
Proving the PCP Theorem with 1.5 proof compositions

(or yet another PCP construction)

Oded Goldreich
Department of Computer Science

Weizmann Institute of Science, Rehovot, Israel.

November 17, 2025

Abstract

The original proof of the PCP Theorem composes a Reed-Muller-based PCP with itself,
and then composes the resulting PCP with a Hadamard-based PCP [Arora, Lund, Motwani,
Sudan and Szegedy (JACM, 1998)]. Hence, that proof applies a (general) proof composition
result twice. (Dinur’s alternative proof consists of logarithmically many gap amplification steps,
where each step includes an operation akin to proof composition.)

A recent work of Amireddy, Behera, Srinivasan, Sudan, and Willumsgaard (ECCC, TR25-
165) presents a new PCP system such that composing the RM-based PCP with the new PCP
yields a new proof of the PCP Theorem. Essentially, for every α > 0, they present a (direct)
PCP of constant query complexity and randomness complexity nα, where n denotes the length
of the input. (In contrast, recall that the Hadamard-based PCP has quadratic randomness
complexity.) We note that their construction has other merits, beyond the fact that it does not
use composition.

Here we present a different PCP system of constant query complexity and randomness nα.
Essentially, we use the RM-based PCP, but with a constant number of dimensions and a large
alphabet (equiv., O(1/α)-variate polynomials over a field of size nO(α)). We then encode the
field elements by the Hadamard code and incorporate a tester akin to the verifier used in the
Hadamard-based PCP. Whether or not this counts as composition is debatable (and this is
reflected in the current title), but for sure this is a non-generic composition that does not
involve a preparatory parallelization step.

Contents

1 Introduction 1

2 High-level description 2

3 Low-level description 5

4 Discussion 10

Acknowledgements 11

Bibliography 11

1 Introduction

The original proof of the PCP Theorem (by Arora, Lund, Motwani, Sudan and Szegedy [2]) com-
poses a Reed-Muller-based PCP with itself, and then composes the resulting PCP with a Hadamard-
based PCP.1 Hence, that proof applies a (general) proof composition result twice, where these ap-
plications require a preparatory parallelization step. The fact that two proof-composition steps are
required seems a coincidence that arises from the parameters of the two aforementioned PCP sys-
tems. Specifically, the RM-based PCP has polylogarithmic query complexity, whereas the H-based
PCP has quadratic randomness complexity.

Dinur’s alternative proof of the PCP Theorem [6] consists of logarithmically many gap amplifi-
cation steps, where each step includes an operation akin to proof composition (but does not require
a preparatory parallelization step).

A recent work of Amireddy, Behera, Srinivasan, Sudan, and Willumsgaard presents a new PCP
system such that composing the RM-based PCP with the new PCP yields a new proof of the
PCP Theorem [1]. Essentially, for every α > 0, they present a (direct) PCP of constant query
complexity and randomness complexity nα, where n denotes the length of the input. We note that
their construction has other merits, beyond the fact that it does not use composition. In particular,
they can derive both the new PCP system and the known RM-based PCP system as special cases
of general construction schema.

The latter work solves a previously untouched challenge: Constructing a simple PCP system,
say for 3SAT, of constant query complexity and randomness complexity nα. The undefined qual-
ification (i.e, “simple”) is aimed to rule out the PCP system that is obtained by composing the
RM-based system with the H-system, resulting in a PCP of constant query complexity and poly-
logarithmic randomness complexity. (More generally, it is meant to rule out the use of a general
proof composition technique and especially the preparatory parallelization step, alas these terms
are undefined too.)

In this paper we provide an alternative solution to the foregoing challenge. Essentially, we use
the RM-based PCP (of [4, 8, 2]), but with a constant number of dimensions and a large alphabet
(equiv., O(1/α)-variate polynomials over a field of size nO(α)). We emulate this RM-based PCP by
using Hadamard encoding of the answers that appear in the corresponding proof-oracle. Details
follow (albeit they rely on familiarity with the RM-based PCP system).

Recall that the univariate polynomials returned by the sum-check procedure and by the low-
degree test are typically represented by their (sequence of) coefficients. We encode each of these
sequences by the Hadamard code; that is, the proof-oracle that we use provide these encodings.
Recall that the claim that a univariate polynomial evaluates to a claimed value at a given point is
captured by a lineaer constraint on the (sequence of) coefficients of the polynomial (since univariate
polynomial evaluation is a linear combination of the coefficients of the polynomial). Next, observe
that, when using a field of characteristic 2, a linear combination of a sequence of field elements
corresponds to linear combinations of the bits in the representations of these field elements. Hence,
testing a linear constraint on the (sequence of) coefficients reduces to inspecting few (random)
locations in the Hadamard encoding of this sequence. (Indeed, we shall compare random linear
combinations of the bits representing the two field elements (to be compared).)

