
On the philosophical basis of computational theories

Oded Goldreich
Department of Computer Science

Weizmann Institute of Science
Rehovot, Israel.

oded.goldreich@weizmann.ac.il

February 14, 2014

Abstract

In this short note we exemplify the problems that may arise when presenting com-
putational theories based on theories of natural phenomena that lack computational
complexity components. These problems may arise when the latter theories refers to
environments of unbounded size. In contrast, the standard theory of computation (e.g.,
based on the model of Turing machines) refer implicitly to theories about bounded por-
tions of the environment (e.g., the mechanics or electricity of possible implementations
of a Turing machine).

We start by recalling the postulates that underly all reasonable computational models, as
presented in standard computational classes and texts. We then focus on exemplifying what
happens when these postulates are ignored.

The metaphysical foundations of all reasonable computational models

A reasonable model of computation consists of large environments that are transformed
according to simple and/or local rules (having small description). The vague dichotomy
between “large” and “small” is typically modeled by the formal dichotomy between infinite
and finite. The environments are bit strings of arbitrary, a priori unbounded, length, where
bits represent binary attributes.1 In contrast, the rules-of-transformation are local and
describe how an a priori bounded part of the environment changes, or more precisely how
the value of each bit in the environment is updated as a function of a fixed (bounded) number
of bits. The computation consists of the sequential (or parallel) applications of such rules.

Indeed, the models of Turing machine and Boolean circuits fit the foregoing paradigm.2

In contrast, applying arbitrary linear transformation to the entire environment does not fit

1We comment, in passing, that the notion of a binary attribute is one of the most basic philosophical
notions (cf., from the most ancient philosophies to Structuralism).

2We refer to Boolean circuits of bounded fan-in. Boolean circuits of unbounded fan-in are defined in order
to facilitate the introduction of a complexity measure that reflects alternation of gate types in the former
circuits.

1

the foregoing paradigm, and it is philosophically unclear why general linear transformation of
an unbounded dimension should be allowed while other transformation are not allowed: The
mere fact that some physical theory is postulated in terms of a certain type of transformations
is far from providing a good justification (for considering any such transformation as an
admissible rule of transformation in a computational model).

The consequences of violating these postulates

The purpose of this note is to demonstrate why justifications of the foregoing type do not
suffice; that is, a computational model cannot be justified by merely asserting that it is
consistent with some theory of natural phenomena.3 Such a consistency is at most a necessary
condition (i.e., it is necessary assuming the theory of nature is correct), but it is not a
sufficient condition. This is demonstrates by intentionally presenting a computational theory
that we expect to be deemed unreasonable by any reader, although this computational theory
can also be “justified” by an analogous reference to a theory of natural phenomena (which
lacks computational considerations). Specifically, this computational theory is based on
(a careless abstraction of) the electrical realities of electronic components that are used
for implementing Boolean gates. We consider an electrical component that implements a
Boolean OR, and we call the underlying model an electrical OR.

Definition 1 (electrical OR): An electrical OR has two input wires and one output wire,
where each wire carries either a (noisy) low value or a (noisy) high value. The base (noise-
free) low and high values are denoted ℓ and h, respectively. The (noisy) value of a wire has
the form ℓ + (h − ℓ) · b + ǫ ·

∑
i≥1

2−i · vi, where ǫ ∈ {±(h − ℓ)/3} and b, v1, v2, ... ∈ {0, 1}.
Any value of the above form is called legal; that is, a legal value v satisfies

v = ℓ + (h − ℓ) · b + ǫ ·
∑

i≥1

2−i · vi, (1)

where b, vi ∈ {0, 1} for every i ≥ 1. This legal value is said to represent the Boolean value b.
The functionality of the OR-gate, denoted Γ : R × R → R, maps every pair of legal values
for the input wires to a legal value for the output wire such that the output value represents
the Boolean OR of the representations of the input values.

Does the above electric OR (rather than the underlying Boolean OR)4 represent a reasonable
model of computation? After all, it seems that such a representation of Boolean values is in
the basis of all electronic computers and is consistent with the relevant theories of electricity.

We believe that the answer is no, and the issue is that we did not fully specify the
gate’s functionality (but rather allowed arbitrary electrical gates as long as they satisfy

3In addition to the fundamental point made next, we wish to express our opposition to the term “Law of
Nature”: We know of no “laws of nature” – we only have our theories regarding what these laws are or may
be.

4We are, of course, not concerned with the standard use of electrical gates as defining Boolean gates. In
such a standard use, the specifics of the gate’s (real) functionality (as captured by Γ) are ignored. We are
concerned of a hypothetical theory that may postulate specific functionalities Γ and try to capaitalize on
such postulates.

