cliques
in poly(t(n)) · Õ(n)-vertex graphs.

Towards proving Theorem 2.10, it is useful to consider a generalization of the t-clique counting
problem to vertex-weighted graphs, where the weight of a set (of vertices) S ⊆ [n] is defined as the
product of the weights of its elements.11 That is, for a (simple) graph G = ([n], E) and a sequence of
vertex weights, w = (w1, ..., wn) ∈ (N∪{0})n, we let CWCG

t (w) (standing for count weighted cliques)
denote the sum of the weights of all t-cliques in G; that is,

CWCG
t (w)

def
=

∑

S∈([n]
t ):CL(GS)

∏

j∈S

wj (2.10)

where GS is the subgraph of G induced by S and CL(G′) holds if G′ is a clique. Indeed, CWCG
t (1n)

equals the number of t-cliques in G. In general, as shown in Section 2.3.2, CWCG
t (w) equals the

number of t-cliques in a graph G′ that is obtained by a blow-up of G in which the ith vertex is
replaced by an independent set of size wi (and the edge {i, j} is replaced by a complete bipartite
graph between the ith and jth sets).

2.3.1 A direct interactive proof for counting weighted cliques

Towards presenting an interactive proof system for the value of CWCG
t (1n), we first observe that (for

every w ∈ (N ∪ {0})n) it holds that

t · CWCG
t (w) =

∑

i∈[n]

wi · CWCG
t−1(w

(i)) (2.11)

where w
(i)
j = wj if {i, j} ∈ E, and w

(i)
j = 0 otherwise. (2.12)

(This is the case since each pair (S, i) such that S is a t-subset of [n] and i ∈ S contributes
equally to each side of Eq. (2.11), where the contribution equals wi ·

∏
j∈S\{i} wj if GS is a clique

11Our definition stands in contrast to the standard practice of defining the weight of a set as the sum of its elements
(cf. [2]). However, such a definition was used before (see, e.g., the definition of a weighted cycle cover in [49]).
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and equals 0 otherwise. In particular, note that if all vertices in S \ {i} are neighbors of i, then∏
j∈S\{i}w

(i)
j =

∏
j∈S\{i}wj and otherwise

∏
j∈S\{i} w

(i)
j = 0.)

Indeed, Eq. (2.11) reduced the evaluation of CWCG
t to n evaluations of CWCG

t−1; equivalently, it
reduces the verification of the value of CWCG

t at one point to the verification of the value of CWCG
t−1 at

n points. Wishing to reduce these n value-verifications to a single one, we seek an error correcting
code by which these n values can be encoded by a sequence of Ω(n) values such that verifying
one of the values in the sequence suffice. As usual, the code of choice is the Reed-Solomon code
(i.e., univariate polynomials of degree n− 1), which calls for embedding the values in a finite field.
Recalling that we are actually interested in the value of CWCG

t (1n) ≤ t! ·
(n

t

)
< nt, we embed all

values in a finite field F = GF(p), for a prime p > nt, and reduce all wj’s modulo p. Now, we
consider the following n polynomials (fj : F → F)j∈[n]:

fj(z)
def
=

∑

i∈[n]

EQi(z) · w(i)
j (2.13)

where EQi :F → F is a (degree n − 1) polynomial such that EQi(i) = 1 and EQi(k) = 0 for every

k ∈ [n] \ {i} (i.e., EQi(z) =
∏

j∈[n]\{i}(z − j)/(i − j)). Note that fj(i) = w
(i)
j for every i ∈ [n],

and that each fj can be computed in O(n) field operations when given w (by using Eq. (2.12)

and EQi(z) =
∏

j∈[n]\{i}(z − j)/(i − j)).12 Letting CWC
G,p
t (w)

def
= CWCG

t (w) mod p, this leads to

the following interactive reduction of the verification of the value of CWCG,p
t at one point to the

verification of the value of CWCG,p
t−1 at one (other) point.

Construction 2.11 (a generic iteration of the interactive proof system for counting cliques): The
iteration starts with a claim of the form CWC

G,p
t (w) = v, where w ∈ Fn and v ∈ F are determined

before (by the previous iteration or by the main protocol).13

1. The prover computes the (t− 1) · (n− 1) degree polynomial Pt−1 : F → F , where

Pt−1(z)
def
=

∑

S∈( [n]
t−1):CL(GS)

∏

j∈S

fj(z), (2.14)

where the arithmetic is over F = GF(p), and sends Pt−1 to the verifier.

Note that Pt−1(z) can be computed by interpolation, using the values of Pt−1 at less than tn
points, and that (as shown in the proof of Proposition 2.12) for every k ∈ F it holds that

Pt−1(k) = CWC
G,p
t−1(w

(k)), where w
(k)
j = fj(k) for every j ∈ [n].

2. Upon receiving a polynomial P̃ of degree (t − 1) · (n − 1), the verifier checks whether t · v ≡∑
i∈[n]wi · P̃ (i) (mod p), and rejects if equality does not hold. If equality holds, the verifier

selects uniformly r ∈ F , and sends it to the prover.

12Note that, for any k ∈ [n] it holds that (EQ1(k), ..., EQn(k)) = 0k−110n−k, whereas for k ∈ F \ [n] it holds

that EQi(k) =
Q

j∈[n](k−j)

(k−i)·
Q

j∈[n]\{i}(i−j)
. Hence, computing (EQ1(k), ..., EQn(k)) reduces to computing

Q

j∈[n](k − j) and

computing all
Q

k∈[m] k for m = 1, ..., n− 1, which in turn means that (EQ1(k), ..., EQn(k)) can be computed in O(n)
field operations.

13Indeed, as hinted in the title of this construction, it will be applied iteratively by the main interactive proof
systems, which contains little beyond these iterations (see the proof of Theorem 2.13).
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The iteration ends with the claim that CWCG,p
t−1(w

′) = v′, where v′ = P̃ (r) and w′
j = fj(r) for every

j ∈ [n].

Recall that both parties can compute each of the fj’s using O(n) field operations, which implies

that the verifier strategy can be implemented in Õ(t ·n2)-time (assuming the field has size O(nt)).14

In addition, the prover needs to construct the polynomial Pt−1, and a straightforward way of doing
so can be implemented using tn · (O(n2) +

(
n

t−1

)
) = O(nt) field operations. We shall later see that

the complexity can be improved to O(t · n1+ωmm⌈(t−1)/3⌉), where ωmm is the matrix multiplication
exponent, by using the ideas that underlie the best algorithm known for deciding t-Clique (which
also suffices for counting t-cliques). But before getting to this improvement, we analyze the effect
of Construction 2.11.

Proposition 2.12 (analysis of Construction 2.11): Let w, v,w′ and v′ be as in Construction 2.11.

1. If CWCG,p
t (w) = v and both parties follow their instructions, then CWC

G,p
t−1(w

′) = v′ holds.

2. If CWCG,p
t (w) 6= v and the verifier follows its instructions, then either the verifier rejects or

CWC
G,p
t−1(w

′) = v′ holds with probability at most tn/|F|.

Proof: Using Eq. (2.14), Eq. (2.13), and Eq. (2.10), we get for every i ∈ [n]

Pt−1(i) =
∑

S∈( [n]
t−1):CL(GS)

∏

j∈S

fj(i)

=
∑

S∈( [n]
t−1):CL(GS)

∏

j∈S

w
(i)
j

= CWC
G,p
t−1(w

(i)),

and so t ·CWCG
t (w) ≡∑

i∈[n]wi ·Pt−1(i) (mod p). More generally, by the same argument, for every

k ∈ F , it holds that Pt−1(k) = CWC
G,p
t−1(w

(k)), where w
(k)
j = fj(k) for every j ∈ [n].

Under the hypothesis of Item 1, v = CWC
G,p
t (w) and the polynomial P̃ received by the verifier

equals Pt−1, which implies that the verifier does not reject (since t · v =
∑

i∈[n]wi · P̃ (i) over

F = GF(p)). Furthermore, in this case v′ = P̃ (r) equals Pt−1(r) = CWC
G,p
t−1(w

′), where w′
j = fj(r)

for every j ∈ [n].
Under the hypothesis of Item 2, the polynomial Pt−1 does not satisfy the equation t · v =∑

i∈[n]wi · Pt−1(i) over F . If the prover sets P̃ = Pt−1, then the verifier rejects, and otherwise P̃
and Pt−1 may agree on at most (t − 1) · (n − 1) points. In the latter case, unless r is one of the
agreement points, it follows that CWCG,p

t−1(w
′) = Pt−1(r) 6= P̃ (r), where w′

j = fj(r) for every j ∈ [n].

The interactive proof system. Iteratively invoking Construction 2.11 yields an interactive
proof system for the claim CWC

G,p
t (w) = v, where w ∈ Fn and v ∈ F . In the ith iteration we start

with a claim of the form CWC
G,p
t−i+1(w

(i−1)) = v(i−1), and end with a claim of the form CWC
G,p
t−i (w

(i)) =

14Note that eP can be evaluated using O(tn) field operations.
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v(i). Hence, after t− 2 iterations, we reach a claim of the form CWC
G,p
2 (w(t−2)) = v(t−2), which the

verifier can verify by itself. To apply this procedure to the problem of counting t-cliques in an
n-vertex graph, we initiate it by selecting a field of prime cardinality greater than nt, and setting
w(0) = (1, ..., 1) ≡ 1n. Hence, we get

Theorem 2.13 (interactive proof systems for counting cliques of given size): For an efficiently
computable function t : N→ N, let St denote the set of pairs (G,N) such that the graph G = ([n], E)
has N distinct t(n)-cliques. Then, St has a t-round (public coin) interactive proof system in which
the verifier’s running time is Õ(t(n)2 ·n2), and the prover’s running time is dominated by O(t(n)2 ·n)

calls to the oracle CWC
G,p
t(n)−1, where p is a prime number in [nt(n), 2nt(n)], and CWC

G,p
t answers the

query (i, w) ∈ [t]×GF(p)n with CWC
G,p
i (w).

Indeed, this suggests an alternative construction of interactive proof systems for sets in coNP . The
fact that this construction is different from the celebrated construction of [35] is manifested by the
(reduced) running time of the prover. Specifically, as shown in Section 2.3.2, the computation of
CWC

G,p
t is O(t2|w|)-time reducible to counting the number of t-cliques in Õ(t2n)-vertex graphs, which

in turn has complexity O(nωmm⌈t/3⌉), where ωmm is the matrix multiplication exponent (see [39]).

Proof: On input G = ([n], E) and N (which is supposed to equal the number of t(n)-cliques in
G), the parties pick a finite field F of prime cardinality greater than nt(n), and initialize w = 1n

and v = N . (This prime can be selected at random in [nt(n), 2nt(n)] by either parties.) Next,
they iteratively invoke Construction 2.11 for t(n)− 2 times (with decreasing clique-size parameter
(starting at size t(n) and ending at size 3)). In case the verifier did not reject (in any iteration),
it is left with a claim of the form CWCG

2 (w) = v, which it can verify by itself in O(n2) time (since
CWCG

2 (w) equals
∑

{j,k}∈E wj · wk). For sake of clarity, we spell out the protocol.

1. On input G = ([n], E) and N ≤
( n
t(n)

)
, the verifier selects uniformly a prime number p in

[nt(n), 2nt(n)], and sends it to the prover. Both parties set F = GF(p), and initiate w(0) ← 1n

and v(0) ← N .

2. For i = 1, ..., t(n) − 2, the parties invoke Construction 2.11, while setting t ← t(n) − i + 1,
w ← w(i−1) and v ← v(i−1). Once Construction 2.11 terminates, they set w(i) ← w′ and
v(i) ← v′. (In all invocations, F is as set in Step 1.)

3. The verifier checks whether CWCG
2 (w(t(n)−2)) = v(t(n)−2) by direct computation.

All claims of the theorem follow quite immediately. In particular, in the ith iteration, the verifier
performs O((t(n)− i) · n2) field operations, whereas the prover’s computation is dominated by less
than t(n) · n invocations of the oracle CWC

G,p
t(n)−i.