Hence, we can emulate the sum-check and low-degree tests, leaving us with the task of verifying

1Actually, proof composition requires the outer system to be robust and the inner system to be a PCP of Proximity
(see below). The parallelization step (mentioned next) is meant to provide robustness.

1

that the product of three field elements equals a fourth one, where each of these field elements is
encoded by a Hadamard code. The latter verification is assisted by an auxiliary proof-oracle that
provides the Hadamard encoding of all three-way products of bits (in these three field elements).
The corresponding tester is analogous to the verifier used in the Hadamard-based PCP (of [2]).

It may be argued that the latter fact means that we actually perform proof composition; we
beg to differ, but postpone this rather scholastic discussion to Section 4. For sure, we neither use
a general composition result (of the type presented in [3, 2, 5, 7]) nor a preparatory parallelization
step (as in, e.g., [2]).

Since the main application of the PCP system presented here is for composing it (as an inner
verifier) with an outer verifier (i.e., the robust RM-based verifier of [2]), we actually construct a
PCP for Proximity (PCPP).2 Indeed, composing the (robust) RM-based verifier of [2] with our
PCPP yields a PCP system that establishes the PCP Theorem.

Prerequisites. The current text assumes familiarity with the notions of a PCP and a PCPP as
well as with the constructions of the RM-based PCP of [4, 8, 2] and the H-based PCP of [2]. A
high-level exposition of these notions and constructions can be found in [9, Sec. 9.3.1-9.3.2].

Organization. In Section 2 we provide a high-level description of our PCP system. We believe
that this high-level description suffices, but provide a more detailed description in Section 3. Since
this PCP system incorporates ingredients that were analyzed in the literature (cf., [2]), we see little
point in providing a full analysis. In Section 4 we briefly articulate our disagreement with the claim
that our PCP system actually performs proof composition.

2 High-level description

The proposed construction is based on the RM-based PCPP, but it uses a different setting of
parameters. Specifically, for any constant m ∈ N, we use h = |H| = n1/m and |F| = poly(|H|). (In
contrast, the standard construction uses m = logn

log logn and h = log n.) This PCP has logarithmic
randomness, but its query complexity is Θ(m·h log n). So we shall not use it as is, but rather encode
the answers (to its queries) by the Hadamard code and test these encodings instead.3 However, let
us first take a closer look at the RM-based PCPP.

The RM-based PCPP. First, we stress that we refer to the basic RM-based PCPP without the
parallelization step. Given (a succinct description of) a 3CNF formula ϕ : {0, 1}n → {0, 1} and
oracle access to an assignment A : [n]→ {0, 1} to its variables, the verifier uses several proof-oracles
to be detailed below. Associating [n] with Hm, the first proof-oracle is a low-degree extension of
A : Hm → {0, 1}, denoted Â : Fm → F ; that is, Â has individual degree h − 1, and Â(x) = A(x)
for every x ∈ Hm.

The verifier tests that Â indeed extends A and that Â has low degree. The first test is straight-
forward (i.e., by querying both oracles on O(1/ϵ) random points in Hm), and it will be ignored
in the rest of this section. The second test may be performed by picking a random line in Fm,

2Indeed, we prefer the formalism of PCPP, as introduced in [5], over the one of assignment testers, introduced
independently in [7].

3Indeed, this is analogous to performing proof composition with the Hadamard-based PCPP, but we achieve the
same effect by capitalizing on the specifics of the current case rather than by invoking a general composition theorem.

2

obtaining the corresponding (degree m · (h− 1) < mh) univariate polynomial from a corresponding
proof oracle, denoted Πlines : (Fm)2 → Fmh, and comparing the value at a random point on this
line to the value obtained from Â.

Assuming that Â is a low-degree extension of A, the verifier tests that Â (restricted to Hm)
corresponds to a satisfying assignment to the formula ϕ. This is done by checking that a specific
expression evaluates to zero, where the expression has the form4∑

ξ,x,y,z∈Hm

Φ(ξ, x, y, z) · Â(x) · Â(y) · Â(z), (1)

where Φ : F4m → F is an explicit polynomial of individual degree h−1 that depends on ϕ. Indeed,
Eq. (1) is verified by the celebrated sum-check procedure (originating in [10]) that utilizes the

oracles Π1, ...,Π4m, where Πj : F j−1 → Fh, such that Pr1,...,rj−1

def
= Πj(r1, ..., rj−1) is a univariate

polynomial of degree h− 1 that satisfies

Pr1,...,rj−1(ζ) =
∑

r∈H4m−j

Φ(r1, ..., rj−1, ζ, r) · Â(x) · Â(y) · Â(z), (2)

where (ξ, x, y, z) = (r1, ..., rj−1, ζ, r). Starting with (j = 1 and) vλ = 0, in the jth iteration, the
verifier checks that

vr1,...,rj−1 =
∑
r∈H

Pr1,...,rj−1(r), (3)

selects rj ∈ F uniformly at random, and defines vr1,...,rj ← Pr1,...,rj−1(rj). After the last iteration,
the verifier checks that vr1,...,r4m equals

Φ(r1, ..., r4m) · Â(rm+1, ..., r2m) · Â(r2m+1, ..., r3m) · Â(r3m+1, ..., r4m). (4)

Hence, the queries that this verifier performs and the answers it receives are as follows.

