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Abstract

This paper introduces and initiates a study of a new model of arithmetic circuits coupled
with new complexity measures. The new model consists of multilinear circuits with arbitrary

multilinear gates, rather than the standard multilinear circuits that use only addition and mul-
tiplication gates. In light of this generalization, the arity of gates becomes of crucial importance
and is indeed one of our complexity measures. Our second complexity measure is the number of

gates in the circuit, which (in our context) is significantly different from the number of wires in
the circuit (which is typically used as a measure of size). Our main complexity measure, denoted
AN(·), is the maximum of these two measures (i.e., the maximum between the arity of the gates
and the number of gates in the circuit). We also consider the depth of such circuits, focusing
on depth-two and unbounded depth.

Our initial motivation for the study of this arithmetic model is the fact that the two main
variants (i.e., depth-two and unbounded depth) yield natural classes of depth-three Boolean

circuits for computing multilinear functions. The resulting circuits have size that is exponential
in the new complexity measure. Hence, lower bounds on the new complexity measure yield size
lower bounds on a restricted class of depth-three Boolean circuits (for computing multilinear
functions). Such lower bounds are a sanity check for our conjecture that multilinear functions
of relatively low degree over GF(2) are good candidates for obtaining exponential lower bounds
on the size of constant-depth Boolean circuits (computing explicit functions). Specifically, we
propose to move gradually from linear functions to multilinear ones, and conjecture that, for
any t ≥ 2, some explicit t-linear functions F : ({0, 1}n)t → {0, 1} require depth-three circuits of
size exp(Ω(tnt/(t+1))).

Letting AN2(·) denote the complexity measure AN(·), when minimized over all depth-two
circuits of the above type, our main results are as follows.

• For every t-linear function F , it holds that AN(F ) ≤ AN2(F ) = O((tn)t/(t+1)).

• For almost all t-linear function F , it holds that AN2(F ) ≥ AN(F ) = Ω((tn)t/(t+1)).

• There exists a bilinear function F such that AN(F ) = O(
√

n) but AN2(F ) = Ω(n2/3).

The main open problem posed in this paper is proving that AN2(F ) ≥ AN(F ) = Ω((tn)t/(t+1))
holds for an explicit t-linear function F , with t ≥ 2. For starters, we seek lower bound of
Ω((tn)0.51) for an explicit t-linear function F , preferably for constant t. We outline an approach
that reduces this challenge (for t = 3) to a question regarding matrix rigidity.

An early version of this work appeared as TR13-043 of ECCC. The current revision is quite sub-
stantial (cf. [11]). In particular, the original abstract was replaced, the appendices were omitted,
notations were changed, some arguments were elaborated, and updates on the state of the open
problems were added (see, most notably, the progress made in [9]).
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1 Introduction

The introduction contains an extensive motivation for the model of arithmetic circuits that is
studied in the paper. Readers who are only interested in this model may skip the introduction with
little harm, except for the definition of three specific functions that appear (in displayed equations)
towards the end of Section 1.2.

1.1 The general context

Strong lower bounds on the size of constant-depth Boolean circuits computing parity and other
explicit functions (cf., e.g., [34, 12] and [26, 29]) are among the most celebrated results of complexity
theory. These quite tight bounds are all of the form exp(n1/(d−1)), where n denote the input length
and d the circuit depth. But we do not know of any exponential lower bounds (i.e., of the form
exp(Ω(n))) on the size of constant-depth circuits computing any explicit function (i.e., a Boolean
function in E = ∪c∈NDtime(fc), where fc(n) = 2cn).

Providing exponential lower bounds on the size of constant-depth Boolean circuits computing
explicit functions is a central problem of circuit complexity, even when restricting attention to
depth-three circuits (cf., e.g., [16, Chap. 11]). It seems that such lower bounds cannot be obtained by
the standard interpretation of either the random restriction method [7, 12, 34] or the approximation
by polynomials method [26, 29]. Many experts have tried other approaches (cf., e.g., [14, 17])1, and
some obtained encouraging indications (i.e., results that refer to restricted models, cf., e.g., [23]);
but the problem remains wide open.

There are many motivations for seeking exponential lower-bounds for constant-depth circuits.
Two notable examples are separating NL from P (see, e.g., [11, Apdx A]) and presenting an explicit
function that does not have linear-size circuits of logarithmic depth (see Valiant [32]). Another
motivation is the derandomization of various computations that are related to AC0 circuits (e.g.,
approximating the number of satisfying assignments to such circuits). Such derandomizations can
be obtained via “canonical derandomizers” (cf. [8, Sec. 8.3]), which in turn can be constructed
based on strong average-case versions of circuit lower bounds; cf. [21, 22].

It seems that the first step should be beating the exp(
√

n) size lower bound for depth-three
Boolean circuits computing explicit functions (on n bits). A next step may be to obtain a truly
exponential lower bound for depth-three Boolean circuits, and yet another one may be to move to
any constant depth.

This paper focuses on the first two steps; that is, it focuses on depth-three circuits. Furthermore,
within that confined context, we focus on a restricted class of functions (i.e., multilinear functions
of small degree), and on a restricted type of circuits that emerges rather naturally when considering
the computation of such functions.

1.2 The candidate functions

We suggest to study specific multilinear functions of relatively low degree over the binary field,
GF(2), and in the sequel all arithmetic operations are over this field. For t, n ∈ N, we consider
t-linear functions of the form F : ({0, 1}n)t → {0, 1}, where F is linear in each of the t blocks of

1The relevance of the Karchmer and Wigderson approach [17] to constant-depth circuits is stated explicitly in [18,
Sec. 10.5].
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variables (which contain n variables each). Such a function F is associated with a t-dimensional
array, called a tensor, T ⊆ [n]t, such that

F (x(1), x(2), ..., x(t)) =
∑

(i1,i2,...,it)∈T

x
(1)
i1

x
(2)
i2
· · · x(t)

it
(1)

where here and throughout this paper x(j) = (x
(j)
1 , ..., x

(j)
n ) ∈ {0, 1}n for every j ∈ [t]. Indeed, we

refer to a fixed partition of the Boolean variables to t blocks, each containing n variables, and to
functions that are linear in the variables of each block. Such functions were called set-multilinear
in [23]. Note that the input length for these functions is t ·n; hence, exponential lower bounds mean

bounds of the form exp(Ω(tn)).
We will start with a focus on constant t, and at times we will also consider t to be a function of n,

but n will always remain the main length parameter. Actually, it turns out that t = t(n) = Ω(log n)
is essential for obtaining exponential lower bounds (i.e., size lower bounds of the form exp(Ω(tn))
for depth-d circuits, when d > 2).

A good question to ask is whether there exists any multilinear function that requires constant-
depth Boolean circuit of exponential size (i.e., size exp(Ω(tn))). We conjecture that the answer is
positive.

Conjecture 1.1 (a sanity check for the entire approach): For every d > 2, there exist t-linear

functions F : ({0, 1}n)t → {0, 1} that cannot be computed by Boolean circuits of depth d and size

exp(o(tn)), where t = t(n) ≤ poly(n).

We believe that the conjecture holds even for t = t(n) = O(log n), and note that, for any fixed
t, there exist explicit t-linear functions that cannot be computed by depth-two Boolean circuits of
size 2tn/4 (see [11, Apdx C.3]).

Merely proving Conjecture 1.1 may not necessarily yield a major breakthrough in the state-
of-art regarding circuit lower bounds, although it seems that a proof will need to do something
more interesting than mere counting. However, disproving Conjecture 1.1 will cast a shadow on
our suggestions, which may nevertheless maintain their potential for surpassing the exp((tn)1/(d−1))
barrier. (Showing an upper bound of the form exp((tn)1/(d−1)) on the size circuits of depth d that
compute any t-linear function seems unlikely (cf. [23], which proves an exponential in t lower bound
on the size of depth-three arithmetic circuits (when n = 4)).)

Assuming that Conjecture 1.1 holds, one should ask which explicit functions may “enjoy” such

lower bounds. Two obviously bad choices are (1) F t,n
all(x

(1), ..., x(t)) =
∑

i1,...,it∈[n] x
(1)
i1
· · · x(t)

it
and

(2) F t,n
diag(x

(1), ..., x(t)) =
∑

i∈[n] x
(1)
i · · · x

(t)
i , since each is easily reducible to an n-way parity (the

lower bounds for which we wish to surpass).2 The same holds for any function that corresponds
either to a rectangular tensor (i.e., T = I1 × · · · × It, where I1, .., It ⊆ [n]) or to a sparse tensor
(e.g., T ⊆ [n]t such that |T | = O(n)). Ditto w.r.t the sum of few such tensors. Indeed, one should
seek tensors T ⊆ [n]t that are far from the sum of few rectangular tensors (i.e., far from any tensor
of low rank [30]). On the other hand, it seems good to stick to as “simple” tensors as possible so

2Note that F t,n
all (x(1), ..., x(t)) =

Q

j∈[t]

P

ij∈[n] x
(j)
ij

, which means that it can be computed by a t-way conjunction

of n-way parity circuits, whereas F t,n
diag is obviously an n-way parity of t-way conjunctions of variables.
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as to facilitate their analysis (let alone have the corresponding multilinear function be computable
in exponential-time (i.e., in E)).3

A less obviously bad choice. Consider the function F t,n
leq : ({0, 1}n)t → {0, 1} such that

F t,n
leq(x

(1), x(2), ..., x(t)) =
∑

1≤i1≤i2≤···≤it≤n

x
(1)
i1

x
(2)
i2
· · · x(t)

it
(2)

(having the corresponding tensor T t,n
leq = {(i1, ..., it) ∈ [n]t : i1 ≤ i2 ≤ · · · ≤ it}). Note that

this function is polynomial-time computable (e.g., via dynamic programming),4 and that t = 1
corresponds to Parity. Unfortunately, for every constant t ≥ 2, the function F t,n

leq is not harder
than parity: It has depth-three circuits of size exp(O(

√
n)); see Proposition 3.4. Thus, we move to

the slightly less simple candidates presented next.

Specific candidates. We suggest to consider the following t-linear functions, F t,n
tet and F t,n

mod p

(especially for p ≈ 2t ≈ n), which are presented next in terms of their corresponding tensors (i.e.,
T t,n
tet and T t,n

mod p, resp).

T t,n
tet =



(i1, ..., it) ∈ [n]t :

∑

j∈[n]

|ij − (n/2)| ≤ n/2



 (3)

T t,n
mod p =



(i1, ..., it) ∈ [n]t :

∑

j∈[t]

ij ≡ 0 (mod p)



 (4)

(The shorthand tet was intended to stand for tetrahedon, since the geometric image of one eighth of
T 3,n
tet resembles a “slanted tetrahedon”. Indeed, T 3,n

tet as a whole looks more like a regular octahedon.)
Note that the functions F t,n

tet and F t,n
mod p are also computable in polynomial-time.5 For p < n,

it holds that F t,n
mod p(x

(1), ..., x(t)) equals F t,p
mod p(y

(1), ..., y(t)), where y
(j)
r =

∑
i∈[n]:i≡r (mod p) x

(j)
i for

every j ∈ [t] and r ∈ [p]. This reduction may have a forbidding “size cost” in the context of circuits
of a specific depth (especially if p ≪ n), but its cost is insignificant if we are willing to double
the depth of the circuit (and aim at lower bounds that are larger than those that hold for parity).
Thus, in the latter cases, we may assume that p = Ω(n), but of course p < tn must always hold.

We note that none of the bilinear versions of the foregoing functions can serve for beating the
exp(
√

n) lower bound. Specifically, the failure of F 2,n
mod p is related to the aforementioned reduction,

3Thus, these tensors should be constructible within exp(tn)-time. Note that we can move from the tensor to the
multilinear function (and vice versa) in nt ≪ exp(tn) oracle calls.

4Note that F t,n
leq (x(1), ..., x(t)) equals

P

i∈[n] F
t−1,i
leq (x

(1)

[1,i], ..., x
(t−1)

[1,i] ) ·x(t)
i , where x

(j)

[1,i] = (x
(j)
1 , ..., x

(j)
i ). So, for every

t′ ∈ [t − 1], the dynamic program uses the n values (F t′,i
leq (x

(1)
[1,i], ..., x

(t′)
[1,i]))i∈[n] in order to compute the n values

(F t′+1,i
leq (x

(1)
[1,i], ..., x

(t′+1)
[1,i] ))i∈[n].

5Again, we use dynamic programming, but here we apply it to generalizations of these functions. Specif-
ically, let T t,n,d

tet = {(i1, ..., it) ∈ [n]t :
P

j∈[n] |ij − (n/2)| ≤ d} and note that the associated function

satisfies F t,n,d
tet (x(1), ..., x(t)) =

P

i∈[n] F
t−1,n,d−i
tet (x(1), ..., x(t−1)) · x

(t)
i . Likewise, consider the tensor T t,n,r

mod p =
n

(i1, ..., it) ∈ [n]t :
P

j∈[t] ij ≡ r (mod p)
o

and note that the associated function satisfies F t,n,r
mod p(x

(1), ..., x(t)) =
P

i∈[n] F
t−1,n,r−i
mod p (x(1), ..., x(t−1)) · x(t)

i .
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whereas the failure of F 2,n
tet is to the fact that T 2,n

tet is very similar to T 2,n
leq (i.e., each fourth of T 2,n

tet is

isomorphic to T 2,n
leq (under rotation and scaling)). But these weaknesses do not seem to propagate

to the trilinear versions (e.g., the eighthes of the tensor T 3,n
tet are not isomorphic to T 3,n

leq).

What’s next? In an attempt to study the viability of our suggestions and conjectures, we defined
two restricted classes of depth-three circuits and tried to prove lower bounds on the sizes of circuits
(from these classes) that compute the foregoing functions. Our success in proving lower bounds
was very partial, and will be discussed next – as part of the discussion of these two classes (in
Sections 1.3 and 1.4). Subsequent work [9] was more successful in that regard.

1.3 Design by direct composition: the D-canonical model

What is a natural way of designing depth-three Boolean circuits that compute multilinear functions?

Let us take our cue from the linear case (i.e., t = 1). The standard way of obtaining a depth-
three circuit of size exp(

√
n) for n-way parity is to express this linear function as the

√
n-way sum

of
√

n-ary functions that are linear in disjoint sets of variables. The final (depth-three) circuit is
obtained by combing the depth-two circuit for the outer sum with the depth-two circuits computing
the
√

n internal sums.
Hence, a natural design strategy is to express the target multilinear function (denoted F ) as a

polynomial (denoted H) in some auxiliary multilinear functions (i.e., Fi’s), and combine depth-two
circuits that compute the auxiliary multilinear functions with a depth-two circuit that computes
the main polynomial (i.e., H). That is, we “decompose” the multilinear function on the algebraic
level, expressing it as a polynomial in auxiliary multilinear functions (i.e., F = H(F1, ..., Fs)),
and implement this decomposition on the Boolean level (i.e., each polynomial is implemented by
a depth-two Boolean circuit). Specifically, to design a depth-three circuit of size exp(O(s)) for
computing a multilinear function F the following steps are taken:

1. Select s arbitrary multilinear functions, F1, ..., Fs, each depending on s input bits;

2. Express F as a polynomial H in the Fi’s;

3. Obtain a depth-three circuit by combining depth-two circuits for computing H and the Fi’s.

Furthermore, we mandate that H(F1, ..., Fs) is a syntactically multilinear function; that is, the
monomials of H do not multiply two Fi’s that depend on the same block of variables. The size of
the resulting circuit is defined to be exp(Θ(s)): The upper bound is justified by the construction,
and the lower bound by the assumption that (low degree) polynomials that depend on s variables
require depth-two circuits of exp(s) size. (The latter assumption is further discussed in Section 2.2.)6

Circuits that are obtained by following this framework are called D-canonical, where “D” stands
for direct (or deterministic, for reasons that will become apparent in Section 1.4). Indeed, D-
canonical circuits seem natural in the context of computing multilinear functions by depth-three
Boolean circuits.