Remark 2.14 (implementing CWCt′−1 using CWCt′): We comment that, for any G = ([n], E), the

oracle CWCG
t′−1 (resp., CWCG,p

t′−1) can be implemented using two oracle calls to CWCG′

t′ (resp., CWCG′,p
t′ ),

where G′ = ([n + 1], E′) such that E′ = E ∪ {{j, n + 1} : j ∈ [n]}. Specifically, CWCG
t′−1(w) =

CWCG′

t′ (w1) − CWCG′

t′ (w0), since (t′ − 1)-cliques in G correspond to t′-cliques in G′ that contain the
auxiliary vertex n+ 1.
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Hence, CWC
G
t is O(2tn)-time reducible to CWCG′

t , where G′ has t more vertices than G. Specifically,
CWCG

t−i(w) is a linear combination (with coefficients in {±1}) of the 2i values (CWCG′

t (wα0t−i))α∈{0,1}i .

Observing that f(β)
def
= CWCG

t (wβ) depends only on the Hamming weight of β ∈ {0, 1}t, we can
write CWCG

t−i(w) as a linear combination of the i + 1 values (CWCG
t (w0j1i−j0t−i))j∈[[i]]. Hence, we

obtain an O(tn)-time reduction of CWC
G
t to CWCG′

t . A alternative (O(tn)-time) reduction is presented
next.

Remark 2.15 (implementing CWCt−i using CWCt): For any G = ([n], E), the oracle CWCG
t−i (resp.,

CWC
G,p
t−i) can be implemented using one oracle call to CWCG(i)

t (resp., CWCG(i),p
t ), where G(i) consists

of t− i independent sets of size n that are connected by a double-cover of G, and augmented by an
i-clique that is connected to all these (t− i) ·n vertices.15 That is, G(i) = ([(t− i)n+ i], E′ ∪A) such
that E′ = {{(a − 1)n + j, (b − 1)n + k} : {j, k} ∈ E& a 6= b ∈ [t− i]} and A = {{j, (t − i)n + k} :

j ∈ [(t− i)n] & k ∈ [i]}. Specifically, (t− i)! · CWCG
t−i(w) = CWCG(i)

t (wt−i1i). Seeking to use the same

number of vertices in all graphs G(i), we may augment G(i) with i · n− i isolated vertices.

Discussion: The foregoing proof system for #P versus the standard one

The standard (sum-check based) interactive proof system for #SAT starts with a full arithmetization
of the Boolean problem [35], which yields an arithmetic problem that has no clear intuitive meaning.
This is done by writing the CNF formula as an arithmetic formula over GF(2), and then considering
it as an Arithmetic formula over a larger field. Alternatively, given a Boolean formula over n
variables, viewed as a function from {0, 1}n to {0, 1}, we write the low-degree extension of this
function.

In contrast, the foregoing interactive proof system for counting the number of cliques (in a
graph) proceeds in iteration such that in each iteration the clique counting problem is reduced to
itself. Hence, the claim made at the beginning (and the end) of each iteration has a clear intuitive
meaning.16 (As noted upfront and elaborated in Section 2.3.2, the sum of weighted t-cliques in a
graph G equals the number of t-cliques in a corresponding graph obtained by a suitable blow-up
of G.) Furthermore, each iteration consists of a natural downwards reduction, which decreases
the size parameter by one unit, and a batch verification that reduces n claims to a single one.
Both reductions have an intuitive appeal, although the batch verification relies on a suitable error
correcting code, which is a “multiplication code” in a sense akin to the sense used in Meir’s work [36].
To simplify the exposition, we use the Reed-Solomon code, but any code supporting a sufficient
number of multiplications will do.

The difference between the foregoing construction and the standard one may be articulated
using Meir’s observation [36] that the standard construction uses the fact that Reed-Muller codes
are tensor codes (and that one can use arbitrary tensor (of multiplication) codes). Specifically, the
standard construction uses a codeword that encodes the 2n values of the Boolean formula over all
assignments to the n variables. In contrast, the foregoing construction does not use tensor codes,
and in each iteration we encode n values that correspond to n instances of the problem. (Indeed,
like in the standard interactive proof systems for coNP , we actually refer to the counting problem.)

15The double-cover of G = ([n], E) is a bipartite graph B with n vertices on each side such that 〈1, u〉 and 〈2, v〉
are connected in B if and only if {u, v} ∈ E.

16The same holds for the interactive proof system for the Permanent presented in [35] in which the permanent of
an n-by-n matrix is first expressed as the sum of the permanents of n related (n− 1)-by-(n− 1) matrices, and then
batch verification is employed.
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2.3.2 Reducing counting vertex-weighted cliques to the unweighted case

Recall that the prover strategy underlying the interactive proof system presented in the proof of
Theorem 2.13 can be implemented in O(t(n)2n2) time when given oracle access to CWC

G,p
t , where p

is a prime in [nt(n), 2nt(n)]. In fact, the prover uses O(t(n) · n) calls to each of oracles CWC
G,p
i for

i = 2, ..., t(n)−1. We first observe that each such oracle can be implemented by using O(t(n)2 log n)
oracle calls to a corresponding oracle that is defined for weights that reside in [O(t(n)2 log n)]. Next,
we show that each of these queries can be implemented by counting cliques is a simple Õ(t(n)2n)-
vertex graph (with no weights). These two reductions are summarized in the following result.

Proposition 2.16 (reducing CWCG
t to counting t-cliques in graphs): For a graph G = ([n], E) and

a prime p ∈ [nt, 2nt], let CWCG,p
t (w)

def
= CWCG

t (w) mod p, where CWCG
t be as in Eq. (2.10). Then, the

computation of CWCG,p
t (w) can be reduced in Õ(t2|w|)-time to computing the number of t-cliques in

an unweighted graph having Õ(t2n) vertices. Furthermore, the reduction uses O(t2 log n) queries.

Proof: We may assume, without loss of generality, that w ∈ [p]n, since otherwise we reduce each
coordinate of w modulo p. Observe that the value of CWCG

t (w) is a non-negative integer that is
smaller than t!

(
n
t

)
·pt < (np)t < n2t2 . For m = O(t2 log n), it holds that the product of all primes in

[m] is larger than n2t2 , and so (using the Chinese Remainder Theorem) we may compute CWCG
t (w)

by computing CWCG
t (w) modulo each of these primes. Hence, for each prime pi in [m], we first reduce

the weights modulo pi, obtaining w
(i)
j = wj mod pi for each j ∈ [n], and then compute CWCG,pi

t (w(i)),

which equals CWC
G,pi
t (w). That is, CWCG

t (w) is computed using the Chinese Remainder Theorem

based on the values of CWCG,pi
t (w) for each prime pi ∈ [m].

Next, we efficiently reduce the computation of CWC
G,p′

t (w′), where p′ is a prime in [m] and
w′ ∈ [p′]n, to the standard problem of counting t-cliques. Actually, we reduce the computation of
CWCG

t (w′) to counting the number of t-cliques in a related graph G′. The reduction just maps the
graph G = ([n], E) with weights w′ = (w′

1, ..., w
′
n) ∈ [m]n to the graph G′ = (V ′, E′) in which each

vertex j of G is replaced by an independent set of size w′
j, and edges are replaced by complete

bipartite graphs between the corresponding independent sets; that is

V ′ =
⋃

j∈[n]

Vj where the Vj’s are disjoint and |Vj | = w′
j (2.15)

E′ =
⋃

{j,k}∈E

{{u, v} : u ∈ Vj & v ∈ Vk}. (2.16)

Indeed, the value of CWCG
t (w′) equals the number of t-cliques in G′.

Combining the two reductions, we obtain a Õ(t2|w|)-time reduction of computing CWC
G,p
t (w),

where p = O(nt), to counting t-cliques in O(t2n log n)-vertex graphs. Indeed, the reduction makes
O(t2 log n) calls, where in the ith call we obtain the number of t-cliques in the graph G(i) in which

vertex j of G is replaced by an independent set of size w
(i)
j ∈ [pi] such that w

(i)
j ≡ wj (mod pi).

Proof of Theorem 2.10: Combining Theorem 2.13 with Proposition 2.16 yields Theorem 2.10.
Specifically, the proof system asserted in Theorem 2.13 is almost as asserted in Theorem 2.10, except
that the prover strategy in the former system relies on O(t(n)2 · n) calls to the oracle CWC

G,p
t(n)−1,
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where p is a prime number in [nt(n), 2nt(n)], and CWC
G,p
t answers the query (i, w) ∈ [t] × GF(p)n

with CWC
G,p
i (w). Proposition 2.16 implies that each of these O(t(n)2 · n) queries can be answered

by making O(t(n)2 log n) queries to an oracle that on input a Õ(t(n)2 · n)-vertex graph G′ and
an integer i ∈ [t(n) − 1] returns the number of i-cliques in G′. Lastly, using Remark 2.14 (and
the discussion following it), we can implement each of these queries by t(n) queries to an oracle
that returns the number of (t(n) − 1)-cliques in Õ(t(n)2 · n)-vertex graphs. Alternatively, using
Remark 2.15, we can implement each of the i-clique queries by a single query to an oracle that
returns the number of (t(n)− 1)-cliques in Õ(t(n)3 · n)-vertex graphs.
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Chapter 3

On the doubly-efficient interactive
proof systems of GKR

In this chapter, we present a (somewhat simpler) variant of the doubly-efficient interactive proof
systems of Goldwasser, Kalai, and Rothblum [27]. Recall that, as already stated as Theorem 1.1,
these proof systems apply to log-space uniform sets in NC; more generally, they apply to sets that
are recognizable by log-space uniform circuits of bounded depth, where the number of rounds in
the proof system is linearly related to the depth of the circuit.

Our simplification is in the utilization of the log-space uniformity condition. In the original
work, the hypothesis that the circuits are constructable in log-space was used in an auxiliary proof
system through which the prover established the correctness of selected parts of the encoding of
the relevant circuit. In contrast, we avoid this auxiliary proof system, and apply the main proof
system to a highly regular universal circuit that constructs and evaluates the relevant log-space
uniform circuit.

3.1 Overview

We provide an (alternative) exposition of the result of Goldwasser, Kalai, and Rothblum [27], which
asserts the following –

Theorem 3.1 (doubly-efficient interactive proof systems for log-space uniformNC): Let d : N→ N

and A be an algorithm of logarithmic space complexity that on input 1n outputs a Boolean circuit
Cn : {0, 1}n → {0, 1} of bounded fan-in and depth d(n). Then, the set S = {x : C|x|(x)=1} has an
interactive proof system with poly(log n) · d(n) rounds in which the prescribed prover strategy runs
in polynomial-time while the verifier runs in Õ(n + d(n))-time. Furthermore, the proof system is
of the public-coin type and the total communication is poly(log n) · d(n).

(We note that the number of rounds is actually O(log n) · d(n), but our simplified proof only yield
a bound of O(log n)2 · d(n).)1

The core of the proof system asserted in Theorem 3.1 is an iterative process in which a claim
about the values of the gates that are at distance i− 1 from the output gate is reduced to a claim

1The first (resp., second) expression omits an additive term of O(log n)2 (resp., O(log n)2), which is immaterial in
the typical case where d ≥ log n.
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about the values of the gates at distance i (i.e., the gates at layer i). We stress that each of these
claims refers to the values of the polynomially many gates at a specific layer of the circuit C|x|

during the computation on input x, but these poly(|x|) values are not communicated explicitly
but rather only referred to. Nevertheless, in d(|x|) iterations, the claim regarding the value of the
output gate (i.e., the value C|x|(x)) is reduced to a claim regarding the values of the bits of the
input x, whereas the latter claim (which refers to x itself) can be verified in almost linear time.

Each of the aforementioned claims regarding the values of the gates at layer i, where i ∈
{0, 1, ..., d(|x|)}, is actually a claim about the value of a specified location in the corresponding
encoding of the (string that describes all the) gate-values at layer i. Specifically, the encoding used
is the low degree extension of the said string (viewed as a function), and the claims are claims
about the evaluations of these polynomials at specific points.

The different codewords (or polynomials) are related via the structure of the circuit C|x|, and so
(as usual) this structure is represented by a (multi-variate) function that describes the adjacency
relation (among the gates) of the circuit. We consider a low degree polynomial that extends this
function, and the problem is allowing the verifier to evaluate this polynomial (which is defined over
a poly(|x|)-sized domain) in almost-linear (in |x|) time. Here is where the uniformity condition
comes into play.

