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Abstract

A distribution is called m-grained if each element appears with probability that is an integer
multiple of 1/m. We prove that, for any constant c < 1, testing whether a distribution over
[Θ(m)] is m-grained requires Ω(mc) samples.

1 Introduction

A distribution P : Ω → [0, 1] is called m-grained if P (x) is a multiple of 1/m for every x in Ω;
that is, for each x ∈ Ω, there exists an integer mx, such that P (x) = mx/m (see [3, Def. 11.7]).
Grained distributions have appeared implicitly in several prior works (most conspicuously in [4]),
and were defined and studied explicitly in [2]. In particular, the challenge of determining the sample
complexity of testing the set of grained distributions (i.e., the property of being grained) was raised
explicitly in [2, Sec. 4]. For sake of completeness, we reproduce the standard definition of testing
properties of distributions, where distances (like in “ε-far”) refer to the total variation distance.

Definition 1 (testing properties of distributions): Let D = {Dn}n∈N be a property of distributions
such that Dn is a set of distributions over [n], and s : N × (0, 1] → N. A tester, denoted T , of
sample complexity s for the property D is a probabilistic machine that, on input parameters n and
ε, and a sequence of s(n, ε) samples drawn from an unknown distribution P over [n], satisfies the
following two conditions.

1. The tester accepts distributions that belong to D: If P is in Dn, then

Pri1,...,is∼P [T (n, ε; i1, . . . , is)=1] ≥ 2/3,

where s = s(n, ε) and i1, . . . , is are drawn independently from the distribution P .

2. The tester rejects distributions that are far from D: If P is ε-far from any distribution in Dn

(i.e., P is ε-far from D) with respect to the variation distance, then

Pri1,...,is∼P [T (n, ε; i1, . . . , is)=0] ≥ 2/3,

where s = s(n, ε) and i1, . . . , is are as in the previous item.
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We say that testing D requires s′(n) samples, if for some constant ε > 0 any tester of D has sample
complexity s(n, ε) ≥ s′(n).

It is quite easy to prove that testing the set of n-grained distributions requires Ω(
√
n) samples.

In particular, Ω(
√
n) samples are required in order to distinguish the uniform distribution on [n]

from a generic distribution that assigns probability 1/2n to each of n/2 elements and probability
3n/2n to each of the remaining elements. To the best of our knowledge, this was the best lower
bound known till this work.1 In this work we obtain a lower bound of Ω(nc), for any constant
c < 1.

Theorem 2 (main result): For every constant c < 1, the sample complexity of testing whether a
distribution over [n] is m-grained, where m = Θ(n), is Ω(nc),

We mention that the sample complexity of testing the foregoing property of distributions is
O(ε−2n/ log n); this follows as a special case from the fact that any label-invariant property of
distributions can be tested within this complexity [6] (see also [3, Cor. 11.28]). Recall that a prop-
erty of distributions over [n] is called label-invariant if for every bijection π : [n] → [n] and every
distribution P , it holds that P is in the property if and only if π(P ) is in the property, where
Q = π(P ) is such that Q(y) = P (π−1(y)). We conjecture that the aforementioned upper bound is
tight; that is:

Conjecture 3 The sample complexity of testing Θ(n)-grained distributions over [n] is Ω(n/ log n).

We mention that the techniques used in our proof of Theorem 2 seem inadequate for proving a
lower bound of the form Ω(n1−o(1)). In particular, our proof holds also when guaranteed that the
tested distribution assigns probability O(1/n) to each element in its support. However, under this
promise, one can even learn the distribution (up to relabeling) using O(n1−Ω(1)) samples.2

2 Proof of Theorem 2

Our proof relies on two standard simplifying assumptions:

1. When considering the task of testing a label-invariant property, one may assume, without loss
of generality, that the tester is label-invariant [1] (see also [3, Thm. 11.12]); that is, for every
bijection π on the potential support, the tester’s verdict on the samples i1, . . . , is is identical
to its verdict on the samples π(i1), . . . , π(is).