For example, the standard design, reviewed above, of depth-three circuits (of size exp(
√

n)) for
(n-way) parity yields D-canonical circuits. In general, D-canonical circuits for a target multilinear

6In brief, when computing t-linear polynomials, a lower bound of exp(Ω(s/2t)) on the size of depth-two circuits
can be justified (see [11, Apdx C]). Furthermore, for 2t ≪ s, a lower bound of exp(Ω(s)) can be justified if the CNFs
(or DNFs) used are “canonical” (i.e., use only s-way gates at the second (i.e., Fi’s) level).
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function are obtained by combining depth-two circuits that compute auxiliary multilinear functions
with a depth-two circuit that computes the function that expresses the target function in terms
of the auxiliary functions. The freedom of the framework (or the circuit designer) is reflected in
the choice of auxiliary functions, whereas the restriction is in insisting that the target multilinear
function be computed by composition of a polynomial and multilinear functions (and that this
composition corresponds to a syntactically multilinear function).

Our main results regarding D-canonical circuits are a generic upper bound on the size of D-
canonical circuits computing any t-linear function and a matching lower bound that refers to almost
all t-linear functions. That is:

Theorem 3.1: For every t ≥ 2, every t-linear function F : ({0, 1}n)t → {0, 1} can be computed by

D-canonical circuits of size exp((tn)t/(t+1)).

(Corollary to) Theorem 4.1: For every t ≥ 2, almost all t-linear functions F : ({0, 1}n)t → {0, 1}
require D-canonical circuits of size at least exp(Ω(tn)t/(t+1)).

Needless to say, the begging question is what happens with explicit multilinear functions.

Problem 1.2 (main problem regarding D-canonical circuits): For every fixed t ≥ 2, prove a

exp(Ω(tn)t/(t+1)) lower bound on the size of D-canonical circuits computing some explicit func-

tion. Ditto when t may vary with n, but t ≤ poly(n).

We mention that subsequent work of Goldreich and Tal [9] proved an exp(Ω̃(n2/3)) lower bound on
the size of D-canonical circuits computing some explicit trilinear functions (e.g., F 3,n

tet).

1.4 Design by nested composition: the ND-canonical model

As appealing as D-canonical circuits may appear, it turns out that one can build significantly
smaller circuits by employing the “guess and verify” technique (see Theorem 2.3). This allows to
express the target function in terms of auxiliary functions, which themselves are expressed in terms
of other auxiliary functions, and so on. That is, the “expression depth” is no longer 1, it is even
not a priori bounded, and yet the resulting Boolean circuit has depth-three.

Assuming we want to use s auxiliary functions or arity s, the basic idea is to use s non-
deterministic guesses for the values of these s functions, and to verify each of these guesses based
on (some of) the other guesses and at most s bits of the original input. Thus, the verification
amounts to the conjunction of s conditions, where each condition depends on at most 2s bits (and
can thus be verified by a CNF of size exp(2s)). The final depth-three circuit is obtained by replacing
the s non-deterministic guesses by a 2s-way disjunction.

This way of designing depth-three circuits leads to a corresponding framework, and the circuits
obtained by it are called ND-canonical, where “ND” stands for non-determinism. In this framework
depth-three circuits of size exp(O(s)) for computing a multilinear function F are designed by the
following three-step process:

1. Select s auxiliary multilinear functions, F1, ..., Fs;

2. Express F as well as each of the other Fi’s as a polynomial in the subsequent Fi’s and in at
most s input bits;
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3. Obtain a depth-three circuit by combining depth-two circuits for computing these polynomi-
als, where the combination implements s non-deterministic choices as outlined above.

As in the D-canonical framework, the polynomials used in Step (2) should be such that replacing
the functions Fi’s in them yields multilinear functions (i.e., this is a syntactic condition). Again,
the size of the resulting circuit is defined to be exp(Θ(s)).

Note that, here (i.e., in the case of ND-canonical circuits), the combination performed in Step (3)
is not a functional composition (as in the case of the D-canonical circuits). It is rather a verification
of the claim that there exists s+1 values that fit all s+1 expressions (i.e., of F and the Fi’s). The
implementation of Step (3) calls for taking the conjunction of these s + 1 depth-two computations
as well as taking a 2s+1-way disjunction over all possible values that these computations may yield.

The framework of ND-canonical circuits allows to express F in terms of Fi’s that are themselves
expressed in terms of Fj ’s, and so on. (Hence, the composition is “nested”.) In contrast, in the
D-canonical framework, the Fi’s were each expressed in terms of s input bits. A natural question
is whether this generalization actually helps. We show that the answer is positive.

Theorem 2.3: There exists bilinear functions F : ({0, 1}n)2 → {0, 1} that have ND-circuits of size
exp(O(

√
n)) but no D-circuits of size exp(o(n2/3)).

Turning to our results regarding ND-circuits, the upper bound on D-canonical circuits clearly holds
for ND-circuits, whereas our lower bound is actually established for ND-canonical circuits (and the
result for D-canonical circuits is a corollary). Thus, we have

(Corollary to) Theorem 3.1: For every t ≥ 2, every t-linear function F : ({0, 1}n)t → {0, 1} can be

computed by ND-canonical circuits of size exp((tn)t/(t+1)).

Theorem 4.1: For every t ≥ 2, almost all t-linear functions F : ({0, 1}n)t → {0, 1} require ND-

canonical circuits of size at least exp(Ω(tn)t/(t+1)).

Again, the real challenge is to obtain such a lower bound for explicit multilinear functions.

Problem 1.3 (main problem regarding ND-canonical circuits): For every fixed t ≥ 2, prove a

exp(Ω(tn)t/(t+1)) lower bound on the size of ND-canonical circuits computing some explicit function.

Ditto when t may vary with n, but t ≤ poly(n).

The subsequent work of Goldreich and Tal [9] establishes an exp(Ω̃(n0.6)) lower bound on the size
of ND-canonical circuits computing the trilinear function F 3,n

tet and an exp(Ω̃(n2/3)) lower bound on
the size of ND-canonical circuits computing some explicit 4-linear functions. It does so by following
the path suggested in the original version of this work [11], where we wrote:

For starters, prove a exp(Ω(tn)0.51) lower bound on the size of ND-canonical circuits

computing some explicit t-linear function.

As a possible step towards this goal we reduce the task of proving such a lower bound
for F 3,n

tet to proving a lower bound on the rigidity of matrices with parameters that were
not considered before. In particular, an exp(ω(

√
n)) lower bound on the size of ND-

canonical circuits computing F 3,n
tet will follow from the existence of an n-by-n Toeplitz

matrix that has rigidity ω(n3/2) with respect to rank ω(n1/2).

For more details, see Section 4.2 (as well as Section 4.3).
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1.5 The underlying models of arithmetic circuit and AN-complexity

Underlying the two models of canonical circuits (discussed in Section 1.3 and 1.4) is a new model of
arithmetic circuits (for computing multilinear functions). Specifically, the expressions representing
the value of (the target and auxiliary) functions in terms of the values of auxiliary functions and
original variables correspond to gates in a circuit. These gates can compute arbitrary polynomials
(as long as the multilinear condition is satisfied). In the case of D-canonical circuits, the corre-
sponding arithmetic circuits have depth two (i.e., a top gate and at most one layer of intermediate
gates), whereas for ND-canonical circuits the corresponding arithmetic circuits have unbounded
depth. In both cases, the key complexity measure is the maximum between the arity of the gates

and their number.
In both cases, canonical Boolean circuits (for computing a multilinear function F ) are obtained

by presenting a Boolean circuit that emulates the computation of an arithmetic circuit (computing
F ). Specifically, the D-canonical circuits are obtained by a straightforward implementation of a
depth-two circuit that computes F by applying a function H (in the top gate) to intermediate
results computed by the intermediate gates (i.e., F = H(F1, ..., Fs), where Fi is computed by the
ith intermediate gate). The ND-canonical circuits are obtained by a Valiant-like (i.e., akin [32])
decomposition of the computation of the (unbounded depth) arithmetic circuit; that is, by guessing
and verifying the values of all intermediate gates. In both cases, the size of the resulting Boolean
circuit is exponential in the maximum between the arity of these gates the number of gates. Indeed,
this parameter (i.e., the maximum of the two measures) restricts the power of the underlying
arithmetic circuits or rather serves as their complexity measure, called AN-complexity, where “A”
stands for arity and “N” for number (of gates). Let us spell out these two models of arithmetic
circuit complexity.

The arithmetic circuits we refer to are directed acyclic graphs that are labeled by arbitrary
multilinear functions and variables of the target function (i.e., F ). These circuits are restricted
to be syntactically multilinear; that is, each gate computes a function that is multilinear in the
variables of the target function (i.e., that arguments that depend on variables in the same block
are not multiplied by such gates). Specifically, a gate that is labelled by a function Hi and is fed by
gates computing the auxiliary functions Fi1 , ..., Fim′

and m′′ original variables, denoted z1, ..., zm′′

(out of x(1), x(2), .., x(t)), computes the function

Fi(x
(1), x(2), ..., x(t)) = Hi(Fi1(x

(1), x(2), ..., x(t)), ..., Fim′
(x(1), x(2), ..., x(t)), z1, ..., zm′′ ).

This holds also for the top gate that computes F = F0. In case of depth-two circuits, the top gate
is the only gate in the circuit that may be fed by intermediate gates (and we may assume, with no
loss of generality, that it is not fed by any variable)7 As we shall see later (see, e.g., Remark 3.5),
the benefit of circuits of larger depth is that they may contain gates that are fed both by other
gates and by variables. Let us summarize this discussion and introduce some notation.

• Following [23], we say that an arithmetic circuit is multilinear if its input variables are parti-
tioned into blocks and the gates of the circuit compute multilinear functions such that if two
gates have directed paths from the same block of variables then the results of these two gates
are not multiplied together.

7Since such directly fed variables can be replaced by dummy gates that are each fed by the corresponding variable.
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• We say that the direct-composition complexity of F , denoted AN2(F ), is at most s if F can

be computed by a depth-two multilinear circuit with at most s gates that are each of arity at

most s.

• We say that the nested-composition complexity of F , denoted AN(F ), is at most s if F can be

computed by a multilinear circuit with at most s gates that are each of arity at most s.

We stress that the multilinear circuits in the foregoing definition employ arbitrary multilinear gates,
whereas in the standard arithmetic model the gates correspond to either (unbounded) addition or
multiplication. Our complexity measure is related to but different from circuit size: On the one
hand, we only count the number of gates (and discard the number of leaves, which in our setting
may be larger). On the other hand, our complexity measure also bounds the arity of the gates.

Note that for any linear function F , it holds that AN2(F ) = Θ(AN(F )), because all intermediate
gates can feed directly to the top gate (since, in this case, all gates compute linear functions).8 Also
note that AN2(F ) equals the square root of the number of variables on which the linear function
F depends. In general, AN(F ) ≥

√
tn for any t-linear function F that depends on all its variables,

and AN(F ) ≤ AN2(F ) ≤ tn for any t-linear function F . Thus, our complexity measures (for non-
degenerate t-linear functions) range between

√
tn and tn.

Clearly, F has a D-canonical (resp., ND-canonical) circuit of size exp(Θ(s)) if and only if
AN2(F ) = s (resp., AN(F ) = s). Thus, all results and open problems presented above (i.e., in
Sections 1.3 and 1.4) in terms of canonical (Boolean) circuits are actually results and open problems
regarding the complexity of (direct and nested) composition (i.e., AN2(·) and AN(·)). Furthermore,
the results are actually proved by analyzing these complexity measures. Specifically, we have:

Thm. 3.1: For every t-linear function F , it holds that AN(F ) ≤ AN2(F ) = O((tn)t/(t+1)).

Thm. 4.1: For almost all t-linear function F , it holds that AN2(F ) ≥ AN(F ) = Ω((tn)t/(t+1)).

Thm. 2.3: There exists a bilinear function F such that AN(F ) = O(
√

n) but AN2(F ) = Ω(n2/3).

We stress that the foregoing lower bounds are existential, whereas we seek ω(
√

n) lower bounds for
explicit multilinear functions. (As noted above, this initial goal was achieved by the subsequent
work of Goldreich and Tal [9], which establishes an AN(F ) = Ω̃(n2/3) for some explicit 4-linear
functions F .)

Summary and additional comments. Hence, this paper introduces and initiates a study of
a new model of arithmetic circuits and accompanying new complexity measures. The new model
consists of multilinear circuits with arbitrary multilinear gates, rather than the standard multilinear
circuits that use only addition and multiplication gates. In light of this generalization, the arity

of gates becomes of crucial importance and is indeed one of our complexity measures. Our second
complexity measure is the number of gates in the circuit, which (in our context) is significantly
different from the number of wires in the circuit (which is typically used as a measure of size). Our
main complexity measure is the maximum of these two measures (i.e., the maximum between the
arity of the gates and the number of gates in the circuit). Our initial motivation for the study of

8Doing so may increase the arity of the top gate, but this increase is upper-bounded by the number of gates. A
more general argument is presented in Remark 2.4, which asserts that if gate G computes a monomial that contains
no leaves, then this monomial can be moved up to the parent of G.
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this arithmetic model is its close relation to canonical Boolean circuits, and from this perspective
depth-two arithmetic circuits have a special appeal.

A natural question is whether our complexity measure (i.e., AN) decreases if one waives the
requirement that the arithmetic circuit be a multilinear one (i.e., the gates compute multilinear
functions and they never multiply the outcomes of gates that depend on the same block of variables).
The answer is that waiving this restriction in the computation of any t-linear function may decrease
the complexity by at most a factor of 2t (see Remark 2.5).

We note that the arithmetic models discuss above make sense with respect to any field. The
reader may verify that all results stated for AN2(·) and AN(·) hold for every field, rather than merely
for the binary field. Ditto for the open problems.

1.6 Related work

Multilinear functions were studied in a variety of models, mostly in the context of algebraic and
arithmetic complexity. In particular, Nisan and Wigderson [23] initiated a study of multilinear

circuits as a natural model for the computation of multilinear functions. Furthermore, they obtained
an exponential (in t) lower bound on the size of depth-three multilinear circuits that compute a
natural t-linear function (i.e., iterated matrix multiplication for 2-by-2 matrices).9

The multilinear circuit model was studied in subsequent works (cf., e.g., [25]); but, to the
best of our knowledge, the complexity measure introduced in Section 1.5 was not studied before.
Nevertheless, it may be the case that techniques and ideas developed in the context of the multilinear
circuit model will be useful for the study of this new complexity measure (and, equivalently, in
the study of canonical circuits). For example, it seems that the latter study requires a good
understanding of tensors, which were previously studied with focus at a different type of questions
(cf., e.g., [24]).

In the following two paragraphs we contrast our model of multilinear circuits, which refers to
arbitrary gates of arity that is reflected in our complexity measure, with the standard model of
multilinear circuits [23], which uses only addition and multiplication gates (of unbounded arity).
For the sake of clarity, we shall refer to canonical circuits rather than to our model of multilinear
circuits, while reminding the reader that the two are closely related.