Goldwasser, Kalai, and Rothblum used the uniformity condition in order to construct an in-
teractive proof system by which the evaluation of this low degree polynomial is outsourced to the
prover (who proves the validity of the provided answer) [27]. We present an alternative approach:
We consider a “universal” circuit that, on input x ∈ {0, 1}n, first constructs the log-space uniform
circuit Cn, and next emulates the computation of Cn(x). We apply the aforementioned interactive
process to this universal circuit rather than to Cn, with the benefit being that this universal circuit
is much more uniform than Cn. Consequently, a low degree polynomial that extends the adjacency
relation of that (universal) circuit can be evaluated in poly(log n)-time. We stress that the universal
circuit preserves the complexities of Cn up to our level of interest; that is, the universal circuit has
depth poly(logn) · d(n) and size poly(n).

Organization. The main module of the interactive proof system asserted in Theorem 3.1 is
presented in Section 3.2, while putting aside the problem of evaluating the low degree polynomial
that extends the (function that represents the) adjacency relation of the circuit. Coping with this
computational problem is the contents of Section 3.3. Additional details regarding Sections 3.2
and 3.3 are presented in Section 3.4 (see Sections 3.4.1 and 3.4.2, resp.).

3.2 The main module

For simplicity (and w.l.o.g.), we assume that Cn has fan-in two and uses only NAND-gates (i.e.,
NAND(a, b) = ¬(a∧ b)). Viewing this gate as operating in a finite field that contains {0, 1}, we have
NAND(a, b) = 1− (a · b) for a, b ∈ {0, 1}.

By augmenting the circuit with gates that are fed by no gate (and feed no gate), we can present
the circuit as having d(n)+ 1 layers of gates such that each layer has exactly k(n) = poly(n) gates,
where (by convention) gates that are fed nothing always evaluate to 0. As usual, the gates at layer
i are only fed by gates at layer i+1, and the leaves (at layer d(n)) are input-variables or constants.
Furthermore, we may assume that, for j ∈ [n], the jth leaf is fed by the jth input-variable, and all
other leaves are fed by the constant 0. (The output is produced at the first gate of layer zero.)
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The high level protocol. On input x ∈ {0, 1}n, the prescribed prover computes the values of
all layers. Letting d = d(n) and k = k(n), we denote the values at the ith layer by αi ∈ {0, 1}k ;
in particular, αd = x0k−n and α0 = Cn(x)0k−1. For a sufficiently large finite field, denoted F , let
H = {0, 1} ⊂ F , and m = log k.2 Viewing each αi as a function from Hm ≡ [k] to {0, 1}, the
prover encodes αi by a low degree polynomial α̂i : Fm → F that extends it (i.e., α̂i(σ) = αi(σ) for
every σ ∈ Hm); that is,

α̂i(z1, ..., zm) =
∑

σ1,...,σm∈H

EQ(z1 · · · zm, σ1 · · · σm) · αi(σ1, ..., σm), (3.1)

where EQ is a low degree polynomial that extends the function that tests equality over Hm (e.g.,
EQ(z1 · · · zm, σ1 · · · σm) =

∏
i∈[m](ziσi + (1− zi)(1− σi))).

3 Hence, proving that x ∈ S is equivalent
to proving that α̂0(1

m) = 1, where 1m ∈ Hm corresponds to the fixed (e.g., first) location of the
output gate in the zero layer.

This proof is conducted in d(n) iterations, where in each iteration a multi-round interactive
protocol is employed. Specifically, in ith iteration, the correctness of the claim α̂i−1(ri−1) = vi−1,
where ri−1 ∈ Fm and vi−1 ∈ F are known to both parties, is reduced (via the interactive protocol)
to the claim α̂i(ri) = vi, where ri ∈ Fm and vi ∈ F are determined (by this protocol) such that
both parties get these values. We stress that, with the exception of i = d, the α̂i’s are not known
(or given) to the verifier; still, the claims made at the beginning (and at the end) of each iteration
are well defined (i.e., each claim refers to a predetermined low degree polynomial that extends the
values assigned to the gates (of a certain layer) of the circuit in a computation of the circuit on
input x ∈ {0, 1}n).

Once the last iteration is completed, the verifier is left with a claim of the form α̂d(rd) = vd,
which it can verify using Eq. (3.1) and its knowledge of αd = x0k−n. Actually, some care is
required here too, since the verifier needs to operate in time Õ(n) (rather than in time Õ(k),
where k = |H|m = poly(n) may be significantly larger than n). For example, associating [n] with
Hm′ ≡ Hm′

1m−m′
, where m′ = log|H| n, we use the fact that for every σ1, ..., σm ∈ H it holds that

αd(σ1, ..., σm) = xσ1···σm′ if σm−m′+1 · · · σm = 1m−m′
and αd(σ1, ..., σm) = 0 otherwise.4 Hence,

α̂d(z1, ..., zm) =
∑

σ1,...,σm∈H

EQ(z1 · · · zm, σ1 · · · σm) · αd(σ1, ..., σm)

=
∑

σ1,...,σm′∈H

EQ(z1 · · · zm, σ1 · · · σm′1m−m′
) · αd(σ1, ..., σm′1m−m′

).

where αd(σ1, ..., σm′1m−m′
) equals the bit of x in location σ1 · · · σm′ ∈ Hm′ ≡ [n].

2Actually, we can use an arbitrary fixed set H ⊂ F of poly(log n) size, and let m = log|H| k = (log k)/ log |H |,
as done in [21]. The advantage of this choice is that in the case that |F| = poly(|H |), which suffices when d(n) =
poly(log n), we get |F|m = poly(k) = poly(n), which means that the codewords used are of polynomial length.
However, this fact is only of aesthetic value, because these codewords are not constructed explicitly by the prover,
who only determines their k-bit long succinct representation. In fact, it may be methodologically better to think that
it is infeasible to construct these codewords explicitly.

3In continuation to Footnote 2, we note that when a generic H ⊂ F is used, one may use EQ(z1 · · · zm, σ1 · · · σm) =
Q

i∈[m]

Q

β∈H′(zi − σi + β)/β, where H ′ = {β′ − β′′ : β′, β′′ ∈ H} \ {0}.
4Recall that αd ∈ {0, 1}n is viewed as αd : Hm → {0, 1}, whereas Hm′

1m−m′

≡ Hm′

≡ [n] and Hm\Hm′

1m−m′

≡
[k] \ [n].
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A single iteration. The core of the iterative proof is the interactive protocol that is performed
in each iteration. This protocol is based on the relation between subsequent αi’s, which is based
on the structure of the circuit. Specifically, recall that the ith iteration reduces a claim regarding
α̂i−1 to a claim regarding α̂i, where these polynomials encode the values of neighboring layers in
the circuit. To describe the relation between such neighboring layers, we consider the adjacency
relation of the circuit. Actually, we let φi : Hm ×Hm ×Hm → {0, 1} represent the feeding relation
between the ith and (i− 1)st layer of the circuit such that φi(u, v,w) = 1 if and only if the gate in
location u ∈ Hm in layer i− 1 is fed by the gates in locations v and w in layer i. Hence, for every
u ∈ Hm, we have

αi−1(u) =
∑

v,w∈Hm

φi(u, v,w) · (1− αi(v) · αi(w)). (3.2)

Recall that, by Eq. (3.1), we have α̂i−1(z) =
∑

u∈Hm EQ(z, u) · αi−1(u). Combining this with

Eq. (3.2), while letting φ̂i : F3m → F denote a (predetermined) low degree polynomial that
extends φi, we have

α̂i−1(z) =
∑

u,v,w∈Hm

EQ(z, u) · φ̂i(u, v,w) · (1− α̂i(v) · α̂i(w)). (3.3)

For any fixed point ri−1 ∈ Fm, the expression at the r.h.s of Eq. (3.3) can be written as

∑

u,v,w∈Hm

pri−1(u, v,w),

where pri−1(z
′, z′′, z′′′)

def
= EQ(ri−1, z

′) · φ̂i(z
′, z′′, z′′′) · (1− α̂i(z

′′) · α̂i(z
′′′)) is a low degree polynomial.

Applying the Sum-Check protocol to Eq. (3.3) allows to reduce a claim regarding the value of α̂i−1

at a specific point ri−1 ∈ Fm to a claim regarding the value of the polynomial pri−1 at a random
point (r′, r′′, r′′′) in F 3m (for details see Section 3.4.1). This is not quite what we aimed for, but
it is close enough, since the verifier can easily evaluate EQ at any point. However, there are two
problems:

1. The verifier needs to be able to evaluate φ̂i in Õ(n)-time. The definition of φ̂i (as a low degree
polynomial that extends φi) may imply that evaluating φ̂i reduces to |H|3m = k3 evaluations
of φi, but k = poly(n) which may be much larger than n (let alone that k3 ≥ n3). Hence,
evaluating φ̂i in Õ(n)-time is not obvious.

2. After evaluating EQ and φ̂i, the verifier is left with a residual claim that refers to two evalua-
tions of α̂i rather than to a single one.

The second problem is handled by augmenting the protocol such that the prover provides the value
of α̂i at both points (i.e., at r′′ and r′′′) as well as on the line that connects these points, and is
asked to prove the correctness of the value at a random point on this line. That is, if the prover
claims that α̂i(r

′′) = v′′ and α̂i(r
′′′) = v′′′, then it also provides a low degree univariate polynomial

p′ such that p′(z) = α̂i((1 − z) · r′′ + z · r′′′), which satisfies that p′(0) = v′′ and p′(1) = v′′′, and
the verifier selects a random r ∈ F and sends it to the prover. The claim to be proved in the next
iteration is that the value of α̂i at ri = (1− r) · r′′ + r · r′′′ equals vi = p′(r). Hence, the full protocol
that is run in iteration i is as follows.
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Construction 3.2 (reducing a claim about α̂i−1 to a claim about α̂i): For known ri−1 ∈ Fm and
vi−1 ∈ F , the entry claim is α̂i−1(ri−1) = vi−1. The parties proceed as follows.

1. Applying the Sum-Check protocol to the entry claim, when expanded according to Eq. (3.3),
determines r′, r′′, r′′′ ∈ Fm and a value v ∈ F such that the residual claim for verification is

EQ(ri−1, r
′) · φ̂i(r

′, r′′, r′′′) · (1− α̂i(r
′′) · α̂i(r

′′′)) = v. (3.4)

(For details see Section 3.4.1.)

2. The prover sends a univariate polynomial p′ of degree m such that p′(z) = α̂i((1−z)·r ′′+z·r′′′).
(Note that the degree of α̂i equals the degree of EQ in the first block of m variables, which in
turn equals m.)5

3. The verifier checks whether v equals

EQ(ri−1, r
′) · φ̂i(r

′, r′′, r′′′) · (1− p′(0) · p′(1)), (3.5)

and continues only if equality holds (otherwise it rejects).

Note that this requires evaluating EQ and φ̂i.

4. The verifier selects a random r ∈ F , and sends it to the prover. Both parties set ri =
(1− r) · r′′ + r · r′′′ and vi = p′(r).

The exit claim is α̂i(ri) = vi.

The prescribed prover strategy as defined in Construction 3.2 can be implemented in poly(n)-time.
Assuming that φ̂i can be evaluated in poly(log n)-time, the verifier’s strategy in Construction 3.2
can be implemented in poly(log n)-time, provided that log |F| ≤ poly(log n) (whereas we will use
|F| = poly(log n) · d(n) ≤ poly(n)). Recall that after the last iteration, the resulting claim is
directly checked by the verifier in time Õ(n). Typically (i.e., when d(n)≪ n), this final verification
dominates the running time of the verifier.

One can readily verify that if the entry claim is correct, then the exit claim is correct, whereas
if the entry claim is false, then with probability at least 1−O((D+m)/|F|) the exit claim is false,
where D is the degree of φ̂i. (Indeed, it is tempting to think that D = O(m), since this would have
been the case if φ̂i is selected to be the low degree extension of φi.) Recall that the soundness error
of the entire protocol is upper-bounded by the probability that there exists an iteration in which the
entry claim is false but the exist claim is true. Hence, the total soundness error is O(d(n) ·D/|F|).

We are still left with the problem of evaluating φ̂i in poly(log n)-time. In Section 3.3, we show
that (1) it suffices to solve this problem for low degree polynomials that extends the functions φi’s
that describe “highly uniform” circuits, and (2) that, in that case, suitable polynomials of degree
D = poly(log n) can be used to extend the φi’s.

