Proving the PCP Theorem with 1.5 proof compositions
(or yet another PCP construction)

Oded Goldreich
Department of Computer Science
Weizmann Institute of Science, Rehovot, ISRAEL.

November 17, 2025

Abstract

The original proof of the PCP Theorem composes a Reed-Muller-based PCP with itself,
and then composes the resulting PCP with a Hadamard-based PCP [Arora, Lund, Motwani,
Sudan and Szegedy (JACM, 1998)]. Hence, that proof applies a (general) proof composition
result twice. (Dinur’s alternative proof consists of logarithmically many gap amplification steps,
where each step includes an operation akin to proof composition.)

A recent work of Amireddy, Behera, Srinivasan, Sudan, and Willumsgaard (ECCC, TR25-
165) presents a new PCP system such that composing the RM-based PCP with the new PCP
yields a new proof of the PCP Theorem. Essentially, for every a > 0, they present a (direct)
PCP of constant query complexity and randomness complexity n®, where n denotes the length
of the input. (In contrast, recall that the Hadamard-based PCP has quadratic randomness
complexity.) We note that their construction has other merits, beyond the fact that it does not
use composition.

Here we present a different PCP system of constant query complexity and randomness n®.
Essentially, we use the RM-based PCP, but with a constant number of dimensions and a large
alphabet (equiv., O(1/a)-variate polynomials over a field of size n®(®)). We then encode the
field elements by the Hadamard code and incorporate a tester akin to the verifier used in the
Hadamard-based PCP. Whether or not this counts as composition is debatable (and this is
reflected in the current title), but for sure this is a non-generic composition that does not
involve a preparatory parallelization step.

Contents

1 Introduction

2 High-level description
3 Low-level description
4 Discussion
Acknowledgements

Bibliography

10

11

11

1 Introduction

The original proof of the PCP Theorem (by Arora, Lund, Motwani, Sudan and Szegedy [2]) com-
poses a Reed-Muller-based PCP with itself, and then composes the resulting PCP with a Hadamard-
based PCP.! Hence, that proof applies a (general) proof composition result twice, where these ap-
plications require a preparatory parallelization step. The fact that two proof-composition steps are
required seems a coincidence that arises from the parameters of the two aforementioned PCP sys-
tems. Specifically, the RM-based PCP has polylogarithmic query complexity, whereas the H-based
PCP has quadratic randomness complexity.

Dinur’s alternative proof of the PCP Theorem [6] consists of logarithmically many gap amplifi-
cation steps, where each step includes an operation akin to proof composition (but does not require
a preparatory parallelization step).

A recent work of Amireddy, Behera, Srinivasan, Sudan, and Willumsgaard presents a new PCP
system such that composing the RM-based PCP with the new PCP yields a new proof of the
PCP Theorem [1]. Essentially, for every a > 0, they present a (direct) PCP of constant query
complexity and randomness complexity n®, where n denotes the length of the input. We note that
their construction has other merits, beyond the fact that it does not use composition. In particular,
they can derive both the new PCP system and the known RM-based PCP system as special cases
of general construction schema.

The latter work solves a previously untouched challenge: Constructing a simple PCP system,
say for 3SAT, of constant query complezity and randomness complexity n®. The undefined qual-
ification (i.e, “simple”) is aimed to rule out the PCP system that is obtained by composing the
RM-based system with the H-system, resulting in a PCP of constant query complexity and poly-
logarithmic randomness complexity. (More generally, it is meant to rule out the use of a general
proof composition technique and especially the preparatory parallelization step, alas these terms
are undefined too.)

In this paper we provide an alternative solution to the foregoing challenge. Essentially, we use
the RM-based PCP (of [4, 8, 2]), but with a constant number of dimensions and a large alphabet
(equiv., O(1/a)-variate polynomials over a field of size n®(®)). We emulate this RM-based PCP by
using Hadamard encoding of the answers that appear in the corresponding proof-oracle. Details
follow (albeit they rely on familiarity with the RM-based PCP system).

Recall that the univariate polynomials returned by the sum-check procedure and by the low-
degree test are typically represented by their (sequence of) coefficients. We encode each of these
sequences by the Hadamard code; that is, the proof-oracle that we use provide these encodings.
Recall that the claim that a univariate polynomial evaluates to a claimed value at a given point is
captured by a lineaer constraint on the (sequence of) coefficients of the polynomial (since univariate
polynomial evaluation is a linear combination of the coefficients of the polynomial). Next, observe
that, when using a field of characteristic 2, a linear combination of a sequence of field elements
corresponds to linear combinations of the bits in the representations of these field elements. Hence,
testing a linear constraint on the (sequence of) coefficients reduces to inspecting few (random)
locations in the Hadamard encoding of this sequence. (Indeed, we shall compare random linear
combinations of the bits representing the two field elements (to be compared).)