The difference between the standard model of constant-depth multilinear circuit and the model
of constant-depth Boolean circuits is rooted in the fact that the (standard) multilinear circuit model
contains unbounded fan-in addition gates as basic components, whereas unbounded fan-in addition
is hard for constant-depth Boolean circuits. Furthermore, the very fact that n-way addition requires
exp(n)-size depth-two Boolean circuits is the basis of the approach that we are suggesting here. In
contrast, hardness in the multilinear circuit model is related to the total degree of the function to
be computed.10

The foregoing difference is reflected in the contrast between the following two facts: (1) multi-
linear functions of low degree have small depth-two multilinear circuits (i.e., each t-linear function
F : ({0, 1}n)t → {0, 1} can be written as the sum of at most nt products of variables), but (2) al-

9Thus, n = 4 and t is the number of matrices being multiplied.
10Concretely, the conjectured hardness of computing a multilinear function by constant-depth Boolean circuits

may stem from the number (denoted n) of variables of the same type (i.e., the variables in x(j)), even when the
arity of multiplication (denoted t) is relatively small (e.g., we even consider bilinear functions), whereas in the
multilinear circuits hardness seem to be related to t (cf., indeed, the aforementioned lower bound for iterated matrix
multiplication).
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most all such functions require depth-three Boolean circuits of subexponential size (because parity
is reducible to them). Furthermore, (2’) almost all t-linear functions require depth-three canonical

circuits of size at least exp(Ω(tn)t/(t+1)), see Theorem 4.1. Hence, in the context of low-degree mul-
tilinear functions, depth-three Boolean circuits (let alone canonical ones) are weaker than standard
(constant-depth) multilinear circuits, and so proving lower bounds for the former may be easier.

Decoupling arity from the number of gates. In a work done independently (but subsequent
to our initial posting11), Hrubes and Rao studied Boolean circuits with general gates [15]. They
decoupled the two parameters (i.e., the number of gates and their arity), and studied the asymmetric
case of large arity and a small number of gates. We refrained from decoupling these two parameters
here, since for our application their maximum is the governing parameter. Lastly, we mention that a
different relation between the arity and the number of gates is considered in a subsequent work [10]
that extends the notion of canonical circuits to constant depth d > 3.

1.7 Subsequent work

The subsequent works of Goldreich and Tal [9, 10] were already mentioned several times in the
foregoing. While [10] deals with an extension of the current models, the other work (i.e., [9])
is directly related to the current work; specifically, it resolves many of the specific open problems
suggested in this work. As done so far, we shall report of the relevant progress whenever reproducing
text (of our original work [11]) that raises such an open problem.

1.8 Various conventions

As stated up-front, throughout this paper, when we say that a function f : N→ N is exponential, we
mean that f(n) = exp(Θ(n)). Actually, exp(n) often means exp(cn), for some unspecified constant
c > 0. Throughout this paper, we restrict ourselves to the field GF(2), and all arithmetic operations
are over this field.12

Tensors. Recall that any t-linear function F : ({0, 1}n)t → {0, 1} is associated with the tensor
T ⊆ [n]t that describes its existing monomials (cf., Eq. (1)). This tensor is mostly viewed as a
subset of [n]t, but at times such a tensor is viewed in terms of its corresponding characteristic
predicate or the predicate’s truth-table; that is, T ⊆ [n]t is associated with the predicate χT :
[n]t → {0, 1} or with the t-dimensional array (χT (i1, ..., it))i1,...,it∈[n]) such that χT (i1, ..., it) = 1 iff
(i1, ..., it) ∈ T . The latter views are actually more popular in the literature, and they also justify
our convention of writing

∑
k∈[m] Tk instead of the symmetric difference of T1, ..., Tm ⊆ [n]t (i.e.,

(i1, ..., it) ∈
∑

k∈[m] Tk iff |{k ∈ [m] : (i1, ..., it) ∈ Tk}| is odd).
In the case of t = 2, the tensor (viewed as an array) is a matrix. In that case, we sometimes

denote the variable-blocks by x and y (rather than x(1) and x(2)).

1.9 Organization and additional highlights

The rest of this paper focuses on the study of the direct and nested composition complexity of
multilinear functions (and its relation to the two canonical circuit models). This study is conducted

11See ECCC TR13-043, March 2013.
12However, as stated in Section 1.5, our main results extend to other fields.
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in terms of the arithmetic model outlined in Section 1.5; that is, of multilinear circuits with general
multilinear gates and a complexity measure, termed AN-complexity, that accounts for both the
arity of these gates and their number. The basic definitional issues are discussed in Section 2,
upper bounds are presented in Section 3, and lower bounds in Section 4. These sections are the
core of the current paper.

We now highlight a few aspects that were either not mentioned in the introducion or mentioned
too briefly.

On the connection to matrix rigidity. As mentioned in Section 1.4, we show a connection
between proving lower bounds on the AN-complexity of explicit functions and matrix rigidity. In
particular, in Section 4.2, we show that AN(F 3,n

tet) = Ω(m) if there exists an n-by-n Toeplitz matrix
that has rigidity m3 with respect to rank m. This follows from Theorem 4.4, which asserts that if

T is an n-by-n matrix that has rigidity m3 for rank m, then the corresponding bilinear function F
satisfies AN(F ) > m. In Section 4.3 we show that the same holds for a relaxed notion of rigidity,
which we call structured rigidity. We also show that structured rigidity is strictly separated from
the standard notion of rigidity. All these connections were used in the subsequent work of Goldreich
and Tal [9].

On further-restricted models. In Section 5, we consider two restricted models of multilinear
circuits, which are obtained by imposing constraints on the models outlined in Section 1.5.

1. In Section 5.1, we consider circuits that compute functions without relying on cancellations.
We show that such circuits are weaker than the multilinear circuits considered in the bulk of
the paper. Specifically, we prove a Ω(n2/3) lower bound on the complexity of circuits that
compute some explicit functions (i.e., F 3,n

tet and F 2,n
had) without cancellation, whereas one of

these functions has AN-complexity Õ(
√

n (i.e., AN2(F
2,n
had) = Õ(

√
n).

2. In Section 5.2 we study a restricted multilinear model obtained by allowing only standard
addition and multiplication gates (and considering the same complexity measure as above,
except for not counting multiplication gates that are fed only by variables). While this model
is quite natural, it is quite weak. Nevertheless, this model allows to separate F t,n

all and F t,n
diag

from the “harder” F 2,n
leq .

Note that in both these restricted models, we are able to prove a non-trivial lower bound on an
explicit function.

2 Multilinear circuits with general gates

In this section we introduce a new model of arithmetic circuits, where gates may compute arbitrary
multilinear functions (rather than either addition or multiplication, as in the standard model).
Accompanying this new model is a new complexity measure, which takes into account both the
number of gates and their arity. This model (and its restriction to depth-two circuits) is presented
in Section 2.1 (where we also present a separation between the general model and its depth-two
restriction). As is clear from the introduction, the model is motivated by its relation to canonical
depth-three Boolean circuits. This relation is discussed in Section 2.2.

12



Recall that we consider t-linear functions of the form F : (GF(2)n)t → GF(2), where the
tn variables are partitioned into t blocks with n variables in each block, and F is linear in the
variables of each block. Specifically, for t and n, we consider the variable blocks x(1), x(2), ..., x(t),

where x(j) = (x
(j)
1 , ..., x

(j)
n ) ∈ GF(2)n.

2.1 The two complexity measures

We are interested in multilinear functions that are computed by composition of other multilinear
functions, and define a conservative (or syntactic) notion of linearity that refers to the way these
functions are composed. Basically, we require that this composition does not result in a polynomial
that contains terms that are not multilinear, even if these terms cancel out. Let us first spell
out what this means in terms of standard multilinear circuits that use (unbounded) addition and
multiplication gates, as defined in [23]. This is done by saying that a function is J-linear whenever
it is multilinear (but not necessarily homogeneous) in the variables that belongs to blocks in J , and
does not depend on variables of other blocks.

• Each variable in x(j) is a {j}-linear function.

• If an addition gate computes the sum
∑

i∈[m] Fi, where Fi is a Ji-linear function computed

by its ith child, then this gate computes a
(⋃

i∈[m] Ji

)
-linear function.

• If a multiplication gate computes the product
∏

i∈[m] Fi, where Fi is a Ji-linear function

computed by its ith child, and the Ji’s are pairwise disjoint, then this gate computes a(⋃
i∈[m] Ji

)
-linear function.

We stress that if the Ji’s mentioned in the last item are not pairwise disjoint, then their product

cannot be taken by a gate in a multilinear circuit.
We now extend this formalism to arithmetic circuits with arbitrary gates, which compute arbi-

trary polynomials of the values that feed into them. Basically, we require that when replacing each
gate by the corresponding depth-two arithmetic circuit that computes this polynomial as a sum of
products (a.k.a monomials), we obtain a standard multilinear circuit. In other words, we require
the following.

Definition 2.1 (multilinear circuits with general gates): An arithmetic circuit with arbitrary gates

is called multilinear if each of its gates satisfies the following condition. Suppose that a gate computes

H(F1, ..., Fm), where H is a polynomial and Fi is a Ji-linear function computed by the ith child of

this gate.13 Then, each monomial in H computes a function that is J-linear, where J is the disjoint

union of the sets Ji that define the linearity of the functions multiplied in that monomial; that is, if

for some set I ⊆ [m] this monomial multiplies Ji-linear functions for i ∈ I, then these Ji’s should

be disjoint and their union should equal J (i.e., Ji1 ∩ Ji2 = ∅ for all i1 6= i2 and
⋃

i∈I Ji = J). The

function computed by the gate is J ′-linear if J ′ is the union of all the sets that define the linearity

of the functions that correspond to the different monomials in H.

13Clearly, w.l.o.g., H is multilinear in its m inputs, since we are considering multiplication over GF(2). However,
what we consider next is not the dependency of H on its own inputs, but rather its dependency on the inputs of the
circuits as reflected in the composed function H(F1, ..., Fm). Furthermore, we do not consider this function per se,
but rather its syntactic form (before cancellations).
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Alternatively, we may require that if a gate multiplies two of its inputs (in one of the monomials
computed by this gate), then the sub-circuits computing these two inputs do not depend on variables
from the same block (i.e., the two sets of variables in the directed acyclic graphs rooted at these
two gates belong to two sets of blocks with empty intersection).

Definition 2.2 (the AN-complexity of multilinear circuits with general gates): The arity of a

multilinear circuit is the maximum arity of its (general) gates, and the number of gates counts only

the general gates and not the leaves (variables). The AN-complexity of a multilinear circuit is the

maximum between its arity and the number of its (general) gates.

• The general (or unbouded-depth or nested) AN-complexity of a multilinear function F , denoted

AN(F ), is the minimum AN-complexity of a multilinear circuit that computes F .

• The depth-two (or direct) AN-complexity of a multilinear function F , denoted AN2(F ), is the

minimum AN-complexity of a depth-two multilinear circuit that computes F .

More generally, for any d ≥ 3, we may denote by ANd(F ) the minimum AN-complexity of a depth d
multilinear circuit that computes F .

Clearly, AN2(F ) ≥ AN(F ) for every multilinear function F . For linear functions F , it holds that
AN2(F ) ≤ 2 ·AN(F ), because in this case all gates are addition gates and so, w.l.o.g., all intermediate
gates can feed directly to the top gate (while increasing its arity by at most AN(F )− 1 units). This
is no longer the case for bilinear functions; that is, there exists bilinear functions F such that
AN2(F )≫ AN(F ).

Theorem 2.3 (separating AN2 from AN): There exist bilinear functions F : (GF(2)n)2 → GF(2)
such that AN(F ) = O(

√
n) but AN2(F ) = Ω(n2/3). Furthermore, the upper bound is established by a

depth-three multilinear circuit.

The furthermore clause is no coincidence: As outlined in Remark 2.4, for every t-linear function F ,
it holds that ANt+1(F ) = O(AN(F )).

Proof: Consider a generic bilinear function g : GF(2)n+s → GF(2), where g is linear in the first
n bits and in the last s =

√
n bits. Using the fact that g is linear in the first n variables, it will

be useful to write g(x, z) as
∑

i∈[s] gi((x(i−1)s+1, ..., xis), z), where each gi is a bilinear function on

GF(2)s × GF(2)s. Define f : GF(2)2n → GF(2) such that f(x, y) = g(x,L1(y), ..., Ls(y)), where
Li(y) =

∑si
k=(i−1)s+1 yk. That is, f is obtained from g by replacing each variable zi (of g) by the

linear function Li(y); in the sequel, we shall refer to this f as being derived from g.
Clearly, AN(f) ≤ 2s + 1 by virtue of a depth-three multilinear circuit that first computes v ←

(L1(y), ...., Ls(y)) (using s gates each of arity s), then computes wi ← (gi((x(i−1)s+1, ..., xis), v) for
i ∈ [s] (using s gates of arity 2s), and finally compute the sum

∑
i∈[s] wi (in the top gate). The rest

of the proof is devoted to proving that for a random g, with high probability, the corresponding f
satisfies AN2(f) = Ω(n2/3).

We start with an overview of the proof strategy. We consider all functions f : GF(2)n ×
GF(2)n → GF(2) that can be derived from a generic bilinear function g : GF(2)n×GF(2)s → GF(2)
(by letting f(x, y) = g(x,L1(y), ..., Ls(y))). For each such function f , we consider a hypothetical
depth-two multilinear circuit of AN-complexity at most m = 0.9n2/3 that computes f . Given such
a circuit, using a suitable (random) restriction, we obtain a circuit that computes the underlying
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function g such that the resulting circuit belongs to a set containing at most 20.9sn circuits. But
since the number of possible functions g is 2sn, this means that most functions f derived as above
from a generic g do not have depth-two multilinear circuit of AN-complexity at most m = 0.9n2/3;
that is, for almost all such functions f , it holds that AN2(f) > 0.9n2/3. The actual argument follows.

Consider an arbitrary depth-two multilinear circuit of AN-complexity m that computes a generic
f (derived as above from a generic g). (We shall assume, w.l.o.g., that the top gate of this circuit is
not fed directly by any variable, which can be enforced by replacing such variables with singleton
linear functions.)14 By the multilinear condition, the top gate of this circuit computes a function
of the form

B(F1(x), ..., Fm′ (x), G1(y), ..., Gm′′ (y)) +
∑

i∈[m′′′]

Bi(x, y), (5)

where B is a bilinear function (over GF(2)m
′×GF(2)m

′′

), the Fi’s and Gi’s are linear functions, the
Bi’s are bilinear functions, and each of these functions depends on at most m variables. Further-
more, m′ + m′′ + m′′′ < m. (That is, Eq. (5) corresponds to a generic description of a depth-two
multilinear circuit of AN-complexity m that computes a bilinear function. The top gate computes
the sum of a bilinear function of m′ + m′′ intermediate linear gates and a sum of m′′′ intermediate
bilinear gates, whereas all intermediate gates are fed by variables only.)

We now consider a random restriction of y that selects at random ij ∈ {(j − 1)s + 1, ..., js} for
each j ∈ [s], and sets all other bit locations to zero. Thus, for a selection as above, we get y′ such
that y′i = yi if i ∈ {i1, ..., is} and y′i = 0 otherwise. In this case, f(x, y′) equals g(x, yi1 , ..., yis). We
now look at the effect of this random restriction on the expression given in Eq. (5).

