
Testing Graphs in Vertex-Distribution-Free Models

Oded Goldreich∗

October 10, 2018

Abstract

Prior studies of testing graph properties presume that the tester can obtain uniformly distributed
vertices in the tested graph (in addition to obtaining answers to the some type of graph-queries).
Here we envision settings in which it is only feasible to obatin random vertices drawn according to
an arbitrary distribution (and, in addition, obtain answers to the usual graph-queries). We initiate a
study of testing graph properties in such settings, while adapting the definition of distance between
graphs so that it reflects the different probability weight of different vertices. Hence, the distance to
the property represents the relative importance of the “part of the graph” that violates the property.
We consider such “vertex-distribution free” (VDF) versions of the two most-studied models of testing
graph properties (i.e., the dense graph model and the bounded-degree model).

In both cases, we show that VDF testing within complexity that is independent of the size of the
tested graph is possible only if the same property can be tested in the standard model with one-sided
error and size-independent complexity. We also show that this necessary condition is not sufficient;
yet, we present size-independent VDF testers for many of the natural properties that satisfy the
necessary condition.

Keywords: Property Testing, Graph Properties, One-Sided versus Two-Sided Error.

∗Faculty of Mathematics and Computer Science, Weizmann Institute of Science, Rehovot, Israel. Email:
oded.goldreich@weizmann.ac.il.

i

Contents

Introduction 1

1 Introduction 1

1.1 The new models . 1
1.2 Our main results . 2
1.3 Techniques . 4

1.3.1 Strong testability and one-sided error . 4
1.3.2 Strong testability in the VDF dense graph model 5
1.3.3 Strong testability in the VDF bounded-degree graph model 6

1.4 Discussion . 7

2 The Dense Graph Model 8

2.1 One-sided error in the VDF model . 10
2.2 Testing graph partition properties . 12
2.3 Testing subgraph-freeness properties . 16
2.4 On two classes that are easy to test in the standard model 21

3 The Bounded-Degree Graph Model 26

3.1 One-sided error in the VDF model . 28
3.2 Testing subgraph freeness . 30
3.3 Testing degree regularity . 32
3.4 Testing minor-freeness . 35
3.5 The t-removed VDF model . 38

4 Secondary models 40

4.1 The Dense Graph Model . 41
4.2 The Bounded-Degree Graph Model . 43

4.2.1 Testing connectivity . 43
4.2.2 Testing whether a graph is connected and Eulerian 46

5 Future directions 47

5.1 More about strong testability . 47
5.2 Beyond strong testability . 48

Acknowledgements 49

Bibliography 49

i

1 Introduction

In the last couple of decades, the area of property testing has attracted much attention (see, e.g., a
recent textbook [13]). Loosely speaking, property testing typically refers to sub-linear time probabilistic
algorithms for deciding whether a given object has a predetermined property or is far from any object
having this property. Such algorithms, called testers, obtain local views of the object by making
adequate queries; that is, the object is seen as a function and the testers get oracle access to this
function (and thus may be expected to work in time that is sub-linear in the size of the object).

A significant portion of the foregoing research was devoted to testing graph properties in two
different models: the dense graph model (introduced in [15] and reviewed in [13, Chap. 8]) and the
bounded-degree graph model (introduced in [17] and reviewed in [13, Chap. 9]).1 In both models, it
was postulated that the tester can sample the vertex-set uniformly at random2 (and, in both models,
distances between graphs were defined with respect to this distribution).

1.1 The new models

Envisioning settings in which uniformly sampling the vertex-set of the graph is not realistic, we ask
what happens if the tester can obtain random vertices drawn according to some distribution D (and,
in addition, obtain answers to the usual graph-queries). The distribution D should be thought of as
arising from some application, and it is not known a priori to the (application-independent) tester. In
this case, it is also reasonable to define the distance between graphs with respect to the distribution
D, since this is the distribution that the application uses. (See motivational discussion in Section 1.4.)
The foregoing suggestion may become more clear when focusing on specific graph testing models, as
we do next.

The bounded-degree graph model. In the standard model of testing bounded-degree graphs, for
a constant degree bound d, graphs (over the vertex-set [n] = {1, 2, ..., n}) are represented by incidence
functions of the form g : [n]× [d]→ [n]∪ {⊥} such that g(v, i) is the ith neighbor of v (and d(v, i) = ⊥
if v has less than i neighbors). The tester is given n (along with a proximity parameter ǫ) and oracle
access to g, and is required to accept (whp) if g represents a graph having a predetermined property
and reject (whp) if g is far from representing such a graph. Specifically, g is considered ǫ-far from the
graph property Π if every g′ : [n]× [d]→ [n]∪{⊥} that represents a graph in Π differs from g on more
than an ǫ fraction of the domain (i.e., Pr(v,i)∈[n]×[d][g(v, i) 6=g′(v, i)] > ǫ).

In the current model, the vertex-set of the graph is arbitrary, and the tester is given a sampling
device that returns vertices in the graph according to some distribution D. In addition, the tester is
given oracle access to the incidence functions of the graph, G = (V,E), which has the (analogous) form
g : V × [d]→ V ∪ {⊥}. As before, the tester has to accepts (whp) in case the graph has the property,
and reject (whp) if the graph is far from the property, but here distances are measured according to
D; that is, g is considered ǫ-far from the graph property Π if, for every g′ : V × [d] → V ∪ {⊥} that
represents a graph in Π, it holds that Prv←D,i∈[d][g(v, i) 6=g′(v, i)] > ǫ.

We stress that, unlike in the standard presentations of the bounded-degree graph model, the tester
is not given a description of the vertex-set. Such a description is implicit in the standard presentations,
which provide the tester with the size parameter n (while postulating that the vertex-set equals [n]).
As discussed in [14], a more flexible model may provide the tester with (1) a device that samples the
vertex-set uniformly at random, along with (2) partial information regarding the vertex-set, ranging
from a full specification of the vertex-set to nothing. Here we chose the latter option, because it seems
most compatible with the settings that are envisioned above (where the vertex-set may not be known).

1A third model, called the general graph model (introduced in [28, 23] and reviewed in [13, Chap. 10]), was also studied.
2Actually, in all these models, it is postulated that the vertex-set consists of {1, 2, ..., n}, where n is a natural number

that is given explicitly to the tester, enabling it to sample [n] uniformly at random.

1

The foregoing model may be called a distribution-free version of the bounded-degree graph testing
model. Note, however, that the distribution on the domain of the incidence function is not arbitrary;
it is rather a product of an arbitrary distribution D over the vertex-set and the uniform distribution
over [d]. For this reason, we use the (more cumbersome) term vertex-distribution-free, abbreviated VDF.

The dense graph model. Analogously, we present a vertex-distribution-free version of the dense
graph testing model. Again, the vertex-set of the graph is arbitrary, and the tester is given a sampling
device that returns vertices in the graph according to some distribution D. In addition, the tester is
given oracle access to the adjacency predicate g : V × V → {0, 1} of the graph, G = (V,E). The
tester has to accepts (whp) in case the graph has the property, and reject (whp) if the graph is far
from the property, but here distances are measured according to D; that is, g is considered ǫ-far from
the graph property Π if, for every g′ : V × V → {0, 1} that represents a graph in Π, it holds that
Pru,v←D[g(u, v) 6=g′(u, v)] > ǫ. (Note that the standard model corresponds to the special case in which
D is guaranteed to be uniform over V = [n], and the tester is also given n.)3

We stress that the distribution induced on the domain of the adjacency predicate is not arbitrary,
but is rather the Cartesian product of an arbitrary distribution D with itself. We mention that this
model was briefly discussed by Goldreich, Goldwasser, and Ron [15, Sec. 10.1], where it was viewed as
a restricted case of distribution-free testing (which was briefly discussed in the subsequent paragraph
in [15, Sec. 10.1]).

Focus: Query complexity that only depends on the proximity parameter. In this work, we
focus on testers having query complexity that only depends on the proximity parameter ǫ. We refer to
such testers as strong testers.4 Note that in the standard testing models this means that the complexity
is independent of the size of the graph (and in [13] the term “size-oblivious complexity” is used), but in
the VDF testing models this also means that the complexity is independent of the vertex-distribution
D. We stress that strong testability does not exhaust the scope of property testing, and that going
beyond strong testability is of interest also in the vertex-distribution-free context (see discussion in
Section 5.2).

Additional sampling device. We believe that providing the tester with uniformly distributed ver-
tices, in addition to samples drawn from D, is not compatible with the settings that we envision. Still,
in light of the fact that some of our lower bounds rely on the tester’s inability to sample the vertex-set
uniformly, we consider also the case that such uniform samples are provided to the tester. We discuss
this secondary model in Section 4.

1.2 Our main results

We first observe that in the vertex-distribution-free (VDF) versions of both the dense and bounded-
degree graph models, strong testability implies strong testability with one-sided error.5 We mention
that this result stands in sharp contrast to the standard models where there are significant gaps between
the complexities of one-sided error and general testers (see, for example, the case of ρ-Clique in the
standard dense graph model [15], and the case of cycle-freeness in the standard bounded-degree graph
model [17]).6

3Again, a more flexible model is discussed in [14].
4In some sources (cf., e.g. [4]), the term “strongly testable” refers only to one-sided error testers of such complexity.

In [10], “strong testability” is defined as having a proximity oblivious tester (with linear detection probability function).
5A tester is said to have one-sided error if it always accepts objects that have the property (rather than accept them

with high probability.
6Recall that, in the standard dense graph model, the sets of n-vertex graphs having a clique of size ρ · n has a

poly(1/ǫ)-query tester (with two-sided error) but no o(n)-query testers with one-sided error. Likewise, in the standard

2

Theorem 1.1 (strong testability in the VDF models and one-sided error):7 If a graph property is
strongly testable in the VDF version of the dense graph model (resp., bounded-degree graph model),
then it is strongly testable with one-sided error in the same model. Furthermore, in the case of the dense
graph model (resp., bounded-degree graph model), the query complexity of VDF testing with one-sided
error is at most polynomial (resp., exponential) in the complexity of VDF testing with two-sided error.

Since the standard testing models (for dense and bounded-degree graphs) are (essentially) special cases
of the VDF models, it follows that only graph properties that are strongly testable with one-sided error
in the standard model are strongly testable in the corresponding VDF model. A natural question is
whether the neccesary condition for strong testability in the VDF models is a sufficient one.8 We show
that this is not the case.

Theorem 1.2 (strong testability with one-sided error in the standard model does not suffice for strong
testing in the VDF model):9 There are graph properties that are strongly testable with one-sided error
in the standard dense graph model (resp., bounded-degree graph model), but are not strongly testable
in the VDF version of the dense graph model (resp., bounded-degree graph model).

Theorem 1.2 is manifested by natural properties such as Connectivity. In light of Theorem 1.2, we
confine ourselves to showing that some natural classes of graph properties that are strongly testable
with one-sided error in the standard model are strongly testable in the corresponding VDF model. In
the case of the dense graph model, we consider two such classes.

Theorem 1.3 (classes that are strongly testable in the VDF dense graph model):10 The following
properties are strongly testable in the VDF version of the dense graph model.

1. Any general graph partition problem that is strongly testable with one-sided error in the standard
dense graph model.

2. Any subgraph-freeness property.

Furthermore, in the case of general partition problems as well as in the case that the subgraph is
bipartite, the complexity is polynomial in 1/ǫ.

The framework of graph partition problems was introduced in [15], where it was shown that all these
properties are strongly testable (possibly with two-sided error). The subclass that admits strong testers
with one-sided error was characterized in [21], and it contains problems such as k-coloring. (Actually,
we consider a natural extension of the framework and the aforementioned results, presented recently
in [26].) Subgraph-freeness properties were first considered in [3], where it was shown that all these
properties (e.g., triangle-freeness) are strongly testable with one-sided error.

In the case of the bounded-degree graph model, our results are more sporadic in nature. This is
an artifact of starting with less rich body of results regarding the standard model. Specifically, our
starting point is provided by the few strong testing results obtained in [17], and the fact (established
in [9]) that a minor-free property is strongly testable with one-sided error if and only if the minor is
cycle-free (i.e., is a forest).11

bounded-degree graph model, cycle-freeness has a poly(1/ǫ)-query tester (with two-sided error) but no o(
√

n)-query testers
with one-sided error.

7The “dense graph model” part (resp., “bounded-degree graph model” part) of Theorem 1.1 appears as Theorem 2.3
(resp., Theorem 3.3).

8We mention that a characterizaion of the class of “natural” graph properties that are strongly tested with one-sided
error in the standard dense graph model was provided in [5]. No such result is known for the bounded-degree graph
model.

9The “dense graph model” part (resp., “bounded-degree graph model” part) of Theorem 1.2 is established both by
Proposition 2.9 and Proposition 2.11 (resp., both by Proposition 3.5 and Proposition 3.6).

10The first (resp., second) part of Theorem 1.3 appears as Theorem 2.7 (resp., Theorem 2.8).
11The fact that all minor-free properties are strongly testable (in the standard bounded-degree graph model) [7] is

irrelevant here, since we need strong one-sided error testers.

3

Theorem 1.4 (properties that are strongly testable in the VDF bounded-degree graph model):12 The
following properties are strongly testable in the VDF version of the bounded-degree graph model.