5In continuation to Footnote 2, we mention that in the case of general H , the degree equals |H ′| · m, where
H ′ = (H −H) \ {0}.
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3.3 Evaluating the polynomial φ̂i

The general problem that we face is evaluating a low degree polynomial that extends a function
φ : Hm → {0, 1} that is computable in O(log n) space, where |H|m = poly(n). (In our setting we are
interested in φi’s, which range over H3m, which can be treated as slices of a single φ : H4m → {0, 1}
such that φi(z) = φ(i, z), where i ∈ [d(n)] is viewed as an element of Hm.)6 This problem is solved
in [27] by using an auxiliary multi-round interactive protocol, but here we bypass it by making
several observations.

Recall that the function φ that we deal with here describes the structure of arbitrary log-space
uniform circuits. The first observation is that we may use instead a function that describes the
structure of a highly-uniform universal circuit. For starters, consider a universal circuit Un that,
given a description of a poly(n)-sized circuit Cn : {0, 1}n → {0, 1} of depth d = d(n) and an input
x ∈ {0, 1}n, computes Cn(x); that is, Un(〈Cn〉, x) = Cn(x). By using a suitable description, we
may get a highly uniform circuit Un of poly(n)-size and depth O(log n) · d(n). The idea is applying
the main module to Un rather than to Cn.

The problem with the foregoing idea is that after the last iteration (i.e., the last application
of Construction 3.2), the verifier needs to evaluate the low degree extension of the input to the
circuit, whereas in our application the input to Un consists of both 〈Cn〉 and x, which means that
the verifier needs to compute 〈Cn〉. By the log-space uniformity condition, this can be done in
poly(n)-time, but we wish the verifier to perform this step in Õ(n)-time. So, instead, we consider a
modified “universal” circuit U ′

n, which is tailored to the log-space algorithm A that constructs the
circuit family {Cn}. On input x ∈ {0, 1}n, the circuit U ′

n first constructs Cn (see details below),
and then computes Un(〈Cn〉, x). Now, applying the main module to U ′

n rather than to Un, the
verifier only needs to evaluate a low degree extension of x (as in the case that we use Cn itself).

Turning to the construction of Cn by U ′
n, following [27], we use the observation that log-space

uniform circuits (here {Cn}n∈N) can be constructed by an highly uniform NC2 circuit. This obser-
vation relies on the standard construction of NC2 circuits for log-space computation, a construction
that is based on constructing the digraph of instantaneous configurations of the computation of a
log-space machine (on a fixed input) and raising it to a power larger than its dimension (by repeated
squaring). For details see Section 3.4.2. Recalling that Un is also highly uniform (see Section 3.4.2
for details) and combining these two constructions, we obtain a highly uniform construction of
U ′

n. (The circuit U ′
n has size poly(n) and depth O(log n)2 +O(log n) · d(n) ≤ O(log n) · d(n), since

d(n) ≥ log n w.l.o.g.)
So far, we avoided specifying what we meant by a highly uniform circuit. A notion that

suffices for our purposes is presented now. Considering circuits of size s(n) = poly(n) and letting
ℓ = 3 log s(n), we consider the predicate φ : {0, 1}ℓ → {0, 1} that describes the adjacency relation
of the circuit. We say that the circuit is highly uniform if φ can be computed by poly(ℓ)-sized
formula that can be constructed in poly(ℓ)-time. The reader may verify that the NC circuits that
we used above (for constructing the log-space uniform circuits Cn) are highly uniform; in fact, they
are even “more uniform” than that. Likewise for the circuit Un, and consequently for U ′

n. Hence,
the predicate φ : {0, 1}ℓ → {0, 1} that describes the adjacency relation of U ′

n can be computed
by a poly(log n)-size formula that can be constructed in poly(log n)-time. Using H = {0, 1} and

6Indeed, using φ : H3m+log d(n) → {0, 1} and associating [d(n)] with H log d(n) would suffice. When |H | = Ω(log n),
as in Footnote 2, we have m = O(log n)/ log log n < |H |, and so using φ : H3m+1 → {0, 1} (and assuming [m] ⊆ H)
suffices.
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recalling that m = log n, the following result implies that there exists a low degree polynomial over
Fm that agrees with φ on Hm and can be evaluated in poly(log n)-time.

Proposition 3.3 (low degree polynomials that agree with small Boolean formulae):7 Suppose that
φ : Hm → {0, 1}, where H = {0, 1}, can be computed by formula of size poly(m) that can be
constructed in poly(m)-time. Then, there exists a polynomial Φ̂ : Fm → F of degree poly(m) that
agrees with φ on Hm and can be constructed in poly(m)-time.

We stress that the polynomial Φ̂ : Fm → F is not the (canonical) low degree extension of φ; such a
low degree extension has degree m and exists regardless of the size of the formula computing φ. In
contrast, the polynomial Φ̂ is derived from the formula computing φ, and its degree bound is derived
from the depth of φ. (As stated above, we apply Proposition 3.3 to the function φ : H4m → {0, 1}
that describes the relation between gates in the circuit U ′

n, and obtain φ̂i’s such that φ̂i(z) = Φ̂(i, z),
which we use in Construction 3.2.)8

Proof: Considering the poly(m)-size formula that computes φ : {0, 1}m → {0, 1}, construct an
arithmetic circuit Φ̂ (which is actually a formula) that computes a polynomial that agrees with φ on
Hm by mimicking the Boolean formula φ. Specifically, the NAND of the Boolean subformulae ψ1 and
ψ2 is replaced by a gate that computes 1−ψ̂1 ·ψ̂2, where ψ̂1 and ψ̂2 are the corresponding arithmetic
subformulae. (Indeed, we may assume, w.l.o.g., that φ uses only NAND-gates, and that its depth is
logarithmic in its size.)9 Note that the degree of the resulting polynomial Φ̂ is upper-bounded by
poly(m), since its degree is exponential in the depth of φ, which in turn is logarithmic in the size
of φ.

Wrapping-up. As stated above, we modify Construction 3.2 by replacing the polynomials φ̂i by
the polynomial Φ̂ (i.e., replacing φ̂i(·) by Φ̂(i, ·), where φ̂i : F4m → F and i ∈ [m] is viewed as
an element of Hm ⊂ Fm). Doing so provides an efficient implementation of Step 3 of Construc-
tion 3.2, whereas the soundness error of the entire protocol is upper-bounded by d(n)·poly(m)/|F|),
where poly(m) is the degree bound asserted in Proposition 3.3. Hence, we need to guarantee that
poly(m)/|F|) = o(1/d(n)), which implies that |F| = poly(m) · d(n) suffices. This completes the
proof of Theorem 3.1, modulo some details provided in Section 3.4.

3.4 Details

In this section we provide some tedious details, which some readers may find quite straightforward.

3.4.1 Applying the Sum-Check protocol to Eq. (3.3)

Here we detail how the Sum-Check protocol is used to reduce the claim regarding the value of α̂i

at a given point ri−1 to a claim regarding α̂i−1. Recall that, towards this goal, we have defined a

7In continuation to Footnote 2, we mention that [21, Thm. 3] refers to H of size Θ(logn), and its proof is more
complex (due to the need to move from H to {0, 1}log |H|).

8Recall that φ(i, z) = φi(z), where φi describes the connections between the i− 1st and the ith layers of U ′
n (as in

Section 3.2).
9Note that the transformation to this form can be performed in polynomial time.
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polynomial pri−1 : F3m → F such that

pri−1(z
′, z′′, z′′′) = EQ(ri−1, z

′) · φ̂i(z
′, z′′, z′′) · (1− α̂i(z

′′) · α̂i(z
′′′)). (3.6)

Expanding α̂i−1 according to Eq. (3.3) and using Eq. (3.6), we have

α̂i−1(ri−1) =
∑

u,v,w∈Hm

pri−1(u, v,w). (3.7)

Recall that the claim that we wish to verify is α̂i−1(ri−1) = vi−1; that is, the claim is that the
r.h.s of Eq. (3.7) equals vi−1. Using 3m rounds of interaction, the Sum-Check protocol reduces the
latter claim to a claim regarding the value of pri−1 at a random point (r′, r′′, r′′′) ∈ F3m. This is
captured by Step 1 of Construction 3.2.

3.4.2 The highly uniform circuits in use

Here we detail the construction of the universal circuit U ′
n, which combines a construction of NC2

circuits for constructing log-space uniform circuits and a construction of the universal circuit Un.
The point that we wish to establish here is that both these constructions are highly uniform (in the
sense that the adjacency relation function describing each of these two poly(n)-sized circuit can be
computed by a poly(log n)-size formula that can be computed in poly(log n)-time).

We start with the highly uniform construction ofNC2 circuits for constructing log-space uniform
circuits, denoted {Cn}n∈N. This construction relies on the standard construction of NC2 circuits for
log-space computations, a construction that is based on constructing the digraph of instantaneous
configurations of the computation of a log-space machine (on a fixed input) and raising it to a
power larger than its dimension (by repeated squaring). In our case, the input (i.e., 1n) is actually
used only to determine the space bound, and so we can ignore it. However, we should note that the
said log-space computation produces many output bits (which describe the circuit Cn, rather than
a single decision bit). Without loss of generality, we can incorporate the index of the next output
bit to be produced in the instantaneous configuration (since the log-space machine can maintain a
corresponding counter).

Constructing the digraph of instantaneous configurations. Observe that the digraph that
represents the consecutive configurations in the foregoing log-space computation can be constructed
very easily (i.e., by a highly uniformNC0 circuit); that is, the pair (γ, γ′) ∈ {0, 1}2·O(log n) is an edge
in that digraph if and only if the log-space machine moves from the instantaneous configuration
represented by γ to the configuration represented by γ′ in a single step. Note that we actually
consider an NC0 circuit that has no input (i.e., the fixed input 1n is hardwired in this circuit) and
always produces this digraph as its output. Thus, this “circuit” consists of a sequence of output
gates, whose value is hardwired such that the output gate that corresponds to the entry (γ, γ′) in
the adjacency matrix (representing this digraph) is 1 if and only if the pair (γ, γ′) satisfies a very
simple relation that is only slightly more complex than testing equality.10 It follows that the value

10Specifically, recall that γ represents the contents of the work-space as well as the finite state of the machine and
the location of its head (on the work-tape). The bits of γ′ should equal the corresponding bits of γ, except for the bit
at the head’s location and the bits encoding the finite state that change according to a finite function. (The location
of the head on the work-tape is indicated by the corresponding location of a special symbol in γ.) Hence, the value
of the entry (γ, γ′) can be determined as a conjunction of O(log n) conditions, where each of these conditions refers
to a constant number of bits.
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of the entry (γ, γ′) in the matrix can be determined in poly(log n)-time as a function of γ and γ′.
Hence, the circuit that produces this matrix, which consists merely of feeding the constants 0 and 1
to the poly(n)-many output bits, is highly uniform; that is, its adjacency relation can be expressed
a formula of size O(log n) that can be constructed in time poly(log n).

This yields a (highly uniform) poly(n)-by-poly(n) matrix M that when raised to the power
poly(n) yields the desired bits in the description of Cn; that is, the value of the ith output bit (i.e.,
the ith bit in the description of Cn) equals the value of the entry (si, fi) in the resulting matrix (i.e.,
of Mpoly(n)), where si denotes the initial configuration that is used for producing the ith output bit
and fi denotes the final configuration that actually produces this bit. As we show next, there exists
a highly uniform NC2 circuit for raising a given poly(n)-by-poly(n) matrix to the power poly(n)
(by repeated squaring), since the inner product of poly(n)-bit long vectors has a highly uniform
NC1 circuit.