2. To prove a lower bound of L on the sample complexity of testing, it suffices to describe two
distributions P and Q that no algorithm of sample complexity L − 1 can distinguish (with

1We mention that a lower bound of Ω(n/ logn) was known for the tolerant version [3, Thm. 11.31] in which, for
some positive constants δ < ε, one is required to distinguish distributions that are δ-close to being n-grained from
distributions that are ε-far from being n-grained.

2Indeed, suppose that a distribution P : [n] → [0, 1] is guaranteed to satisfy P (i) ≤ t/n for every i ∈ [n]. For
simplicity suppose that P is also (t · n)-grained. Then, the histogram (h0, ..., ht2) such that hj = |{i∈ [n] : P (i) =
j/(t ·n)}| is determined by the probabilities of k-way collisions for k ∈ {2, ..., t2 +2}, whereas the probability of k-way
collisions can be approximated using O(n(k−1)/k) samples of P . The argument can be extended to the case that P
is not O(1/n)-grained by clustering the elements according to their approximate probability.
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gap Ω(1))3 such that P has the property and Q is Ω(1)-far from having the property (cf. [3,
Thm. 7.2]).

Combining these two observations, we focus on presenting distributions that cannot be distinguished
by label-invariant algorithms of low complexity such that one distribution is m-grained while the
other is Ω(1)-far from being m-grained.

Both distributions that we present are specified by their histograms, which specify how many el-
ements are assigned each value of the probability weight. For t = O(1/(1−c)), in both distributions,
each element in [n] is assigned weight i

2m such that i ∈ [t]. In particular:

1. In distribution P , nPi elements are assigned the weight i
2m , and nPi = 0 for every odd i ∈ [t].

2. In distribution Q, nQi elements are assigned the weight i
2m , and nQi = 0 for every even i ∈ [t].

Note that
∑

i∈[t] n
P
i · i

2m = 1 =
∑

i∈[t] n
Q
i ·

i
2m and

∑
i∈[t] n

P
i = n =

∑
i∈[t] n

Q
i , whereas 2m ∈

{n, . . . , tn}. Furthermore, P is m-grained, whereas Q is 1
3t -far from being m-grained (since the

weight on each element has to be modified by at least 1
2m units whereas n

2m ≥
1
t ).

Note that the equation
∑

i∈[t] n
P
i =

∑
i∈[t] n

Q
i asserts that both distributions have the same

support size, whereas
∑

i∈[t] n
P
i · i =

∑
i∈[t] n

Q
i · i asserts that they are assigned the same total

probability mass (in terms of units of 1
2m). Intuitively, a sample complexity lower bound of Ω

(
n

t−2
t−1

)
is related to requiring that, for every k ∈ {2, . . . , t− 2}, the probability of a k-way collision is the

same in both distributions. Thus, we require that
∑

i∈[t] n
P
i ·
(

i
2m

)k
=
∑

i∈[t] n
Q
i ·
(

i
2m

)k
for every

k ∈ {2, . . . , t− 2}, which raises the question of whether such a setting of nPi ’s and nQi ’s is possible.
Before addressing the latter question (as well as the question of why this yields the desired lower
bound), we reformulate the foregoing t − 1 equations in a uniform manner; that is, for every

k ∈ [[t− 2]]
def
= {0, 1, . . . , t− 2}, we require∑

i∈[t]

nPi · ik =
∑
i∈[t]

nQi · i
k. (1)

Recalling the t initial equalities (i.e., nPi = 0 for odd i ∈ [t] and nQi = 0 for even i ∈ [t]), we write
the foregoing linear system in a matrix form as Ax = 0, where x = (nP1, . . . , n

P
t , n

Q
1, . . . , n

Q
t )
>. For

i ∈ [t], the ith row of A is (0i−1102t−i) if i is odd, and (0t+i−110t−i) if i is even, whereas (for
k ∈ {0, 1, . . . , t− 2}) row (t+ k + 1) of A is (1k, 2k, . . . , tk,−1k,−2k, . . . ,−tk). Figure 1 depicts A
in case of t = 5.