1. The 4m queries of the sum-check procedure are each answered by a univariate polynomial of
degree h− 1, which we view as an element of Fh.

Note that Eq. (3) calls for evaluating these polynomials at h + 1 different points (i.e., the
polynomial Πj(r1, ..., rj−1) : F → F is evaluated at H ∪ {rj}). Assuming that each of these
univariate polynomials (of degree h−1) is represented by the h-long sequence of coefficients, its
evaluation corresponds to a linear combination of these coefficients. Specifically, if Pr1,...,rj−1 =

Πj(r1, ..., rj−1) is represented by (c0,, ch−1) ∈ Fh (i.e., Pr1,...,rj−1(ζ) =
∑h−1

i=0 ci · ζi), then
evaluating this polynomial at r ∈ F corresponds to computing

∑h−1
i=0 ri · ci.

2. The three queries at the end of the sum-check procedure are each answered by an element of
F . These answers are provided by Â.

In this case, the corresponding test calls for multiplying these three values of Â (and comparing
the answer to vr1,...,r4m/Φ(r1, ..., r4m)).5

4For simplicity, we assume here that ϕ is monotone; this is justified in Section 3. In addition, we represent true
(resp., false) by 0 (resp., by 1), allows us to use Â(x) · Â(y) · Â(z) rather than (1− Â(x)) · (1− Â(y)) · (1− Â(z)). As
for Φ itself, it is derived analogously to [9, Eq. (9.8)], while assuming that the number of clauses equals the number
of variables. In addition, for simplicity, we omit here the sequence of pseudorandom coefficients (ωξ)ξ∈Hm that are
generated based on a random O(logn)-bit long seed, which is selected by the verifier.

5Recall that vr1,...,r4m = Pr1,...,r4m−1(r4m), and that the verifier can compute Φ(r1, ..., r4m) by itself.

3

3. The first query of the low-degree test is answered by a univariate polynomial of degree m ·
(h − 1), which we view as an element of Fmh, whereas the second query is answered by an
element of F . (These answers are provided by Πlines and Â, respectively.)

Analogously to Step 1, the test calls for evaluating the univariate polynomial at some point,
and this is done analogously.

While the foregoing verifier makes O(m) queries, the answers to these queries are represented by
sequences over F , which we shall view as bit strings (of lengths between log2 |F| and mh · log2 |F|).
In contrast, we aim at O(m) queries that are answers by binary values. As stated upfront, we
achieve this goal by encoding the answers by (even) longer (binary) codewords that we shall test
in a local manner. Specifically, we shall use the Hadamard code (as well as the known codeword
test and self-correction procedure for it).

Using Hadamard encoding of the answers. We first address the queries, answers and checks
performed in Steps 1 and 3. Recall that these checks consist of F-linear constraints on the answers.
Now, suppose that F has characteristic 2; that is, F = GF(2t). Then, we can write each F-linear
constraint (which is checked in Steps 1 and 3) as t linear constraints over GF(2), which means
that we can easily checked them if we have a Hadamard encoding of these answers (and use self-
correction). Of course, we should also perform Hadamard-codeword tests. All these can be done
by tossing O(mh log |F|) = Õ(|H|) coins and making a constant number of queries. Details follow.

Formally, rather than using the oracles Πj : F j−1 → Fh, we shall use the oracles Π′
j : F j−1 ×

Fh → {0, 1} such that Π′
j(r, s) equals the inner-product mod 2 of Πj(r) and s (each viewed

as an log2 |Fh|-bit long string). Analogously, rather than using Πlines : (Fm)2 → Fmh (resp.,
Â : Fm → F), we shall use Π′

lines : (Fm)2×Fmh → {0, 1} (resp., Â′ : Fm×F → {0, 1}) such that
Π′
lines((x, y), s) equals the inner-product mod 2 of Πlines(x, y) and s, each viewed as an log2 |Fmh|-

bit long string (resp., Â′(z, s) equals the inner-product mod 2 of Â(z) and s, each viewed as an
log2 |F|-bit long string). Hence, rather than checking one F-linear constraint, we need to check
t = log2 |F| binary constraints. Needless to say, we shall not do that either, but rather check
a random linear combination of these t constraints (and do so via self-correction of the relevant
Hadamard-encoding, which will be also tested for being a valid codeword).