The key observation is that the expected number of “live” y′ variables (i.e., y′i = yi) in each Bi

is at most m/s; that is, in expectation, Bi(x, y′) depends on m/s variables of the y-block. It follows
that each Bi(x, y′) can be specified by ((m + m/s) log2 n) + m2/s bits (in expectation), because
Bi(x, y′) is a bilinear form in the surviving y-variables and in at most m variables of x, whereas
such a function can be specified by identifying the variables and the bilinear form applied to them.
Hence, in expectation, the residual

∑
i Bi(x, y′) is specified by less than (2m2 log2 n)+ (m3/s) bits,

and we may pick a setting (of i1, ..., is) that yields such a description length. This means that,
no matter from which function g (and f) we start, the number of possible (functionally different)
circuits that result from Eq. (5) is at most

2m2 ·




∑

k∈[m]

(
n

k

)


m

· 2m3/s+2m2 log2 n (6)

where the first factor reflects the number of possible bilinear functions B, the second factor reflects
the possible choices of the linear functions F1, ..., Fm′ , G1, ..., Gm′′ , and the third factor reflects the
number of possible bilinear functions that can be computed by

∑
i Bi(x, y′). Note that, for m ≥

nΩ(1), the quantity in Eq. (6) is upper-bounded by 2m2+ eO(m2)+(m3/s+ eO(m2)), and for m > Õ(n1/2)
the dominant term in the exponent is m3/s. In particular, for m = 0.9n2/3, the quantity in Eq. (6)
is smaller than 21.1m3/s < 20.9sn, which is much smaller than the number of possible functions g
(i.e., 2sn). Hence, for m = 0.9n2/3, not every function f can be computed as in Eq. (5), and the
theorem follows.

14Actually, this may increase m by one unit. The reason is that if the top gate if fed by i variables, then the number
of intermediate gates in the circuit is at most m − i. So introducing intermediate singleton gates yields a depth-two
circuit with at most (m − i) + i intermediate gates.
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Digest. The proof of the lower bound of Theorem 2.3 may be decoupled into two parts pivoted
at an artificial complexity class, denoted G, that contains all functions g that have multilinear
circuits of a relatively small description (i.e., description length at most 0.9n1.5). Using the random
restriction, we show that if f has depth-two AN-complexity at most 0.9n2/3, then the underlying
g is (always) in G. The counting argument then shows that most g’s are not in G. Combining
these two facts, we conclude that most functions f (constructed based on a function g as in the
proof) have depth-two AN-complexity greater than 0.9n2/3. (A more appealing abstraction, which
requires a slightly more refined proof, is obtained by letting G contains all functions g that have
depth-two multilinear circuits of AN-complexity at most 0.9n2/3 such that each gate is fed by at
most n1/6 variables from the short block.)15

Remark 2.4 (on the depth of multilinear circuits achieving AN): In light of the above, it is natural

to study the depth of general multilinear circuits (as in Definition 2.1), and the trade-offs between

depth and other parameters (as in Definition 2.2). While this is not our primary focus here, we

make just one observation: If AN(F ) = s for any t-linear function F , then there is a depth t + 1
circuit with arity and size O(s) computing F as well; that is, for any t-linear F , it holds that

ANt+1(F ) = O(AN(F )). This observation is proved in Proposition 4.5.

Remark 2.5 (waiving the multilinear restriction): We note that arbitrary arithmetic circuits (with
general gates) that compute t-linear functions can be simulated by multilinear circuits of the same

depth, while increasing their AN-complexity measure by a factor of at most 2t. This can be done

by replacing each (intermediate) gate in the original circuit with 2t − 1 gates in the multilinear

circuit such that the gate associated with I ⊆ [t] computes the monomials that are I-linear (but not

I ′-linear, for any I ′ ⊂ I). The monomials that are not multilinear are not computed, and this is

OK because their influence must cancel out at the top gate.16 Indeed, the top gate performs the

2t− 1 computations that corresponds to the different I-linear sums, and sums-up the 2t− 1 results.

2.2 Relation to canonical circuits

As outlined in Section 1.5, the direct and nested AN-complexity of multilinear functions (i.e., AN2

and AN) are closely related to the size of D-canonical and ND-canonical circuits computing the
functions. Below, we spell out constructions of canonical circuits, which are depth-three Boolean
functions, having size that is exponential in the relevant parameter (i.e., D-canonical circuits of size
exp(AN2) and ND-canonical circuits of size exp(AN)).

Construction 2.6 (D-canonical circuits of size exp(AN2)): Let F : (GF(2)n)t → GF(2) be a t-
linear function, and consider a depth-two multilinear circuit that computes F such that the top gate

applies an m-ary polynomial H to the results of the m gates that compute F1, ..., Fm, where each

Fi is a multilinear function of at most m variables. (Indeed, we assume, without loss of generality,
that the top gate is fed by the second-level gates only, which in turn are fed by variables.)17 Then,

15The point is that this alternative class G does not refer to the “description length” but rather to the complexity
measures defined in this section. In this case, we may show that a random restriction of the type used in the original
proof leaves m/s live variables in each Gi, in expectation, just as it holds for the Bi’s. Using m = 0.9n2/3, it holds
that, with high probability, none of the gates exceeds this expectation by a factor of 1/0.9. Next, we upper-bound
the size of G, very much as done in the foregoing proof, where here the crucial fact is that each Bi has only m · n1/6

live terms, whereas m2 · n1/6 = 0.81 · n3/2.
16Here, we assume (as is standard in the area) that the cancellations must hold over any extension field of GF(2);

that is, the polynomial xi equals the polynomial (2k + 1) · xj if and only if i = j.
17Variables that feed directly into the top gate can be replaced by 1-ary identity gates.

16



the following depth-three Boolean circuit computes F .

1. Let CH be a CNF (resp., DNF) that computes H.

2. For each i ∈ [m], let Ci be a DNF (resp., CNF) that computes Fi, and let C ′
i be a DNF (resp.,

CNF) that computes 1 + Fi.

3. Compose CH with the various Ci’s and C ′
i’s such that a positive occurrence of the ith variable

of CH is replaced by Ci and a negative occurrence is replaced by C ′
i.

Collapsing the two adjacent levels of or-gates (resp., and-gates), yields a depth-three Boolean

circuit C.

The derived circuit C is said to be D-canonical, and a circuit is said to be D-canonical only if it can

be derived as above.

Clearly, C computes F and has size exponential in m. In particular, we have

Proposition 2.7 (depth-three Boolean circuits of size exp(AN2)): Every multilinear function F
has depth-three Boolean circuits of size exp(AN2(F )).

It turns out that the upper bound provided in Proposition 2.7 is not tight; that is, D-canonical cir-
cuits do not provide the smallest depth-three Boolean circuits for all multilinear functions. In partic-
ular, there exists multilinear functions that have depth-three Boolean circuits of size exp(AN2(F )3/4).
This follows by combining Theorem 2.3 and Proposition 2.9, where Theorem 2.3 asserts that
for some bilinear functions F it holds that AN(F ) = O(

√
n) = O(n2/3)3/4 = O(AN2(F ))3/4, and

Proposition 2.9 asserts that every multilinear function F has depth-three Boolean circuits of size
exp(AN(F )). The latter is proved by using ND-canonical circuits, which leads us to their general
construction.

Construction 2.8 (ND-canonical circuits of size exp(AN)): Let F : (GF(2)n)t → GF(2) be a t-
linear function, and consider a multilinear circuit that computes F such that the each of the m
gates applies an m-ary polynomial Hi to the results of prior gates and some variables, where H1

corresponds to the polynomial applied by the top gate. Consider the following depth-three Boolean

circuit that computes F .

1. For each i ∈ [m] and σ ∈ GF(2), let Cσ
i be a CNF that computes Hi + 1 + σ. That is, Cσ

i

evaluates to 1 iff Hi evaluate to σ.

2. For each v
def
= (v1, v2, ..., vm) ∈ GF(2)m, let

Cv(x
(1), ..., x(t)) =

∧

i∈[m]

Cvi
i (Πi,1(x

(1), ..., x(t), v), ...,Πi,m(x(1), ..., x(t), v)),

where the Πi,j’s are merely the projection functions that describe the routing in the multilinear

circuit; that is, Πi,j(x
(1), ..., x(t), v)) = vk if the jth input of gate i is fed by gate k and

Πi,j(x
(1), ..., x(t), v)) = x

(ℓ)
k if the jth input of gate i is fed by the kth variable in the ℓth

variable-block (i.e., the variable x
(ℓ)
k ).

Indeed, each Cv is a CNF of size Õ(2m).
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3. We obtain a depth-three Boolean circuit C by letting

C(x(1), ..., x(t)) =
∨

(v2,...,vm)∈GF(2)m−1

C(1,v2,...,vm)(x
(1), ..., x(t))

Hence, C has size 2m−1 · Õ(2m).

The derived circuit C is said to be ND-canonical, and a circuit is said to be ND-canonical only if it

can be derived as above.

Note that C(x(1), ..., x(t)) = 1 if and only if there exists v = (v1, v2, ..., vm) ∈ GF(2)m such that
v1 = 1 and for every i ∈ [m] it holds that Hi(Πi,1(x

(1), ..., x(t), v), ...,Πi,m(x(1), ..., x(t), v)) = vi. For
this choice of v, the vi’s represent the values computed in the original arithmetic circuit (on an
input that evaluates to 1), and it follows that C computes F . Clearly, C has size exponential in
m. In particular, we have

Proposition 2.9 (depth-three Boolean circuits of size exp(AN)): Every multilinear function F has

depth-three Boolean circuits of size exp(AN(F )).

A key question is whether the upper bound provided in Proposition 2.9 is tight. The answer
depends on two questions: The main question is whether smaller depth-three Boolean circuits can
be designed by deviation from the construction paradigm presented in Construction 2.8. The second
question is whether the upper bound of exp(m) on the size of the depth-two Boolean circuits used
to compute m-ary polynomials (of degree at most t) is tight. In fact, it suffices to consider t-linear
polynomials, since only such gates may be used in a multilinear circuit.

The latter question is addressed in [11, Apdx C.1], where it is shown that any t-linear function
that depends on m variables requires depth-two Boolean circuits of size at least exp(Ω(exp(−t)·m)).
(Interestingly, this lower bound is tight; that is, there exist t-linear functions that depends on m
variables and have depth-two Boolean circuits of size at most exp(O(exp(−t) ·m)).) Conjecturing
that the main question has a negative answer, this leads to the following conjecture.

Conjecture 2.10 (AN yields lower bounds on the size of general depth-three Boolean circuits): No

t-linear function F : (GF(2)n)t → GF(2) can be computed by a depth-three Boolean circuit of size

smaller than exp(Ω(exp(−t) · AN(F )))/poly(n).

When combined with adequate lower bounds on AN (e.g., Theorem 4.1), Conjecture 2.10 yields
size lower bounds of the form exp(Ω(exp(−t) · nt/(t+1))), which yields exp(n1−o(1)) for t =

√
log n.

Furthermore, in some special cases (see [11, Apdx C.3]), multilinear functions that depends on m
variables requires depth-two Boolean circuits of size at least exp(Ω(m)). This suggests making a
bolder conjecture, which allows using larger values of t.

Conjecture 2.11 (Conjecture 2.10, stronger form for special cases): None of the multilinear func-

tions F ∈ {F t,n
tet, F

t,n
mod p : p ≥ 2} (see Eq. (3) and Eq. (4), resp.) can be computed by a depth-three

Boolean circuit of size smaller than exp(Ω(AN(F )))/poly(n). The same holds for almost all t-linear

functions.

When combined with adequate lower bounds on AN (e.g., Theorem 4.1), Conjecture 2.11 yields size
lower bounds of the form exp(Ω((tn)t/(t+1))), which for t = log n yields exp(Ω(tn)).

The authors are in disagreement regarding the validity of Conjecture 2.10 (let alone Conjec-
ture 2.11), but agree that also refutations will be of interest.
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3 Upper Bounds

In Section 3.1 we present a generic upper bound on the direct AN-complexity of any t-linear
function; that is, we show that AN2(F ) = O((tn)t/(t+1)), for every t-linear function F . This bound,
which is obtained by a generic construction, is the best possible for almost all multilinear functions
(see Theorem 4.1). Obviously, one can do better in some cases, even when this may not be obvious
at first glance. In Section 3.2, we focus on two such cases (i.e., F t,n

leq and F 2,n
mod p).

3.1 A generic upper bound

The following upper bound on the AN-complexity of multilinear circuits that compute a generic
t-linear function is derived by using a depth-two circuit with a top gate that computes addition
(i.e., a linear function). This implies that the intermediate gates in this curcuit, which are fed
by variables only, must all be t-linear gates. While the overall structure of the circuit is oblivious
of the t-linear function that it computes, the latter function determines the choice of the t-linear
gates.

Theorem 3.1 (an upper bound on AN2(·) for any multilinear function): Every t-linear function

F : (GF(2)n)t → GF(2) has D-canonical circuits of size exp(O(tn)t/(t+1)); that is, AN2(F ) =
O((tn)t/(t+1)).

Proof: We partition [n]t into m equal-sized subcubes such that the number of subcubes (i.e.,
m) equals the number of variables that correspond to each subcube (i.e., t · t

√
nt/m); that is, the

side-length of each subcubes is ℓ
def
= n/m1/t and m is selected such that m = t · ℓ. We then

write the tensor that corresponds to F as a sum of tensors that are each restricted to one of the
aforementioned subcubes. Details follow.

We may assume that t = O(log n), since the claim holds trivially for t = Ω(log n). Partition [n]t

into m cubes, each having a side of length ℓ = (nt/m)1/t = n/m1/t; that is, for k1, ..., kt ∈ [n/ℓ],
let Ck1,...,kt = Ik1 × · · · × Ikt , where Ik = {(k − 1)ℓ + j : j ∈ [ℓ]}. Clearly, [n]t is covered by this
collection of ((n/ℓ)t = m) cubes, and the sum of the lengths of each cube is tℓ. Let T be the tensor
corresponding to F . Then,

F (x(1), ..., x(t)) =
∑

k1,...,kt∈[n/ℓ]

Fk1,...,kt(x
(1), ..., x(t))

where Fk1,...,kt(x
(1), ..., x(t)) =

∑

(i1,...,it)∈T∩Ck1,...,kt

x
(1)
i1
· · · x(t)

it
.

Each Fk1,...,kt is computed by a single [t]-linear gate of arity t · ℓ, and it follows that AN2(F ) ≤
max(tℓ,m+1), since (n/ℓ)t = m. Using m = tℓ and recalling that ℓ = n/m1/t, we get AN2(F ) ≤ m+1

and m/t = n/m1/t, which yields AN2(F ) = O((tn)t/(t+1)), since m = (tn)
1

1+(1/t) .

3.2 Improved upper bounds for specific functions (e.g., F
t,n
leq)

Clearly, the generic upper bound can be improved upon in many special cases. Such cases in-
clude various t-linear functions that are easily reducible to linear functions. Examples include

(1) F t,n
all(x

(1), ..., x(t)) =
∑

i1,...,it∈[n] x
(1)
i1
· · · x(t)

it
=

∏
j∈[t]

∑
i∈[n] x

(j)
i and (2) F t,n

diag(x
(1), ..., x(t)) =
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∑
i∈[n] x

(1)
i · · · x

(t)
i . Specifically, we can easily get AN2(F

t,n
all) ≤ t

√
n + 1 and AN2(F

t,n
diag) ≤ t

√
n. In

both cases, the key observation is that each n-way sum can be written as a sum of
√

n functions
such that each function depends on

√
n of the original arguments. Furthermore, in both cases, we

could derive (depth-three) multilinear formulae of AN-complexity t
√

n + 1 that use only (
√

n-way)
addition and (t-way) multiplication gates.18 While such simple multilinear formulae do not exist
for F 2,n

leq (see Section 5.2), the full power of (depth-two) multilinear circuits with general gates yields

AN2(F
2,n
leq) = O(

√
n); that is, as in the proof of Theorem 3.1, the following conmstruction also uses

general multilinear gates.