Hence, we can emulate the sum-check and low-degree tests, leaving us with the task of verifying

! Actually, proof composition requires the outer system to be robust and the inner system to be a PCP of Proximity
(see below). The parallelization step (mentioned next) is meant to provide robustness.

that the product of three field elements equals a fourth one, where each of these field elements is
encoded by a Hadamard code. The latter verification is assisted by an auxiliary proof-oracle that
provides the Hadamard encoding of all three-way products of bits (in these three field elements).
The corresponding tester is analogous to the verifier used in the Hadamard-based PCP (of [2]).

It may be argued that the latter fact means that we actually perform proof composition; we
beg to differ, but postpone this rather scholastic discussion to Section 4. For sure, we neither use
a general composition result (of the type presented in [3, 2, 5, 7]) nor a preparatory parallelization
step (as in, e.g., [2]).

Since the main application of the PCP system presented here is for composing it (as an inner
verifier) with an outer verifier (i.e., the robust RM-based verifier of [2]), we actually construct a
PCP for Prozimity (PCPP).2 Indeed, composing the (robust) RM-based verifier of [2] with our
PCPP yields a PCP system that establishes the PCP Theorem.

Prerequisites. The current text assumes familiarity with the notions of a PCP and a PCPP as
well as with the constructions of the RM-based PCP of [4, 8, 2] and the H-based PCP of [2]. A
high-level exposition of these notions and constructions can be found in [9, Sec. 9.3.1-9.3.2].

Organization. In Section 2 we provide a high-level description of our PCP system. We believe
that this high-level description suffices, but provide a more detailed description in Section 3. Since
this PCP system incorporates ingredients that were analyzed in the literature (cf., [2]), we see little
point in providing a full analysis. In Section 4 we briefly articulate our disagreement with the claim
that our PCP system actually performs proof composition.

2 High-level description

The proposed construction is based on the RM-based PCPP, but it uses a different setting of
parameters. Specifically, for any constant m € N, we use h = |H| = n'/™ and |F| = poly(|H|). (In
contrast, the standard construction uses m = lolofgo °— and h = logn.) This PCP has logarithmic
randomness, but its query complexity is ©(m-hlogn). So we shall not use it as is, but rather encode
the answers (to its queries) by the Hadamard code and test these encodings instead.> However, let

us first take a closer look at the RM-based PCPP.

The RM-based PCPP. First, we stress that we refer to the basic RM-based PCPP without the
parallelization step. Given (a succinct description of) a 3CNF formula ¢ : {0,1}" — {0,1} and
oracle access to an assignment A : [n] — {0, 1} to its variables, the verifier uses several proof-oracles
to be detailed below. AbeClatlng [n] with H™ ; the first proof-oracle is a low-degree extension of
A: H™ — {0,1}, denoted A : F™ — F; that is, A has individual degree h — 1, and A(z) = A(z)
for every x € H™.

The verifier tests that A indeed extends A and that A has low degree. The first test is straight-
forward (i.e., by querying both oracles on O(1/¢€) random points in H™), and it will be ignored
in the rest of this section. The second test may be performed by picking a random line in F™,

*Indeed, we prefer the formalism of PCPP, as introduced in [5], over the one of assignment testers, introduced
independently in [7].

3Indeed, this is analogous to performing proof composition with the Hadamard-based PCPP, but we achieve the
same effect by capitalizing on the specifics of the current case rather than by invoking a general composition theorem.

obtaining the corresponding (degree m - (h — 1) < mh) univariate polynomial from a corresponding
proof oracle, denoted Ilj;iqes : (.7-":”)2 — .th, and comparing the value at a random point on this
line to the value obtained from A.

Assuming that Ais a low-degree extension of A, the verifier tests that A (restricted to H™)
corresponds to a satisfying assignment to the formula ¢. This is done by checking that a specific
expression evaluates to zero, where the expression has the form?