Specifically, a linear constraint on the bits of Πj(r) ∈ Fh (viewed as an h · t-bit long string) is
checked by considering the corresponding position in Π′

j (i.e., if s ∈ {0, 1}ht represents this linear
constraint, then we consider Π′

j(r, s), and reconstruct its purported value by self-correction (i.e.,

use Π′
j(r, s

′)+Π′
j(r, s−s′), where s′ is uniformly selected in {0, 1}ht)). Likewise, a linear constraint

on the bits of Πlines(x, y) and Â(z), where z is a point on the line connecting x and y, is checked
by considering the corresponding positions in Π′

lines((x, y), ·) and Â′(z, ·).
Turning to Step 2, recall that here we should obtain the product of three values of Â : Fm → F ,

and compare the result to a value obtained from Π4m (i.e., Eq. (4) should equal the value of
Π4m(r1, ..., r4m−1) at r4m). Recall that we wish to make a constant number of binary queries
(and so we cannot afford querying Â). On the other hand, it is unclear how we can get a linear
combination of the bits of Â(x) · Â(z) · Â(z) by querying Â′ at a constant number of places.

Specifically, for a ∈ F and j ∈ [t], letting aj denote the jth bit of a, we observe that the ith bit

of Â(x) · Â(z) · Â(z) equals
∑

(j1,j2,j3)∈Si
Â(x)j1 · Â(z)j2 · Â(z)j3 for some Si ⊆ [t]× [t]× [t]. However,

we “don’t have control” on these Si’s, and so it is unclear how linear combinations of the bits of

4

Â(x) · Â(z) · Â(z) can be recovered, in general, from a constant number of linear combination of
the bits of Â(x), Â(y) and Â(z).

To address the foregoing problem, we just introduce an oracle that solves it. Specifically,
consider the proof-oracle T : (Fm)3 × 2[t]

3 → {0, 1} such that for every S ⊆ [t]3 it holds that

T (x, y, z, S) =
∑

(i,j,k)∈S

Â(x)i · Â(y)j · Â(z)k (5)

and note that T (x, y, z, ·) is the Hadamard encoding of the t3-bit long sequence

(Â(x)i · Â(y)j · Â(z)k)(i,j,k)∈[t]3

(which we view as a 3-dimensional tensor (of side-length t)). Hence, testing that a given W ,
which is claimed to equal T (x, y, z, ·), actually equals it (i.e., satisfies Eq. (5) for every S) reduces
to testing that W is a valid Hadamard codework and that the sequence that W encodes equals
(Â(x)i · Â(y)j · Â(z)k)(i,j,k)∈[t]3 . The second test is akin to the matrix equality test (of [2]). Details
follow.

The second test is performed by viewing the message w ∈ [t]3 encoded in W as a 3-dimensional
tensor (of side-length t) and testing it against the tensor (Â(x)i · Â(y)j · Â(z)k)(i,j,k)∈[t]t . The
test is performed by taking a corresponding random sub-cube of each of the two tensors; that
is, for uniformly selected R1, R2, R3 ⊆ [t], we compare W (R1 × R2 × R3), which we obtain via
self-correction on W , to

∑
(i,j,k)∈R1×R2×R3

Â(x)i · Â(y)j · Â(z)k =

∑
i∈R1

Â(x)i

 ·
∑

j∈R2

Â(y)j

 ·
∑

k∈R3

Â(z)k

 (6)

where each factor (on the r.h.s of Eq. (6)) is obtained from the corresponding value of Â′ (i.e.,∑
i∈R Â(x)i equals the inner-product of Â(x) and (ρ1, ..., ρt), where ρj = 1 if j ∈ R and ρj = 0

otherwise).

3 Low-level description

The following detailed description refer to the high-level description provided in Section 2; hence,
we strongly recommend reading Section 2 before reading the current section.

Preliminaries. For an ℓ-long sequence α over Σ, where in most cases Σ = F (but in one case we
shall use Σ = {0, 1}), and i ∈ [ℓ], we let αi denote the ith element in α = (α1, ..., αℓ). The empty
sequence is denoted λ. For equal-length bit strings x and s, we denote by ⟨x, s⟩ their inner-product
mod 2.

For α ∈ F = GF(2t), we denote by Mα the t-by-t Boolean matrix that represents multiplication
by α; that is, for every x ∈ F , viewed as a t-bit long column vector, it holds that Mαx represents
the element α · x ∈ F . Note that Mα +Mβ = Mα+β and MαMβ = Mαβ. Also, viewing x as a t-bit
long column vector and s as a t-bit long row vector, we have ⟨Mαx, s⟩ = sMαx = ⟨x, sMα⟩.

As stated in Footnote 4, we shall assume that the Boolean formula ϕ is monotone. This assump-
tion can be justified by introducing a variable for each original literal, and checking consistency

5

of these pairs of variables (in addition in testing the satisfiability of the resulting monotone for-
mula). We may also assume, without loss of generality, that the 3CNF formula has n variables
and n clauses. In addition, we represent true (resp., false) by 0 (resp., by 1); this allows us to
use Â(x) · Â(y) · Â(z) rather than (1 − Â(x)) · (1 − Â(y)) · (1 − Â(z)) in Eq. (1) (and in Eq. (7)).
(Alternatively, we can retain the standard representation for A and define Â to be a lw-degree
extension of 1−A.)