Proposition 3.2 (an upper bound on AN2(F
2,n
leq)): The bilinear function F 2,n

leq (of Eq. (2)) has

D-canonical circuits of size exp(O(
√

n)); that is, AN2(F
2,n
leq) = O(

√
n).

Proof: Letting s
def
=
√

n, we are going to express F 2,n
leq as a polynomial in 3s functions, where each

of these functions depends on O(s) variables. The basic idea is to partition [n]2 into s2 squares of
the form Si,j = [(i − 1)s + 1, is] × [(j − 1)s + 1, js], and note that

⋃
i<j Si,j ⊂ T 2,n

leq ⊂
⋃

i≤j Si,j.

Thus, F 2,n
leq can be computed by computing separately the contribution of the diagonal squares and

the contribution of the squares that are off the diagonal. The contribution of the square Si,i can
be computed as a function of the 2s variables that correspond to it, while the contribution of each
off-diagonal square can be computed as the product of the corresponding sum of x(1)-variables and
the corresponding sum of x(2)-variables. Thus, the contribution of each diagonal square will be
computed by a designated bilinear gate, whereas the contribution of the off-diagonal squares will
be computed by the top gate (which is fed by 2s linear gates, each computing the sum of s variables,
and computes a suitable bilinear function of these 2s sums). Details follow.

• For every i ∈ [s], let Qi(x
(1), x(2)) =

∑
(j1,j2)∈T 2,s

leq

x
(1)
(i−1)s+j1

· x(2)
(i−1)s+j2

, which means that

Qi(x
(1), x(2)) only depends on x

(1)
(i−1)s+1, ..., x

(1)
is and x

(2)
(i−1)s+1, ..., x

(2)
is .

Indeed, Qi(x
(1), x(2)) computes the contribution of the ith diagonal square (i.e., Si,i). In

contrast, the following linear functions will be used to compute the contribution of the off-
diagonal squares.

• For every i ∈ [s], let Li(x
(1)) =

∑
j∈[s] x

(1)
(i−1)s+j , which means that Li(x

(1)) only depends on

x
(1)
(i−1)s+1, ..., x

(1)
is .

• For every i ∈ [s], let L′
i(x

(2)) =
∑

j∈[s] x
(2)
(i−1)s+j .

Observing that

F 2,n
leq(x

(1), x(2)) =
∑

i∈[s]

Qi(x
(1), x(2)) +

∑

1≤i<j≤s

Li(x
(1)) · L′

j(x
(2)), (7)

the claim follows. Specifically, we use intermediate gates that compute the Qi’s, Li’s and L′
j’s (and

let the top gate compute their combination (per Eq. (7))).

We turn to another bilinear function, the function F 2,n
mod p, where F t,n

mod p is defined in Eq. (4).

18Depth-two circuits can be derived by combining the t-way multiplication gate with the
√

n-way addition gates
feeding it (resp., each

√
n-way addition gate with the t-way multiplication gate feeding it).
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Proposition 3.3 (an upper bound on AN2(F
2,n
mod p)): For every p and n, the bilinear function F 2,n

mod p

has D-canonical circuits of size exp(O(
√

n)); that is, AN2(F
2,n
mod p) = O(

√
n).

Proof: Let s =
√

n, and let’s consider first the case p ≤ s. For every r ∈ Zp, consider the functions

Lr(x
(1)) =

∑
i≡r (mod p) x

(1)
i and L′

r(x
(2)) =

∑
i≡r (mod p) x

(2)
i . Then,

F 2,n
mod p(x

(1), x(2)) =
∑

r∈Zp

Lr(x
(1)) · L′

p−r(x
(2)).

Each of the foregoing p ≤ s linear functions depend on n/p variables, which is fine if p = Ω(s).
Otherwise (i.e., for p = o(s)), we replace each linear function by ⌈n/ps⌉ auxiliary functions (in
order to perform each n/p-way summation), which means that in total we have 2p · ⌈n/ps⌉ = O(s)

functions (each depending on n/p
⌈n/ps⌉ ≤ s variables). Then, the top gate just computes the suitable

(biliear) combination of these O(s) linear functions.
In the case of p > s, we face the opposite problem; that is, we have too many linear functions,

but each depends on n/p < s variables. So we just group these functions together; that is, for a
partition of Zp to s equal parts, denoted P1, ..., Ps, we introduce s functions of the form

Qi(x
(1), x(2)) =

∑

r∈Pi




∑

j≡r (mod p)

x
(1)
j


 ·




∑

j≡p−r (mod p)

x
(2)
j




for every i ∈ [s]. Clearly, F 2,n
mod p(x

(1), x(2)) =
∑

i∈[s] Qi(x
(1), x(2)), and each Qi depends on 2 · ⌈p/s⌉ ·

⌈n/p⌉ = O(s) variables.

Finally, we turn to t-linear functions with t > 2. Specifically, we consider the t-linear function F t,n
leq

(of Eq. (2)), focusing on t ≥ 3.

Proposition 3.4 (an upper bound on AN2(F
t,n
leq)): For every t, it holds that AN2(F

t,n
leq) = O(exp(t) ·√

n).

Proof: The proof generalizes the proof of Proposition 3.2, and proceeds by induction on t. We

(again) let s
def
=
√

n and partition [n]t into st cubes of the form Ck1,...,kt = Ik1 × · · · × Ikt , where
Ik = {(k−1)s+ j : j ∈ [s]}. Actually, we prove an inductive claim that refers to the simultaneously

expressibility of the functions F
t,[(k−1)s+1,n]
leq for all k ∈ [s], where

F
t,[i,n]
leq (x(1), ..., x(t))

def
=

∑

(i1,...,it)∈T t,n
leq : i1≥i

x
(1)
i1
· · · x(t)

it
. (8)

Indeed, F t,n
leq = F

t,[1,n]
leq . The inductive claim, indexed by t ∈ N, asserts that the functions

F
t,[(k−1)s+1,n]
leq , for all k ∈ [s], can be expressed as polynomials in t2t · s multilinear functions

such that each of these functions depends on t · s variables. The base case (of t = 1) follows easily

by using the s functions Li(x
(1)) =

∑
j∈[s] x

(1)
(i−1)s+j .

In the induction step, for every j ∈ [t], define Tj
def
= {(k1, ..., kt) ∈ T t,s

leq : k1 = kj < kj+1}, where

kt+1
def
= s + 1. Note that, for every k ∈ [s], the elements of T

t,[(k−1)s+1,n]
leq are partitioned according
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to these Tj ’s; that is, each (i1, ..., it) ∈ T
t,[(k−1)s+1,n]
leq uniquely determines j ∈ [t] and k1 ∈ [k, n]

such that (i1, ..., ij) ∈ Ik1 × · · · × Ik1 and (ij+1, ..., it) ∈ T
t−j,[k1s+1,n]
leq . Thus, for every k ∈ [s], it

holds that

F
t,[(k−1)s+1,n]
leq (x(1), ..., x(t)) =

∑

j∈[t−1]

∑

k1≥k

P
(j)
k1

(x(1), ..., x(j)) · F t−j,[k1s+1,n]
leq (x(j+1), ..., x(t))

where P
(j)
k1

(x(1), ..., x(j))
def
=

∑

(i1,...,ij)∈(T j,n
leq ∩(Ik1

)j )

x
(1)
i1
· · · x(j)

ij
.

It follows that all F
t,[(k−1)s+1,n]
leq ’s are simultaneously expressed in terms of (t − 1) · s new func-

tions (i.e., the P
(j)
k1

’s), each depending on at most t · s inputs, and (t − 1) · s functions (i.e., the

F
t−j,[k1s+1,n]
leq ’s) that by the induction hypothesis can be expressed using

∑
j∈[t−1](t − j)2t−j · s

multilinear functions (although with different variable names for different j’s).19 So, in total, we

expressed all F
t,[(k−1)s+1,n]
leq ’s using less than ts+

∑
j∈[t−1](t− j)2t−j ·s functions, each depending on

at most ts variables. Noting that ts+
∑

j∈[t−1](t−j)2t−j ·s is upper-bounded by t2ts, the induction

claim follows. This establishes that AN(F t,n
leq) ≤ t2t · √n.

In order to prove AN2(F
t,n
leq) ≤ t2t · √n, we take a closer look at the foregoing expressions.

Specifically, note that all F
t,[(k−1)s+1,n]
leq are expressed in terms of t2ts functions such that each

function is either a polynomial in the input variables or another function of the form F
t−j,[k1s+1,n]
leq .

In terms of multilinear circuits, this means that each gate is fed either only by variables or only by
other gates (rather than being fed by a mix of both types). It follows that the top gate is a function
of all gates that are fed directly by variables only, and so we can obtain a depth-two multilinear
circuit with the same (or even slightly smaller) number of gates and the same (up to a factor of 2)
gate arity.

Remark 3.5 (circuits having no mixed gates yield depth-two circuits): The last part of the proof

of Proposition 3.4 relied on the fact that if no intermediate gate of the circuit is fed by both variables

and other gates, then letting all intermediate gates feed directly to the top gate yields a depth-two

circuit of AN-complexity that is at most twice the AN-complexity of the original circuit. As can

be seen in the proof of Theorem 2.3, the benefit of feeding a gate by both intermediate gates and

varaibles is that it may multiply these two types of inputs. Such a mixed gate, which may apply an

arbitrary multilinear function to its inputs, can be split into two non-mixed gates only if it sums a

function of the variables and a function of the other gates. It is also not feasible to feed the top

gate with all variables that are fed to mixed gates, becuase this may square the AN-complexity.

4 Lower Bounds

We believe that the generic upper bound established by Theorem 3.1 (i.e., every t-linear function
F satisfies AN(F ) ≤ AN2(F ) = O((tn)t/(t+1)) is tight for many explicit functions. However, we were

19By the induction hypothesis, for every t′ ∈ [t− 1], we can express the functions F
t−t′,[(k−1)s+1,n]
leq (x(1), ..., x(t−t′))

for all k ∈ [s], but here we need the functions F
t−t′,[(k−1)s+1,n]
leq (x(t′+1), ..., x(t)). Still, these are the same functions,

we just need to change the variable names in the expressions.
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only able to show that almost all multilinear functions have a lower bound that meets this upper
bound. This result is presented in Section 4.1, whereas in Section 4.2 we present an approach
towards proving such lower bounds for explicit functions.

Before proceeding to these sections, we comment that it is easy to see that the n-way Parity
function Pn has AN-complexity at least

√
n. Of course, AN(Pn) = Ω(

√
n) follows by combining

Proposition 2.9 with either [12] or [14], but the foregoing proof is much simpler (to say the least)
and yields a better constant in the Ω-notation.

4.1 On the AN-complexity of almost all multilinear functions

Theorem 4.1 (a lower bound on the AN-complexity of almost all t-linear functions): For all

t = t(n), almost all t-linear functions F : (GF(2)n)t → GF(2) satisfy AN(F ) = Ω(tnt/(t+1)).
Furthermore, such a t-linear function can be found in exp(nt) time.

Combined with Theorem 3.1, it follows that almost all t-linear functions satisfy AN(F ) = Θ(tnt/(t+1)).
Here (and elsewhere), we use the fact that tt/(t+1) = Θ(t).

Proof: For m > t
√

n to be determined at the end of this proof, we upper bound the fraction of
t-linear functions F that satisfy AN(F ) ≤ m. Each such function F is computed by a multilinear
circuit with at most m gates, each of arity at most m. Let us denote by Hi the function computed
by the ith gate.

Recall that each of these polynomials (i.e., Hi’s) is supposed to compute a [t]-linear function.
We shall only use the fact that each Hi is t-linear in the original variables and in the other gates
of the circuit; that is, we can label each gate with an integer i ∈ [t] (e.g., i may be an block of
variables on which this gate depends) and require that functions having the same label may not be
multiplied nor can they be multiplied by variables of the corresponding block.

Thus, each gate specifies (1) a choice of at most m original variables, (2) a t-partition of the
m auxiliary functions, and (3) a t-linear function of the m variables and the m auxiliary function.
(Indeed, this is an over-specification in many ways.)20 Thus, the number of such choices is upper-
bounded by (

tn

m

)
· tm · 2((2m/t)+1)t

(9)

where ((2m/t) + 1)t is an upper bound on the number of monomials that may appear in a t-linear
function of 2m variables, which are partitioned into t blocks.21 Note that Eq. (9) is upper bounded
by exp((m/t)t + m log tn) = exp((m/t)t), where the equality is due to m > t

√
n > t log n and t ≥ 2

(as we consider here).
It follows that the number of functions that can be expressed in this way is exp((m/t)t)m, which

equals exp(mt+1/tt). This is a negligible fraction of the number (i.e., 2nt
) of t-linear functions over

(GF(2)n)t, provided that mt+1/tt ≪ nt, which does hold for m ≤ c · (tn)t/(t+1)), for some c > 0.
The main claim follows.

20For starters, we allowed each gate to be feed by m original variables and m auxiliary functions, whereas the arity
bound is m. Furthermore, we allowed each gate to be fed by all other gates, whereas the circuit should be acyclic.
Moreover, the choice of the t-partition can be the same for all gates, let alone that the various t-partitions must be
consistent among gates and adheres to the multilinearity condition of Definition 2.1.

21Denoting by mj the number of variables and/or gates that belong to the jth block, the number of possible
monomials is

Q

j∈[t](mj + 1), where in our case
P

j∈[t] mj ≤ 2m.
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The furthermore claim follows by observing that, as is typically the case in counting arguments,
both the class of admissible functions and the class of computable functions (or computing devices)
are enumerable in time that is polynomial in the size of the class. Moreover, the counting argument
asserts that the class of t-linear functions is the larger one (and it is also larger than 2tn, which
represents the number of possible inputs to each such function).

Open problems. The obvious problem that arises is proving similar lower bounds for some
explicit multilinear functions. In the original version of this work [11], we suggrested the following
“modest start”:

Problem 4.2 (the first goal regarding lower bounds regarding AN): Prove that AN(F ) = Ω((tn)c)
for some c > 1/2 and some explicit multilinear function F : (GF(2)n)t → GF(2).

This challenge was met by Goldreich and Tal [9], who showed that AN(F 3,n
tet) = Ω(n0.6) and that

AN(F ) = Ω̃(n2/3) holds for some explicit 4-linear F . Referring to Problem 4.2, their work leaves
open the case of t = 2 (for any c > 1/2) as well as obtaining c > 2/3 (for any t > 2). The more
ambitious goal set in [11] remains far from reach, since the techniques of [9] (which are based on
the “rigidity connection” made in Section 4.2) cannot yield c > 2/3.

Problem 4.3 (the ultimate goal regarding lower bounds regarding AN): For every t ≥ 2, prove

that AN(F ) = Ω((tn)t/(t+1)) for some explicit t-linear function F : (GF(2)n)t → GF(2). Ditto when

t may vary with n, but t ≤ poly(n).

Actually, a lower bound of the form AN(F ) = Ω((tn)ǫt/(ǫt+1)), for some fixed constant ǫ > 0, will
also allow to derive exponential lower bounds when setting t = O(log n).