• Subgraph-freeness, degree-regularity, and being Eulerian.

• For every k ≥ 1, having a path of length k, and containing a tree with k leaves.13

A begging question is whether the strong testability results (asserted in Theorem 1.4) can be extended
to other tree (and forest) minors, which are all strongly testable in the standard model (see [9]). We
refrain from studying this question here, since the analyses of the strong testers in the standard model
are already fairly complex.

Additional results. The foregoing overview does not cover all results presented in this work. Notable
omissions include:

• A study of two classes of graph properties that are easy to test in the standard dense graph
model (see Section 2.4). We show that one class, which is trivial to test with one-sided error in
the standard model, is hard to test in the current VDF model, whereas with the other class the
situation is mixed.

• A study of a generalized version of the VDF bounded-degree graph model that is briefly discussed
at the end of Section 1.4. The bottom-line is that the positive results of the VDF (bounded-degree
graph) model extend to the generalized model (see Section 3.5).

• A study of the secondary models mentioned at the end of Section 1.1. The most important take-
home message is that the relation to one-sided error testing does not extend to these models (see
Section 4).

1.3 Techniques

Throghout the paper, we denote by D both a distribution over a vertex-set and a device that outputs

samples drawn from this distribution. We also use the notation D(v)
def
= Prx←D[x = v]. (As usual,

throghout the paper, ǫ denotes the proximity parameter.)

1.3.1 Strong testability and one-sided error

Theorem 1.1 is proved by transforming any VDF tester into one that operates with one-sided error.
The resulting (VDF) tester takes a sample of O(s2) vertices, where s = s(ǫ) is the sample complexity
of the original tester, and invokes the original tester on each possible choice of a sub-sample (of size s)
and coins for the original tester, ruling by majority. Note that the resulting tester makes no random
choices, and its randomization is due to the choice of the vertex-sample it uses. Indeed, in addition
to obtaining samples, both the original and resulting tester issues queries, but these queries must refer
to vertices that were already seen (in prior samples (or answers to prior queries in the bounded-degree
graph model)). Hence, for the dense graph model the query complexity of the resulting (VDF) tester is
O(s2)2, and for the bounded-degree graph model the resulting (VDF) query complexity is exp(O(s)).

The key observation is that each sample of O(s2) vertices for the resulting tester gives rise to a
distribution over O(s2) vertices (i.e., the uniform distribution over this sample), and the one-sided
feature follows by the hypothesis that (with probability at least 2/3) the original tester rules correctly

12The VDF-testability of the various properties is established in Sections 3.2–3.4.
13These properties correspond to two minor-freeness properties, where the minors are a k-path (i.e., a path of k edges)

and a k-star (i.e., a (k + 1)-vertex tree with k leaves).

4

on any distribution. Hence, for any yes-instance and any sample of O(s2) vertices of any vertex-
distribution D, the majority vote is in favor of accepting, and hence the resulting tester always accepts
(i.e., it has one-sided error).14 The claim that the resulting tester rejects no-instances (w.h.p.) is
proved by using the fact that the original VDF tester must reject these instances (w.h.p.) when getting
a sample of D. Indeed, we use the fact that (with very high probability) a random invocation of the
original tester uses a sample of D (i.e., s elements drawn independently from D, where the difference is
due to the difference between selecting s elements with and without repetition among O(s2) elements).

We mention that a similar argument was employed in the proof of [20, Thm. 7.2], which referred
to a different setting (i.e., sample-based testers that obtain “labeled samples” but make no queries).15

The resulting tester there did not invoke the original tester, but rather ruled according to whether
the labeled-sample viewed by it is consistent with a object that has the predetermined property. We
cannot afford this option here, since the size of the vertex-set is not a priori known to the testers in
the current model. Furthermore, the time complexity of the testers we derive is independent of the
size of the tested object, and seems typically smaller than that size.

Theorem 1.2 (i.e., “insufficiency of the necessary condition”) can be proved by using properties that
are trivial to test in the standard models; see Propositions 2.9 and 3.5, respectively. Specifically, such
properties do not contain the empty graph, but do contain some graph with very few edges (e.g., O(n)
edges in case of the dense graph model, and O(

√
n) edges in case of the bounded-degree graph model).

The impossibility of strongly testing in the VDF models relies on the fact that the tester does not know
the size of the graph and cannot distinguish between a sample taken from an empty graph and a sample
taken from a distribution that is concentrated on an independent set (or an isolated set) in a larger
graph. This raises the question of what happens if we either provide the VDF tester with the size of
the graph (which is not compatible with the settings that we envision) or restrict the standard-model
testers in a similar manner (as done in [5]); the second option is discussed in Section 5.1. An alternative
proof of the dense graph model part of Theorem 1.2, which does not rely on the testers’ obliviosness
of the size of the graph, is presented in the proof of Proposition 2.11.

1.3.2 Strong testability in the VDF dense graph model

The basic idea that underlies the proof of Theorem 1.3 is invoking the strong testers for the standard
model on a graph that is a suitable (generalized) blow-up of the input graph, where the varying amounts
of blow-up is determined by the vertex-distribution. Specifically, given query access to the input graph
G = (V,E) and samples from the vertex-distribution D, we consider a graph in which each vertex
v ∈ V is replaced by a cloud of size proportional to D(v), and edges are replaced by complete bipartite
graphs (between the corresponding clouds). This idea, which originates in [15, Sec. 10.1], works well
provided that the same vertex is not sampled twice (equiv., the collision probability of D is o(1/q2),
where q = q(ǫ) is the number of queries made by the original tester). But we have to deal with the
general case (in which the same vertex may be sampled twice). This raises different problems in the
two parts of Theorem 1.3.

In Part 1 (i.e., when testing generalized graph partition properties), the problem is whether or
not to put an edge between copies of the same vertex. Not putting an edge will do when testing
k-colorability, but in general an oblivious decision will not do (since in the specific graph k-partition
property that we handle some parts may mandate internal edges and other parts may mandate no
internal edges). To solve this problem, we first find (by sampling) all vertices that are likely to appear
more than once in our main sample (i.e., all vertices v such that D(v) = Ω(1/q(ǫ/O(1))2)). Loosely
speaking, assuming we found t such “heavy” vertices, we invoke 2t copies (of an error-reduced version)

14Here we used the fact that the original VDF tester accepts (whp) when given samples drawn uniformly from any
multiset of size O(s2).

15That is, when testing an object represented by a function f : D → R, the tester obtains labeled samples of the form
(x, f(x)), where x is drawn from a distribution over D.

5

of the original tester such that in the ith copy we place edges between copies of the jth heavy vertex
if and only if the jth bit in the binary extension of i equals 1. We accept if and only if at least one of
these 2t copies accepted.

In Part 2 (i.e., when testing subgraph freeness), the problem is that we should consider only
subgraphs (of the blown-up graph) in which the vertices belong to different clouds (and so correspond
to different vertices of the original graph). This is not a problem when the subgraph is a clique (and
we place no internal edges in the emulated clouds), since in this case the subgraph cannot contain two
vertices from the same cloud, but for other subgraphs we do have a problem. The problem is resolved by
extending the original tester to the setting of r-colored graphs (studied in [2]); this task is undertaken
in Claim 2.8.4, which builds on [24, Thm. 1.18] (which generalizes Szemerédi’s regularity lemma [31]
to the setting of r-colored graphs).16 We then reduce the problem of finding subgraphs with at most
one vertex in each cloud to finding 2-colored cliques in a 2-colored version of the blown-up graph (in
which all pairs of clouds are connected by edges, and the colors of these edges indicate whether or not
the corresponding edges existed in the uncolored version of the blown-up graph).

Another problem that arises when testing subgraph freeness is relating the weighted distance of the
input graph from being subgraph-free to the distance of the blow-up graph (from the same property).
The relevant lower bound is proved in Claim 2.8.1.

Lastly, we mention that when proving the furthermore part of Theorem 1.3, which refers to testing
H-freeness when H is bipartite, we cannot just rely on the fact that the blow-up is far from being
H-free, since this may be the case even if the tested graph has no copies of H (e.g., an edge connecting
two heavy vertices yields a complete bipartite graph with many edges). Instead, we distinguish edges
that connect light vertices from the other edges, and deal with each case separately and differently.
Edges that connect light vertices can be dealt with by a reduction to the standard case (since the
sample is unlikely to hit the corresponding clouds twice), whereas the number of heavy vertices is small
(and so enumerating all relevant configurations is feasible). A similar strategy is employed in the proof
of Theorem 2.13, which refers to testing minor-freeness (in the VDF dense graph model).

1.3.3 Strong testability in the VDF bounded-degree graph model

The strong testers asserted in Theorem 1.4 are obtained by adaptations of the algorithms (and the
analyses) that are used in the standard model. A common theme in all the original testers is starting
several searches at random vertices. Here, depending on the property, we sometimes start these searches
not at a vertex obtained from the vertex-sampling device but rather at a related vertex (e.g., a uniformly
selected neighbor of the sampled vertex). The reason for this modification is that, in the analysis, the
cost of omitting or adding an edge is related to the probability weight of both its endpoints, whereas
the violation of a tested condition may occur only when starting the search at one of these endpoints.

For example, the distance from having no vertex of degree d′ is not proportional to the weight of
such vertices, but is rather proportional to the weight of these vertices and their neighbors. Hence, the
tester should not be confined to checking the degree of sampled vertices; it should rather check also
the degree of random neighbors of sampled vertices.

We note that modifying the starting point of the search may not suffice. In some cases, the search
itself is modified: For example, in the case of testing k-path freeness, rather than conducting a single
k-step random walk, we conduct two random walks of total length summing up to k.

In general, the fact that the analysis refers to the probability weight of certain vertices rather than
to their number complicates the analysis of almost all testers. For example, unlike in the standard
model (cf., [13, Exer. 9.5]), it does not hold that if a graph is close to being connected and to being
Eulerian, then it is close to a connected Eulerian graph (see Footnote 53).

16Given [24, Thm. 1.18] leaves us with the task of generalizing the rest of the analysis of the subgraph tester (cf.,
e.g., [13, pp. 190-194]).

6

1.4 Discussion

The (standard) study of testing property of graphs, as reviewed in [13, Chap. 8-10], is extremely
idealized. It postulates that the vertex-set of the graph equals a set of the form [n], where n is known a
priori (i.e., is given as an explicit input to the tester). This is the case both in the dense graph model
(introduced in [15] and reviewed in [13, Chap. 8]), and in the bounded-degree graph model (introduced
in [17] and reviewed in [13, Chap. 9]).17 But it is hard to imagine any realistic setting in which the
vertex-set is actually of this form (or can be easily put in 1-1 correspondence to this form).

Addressing this concern, it was suggested (by the author [14]) to relax the model and only require
that the tester be given the size of the vertex-set as well as a sample of uniformly (and independently)
distributed elements in this set, and it was shown that this model is essentially equivalent to the stan-
dard one.18 Here, we take an additional step towards realistic applications, by waiving the requirement
that the samples of the vertex-set be uniformly distributed in it.

As hinted at the very beginning of Section 1.1, the models suggested in this paper are motivated by
settings in which uniformly sampling the vertex-set of the graph of interest is not feasible. Instead, it
is feasible to obtain random vertices drawn according to some distribution D (and, in addition, obtain
answers to the usual graph-queries). This is because some process (or application) of interest refers to
(or embeds or emulates) a huge graph; in particular, the process generates random vertices according
to the distribution D, and answers adjacency (or incidence) queries regarding the graph. We would like
to know whether this huge graph has some predetermined property or is far from having the property,
where the distance that is relevant here is one that is induced by the vertex-distribution D.

Indeed, the vertex distribution represents the “importance” of the various vertices from the appli-
cation’s point of view. Hence, the distance to the property represents the relative importance of the
“part of the graph” that violates the property. If the application supports adjacency queries (to a
dense graph), then it is reasonable to say that the impotance of an edge/non-edge is proportional to
the product of the (probability) weights of its endpoints. If the application supports incidence queries
(to a bounded-degree graph), then it is reasonable to say that the impotance of an edge/non-edge is
proportional to the sum of the (probability) weights of its endpoints.

The discrepancy between these two cases reflects the discrepancy between the two types of mod-
els (equiv., queries): In the dense graph model one encounters a edge/non-edge by visiting both its
endpoints, whereas in the bounded-degree graph model an edge/non-edge is encountered when visiting
one of its two endpoints. Indeed, in the dense graph model we envision applications that refer to a
symmetric relation, represented as a graph, whereas in the bounded-degree graph model we envision a
network with a bounded number of “ports” at each site (vertex). We do not claim that our definition
of distance (equiv., level of importance of edges/non-edges) is the only reasonable one, but rather than
it is a reasonable one. (Still, a generalization of the definition of importance of edges/non-edges, for
the bounded-degree graph model, is presented below.)

We stress that we seek universal testers for the setting envisioned above; that is, testers that perform
well for any vertex-distribuion D (rather than testers that are tailored to a specific distribution D).
We call such testers vertex-distribution-free (abbrev., VDF), and would welcome suggestions for a less
cumbersome term (which led us to use the abbreviation in most places).

Note that, in our models, the tester is not given the size of the vertex-set as an explicit input. This
is quite natural given the foregoing motivation. Furthermore, it seems that in natural cases, the VDF
testers are unlikely to benefit from knowledge of the size of the vertex-set.