Another issue that was avoided for simplicity (see also Footnote 4) is that Eq. (1) is inaccurate.
The actual expression includes a pseudorandom sequence of coefficients (ωξ)ξ∈Hm that are generated
based on a random seed ω ∈ {0, 1}O(logn), which is selected by the verifier. Wishing to simplify
the exposition, we replace ωξ · Φ(ξ, x, y, z) · Â(x) · Â(y) · Â(z) by Φω(ξ, x, y, z) · Â(x) · Â(y) · Â(z).
Hence, Eq. (1) is replaced by ∑

ξ,x,y,z∈Hm

Φω(ξ, x, y, z) · Â(x) · Â(y) · Â(z), (7)

where Φω : F4m → F is an explicit polynomial of individual degree h− 1 that depends on ϕ (and
ω, where ω ∈ {0, 1}O(logn) is selected uniformly at random by the verifier). Furthermore, for sake
of simplicity, we omit ω from the notation; that is, we use Φ rather than Φω. More importantly, we
use the notation Πj although Πj depends on ω. In other words, actually, we should have a different
oracle Πω,j for each ω ∈ {0, 1}O(logn), but for simplicity we continue using the notation Πj .

The proof-oracle that we use. For a constant m ∈ N, we view the input-oracle A : [n]→ {0, 1}
as defined over Hm ≡ [n], where |H| = n1/m. We shall use a field F = GF(2t) ⊃ H such that
|F | = poly(|H|), and consider the low-degree extension of A, which is denoted Â : Fm → F . The
proof-oracle will consist of four parts, each encoding A (equiv., Â) in a different way; each of these
encoding is a concatenation code in which the inner-code is the Hadamard code.

� A Hadamard encoding of the symbols of Â; that is, we use Â′ : Fm × F → {0, 1} such that
Â′(x, s) = ⟨Â(x), s⟩ for every s ∈ {0, 1}t ≡ F , where Â : Fm → F is a low-degree extension
of A (i.e., Â has individual degree h− 1, and Â(x) = A(x) for every x ∈ Hm).

� A Hadamard encoding of the restriction of Â to lines; that is, Π′
lines : (Fm)2 × Fmh →

{0, 1} such that Π′
lines((x, y), s) = ⟨Πlines(x, y), s⟩ for every s ∈ {0, 1}mht ≡ Fmh, where

Πlines(x, y) ∈ Fmh is a representation of the univariate polynomial that describes the values
of Â on the line that connects x and y. Specifically, for α ∈ F , the value of Πlines(x, y) at

z = x+αy is given by
∑m·(h−1)

i=0 Πlines(x, y)i+1 ·αi, and this value is supposed to equal Â(z).

(Recall that Πlines(x, y)i+1 denotes the coefficient of the ith power (of the variable) in the
univarite polynomial Πlines(x, y), and that z = x + αy ∈ Fm is the αth point on the line
connecting x and y.)

� Hadamard encodings of answers provided in the sum-check procedure: For each j ∈ [4m], we
use an encoding Π′

j : F j−1 × Fh → {0, 1} of Πj : F j−1 → Fh; that is, Π′
j(r, s) = ⟨Πj(r), s⟩

for every s ∈ {0, 1}ht ≡ Fh, where Πj(r1, ..., rj−1) ∈ Fh is a representation of the univariate
polynomial that equals the r.h.s of Eq. (2).6

6Recall that we actually use a different Π′
ω,j , defined based on the corresponding Πω,j , for each ω ∈ {0, 1}O(logn).

We omitted ω from these notations for the sake of simplicity.

6

� A Hadamard encoding of three-way products of Â: Here we use an encoding T : (Fm)3×2[t]3 →
{0, 1} of bits in all three-way products of values of Â; that is, for every x, y, z ∈ Fm and s ∈
{0, 1}t3 , it holds that T (x, y, z, s) = ⟨τ(x, y, z), s⟩, where τ(x, y, z)i,j,k = Â(x)i · Â(y)j · Â(z)k
for every i, j, k ∈ [t].

Recall that F ≡ {0, 1}t and that each bit in Â(x) · Â(y) · Â(z) ∈ F can be expressed as a
linear combination of the bits in τ(x, y, z) ∈ {0, 1}t3 .

The verification boils down to testing that each of the oracles satisfies its definition and that Eq. (4)
holds, where Eq. (4) depends on the input formula ϕ. Details follow.

The verification process. For simplicity, in the following description, we abuse notation and
denote by Â′,Π′

lines,Π
′
j and T the actual proof-oracles to which the verifier has access (rather than

the prescribed encodings defined above). Recall that each of these proof-oracles is supposed to be a
concatenated code in which the inner-code is the Hadamard code. We will subject each inner-code
to a corresponding codeword test, and then use self-correction on it. Further, recall that the input
to each of these oracles consists of a pair (x, s) such that x points to a specific Hadamard codeword
and s is a location in that codeword. Hence, we define the following testing and self-correction
procedure, denoted SCB, where B is one of these oracles. On input (x, s), this procedure proceeds
as follows.