We seek a solution x that is positive, which means that each of the entries of x is non-negative,
and at least one of the entries is positive. It turns out that such a solution exists if and only if for
every v ∈ R2t it holds that vA is not strongly positive [5, Thm. 15.1(2)], where u is strongly positive
if all its entries are positive.

Hence, for every v ∈ R2t, we show that it is impossible that all entries of vA are positive.
Actually, it will suffice to show that it not possible that the entries that correspond to even i’s in
[t] and to t + i’s for odd i’s (in [t]) are all positive. To verify this, observe that the first t rows in

3We say that A distinguishes s samples of P from s samples of P with gap γ if

|Pri1,...,is∼P [A(i1, . . . , is)=1]− Pri1,...,is∼P [A(i1, . . . , is)=1]| ≥ γ.
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Figure 1: The matrix A and the submatrix considered in the analysis.

the corresponding columns are all-zero. Hence, for even i ∈ [t] the value of the ith entry (in vA) is∑
k∈[[t−2]] vt+k+1i

k, whereas for odd i ∈ [t] the value of the (t + i)th entry is −
∑

k∈[[t−2]] vt+k+1i
k.

It follows that
∑

k∈[[t−2]] vt+k+1i
k should be positive if i ∈ [t] is even, and negative otherwise. But

this is impossible since the degree of this polynomial (in i) is t− 2 (and so its sign cannot alternate
t− 1 times).

The foregoing discussion establishes the existence of nPi ’s and nQi ’s that satisfy Eq. (1) for every
k ∈ [[t − 2]] as well as nPi = 0 for odd i ∈ [t] and nQi = 0 for even i ∈ [t]. These nPi ’s and nQi ’s may
be assumed to be rational, but they do not necessarily sum-up to n nor are integers. In fact, these
nPi ’s and nQi ’s are independent of n, and so by multiplying them with an adequate number (e.g., the
least common multiplier of their denominators) we obtain integers. Hence, we can fit any n that is
an integer multiple of the sum of the resulting nPi ’s (and, we can handle other n’s by “padding”).

We have thus established that distributions P and Q as postulated above do exist; that is, P and
Q are 2m-grained, and it holds that nPi =

∣∣{j ∈ [n] : P (j) = i
2m

}∣∣ and nQi =
∣∣{j ∈ [n] : Q(j) = i

2m

}∣∣
satisfy Eq. (1) for every k ∈ [[t − 2]] as well as nPi = 0 for odd i ∈ [t] and nQi = 0 for even i ∈ [t].
In order to proceed, we restate the features of the nPi ’s and nQi ’s in terms of the (probability)
histograms of P and Q (or rather their “normalized” forms). Specifically, consider the following

random variable: X = i with probability
nP
i
n (resp., Y = i with probability

nQ
i
n ), representing the fact

that there are nPi (resp., nQi ) elements in the support of P (resp., Q) that are assigned probability
i

2m . Observe that E[Xk] =
∑

i∈[t]
nP
i
n · i

k (resp., E[Y k] =
∑

i∈[t]
nQ
i
n · i

k). Hence, we have established
the following:

Lemma 4 (main lemma): For every constant t ∈ N and m,n ∈ N such that m ∈ {0.5n, . . . , 0.5tn},
there exist 2m-grained distributions P and Q over [n] such that the following conditions hold.

1. P is m-grained, whereas Q is 1
3t -far from being m-grained.

2. For every k ∈ [t − 2], it holds that E[Xk] = E[Y k], where X and Y are the histograms of P
and Q (respectively, as defined above).