4.2 The AN-complexity of bilinear functions and matrix rigidity

In this section we show that lower bounds on the rigidity (i.e., Valiant’s matrix rigidity) of matrices
yield lower bounds on the AN-complexity of bilinear functions associated with these matrices. We
then show that even lower bounds for non-explicit matrices (e.g., generic Toeplitz (or circulant)
matrices) would yield lower bounds for explicit trilinear functions, specifically, for our candidate
function F 3,n

tet (of Eq. (3)).
Let us first recall the definition of matrix rigidity (as defined by Valiant [31] and surveyed

in [19]). We say that a matrix A has rigidity d for target rank r if every matrix of rank at most r
disagrees with A on more than d entries. Although matrix rigidity problems are notoriously hard, it
seems that they were not extensively studied in the range of parameters that we need (i.e., rigidity
ω(n3/2) for rank ω(n1/2)).22 Anyhow, here is its basic connection to our model.

Theorem 4.4 (reducing AN-complexity lower bounds to matrix rigidity): If T is an n-by-n matrix

that has rigidity m3 for rank m, then the corresponding bilinear function F satisfies AN(F ) > m.

22Added in Revision: Interestingly, a subsequent work of Dvir and Liu [3, 4] shows that no Toeplitz matrix is
rigid in the Valiant range of parameters. Specifically, they show that, for any constant c > 1, no Toeplitz matrix
has rigidity nc with respect to rank n/ log n (see [4], which builds upon [3]). In contrast, the subsequent work of

Goldreich and Tal [9] shows that almost all Toeplitz matrix have rigidity eΩ(n3) with respect to rank r ∈ [
√

n, n/32].
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In particular, if there exists an n-by-n Toeplitz matrix that has rigidity m3 for rank m, then the

corresponding bilinear function F satisfies AN(F ) > m.

Proof: As a warm-up, we first prove that AN2(F ) > m; that is, we prove a lower bound referring
to depth-two multilinear circuits rather than to general multilinear circuits. Suppose towards the
contradiction that AN2(F ) ≤ m, and consider the multilinear circuit that guarantees this bound.
Without loss of generality,23 it holds that F (x, y) = H(F1(x, y), ..., Fm−1(x, y)), where H is com-
puted by the top gate and Fi is computed by its ith child. W.l.o.g, the first m′ functions (Fi’s)
are quadratic functions whereas the others are linear functions (in either x or y). Furthermore,
each Fi depends on at most m variables. Since H(F1(x, y), ..., Fm−1(x, y)) is a syntactically bilinear
polynomial (in x and y), it follows that it has the form

∑

i∈[m′]

Qi(x, y) +
∑

(j1,j2)∈P

Lj1(x)Lj2(y), (10)

where P ⊂ [m′ + 1,m′′] × [m′′ + 1,m − 1] (for some m′′ ∈ [m′ + 1,m − 2]) and each Qi and Lj

depends on at most m variables. (Indeed, the same form was used in the proof of Theorem 2.3 (see
Eq. (5)).) Furthermore, each of the Lj’s is one of the auxiliary functions Fi’s, which means that
the second sum (in Eq. (10)) depends on at most m− 1 different (linear) functions.

The key observation is that bilinear functions correspond to matrices; that is, the bilinear func-
tion B : GF(2)n+n → GF(2) corresponds to the n-by-n matrix M such that the (k, ℓ)th entry of M
equals 1 if and only if the monomial xkyℓ is included in B(x, y) (i.e., iff B(0k−110n−k, 0ℓ−110n−ℓ) =
1).24 Now, observe that the matrix that corresponds to the first sum in Eq. (10) has less than
m3 one-entries (since the sum of the Qi’s depends on at most m′ ·m2 < m3 variables), whereas
the matrix that corresponds to the second sum in Eq. (10) has rank at most m − 1 (since the
sum

∑
(j1,j2)∈P Lj1Lj2 , viewed as

∑
j1∈[m−1] Lj1 ·

∑
j2:(j1,j2)∈P Lj2, corresponds to the sum of m− 1

rank-1 matrices).25 But this contradicts the hypothesis that T has rigidity m3 for rank m, and so
AN2(F ) > m follows.

Turning to the actual proof (of AN(F ) > m), which refers to multilinear circuits of arbitrary
depth, we note that in the bilinear case the benefit of depth is very limited. This is so because
nested composition is beneficial only when it involves occurrence of the original variables (since
terms that are product of auxiliary functions only can be moved from the expression for Fi to the
expressions that use Fi; cf., Remark 3.5). In particular, without loss of generality, linear Fi’s may
be expressed in terms of the original variables only, whereas quadratic Fi’s are expressed in terms
of the original variables and possibly linear Fi’s (since products of linear Fi’s can be moved to the
top gate). Thus, the expression for F (x, y) is as in Eq. (10), except that here for every (j1, j2) ∈ P
either Lj1 or Lj2 is one of the auxiliary functions Fi’s (whereas the other linear function may be
arbitrary).26 This suffices for completing the argument. Details follow.

Suppose towards the contradiction that AN(F ) ≤ m, and consider a multilinear circuit that
supports this bound. Each of the m′ ≤ m gates in this circuit computes a bilinear (or linear)

23As in Construction 2.6, we may replace variables that feed directly into the top gate by 1-ary identity gates.
That is, if F (x, y) = H(F1(x, y), ..., Fm′(x, y), zm′+1..., zm−1), where each zi belongs either to x or to y, then we let
F (x, y) = H(F1(x, y), ..., Fm−1(x, y)), where Fi(x, y) = zi for every i ∈ [m′ + 1, m − 1].

24In terms of Eq. (1), letting T denote the set of one-entries of M , it holds that B(x, y) =
P

(k,ℓ)∈T xkyℓ.
25That is, letting L′

j(y) =
P

j2:(j,j2)∈P Lj2 (y), we consider the sum
P

j1∈[m−1] Lj1 (x) · L′

j1 (y), and note that each

term corresponds to a rank-1 matrix (i.e., the (k, ℓ)th entry of the jth
1 matrix equals Lj1(0k−110n−k) ·L′

j1 (0ℓ−110n−ℓ)).
26Actually, we can combine all products that involve Fi, see below.
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function of its feeding-inputs, which are a possible mix of (up to m) original variables and (up
to m − 1) outputs of other gates. This bilinear (or linear) function of the feeding-inputs can be
expressed as a sum of monomials of the following three types, where Fi denotes the auxiliary
function computed by the ith internal gate (and F0 = F is the function computed by the top gate).

1. Mixed monomials that consist of the product of a linear auxiliary function (i.e., an Fj) and an
original variable. Such monomials cannot exist in the computation of linear functions.

2. Monomials that consist only of auxiliary functions Fj ’s: Such a monomial may be either a single
bilinear (or linear) function or a product of two linear functions.27

Without loss of generality, such monomials exist only in the computation of the top gate (and
not in the computation for any other gate), because the computation of such monomials can
be moved from the current gate to all gates fed by this gate (without effecting the number
of variables that feed directly to these gates). Note that the arity of gates in the resulting
circuit is at most m + m, where one term is due to the number of variables that feed directly
into the gate and the other term is due to the total number of gates in the circuit.

For example, if the monomial Fk(x)Fℓ(y) appears in the expression computed by the jth

internal gate (which computes Fj(x, y)) that feeds the ith gate (which computes Fi(x, y)),
where possiblly i = 0 (i.e., the jth gate feeds the top gate), then we can remove the monomial
FkFℓ from Fj and add it to Fi, which may require adding Fk and Fℓ to the list of gates (or
rather functions) that feed Fi. Ditto if Fk(x, y) is a monomial of Fj . The process may be
repeated till no internal gate contains a monomial that consists only of auxiliary functions.

3. Monomials that contain only original variables. Each quadratic (resp., linear) function computed
by any gate has at most m2 (resp., m) such monomials.

Hence, we obtain the general form for the computations of the top gate (which computes F ) and
the intermediate gates (which compute the auxiliary functions Fi’s):

F (x, y) =
∑

(k,ℓ)∈P0,1

Fk(x)yℓ +
∑

(k,ℓ)∈P0,2

xkFℓ(y)

+
∑

i∈S

Fi(x, y) +
∑

(i,j)∈P3

Fi(x)Fj(y) +
∑

(i,j)∈P0,4

xiyj

Fi(x, y) =
∑

(k,ℓ)∈Pi,1

Fk(x)yℓ +
∑

(k,ℓ)∈Pi,2

xkFℓ(y) +
∑

(k,j)∈Pi,4

xkyj

Fi(z) =
∑

k∈Si

zk

where the P ’s are subsets of [m]2 (resp., the S’s are subsets of [m]), and the Fi’s (of arity at most
2m) replace the original Fi’s (per the ‘w.l.o.g.”-cluase of Item 2). Indeed, as asserted in Item 2,
only the top gate contains monomials that are either auxiliary bilinear functions (corresponding to
S) or products of auxiliary linear functions (corresponding to P3).

Summing together all mixed monomials, regardless of the gate to which they belong, we obtain
at most m − 1 quadratic forms, where each quadratic form is the product of one of the auxiliary

27Since, as argued next, such monomials exist only in the top gate, it follows that (w.l.o.g.) they cannot be a single
linear function, because the top gate must compute a homogeneous polynomial of degree 2.
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(linear) functions Fi and a linear combination (of an arbitrary number) of the original variables.
Let us denote this sum by σ1; that is,

σ1 =
∑

i∈{0,1,...,m−1}




∑

(k,ℓ)∈Pi,1

Fk(x)yℓ +
∑

(k,ℓ)∈Pi,2

xkFℓ(y)




=
∑

k

Fk(x) ·
∑

i

∑

ℓ:(k,ℓ)∈Pi,1

yℓ +
∑

ℓ

Fℓ(y) ·
∑

i

∑

k:(k,ℓ)∈Pi,2

xk

Adding to this sum (i.e., σ1) the sum, denoted σ2, of all monomials (computed by the top gate)
that are a product of two linear Fi’s (i.e., σ2 =

∑
(i,j)∈P3

Fi(x)Fj(y)), we still have at most m −
1 quadratic forms that are each a product of one of the auxiliary (linear) functions Fi and a
linear combination of the original variables. (This uses the fact that Fi · Fj may be viewed as a
product of Fi and the linear combination of the original variables given by the expression for Fj .)
These sums leave out the monomials that are a product of two original varaibles (i.e., the sum∑

i∈{0,1,...,m−1}

∑
(k,j)∈Pi,4

xkyj). We stress that sum
∑

i∈S Fi(x, y) is not included here, since the

monomials computed by these Fi’s are already accounted by one of the foregoing three types (i.e.,
they either appear in the sum σ1 + σ2 or were left out as products of two variables).

Let T ′ denote matrix that corresponds to the F ′ = σ1 + σ2. Note that T ′ has rank at most
m − 1 (since it is the sum of at most m − 1 rank-1 matrices, which correspond to the prod-
ucts of the different linear Fi’s with arbitrary linear functions). Lastly, note that F − F ′ equals∑

i∈{0,1,...,m−1}

∑
(k,j)∈Pi,4

xkyj , which means that T ′ differs from T on at most m3 entries. (Actu-

ally, the disagreement is smaller, since |Pi,4| ≤ maxm′∈[m−1]{m′ · (m−m′) ≤ (m/2)2.) This implies
that T = T ′ + (T − T ′) does not have rigidity m3 for rank m, and the claim follows.

A short detour. Before proceeding, let us generalize one of the observations used in the proof
of Theorem 4.4 in order to prove the following

Proposition 4.5 (on the depth of multilinear circuits achieving the AN-complexity): Let F be ay

t-linear function. Then, there exists a depth t + 1 circuit with arity and size AN(F ) that computes

F . That is, for any t-linear F , it holds that ANt+1(F ) = O(AN(F )).

Proof: Generalizing an observation made in the proof of Theorem 4.4, note that monomials in
the expression for Fj that contain only auxiliary functions can be moved to the expressions of
all functions that depend on Fj (while at most doubling the AN-complexity of the circuit). Thus,
without loss of generality, each auxiliary function Fj (computed by a internal gate) can be expressed
in terms of input variables and auxiliary functions that are of smaller degree (than the degree of
Fj). Hence, using induction on i ≥ 0, it holds that gates that are at distance i from the top gate
are fed by auxiliary functions of degree at most t − i. It follows that gates at distance t from the
top are only fed by variables. Thus, the depth of multilinear circuits computing a t-linear function
needs not exceed t + 1.

Implications of the “rigidity connection” on AN(F 3,n
tet). In the original version of this work [11],

we suggested to try to obtain an improved lower bound on the AN-complexity of the trilinear func-
tion F 3,n

tet (see Eq. (3)) via a reduction to proving a rigidity lower bound for a random (or actually
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any) Toeplitz matrix. Recall that a Toeplitz matrix is a matrix (ti,j)i,j∈[n] such that ti+1,j+1 = ti,j.

The reduction, which is presented next, actually reduces proving lower bounds on AN(F 3,n
tet) to

proving lower bounds on the AN-complexity of any bilinear function that corresponds to a Toeplitz
matrix.

Proposition 4.6 (from F 3,n
tet to Toeplitz matrices): If there exists an n-by-n Toeplitz matrix such

that the corresponding bilinear function F satisfies AN(F ) ≥ m, then AN(F 3,n
tet ) = Ω(m).

Indeed, a striking feature of of this reduction is that a lower bound on an explicit function follows
from a lower bound on any function in a natural class that contained exponentially many different
functions.

Proof: For simplicity, assume that n = 2n′ + 1 is odd, and consider the trilinear function F3 :
(GF(2)n

′+1)3 → GF(2) associated with the tensor T3 = {(i1, i2, i3) ∈ [[n′]]3 :
∑

j ij ≤ n′}, where

[[n′]]
def
= {0, 1, ..., n′} (and n′ = ⌊n/2⌋). Indeed, T3 is a lightly padded version of one eighth of

T 3,n
tet . Observe that multilinear circuits for F 3,n

tet yield circuits of similar AN-complexity for F3: For

y
(j)
[[n′]] = (y

(j)
0 , y

(j)
1 , ..., y

(j)
n′ ), the value of F3(y

(1)
[[n′]], y

(2)
[[n′]], y

(3)
[[n′]]) equals F 3,n

tet(0
n′

y
(1)
[[n′]], 0

n′

y
(2)
[[n′]], 0

n′

y
(3)
[[n′]]).

This means that we may modify each of the expressions used for F 3,n
tet by replacing the first n′

variables in each variable-block with the value 0 (i.e., omit the corresponding monomials).28

The main observation is that if F3(x, y, z) =
∑

(i,j,k)∈T3
xiyjzk satisfies AN(F3) ≤ m, then the

same upper bound holds for any bilinear function that is associated with an (n′ + 1)-by-(n′ + 1)
triangular Toeplitz matrix (i.e., tj+1,k+1 = tj,k and tj,k = 0 if j < k). This holds because any linear
combination of the 1-slices of T3 (i.e., the two-dimensional tensors T ′

i = {(j, k) : (i, j, k) ∈ T} for
every i ∈ [[n′]]) yields a transpose of a triangular Toeplitz matrix, and all such matrices can be
obtained by such a combination; that is, for every I ⊆ [[n′]], it holds that the matrix (tj,k)j,k∈[[n′]]

such that tj,k = (|{i ∈ I : (i, j, k) ∈ T}| mod 2) satisfies tj,k+1 = tj+1,k and tj,k = 0 if j+k > n′, and
each such matrix can be obtained by a choice of such an I (i.e., given a triangular Toeplitz matrix
(tj,k)j,k∈[[n′]], let I = {i ∈ [[n′]] : t0,n′−i = 1}). (We can and will ignore the transpose operation in
the sequel.)