� It test that B(x, ·) is a Hadamard codeword, and proceeds only if this test accepts.

� It selects uniformly r ∈ {0, 1}|s| and returns the value B(x, s+ r)−B(x, r).

Denoting the answer of this procedure by SCB(x; s), we stress that if the test rejects then the answer
is a special failure symbol and the verifier that uses SCB halts rejecting. We now turn to the verifier
itself, which proceeds as follows.

1. The low-degree test: The verifier selects uniformly at random x, y ∈ Fm and α ∈ F , and
computes the t-by-t Boolean matrices Mαi for every i ∈ {0, 1, ...,m · (h − 1)}. (Recall that
Mα represents multiplication by α (i.e., Mαζ = αζ).) Then, the verifier selects s ∈ {0, 1}t
uniformly at random, viewing it as a t-bit long row vector, and checks that

SCΠ
′
lines((x, y); (s, sMα, sMα2 , ..., sMαm·(h−1))) = SCÂ

′
(x+ αy; s).

(The l.h.s yields the self-corrected value of Π′
lines((x, y), (s, sMα, sMα2 , ..., sMαm·(h−1))), which

equals ⟨s,
∑m·(h−1)

i=0 MαiΠlines(x, y)i+1⟩, which in turn equals
∑m·(h−1)

i=0 ⟨s, αi ·Πlines(x, y)i+1⟩,
whereas the r.h.s. yields a self-corrected value of Â′(x+ αy, s) = ⟨s, Â(x+ αy)⟩.)7

2. The iterative sum-check tests (i.e., the tests performed in the iterations of the sum-check
procedure): The verifier computes the t-by-t Boolean matrices Mri for every r ∈ H and
i ∈ {0, 1, ..., h− 1}. Then, the verifier selects (ω ∈ {0, 1}O(logn) and)8 s ∈ {0, 1}t uniformly at
random, viewing it as a t-bit long row vector (and assuming that h is odd), and checks that

SCΠ
′
1(λ; (s, sM∑

r∈H r, sM
∑

r∈H r2 , ..., sM
∑

r∈H rh−1)) = 0.

7Indeed, Πlines(x, y)i+1 is viewed as a column vector that represents an element of F = GF(2t). We comment

that self-correction is employed to Â′ only for the sake of testing that Â′(x+ αy, ·) is a Hadamard codeword.
8Recall that ω identifies the polynomial Φω : F4m → F that appears in Eq. (7), which is the expression that

should evaluate to 0, and that we chose to replace Φω (resp., Πω,j) by Φ (resp., Πj) for the sake of simplicity.

7

(Note that the l.h.s equals the inner-product mod 2 of s and the sum of the values of the poly-
nomial Π1(λ) evaluated at all points in H. Indeed, this corresponds to the check performed
in the first iteration of the check-sum process.)9

Next, the verifier selects r1, ..., r4m ∈ F uniformly at random, and checks that for every
j ∈ {2, ..., 4m} it holds that

SCΠ
′
j ((r1, ..., rj−1); (s, sM∑

r∈H r, sM
∑

r∈H r2 , ..., sM
∑

r∈H rh−1))

= SCΠ
′
j−1((r1, ..., rj−2); (s, sMrj−1 , sMr2j−1

, ..., sMrh−1
j−1

)).

(Indeed, this corresponds to the check performed in the jth iteration of the check-sum process,
and we may use the same s in all 4m iterations. Note that Πj(r1, ..., rj−1) is evaluated at all
points in H as well as at rj (where for j = 4m the latter evaluation is performed in Step 4).)

3. Testing consistency of T with Â: For r1, ..., r4m as determined by the sum-check procedure,
let x = (r1, ..., rm), y = (rm+1, ..., r2m), and z = (r2m+1, ..., r4m). The verifier select u, v, w ∈
{0, 1}t uniformly at random, and checks that

Â′(x, u) · Â′(y, v) · Â′(z, w) = SCT ((x, y, z);u⊗ v ⊗ w)

holds, where u ⊗ v ⊗ w denotes the 3-dimensional tensor obtained by an outer-product
of u, v and w. (Analogously to Eq. (6), note that ⟨Â(x), u⟩ · ⟨Â(y), v⟩ · ⟨Â(z), w⟩ equals
⟨Â(x)⊗ Â(y)⊗ Â(z), u⊗ v ⊗ w⟩.)10

4. The final sum-check test (i.e., the test performed after the last iteration of the sum-check
procedure): For each i ∈ [t], define Si ⊆ [t]3 such that for every α, β, γ ∈ F it holds that the
ith bit of αβγ equals

∑
(j1,j2,j3)∈Si

αj1βj2γj3 .

The verifier computes α← Φ(r1, ..., r4m), where Φ is constructed based on the input formula ϕ.