Constructing circuits for matrix multiplication. We now detail the highly uniform NC1

circuit used to compute matrix multiplication. Let A and B be n-by-n matrices, then the (i, j)th bit
in their product is given by

∑
k∈[n]Ai,kBk,j. Hence, we first use n3 gates such that the gate indexed

by (i, j, k) computes Ai,kBk,j, which means that this gate is fed by inputs with indices (1, i, k) and
(2, k, j), where (1, i, k) (resp., (2, k, j)) corresponds to the (i, k)th (resp., (k, j)th) bit in the input
matrix A (resp., B), and then we use n2 trees of n − 1 addition-gates for computing each n-way
sum. Specifically, the sum that corresponds to index (i, j) is computed by gates that are indexed
by (i, j, α), where α ∈ {0, 1}≤log n, such that the gates with index (i, j, α) with α ∈ {0, 1}log n ≡ [n]
are as detailed above, and the gate indexed by (i, j, α) with |α| < log n is fed by the gates indexed
(i, j, α0) and (i, j, α1). Hence, the description of the adjacency relation of this circuit is very simple;
for example, for the latter gates (i.e., a gate indexed (i, j, α) that is fed by the gates indexed (i, j, α0)
and (i, j, α1)), we can use the adjacency relation

φ((i, j, α), (i′ , j′, α′), (i′′, j′′, α′′)) = EQ(ij, i′j′) ∧ EQ(ij, i′′j′′) ∧ EQ(α0, α′) ∧ EQ(α1, α′′).

Constructing the universal circuit Un. Recall that, for fixed depth d = d(n) and size s = s(n),
the circuit Un is given a description of a circuit Cn (of depth d and size s) and a string x ∈ {0, 1}n,
and is supposed to output Cn(x). The circuit Un emulates the computation of Cn in a layer-by-layer
manner. Specifically, Un computes the value of the jth gate in layer i in the emulated computation
of Cn (on x), denoted vi,j, as a function of the description of the circuit Cn and the two adequate
values of gates in layer i+ 1. In particular, vd,j is the jth bit of x if j ≤ n and equals 0 otherwise,
and for every i ∈ [d] and j ∈ [s],

vi−1,j =
∨

k′,k′′∈[s]

(c(i−1,j),(i,k′),(i,k′′) ∧ NAND(vi,k′ , vi,k′′)),

where c(i−1,j),(i,k′),(i,k′′) is a bit in the description of Cn that indicates whether or not the

(i−1, j)th gate is fed by gates indexed the (i, k′) and (i, k′′). Again, the description of the adjacency
relation of this circuit is very simple.
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Chapter 4

Overview of the doubly-efficient
interactive proof systems of RRR

In this chapter, we provide an overview of the doubly-efficient interactive proof systems of Reingold,
Rothblum, and Rothblum [42]. Recall that by their result (already stated as Theorem 1.2), any
set that is decidable in polynomial-time by an algorithm of space complexity s(n) ≤ n0.499, has a
constant-round interactive proof system in which the prover runs polynomial time and the verifier
runs in time Õ(n).

Theorem 4.1 (doubly-efficient interactive proof systems for SC): Suppose that S is decidable by an
algorithm that runs in polynomial time and has space complexity s. Then, for any constant δ > 0,
the set S has an interactive proof system with exp(Õ(1/δ)) rounds in which the prescribed prover
strategy runs in polynomial-time while the verifier runs in (Õ(n) + s(n)2 · nδ)-time. Furthermore,
the proof system is of the public-coin type and the total communication is O(s(n)2 · nδ).

In the original version of [42], the verification time was bounded by (Õ(n) + poly(s(n)) · nδ), for
an unspecified constant poly. The current statement was confirmed by the authors of [42] (private
communication, May 2017).

The proof of Theorem 4.1 spans 70 pages in [42], and in this chapter we merely attempt to
present an overview of it. The proof is pivoted at the notion of batch verification, which is a
procedure that allows for the verification of numerous claims at a significantly lower cost than
required for verifying each of the claims separately. Specifically, we use batch verification for a
certain class of problems (see Theorem 4.2), which extends the class of “NP-problems with unique
solutions” (i.e., UP). In fact, batch verification for UP , which is of independent interest (see
Theorem 4.4), serves as a warm-up towards Theorem 4.2.

4.1 The high level structure

Theorem 4.1 is proved by considering the instantaneous configurations of the corresponding space-
bounded algorithm. The interactive proof system will refer to claims of the form on input x,
machine M moves from configuration γ to configuration γ′ in t steps. The initial claim refers to
the case that γ ∈ {0, 1}s(|x|) and γ′ ∈ {0, 1}s(|x|) are the initial and accepting configurations of M ,
respectively, and to t ≤ poly(|x|).
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The core of the proof of Theorem 4.1 is reducing the construction of an interactive proof system
for a claim regarding t-step computations (of a space-bounded machine) to the construction of an
interactive proof system for a claim regarding t/k-step computations (of such a machine), where k
is a parameter (e.g., k = nδ or so). This is done by having the prover send γ1, ..., γk−1 ∈ {0, 1}s and
prove that, for every i ∈ [k], on input x, machine M moves from configuration γi−1 to configuration
γi in t/k steps, where γ0 = γ and γk = γ′.

Hence, we have reduced proving a single claim regarding a t-long computation of M to k
claims regarding t/k-long computations of M . But have we gained anything? This depends on
whether we can perform k verifications (regarding t/k-long computations) at a cost that is lower
than performing each of these verifications separately. In other words, we seek a batch verification
procedure in which verifying k claims is cheaper than verifying each of the claims separately.

To see that batch verification is not a pipe dream, consider the task of proving k claims that
are each in PSPACE . That is, for a fixed set S ∈ PSPACE , given x1, ..., xk ∈ {0, 1}n, we wish
to prove that (∀i ∈ [k]) xi ∈ S. Then, the complexity of verifying the latter claim by employing
the proof system of [35, 44] is only moderately larger than the complexity of verifying membership
in S using this generic construction. Specifically, suppose that S has space complexity s(n), and
recall that verification via the generic system of [35, 44] takes time that is proportional to s(n)4.
Then, the time complexity of batch verification of k claims (each of length n) is proportional to
(s(n) + log k)4, which is only moderately larger than s(n)4.

The following result provides a batch verification procedure (or rather an interactive proof for
batch verification) for any set that has an interactive proof system of a certain type, where the
nature of this type will remain unspecified momentarily.1 We shall denote the length of a single
instance by n, and the number of instances by k(n). For a set S and k : N→ N, we let

Sk =
⋃

n∈N

{(x1, ..., xk(n)) ∈ {0, 1}k(n)·n : (∀i∈ [k(n)])xi∈S}. (4.1)

Theorem 4.2 (batch verification for certain interactive proof systems): For c : N → N and a
constant ℓ ∈ N, suppose that S has an ℓ-round interactive proof system of a particular type T
with total communication c, poly-logarithmic verification time, and polynomial-time prover strategy.
Then, for every constant α > 0 and k : N → N, the set Sk has an O(ℓ/α)-round interactive proof
system of type T with total communication Õ(kα · c + k), poly-logarithmic verification time, and
polynomial-time prover strategy.

Using Theorem 4.2, the construction of the proof system asserted in Theorem 4.1 can be recursively
presented as follows.

Construction 4.3 (recursive description of the interactive proof system): Let n, s, t, k ∈ N, where
s = s(n) and k < t, and fixed M and x ∈ {0, 1}n. To prove that, on input x, machine M moves in
t steps from configuration γ0 ∈ {0, 1}s to configuration γk ∈ {0, 1}s, the parties proceed as follows.

1. The prover sends γ1, ..., γk−1 ∈ {0, 1}s such that, for every i ∈ [k], it holds that, on input x,
machine M moves in t/k steps from configuration γi−1 to configuration γi.

In order to support the hypothesis made in the next step, each γi is sent using an error
correcting code. In addition, we also assume that x is presented by such a code.

1Readers who are too curious to wait may note that the said type is restricted to public coin systems that are
“unambiguous” (akin to the notion of unique valid proofs in NP-proof systems) and support local checking of the
prover-messages (akin to PCPs (or rather PCPPs)).
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2. The parties invoke an interactive proof system in order to verify the foregoing claim regarding
the γi’s, where the ith claim refers to moving from γi−1 to γi (in t/k steps, on input x).2

This interactive proof system is obtained by applying batch verification for k claims (via
Theorem 4.2) to the interactive proof system that refers to t/k-step computations, where the
latter is obtained by a recursive call. Recall that Theorem 4.2 requires that the latter system
be of type T .

Hence, at the bottom of the recursion we have communication complexity poly(s), at its jth

level (from the bottom) we have communication complexity O(kjα ·poly(s)+k(j−1)α+1), where
α is the constant in Theorem 4.2 and the recursion has logk t levels. Using k(logk t)·α = tα,
this yields communication complexity O(tα · (poly(s) + k)) at the top level of the recursion,
whereas verification time is poly-logarithmic, proving time is polynomial, and the number of
rounds is O(1/α)logk t.

In order to support the use of the derived system in subsequent recursive calls, we will show that
the derived system is indeed of type T .

Theorem 4.1 follows by combining Construction 4.3 with Theorem 4.2, while setting α = δ/O(1)
and k = nδ. (Actually, Construction 4.3 is invoked after letting the verifier encode x as well as the
initial and accepting configurations under an error correcting code.)

In light of Construction 4.3, we focus on the proof of Theorem 4.2. We start with the simple
case in which the set has an NP-proof system, which holds at the very bottom of the recursion but
not at higher levels.

4.2 Warm-up: Batch verification for NP

We start by introducing two of the restrictions that make up the foregoing type T of proof systems.
The first restriction asserts that a convincing prover strategy is essentially unique; that is, if the
prover wishes to convince the verifier of the fact that x ∈ S, then it has no choice but to follow a
unique (deterministic) strategy. In the case of NP-proof systems, this means that the NP-witness
is unique; that is, S ∈ UP.

The second restriction is that verification can be performed in poly-logarithmic time provided
that the input is presented in encoded form, under a suitable error correcting code. This condition
is satisfied by a variety of PCPP systems, starting from the ones based on Reed-Muller encoding
(cf., [5, 17], as interpreted by [8, 14]). Readers that are unfamiliar with PCPPs (i.e., PCPs of
Proximity), may consider standard PCP systems and verification that is performed in almost-
linear time. Actually, for simplicity we shall just do that, while focusing on the communication
complexity of the derived interactive proof system for batch verification.

Hence, our starting point is a set S ∈ UP and a corresponding PCP system (of constant query
complexity). Actually, we shall assume that the PCP system uses input-oblivious queries; that is,
its queries are determined non-adaptively based solely on its internal coin tosses, and only the final
decision depends on its actually input.3 Such PCP systems are known and can be derived from
any PCP system.

2Hence, the input to the ith claim is xi = (x, γi−1, γi).
3Hence, these PCP systems are not truly input-oblivious in the sense studied in [23].

37



Theorem 4.4 (batch verification for UP): For c : N → N and a constant ℓ ∈ N, suppose that
S ∈ UP has a PCP system that uses input-oblivious queries and proofs of length c. Then, for every
constant α > 0 and k : N→ N, the set Sk has an O(1/α)-round interactive proof system with total
communication O(kα · c+k) such that prover strategy can be implemented in polynomial-time when
given the NP-witness to an input in Sk.

(We mention that subsequent work [43] achieved such batch verification using total communication
O(kα · poly(m)), where m denotes the length of the NP-witness.)

Proof Sketch: For a parameter d ≤ k to be determined (e.g., d =
√
k), consider a parity-check

function F : {0, 1}k → {0, 1}O(d log k) such that for every y ∈ {0, 1}k and v ∈ {0, 1}O(d log k) the
Hamming ball of radius d centered at y contains at most a single pre-image of v under F . (Indeed,
in the case d = 1 we can let F (y) be the XOR of the bits of y, and in the general case we can use
the parity check matrix of a Reed-Solomon code.)4

Construction 4.4.1 (basic construction): On input (x1, ..., xk) ∈ {0, 1}k·n, the proof system pro-
ceeds as follows.

1. Let wi be the unique NP-witness associated with xi, and πi ∈ {0, 1}c(n) be the PCP-oracle
derived from it. (We assume that the NP-witness is easy to extract from the PCP-oracle.)5

For each j ∈ [c(n)], let πi,j denote the jth bit of πi. Then, for every j ∈ [c(n)], the prover
computes vj ← F (π1,j · · · πk,j), and sends v1, ..., vc(n) to the verifier. Let us denote the values
actually sent by ṽ1, ..., ṽc(n).

Pictorially, the prover forms a k-by-c(n) Boolean matrix such that the ith row equals πi, and
applies the parity check function to each column. These values form a very partial commitment
of the prover to the values of the matrix; once these values are determined, each column is
pseudo-determined in the sense that a valid revealing may either equal the original column or
must differ from it on more than d coordinates.