Finally, note that multilinear circuits for any bilinear function that is associated with a trian-
gular Toeplitz matrix yields circuits of similar AN-complexity for general Toeplitz matrix. This
holds because each Toeplitz matrix can be written as the sum of two triangular Toeplitz matrices
(i.e., an upper-triangular one and a lower-triangular one).

Hence, establishing an Ω(nc) lower bound on AN(F 3,n
tet) reduces to establishing this bound for some

Toeplitz matrix. This gives rise to the following open problems posed in [11] and resolved in [9].

Problem 4.7 (on the AN-complexity of Toeplitz matrices): Prove that there exists an n-by-n
Toeplitz matrix such that the corresponding bilinear function F satisfies AN(F ) ≥ nc, for some

c > 1/2.

(This was proved for c = 0.6 in [9, Cor. 1.4].) As we saw, Problem 4.7 would be resolved by

Problem 4.8 (on the rigidity of Toeplitz matrices): For some c > 1/2, prove that there exists an

n-by-n Toeplitz matrix T that has rigidity n3c for rank nc.

28The opposite direction is equally simple: Just note that F 3,n
tet can be expressed as a sum of the values in the eight

directions corresponding to {±1}3.
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(This was proved for c = 0.6− o(1) in [9, Thm. 1.2], whereas the improved bound for c = 0.6 (in [9,
Cor. 1.4]) was established via “structured rigidity” as defined next.)

4.3 On structured rigidity

The proof of Theorem 4.4 shows that if a bilinear function F has AN-complexity at most m, then
the corresponding matrix T can be written as a sum of a rank m− 1 matrix T ′ and a matrix that
has at most m3 one-entries. However, even a superficial glance at the proof reveals that the matrix
T − T ′ is structured: It consists of the sum of m matrices such that the one-entries of each matrix
are confined to some m-by-m rectangle. This leads us to the following definition.

Definition 4.9 (structured rigidity): We say that a matrix T has structured rigidity (m1,m2,m3)
for rank r if for every matrix R of rank at most r and for every I1, ..., Im1 , J1, ..., Jm1 ⊆ [n] such

that |I1| = · · · = |Im1 | = m2 and |J1| = · · · = |Jm1 | = m3 it holds that T − R 6⊆ ⋃m1
k=1(Ik × Jk),

where M ⊆ S means that all non-zero entries of the matrix M reside in the set S ⊆ [n]× [n]. We

say that a matrix T has structured rigidity m3 for rank r if T has structured rigidity (m,m,m) for

rank r.

Clearly, rigidity is a lower bound on structured rigidity (i.e., if T has rigidity m3 for rank r, then T
has structured rigidity m3 for rank r), but (as shown below) this lower bound is not tight. Before
proving the latter claim, we apply the notion of structured rigidity to our study.

Theorem 4.10 (reducing AN-complexity lower bounds to structured rigidity): If T is an n-by-

n matrix that has structured rigidity m3 for rank m, then the corresponding bilinear function F
satisfies AN(F ) ≥ m.

(As stated above, Theorem 4.10 follows by the very proof of Theorem 4.4.) In particular, if there

exists an n-by-n Toeplitz matrix that has structured rigidity m3 for rank m, then the corresponding

bilinear function F satisfies AN(F ) ≥ m. Hence, Problem 4.7 would be resolved by

Problem 4.11 (on the structured rigidity of Toeplitz matrices): For some c > 1/2, prove that

there exists an n-by-n Toeplitz matrix T that has structured rigidity n3c for rank nc.

Indeed, the lower bound of Ω(n0.6) on the AN-complexity of (the bilinear functions that correspond
to) most n-by-n Toeplitz matrices has been proved in [9] by establishing a similar lower bound on
the structured rigidity of these matrices, improving over a lower bound of Ω̃(n0.6) established in [9]
via a similar lower bound on the standrad notion of rigidity (see [9, Thm. 1.2] versus [9, Thm. 1.3]).
This provides some weak empirical evidence for the speculation, made in the original version of this
work [11], by which Problem 4.11 may be easier than Problem 4.8. This speculation was supported
in [11] by the following separation result.

Theorem 4.12 (rigidity versus structured rigidity): For any m ∈ [n0.501, n0.666], consider a uni-

formly selected n-by-n Boolean matrix M with exactly 3mn ones. Then, with very high probability,

M has structured rigidity m3 for rank m.

Note that M does not have rigidity 3nm≪ m3 for rank zero, let alone for rank m. Hence, the gap
between structured rigidity and standard rigidity (for rank m) is a factor of at least m3

3nm = Ω(m2/n).
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Proof: For each sequence R,S1, ..., Sm such that R has rank m and each Si ⊆ [n] × [n] is an
m-by-m square (generalized) submatrix (i.e., has the form Ii× Ji such that |Ii|, |Ji| ≤ m), we shall
show that

PrM∈GF(2)n×n:|M |=3mn


M −R ⊆

⋃

i∈[m]

Si


 ≤ 2−3nm, (11)

where M is a uniformly selected n-by-n matrix with exactly 3mn ones (and M − R ⊆ S means
that all non-zero entries of the matrix M −R reside in the set S ⊆ [n]× [n]). The theorem follows
since the number of such sequences (i.e., a rank m matrix R and small submatrices S1, ..., Sm) is

smaller than (22n)m ·
(n
m

)2m ≪ 22nm+2m2 log n, where we specify a rank-m matrix by a sequence of m
rank-1 matrices (equiv., pairs of subsets of [n]). Using m2 log n < nm/4 (equiv., m = o(n/ log n)),
the foregoing quantity is upper-bounded by 22.5nm. We shall also use m ≤ n2/3/2, which implies
m3 ≤ n2/8 and 3nm = o(n2). In order to prove Eq. (11), we consider two cases

Case 1: R has at least n2/3 one-entries. Since 3nm = o(n2), it follows that M − R has at
least n2/4 non-zero entries, but these cannot be covered by the

⋃
i Si, since the latter has at

most m3 ≤ n2/8 elements. Hence, M − R ⊆ ⋃
i∈[m] Si never holds in this case, which means

that the l.h.s. of Eq. (11) is zero.

Case 2: R has at most n2/3 one-entries. In this case the union of the one-entries of R and⋃
i Si, denoted U , covers at most half of a generic n-by-n matrix. Now, selecting 3nm random

entries in the matrix, the probability that all entries reside in U at most (1/2)3nm. But if
some one-entry of M does not reside in U , then this entry is non-zero in M −R but does not
reside in

⋃
i Si. In this case, M −R 6⊆ ⋃

i∈[m] Si holds. Hence, Eq. (11) holds.

To rec-cap: Having established Eq. (11), and recalling the upper bound on the number of (R,S1, ..., Sm)-
sequences, we conclude that with probability at least 1− 22.5nm · 2−3nm = 1− 2−nm/2, the matrix
M has structural rigidity (m,m,m) for rank m.

Perspective. Recall that T has rigidity s for rank r if for every rank r matrix R and every matrix
S of at most s one-entries it holds that T 6= R + S. The definition of structure rigidity further
restricts the structure of S. Although we proved that this restriction may significantly increase
the measure of density of the potential matrices S, we were not able to capitalize on it in order to
prove rigidity bounds that improve over the n2/r barrier for explicit matrices T . We note that an
alternative restriction that allows for improving over this barrier was introduced by Dvir et al. [5],
where it was called monotone rigidity. Specifically, T has monotone rigidity s for rank r if for every
rank r matrix R and every matrix S of at most s one-entries it holds that T = R ∨ S; that is, the
effect of S is restricted to turning zero-entries of R into one-entries of T (equiv., turning one-entries
of T into zero-entries of R). They presented an explicit matrix T such that for any matrix R of
real29 rank n/100, the matrix S must have at least n1.1 ones.

29Indeed, in contrast to the rest of our exposition, which refers to the arithmetics of GF(2) (and, in particular, to
rank over GF(2), the result of [5] refers to the rank of the matrix over the real.
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5 On two restricted models

Focusing on our arithmetic circuit model, we consider two restricted versions of it: The first re-
stricted model is of computation without cancellation, and the second is of computation that use
only addition and multiplication gates while parametrizing their arity.

5.1 On computing without cancellation

A natural model in the context of arithmetic computation is that of computing without cancella-

tions.30 We note that all our upper bounds (of Section 3) were obtained by computations that
use no cancellations. Nevertheless, as one may expect, computations that use cancellation may be
more efficient than computations that do not use it. In fact, obtaining such a separation result is
quite easy. A striking example is provided by the bilinear function F 2,n

had that corresponds to the
Hadamard matrix T 2,n

had (i.e., T 2,n
had = {(i, j)∈ [n]2 : ip2(i, j)}, where n = 2ℓ and ip2(i, j) is the inner

product (mod 2) of the ℓ-bit binary expansions of i− 1 and j − 1).

Proposition 5.1 (computing F 2,n
had without cancellation): Computing F 2,n

had without cancellations
requires a circuit of AN-complexity Ω(n2/3), where the AN-complexity of circuits is as defined in

Definition 2.2. In contrast, F 2,n
had can be computed by a circuit of AN-complexity Õ(

√
n) with

cancellation; actually, AN2(F
2,n
had ) = O(

√
n log n).

Proof: We first prove the lower bound. Suppose that F 2,n
had can be computed by a circuit of AN-

complexity m that uses no cancellation. Following the argument in the proof of Theorem 4.4 and
assuming that the first m′ < m auxiliary functions (i.e., Fi’s) are bilinear functions, we observe
that

F 2,n
had(x, y) = F0(x, y) =

m′∑

i=0

Qi(x, y) +
m−1∑

i=m′+1

Li(x, y)Fi(x, y) , (12)

where Qi is a sum of the products of pairs of variables that appear in Fi and the Li’s are arbitrary
linear functions (which may depend on an arbitrary number of variables in either x or y).31 Hence,
each Qi corresponds to a tensor (or matrix) with at most m2 one-entries, whereas each LiFi

corresponds to a rectangular tensor.
The punchline is that, by the non-cancellation hypothesis, these rectangles (i.e., the LiFi’s)

must be pairwise disjoint and their one-entries must be contained in T 2,n
had (since they cannot be

cancelled). But by Lindsey’s Lemma (cf., e.g., [6, p. 88]) rectangles of area greater than n must
contain zero-entries of T 2,n

had , which implies that each rectangle may have area at most n. It follows
that the total area covered by all m tensors is at most (m′ + 1) ·m2 + (m −m′) · n < m3 + mn,
whereas T 2,n

had has n2/2 one-entries. The main claim (i.e., m = Ω(n2/3)) follows.

30This means that one considers the syntactic polynomial computed by the circuit (over a generic field) and requires
that it equals the target polynomial when the field remains unspecified.

31Recall that, w.l.o.g., gates that compute quadratic Fi’s (for i ∈ [m′]) may only feed into the top gate. Ditto for
gates computing products of two linear Fi’s (for i ∈ [m′ + 1, m− 1]). Thus, F0 = Q0 +

P

i∈[m′] Fi +
Pm−1

i=m′+1 L0,iFi,
where Q0 is a sum of the products of pairs of variables that appear in F0, the L0,i’s are arbitrary linear functions,
and for i > m′ the linear function Fi is computed by an internal gate. Furthermore, for every i ∈ [m′], it holds
that Fi = Qi +

Pm−1
j=m′+1 Li,jFj , where Qi is a sum of the products of pairs of variables that appear in Fi, the

Li,j ’s are arbitrary linear functions, and for j > m′ the linear function Fj is computed by an internal gate. Letting

Lj =
Pm′

i=0 Li,j , we get Eq. (12).
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The secondary claim (i.e., AN(F
)
had = Õ(

√
n)) follows by the fact that T 2,n

had has rank ℓ = log2 n.
The point is that any bilinear function F that corresponds to a rank r matrix can be computed as
the sum of r functions that correspond to rectangular tensors, where each of these r functions can
be computed as the product of two linear functions, and each linear function can be computed as
the sum of

√
n/2r functions that compute the sum of at most

√
2rn variables. All in all, we use

1 + 2r ·
√

n/2r gates, which are each are each of arity
√

2rn. This yields a depth-two circuit of
AN-complexity

√
2rn + 1, where the top gate is a quadratic expression in

√
2rn linear functions.

Computing F 3,n
tet without cancellation. While we were unable to prove that AN(F 3,n

tet) = ω(
√

n),
it is quite easy to prove such a lower bound for circuits that compute F 3,n

tet without cancellation.

Proposition 5.2 (computing F 3,n
tet without cancellation): Computing F 3,n

tet without cancellations

requires a circuit of AN-complexity Ω(n2/3).

(Again, recall that the AN-complexity of circuits is defined exactly as in Definition 2.2.)

Proof: Proceeding as in the proof of Proposition 5.1, we consider the top gate of a circuit (with
m gates) that computes F 3,n

tet without cancellations. Here, we can write F 3,n
tet as

F0 =

m′∑

i=0

Ci +

m′+m′′∑

i=m′+1

LiFi +

m′+m′′+m′′′∑

i=m′+m′′+1

QiFi , (13)

where m′ + m′′ + m′′′ ≤ m − 1, the cubic functions Ci is a sum of the products of triples of
variables that appear in the cubic function Fi (for i ∈ [0,m′]), the Li’s (resp., Qi’s) are arbitrary
linear (resp., quadratic) functions (which may depend on an arbitrary number of variables (from
adequate variable-blocks)). and the other Fi’s are either quadratic (for i ∈ [m′ + 1,m′ + m′′]) or
linear (for i ∈ [m′ + m′′ + 1,m′ + m′′ + m′′′]).32 Combining the two last summations in Eq. (13),
we obtain

F0 =

m′∑

i=0

Ci +

m−1∑

i=m′+1

L′
iQ

′
i (14)

where the Ci’s are as in Eq. (13), and the L′
i’s (resp., Q′

i’s) are arbitrary linear (resp., quadratic)
functions (which may depend on an arbitrary number of variables (from adequate variable-blocks)).
Note that Ci corresponds to a tensor with one-entries that are confined to a m-by-m-by-m box,
and each L′

iQ
′
i corresponds to a tensor that is the outer product of a subset of [n] and a subset

of [n]2. By the non-cancellation condition, all these tensors are disjoint, and none may contain a

zero-entry of T 3,n
tet .

32Recall that, w.l.o.g., gates that compute cubic Fi’s (for i ∈ [m′]) may only feed into the top gate. Ditto for
gates computing products of linear Fi’s and quadratic Fi’s (for i ∈ [m′ + 1, m − 1]). Thus, F0 = C0 +

P

i∈[m′] Fi +
Pm′+m′′

i=m′+1 L0,iFi +
Pm′+m′′+m′′

i=m′+m′′+1 Q0,iFi, where C0 is a sum of the products of triples of variables that appear in F0,
the L0,i’s (resp., Q0,i’s) are arbitrary linear (resp., quadratic) functions, and for i > m′ the quadratic (resp., linear)

function Fi is computed by an internal gate. Furthermore, for every i ∈ [m′], it holds that Fi = Ci+
Pm′+m′′

j=m′+1 Li,jFj +
Pm′+m′′+m′′

j=m′+m′′+1 Qi,jFj , where Ci is a sum of the products of triples of variables that appear in Fi, the Li,j ’s (resp.,

Qi,j ’s) are arbitrary linear (resp., quadratic) functions, and for j > m′ the quadratic (resp., linear) function Fj is

computed by an internal gate. Letting Lj =
Pm′

i=0 Li,j and Qj =
Pm′

i=0 Qi,j , we get Eq. (13).
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We consider the boundary of the tensor T 3,n
tet (i.e., the set of one-entries that neighbor zero-

entries), and consider the contributions of the aforementioned tensors to covering this boundary
(without covering zero-entries of F 3,n

tet). We will upper bound this contribution by m3 + mn, and
the claim will follow since the size of the boundary is Ω(n2).