17The same hols also and in the general graph model (introduced in [28, 23] and reviewed in [13, Chap. 10]).
18Actually, the foregoing is just one incarnation of a more general framework suggested in [14]. In general, the tester

may be given some partial information about the vertex-set rather than its exact size. Other examples may include an
approximation to the size of the vertex-set or nothing.

7

A generalized version of the bounded-degree graph model. We have motivated the definition
of the importance of an edge/non-edge in this model by implicitly referring to the probability (under
D) that one of its endpoints is encountered by the application. This presumes that the application
encounters vertices only by generating them at random according to the distribution D. However, in
the bounded-degree graph setting, the application can encounter a vertex also by selecting a neighbor
of a previously encountered vertex. Postulating that the application takes walks of length at most t, we
suggest the t-removed VDF model in which the importance of a vertex v is defined as proportional to
the sum of the probabilities of all vertices that are at distance at most t from v. We extend our positive
results regarding the VDF bounded-degree graph model to the t-removed VDF model, incuring a cost
that is exponential in t. For details see Section 3.5.

2 The Dense Graph Model

In this section, we generalize the notion of property testing in the dense graph model (a.k.a. the
adjacency predicate model, which was introduced in [15] and is reviewed in [13, Chap. 8]). The
generalized model is tentatively called the vertex-distribution-free (VDF) dense graph model.

In this model, a graph of the form G = (V,E) is represented by its adjacency predicate g : V ×V →
{0, 1}; that is, g(u, v) = 1 if and only if u and v are adjacent in G (i.e., {u, v} ∈ E). Indeed, since g
represents a (simple) graph, it holds that g(u, v) = g(v, u) and g(v, v) = 0 for every u, v ∈ V .

The tester is given oracle access to the representation of the input graph (i.e., to the adjacency
predicate g) as well as to a device, denoted D, that returns identically and independently distributed
elements in the graph’s vertex-set. This distribution is also denoted D. In addition, the tester gets
the proximity parameter, ǫ, as explicit input. Following [14], we consider the case that the tester does
not obtain V (or any information about V) as explicit input; this means that the tester better query
the graph only on pairs of vertices that have been provided before by the sampling device D (see
Proposition 2.2).

Distance between graphs is measured in terms of their foregoing representation and with reference
to the distribution D; that is, the distance between the graphs that are represented by the adjacency
predicates g : V × V → {0, 1} and g′ : V × V → {0, 1} is defined as

δD(g, g′)
def
= Pru,v←D[g(u, v) 6= g′(u, v)] (1)

Note that the distance also accounts for the reflexive pairs (i.e., (v, v) for v ∈ V).19 For a graph
property Π and a graph represented by the adjacency predicates g : V × V → {0, 1}, we let δΠ

D(g)
denote the minimum of δD(g, g′) taken over all adjacency predicates g′ : V ×V → {0, 1} that represent
graphs in Π. (We assume for simplicity that Π contains some graphs with vertex-set V ; otherwise, one
may define δΠ

D(g) > 1.) When G is the graph represented by g, we may write δΠ
D(G) instead of δΠ

D(g).
When the property Π is clear from the context, we may omit it from the notation (and write δD(·)
instead of δΠ

D(·)).

Definition 2.1 (VDF property testing in the dense graph model): Let Π be a property of graphs. A
VDF tester for the graph property Π (in the dense graph model) is a probabilistic oracle machine T that
is given access to two oracles, an adjacency predicate g : V ×V → {0, 1} and a device (denoted D) that
samples in V according to an arbitrary distribution D, and satisfies the following two conditions:

1. The tester accepts each G = (V,E) ∈ Π with probability at least 2/3; that is, for every g : V ×V →
{0, 1} representing a graph in Π (and ǫ > 0), it holds that Pr[T g,D(ǫ)=1] ≥ 2/3.

19This convention is also used in many other sources that refer to the standard dense graph model; see discussion in [13,
Sec. 8.2.1].

8

2. Given ǫ > 0 and oracle access to any G that is ǫ-far from Π, the tester rejects with probability at
least 2/3; that is, if g : V × [d]→ V ∪{⊥} satisfies δΠ

D(g) > ǫ, then it holds that Pr[T g,D(ǫ)=0] ≥
2/3.

The tester is said to have one-sided error probability if it always accepts graphs in Π; that is, for every
g : V × V → {0, 1} representing a graph in Π (and every ǫ > 0), it holds that Pr[T g,D(ǫ)=1] = 1.

Definition 2.1 was outlined by Goldreich, Goldwasser, and Ron [15, Sec. 10.1], where it was viewed as
a restricted case of truly distribution-free testing. That is, the conceptual focus and starting point of
relevant paragraph of [15, Sec. 10.1] is the distribution on vertex-pairs, whereas our focus and starting
point is the distribution on vertices. Hence, in [15, Sec. 10.1] the foregoing definition is viewed as
special case in which the distribution on pairs is a product of some distribution with itself (and the
tester gets samples of that product distribution). In contrast, we view the distribution on vertices as
the pivot of the definition, and derive the distance measure from it.

The query complexity of a tester accounts for the total number of queries made to both to the graph
G and the sampling device D. This complexity is measured in terms of the proximity parameter ǫ > 0
and label-invariant parameters of the distribution D (e.g., its support-size, its collision probability, its
min-entropy, etc).20 Indeed, the latter parameters replace the number of vertices of the graph, which
is used as a size parameter in the standard model. We shall focus on testers having query complexity
that depends only on ǫ; we tentatively call such testers strong.

As hinted above, it makes little sense for the tester to query the graph on pairs of vertices that have
not been provided before by the sampling device D. In fact, we may assume, without loss of generality,
that the tester makes queries only to pairs of vertices that appeared as answers of the sampling device.

Proposition 2.2 (avoiding illegal queries in the VDF dense graph model): Suppose that Π can be
tested by making at most s sampling requests and at most q queries to the graph, where both complexities
depend on the proximity parameter and on label-invariant parameters of the distribution. Then, Π can
be tested by making at most 3s sampling requests and making only queries to pairs of vertices that
appear in these samples.

The specific query complexity bound, denoted q, is immaterial here; what matters is that the query
complexity (like the sampling complexity) depends only (on the proximity parameter and) on label-
invariant parameters of the distribution.

Proof: Let T be a tester as in the hypothesis. We construct a tester T ′ that, on input g′ : V ′× V ′ →
{0, 1} and D′, invokes T on related inputs g : V × V → {0, 1} and D, which are generated on-the-fly
based on g′ and V . Specifically, T ′ generates on the fly a random bijection π of V ′ ⊎ [100q · |V ′|] to

[(1+100q)·|V ′|], sets V = π(V ′)
def
= {π(v′) : v′ ∈ V ′}, g(π(v′), π(w′)) = g′(v′, w′) and D(π(v′)) = D′(v′),

and essentially emulates an execution of T with oracles g and D.

• When T asks for a sampled vertex, we obtain v′ ← D′ and answer with π(v′), where if π is
not defined on v′ (which means that v′ did not appear as an answer to some previous sampling
request) then we set it at random (among the unused values).

• When T makes the query (u,w), we return g′(π−1(u), π−1(w)) if the relevant π−1-values are
defined (which means that the values v and w appeared as answers to previous sampling requests),
and return a special error symbol otherwise (indicating that (u,w) is not in the domain of g).

20A parameter p of (discrete) distributions is called label-invariant if for every distribution D over {0, 1}∗ and every
bijection π of {0, 1}∗ to itself it holds that p(D) equals p(π ◦ D). In other words, the parameter is a function of the
histogram of the distribution, where the histogram of D is the multi-set {D(e) : D(e) > 0}.

9

For the sake of the analysis, we assume that when the emulation is completed, the undefined values of
π ae selected at random (among the unused ones).

The key observation is that, on input g′ and D′, with very high probability (over the choice of π),
algorithm T ′ emulates an execution of T on input g and D (which are defined via a random bijection π
such that D(v) = D′(π−1(v)) and g(u,w) = g′(π−1(u), π−1(w))). The deviation is due to the case that
a query (u,w) was made (by T) although v ∈ {u,w} was not obtained as a sample and π−1(v) ∈ V ′

(whereas we behaved as if v 6∈ π(V ′)). The probability of this event is at most q · |V |/(100q|V |). It
follows that the probability that T ′ accepts a graph G′ is sandwitched between p − 0.01 and p + 0.01,
where p denotes the probability that T accepts the random homomorphic copy G = π(G′) of G′.

Note that T ′ never makes a query to a pair of vertices that were not provided by the sampling
device. Using mild error reduction to compansate for the additional error of 0.01, the claim follows.
(Indeed, invoking T ′ three times and ruling by majority will do.)

Organization of the rest this section. We first show that it is possible to transform testers of the
VDF version of the dense graph model into ones that have one-sided error, while incurring an overhead
that is much lower than in the standard model. This yields lower bounds on the testability in the
current VDF model. Next, focusing on properties that are strongly testable with one-sided error in the
standard (dense graph) model, we try to extend these testers to the VDF model. Specifically, building
on the results of [15], we present strong testers for the relevant subclass of the graph partition problems
(e.g., k-colorability). Likewise, building on results of [3], we present strong testers for subgraph-freeness
properties (e.g., triangle-freeness). Lastly, in Section 2.4, we study two classes that are easy to test in
the standard model, using some of them to establish the “dense graph model” part of Theorem 1.2.

2.1 One-sided error in the VDF model

In contrast to the situation in the standard model (see, e.g., the complexity of general versus one-sided
error testing of ρ-clique [15]), one-sided error comes almost for free in the VDF model. This is the case
since any strong tester in the VDF model can be transformed into a one-sided error tester (for this
model) while at most squaring the sample complexity. For sake of simplicity we state the transformation
for the case of strong testers, but the assertion holds for general testers (with complexity that may
depend both on ǫ and on some natural parameters of the vertex distribution such as support size).

Theorem 2.3 (one-sided error VDF testing reduces to general VDF testing): Let Π be a graph property
that can be tested using s(ǫ) (vertex) samples in the VDF dense graph model, where ǫ denotes the
proximity parameter. Then, Π has a one-sided error tester of sample complexity O(s(ǫ)2) in the VDF
dense graph model.

Theorem 2.3 implies that properties that do not have a strong one-sided error tester in the standard
model cannot be strongly tested in the VDF model (see Corollary 2.4).

Proof: Let T be a (general) tester of sample complexity s(ǫ) for Π in the current model. Recall
that by Proposition 2.2, we may assume, without loss of generality, that T does not query the graph
on unsampled vertices. We present a one-sided error tester for Π in the current model. On input
parameter ǫ > 0, and oracle access to a graph G = (V,E) and a sampling device D, the claimed tester
operates as follows.

1. The tester takes t = O(s(ǫ)2) samples, denoted v1, ..., vt, from the distribution D.

Note that the vi’s need not be distinct; that is, we may have vi = vj for some i 6= j.

2. Letting s = s(ǫ), for every sequence (i1, ..., is) over [t] and every possible random-pad r of T , the
algorithm invokes T (ǫ) on randomness r and oracle access to G, while providing vij as the jth

10

sampled vertex (i.e., as an answer to the jth sampling request). That is, T is invoked on input ǫ,
and provided access to G, but its randomness is set to r and the s samples it expects to receive
from the sampling device are set to vi1 , ..., vis .

3. The algorithm accepts if and only if a majority of the invocations performed in Step 2 accept.

Since T only queries pairs of vertices that are provided by its sampling device, our algorithm queries the
graph on pairs of vertices that have appeared in our sample, v1, ..., vt. Hence, the sample complexity
of our algorithm is t = O(s(ǫ)2) and its query complexity is

(t
2

)
= O(s(ǫ)4). (Note that no claim is

made regarding the time complexity of our algorithm, which is indeed exponential in the sample and
randomness complexities of T .) We now show that this algorithm constitutes a one-sided error tester
for Π in the current model.

Suppose that G ∈ Π. Note that our algorithm performs no random choices, and the probability
space of its possible executions consists solely of the t samples drawn from D. Hence, we have to show
that, under each such choice, our tester accepts. Fixing such a sequence of samples v = (v1, ..., vt), we
consider the distribution, denoted U(v), defined by selecting uniformly i ∈ [t] and outputting vi. By
the hypothesis regarding T , we have Pr[TG,U(v)(ǫ) = 1] ≥ 2/3. Note that the probability space here
consists of all possible choices of s samples drawn (with repetitions) from U(v) (which correspond to
all choices of (i1, ..., is) ∈ [t]s) and all possible random-pads of T . Hence, at least two third of the
invocations performed in Step 2 are accepting, and our algorithm accepts.

We now turn to the case that G = (V,E) is ǫ-far from Π (with respect to the distribution D),
and consider the execution of our algorithm when given samples drawn from D. By the hypothesis
regarding T , we have Pr[TG,D(ǫ) = 1] ≤ 1/3. Assuming that t ≥ 100 · s(ǫ)2, it follows that selecting
s = s(ǫ) random samples (with repetitions) from a random t-sequence of samples drawn from D yields
a distribution that is 0.01-close to the distribution obtained by selecting s random samples from D,
since the first (resp., second) case corresponds to selecting uniformly at random a multi-set (esp., set)
of size s in [t]. Hence,

Expv1,...,vt←D

[
Pr[TG,U(v1,..,vt)(ǫ)=1

]
≤ Pr[TG,D(ǫ)=1] + 0.01 < 0.35.