The verifier selects s ∈ F uniformly at random and computes S = ⊕i:si=1Si, where ⊕i∈ISi

contains (j1, j2, j3) if and only if (j1, j2, j3) appears in an odd number of Si’s (with i ∈ I).
Assuming that α ̸= 0, the verifier obtains b← SCT (r1, ..., r4m, S) and checks that

SCΠ
′
4m((r1, ..., r4m−1); (sMα−1 , sMα−1·r4m , sMα−1·r24m , ..., sMα−1·rh−1

4m
)) = b.

9Specifically, we wish to verify that 〈
s,

∑
r∈H

h−1∑
i=0

MriΠ1(λ)i+1

〉
= 0

where the l.h.s equals 〈
s,

h−1∑
i=0

∑
r∈H

MriΠ1(λ)i+1

〉
=

〈
s,

h−1∑
i=0

M∑
r∈H riΠ1(λ)i+1

〉
.

The hypothesis that h is odd implies that sMh·r0 = s; for even h we would have had sMh·r0 = 0.
10There is no need to employ self-correction on A′, since it is evaluated at a random location, whereas Step 1

includes a test that Â′ consists of a sequence of Hadamard codewords.

8

(If α = 0, then the foregoing is checked while replacing M
α−1·rj4m

by M
rj4m

and replacing b

by 0.)11

(Indeed, this test corresponds to the check performed after all iterations of the check-sum
process, except that (in case of α ̸= 0) both sides of the constraint are multiplied by α−1.)12

5. Testing consistency with the input-oracle: The verifier selects uniformly at random x ∈ Hm

and s = (s′, σ) ∈ {0, 1}t ≡ {0, 1}t−1 × {0, 1}, and checks that ⟨Â(x), s⟩ = A(x) if σ = 1 and
⟨Â(x), s⟩ = 0 otherwise.

(Indeed, we assume that b ∈ {0, 1} ⊂ F is represented by the bit string 0t−1b. Hence,
⟨0t−1b, s′σ⟩ = σ · b.)

The last step is needed for a PCPP for the claim that A satisfies ϕ, but not for a PCP for the
claim that ϕ is satisfiable. Actually, when given proximity parameter ϵ > 0, Step 5 is executed
O(1/ϵ) times. Each of the other steps is executed a constant number of times (so that passing
these tests implies that the proof-oracles are sufficiently close to being what they are supposed to
be). Hence, the query complexity of this PCPP is O(m + ϵ−1). Observing that the randomness
complexity is dominated by the randomness used by the self-correction procedure for Π′

4m, which
is O(mht) = O(n1/m log n), we obtain.

Theorem: The forgoing verification procedure constitutes a PCPP for 3SAT with query complex-
ity O(m+ ϵ−1) and randomness complexity Õ(n1/m).

Guideline for proving the theorem: The key observation is that the foregoing verification
procedure emulates the corresponding RM-based PCP system. Specifically, each of the steps checks
a random linear combination of t Boolean constraints that replace an F-linear constraint that is
checked by the RM-based PCP system. Let us spell out the corresponding checks of the latter
system.

1. The low-degree test: The verifier selects uniformly at random x, y ∈ Fm and α ∈ F , and
computes the t-by-t Boolean matrices Mαi for i = 0, 1, ...,m · (h− 1). It then checks that

m·(h−1)∑
i=0

MαiΠlines(x, y)i+1 = Â(x+ αy)

holds, where Mα represents multiplication by α (i.e., Mαζ = αζ).

11That is, in this case there is no need to query T . We just check that

SC
Π′

4m((r1, ..., r4m−1); (s, sMr4m , sMr24m
, ..., sM

rh−1
4m

)) = 0

holds.
12That is, rather than comparing that vr1,...,r4m to α · Â(rm+1, ..., r2m)Â(r2m+1, ..., r3m)Â(r3m+1, ..., r4m)

(as in Eq. (4)) we compared α−1vr1,...,r4m to τ(r1, ..., r4m) (which supposedly equals

Â(rm+1, ..., r2m)Â(r2m+1, ..., r3m)Â(r3m+1, ..., r4m), by Step 3).

9

2. The iterative sum-check tests: The verifier selects r1, ..., r4m ∈ F uniformly at random.13 For
sake of clarity, we distinguish between the first iterations and the later iterations. In the first
iteration, the verifier checks that

∑
r∈H

h−1∑
i=0

MriΠ1(λ)i+1 = 0

holds. (Recall that Π1(λ) : F → F is a univariate polynomial of degree h− 1.)

For j ∈ {2, ..., 4m}, in the jth iteration, the verifier checks that

∑
r∈H

h−1∑
i=0

MriΠj(r1, ..., rj−1)i+1 =
h−1∑
i=0

Mrij−1
Πj−1(r1, ..., rj−2)i+1

holds. (Recall that Πj(r1, ..., rj−1) : F → F is a univariate polynomial of degree h− 1.)