S (6 y2) - Al) - Aly) - A2),)

£7x’y7Z€Hm

where ® : F4™ — F is an explicit polynomial of individual degree h — 1 that depends on ¢. Indeed,

Eq. (1) is verified by the celebrated sum-check procedure (originating in [10]) that utilizes the

i def . . .
oracles Iy, ..., I4,, where II; : F/ L .Fh, such that Prl,...,rj_l = Hj(rl, ...,Tj—1) is a univariate

polynomial of degree h — 1 that satisfies
PT1,...,7']'71(<) = Z CD(Tla ceey T‘jfla C?F) . A(l’) : A(y) ' A(2)7 (2)
FEH4m—]

where (¢,2,y,2) = (r1,...,7j—1,(,7). Starting with (j = 1 and) vy = 0, in the j*® iteration, the

verifier checks that
Urq,grj1 = Z PTl,.‘.,T'j_l(T)7 (3)
reH
selects r; € F uniformly at random, and defines v, ., < P; (rj). After the last iteration,

the verifier checks that v, . ,,.. equals

1yeeesTj—1
m

~ ~ ~

<I>(r1, ceey T4m> . A(Tm—i-l, ceey Tgm) . A(T2m+1, ceny Tgm) . A(T3m+1, ceey 7“4m). (4)
Hence, the queries that this verifier performs and the answers it receives are as follows.

1. The 4m queries of the sum-check procedure are each answered by a univariate polynomial of
degree h — 1, which we view as an element of F".

Note that Eq. (3) calls for evaluating these polynomials at h + 1 different points (i.e., the
polynomial IT;(ry,...,7j—1) : F — F is evaluated at H U {r;}). Assuming that each of these
univariate polynomials (of degree h—1) is represented by the h-long sequence of coefficients, its
evaluation corresponds to a linear combination of these coefficients. Specifically, if Pm,mﬂ.j_1 =

IL; (71, ...,rj—1) is represented by (cg,....,ch—1) € Fh (i.e., P7'1>~~~77"j—1(<) = Zi:ol c; - %), then

evaluating this polynomial at r» € F corresponds to computing Z@h:_ol e

2. The three queries at the end of the sum-check procedure are each answered by an element of
F. These answers are provided by A.

In this case, the corresponding test calls for multiplying these three values of A (and comparing
the answer t0 v,y /®(11, oy Tam)).>

4For simplicity, we assume here that ¢ is monotone; this is justified in Section 3. In addition, we represent true
(resp., false) by 0 (resp., by 1), allows us to use A(z)- A(y) - A(z) rather than (1 — A(z))- (1 — A(y))- (1 — A(z)). As
for @ itself, it is derived analogously to [9, Eq. (9.8)], while assuming that the number of clauses equals the number
of variables. In addition, for simplicity, we omit here the sequence of pseudorandom coefficients (we)ecym that are
generated based on a random O(logn)-bit long seed, which is selected by the verifier.

5Recall that Urpyoosram = Priyooram—1 (Tam), and that the verifier can compute @ (71, ..., T4m) by itself.

.....

3. The first query of the low-degree test is answered by a univariate polynomial of degree m -
(h — 1), which we view as an element of F™", whereas the second query is answered by an
element of F. (These answers are provided by Il1ines and A, respectively.)

Analogously to Step 1, the test calls for evaluating the univariate polynomial at some point,
and this is done analogously.

While the foregoing verifier makes O(m) queries, the answers to these queries are represented by
sequences over F, which we shall view as bit strings (of lengths between log, |F| and mh -log, | F]).
In contrast, we aim at O(m) queries that are answers by binary values. As stated upfront, we
achieve this goal by encoding the answers by (even) longer (binary) codewords that we shall test
in a local manner. Specifically, we shall use the Hadamard code (as well as the known codeword
test and self-correction procedure for it).

Using Hadamard encoding of the answers. We first address the queries, answers and checks
performed in Steps 1 and 3. Recall that these checks consist of F-linear constraints on the answers.
Now, suppose that F has characteristic 2; that is, F = GF(2!). Then, we can write each F-linear
constraint (which is checked in Steps 1 and 3) as ¢ linear constraints over GF(2), which means
that we can easily checked them if we have a Hadamard encoding of these answers (and use self-
correction). Of course, we should also perform Hadamard-codeword tests. All these can be done
by tossing O(mhlog|F|) = O(|H|) coins and making a constant number of queries. Details follow.

Formally, rather than using the oracles II; : Fi=1 5 Fh we shall use the oracles H;- c FiTlx
F' — {0,1} such that IT;(7, s) equals the inner-product mod 2 of II;(7) and s (each viewed

as an log, | F"|-bit long string). Analogously, rather than using iines : (F™?2 — F™ (resp.,
A: F™ - F), we shall use M ipes : (F™)2 x Fmh 10,1} (resp., A F K F > {0,1}) such that
1)1 065 (7,), 8) equals the inner-product mod 2 of Ilynes (7, y) and s, each viewed as an log, | F™" |-

bit long string (resp., A’(z,s) equals the inner-product mod 2 of A(z) and s, each viewed as an
log, | F|-bit long string). Hence, rather than checking one F-linear constraint, we need to check
t = logy |F| binary constraints. Needless to say, we shall not do that either, but rather check
a random linear combination of these ¢ constraints (and do so via self-correction of the relevant
Hadamard-encoding, which will be also tested for being a valid codeword).