At this point we can apply a result of [4], which we slightly modify and rephrase as follows.4

4Putting aside the many notational modifications, the actual modification is that Lemma 5 refers to the first t− 2

4



Lemma 5 (a variant of [4, Thm. 5.6]): Let P and Q be 2m-grained distributions over [n] such
that their support equals [n], and a1, . . . , at ∈ N such that for every j ∈ [n] it holds that P (j) ∈{

ai
2m : i∈ [t]

}
and Q(j) ∈

{
ai
2m : i∈ [t]

}
. Define a random variable X (resp., Y ) over [t] such that

X = i (resp., Y = i) with probability that represents the fraction of elements in [n] that are
assigned probability ai

2m by P (resp., Q). If, for every k ∈ [t − 2], it holds that E[Xk] = E[Y k],
then the distinguishing gap of any label-invariant algorithm between s ≤ m/a samples of P and s
samples of Q is upper-bounded by

O

(
t2 · s
m/a

+
st−1

(m/a)t−2

)
+ exp(−Ω(s)), (2)

where a = maxi∈[t]{ai}.

Note that for non-constant s = o(m/(t2a)), Eq. (2) yields o(1); that is, for any label-invariant
algorithm, the distinguishing gap between s samples of P and s samples of Q is o(1). Hence,
combining Lemmas 4 and 5, while setting ai = i and s = Ω(m/a)(t−2)/(t−1), we obtain the desired
bound; Theorem 2 follows by setting t = d1/(1− c)e+ 1.
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Appendix: Deriving Lemma 5 from the proof of [4, Thm. 5.6]

There are several differences between Lemma 5 and [4, Thm. 5.6].

powers of X and Y , whereas [4, Thm. 5.6] refers to the first t− 1 powers. In fact, we present a generalization of [4,
Thm. 5.6] in which the number of powers is a free parameter. In the appendix we outline how this generalization
(and in particular Lemma 5) follows from the proof of [4, Thm. 5.6].
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1. Lemma 5 refers to algorithms that obtain samples drawn from (2m-grained) distributions
whereas [4, Thm. 5.6] refers to algorithms that see the colors of balls drawn uniformly and
independently (with replacement) among N balls.

Note that samples drawn from a 2m-grained distribution over [n] correspond to the colors of
uniformly selected balls, where the number of balls equals 2m and the number of colors is n.
That is, a 2m-grained distribution D corresponds to a collection of 2m balls such that (for
every χ ∈ [n]) exactly 2m ·D(χ) balls are assigned the color χ.

2. Lemma 5 refers to algorithms that obtain s samples, whereas [4, Thm. 5.6] refers to algorithms
that obtain Poi(s) balls, where Poi(s) denotes the Poisson distribution with parameter s.

Recall that Pr[Poi(s) < s/2] = exp(−Ω(s)), which means that an algorithm that gets
Poi(s) samples can emulate an algorithm that expects s/2 samples, with error probability
exp(−Ω(s)). The latter error term is accounted for by the last term in Eq. (2).

3. In Lemma 5 the distribution P and Q play the main role while their histograms X and Y
appear as secondary players, whereas in [4, Thm. 5.6] the histograms appear as main players
and the corresponding distributions of colors appear in the second role.

4. Most importantly, Lemma 5 presupposes equality between the first t− 2 powers of X and Y ,
whereas in [4, Thm. 5.6] the hypothesis refers to the first t−1 powers (but merely presupposes
that they are at a fixed proportion).

However, as we observe and is detailed below, the actual proof of [4, Thm. 5.6] supports a
generalization in which the number of powers is d − 1, where d and t are free parameters.
Hence, we may use d = t− 1 (for our application) rather than d = t (as in [4, Thm. 5.6]).