(This observation originates from the proof of [15, Cor. 7.2].) An averaging argument implies that

Prv1,...,vt←D

[
Pr[TG,U(v1,...,vt)(ǫ)=1] > 0.5

]
≤ 0.7.

Hence, for at most 70% of the samples obtained in Step 1, more than half of the invocations performed
in Step 2 are accepting, which implies that our algorithm accepts with probability at most 0.7. Using
moderate error reduction, the theorem follows.

Using Theorem 2.3 towards establishing lower bounds in the current model. As noted
above, Theorem 2.3 implies that properties that do not have a strong one-sided error tester in the
standard model cannot be strongly tested in the VDF model.

Corollary 2.4 (lower bounds via reduction from one-sided error testing): Let Π be a graph property
that can be tested using s(ǫ) vertex samples in the VDF model, where ǫ denotes the proximity parameter.
Then, Π has a one-sided error tester of query complexity poly(s(ǫ)) in the standard dense graph model.
The claim holds even if the VDF model tester is given the size of the graph as auxiliary input. Further-
more, if the sample complexity of the VDF tester depends also on the support size and has the form
is s(m, ǫ), where m is the size of the support, then Π has a one-sided error tester of query complexity
maxi∈[n] poly(s(i, ǫ)) in the standard dense graph model, where n denotes the number of vertices in the
tested graph.

11

Hence, lower bounds on the complexity of one-sided error testers in the standard dense graph model
yield lower bounds on testers in the current model.

Proof: Theorem 2.3 yield one-sided error tester for Π in a variant of the standard model in which
the tester obtains uniformly distributed samples of the vertex-set (rather than being given a succinct
description of the vertex-set). The discrepancy between this tester and the standard model is that in the
standard model the tester is given n (and ǫ) as explicit inputs as well as oracle access to G = ([n], E),
but does not get access to a sampling device for U([n]). Nevertheless, given n, one can easily emulate
a sampling device for U([n]), obtaining a tester in the standard model.

The furthermore-part is proved by first observing that Theorem 2.3 can be extended to testers
of sample complexity that depends both on the support size and the proximity parameter. The key
observation is that the support size of the distribution U(v1, ..., vt), where t = maxi∈[n]{O(s(i, ǫ)2)}, is
at most n (i.e., the support size of D = U([n]), which in turn is the number of vertices in the graph).
Furthermore, letting n′ denote the support size of U(v1, ..., vt), it holds that O(s(n′, ǫ)2) ≤ t.

Concrete lower bounds. Combining the furthermore-part of Corollary 2.4 with the linear lower bound
on the complexity of one-sided error testing of ρ-Clique and ρ-CUT in the standard model (see [15,
Sec. 10.1.6]), we get the following

Corollary 2.5 (lower bounds on testing ρ-Clique and ρ-CUT): Testing ρ-Clique and ρ-CUT in the
VDF model requires query complexity that is polynomially related to the size of the graph, even for
ǫ = 0.1.

A similar lower bound hold for all non-trivial graph partition problems that do not satisfy the conditions
of Theorem 2.7. Similarly, stepping beyond the class of graph partition problems, we obtain

Corollary 2.6 (lower bounds on testing degree-regularity) Testing degree-regularity in the VDF model
requires query complexity that is polynomially related to the size of the graph, even for ǫ = 0.1.

2.2 Testing graph partition properties

Definition 2.1 was outlined by Goldreich, Goldwasser, and Ron [15, Sec. 10.1], who observed that
some of their results extend to this model. Specifically, they claimed that their tester of k-Colorability
extends to the current setting, and sketch a proof of this claim.21 We show that the claimed result
(regarding testing k-Colorability) can be extended to any graph k-partition problem that can be easily
tested with one-sided error in the standard model.

Loosely speaking, a graph partition problem calls for partitioning the graph into a specified number
of parts such that the sizes of the parts fit the specified bounds and ditto with respect to the number
of edges between parts. More specifically, each graph partition problem (resp., property) is specified
by a number k ∈ N and a sequence of intervals (which serve as parameters of the problem). A graph
G = (V,E) is a yes-instance of this problem (resp., has the corresponding property) if there exists a
k-partition, (V1, ..., Vk), of V such that

1. For each i ∈ [k], the density of Vi fits the corresponding interval (specified in the sequence of
parameters).

2. For each i, j ∈ [k] (including the case i = j), the density of edges between Vi and Vj fits the
corresponding interval.

21They also claimed that the results regarding ρ-Clique and ρ-Cut can be similarly extended, but it seems that the
properties that they referred to a weighted versions of ρ-Clique and ρ-Cut (which refer to the weights of cliques and
cuts with respect to the probability distribution D). That is, these properties depends on the distribution over vertices,
whereas in Definition 2.1 the property is fixed, regardless of the said distribution. Note that Corollary 2.4 implies that
the positive result does not extend to the unweighted versions of ρ-Clique and ρ-Cut.

12

This framework was presented in [15], where only absolute density bounds were considered (e.g., |Vi|
|V | ≤

0.1 and
|E(Vi,Vj)|
|V |2

≥ 0.1). Here, following [13, Sec. 8.3] and [26], we consider also relative edge-density

bounds (e.g.,
|E(Vi,Vj)|
|Vi|·|Vj|

≥ 0.8).

Recall that all graph partition problems can be tested withing query complexity poly(1/ǫ) in the
stadard model (see [15], extended by [26]). However, as shown in [26] (which extends [21, Thm. 3]),
only some of these properties can be strongly tested with one-sided error in the standard dense graph
model (i.e., can be tested with one-sided error within query complexity that depends only on ǫ). Our
result refers to this class, which consists of sets of graphs that can be k-partitioned such that each part
is either required to be a clique or an independent set, and each pair of parts is either required to have
all possible edges or no edges at all or be arbitrary.

Theorem 2.7 (testing a subclass of graph partition problems): Let k ∈ N. For α = (αi)i∈[k] ∈ {0, 1}k

and β = (βi,j)i<j ∈ {0, 1, 2}(
k

2), let Πα,β denote the set of all graphs G = (V,E) such that V can be
partitioned into k (possibly empty) parts, denoted V1, .., Vk, that satisfy the following conditions:22

1. For each i, if αi = 1 then the subgraph of G induced by Vi is a clique, and otherwise it is an
independent set.

2. For every i < j, the set of edges connecting Vi and Vj is empty if βi,j = 0, contains all edges if
βi,j = 1, and is arbitrary otherwise.

Then, Πα,β can be tested in the VDF dense graph model in query complexity poly(1/ǫ) and time com-
plexity exp(poly(1/ǫ)) (with one-sided error).

We stress that the foregoing graph properties (along with the trivial properties)23 are the only graph
partition properties that are strongly testable with one-sided error in the standard dense graph model
(see [26], which extends [21, Thm. 3]). Furthermore, the stated complexities match the best results
known in the standard dense graph model (even in the case of k-Colorability).

Proof: We reduce testing Π = Πα,β in the current model to testing it in the standard dense graph
model. The reduction is basically the one outlined in [15, Sec. 10.1]; that is, in the case of k-Colorability,
it suffices to check that a sample of poly(1/ǫ) vertices drawn from D induces a k-colorable subgraph.
As shown next, this strategy works in the case of arbitrary Π, provided that the collision probability
of D is o(Q(ǫ/2)−2), where Q is the query complexity (or rather the sample complexity) of the original
tester, and needs to be slightly revised otherwise (i.e., to handle the case of arbitrary D).

By [21, Thm. 2], we may assume (w.l.o.g.) that the standard model tester, denoted T , takes a
sample of q = O(Q(ǫ/2)) vertices and decides according to the (unlabeled) subgraph that is induced
by these vertices. Now, when given access to a graph G = (V,E) and a vertex-sampling device D,
our tester takes a sample of q vertices from D, queries G on the corresponding

(q
2

)
vertex pairs, and

invokes the residual decision procedure of T on the corresponding q-vertex subgraph. (This description
pressumes that no vertex appears twice in the sample.)

To analyze the behavior of our tester, we consider a graph G′ that is obtained by replacing each
vertex v of G with a set (or a “cloud”) Cv of ⌊D(v) ·N⌉ vertices, for a sufficiently large N (e.g.,
N = 4|V |/ǫ), and placing a complete bipartite graph between Cu and Cv if u and v are connected in
G. (Indeed, if u and v are not connected, then no edges are placed between Cu and Cv.) Note that
we avoided specifying the subgraph induced by the individual Cv’s; it will be either a clique or an
independent set.

22If for some i ∈ [k] the set Vi is empty, then the corresponding conditions are considered satisfied regardless of the
values of αi and the βi,j ’s.

23That is, graph properties of the form Π = ∪n∈NΠn such that, for every n, either Πn = ∅ or Πn consists of all n-vertex
graphs.

13

Assuming that no vertex of G has appeared twice in the sample of q vertices (drawn from D), our
tester emulates an execution of T on G′, since the subgraph of G′ induced by a sample of q uniformly
distributed vertices is distributed identically the subgraph of G induced by a sample of q vertices drawn
from D. It remains to show that the distance of G from Π (under D) equals the distance of the best
G′ from Π (up to an additive term of ǫ/2). (That is, at this point, we consider all possible G′ that fit
the foregoing definition; that is, for each set Cv, we let it be either a clique or an independent set.)

Claim 2.7.1 (relating the distances of G and G′ to Π): For every σ ∈ {0, 1}V , we let G′σ denote
the graph obtained from G by replacing each vertex v with a ⌊D(v) ·N⌉-vertex set Cv such that the
subgraph of G′σ induced by Cv is a clique if σv = 1 and is an independent set otherwise, and replacing
each edge {u, v} in G with a complete bipartite graph between Cu and Cv. Then, if G ∈ Π then for
some σ ∈ {0, 1}V it holds that G′σ ∈ Π and

δΠ
D(G) = min

σ∈{0,1}V
{δΠ
D′(G

′
σ)} ±

(
|V |
N

+
∑

v∈V

D(v)2

)
(2)

where D′ denotes the uniform distribution over V ′
def
= ∪v∈V Cv. Furthermore, for every σ ∈ {0, 1}V , it

holds that

δΠ
D(G) ≤ 7k · δΠ

D′(G
′
σ) +

|V |
N .

(3)

Hence, assuming that the collision probability of D is small (i.e.,
∑

v∈V D(v)2 ≤ ǫ/4) and that N is
sufficientlt large (i.e., N ≥ 4|V |/ǫ), the deviation in Eq. (2) is upper-bounded by ǫ/2.

Proof: Supopose that G ∈ Π and let (V1, .., Vk) be a k-partition (V1, ..., Vk) that witnesses this fact.
Then, for every i ∈ [k] and v ∈ Vi, setting σv = αi we infer that G′σ ∈ Π by using the corresponding k-
partition of V ′ (i.e., V ′i =

⋃
v∈Vi

Cv for every i ∈ [k]). Applying the same argument to the partition that

witnesses the value of δΠ
D(G), shows that there exists σ ∈ {0, 1}V such that δΠ

D′(G
′
σ) ≤ δΠ

D(G) + |V |/N ,
where the error term is due to rounding errors (that arise in determining the sizes of the Cv’s). Hence,
we focus on establishing the opposite inequality; that is, for any σ ∈ {0, 1}G, we upper-bound δΠ

D(G)
in terms of δΠ

D′(G
′
σ).

Fixing σ and a k-partition (V ′1 , ..., V ′k) that witnesses the value of δΠ
D′(G

′
σ), consider a random k-

partition of V , denoted (X1, ...,Xk), obtained by assigning each vertex v ∈ V to the ith cloud with
probability |V ′i ∩ Cv|/|Cv |. Letting X ′i =

⋃
v∈Xi

Cv, observe that the expected number of vertex pairs
in the k-partition (X ′1, ...X

′
k) that belong to different Cv’s and violate the constraints of Π equals the

number of pairs in the k-partition (V ′1 , ...V ′k) that belong to different Cv’s and violate the constraints
of Π.24 This ignores the contribution of pairs of vertices that belong to the same Cv, which is at most∑

v∈V |Cv|2. Hence, there exists a partition (X1, ...,Xk) that supports the claim δΠ
D(G) ≤ δΠ

D′(G
′
σ) +

|V |/N +
∑

v∈V D(v)2, where the |V |/N term is due to rounding errors.
The alternative bound of Eq. (3) is proved by first modifying the partition (V ′1 , ..., V ′k) such that,

for every v ∈ V and i ∈ [k], either |Cv ∩ V ′i | ≥ |Cv|/3k or |Cv ∩ V ′i | = 0. The modification is performed
by distributing, for every v ∈ V , the elements of the Cv ∩ V ′i ’s that violate the claim (i.e., i’s such
that |Cv ∩ V ′i | < |Cv|/3k) among the V ′j ’s that satisfy the claim (in proportion to the sizes of these
Cv ∩ V ′j ’s). This may increase the number of violations of the partition (V ′1 , ..., V ′k) by a factor of at

most (1+ 1/3
2/3)2 = 9/4. Next, we consider the random assignment performed in the previous paragraph,

24For every distinct u, v ∈ V , the expected contribution of the pairs Cu × Cv to violations wrt (X ′1, ..., X
′
k) equals the

number of violations wrt (V ′1 , ..., V ′k). Specifically, let νi,j ∈ {0, 1} indicate whether the edge-relation between clouds i
and j (or within cloud i = j) is violated by the edge relation between u and v (e.g., νi,j = 1 if {u, v} ∈ E and βi,j = 0),
the latter number equals

P

i,j∈[k] |Cu ∩ V ′i | · |Cv ∩ V ′j | · νi,j whereas the expectation equals
P

i,j∈[k] piqj · |Cu| · |Cv| · νi,j ,

where pi = |Cu ∩ V ′i |/|Cu| and qj = |Cv ∩ V ′j |/|Cv |.