Specifically, a linear constraint on the bits of IL;(7) € F" (viewed as an h - t-bit long string) is
checked by considering the corresponding position in II} (i.e., if s € {0, 1} represents this linear
constraint, then we consider H; (7, s), and reconstruct its purported value by self-correction (i.e.,
use I (7, s") +113(7, s — s'), where s’ is uniformly selected in {0, 1})). Likewise, a linear constraint
on the bits of II1ipes(z,y) and /T(), where z is a point on the line connecting x and y, is checked
by considering the corresponding positions in 1}, .. ((z,y),) and A (z,°).

Turning to Step 2, recall that here we should obtain the product of three values of A:Fm 5 F ,
and compare the result to a value obtained from Ilg, (i.e., Eq. (4) should equal the value of
Mg (r1y ooy Tam—1) at r4m,). Recall that we wish to make a constant number of binary queries
(and so we cannot afford querying A) On the other hand, it is unclear how we can get a linear
combination of the bits of A() - A(z) . fT(z) by querying A’ at a constant number of places.

Spemﬁcally, for a € F and j € [t], letting a; denote the 4% bit of a, we observe that the i*® bit
of A(z)- A(2)- A(2) equals ¥, , e Alx)j, - A(2), - Al2), for some S C [t] x [t] x [t]. However,
we “don’t have control” on these S;’s, and so it is unclear how linear combinations of the bits of

/T(x) CAz) - A\(z) can be recovered, in general, from a constant number of linear combination of
the bits of A(z), A(y) and A(z).

To address the foregoing problem, we just introduce an oracle that solves it. Specifically,
consider the proof-oracle T : (F™)3 x 211" — {0,1} such that for every S C [t]? it holds that

T(x,y,2.8) = Y Ax);- Ay); - A(2)x (5)
(i,5,k)€S

and note that T'(z,y, z,-) is the Hadamard encoding of the ¢3-bit long sequence

~ ~

(Ax); - Ay); - A)k) gyt

(which we view as a 3-dimensional tensor (of side-length t)). Hence, testing that a given W,
which is claimed to equal T'(z, vy, 2, -), actually equals it (i.e., satisfies Eq. (5) for every S) reduces
to_testing that W is a valid Hadamard codework and that the sequence that W encodes equals
(A(w)i - A(y)j - A(2)k)(i,5,k)ely?- The second test is akin to the matrix equality test (of [2]). Details
follow.

The second test is performed by viewing the message w € [t]® encoded in W as a 3-dimensional
tensor (of side-length ¢) and testing it against the tensor (A(z); - A\(y)j . A\(Z)k)(i?j’k)e[t]t. The
test is performed by taking a corresponding random sub-cube of each of the two tensors; that
is, for uniformly selected Rp, Ry, R3 C [t], we compare W(R; X Ry X R3), which we obtain via
self-correction on W, to

> Aw)i - Aw)j - A= | D A@)i || Do Aw); |- | D Al (6)

(i,j,k’)ERl X Ro X R3 1ER, JjER2 keR3

where each factor (on the r.h.s of Eq. (6)) is obtained from the corresponding value of A (ie.,
> icr A(x); equals the inner-product of A(x) and (p1,...,p¢), where p; = 1if j € R and p; = 0
otherwise).

3 Low-level description

The following detailed description refer to the high-level description provided in Section 2; hence,
we strongly recommend reading Section 2 before reading the current section.

Preliminaries. For an (-long sequence « over ¥, where in most cases ¥ = F (but in one case we
shall use ¥ = {0,1}), and i € [{], we let o; denote the i*" element in a = (ay, ...,). The empty
sequence is denoted A. For equal-length bit strings = and s, we denote by (z, s) their inner-product
mod 2.

For a € F = GF(2!), we denote by M, the t-by-t Boolean matrix that represents multiplication
by «; that is, for every x € F, viewed as a t-bit long column vector, it holds that M,z represents
the element o -z € F. Note that M, + Mg = My and M,Mg = M,g. Also, viewing x as a t-bit
long column vector and s as a t-bit long row vector, we have (Myz,s) = sMox = (x,sM,).