2. The verifier generates a sequence of queries, j1, ..., jq ∈ [c(n)], for the PCP verifier, denoted
V . It sends this sequence to the prover, who responds with the values of the corresponding
columns. The verifier checks that (i) the values of these columns match the parity-check values,
and that (ii) V would have accepted each of the inputs when given the corresponding answers.
Specifically, suppose that the prover answered with (π̃i,ji′

)i∈[k],i′∈[q]. Then, the verifier performs
the following two checks:

(a) For every i′ ∈ [q], it checks whether F (π̃1,ji′
· · · π̃k,ji′

) = ṽji′
.

(b) For each i ∈ [k], it checks whether V would have accepted xi when making the queries
j1, ..., jq and receiving the answers π̃i,j1, ..., π̃i,jq .

4Suppose that F describes the operation of the parity check matrix of a linear code of distance D. Then, if y′ 6= y′′

are mapped by F to the same image, then F (y′ ⊕ y′′) = 0O(d log k), which means that y′ ⊕ y′′ is in the code and so its
Hamming weight must be at least D.

5Indeed, the NP-witness may appear as a prefix of the PCP-oracle. By the PCP-oracle derived from an NP-witness

we mean the PCP-oracle that is outlined in the description of the PCP system, while recalling that all known PCP
systems are described in this matter.
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3. The verifier selects uniformly a set R of O(k/d) rows, sends their indices to the prover, who
provides their contents. The verifier checks that (i) each of these rows equals the PCP-oracle
derived from the unique NP-witness for the corresponding input, and that (ii) the values of
these rows match the values of the columns provided in Step 2. Specifically, denoting the value
of row i as sent in this step by ri, the verifier performs the following two checks (for each
such i ∈ R):

(a) Letting w′
i denote the purported NP-witness extracted from ri, the verifier checks that w′

i

is a valid NP-witness for xi and that ri is the PCP-oracle derived from w′
i.

(b) For every i′ ∈ [q], it checks whether ri,ji′
= π̃i,ji′

, where ri = ri,1 · · · ri,c(n)

The basic intuition is that Step 1 leaves the prover with the option of either cheating in Step 2 on
more than d entries of one of the columns or providing the correct values for all columns. In the
first case, the prover is likely to be caught cheating in Step 3, whereas in the second case it is likely
that V will reject xi 6∈ S (when invoked in Step 2). Before presenting a more orderly analysis,
let us consider the communication complexity of the foregoing system: In Step 1 the prover sends
O(d log k) · c(n) bits, in Step 2 it sends q · k bits, and in Step 3 it sends O(k/d) · c(n) bits. Picking
d =

√
k and recalling that q = O(1), we get total communication of Õ(k1/2) · c(n) + O(k). We

comment that the verification time is vastly dominated by Step 3a, whereas the prover’s strategy
can be implemented in polynomial-time (given the NP-witnesses).

Claim 4.4.2 (soundness of Construction 4.4.1): Construction 4.4.1 is an interactive proof system
for Sk.

Proof: Turning to the more orderly analysis of the soundness of Construction 4.4.1, we assume
without loss of generality that the values provided by the prover satisfy the conditions stated in
Steps 2a and 3b (i.e., for every i′ ∈ [q] it holds that F (π̃1,ji′

· · · π̃k,ji′
) = ṽji′

and ri,ji′
= π̃i,ji′

for
every i ∈ R). We consider two cases when referring to the values ṽ1, ..., ṽc(n) provided by the prover
in Step 1.

The first case is that, with probability at least half, over the choice of the query-sequence
(j1, ..., jq) in Step 2, the π̃i,ji′

’s provided by the prover satisfy |{i ∈ [k] : π̃i,ji′
6= πi,ji′

}| > d for some
i′ ∈ [q], where πi denotes the PCP-oracle derived for xi ∈ S and is defined as the all-zero string
in case xi 6∈ S. In this case, for each query-sequence (j1, ..., jq) that belongs to the majority, with
high probability, the set of rows chosen in Step 3 contains a row i such that ri,ji′

= π̃i,ji′
6= πi,ji′

for
some i′ ∈ [q], and so ri does not satisfy the condition stated in Step 3a, which causes the verifier to
reject. We stress that the uniqueness of NP-witnesses implies the uniqueness of the PCP-oracles
derived from them, and so ri 6= πi implies that the string extracted from ri (so that ri is derived
from this string) is not a valid NP-witness for xi.

Turning to the complimentary case, where with probability at least half (over the choice of
(j1, ..., jq) made in Step 2) it holds that |{i ∈ [k] : π̃i,ji′

6= πi,ji′
}| ≤ d for every i′ ∈ [q], we let

(π′i,j)i∈[k],j∈[c(n)] denote the unique matrix such that for every j ∈ [c(n)] the string π′1,j · · · π′k,j

is the unique string that resides in the intersection of the Hamming ball of radius d centered at
π1,j · · · πk,j and the pre-image of ṽj under F . Hence, with probability at least half (over the choice
of (j1, ..., jq)), for each i ∈ [k], it holds that π̃i,ji′

= π′i,ji′
for every i′ ∈ [q], since π̃1,ji′

· · · π̃k,ji′
resides

in the said Hamming ball and is in the pre-image of ṽji′
under F .6 By the soundness of the PCP

6Actually, it suffices to establish a weaker statement asserting that, for each i ∈ [k], it holds that Pr(j1,...,jq)[(∀i
′∈

[q]) eπi,ji′
= π′

i,ji′
}] ≥ 1/2.
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verifier (which is invoked in Step 2b), it follows that xi ∈ S.

Hence, either the verifier rejects with probability at least 1/2 or all xi’s are in S.

Conclusion. By setting d =
√
k, we have established the claim of the theorem for any α > 1/2.

To establish the claim for smaller constant values of α > 0, we use recursion. Specifically, we set
d = kα, and employ Construction 4.4.1, except that in Step 3 we invoke Construction 4.4.1 on the
O(k/d) instances that correspond to the selected rows. Hence, we reduce batch verification for k
instances to batch verification for O(k/d) instances. However, the claim to be verified is not only
that xi ∈ S for each selected row i (i.e., i ∈ R), but rather that there exists an NP-witness for xi

such that the PCP-oracle derived from it matches the values π̃i,j1, ..., π̃i,jq received in Step 2 (i.e.,
π̃i,ji′

= yi,ji′
for every i′ ∈ [q], where yi,j is a variable representing the jth bit of the oracle derived

from the NP-witness for xi).
7 After 1/α recursive calls, we just use the straightforward verification

that is used originally in Step 3.

4.3 Batch verification for unambiguous IP

The proof of Theorem 4.4 makes essential use of the hypothesis that each yes-instance has a unique
proof, which in the context of NP means that it has a unique NP-witness. Seeking to extend
Theorem 4.4 to sets that only have interactive proof systems, we seek an adequate notion of unique
proving strategies, since an interactive strategy is the interactive analogue of a written proof (i.e.,
an NP-witness). Intuitively, we want to require that, at each round, there is at most one prover-
message that may lead the verifier to accept. This condition must be phrased while accounting for
the fact that the verifier strategy is probabilistic and consequently the phrase “leading the verifier
to accept” should be given a probabilistic interpretation. Indeed, we require that, at each round,
there is at most one prover-message that may lead the verifier to accept with probability that
exceeds 1/2.

Definition 4.5 (unambiguous interactive proof systems): Let (P, V ) be an interactive proof sys-
tem, where P is a deterministic prover strategy that satisfies the (perfect) completeness condition.
The system (P, V ) is called unambiguous if for every partial communication transcript (of V with
P ) that ends with a verifier message, there exists at most one prover-message such that, in the
residual communication, the verifier accepts with probability exceeding 1/2. More formally:

Let 〈P ′, V 〉j(x) denote a random variable representing the distribution of the transcripts
of the first j messages in an interaction between P ′ and V on common input x. Then,
assuming that the verifier sends the first message, we require that for every i and every
(α1, β1, ..., αi−1, βi−1, αi, βi) in the support of 〈P, V 〉2i(x) and every P̃ , it holds that

Pr

[
(P̃ , V )(x)=1

∣∣∣∣∣
〈P̃ , V 〉2i−1(x) = (α1, β1, ..., αi−1, βi−1, αi)

〈P̃ , V 〉2i(x) 6= (α1, β1, ...., αi−1, βi−1, αi, βi)

]
≤ 1/2, (4.2)

where (P̃ , V )(x) denotes the output of V after interacting with P̃ on input x.

7The corresponding NP-claim is that (xi, eπi,j1 , ..., eπi,jq ) ∈ S′, which holds if there exists yi = (yi,1, ..., yi,c(n)) such
that yi is the PCP-oracle derived from the NP-witness for xi ∈ S and yi,j

i′
= eπi,j

i′
holds for every i′ ∈ [q].
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That is, Eq. (4.2) asserts that any (ith round prover) message other than βi leads the verifier to
accept with probability at most 1/2, whereas the message βi may lead the verifier to accept with
probability 1. In particular, if x is a yes-instance (i.e., Pr[〈P, V 〉(x) = 1] = 1), then βi leads the
verifier to accept with probability 1, whereas any other prover-message lead the verifier to reject
with probability at least 1/2.8

Note that in the special case of NP-proof systems, Definition 4.5 means that there is at most
one prover-message (which corresponds to the NP-witness) that makes the (deterministic) verifier
accept. Hence, the notion of unambiguous interactive proof systems is an natural extension of
the notion of an NP-proof system with unique proofs (or unique NP-witnesses). We also mention
that the celebrated interactive proof systems for PSPACE (of [35, 44]) are unambiguous, since the
Sum-Check protocol is unambiguous.9

When seeking batch verification for interactive proof systems, we shall restrict our attention to
public-coin systems [4].10 The essential feature of public-coin systems that we use is the fact that
the sequence of verifier-messages can be efficiently generated obliviously of the prover-messages.

Lastly, we need a notion that extends the definition of PCP to the interactive context. Viewing
PCP systems as NP-proof systems that support verification based on inspecting few randomly
selected bits in the NP-witness, we consider (public-coin) interactive proofs systems in which the
final verification is based on inspecting few randomly selected bits in the sequence of prover’s
messages. That is, these proof systems consists of two stages.

1. In the interaction stage, the verifier generates messages obliviously of the prover’s prior mes-
sages, which are merely recorded for future use.

2. In the final verification stage, which takes place after the entire interaction is completed, the
verifier decides based on inspecting few of the bits sent by the prover (and possibly based
on its own coin tosses and input). Equivalently, the verifier’s final decision is based on all
messages sent by the verifier and few probes made into the record of the prover’s messages.

A proof system that satisfies the foregoing condition is called a probabilistically checkable interactive
proof (PCIP). Note that the combination of the unambiguity condition and the probabilistically
checkable condition is problematic; actually, a PCIP cannot be unambiguous (in the strict sense of
Definition 4.5), since changing a single bit in a prover-message is unlikely to be detected. Still, a
natural relaxation of the unambiguity condition is applicable to PCIP: Rather than requiring that
the successful proving strategy is unique, we require that all successful prover strategies generate
messages that are close to one another (in Hamming distance). This notion is indeed akin to the

8We stress that βi is determined by the sequence of verifier messages (α1, ...., αi−1, αi), and that different sequences
may determine different βi’s. In other words, there is a unique prover strategy P that makes V accept a yes-instance
x with probability 1, whereas any other (deterministic) prover strategy eP leads the verifier to reject x with probability

at least ep(x)/2, where ep(x) is the probability that the interaction (P, V )(x) reaches a point in which eP acts differently
from P .

9At the beginning of each round, when one variable in the sum is stripped, there is a unique low-degree univariate
polynomial that describes the residual function. If the prover sends any other polynomial, then it will be caught with
high probability, no matter how it plays in the subsequent rounds.

10In the public coin model, at each round, the verifier tosses a predetermined number of coins and sends the
outcome to the prover (see discussion at the end of Appendix A.1). This is performed obliviously of the contents
of the prover-messages; indeed, the distribution of the verifier’s next message is uniform over the set of strings of a
predetermined length.
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definition of PCPP (see [8, 14]), where the soundness condition holds only with respect to inputs
that are far from the predetermined set.

Observe that unambiguous public-coin interactive proof systems can be transformed into ones
that satisfy the PCIP condition, by having the prover encode its messages under an error correcting
code, and letting the verifier run a PCPP to verify that the original verifier would have accepted
the original messages. That is, the new verifier checks that all messages of the new prover are valid
codewords, and that they encode messages that would have convinced the original verifier.