14

and observe that the expected contribition of pairs of vertices that belong to the same Cv to violations
w.r.t (X ′1, ...,X

′
k) is at most 3k times larger their contribution to violations w.r.t (V ′1 , ..., V ′k), since

the expected contribution of pairs in Cv is
∑

i∈[k]
|Cv∩V ′i |
|Cv|

· |Cv|2 ≤ 3k · ∑i∈[k] |Cv ∩ V ′i |2. Hence,

δΠ
D(G) ≤ 9

4 · 3k · δΠ
D′(G

′
σ) + |V |/N , and the claim follows.

The foregoing assumption that no vertex of G appears twice in the sample (which holds when the
collision probability of D is o(1/q2)) was crucial to asserting that our tester emulates the execution of
T on G′, regardless of the choice of the subgraph (of G′) induced by individual Cv’s, since under this
assumption each Cv is hit at most once (in q trials). In contrast, when obtaining two samples of the
same vertex v, our emulation should return two random elements of Cv, and the problem is that we
should also tell T whether these vertices are adjacent or not. We solve this problem by trying both
possibilities for each vertex v that may appear multiple times in a sample of q vertices. This requires
figuring out the list of relevant vertices, and ignoring executions of T in which vertices that are not in
this list occur more than once. Details follow (starting with the following easy claim).

Claim 2.7.2 (listing all high probability vertices): There exists an algorithm that given t ∈ N and a
sampling device D, works in Õ(t) time and outputs a list that, with probability at least 0.99, contains
all elements in {v : D(v) ≥ 1/t}.

The algorithm just takes O(t log t) samples and outputs all of them. (Alternatively, it may output all
elements that appeared more than once.) Furthermore, intending to use the bound provided by Eq. (3)
(rather than the one of Eq. (2)), we set q = O(Q(ǫ/8k)) (rather than q = O(Q(ǫ/2))). Our revised
tester proceeds as follows.

Algorithm 2.7.3 (given oracle access to the adjacency predicate of a graph G and to a corresponding
vertex-sampling device D):

1. Letting q = O(Q(ǫ/8k)) and t = 100q2, we invoke the algorithm of Claim 2.7.2, and denote the
obtained list by L.

2. We run, in parallel, 2|L| copies of an amplified version of the tester T , where each amplified
version runs |L| sequential copies of T , while using the same sequence of |L| · q samples in all
the parallel copies. The parallel copies are associated with different τ ∈ {0, 1}L. In the copy
associated with a fixed τ , we connect multiple occurances of a vertex v ∈ L in the sample if and
only if τv = 1, and discard executions (of T) in which a vertex not in L is sampled multiple times.
Specifically:

• We view the sample of |L|·q = Õ(q3) vertices drawn from D as consisting of t′ = |L| samples,
denoted S1, ..., St′ , each of size q. The sample Si (viewed as a multiset) is called good if only
vertices that appear in L occur multiple times in Si. We let I denote the set of i’s such that
Si is good.

• For every τ ∈ {0, 1}L and i ∈ I, we invoke the residual decision procedure of T on a q-vertex
graph obtained as follows: The vertices of this graph are the q samples in Si, edges connect
occurances of the same vertex v ∈ L if and only if τv = 1, and edges connect occurences of
different vertices u, v ∈ Si if and only if these vertices are connected in G.

If for some τ ∈ {0, 1}L, all |I| invocation of T accepted, then accept. Otherwise, reject.

Note that the query complexity of Algorithm 2.7.3 is Õ(t)+t′ ·
(q
2

)
= Õ(q4), whereas its time complexity

is 2t′ · |I| ·Time(T), which equals exp(Õ(q2)) · exp(O(q)) (since the time complexity of T is exponential
in its sample complexity [15, 26]).

15

We next observe that if G ∈ Π, then Algorithm 2.7.3 accepts with probability 1, since there exists
a correct choice τ ∈ {0, 1}L that yields a corresponding graph G′ = G′τ ∈ Π that is being emulated
in our invocations of T . (The string τ is determined by the location of the vertices of L in a good
k-partition of G; that is, a k-partition that testifies for G ∈ Π.)

Lastly, we get to the case that G is ǫ-far from Π, and assume that the list L generated in Step 1
contains all vertices v such that D(v) ≥ 1/t. In this case, by Eq. (3), each possible G′ = G′τ is ǫ/8k-far
from Π, which implies that each of the parallel excutions accepts with probability at most 0.35|I|,
since considering only good samples biases the distribution on an execution by at most a 0.01 amount
(because a sample is good with probability at least 1−

(q
2

)
/t > 0.99). Furthermore, with overwhelmingly

high probability, it holds that |I| > 0.9t′. We conclude that our tester rejects G with probability at
least 0.99− 2t′ · 0.350.9t′ > 0.98.

2.3 Testing subgraph-freeness properties

Corollary 2.4 guides us in the search for additional classes of properties that can be strongly tested in
the VDF model: We should look at properties that are strongly testable with one-sided error in the
standard dense graph model. This leads us to subgraph-freeness properties, for which such a tester
was presented in [3]. Actually, we can present proximity oblivious testers (cf. [19]) for these properties,
where the definition of proximity oblivious tester for a property Π is adapted to the current setting by
requiring that the tester (makes a constant number of queries G and D, and) rejects any graph G not
in Π with probability at least dpf(δΠ

D(G)), where dpf : (0, 1] → (0, 1] is called the detection probability
function, and always accepts graphs ibn Π.

Theorem 2.8 (testing subgraph-freeness properties): For any fixed graph H = ([h], F), let ΠH denote
the set of H-free graphs; that is, graphs that do not conatin a copy of H as a subgraph. Then, ΠH

has a proximity oblivious testers, in the VDF dense graph model, with a detection probability function
dpf(δ) = 1/T(poly(1/δ)) such that T(m) is a tower of m exponents. Furthermore, if H is bipartite,
then the detection probability function is poly(δ).

Proof: Assuming, without loss of generality, that H has no isolated vertices, we reduce testing Π = ΠH

in the current model to testing Π in the standard dense graph model. The reduction is similar to the
one used in the proof of Theorem 2.7, but its analysis is different. Recall that, on input G, the proximity
oblivious tester T of [3] selects uniformly a set of h vertices and accepts if and only if the subgraph of
G induced by this set does not contain a copy of H. Our tester will do just the same, except that it
will use h samples obtained from D; that is, given access to a graph G and a vertex-sampling device
D, our tester takes a sample of h vertices from D, queries G on the corresponding vertex pairs, and
accepts if and only if the subgraph observed contains no copy of H.

Clearly, our tester always accepts any H-free graph (i.e., it never rejects G ∈ Π), and so we focus on
lower-bounding the probability that our test rejects G = (V,E) as a function of δ = δΠ

D(G). Suppose
that

∑
v∈V D(v)2 < dpf(δ/h2)/2, where dpf is the detection probability function of the proximity

oblivious tester in the standard dense graph model. Then, we consider a graph G′ that is obtained
by replacing each vertex v of G with an independent set Cv of ⌊D(v) ·N⌉ vertices, for a sufficiently
large N (e.g., N = h2|V |/δ), and placing a complete bipartite graph between Cu and Cv if u and v are
connected in G. (Indeed, if u and v are not connected, then no edges are placed between Cu and Cv.)

Assuming that no vertex of G has appeared twice in the sample of h vertices (drawn from D), our
tester emulates an execution of T on G′, since in this case a sample of h vertices drawn from D with
no repetitions is distributed identically to a sample of h vertices drawn uniformly with no repetiotions
from V ′ =

⋃
v∈V Cv. As shown next (in Claim 2.8.1), δΠ

D′(G
′) ≥ δΠ

D(G)/h2, where D′ is the uniform
distribution on V ′ =

⋃
v∈V Cv, and it follows that our tester rejects G (under D) with probability at

16

least
dpf(δΠ

D(G)/h2)−
∑

v∈V

D(v)2 ≥ dpf(δΠ
D(G)/h2)/2, (4)

where the second term (in the l.h.s of Eq. (4)) accounts for the case that the sample (of D) contain
two occurances of the same vertex.

Claim 2.8.1 (relating the distances of G and G′ to Π): Let G and G′ be as above. Then, δΠ
D′(G

′) ≥
δΠ
D(G)/h2.

A loss factor that is proportional to the number of edges in the subgraph H is inherent in our argument,
and we wonder if it can be avoided. (A related question arised in [16] and was addressed in [29], but
there the l.h.s (i.e., δΠ

D′(G
′)) is replace by the distance to the set of graphs that are (equal-factor)

blow-ups of graphs in Π (in which all clouds have the same size).)25

Proof: We first assume for simplicity that all D(v)’s are multiples of 1/N . Let P ′ ∈ Π be a graph
closest to G′; that is, P ′ witnesses the value of δ′ = δΠ

D′(G
′). We consider a graph P by omitting the

edges {u, v} of G for which at least |Cu| · |Cv|/
(h
2

)
edges are missing from the bipartite graph that

connects Cu and Cv in P ′. Then, the relative distance between G and P (under D) is at most
(h
2

)
· δ′.

We next claim that P ∈ Π, and it follows that δΠ
D(G) ≤

(h
2

)
·δ′. This claim is proven by contradiction.

Suppose that the subgraph induced of P by {v1, ..., vh} contains a copy of H. Then, we select {r1, ..., rh}
at random such that ri is uniformly distributed in Cvi

. For every i, j ∈ [h] such that {vi, vj} is an edge

in P , it holds that {ri, rj} is an edge in P ′ with probability exceeding 1 −
(h
2

)−1
(since otherwise the

edge {vi, vj} would have been omitted from G). Using a union bound, it follows that with positive
probability the subgraph of P ′ induced by {r1, ..., rh} contains a copy of H, and it follows that P ′ 6∈ Π
(contradicting our hypothesis).

Having established δΠ
D′(G

′) ≥ δΠ
D(G)/

(
h
2

)
in the case that all D(v)’s are multiples of 1/N , we note

that in general it holds that δΠ
D′(G

′) > 2h−2 · δΠ
D(G) − |V |/N . Using a sufficiently large N (e.g.,

N = h2|V |/δΠ
D(G)), the claim follows.

As stated above, combining Eq. (4) and Claim 2.8.1, it follows that our tester finds a copy of H in
G (under D) with probability at least dpf(δΠ

D′(G
′))−∑v∈V D(v)2, which is at least dpf(δΠ

D(G)/h2)/2.
Note that the upper bound on the collision probability of D (i.e.,

∑
v∈V D(v)2 < dpf(δ/h2)/2) is crucial

to asserting that finding a copy of H in G′ implies finding a copy of H in G (see Eq. (4)). In contrast,
when obtaining two samples of the same vertex v, it is no longer the case that a copy of H (in G′)
that contains several vertices in Cv yields a copy of H in G. This implication still holds in case H is
a h-clique, since in this case a copy of H cannot contain several vertices in the same Cv, and so the
theorem has just been established for that case (with a somewhat improved bound)26, but we wish to
handle the general case.

Towards this end, we reduce the problem of testing whether G′ contains a copy of H that touches h
differnt Cv’s to the following generalization of the subgraph freeness problem. In this generalization, for
some constant r, each edge is colored by one of r colors, and the (fixed) forbidden graphs are similarly
colored and called spots. The analogous question is whether the r-colored graph contains one of the
spots as a r-colored subgraph. In our application, we consider a graph similar to G′ except that we
place edges between each pair of the vertices that reside in different Cv’s, and color the edge red if it is
in G′ and black otherwise. The spots, in our application, are 2-colored h-vertex cliques that contain a

25On the other hand, the question in [16, 29] is more general: It refers to any property Π, not only to the subgraph-
freeness ones.

26In this case we can apply the improved graph removal lemma of Fox [11], which avoids Szemerédi’s regularity
lemma [31].

17

copy of H colored red. We now present the general definition (which generalizes the definition studied
in [2]).27

Definition 2.8.2 (spot freeness): For r, h ∈ N, consider a set of r-colored h-vertex graphs, denoted
S1, ..., St; that is, Si consists of the vertex-set [h] and edges Ei along with their coloring χi : Ei → [r]. A
colored graph is called {Si : i ∈ [t]}-free is it contains no subgraph that equals any of the Si’s, which are
called spots. Distance between colored graphs are defined as the fraction of the vertex pairs on which the
graphs differ either in the existence of an edge or in the color of an edge that appears in both graphs.28

Actually, the special case in which all spots are colored cliques suffices for our application (as stated
next).