As stated in Footnote 4, we shall assume that the Boolean formula ¢ is monotone. This assump-
tion can be justified by introducing a variable for each original literal, and checking consistency

of these pairs of variables (in addition in testing the satisfiability of the resulting monotone for-
mula). We may also assume, without loss of generality, that the 3CNF formula has n variables
and n clauses. In addition, we represent true (resp., false) by 0 (resp., by 1); this allows us to
use A(z) - A(y) - A(z) rather than (1 — A(z)) - (1 — E()) - (1 — A(2)) in Eq. (1) (and in Eq. (7)).
(Alternatively, we can retain the standard representation for A and define A to be a Iw-degree
extension of 1 — A.)

Another issue that was avoided for simplicity (see also Footnote 4) is that Eq. (1) is inaccurate.
The actual expression includes a pseudorandom sequence of coefficients (wg)ecgm that are generated
based on a random seed w € {0, 1}0(1°g” ; which is selected by the verifier. Wishing to simplify
the exposition, we replace we - ®(§,z,y, 2) - A(z) - A(y) - A(z) by @ (&, z,y,2) - A(z) - Ay) - A(z).
Hence, Eq. (1) is replaced by

Yo Du(&wy2) - Alx) - Aly) - A2), (7)

£7$7y7Z€Hm

where ®,, : F¥™ — F is an explicit polynomial of individual degree h — 1 that depends on ¢ (and
w, where w € {0,1}°0°8") ig selected uniformly at random by the verifier). Furthermore, for sake
of simplicity, we omit w from the notation; that is, we use ® rather than ®,. More importantly, we
use the notation II; although II; depends on w. In other words, actually, we should have a different
oracle I1,, ; for each w € {0, 1}0(10g) but for simplicity we continue using the notation II;.

The proof-oracle that we use. For a constant m € N, we view the input-oracle A : [n] — {0,1}
as defined over H™ = [n], where |H| = n'/™. We shall use a field 7 = GF(2!) D H such that
|F'| = poly(|H]), and consider the low-degree extension of A, which is denoted A:Fm™ - F. The
proof-oracle will consist of four parts, each encoding A (equiv., 121\) in a different way; each of these
encoding is a concatenation code in which the inner-code is the Hadamard code.

o A Hadamard encodmg of the symbols off/l\ that is, we use A Fx F— {0,1} such that
Al(z, s) ﬁA) for every s € {0,1}! = F, where A : F™ — F is a low-degree extension
of A (i.e., A has 1nd1v1dual degree h — 1, and A() = A(z) for every x € H™).

o A Hadamard encoding of the restriction of A to lines; that is, M ipes : (F™)2 x Fh —
{0,1} such that Hlmes((aj,y),s) = (Myines(z,7), s) for every s € {0,1}™" = F™ swhere
Myines(z,y) € F™h is a representation of the univariate polynomial that describes the values
of A on the line that connects z and y. Specifically, for a € F, the value of Ijines(z,y) at

2z = x+ «ay is given by Z;Z(()h_l) Myines (7, ¥)it1 - @b, and this value is supposed to equal E(z)
(Recall that ITyines(z,y)i+1 denotes the coefficient of the ith power (of the variable) in the

univarite polynomial Iyines(2,7), and that z = = + ay € F™ is the o™ point on the line
connecting z and y.)

e Hadamard encodings of answers provided in the sum-check procedure: For each j € [4m], we
use an encoding IT; : F/~1 x FP —{0,1} of TI; : F/=1 — F"; that is, I (7, s) = (I1;(7), s)
for every s € {0,1}" = F" where I1;(r1, ...,rj_1) € F" is a representation of the univariate
polynomial that equals the r.h.s of Eq. (2).6

SRecall that we actually use a different IT, ;> defined based on the corresponding IL, ;, for each w € {0, 1}0(10g),
We omitted w from these notations for the sake of simplicity.

e A Hadamard encoding of three-way products of A: Here we use an encoding T : (F™)3 x 2l
{0,1} of bits in all three-way products of values of A\; that is, for every z,y,z € F™ and s €
{0,1}**, it holds that T'(z,y, z,s) = (7(x,y, z), s), where 7(z, v, 2)ijk = A(z); - /T(y)j A2
for every i,7,k € [t].

Recall that 7 = {0,1}! and that each bit in A(z) - A(y) - A(z) € F can be expressed as a
linear combination of the bits in 7(z,y, 2) € {0, 1}t3.

The verification boils down to testing that each of the oracles satisfies its definition and that Eq. (4)
holds, where Eq. (4) depends on the input formula ¢. Details follow.