Having such a PCIP at our disposal, we employ the ideas that underlie Construction 4.4.1 to
each round of interaction in the PCIP. Thus, the emulation of a typical round of interaction (of the
PCIP) looks as follows, when referring to the input (x1, ..., xk).

Construction 4.5.1 (emulation of a single round):

1. For every i ∈ [k], let βi ∈ {0, 1}c(n) be the (unique) message that the original prover would have
sent in the current round regarding the input xi (when given the history of communication
regarding this input).11 For each j ∈ [c(n)], let βi,j denote the jth bit of βi. Then, for every
j ∈ [c(n)], the prover computes vj ← F (β1,j · · · βk,j), and sends v1, ..., vc(n) to the verifier.

Recall that F : {0, 1}k → {0, 1}O(d log k), where d is the commitment parameter.

(Indeed, note the analogy to Step 1 in Construction 4.4.1.)

We shall refer to the foregoing k messages, β1, ..., βk, as to the matrix of the current round;
that is, we refer to the matrix (βi,j)i∈[k],j∈[c(n)].

2. The verifier answers with a single random message, which will be used in all k copies of the
PCIP emulation.

(Using the same verifier message in all k copies may increase the soundness error by a factor
of k, but actually the same may happen when k independently selected messages are used.
In any case, before employing the construction, we should reduce the soundness error of the
original PCIP so to compensate for this loss.)

Note that verification steps analogous to Steps 2 and 3 of Construction 4.4.1 are not performed at
this point, but rather after all rounds of interaction of the PCIP are completed. Once this happens,
the following verification steps take place, where ℓ = O(1) denotes the number of rounds in the
PCIP.

Construction 4.5.2 (final verification):

1. The verifier generates a sequence of queries, j1, ..., jq ∈ [c(n)], for the PCIP verifier, denoted
V . Note that V may ask different queries to the messages of the different ℓ rounds, but for
sake of simplicity (and at the cost of increasing q by a factor of ℓ), we assume that it asks the
same queries in each round.

As in Step 2 of Construction 4.4.1, the verifier sends j1, ..., jq to the prover, who responds
with the values of the corresponding columns. Note that the prover sends q columns per each
of the ℓ matrices.

11That is, we consider k executions of the PCIP, where the ith execution refers to the input xi. We stress that
the index of the current round is not reflected in the foregoing notation; an adequate notation for the messages of
round r is β

(r)
1 , ..., β

(r)
k (since in Construction 4.5.2 the message claimed in round r of the ith execution is denoted

eπ
(r)
i,1 · · · eπ

(r)
i,c(n)).
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For each of these ℓ matrices, the verifier checks (i) whether the values of these columns match
the parity-check values for the relevant matrix (as provided in Step 1 of Construction 4.5.1)
and (ii) whether V would have accepted each of the k inputs when given the corresponding
answers (as well as its own messages as sent in Step 2 of Construction 4.5.1). Note that
the first condition refers to individual matrices, whereas the second condition refers to the
sequence of ℓ matrices.

Specifically, let ṽ
(r)
1 , ..., ṽ

(r)
c(n) denote the parity check values sent in round r ∈ [ℓ], and suppose

that the prover’s current answers are (π̃
(r)
i,ji′

)r∈[ℓ],i∈[k],i′∈[q], where (π̃
(r)
i,j )i∈[k] is claimed to be

the jth column of the matrix of round r. Then, the verifier performs the following two checks:

(a) For every r ∈ [ℓ] and i′ ∈ [q], it checks whether F (π̃
(r)
1,ji′
· · · π̃(r)

k,ji′
) = ṽ

(r)
ji′

.

(b) For each i ∈ [k], it checks whether V would have accepted xi when making the queries

j1, ..., jq and receiving the answers π̃
(1)
i,j1
, ..., π̃

(1)
i,jq
, ..., π̃

(ℓ)
i,j1
, ..., π̃

(ℓ)
i,jq

and when its own mes-

sages in the ith copy are as recorded in the execution of Construction 4.5.1.

(Indeed, the current step is analogous to Step 2 of Construction 4.4.1, and the next step is
analogous to Step 3 in that construction.)

2. The verifier selects uniformly a set of k′ = O(k/d) rows, and the prover is required to prove
that these rows contain values (in the ℓ matrices) that (i) correspond to the unambiguous
transcript that makes the PCIP verifier accept, and (ii) match the values of the columns
provided in Step 1 of Construction 4.5.1.

Unlike in Construction 4.4.1, the unambiguity condition cannot be verified by merely inspect-
ing the transcripts of the relevant rows (in all ℓ matrices), because this condition refers to
possible random interactions that extend all possible prefixes of the transcript, where the cru-
cial point is that in such random interactions the future messages of the verifier are not
known. Letting (α1, β1, ..., αℓ, βℓ) denote a transcript that corresponds to a revealed row (in
the ℓ matrices), we need to verify a condition analogous to Eq. (4.2), for each i ∈ [ℓ]. This is
done by invoking the original PCIP for ℓ times, such that in the ith invocation we continue
the execution at the end of the ith round as if the first 2i messages were (α1, β1, ..., αi, βi).
Note that in the ith invocation (which refers to an i-round long prefix), ℓ− i rounds of (addi-
tional) interaction are performed, followed by the final verification step of the original PCIP.
All these k′ · ℓ interactive processes are run in parallel.12

Combining Constructions 4.5.1 and 4.5.2, we obtain a PCIP of O(ℓ) rounds of query complexity
q · k, with communication complexity O(c(n) · d log k) + q · k + k

d · c(n)), where first term is due to
Construction 4.5.1, the other terms (as well as the query complexity) are due Construction 4.5.2.13

Now, recalling that we wish to obtain communication complexity c(n) ·kα, for any α > 0, as well as
low query complexity, we face a problem since the first goal forces using d = kα (just as in the proof
of Theorem 4.4). The solution is to replace the sending of the k′ rows in Step 2 of Construction 4.5.2

12The most straightforward interpretation of the above is that the jth message-exchange that refers to an i-round
prefix takes place in round j of the parallel execution, regardless of i. It is also natural to let this message-exchange
take place in round i+ j. Actually, the mapping of additional message-exchanges to parallel rounds is immaterial as
long as it is monotone and injective.

13Specifically, the O(q · k) term (resp., the k
d
· c(n) term) is due to Step 1a (resp., Step 2) of Construction 4.5.2.
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by having the prover employ the entire construction recursively so to allow for the verification of
the corresponding conditions. We stress that this recursion is more complex than in the proof of
Theorem 4.4, since we need to verify an unambiguity claim regarding a PCIP whose (constant)
number of rounds varies throughout the recursive calls.

Another problem that we face is that the resulting query complexity is poly(q) · k, whereas
Theorem 4.2 asserts polylogarithmic complexity. The solution is to use a query reduction step;
that is, after deriving a PCIP of O(ℓ) rounds of query complexity poly(q) · k and communication
complexity O(c(n) · kα)+ poly(q) · k, we reduce the query complexity to poly(log n). Indeed, query
reduction is a standard PCP technique, but one should verify that it preserves the unambiguity
condition.

Conclusion: Deriving Theorem 4.2. The foregoing outline completes our high-level descrip-
tion of the proof of Theorem 4.2, and it implicitly specifies the type T of interactive proof systems
to which this theorem refers. To spell it out, type T consists of public-coin unambiguous PCIPs
(of proximity).
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Chapter 5

Epilogue

We have seen four fundamentally different constructions of doubly-efficient interactive proof sys-
tems. Here we try to abstract their essence.

The first construction, presented in Sections 2.1 and 2.2, adapts the principles that underlie the
(Sum-Check based) construction of Lund, Fortnow, Karloff, and Nisan [35] to a natural subclass of
seemingly hard problems in P. Specifically, this construction is based on an arithmetization of sets
in the class (of locally characterizable sets), which reduces the verification of membership in a set to
the evaluation of an arithmetic expression, and on the application of the Sum-Check protocol to the
arithmetic expression. The doubly-efficient features of this proof system is due to the definition of
locally characterizable sets; specifically, we rely on the fact that such sets are characterized in terms
of few (i.e., polynomially many) local conditions, which can expressed by small Boolean formulae.

The second construction, presented in Section 2.3, avoids an arithmetization of the original
problem (as well as breaking it down to sub-problems that have non-apparent relation to the
original problem).1 Instead, the verification of the solution for a parameterized problem (e.g.,
counting t-cliques) is reduced to the verification of a solution for a similar problem that refers to
a smaller value of the parameter (e.g., counting (t − 1)-cliques). In other words, the verification
is via a downwards (w.r.t the parameter) self-reduction, which maintains the flavor of the original
computational problem. While we use this approach towards obtaining a doubly-efficient interactive
proof system for counting t-cliques, for any constant t, we stress that this approach is applicable
also to varying t, leading to an alternative proof system for #P ⊇ coNP .

The third construction, presented in Chapter 3, refers to the verification of (the outcome of)
computations conducted by (log-space uniform) Boolean circuits. This construction reduces the
verification of a claim regarding some intermediate values in such a computation to a claim regarding
other intermediate values in the same computation. Specifically, the verification of a claim regarding
the values of gates at a certain distance from the output of the circuit is reduced to the verification of
a claim regarding the values of the gates that are one unit farther from the output. Each reduction
step employs the Sum-Check protocol, after applying an adequate arithmetization, which means
that the underlying principles of Lund, Fortnow, Karloff, and Nisan [35] are employed at each
reduction step (which corresponds to the adjacent levels of the circuit). The doubly-efficient features
of this proof system is due to the fact that the reduction between adjacent levels in the (log-space
uniform) circuit can be expressed by few (i.e., polynomially many) local conditions, which can
expressed by small Boolean formulae.

1Here we refer to the sub-problems considered in Chapters 3 and 4.
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The last construction, presented in Chapter 4, is based on different principles. This construction,
which refers to polynomial-time computations of bounded-space, proceeds by a “cut-and-batch”
approach: The verification of a claim regarding a t-step computation is reduced to the verification
of k claims regarding different t/k-step computations, but these k verification tasks are conducted
at a cost that is significantly smaller than conducting such k verifications separately. Indeed, the
pivot of this approach is efficient methods for batch verification. These methods are applied not
only to claims of the foregoing type, but also to more complex claims that refer to the execution
of other interactive proof systems (which arise from the recursive construction).

As seen in Chapter 4, the construction of efficient batch verification refers to numerous refined
notions that refer to PCPs and interactive proof systems, including PCPs of Proximity [8, 14],
input-oblivious queries (to such PCPs), unambiguous interactive proofs (Definition 4.5), and PCIP
(probabilistically checkable interactive proofs). These notions are of independent interest and the
latter three (which are relatively new) beg for further study. Other begging questions refer to the
possibility of efficient batch verification for all sets in NP (rather than only UP) and the possibility
of using “private coins” to improve the efficiency of some ingredients of the construction, let alone
the problems mentioned in Chapter 1.

Speculations. Does the early discovery of fantastic results promote or hinder further progress?
Ever since 1990, I held the opinion that the amazing results of Lund, Fortnow, Karloff, and

Nisan [35] and Shamir [44] have actually discouraged further study of interactive proof systems, and
that this is most unfortunate. Yet, one thing that helps when confronting such celebrated results is
discovering aspects that they did not address and providing interesting results that refer to these
aspects. I believe that this has been happening with the notion of doubly-efficient interactive proof
systems and the discovery of the results surveyed in this monograph.

The emergence of the study of doubly-efficient interactive proof systems does call to question
ingrained attitudes like the view that (in the context of interactive proof systems per se)2 perfect
completeness and public-coin format come for free. Indeed, it was shown by Vadhan [48], already
in 2000, that the known transformations of general interactive proof systems to public-coin systems
and/or to systems with perfect completeness may not preserve the complexity of the prescribed
prover strategy, but this fact becomes crucial in the context of doubly-efficient interactive proof
systems.

We stress that a renewed study of interactive proof systems need not be confined to doubly-
efficient ones. If we look closely, we may discover quite a few interesting open problems (see,
e.g., [34]).