Claim 2.8.3 (testing Π and spot-freeness): Let the Cv and G′ = (V ′, E′) be as above, and let G′′ =
(V ′, E′′) be a 2-colored graph such that E′′ = ∪u 6=v(Cv ×Cu) and an edge of E′′ is colored 1 if the edge
is in E′ (and colored 2 otherwise). Let S consists of the set of all 2-colored h-cliques that contain a
subgraph colored 1 that is isomorphic to H. Then, the distance of G′ to the set of graphs that contain
no copy of H = ([h], F) that intersects h different Cv’s equals the distance of 2-colored G′′ from being
S-free.

Claim 2.8.3 follows by observing that a set of h vertices in G′ contains a copy of H that intersects h
different Cv’s if and only if this set of vertices in G′′ contains a spot that belongs to S. Observing that
the proof of Claim 2.8.1 actually reduces testing testing H-freeness under distribution D to the testing
problem regarding copies of H that intersect h of the Cv’s, we reduce the testing H-freeness under D
to testing spot-freeness. As for testing spot-freeness (under the uniform distribution U = U(V ′)), we
show that the ideas used to test subgraph freeness (under U) extend and suffice.

Claim 2.8.4 (testing spot-freeness): For any finite set of spots S, the set of S-freeness colored graphs
has a proximity oblivious testers with a detection probability function dpf(δ) = 1/T(poly(1/δ)).

Proof: We show that the ideas underlying the analysis of the natural tester for subgraph freeness
(which inspects the subgraph induced by h random vertices) extend to testing spot freeness. The
original analysis is pivoted in Szemerédi’s regularity lemma [31], and here we use its generalization to
r-colored graphs presented in [24, Thm. 1.18] (see also [2, Lem. 2.4]). This generalization asserts a
partition of the graph (as in the original version) that is regular with respect to the r graphs that arise
from the r sets of colored edges.

The next step is a generalization of the rest of the analysis of the subgraph tester (cf., e.g., [13,
pp. 190-194]). Specifically, letting δ denote the distance of the input graph from being H-free, the
original analysis uses a poly(δ)-regular partition of the input graph, and demonstrates the existence of
many copies of H in the graph. The argument proceeds in a few simple steps, which we mimic here.

Assuming that the colored graph is δ-far from being S-free, we focus on some S ∈ S such that
the colored graph is δ/|S|-far from being S-free. (Note that, w.l.o.g., the cheapest way to achieve
these properties is obtained by omitting edges from the graph.) Now, using a poly(δ)-regular partition,
denoted (V1, ..., VT), of the colored graph, we

1. omit all edges that are internal to some Vi;

27Alon et. al. [2] considered the case in which the spots are the r monochromatic cliques. They studied the extremal
problem regarding r-colored graphs and these spots (i.e., the maximum number of r-colorings of some n-vertex graph
such that this coloring contains none of the foregoing spots).

28Indeed, the distance of a colored graph X to being S-free is its distance to a colored graph X ′ that is S-free and is
obtained by omitting the minimum number of edges from X; that is, the minimum distance to being S-free is obtained
by only omitting edges.

18

2. omit all edges that connect pairs of Vi’s that violate the regularity condition with respect to any
of the r colors; and

3. omit all edges colored χ among pairs (Vi, Vj) such that the density of these colored edges is small.

We stress that in Step (3), for each pair (Vi, Vj), we only omit edges that (connect Vi and Vj and) have
a specific color such that the number of edges with that color (that connect Vi and Vj) is small.

As in the original argument, we obtain a (colored) graph R that contains the spot S and is a
(colored) subgraph of the input graph. Without loss of generality (see [13, p. 191]), we may assume
that this spot intersects h different parts29, denoted V1, .., Vh. Viewing this spot as determining a
subgraph over V ′ =

⋃
i∈[h] Vi of the (colored) input graph, we argue exactly as in the original analysis,

except that the subgraph we consider is different here. Whereas in the original analysis this subgraph
consists of the subgraph of R induced by V ′, here it contains only the edges that agree with the colors
of the spot S. That is, for every i 6= j (in [h]), if the edge {i, j} is colored χi,j in S, then we keep the
edges between Vi and Vj that are colored χi,j in R. At this point we have h independent sets (i.e., the
Vi’s) such that each pair (Vi, Vj) is regular and contains many edges if {i, j} is colored χi,j in S. This
yields many subgraphs with the same colors (by following the original argument).

Conclusion and the case of biparite H. Using Claim 2.8.4, we establish the main claim of the theorem.
Turning to the furthermore claim (and forgetting about the foregoing colored graphs and spots), suppose
that H = ([h], F) is a subgraph of Kt,h−t, for some t ∈ [h− 1], and let δ = δΠ

D(G) > 0. We warn that,
unlike in the standard setting (cf. [1, Lem. 2.1]), here it is not the case that the fact that the set
of edges has weight at least δ (w.r.t D) implies that the graph contains a copy of Kh,h, let alone

Ω(δh2
) such copies (assuming, of course, that h > 1).30 Indeed, our argument uses the value of

δ = δΠ
D(G), and not merely the (implied) lower bound on the weight (w.r.t D) of edges in G = (V,E).

Specifically, for γ = Θ(δh2/4), we let L = {v ∈ V : D(v) ≤ γ} denote the set of light vertices, and
consider two cases regarding the weight of the edges that connect light vertices; that is, the edges in
EL = {{u, v}∈E : u, v ∈ L}.
Case 1: EL carries much weight (i.e.,

∑
{u,v}∈EL

D(u) · D(v) ≥ δ/4). In this case, we consider the graph

G1 = (V,EL) and a corresponding graph G′ = (V ′, E′) as in the main claim; that is, the vertices
of V are replaced by clouds Cv’s of size proportional to D(v), and the edges of EL are replaced
by complete bipartite graphs between the corresponding clouds. We shall only use the fact that
G′ has Ω(δ · |V |2) edges, which follows from the hypothesis of the current case, and the fact that∑

v∈LD(v)2 ≤ γ.

As shown by Alon [1, Lem. 2.1], the edge density of G′ implies that the graph G′ contains at
least Ω(δt·(h−t)) · |V ′|h copies of Kt,h−t. Hence, with probability p = Ω(δh2/4), the subgraph of
G′ induced by h random vertices in V ′ contains a copy of H, whereas the probability that two
of these vertices reside in the same cloud Cv for v ∈ L is at most

(h
2

)
·∑v∈LD(v)2, which is

upper-bounded by
(
h
2

)
·maxv∈L{D(v)} < h2 · γ. By an appropriate choice of the hidden constant

in the definition of γ, it follows that with probability at least p/2, a random choice of h vertices
in V ′ contains a copy of H that intersects h different clouds.

Hence, when drawing h samples from D, with probability at least p/2 = Ω(δh2/4), these vertices
induce a copy of H in G1 (and so a copy of H in G).

Case 2: EL carries little weight (i.e.,
∑
{u,v}∈EL

D(u) · D(v) < δ/4). In this case, we consider the graph

G2 = (V,E \ EL), and note that δΠ
D(G2) ≥ δ/2. Here we shall use the fact that |V \ L| ≤ 1/γ,

29Actually, in case the spots are colored cliques (as in our application), the spot must intersect h different parts.
30Consider, for example the case that D(v) = 1/2 for two vertices v and the graph consisting of a single edge between

these two vertices. There are indeed many copies of Kh,h in the corresponding G′, but all these copies intersect two clouds
of G′ (and so yield no copy of Kh,H in G).

19

and identify a h-subset S of V \L that contributes most to δΠ
D(G2), while observing that (in G2)

vertices in L can only neighbor vertices in V \L. Only the copies of H that hit some fixed subset
of S will be used to establish the claim.

Letting h′ = min(h, |V \ L|) ≪ 1/γ (where “typically” h′ = h), for every h′-subset S ⊆ V \ L,
we consider the subgraph of G2, denoted GS,L, that contains only edges of E \ EL with both
endpoints in S ∪ L. Then, there exists an h′-subset S ⊆ V \ L such that

δΠ
D(GS,L) ≥ δ/2

(1/γ
h′

) > δ · γh.

Next, we cluster the vertices in L according to their adjacency relation towards S such that the
cluster LS′ contains all vertices in L that neighbor each vertex in S′ but neighbor no vertex in
S \S′ (i.e., v ∈ LS′ iff v ∈ L and the neighbor-set of v in GS,L equals S′). Letting β = δ ·γh/2h+1,
we discard all vertices that resides in clusters having weight smaller than β; that is, we let

FS
def
= {S′ ⊆ S : D(LS′) > β}, where D(X) =

∑
x∈X D(x), and consider L′

def
=
⋃

S′∈FS
LS′ . Given

that the edges that are incident at L \L′ have weight at most D(L \ L′) ≤ 2h′ · β, it follows that

δΠ
D(GS,L′) > 2h+1 · β − 2h′ · β ≥ 2h′ · β.

(Indeed, GS,L′ denotes the subgraph of G2 that contains only edges of E \EL with both endpoints
in S ∪ L′.)

Next, for every S′ ∈ FS , we let L′S′ = {v ∈ LS′ : D(v) < β/4h}. We consider residual clusters
obtained by discarding vertices of very low weight (i.e., vertices in L′S′) in case their total weight
is small (i.e., D(L′S′) ≤ β/2). (This will be used in the less simple case below.) Specifically, if
D(L′S′) ≤ β/2, then we let L′′S′ = LS′ \ L′S′ and otherwise L′′S′ = LS′ . Either way, D(L′′S′) > β/2,
since D(LS′) > β, and

δΠ
D(GS,L′′) > 2h′ · β − 2h′ · β

2
>

β

2
> 0,

where L′′
def
=
⋃

S′∈FS
L′′S′ (and, again, GS,L′′ denotes the subgraph of G2 that contains only edges

of E \ EL with both endpoints in S ∪ L′′).

We use the fact that GS,L′′ contains a copy of H, and denote the (h different) vertices on which
this copy resides by v1, ..., vh. Suppose that v1, ..., vs ∈ S and vs+1, ..., vh ∈ L′′, and assume first
(for simplicity) that vs+1, ..., vh appear in different residual clusters denoted L′′s+1, ..., L

′′
h. Then,

for every (us+1, ..., uh) ∈ L′′s+1 × · · · × L′′h, the subgraph of G2 induced by v1, ..., vs, us+1, ..., us

contains a copy of H, since the subgraph (of G2) induced by {v1, .., vh} is isomorphic to the
subgraph (of G2) induced by {v1, .., vs, us+1, ..., uh}. (This is the case because, by virtue of being
in the same cluster L′′i , the vertex ui neighbors the same vertices of S as vi, whereas (in G2)
neither ui nor vi neighbors any vertex in L ⊇ L′′.) It follows that h vertices drawn from D
contain a copy of H with probability at least

(
s∏

i=1

D(vi)

)
·
(

h∏

i=s+1

D(L′′i)

)
> γs · (β/2)h−s

which is Ω((δγh)h) = Ω(δh4
). In case several vi’s occur in the same residual cluster, we partition

the relevant clusters to an appropriate number of parts such that each part has weight at least
β/4h and contains at most one vi. This is possible since either L′′S′ = LS′ \ L′S′ , which implies
D(v) > β/4h for every v ∈ L′′S′ , or D(L′S′) ≥ β/2, which implies that L′S′ can be h-partitioned
so that each part has weight at least β/4h and at most 2 · β/4h. Considering all ui’s in the
parts in which vi ∈ L′′i resides yields a probability lower bound of γs · (β/4h)h−s (rather than

γs · (β/2)h−s), which is Ω(δh4
).

20

The (furthermore) claim follows.

2.4 On two classes that are easy to test in the standard model

In this section, we consider two classes of properties that are very easy to test in the standard dense
graph model (cf. [13, Sec. 8.2.2]). We shall see that one class, which is trivial to test with one-sided
error in the standard model, is hard to test in the current VDF model, whereas with the other class
the situation is mixed.

Recall that we have already seen, in Section 2.1, that only properties that have a strong tester
of one-sided error in the standard model may be strongly testable in the current model. Hence, only
properties of the former class are of interest to us here. One natural question is whether this necessary
condition is a sufficient one. We answer this question negatively by considering a class of properties
that are trivial to test (with one-sided error) in the standard dense graph model, and showing that
they are not strongly testable in the VDF version.

Proposition 2.9 (on properties that are trivial in the standard model): Suppose that the graph prop-
erty Π satisfies the following two conditions:

1. For every n, the property Π does not contain the empty n-vertex graph (i.e., a graph with no
edges).

2. There exists a constant c ∈ (0, 2) such that for all sufficiently large n ∈ N and every n-vertex
graph G = ([n], E) there exists an n-vertex graph G′ = ([n], E′) in Π such that the symmetric
difference between E and E′ is at most nc.

Then, Π is not strongly testable in the VDF dense graph model.

The foregoing class of properties includes Connectivity, Hamiltonicity, and being Eulerian (but not
empty). Recall that properties covered by Proposition 2.9 are trivial to test (with one-sided error)
in the standard model by accepting without making any queries if ǫ > n−(2−c) (and querying all
n2 ≤ (1/ǫ)2/(2−c) vertex pairs otherwise; see [13, Prop. 8.3]).31 Hence, Proposition 2.9 establishes the
“dense graph model” part of Theorem 1.2. The following proof relies on the fact that in the VDF
model the tester does not obtain the size of the tested graph. An alternative proof of the dense graph
model part of Theorem 1.2, which does not rely on the testers’ obliviosness of the size of the graph, is
presented in the proof of Proposition 2.11.