We now turn to the actual presentation of [4], but do so using slightly different notation.5 It refers
to N balls, where each ball has a color, and there are n colors. The presentation starts from a
histogram that describes the frequencies of colors that appear in a specific number of balls; that is,
for natural numbers a1 < a2 < . . . < at and non-negative p1, . . . , pt that sum-up to 1, a pi fraction
of the colors each occur in ai balls (i.e., |Ci| = pi · n and for each χ ∈ Ci there are ai balls that
have color χ).

The actual presentation of [4] starts with a random variable Φ that ranges over {a1, . . . , at} ⊂ N,
and lets pi = Pr[Φ=ai]. Given Φ and an integer N , it defines the following instance of the colored
balls problem, denoted BΦ,N : For each i ∈ [t], there are bNpi/E[Φ]c colors of type i such each color
of type i occurs in ai balls. In our case, the pi’s are multiples of 1/n and N =

∑
i∈[t] pi · n · ai is an

integer, which implies that
Npi
E[Φ]

= pi ·
∑

j∈[t] pj · n · aj∑
j∈[t] pj · aj

= pi · n

is an integer (and there is no need additional tweaks as in [4]). That is, there are ni = pin colors
of type i, and the total number of balls is

∑
i∈[t] ni · ai, which equals 2m in our case. We next state

a generalization of [4, Thm. 5.6], in which the hypothesis refers to the first d− 1 powers of Φ1 and
Φ2, while noting that in [4, Thm. 5.6] d = t (whereas in our application d = t− 1).

5For example, we replace n byN (as denoting the number of balls), replace k by t, and (a1, . . . , at) by (a0, . . . , ak−1).
The number of colors is implicit in [4], but is explicit here.
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Lemma 6 (a generalization of [4, Thm. 5.6], slightly rephrased):6 Let Φ1 and Φ2 be random
variables over positive integers a1 < a2 < . . . < at such that

E[Φ1]

E[Φ2]
=

E[Φ2
1]

E[Φ2
2]

= . . . =
E[Φd−1

1 ]

E[Φd−1
2 ]

. (3)

Then, for s ≤ N
2at

, the distinguishing gap between BΦ1,N and BΦ2,N as judged by any label-invariant
algorithm that takes Poi(2s) samples is upper-bounded by

O

(
t · d · 2s
N/at

+
d

bd/2c! · dd/2e!
· (2s)d

(N/at)d−1

)
. (4)

Lemma 5 follows from Lemma 6 by using Φ1 = X and Φ2 = Y , observing that N = 2m and
BΦ1,N ≡ P (resp., BΦ2,N ≡ Q), setting d = t− 1, simplifying the upper bound, and accounting for
the error term of exp(−Ω(s)).

Recall that Lemma 6 generalizes [4, Thm. 5.6] by allowing d and t to be arbitrary natural
numbers rather than mandating that d = t. However, the proof of [4, Thm. 5.6] does not use
d = t in an essential manner, and so going over that proof one merely needs to keep track of when
k stands for t and when it stands for d (and observe that in all places ak−1 merely stands for
the maximal ai).

7 In particular, denoting a = maxi∈[t]{ai}, the upper bound in [4, Lem. 5.9] is

δ1
def
= O(a

d−1

d! ·
(2s)d

Nd−1 ), the upper bound in [4, Lem. 5.10] is δ2
def
= 2t·a·2s

N , the upper bound δ3 in [4,
Lem. 5.12] is Θ(1/d) of the bound in Eq. (4), and the final upper bound is 2 · δ1 + 2 · δ2 + (d−1) · δ3,
which matches Eq. (4).

6In the case of d = t, our rephrasing is merely notational (e.g., (a1, . . . , at) replaces (a0, . . . , ak−1), and N replaces
n). In addition, we incorporate Eq. (3) in our formulation of the lemma rather than referring to a notion (i.e.
“proportional moments”) defined before, and avoid a notation for the gap of an algorithm (i.e., a notation as in
Footnote 3 is avoided in Eq. (4)).

7Recall that the parameter s in [4] is replaced here by 2s, and n is replaced by N .
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