The verification process. For simplicity, in the following description, we abuse notation and
denote by Al i pess H; and T the actual proof-oracles to which the verifier has access (rather than
the prescribed encodings defined above). Recall that each of these proof-oracles is supposed to be a
concatenated code in which the inner-code is the Hadamard code. We will subject each inner-code
to a corresponding codeword test, and then use self-correction on it. Further, recall that the input
to each of these oracles consists of a pair (Z, s) such that Z points to a specific Hadamard codeword
and s is a location in that codeword. Hence, we define the following testing and self-correction
procedure, denoted SC, where B is one of these oracles. On input (Z, s), this procedure proceeds

as follows.

e It test that B(T,-) is a Hadamard codeword, and proceeds only if this test accepts.

e It selects uniformly r € {0,1}*l and returns the value B(Z, s +r) — B(Z, 7).

Denoting the answer of this procedure by SC(Z; s), we stress that if the test rejects then the answer
is a special failure symbol and the verifier that uses SC? halts rejecting. We now turn to the verifier
itself, which proceeds as follows.

1. The low-degree test: The verifier selects uniformly at random z,y € F™ and o € F, and
computes the t-by-t Boolean matrices M, for every i € {0,1,...,m - (h —1)}. (Recall that
M, represents multiplication by « (i.e., M,{ = a().) Then, the verifier selects s € {0,1}*
uniformly at random, viewing it as a t-bit long row vector, and checks that

sCMisnes (1, 4)); (s, SMa, sMy2, ..., SMm.n-1))) = SCKI(:L’ + ay; s).

(The Lh.s yields the self-corrected value of IT} ;o< (2,), (8, $Mq, Mz, ..., SM m.(n-1))), which
equals (s, Z;Z(()h_l) Mill1ines(%,Y)it1), which in turn equals Z;Z(()h_l) (5,08 Mines(T,y)ir1),

whereas the r.h.s. yields a self-corrected value of fT’(x + ay,s) = (s, /T(x +ay)).)’

2. The iterative sum-check tests (i.e., the tests performed in the iterations of the sum-check
procedure): The verifier computes the t-by-t Boolean matrices M,: for every r € H and
i € {0,1,...,h—1}. Then, the verifier selects (w € {0,1}°0°8™) and)® s € {0, 1}* uniformly at
random, viewing it as a t-bit long row vector (and assuming that h is odd), and checks that

sclli(); (s, sMy o sMy 02, sMys 1)) = 0.

"Indeed, Myines(z,y)it1 is viewed as a column vector that represents an element of F = GF(2'). We comment
that self-correction is employed to A only for the sake of testing that g’(x + ay, -) is a Hadamard codeword.

8Recall that w identifies the polynomial &, : F*™ — F that appears in Eq. (7), which is the expression that
should evaluate to 0, and that we chose to replace ®., (resp., I, ;) by ® (resp., II;) for the sake of simplicity.

(Note that the L.h.s equals the inner-product mod 2 of s and the sum of the values of the poly-
nomial IT; (\) evaluated at all points in H. Indeed, this corresponds to the check performed
in the first iteration of the check-sum process.)?

Next, the verifier selects 7y, ...,74,, € F uniformly at random, and checks that for every
Jj €42,...,4m} it holds that

I,
SCHi ((7‘1, cesy T'j_l); (S7 SMZTEH s SMZTEH 72y ey SMZTGH ,,,,h—l))
= SCHéfl((rl, vy Tj—2); (8, 8M,y, |, SM, 2 e sM n-1)).
JI= J

-1
(Indeed, this corresponds to the check performed in the 4 iteration of the check-sum process,
and we may use the same s in all 4m iterations. Note that II;(r1,...,7j_1) is evaluated at all
points in H as well as at r; (where for j = 4m the latter evaluation is performed in Step 4).)

3. Testing consistency of T with A: For T1, ..., T4m as determined by the sum-check procedure,
let x = (11, .oy Tm), Y = (Tmt1s s T2m), and z = (Tomy1, - Tam). The verifier select u, v, w €
{0, 1} uniformly at random, and checks that

Al(w,u)- Ay, v) - A(z,w) = s¢T (2,9, 2);u @ v @ w)

holds, where u ® v ® w denotes the 3-dimensional tensor obtained by an outer-product
of u,v and w. (Analogously to Eq. (6), note that (A(x),u) - (A(y),v) - (A(2),w) equals
(A(z) ® A(y) ® A(2),u ® v @ w).)10

4. The final sum-check test (i.e., the test performed after the last iteration of the sum-check
procedure): For each i € [t], define S; C [t]® such that for every a, 3,y € F it holds that the

ith bit of afy equals D (o) €Ss it Bia Vs
The verifier computes a <— ®(r1, ..., T4), where ® is constructed based on the input formula ¢.