Proof: Using Theorem 2.3, it suffices to show that Π is not strongly testable with one-sided error in
the VDF model. Actually, the only aspect of the VDF model that we use here is the fact that the tester
does not obtain the size of the tested graph. (Hence, the proof extends to a corresponding version of
the standard model considered in [14], which may be viewed as a restriction of the VDF model to the
case that the distribution is uniform over the vertex-set.)

Fixing a sufficiently small ǫ > 0, we let n = (3/ǫ)1/(2−c), and consider (one of) the sparsest n-vertex
graph in Π, which by Condition 2 has at most nc edges. Denoting this graph by G = ([n], E), observe
that G contains an independent set S of size n′ = n(2−c)/2, since the expected number of edges in a
subgraph induced by n′ random vertices is

(n′
2

)
· n−(2−c) < 1.

Now, assume that Π has a one-sided error strong tester, denoted T . Then, on the one hand, T
(having one-sided error) must always accept G (under any vertex-distribution D and any value of
ǫ > 0), which implies that T accepts G even when all sampled vertices fall in S. The latter event
occurs with positive probability, provided D(S) > 0, and in particular when the vertex-distribution

31The point is that in the standard model every n-vertex graph is n−(2−c)-close to the property, and so we may accept
any graph if ǫ > n−(2−c), which is the typical case. This justifies the view that these properties are trivial to test.

21

D is uniform over [n]. Note that, in this case, T sees a subgraph that is an independent set. But,
this implies that T always accepts an n′-graph that contains no edges, although (by Condition 1) for

ǫ = 3 · n−(2−c) > 1/
(n′

2

)
(as set above), this graph is ǫ-far from Π under the uniform distribution on its

vertex-set. This contradicts the hypothesis that T is a tester of Π.

Another negative result. Although any property of sparse graphs is easy to test in the standard
(dense graph) model, many of these properties are not strongly testable in the current VDF model. The
source of trouble is that the relevant testers in the standard model are typically not of the one-sided
error type. In fact, we shall show that for many of these properties strong testing (even in the standard
model) requires two-sided error.

Proposition 2.10 (on properties of sparse graphs): For any unbounded f : N → N such that f(n) <
n/2 for all n > 3, suppose that Π is a graph property that satisfies the following two conditions for
infinitely many n’s.

1. Π contains an n-vertex graph that contains a cliques of size f(n).

2. Π contains no n-vertex graph that contains more than 0.5 ·
(
n
2

)
edges.

Then Π is not strongly testable in the VDF model.

Note that Π is strongly testable (with two-sided error) in the standard model, when Condition 2 is
made more stringent (i.e., n-vertex graphs in Π may contain only n2−Ω(1) edges). This holds also if
Condition 1 is dropped.

Proof: Using Corollary 2.4, it suffices to show that Π is not strongly testable with one-sided error in
the standard model. This is the case, since when f(n)/2 exceeds the query complexity of the tester (say,
when the proximity parameter ǫ equals 1/3), the tester sees less than f(n) vertices. Being a one-sided
error tester it must accept if the induced subgraph that it sees in a clique (since, by Condition 1, such
an f(n)-clique may be part of an n-vertex graph in Π). But this implies that the tester always accepts
the complete n-vertex graph, although this graph is 0.4-far from Π (by Condition 2).

Yet another negative result. Proposition 2.10 refers to properties that are strongly testable in
the stanadrd model but not with one-sided error, and the negative result regarding testing in the VDF
model follows (by Corollary 2.4). A more interesting negative result (for the VDF model) refers to
properties of sparse graphs that are strongly testable with one-sided error in the standard model, but
are not strongly testable in the VDF model. One such example is presented next.

Proposition 2.11 (on the “dense graph model” part of Theorem 1.2): Let Π be the set of graphs
consisting of two stars, each holding at least one third of the vertices (i.e., an n-vertex graph is in Π if
it consists of two connected components of size at least n/3, each being a tree with a single internal
vertex). Then, Π is strongly testable with one-sided error in the standard dense graph model, but is not
strongly testable in the VDF model. Furthermore, the lower bound holds even if the tester is given the
size of the graph as auxiliary input.

Proof: We first show that Π is strongly testable in the standard model. On input parameters n
and ǫ > 0 and oracle access to the graph G = ([n], E), the proposed tester behaves as follow: If
ǫ ≤ 5/n, then the tester queries all

(n
2

)
= O(ǫ−2) vertex-pairs, and decides accordingly. Otherwise

(i.e., ǫ > 5/n), the tester selects m = O(1/ǫ) random vertices and rejects if and only if the induced
subgraph contains more than 2m edges. Observe that an m-vertex graph that contains more than 2m
edges, must contain at least three vertices of degree greater than one, which means that this tester

22

never rejects graphs in Π. Now, suppose that G = ([n], E) is ǫ-far from Π and ǫ > 5/n. Then, G has
more than ǫ ·

(n
2

)
− n > 0.5ǫ ·

(n
2

)
edges, and with high probability a random set of m ≥ 10/ǫ vertices

induces a subgraph with more than 2m edges.
Using Theorem 2.3, it suffices to show that Π is not strongly testable with one-sided error in

the VDF model. We first observe that a one-sided error tester must accept when it sees a subgraph
consisting of a single star, because such a view may occur when accessing a graph in Π (e.g., when
the vertex distribution is uniform over [n] and we sample m vertices, this occurs with probability
exp(−Ω(m)) > 0). One the other hand, such an alleged tester will accept (whp) an n-vertex graph
that consists of a single n-vertex star when coupled with a vertex distribution D that assigns the center
of the star probability 1/2 (and uniform distribution on the other n − 1 vertices). But this n-vertex
graph is Ω(1)-far from Π under the vertex distribution D, which means that this alleged tester fails
(although n was fixed, and so “known” to the tester).

A positive result. While a global bound on sparsity does not guarantee strong testability in the
current model (cf. Propositions 2.10 and 2.11), a local bound – in the form of bounded degree – does
guarantee it, when augmented with two natural conditions.

Theorem 2.12 (testing properties of bounded-degree graphs): Suppose that Π is a graph property
that satisfies the following conditions.

bounded degree: The exists a constant d such that each graph in Π has vertices of degree at most d.

hereditary: For every G ∈ Π, every induced subgraph of G is also in Π.

paddability: For every G ∈ Π, the graph obtained by augmenting G with an isolated vertex is also in Π.

Then, Π is testable in the VDF dense graph model with query complexity Õ(1/ǫ2).

Proof: The key observation is that, in this case, the total probability weight of edges that have
at least one endpoint of small weight is small. Specifically, for any graph G = (V,E) in Π, any set
V ′ ⊆ V , and any distribution D on V , it holds that

∑
{u,v}∈E:u∈V ′ D(v) · D(u) is upper-bounded by

d ·maxu∈V ′{D(u)}, where d is the degree bound of Π. This is shown by letting Γ(v) denote the set of
neighbors of vertex v in G, and observing that

∑

{u,v}∈E:u∈V ′

D(v) · D(u) ≤
∑

v∈V

D(v) ·
∑

u∈V ′∩Γ(v)

D(u) (5)

≤
∑

v∈V

D(v) · d ·max
u∈V ′
{D(u)}

= d ·max
u∈V ′
{D(u)} (6)

where the first inequality holds since each edge in the l.h.s of Eq. (5) is counted at least once in the
r.h.s of Eq. (5). Hence, in our analysis, we can ignore edges with a light endpoint. This observation
is only used in the analysis; the tester itself proceeds as follows: On input parameter ǫ, and access to
the graph G and sampling device D, the tester obtains a sample of m = Õ(1/ǫ) vertices from D, and
accepts if and only if the induced subgraph is in Π.

We first observe that, by the hypothesis that Π is hereditary, any induced subgraph of a graph in
Π is itself in Π, and so the foregoing tester always accepts graphs in Π. On the other hand, assuming
that G = (V,E) is ǫ-far from Π under the distribution D, and letting H = {v∈V : D(v) > ǫ/2d}, we
consider two cases regarding the subgraph of G induced by H, denoted GH .

23

Case 1: GH 6∈ Π. In this case, with very high probability, the subgraph induced by the sample is not in
Π (and the tester rejects). This is the case, because, with very high probability, the sample hits all
vertices of H, whereas the subgraph induced by the sample contains GH as an induced subgraph
(which implies that if the former subgraph were in Π, then so would GH (by the hypothesis that
Π is hereditary)).

Case 2: GH ∈ Π. In this case, we consider the graph G′ = (V,E′) such that E′ = {{u, v} ∈ E : u, v ∈
H}; that is, G′ consists of GH and |V \H| isolated vertices. Hence, by the paddability of Π, it
follows that G′ ∈ Π, which implies that G is ǫ-far from G′. Since the difference between these
two graphs is due to edges that have at least one end-point in V ′ = V \H, it holds that

∑

{u,v}∈E:u∈V ′

D(v) · D(u) > ǫ (7)

Denoting the vertices of the sample by z1, ..., zm, while noting that the zi’s are not necessarily
distinct, we observe that for every i 6= j it holds that the random variable that indicates whether
or not {zi, zj}∈E & u∈V ′ is an unbiased estimator of the l.h.s of Eq. (7); that is, letting ζi,j = 1
if {zi, zj} ∈ E & u ∈ V ′ and ζi,j = 0 otherwise, we have Exp[ζi,j] =

∑
{u,v}∈E:u∈V ′ D(v) · D(u).

Hence, with high probability over the choice of the sample,

∑

i∈[m]

∑

j∈[m]\{i}

ζi,j > 0.9ǫ ·m · (m− 1). (8)

and each vertex in V ′ occurs at most 0.6ǫ ·m/d times in the sample. Finally, defining D′ to be
uniform over the sample (i.e., D′(v) = |{i ∈ [m] : zi =v}|/m denotes the frequency of occurrences
of the vertex v in the sample), we get

∑

{u,v}∈E:u∈V ′

D′(v) · D′(u) > 0.9ǫ. (9)

We conclude that the subgraph of G induced by the sample is not in Π, since otherwise we reach
contradiction (because, by Eq. (5) & (6) if this subgraph were in Π, then

∑
{u,v}∈E:u∈V ′ D′(v) ·

D′(u) ≤ 0.6ǫ would hold). It follows that the tester rejects (w.h.p.) also in this case.

This completes the analysis of the foregoing tester, and establishes the theorem.

Another positive result. We show that, in some cases, the degree bound can be relaxed to an
arboricity bound (i.e., being covered by a bounded number of forests); in particular, this holds for
minor-free properties (which always have bounded arboricity [25]). Recall that a graph property Π is
called minor-free if there exists a finite set of graphs M such that G is in Π if any only if it does not
contain a minor in M, where a minor of G is a graph obtained from G by edge and vertex deletions
as well as edge-contractions. Note that, in light of Proposition 2.11, assuming only bounded arboricity
does not suffice (since even properties of forests may not be strongly testable in the VDF model). (On
the other hand, minor-free graphs do satisfy the other conditions of Proposition 2.12.)

Theorem 2.13 (testing minor-free properties (in the VDF dense graph model)): Every minor-free
property Π is testable in the VDF dense graph model with query complexity poly(1/ǫ).

Proof: As in the proof of Theorem 2.12, we use the fact that the total probability weight of edges that
are incident at vertices of small weight is small, provided that the graph is in Π. Note that here we only
know that the graph is minor-free, which implies that it has bounded arboricity (but not necessarily
bounded degree). On the other hand, we bound the total weight of edges with both endpoints in the

24

set of light vertices (rather than edges with at least one endpoint in this set). Specifically, for any graph
G = (V,E) in Π, any set V ′ ⊆ V , and any distribution D on V , it holds that

∑
{u,v}∈E:u,v∈V ′ D(v) ·D(u)

is upper-bounded by d ·maxu∈V ′{D(u)}, where d is the arboricity bound of Π, which follows from the
hypothesis that Π is minor-free. This is shown by letting Pi(v) denote the parent of v in the ith forest
in a decomposition of G (while fictitiously defining Pi(v) = ⊥ 6∈ V if v is a root in the ith forest), and
observing that

∑

{u,v}∈E:u,v∈V ′

D(v) · D(u) =
∑

v∈V ′

D(v) ·
∑

u∈V ′∩{Pi(v):i∈[d]}

D(u) (10)

≤
∑

v∈V

D(v) · d ·max
u∈V ′
{D(u)}

= d ·max
u∈V ′
{D(u)}. (11)

Hence, in our analysis, we can ignore edges that connect light endpoints. Again, this observation is
only used in the analysis; the tester itself proceeds as follows: On input parameter ǫ, and access to
the graph G and sampling device D, the tester obtains a sample of s = poly(1/ǫ) vertices from D, and
accepts if and only if the induced subgraph is in Π. The degree of the aforementioned polynomial will
be determined by the property Π (as detailed in the analysis).

We first observe that, since Π is hereditary, any induced subgraph of a graph in Π is itself in Π,
and so the foregoing tester always accepts graphs in Π. On the other hand, assuming that G = (V,E)
is ǫ-far from Π under the distribution D, and letting H = {v ∈ V : D(v) > ǫ/2d}, we consider the
graph G′ = (V,E′) such that E′ = E \ {{u, v} : u, v ∈ V \ H}, which is ǫ/2-far from Π (since, by
Eq. (10) & (11), the total weight of the omitted edges is at most ǫ/2). In particular, note that H 6= ∅.