2Unlike in the context of zero-knowledge (or when considering “relatively efficient” provers, as in Section A.2.1).
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Appendix: Defining Interactive
Proofs and Arguments

In this appendix we review the basic definition of interactive proof systems as well as the definition
of argument systems. The latter definition is reviewed within the context of a general discussion
regarding the power of the prover. (The text was adapted from [19, Sec. 9.1], which provides further
discussions as well as an exposition of the main known results.)

A.1 The basic definition of interactive proofs

Loosely speaking, an interactive proof is a “game” between a computationally bounded verifier and
a computationally unbounded prover whose goal is to convince the verifier of the validity of some
assertion. Specifically, the verifier employs a probabilistic polynomial-time strategy (whereas no
computational restrictions apply to the prover’s strategy). It is required that if the assertion holds
then the verifier always accepts (i.e., when interacting with an appropriate prover strategy). On
the other hand, if the assertion is false then the verifier must reject with probability at least 1

2 , no
matter what strategy is being employed by the prover. (The error probability can be reduced by
running such a proof system several times.)

We formalize the interaction between parties by referring to the strategies that the parties
employ.3 A strategy for a party is a function mapping the party’s view of the interaction so far to
a description of this party’s next move; that is, such a strategy describes (or rather prescribes) the
party’s next move (i.e., its next message or its final decision) as a function of the common input
(i.e., the aforementioned assertion), the party’s internal coin tosses, and all messages it has received
so far. Note that this formulation presumes (implicitly) that each party records the outcomes of
its past coin tosses as well as all the messages it has received, and determines its moves based
on these. Thus, an interaction between two parties, employing strategies A and B respectively,
is determined by the common input, denoted x, and the randomness of both parties, denoted rA
and rB . Assuming that A takes the first move (and B takes the last move), the corresponding
(t-round) interaction transcript (on common input x and randomness rA and rB) is α1, β1, ..., αt, βt,
where αi = A(x, rA, β1, ..., βi−1) and βi = B(x, rB , α1, ..., αi). The corresponding final decision of
A is defined as A(x, rA, β1, ..., βt).

We say that a party employs a probabilistic polynomial-time strategy if its next move can be
computed in a number of steps that is polynomial in the length of the common input. In particular,

3An alternative formulation refers to the interactive machines that capture the behavior of each of the parties
(see, e.g., [18, Sec. 4.2.1.1]). Such an interactive machine invokes the corresponding strategy, while handling the
communication with the other party and keeping a record of all messages received so far.
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this means that, on common input x, the strategy may only consider a polynomial in |x| many
messages, which are each of poly(|x|) length.4 Intuitively, if the other party exceeds an a priori
(polynomial in |x|) bound on the total length of the messages that it is allowed to send, then
the execution is suspended. Thus, referring to the aforementioned strategies, we say that A is a
probabilistic polynomial-time strategy if, for every i and rA, β1, ..., βi, the value of A(x, rA, β1, ..., βi)
can be computed in time polynomial in |x|. Again, in proper use, it must hold that |rA|, t and the
|βi|’s are all polynomial in |x|.

Definition A.1 (Interactive Proof systems – IP)5: An interactive proof system for a set S is a two-
party game, between a verifier executing a probabilistic polynomial-time strategy, denoted V , and
a prover that executes a (computationally unbounded) strategy, denoted P , satisfying the following
two conditions:

• Completeness: For every x ∈ S, the verifier V always accepts after interacting with the prover
P on common input x.

• Soundness: For every x 6∈ S and every strategy P ∗, the verifier V rejects with probability at
least 1

2 after interacting with P ∗ on common input x.

We denote by IP the class of sets having interactive proof systems.

The error probability (in the soundness condition) can be reduced by successive applications of the
proof system. (This is easy to see in the case of sequential repetitions, but holds also for parallel
repetitions; see [19, Exer. 9.1].) In particular, repeating the proving process for k times, reduces
the probability that the verifier is fooled (i.e., accepts a false assertion) to 2−k, and we can afford
doing so for any k = poly(|x|).

The round complexity of an interactive proof system is ρ : N→ N∪{0} if, on input x, the prover
sends at most ρ(|x|) messages. An interactive proof system is said to be of the public coin type
if, at each round, the verifier sends a (fixed) projection of its randomness; specifically, the verifier
strategy V has the form V (x, r, γ1, ..., γi) = rℓx(i−1)+1 · · · rℓx(i), where ℓx : N∪{0} → N∪{0} satisfies
ℓx(i) ∈ [0, |r|] and ℓx(i− 1) ≤ ℓx(i) (actually, w.l.o.g, ℓx(i− 1) < ℓx(i)).

6

Note that Definition A.1 allows no error in the completeness condition. This version is often
called an interactive proof system of perfect completeness. A more liberal definition allows for
bounded error probability also in the completeness condition; in that case, one typically uses
an error bound of 1/3 in both conditions. With the exception of doubly-efficient interactive proof
systems for sets in BPP\P, all interactive proof systems mentioned in this survey are of the perfect
completeness type, and the upper bound stated in Theorem 1.4 applies also to the more liberal (two-
sided error probability) version. (We mention that the known transformation of general interactive
proof systems to ones with perfect completeness does not apply to doubly-efficient interactive proof
systems, since the resulting prover strategy is not efficient and this seems inherent [48].)

4Needless to say, the number of internal coin tosses fed to a polynomial-time strategy must also be bounded by a
polynomial in the length of x.

5We follow the convention of specifying strategies for both the verifier and the prover. An alternative presentation
only specifies the verifier’s strategy, while rephrasing the completeness condition as follows: There exists a prover

strategy P such that, for every x ∈ S, the verifier V always accepts after interacting with P on common input x.
6Actually, ℓx may depend on |x| only. Equivalently, the verifier can be thought of as tossing coins on-line per each

round, such that in the ith round it tosses ℓx(i) − ℓx(i− 1) coins.
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A.2 On computationally bounded provers: an overview

Recall that our definition of interactive proofs (i.e., Definition A.1) makes no reference to the
computational abilities of the potential prover. This fact has two conflicting consequences:

1. The completeness condition does not provide any upper bound on the complexity of the
corresponding proving strategy (which convinces the verifier to accept valid assertions).

2. The soundness condition guarantees that, regardless of the computational effort spend by a
cheating prover, the verifier cannot be fooled to accept invalid assertions (with probability
exceeding the soundness error).

Note that providing an upper-bound on the complexity of the (prescribed) prover strategy P of a
specific interactive proof system (P, V ) only strengthens the claim that (P, V ) is a proof system
for the corresponding set (of valid assertions). We stress that the prescribed prover strategy is
referred to only in the completeness condition (and is irrelevant to the soundness condition). On
the other hand, relaxing the definition of interactive proofs such that soundness holds only for a
specific class of cheating prover strategies (rather than for all cheating prover strategies) weakens
the corresponding claim. In this advanced section we consider both possibilities.

A.2.1 How powerful should the prover be?

Suppose that a set S is in IP. This means that there exists a verifier V that can be convinced
to accept any input in S but cannot be fooled to accept any input not in S (except with small
probability). One may ask how powerful should a prover be such that it can convince the verifier
V to accept any input in S. It is known (see [19, Prop. 9.5]) that an optimal prover strategy
(for convincing any fixed verifier V ) can be implemented in polynomial-space, and that we cannot
expect any better for a generic set in PSPACE = IP (because the emulation of the interaction
of V with any optimal prover strategy yields a decision procedure for the set). Still, we may seek
better upper-bounds on the complexity of some prover strategy that convinces a specific verifier,
which in turn corresponds to a specific set S. More interestingly, considering all possible verifiers
that give rise to interactive proof systems for S, we wish to upper-bound the computational power
that suffices for convincing any of these verifiers (to accept any input in S).

We stress that, unlike the case of computationally-sound proof systems (see Section A.2.2),
we do not restrict the power of the prover in the soundness condition, but rather consider the
minimum complexity of provers meeting the completeness condition. Specifically, we are interested
in relatively efficient provers that meet the completeness condition. The term “relatively efficient
prover” has been given three different interpretations, which are briefly surveyed next.

1. A prover is considered relatively efficient if, when given an auxiliary input (in addition to the
common input in S), it works in (probabilistic) polynomial-time. Specifically, in case S ∈ NP ,
the auxiliary input maybe an NP-proof that the common input is in the set. Still, even in
this case the interactive proof need not consist of the prover sending the auxiliary input to
the verifier; for example, an alternative procedure may allow the prover to be zero-knowledge.

This interpretation is adequate and in fact crucial for applications in which such an auxiliary
input is available to the otherwise polynomial-time parties. Typically, such auxiliary input
is available in cryptographic applications in which parties wish to prove in (zero-knowledge)
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that they have correctly conducted some computation (see [19, Apdx. C.4.3.2]). In these
cases, the NP-proof is just the transcript of the computation by which the claimed result has
been generated, and thus the auxiliary input is available to the party that plays the role of
the prover.

2. A prover is considered relatively efficient if it can be implemented by a probabilistic polynomial-
time oracle machine with oracle access to the set S itself. Note that the prover in the standard
proof system for Graph Non-Isomorphism has this property (see [19, Const. 9.3]).

This interpretation generalizes the notion of self-reducibility of NP-proof systems. Recall
that by self-reducibility of an NP-set (or rather of the corresponding NP-proof system) we
mean that the search problem of finding an NP-witness is polynomial-time reducible to de-
ciding membership in the set (cf. [19, Def. 2.14]). Here we require that implementing the
prover strategy (in the relevant interactive proof) be polynomial-time reducible to deciding
membership in the set.

3. A prover is considered relatively efficient if it can be implemented by a probabilistic machine
that runs in time that is polynomial in the complexity of deciding the set.7 This inter-
pretation relates the time-complexity of convincing a “lazy person” (i.e., a verifier) to the
time-complexity of determining the truth (i.e., deciding membership in the set).

Hence, in contrast to the first interpretation, which is adequate in settings where assertions
are generated along with their NP-proofs, the current interpretation is adequate in settings
in which the prover is given only the assertion and has to find a proof to it by itself (before
trying to convince a lazy verifier of its validity). See [37].

Indeed, this interpretation generalizes one of the two efficiency conditions that underlie the
definition of doubly-efficient interactive proof systems. Specifically, for set in P (or even in
BPP), such a relatively efficient prover is required to run in polynomial-time.

A.2.2 Computational-soundness

Relaxing the soundness condition such that it only refers to relatively-efficient ways of trying to
fool the verifier (rather than to all possible ways) yields a fundamentally different notion of a
proof system. The verifier’s verdict in such a system is not absolutely sound, but is rather sound
provided that the potential cheating prover does not exceed the presumed complexity limits. As in
Section A.2.1, the notion of “relative efficiency” can be given different interpretations, the most
popular one being that the cheating prover strategy can be implemented by a (non-uniform) family
of polynomial-size circuits. The latter interpretation coincides with the first interpretation used
in Section A.2.1 (i.e., a probabilistic polynomial-time strategy that is given an auxiliary input (of
polynomial length)). Specifically, in this case, the soundness condition is replaced by the following
computational soundness condition that asserts that it is infeasible to fool the verifier into accepting
false statements. Formally:

For every prover strategy that is implementable by a family of polynomial-size circuits
{Cn}, and every sufficiently long x ∈ {0, 1}∗ \ S, the probability that V accepts x when
interacting with C|x| is less than 1/2.

7We stress that we refer to the probabilistic or deterministic time complexity of the set, not to its non-deterministic
time complexity.

51



As in case of standard soundness, the computational-soundness error can be reduced by repetitions.
We warn, however, that unlike in the case of standard soundness (where both sequential and
parallel repetitions will do), the computational-soundness error cannot always be reduced by parallel
repetitions (see [7]). Hence, it is often preferred to define computational soundness as having
negligible error (i.e., error that decreases faster than the reciprocal of any polynomial function).8

It is common and natural to consider proof systems in which the prover strategies considered
both in the completeness and soundness conditions satisfy the same notion of relative efficiency. Pro-
tocols that satisfy these conditions with respect to the foregoing interpretation are called arguments.
We mention that argument systems may be more efficient (e.g., in terms of their communication
complexity) than interactive proof systems (cf. [32] versus [26]).

8In such a case, the definition asserts that for every prover strategy that is implementable by a family of polynomial-

size circuits {Cn}, every positive polynomial p, and every sufficiently long x ∈ {0, 1}∗\S, the probability that V accepts

x when interacting with C|x| is less than 1/p(|x|).
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