The verifier selects s € F uniformly at random and computes S = @®;.5,=15;, where ®;c15;
contains (j1, je,j3) if and only if (j1, o, j3) appears in an odd number of S;’s (with i € I).
Assuming that o # 0, the verifier obtains b <— SCT (71, ..., 74m, S) and checks that

SCMam (71, oo, ragm—1); (sMy—1, sM,- sM,

2
4m ’

Lorgm —1. ""SMa—l-rZ;ll)) =b.

9Specifically, we wish to verify that

where the l.h.s equals

<s, i Z Mril_[1()\)¢+1> = <s, i MZTEH Tiﬂl(,\)i+1>

i=0 reH i=0
The hypothesis that h is odd implies that sM,.,.0 = s; for even h we would have had sM},..0 = 0.

0There is no need to employ self-correction on A’ since it is evaluated at a random location, whereas Step 1
includes a test that A’ consists of a sequence of Hadamard codewords.

(If = 0, then the foregoing is checked while replacing M__, o by M v and replacing b
by 0.)H

(Indeed, this test corresponds to the check performed after all iterations of the check-sum
process, except that (in case of o # 0) both sides of the constraint are multiplied by a~!.)!2

5. Testing consistency with the input-oracle: The verifier selects uniformly at random = € H™
and s = (s',0) € {0,1}" = {0,1}""" x {0,1}, and checks that (A(z),s) = A(z) if 0 = 1 and
(A(z), s) = 0 otherwise.

(Indeed, we assume that b € {0,1} C F is represented by the bit string 0'~'b. Hence,
(0t=1h, s'0) = o - b.)

The last step is needed for a PCPP for the claim that A satisfies ¢, but not for a PCP for the
claim that ¢ is satisfiable. Actually, when given proximity parameter ¢ > 0, Step 5 is executed
O(1/e) times. Each of the other steps is executed a constant number of times (so that passing
these tests implies that the proof-oracles are sufficiently close to being what they are supposed to
be). Hence, the query complexity of this PCPP is O(m + e !). Observing that the randomness
complexity is dominated by the randomness used by the self-correction procedure for IT), , which
is O(mht) = O(n'/™logn), we obtain.

Theorem: The forgoing verification procedure constitutes a PCPP for $SAT with query complez-
ity O(m + €1 and randomness complexity O(n'/™).

Guideline for proving the theorem: The key observation is that the foregoing verification
procedure emulates the corresponding RM-based PCP system. Specifically, each of the steps checks
a random linear combination of ¢ Boolean constraints that replace an F-linear constraint that is
checked by the RM-based PCP system. Let us spell out the corresponding checks of the latter
system.

1. The low-degree test. The verifier selects uniformly at random z,y € F™ and o € F, and
computes the t-by-t Boolean matrices M for i = 0,1,...,m - (h —1). It then checks that

«(h—1)
Z Hllnes 53 y)erl A(.I‘ + ay)

holds, where M, represents multiplication by « (i.e., M, = a().

"That is, in this case there is no need to query T. We just check that

Scnam((’f‘l,..-,'f'zlmfl);(SasM’m;musMrZ g ee. SMh 1)):0

Tam

holds.
>That is, rather than comparing that v, t0 & + A(Fmity .o T2m) A(P2mat, ooy T3m) A(Tamat, oo Tam)
(as in Eq. (4) we compared o ‘v, ... to 7T(ri,..,74m) (which supposedly equals

A(T‘m+1, ey T'Qm)A\(’r'Qerl, . ’r'3m)A(7“3m+1, . r4m), by Step 3)

2. The iterative sum-check tests: The verifier selects r1, ..., 74, € F uniformly at random.'® For
sake of clarity, we distinguish between the first iterations and the later iterations. In the first
iteration, the verifier checks that

h—1
DN M ()i =0

reH 1=0

holds. (Recall that II1(\) : F — F is a univariate polynomial of degree h — 1.)
For j € {2,...,4m}, in the j'! iteration, the verifier checks that

h—1 h—1
E Z Mriﬂj(rl, ceey Tj—l)z'+1 = E Mrj-,lnj—l(rl’ ceey rj—2)i+1
reH =0 =0

holds. (Recall that IT;(r1,...,7j—1) : F = F is a univariate polynomial of degree h — 1.)
3. Testing consistency of T with A: Omitted. See next step.

4. The final sum-check test: The verifier computes o <— ®(r1, ..., 74y,), and checks that

h—1
Z MrimH4m(7’1, ceey T4m—1)i+1 = - A(Tm+1, ceey T‘Qm) . A(T2m+1, ceey Tgm) . A(T3m+1, ceey 7’4m)
=0

holds.