2

the requirement of Definition 1). This does not matter as long as one only relates to the
Boolean functionality that underlies Definition 1, but things change if one postulates that
any gate that satisies Definition 1 can be realized (and constitutes a reasonable model of
computation). In order to clarify this deficiency, we need another definition.

Definition 2 (residual representation): The residual sequence represented by a value v as in
Eq. (1) is the infinite sequence (v1, v2, ...).

While we specified how the gate transforms the Boolean values represented on its wires,
we did not specify how it transforms the residual sequences represented on these wires. A
few hazardous options arise. Basically, the gate functionality may transform the values
v1 and v2, which represent residual sequences (v1

1
, v1

2
,) and (v2

1
, v2

2
, ...) into a value vo

representing a residual sequence whose ith bit (i.e., v0

i
) is the result of applying a hard

Boolean function, denoted Fi, to the i-bit long prefixes of the input residuals; that is,
v0

i
= Fi(v

1

1
, v1

2
, ..., v1

i
, v2

1
, v2

2
, ..., v2

i
). This hard Boolean function may be the halting prob-

lem’s predicate, its time-bounded version, a hard monotone function such as the max-clique
predicate, etc.

We stress that the foregoing model does not seem to contradict any relevant law of elec-
tricity. Furthermore, this model can be revised in various ways to make the transformation
of the residual sequences more “smooth” (in various sense).5 It also seems consistent with
the relevant laws of electricity that we can (1) assign wires electrical values such that the
prefixes of the residual sequences represented by them equal any desired bit string, and
(2) measure the value of each wire to any desired accuracy. The reader can easily see the
hazardous consequences of these assumptions.

What went wrong was the neglect of computational complexity considerations in the
definition of the computational model. The source of trouble is the implicit postulate that
asserts that whatever is not forbidden explicitly by the relevant electrical theories, can actually
be implemented at no cost. More refined theories may assert that actions such as (1) and (2)
above do have a cost, and that this cost is related in some way to the length of the bit string
being “written” into the value or “read” from it. They may also assign a cost to different
gate functionalities, and we do expect that the cost will correspond to the computational
complexity of the transformations that are performed by these gates. Needless to say, such
refined theories will incorporate computational complexity considerations, which will prevent
hazardous consequences.

5In particular, note that so far we have modeled a single gate, and all hazards will follow from abusing
a single gate. In this single-gate model, each bit of the residual sequence represented in the output was a
complex function of prefixes of the residual sequences represented in the inputs. In the rest of this footnote,
we briefly describe an alternative model that refers to collections of such gates (i.e., circuits) rather than
to a single gate. In this model we only use complex functions when determining the most significant bit
of the residual sequence represented in the output, but we allow gates to “sense” the size of the circuit in
which they reside and select a functionality accordingly. Specifically, when being part of a circuit of size n,
each gate uses a function Fn to determine the most significant bit of the residual sequence represented in its
output (where this function is applied to the n-bit long prefixes of the residual sequences represented in its
input wires).

3

The lesson is that when natural phenomena are used as a basis for the definition of
computing devices, the theories about these phenomena must incorporate elements of com-
putational complexity, which theories of natural phenomena typically lack.

A special case of incorporating elements of computational complexity is when refering
only to natural phenomena of a priori bounded size; in such a case, the “complexity” of
the natural phenomena is a constant and it can be taken as a unit cost (as is done in the
reasonable models of computation that were briefly reviewd at the beginning of this note).
The problem is with theories of natural phenomena that are of unbounded size and with
ignoring the question of the “complexity” of these phenomena.

A remotely related work. This note is remotely related to Adi Shamir’s paper “Factor-
ing Numbers in O(log n) Arithmetic Steps” (IPL, Vol. 8 (1), pages 28–31, 1979), which shows
that a RAM with unbounded size registers that can perform the standard arithmetic opera-
tions can factor integers in linear number of steps. In contrast to the current note, Shamir’s
paper has real technical contents (i.e., showing that n! can be computed in O(log n) steps
on such a RAM). Furthermore, unlike our definition of an electrical OR, it is less obvious
that the unbounded RAM is unreasonable as a model of computation, since this model refers
to computational complexity considerations when postulating that only (unbounded) ver-
sions of simple arithmetic operations are allowed. Still, the unbounded RAM model lacks in
allowing transformations that depends on unbounded number of bits to take place at unit
cost. On the other hand, the hazardous consequences in the unbounded RAM model are
confined to unrealistic integer factoring algorithms, whereas the electrical OR model allows
to compute any function.

4