3. Testing consistency of T with Â: Omitted. See next step.

4. The final sum-check test: The verifier computes α← Φ(r1, ..., r4m), and checks that

h−1∑
i=0

Mri4m
Π4m(r1, ..., r4m−1)i+1 = α · Â(rm+1, ..., r2m) · Â(r2m+1, ..., r3m) · Â(r3m+1, ..., r4m)

holds.

5. Testing consistency with the input-oracle: The verifier selects uniformly at random x ∈ Hm

and checks that Â(x) = A(x).

Regarding the iterative sum-check step, note that (analogously to Footnote 9), for every j ∈ [4m],
it holds that

∑
r∈H

h−1∑
i=0

MriΠj(r1, ..., rj−1)i+1 =

h−1∑
i=0

∑
r∈H

MriΠj(r1, ..., rj−1)i+1

=

h−1∑
i=0

M∑
r∈H riΠj(r1, ..., rj−1)i+1

4 Discussion

The question addressed here is whether or not it is fair to say that our construction does not use
the proof composition paradigm. Towards addressing this question, we note that our construction
differs from the RM-based PCP in two fundamental aspects:

13Recall that the verifier also selects ω ∈ {0, 1}O(logn) uniformly at random and that Πj actually stands for Πω,j .

10

1. The proof-oracles used by our verifier are not RM-codewords but are rather codewords of
concatenated codes. Furthermore, the proof-oracle T is a codeword of a rather “weird” code
(i.e., it is obtained by concatenating a weird outer code with the Hadamard code).

2. On top of performing the sum-check procedure and low-degree tests (as the RM-based PCP
does), our verifier also performs a consistency test that is akin to the one performed by the
H-based PCP.

In our opinion, using a “weird” (or rather unnatural) code and using a procedure that was used
in a different PCP system does not mean that one employs the proof composition technique. For
sure, we do not invoke any general proof composition result (e.g., [3, 2, 5, 7]), but rather refer to
the specific test that we wish to perform (i.e., correctness of multiplication over F). Furthermore,
we do not employ a preparatory parallelization step.14

However, we view the foregoing debate as quite scholastic. Terms such as “using X”, “charac-
terization”, “combinatorial”, “simple”, “natural” and “intuitive” are all vague and undefined. Still,
it does not mean that we should not care about the underlying notions; it just means that there is
no point in arguing about them. Even saying that “our construction is different from known ones”
falls within this category, and still we said so.

Acknowledgements

I am grateful to Madhu Sudan for useful and interesting discussions.

References

[1] P. Amireddy, A.R. Behera, S. Srinivasan, M. Sudan, and S.V. Willumsgaard. Ideals, Gröbner
Bases, and PCPs. ECCC, TR25-165, 2025.

[2] S. Arora, C. Lund, R. Motwani, M. Sudan and M. Szegedy. Proof Verification and In-
tractability of Approximation Problems. Journal of the ACM, Vol. 45, pages 501–555, 1998.
Preliminary version in 33rd FOCS, 1992.

[3] S. Arora and S. Safra. Probabilistic Checkable Proofs: A New Characterization of NP.
Journal of the ACM, Vol. 45, pages 70–122, 1998. Preliminary version in 33rd FOCS, 1992.

[4] L. Babai, L. Fortnow, L. Levin, and M. Szegedy. Checking Computations in Polylogarithmic
Time. In 23rd ACM Symposium on the Theory of Computing, pages 21–31, 1991.

[5] E. Ben-Sasson, O. Goldreich, P. Harsha, M. Sudan, and S. Vadhan. Robust PCPs of Prox-
imity, Shorter PCPs, and Applications to Coding. SIAM Journal on Computing, Vol. 36 (4),
pages 889–974, 2006. Extended abstract in 36th STOC, 2004.

[6] I. Dinur. The PCP Theorem by Gap Amplification. In 38th ACM Symposium on the Theory
of Computing, pages 241–250, 2006.

14The latter assertion can be made also with respect to Dinur’s gap amplification technique [6]. However, unlike
us, Dinur treats the computation that she wishes to verify as generic (since it is a large set of constraints over a large
alphabet).

11

[7] I. Dinur and O. Reingold. Assignment-testers: Towards a combinatorial proof of the PCP-
Theorem. SIAM Journal on Computing, Vol. 36 (4), pages 975–1024, 2006. Extended abstract
in 45th FOCS, 2004.

[8] U. Feige, S. Goldwasser, L. Lovász, S. Safra, and M. Szegedy. Approximating Clique is almost
NP-complete. Journal of the ACM, Vol. 43, pages 268–292, 1996. Preliminary version in 32nd
FOCS, 1991.

[9] O. Goldreich. Computational Complexity: A Conceptual Perspective. Cambridge University
Press, 2008.

[10] C. Lund, L. Fortnow, H. Karloff, and N. Nisan. Algebraic Methods for Interactive Proof
Systems. Journal of the ACM, Vol. 39, No. 4, pages 859–868, 1992. Preliminary version in
31st FOCS, 1990.

12

	Introduction
	High-level description
	Low-level description
	Discussion
	Acknowledgements
	Bibliography