5. Testing consistency with the input-oracle: The verifier selects uniformly at random = € H™
and checks that A(z) = A(z).

Regarding the iterative sum-check step, note that (analogously to Footnote 9), for every j € [4m],
it holds that

h—1 h—1
ZE M,illi(re, oy mjo1)iv1 = E ZMriHj(Th“-’Tj—l)i—i—l
reH i=0 =0 reH
h—1
= My rilli(re, o mio1)i
=0

4 Discussion

The question addressed here is whether or not it is fair to say that our construction does not use
the proof composition paradigm. Towards addressing this question, we note that our construction
differs from the RM-based PCP in two fundamental aspects:

3Recall that the verifier also selects w € {0,1}°1°8™ uniformly at random and that II; actually stands for Tl ;.

10

1. The proof-oracles used by our verifier are not RM-codewords but are rather codewords of
concatenated codes. Furthermore, the proof-oracle T' is a codeword of a rather “weird” code
(i.e., it is obtained by concatenating a weird outer code with the Hadamard code).

2. On top of performing the sum-check procedure and low-degree tests (as the RM-based PCP
does), our verifier also performs a consistency test that is akin to the one performed by the
H-based PCP.

In our opinion, using a “weird” (or rather unnatural) code and using a procedure that was used
in a different PCP system does not mean that one employs the proof composition technique. For
sure, we do not invoke any general proof composition result (e.g., [3, 2, 5, 7]), but rather refer to
the specific test that we wish to perform (i.e., correctness of multiplication over F). Furthermore,
we do not employ a preparatory parallelization step.'

However, we view the foregoing debate as quite scholastic. Terms such as “using X”, “charac-
terization”, “combinatorial”, “simple”, “natural” and “intuitive” are all vague and undefined. Still,
it does not mean that we should not care about the underlying notions; it just means that there is
no point in arguing about them. Even saying that “our construction is different from known ones”
falls within this category, and still we said so.

Acknowledgements

I am grateful to Madhu Sudan for useful and interesting discussions.

References

[1] P. Amireddy, A.R. Behera, S. Srinivasan, M. Sudan, and S.V. Willumsgaard. Ideals, Grébner
Bases, and PCPs. ECCC, TR25-165, 2025.

[2] S. Arora, C. Lund, R. Motwani, M. Sudan and M. Szegedy. Proof Verification and In-
tractability of Approximation Problems. Journal of the ACM, Vol. 45, pages 501-555, 1998.
Preliminary version in 33rd FOCS, 1992.

[3] S. Arora and S. Safra. Probabilistic Checkable Proofs: A New Characterization of NP.
Journal of the ACM, Vol. 45, pages 70-122, 1998. Preliminary version in 38rd FOCS, 1992.

[4] L. Babai, L. Fortnow, L. Levin, and M. Szegedy. Checking Computations in Polylogarithmic
Time. In 23rd ACM Symposium on the Theory of Computing, pages 21-31, 1991.

[5] E. Ben-Sasson, O. Goldreich, P. Harsha, M. Sudan, and S. Vadhan. Robust PCPs of Prox-
imity, Shorter PCPs, and Applications to Coding. SIAM Journal on Computing, Vol. 36 (4),
pages 889-974, 2006. Extended abstract in 36th STOC, 2004.

[6] I. Dinur. The PCP Theorem by Gap Amplification. In 38th ACM Symposium on the Theory
of Computing, pages 241-250, 2006.

14The latter assertion can be made also with respect to Dinur’s gap amplification technique [6]. However, unlike
us, Dinur treats the computation that she wishes to verify as generic (since it is a large set of constraints over a large
alphabet).

11

[7]

[10]

I. Dinur and O. Reingold. Assignment-testers: Towards a combinatorial proof of the PCP-
Theorem. SIAM Journal on Computing, Vol. 36 (4), pages 975-1024, 2006. Extended abstract
in 45th FOCS, 2004.

U. Feige, S. Goldwasser, L. Lovasz, S. Safra, and M. Szegedy. Approximating Clique is almost
NP-complete. Journal of the ACM, Vol. 43, pages 268-292, 1996. Preliminary version in 32nd
FOCS, 1991.

O. Goldreich. Computational Complexity: A Conceptual Perspective. Cambridge University
Press, 2008.

C. Lund, L. Fortnow, H. Karloff, and N. Nisan. Algebraic Methods for Interactive Proof

Systems. Journal of the ACM, Vol. 39, No. 4, pages 859-868, 1992. Preliminary version in
31st FOCS, 1990.

12

	Introduction
	High-level description
	Low-level description
	Discussion
	Acknowledgements
	Bibliography