Actually, we shall consider covering the upper-boundary of T 3,n
tet , defined as the part of the

boundary that resides in [n/2, n]3. In other words, the upper-boundary consists of all points
(i1, i2, i3) ∈ [n/2, n] such that i1 + i2 + i3 = 2n, and it has size Ω(n2).

We first observe that the tensor corresponding to each Cj can cover at most m2 points of the
upper-boundary, because this tensor is confined to an m-by-m-by-m box I ′j × I ′′j × I ′′′j and for each
(i1, i2) ∈ I ′j × I ′′j there exists at most one i3 such that (i1, i2, i3) resides in the upper-boundary.

Hence, the contribution of
∑m′

j=0 Cj to the cover is at most m3.
Turning to the tensors that correspond to the LjQj’s, we note that (w.l.o.g.) each such tensor

has the form I ′j × I ′′j , where I ′j ⊆ [n] and I ′′j ⊆ [n]2. We first observe that only the largest i1 ∈ I ′j
can participate in (a point that resides in) the upper-boundary, because if (i1, i2, i3) ∈ I ′j × I ′′j
participates in the upper-boundary and i′1 > i1, then (i′1, i2, i3) must be a zero-entry of T 3,n

tet (and
contradiction is reached in case i′1 ∈ I ′j , since then (i′1, i2, i3) ∈ I ′j × I ′′j ). Next, fixing the largest
i1 ∈ I ′j, we observe that the upper-boundary contains at most n points of the form (i1, ·, ·). Hence,

the contribution of
∑m−1

j=m′+1 LjQj to the cover is at most mn.

Having shown that the union of the aforementioned tensors can cover at most m3 + mn points
in the upper-boundary, the claim follows since the size of the upper-boundary is Ω(n2).

5.2 Addition and multiplication gates of parameterized arity

In continuation to Definition 2.2, we consider a restricted complexity measure that refers only
to multilinear circuits that use standard addition and multiplication gates. Needless to say, the
multiplication gates in a multilinear circuit computing a t-linear function have arity at most t,
whereas the arity of the addition gates is accounted for in our complexity measure. Furthermore,
in our restricted complexity measure we do not count multiplication gates that are fed by variables

only. For sake of clarify, we spell out the straightforward adaptation of Definition 2.2:

Definition 5.3 (the complexity of multilinear circuits with standard gates): A standard multilinear
circuit is a multilinear circuit (as in Definition 2.2) having only addition and multiplication gates,

and its complexity is the maximum between the arity of its gates and the number of its non-trivial

gates, where the trivial gates are multiplication gates that are fed by variables only. The restricted
complexity of a multilinear function F , denoted RC(F ), is the minimum complexity of a standard

multilinear circuit that computes F .

Indeed, we avoided introducing a depth-two version of Definition 5.3, because the model seems
restricted enough as is. Note that for every t-linear function F , it holds that AN(F ) ≤ t · RC(F ),
since trivial multiplication gates can be eliminated by increasing the arity of the circuit (in the
general model) by a factor of at most t.33

33In a gate that is fed by a trivial multiplication-gate, the argument representing the trivial gate’s output is replaced
by the (up to) t input variables feeding this trivial gate.
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5.2.1 The restricted model separates F t,n
all and F t,n

diag from F 2,n
leq

As stated (implicitly) in Section 3.2, it holds that RC(F t,n
all) ≤ t

√
n + 1 and RC(F t,n

diag) ≤ t
√

n. We

show that this upper bound does not hold for F 2,n
leq . We start with a general result.

Theorem 5.4 (lower bound on the restricted complexity of bilinear functions): Let F : (GF(2)n)2 →
GF(2) be a bilinear function with a corresponding tensor T ⊆ [n]2. If T has rigidity s with respect

to rank r > 1, then RC(F ) ≥ min(r,
√

s).

As shown in Proposition 5.5, the tensor T 2,n
leq has rigidity Ω(n2/r) with respect to rank r, so letting

r = n2/3, we obtain RC(F 2,n
leq) = Ω(n2/3), since

√
n2/r = n(2−(2/3))/2. Also, since a random n-by-n

matrix has rigidity Ω(n2) with respect to rank Ω(n), it follows that for almost all bilinear functions
F : GF(2)n+n → GF(2) it holds that RC(F ) = Ω(n). The latter lower bound is tight, since (for any
t ≥ 1) any t-linear function F satisfies RC(F ) ≤ nt/2 (via a multilinear formula with nt/2 addition
gates, each of arity nt/2, that sum-up all the relevant monomials).

Proof: Assuming that T has rigidity s with respect to rank r > 1, and that m
def
= RC(F ) <

√
s, we

shall show that m ≥ r. Consider a standard multilinear circuit that computes F with m′ addition
gates of arity at most m and m′′ non-trivial multiplication gates, where m′ + m′′ ≤ m. Note that
the top gate cannot be a multiplication gate, because such a multilinear circuit can only compute
bilinear functions that correspond to rank-1 matrices. Also note that there exists exactly one
multiplication gate on each path from the top gate to a variable, and that this gate is trivial if and
only if it is the last gate on this path. Thus, the circuit, which is a directed acyclic graph (DAG)
rooted at the top gate, can be decomposed into a top layer that consists of a DAG of addition
gates, an intermediate layer of multiplication gates, and a bottom layer that consists of a DAG of
addition gates and variables (which feeds linear functions to the multiplication gates). We note
that the number of trivial multiplication gates that feed the top DAG is at most m2, because this
DAG has m′ ≤ m addition gates each of in-degree at most m.

We truncate the foregoing circuit at the trivial multiplication gates (which compute products
of variables), obtaining a new circuit that computes a bilinear function F ′ with a tensor T ′ such
that |T + T ′| ≤ m2 (since T + T ′ corresponds to the function computed by the sum of the trivial
multiplication gates). This new circuit has no trivial gates and it has m′′ non-trivial multiplication
gates (each computing a bilinear function that corresponds to a rank-1 matrix). Hence T ′ has rank
at most m′′ (since it is the sum of m′′ rank-1 matrices). We consider two cases:

1. If m′′ ≤ r, then T ′ has rank at most r, and we derive a contradiction to the hypothesis that
T has rigidity s with respect to rank r, since |T + T ′| ≤ m2 < s (by our hypothesis that
m <

√
s).

2. Otherwise, m′′ ≥ r, and it follows that m ≥ r.

The claim follows.

Proposition 5.5 (a bound on the rigidity of T 2,n
leq): For every r < n/O(1), the tensor T 2,n

leq (of

Eq. (2)) has rigidity at least Ω(n2/r) with respect to rank r.
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The rigidity lower bound is quite tight, since T 2,n
leq is O(1/r)-close to

∑
k∈[r](Ik × Jk), where Ik =

{(k − 1)n/r + 1, ..., kn/r} and Jk = {kn/r + 1, ..., n}, for every k ∈ [r]. (This is the case since∑
k∈[r](Ik × Jk) ⊆ T 2,n

leq ⊆
∑

k∈[r](Ik × Jk−1), and
∑

k∈[r] |Ik × (Jk−1 − Jk)| = n2/r.)

Proof: For a constant c > 1 to be determined later, we consider any r < n/c. We shall prove that

any matrix R = (Ri,j)i,j∈[n] of rank r is Ω(1/r)-far from T
def
= T 2,n

leq ; that is, |R + T | = Ω(n2/r).
Let R be an arbitrary matrix of rank at most r. We say that i ∈ [n] is good if |{j ∈ [n] : Ri,j 6=

Ti,j}| < n/cr. The claim of the proposition reduces to proving that at least half of i ∈ [n] are not

good, since in this case R disagrees with T on at least n
2 · n

cr = n2

2cr entries. It is thus left to prove
the latter claim.

Let G denote the set of good i ∈ [n], and supposed towards the contradiction that |G| > n/2.
For c′ ∈ [1, c/2] to be (implicitly) determined later, select c′r indices i1, ..., ic′r ∈ G such that for
every k ∈ [c′r − 1] it holds that ik+1 > ik + (n/2c′r). Let us denote the ithk row of T by vk, and
the ithk row of R by wk. Then, for a random non-empty set K ⊆ [c′r], the following two conditions
hold:

1. With probability greater than 1− 2−r, the vector
∑

k∈K vk has weight greater than n/6.

This follows from the structure of T (i.e., vk = 0ik−11n−ik+1) and the distance between the
ik’s. Specifically, for a random K, the weight of the vector

(∑
k∈K vk mod 2

)
is distributed as∑

j∈[c′r](ij+1− ij) ·Xj , where ic′r+1 = n+1 and Xj =
∑

k∈K Tik ,ij mod 2 indicates the parity
of the elements selected in column ij (which equals the parity in all columns in [ij , ij+1− 1]).

Thus, Xj =
(∑

k≤j Yk mod 2
)
, where Yk = 1 if k ∈ K and Yk = 0 otherwise, which implies

that the Xj ’s are uniformly and indentially distributed in {0, 1}. For sufficiently large c′, we

have Pr
[∑

j∈[c′r−1] Xj > c′r/3
]

> 1−2−r, and the claim follows since
∑

j∈[c′r](ij+1− ij) ·Xj

is greater than (n/2c′r) ·∑j∈[c′r] Xj (and (n/2c′r) · (c′r/3) = n/6).

2. With probability at least 2−r, the vector
(∑

k∈K wk mod 2
)

has weight 0.

This follows from the rank of R. Specifically, consider a maximal set of independent vectors
among the w1, ...., wc′r, and denote the corresponding set of indices by I. Then, PrK

[∑
k∈K wk =0

]
=

2−|I| ≥ 2−r, which can be seen by first selecting a random K ′ ⊆ ([c′r] \ I), and then (for any
outcome K ′) selecting a random K ′′ ⊆ ([c′r] ∩ I).

Combining (1) and (2), it follows that there exists non-empty set K ⊆ [c′r] such that the vector∑
k∈K vk has weight greater than n/6 but the vector

∑
k∈K wk has weight 0. But this is impossible

because, by the hypothesis that all ik’s are good, the distance between these two vectors is at most
|K| · n/(cr) ≤ c′r · n/(cr) < n/6, where the last inequality require selecting c > 6c′. The claim
(that |G| ≤ n/2) follows.

Corollary 5.6 (lower bound on the restricted complexity of F 2,n
leq): RC(F

2,n
leq) = Ω(n2/3).

Indeed, Corollary 5.6 follows by combining Theorem 5.4 and Proposition 5.5, while using r = n2/3

and s = Ω(n2/r). The resulting lower bound is tight:

Proposition 5.7 (upper bound on the restricted complexity of F 2,n
leq): RC(F

2,n
leq) = O(n2/3).

35



Proof: Consider a partition of [n]2 into n4/3 squares, each with side s = n1/3: For i, j ∈ [n/s], let
Si,j = [(i− 1)s + 1, is]× [(j − 1)s + 1, js], and note that ∪i<jSi,j ⊂ T 2,n

leq ⊂ ∪i≤jSi,j. Thus, F 2,n
leq can

be computed by computing separately the contribution of the n/s = n2/3 diagonal squares and the
contribution of the squares that are above the diagonal; that is,

F 2,n
leq(x, y) =

∑

i∈[n2/3]

∑

(k,ℓ)∈Si,i:k≤ℓ

xkyℓ +
∑

i<j

∑

(k,ℓ)∈Si,j

xkyℓ.

The contribution of the square Si,i can be computed as the sum of its relevant r
def
=

(s
2

)
+ s < n2/3

entries, which means that the sum of the contribution of all n2/3 diagonal squares consists of less
than n4/3 monomials. This sum can be computed by n2/3 + 1 addition gates, each of arity n2/3.
(We also use n2/3 · r < n4/3/2 trivial multiplication gates, but these are not counted.)

The contribution of the above-diagonal squares can be computed by writing ∪i<jSi,j as
∑

i∈[n/s] Ri,

where Ri = [(i − 1)s + 1, is] × [(i − 1)s]. The contribution of each of the n/s = n2/3 rectangles
(i.e., Ri’s) can be computed by multiplying two linear expressions (see next). Hence, the total
contribution of the off-diagonal squares is

∑

i<j

∑

(k,ℓ)∈Si,j

xkyℓ =
∑

i∈[n/s]

∑

(k,ℓ)∈Ri

xkyℓ =
∑

i∈[n2/3]




∑

k∈[(i−1)s+1,is]

xk


 ·




∑

ℓ∈[(i−1)s]

yℓ




.

The point is that there are n2/3 linear expressions each involving s = n1/3 variables of the first
block, and n2/3 linear expressions each involving a prefix of the sequence of variables of the second
block. The former n2/3 linear expressions can be computed by n2/3 addition gates, each of arity
n1/3, whereas the latter can be computed by n2/3 addition gates, each of arity n1/3 + 1 by using
[(i− 1)s] = [(i− 2)s]∪ [(i− 2)s + 1, (i− 1)s] (i.e., the ith addition gate sums the result of the i− 1st

addition gate and s new variables). (We also use n2/3 multiplication gates, each of arity 2.) The
claim follows.

Added in revision: A lower bound on the restricted complexity of F 3,n
tet . Combining [9,

Thm. 1.2] with Theorem 5.4, we get RC(F 3,n
tet ) = Ω̃(n3/4). This follows because by [9, Thm. 1.2]

almost all n-by-n Toeplitz matrices have rigidity Ω̃(n3/r2) with respect to rank r ∈ [
√

n, n/32],
and (by Theorem 5.4) each corresponding bilinear function F satisfies RC(F ) ≥ min(r, Ω̃(n3/2/r) =
Ω̃(n3/4 (using r = n3/4). The bound for F 3,n

tet follows analogously to Proposition 4.6.

5.2.2 On the restricted complexity of almost all t-linear functions

Recall that for every t-linear function F , it holds that RC(F ) = O(nt/2), by a circuit that merely
adds all relevant monomials. We prove that for almost all t-linear functions this upper bound is
tight up to a logarithmic factor.

Proposition 5.8 (a lower bound on the restricted complexity of almost all t-linear functions): For

all t = t(n), almost all t-linear functions F : (GF(2)n)t → GF(2) satisfy RC(F ) = Ω(nt/2/ log nt).

Proof: We just upper bound the number of standard multilinear circuits of complexity m. Each
such circuit corresponds to a DAG with m vertices, each representing either an addition gate or a
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(non-trivial) multiplication gate. In addition, each of these non-trivial gates may be fed by some
variables or trivial multiplication gates (which are not part of this DAG), but the number of such
gate-entries is at most m and each is selected among at most (n + 1)t possibilities (since there are
(n + 1)t possible multilinear monomials). Thus, the number of such circuits is at most

2m · 2(m
2 ) ·

(
(n + 1)t

m

)m

(15)

where 2(
m
2 ) upper bounds the number of m-vertex DAGs, 2m accounts for choice of the gate types,

and
((n+1)t

m

)
accounts for the choice of DAG-external feeds to each gate. Clearly, Eq. (15) is upper-

bounded by ((n + 1)t)m
2

= exp(tm2 log n), whereas the number of t-linear functions is 2nt
. The

claim follows.
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