Next, as when establishing the furthermore claim of Theorem 2.8, for every H ′ ⊆ H, we let SH′

denote the set of vertices in V ′
def
= V \ H that neighbor each vertex in H ′ but no vertex in H \ H ′

(i.e., v ∈ SH′ iff v ∈ V ′ and the neighbor-set of v equals H ′), and distinguish sets H ′ of size at most
d from larger sets H ′. Letting S′ =

⋃
H′⊆H:|H′|>d SH′ and ǫ′ = ǫ/(8(d + 1) · |H|), we distinguish

S′′
def
= {v ∈ S′ : D(v) ≤ ǫ′} from S′ \ S′′, and consider two cases:

Case 1: D(S′′) > ǫ/4. In this case (since D(v) ≤ ǫ′ for each v ∈ S′′), we can group the vertices of

S′′ into t = ǫ/4
2ǫ′ = (d + 1) · |H| sets S′′1 ,, S′′t such that D(S′′i) > ǫ′ for each i ∈ [t]. Noting

that, with high probability, the sample taken by the tester hits each vertex in H and each set
S′′i , it follows that this samples contains a set with |H| + t = (d + 2) · |H| vertices and at least
(d + 1) · t = (d + 1)2 · |H| > d · (d + 2) · |H| edges, since each vertex in S′′ ⊆ S′ has degree at least
d+ 1. But this induced subgraph violates the arboricity bound of Π. Hence, the sample contains
an induced subgraph that is not in Π, which (by the hereditary feature of Π) implies that the
subgraph induced by the sample is not in Π, and the tester rejects.

Case 2: D(S′′) ≤ ǫ/4. In this case, we just ignore the set S′′ (or rather omit the edges incident at it),
and obtain a graph that is ǫ/4-far from Π. For sake of simplicity, from this point onwards, we
assume that S′′ = ∅, and so that all vertices v ∈ S′ satisfy D(v) > ǫ′. In this case, with high
probability, the sample taken by the tester hits each vertex in H ∪S′, whereas the residual graph
G′ we test is ǫ/4-far from Π. We may assume that the subgraph induced by H ∪S′ does not have
a forbidden minor, since otherwise we are done (i.e., the test rejects).

Continuing with Case 2, we claim that there exists a set H ′ ⊆ H of size at most d such that D(SH′) >
ǫ/4
|H|d

and the subgraph of G′ induced by H ∪S′∪SH′ has a forbidden minor (because, otherwise we can

eliminate all potential forbidden minors by omitting all edges incident at
⋃

H′⊆H:|H′|≤d SH′ = V ′ \S′).32

32We also use the fact that |{H ′ ⊆ H : |H ′| ≤ d}| =
P

i∈[d]

`

|H|
i

´

< |H |d.

25

Assuming that this forbidden minor (or rather the contacted subgraph yielding it) contains a single
vertex of SH′ and observing that all vertices in VH′ are equivalent with respect to their neighborhood
in H, we could have inferred that the tester rejects (whp), since it sample is likely to contain also a
vertex of SH′ . The problem is that the contracted subgraph that yields a forbidden minor may contain
a few vertices of SH′ , although their number can be upper-bounded by B = O(|H|2), whereas it is
not clear that the sample hits a sufficient number of such vertices. Hence, a more refined argument is
required.

First, we show that, without loss of generality, the number of vertices of V ′ \ S′ that appear in
a contracted subgraph that yields a forbidden minor is at most |H|2 + O(1) < B. This is the case
since each of these vertices either remains uncontracted (as one of the O(1) vertices of the minor) or
is contracted into a vertex of H ′. (Recall that vertices in V ′ neighbor only vertices in H.) But the
latter contraction makes sense only if it adds an edge between two vertices of H, whereas the number
of possible edges is at most

(|H|
2

)
.

Now, for each set H ′ ⊆ H of size at most d, we let S′′H′
def
= {v ∈ S′ : D(v) ≤ ǫ′′}, where ǫ′′ =

ǫ/(16B · |H|d). Next, let S′H′ = SH′ \ S′′H′ if D(S′′H′) < ǫ/8|H|d, and S′H′ = SH′ otherwise. Then,
there exists a set H ′ ⊆ H (of size at most d) such that D(S′H′) > ǫ/8|H|d and the subgraph of G′

induced by H ∪S′ ∪S′H′ contains a forbidden minor (because, otherwise we can eliminate all potential
forbidden minors by omitting all edges incident at

⋃
H′⊆H:|H′|≤d SH′ = V ′ \ S′, since in this case

D(S′H′) ≤ ǫ/8|H|d of each H ′ whereas D(S′′H′) < ǫ/8|H|d if SH′ = S′H′ ∪ S′′H′ 6= S′H′). Furthermore,
if S′H′ = SH′ \ S′′H′ , then (whp) each of the vertices in S′H′ is hit by the sample taken by the tester.
Otherwise (i.e., S′H′ = SH′ 6= SH′ \ S′′H′), with high probability, the sample taken by the tester hits
at least B different vertices in S′′H′ ⊆ S′H′ (since the vertices of S′′H′ can be grouped into B sets
each of weight at least ǫ′′ = Ω(ǫ/|H|d+2)).33 Either way, the tester rejects, since the sample it takes
induces a subgraph that yields a forbidden minor. The theorem follows, where the size of the sample
is s = Õ(1/ǫ′′) = Õ(|H|d+2/ǫ) = Õ(ǫ−(d+3)).

3 The Bounded-Degree Graph Model

In this section, we generalize the notion of property testing in the bounded-degree graph model
(a.k.a. the bounded incidence lists model, which was introduced in [17] and is reviewed in [13, Chap. 9]).

The bounded-degree graph model refers to a fixed (constant) degree bound, denoted d ≥ 2. In this
model, a graph G = (V,E) of maximum degree d is represented by the incidence function g : V × [d]→
V ∪ {⊥} such that g(v, j) = u ∈ V if u is the jth neighbor of v and g(v, j) = ⊥ 6∈ V if v has less than
j neighbors.34

As in the dense graph model, the tester is given oracle access to the representation of the input
graph (i.e., to the incidence function g) as well as to a device, denoted D, that returns identically
and independently distributed elements in the graph’s vertex-set. This distribution is also denoted D.
Following [14], we consider the case that the tester does not obtain V (or any information about V) as
explicit input.

Distance between graphs is measured in terms of their foregoing representation and with reference
to the distribution D; that is, the distance between the graphs that are represented by the incidence
functions g : V × [d]→ V ∪ {⊥} and g′ : V × [d]→ V ∪ {⊥} is defined as

δD(g, g′)
def
= Prv←D,i∈[d][g(v, i) 6= g′(v, i)] (12)

33Here we use D(S′′H′) ≥ ǫ/8|H |d along with D(v) ≤ ǫ′′ = ǫ/(16B · |H |d) for v ∈ S′′H′ .
34For simplicity, we adopt the standard convention by which the neighbors of v appear in arbitrary order in the sequence

g(v, 1), ..., g(v,deg(v)), where deg(v)
def
= |{j ∈ [d] : g(v, j) 6= ⊥}|.

26

=
∑

v∈V

D(v) · |{i ∈ [d] : g(v, i) 6= g′(v, i)}|
d

where D(v) denotes the probability that an element drawn from D equals v. For a graph property Π
and a graph represented by the incidence function g : V × [d] → V ∪ {⊥}, we let δΠ

D(g) denote the
minimum of δD(g, g′) taken over all incidence functions g′ : V × [d] → V ∪ {⊥} that represent graphs
in Π. (We assume for simplicity that Π contains some graphs with vertex-set V ; otherwise, one may
define δΠ

D(g) > 1.) When G is the graph represented by g, we may write δΠ
D(G) instead of δΠ

D(g). When
the property Π is clear from the context, we may omit it from the notation and write δD(·) instead of
δΠ
D(·).

Definition 3.1 (VDF property testing in the bounded-degree graph model): For a fixed d ∈ N, let
Π be a property of graphs of degree at most d. A VDF tester for the graph property Π (in the bounded-
degree graph model) is a probabilistic oracle machine T that is given access to two oracles, an incidence
function g : V × [d]→ V ∪ {⊥} and a device (denoted D) that samples in V according to an arbitrary
distribution D, and satisfies the following two conditions:

1. The tester accepts each G = (V,E) ∈ Π with probability at least 2/3; that is, for every g : V ×[d]→
V ∪ {⊥} representing a graph in Π and every D (and ǫ > 0), it holds that Pr[T g,D(ǫ)=1] ≥ 2/3.

2. Given ǫ > 0 and oracle access to any G and D such that δΠ
D(G) > ǫ, the tester rejects with

probability at least 2/3; that is, for every ǫ > 0 and distribution D, if g : V × [d] → V ∪ {⊥}
satisfies δΠ

D(g) > ǫ, then it holds that Pr[T g,D(ǫ)=0] ≥ 2/3.

The tester is said to have one-sided error probability if it always accepts graphs in Π; that is, for
every g : V × [d] → V ∪ {⊥} representing a graph in Π (and every D and ǫ > 0), it holds that
Pr[T g,D(ǫ)=1] = 1.

The definition of a proximity oblivious tester [19] is revised analogously. Specifically, a proximity
oblivious tester is not given a proximity parameter (i.e., ǫ), it always accepts graphs in Π, and it
rejects graphs G not in Π with probability at least dpf(δΠ

D(G)), where dpf : (0, 1]→ (0, 1] is called the
detection probability function.

As in the dense graph model, we may assume, without loss of generality, that the tester only makes
queries that refer to vertices that appeared as answers to prior queries (i.e., either as samples provided
by the sampling device or as answers to incidence queries). Note, however, that this does not mean
that the number of queries can be upper-bounded in terms of the number of sample requests. On the
other hand, whenever we only mention the query complexity, it is to be understood that the number of
samples is similarly upper-bounded (since we may assume, with little loss of generality, that the tester
makes some queries about the incidence relation of each sampled vertex).35

Proposition 3.2 (avoiding illegal queries in the bounded-degree graph model): Suppose that Π can be
tested by making at most s sampling requests and at most q queries to the graph, where both complexities
depend on the proximity parameter and on label-invariant parameters of the distribution. Then, Π can
be tested by making at most 3s sampling requests and at most 3q queries, while making queries only to
vertices that occurred as answers to previous queries.

35The distinction between the sample and query complexity is reminiscent of [6]. However, in the current context, we
envision the tester as making more queries than the number of samples, whereas the model in [6] envisions making less
queries than the number of samples. Indeed, the possibility of making queries regarding elements that did not appear in
the sample arises naturally in the bounded-degree graph model, but is not that natural in the settings envisioned in [6]
(let alone in the dense graph model).

27

An analogous statement holds with respect to proximity oblivious tester, where one can establish the
asymptotic preservation of the detection probability function.

Proof: Mimicing the proof of Proposition 2.2, we let T be a tester as in the hypothesis. We consider a
tester T ′ that, on input g′ : V ′×[d]→ V ′∪{⊥} and D′, invokes T on related inputs g : V ×[d]→ V ∪{⊥}
and D, while constructing on-the-fly a random bijection π of V ′ ⊎ [100q · |V ′|] to [(1 + 100q) · |V ′|], and
setting V = π(V ′). Specifically, when T asks for a sampled vertex, we obtain v′ ← D′ and answer with
π(v′), where if π is not defined on v′ then it is set at random (among the unused values). When T
makes the query (v, i), algorithm T ′ proceeds as follows.

• If π−1 is not define on v, then it return a special error symbol (indicating that (v, i) is not in the
domain of g).

• Otherwise, if g′(π−1(v), i) = ⊥ , then it returns ⊥.

• Lastly, letting w
def
= g′(π−1(v), i) 6= ⊥, the algorithm returns π(w), where if π is undefined on w

(indicating that w did not occur as a previous answer), it is set at random (among the unused
values).

The key observation is that, on input g′ and D′, with very high probability (over the choice of π),
algorithm T ′ emulates an execution of T on input g and D defined via a random bijection π such that
D(v) = D′(π−1(v)) and g(v, i) = g′(π−1(v), i). The deviation is due to the case that a query (v, i) was
made although v was not obtained as an answer to a previous query and π−1(v) ∈ V ′ (although we
behaved as if v 6∈ π(V ′)). The rest of the argument proceeds as in the proof of Proposition 2.2.

Organization of the rest this section. We first show that, as in the case of the dense graph
model, it is possible to transform testers of the VDF version of the bounded-degree graph model into
ones that have one-sided error, while incurring an overhead that is much lower than in the standard
model. Again, this yields lower bounds on the testability in the current VDF model. Next, focusing
on properties that are strongly testable with one-sided error in the standard (bounded-degree graph)
model, we try to extend these testers to the VDF model. Specifically, building on the presentation
in [13, Sec. 9.2], we present relatively simple testers for subgraph freeness, degree regularity, and being
Eulerian. These poly(1/ǫ)-query testers are based on conducting a small number of very local searches,
but the parameters of these searches and their goals vary from one case to another. Likewise, building
on results of [9], we study the testability of minor-freeness, focusing on cycle-free minors. Lastly, in
Section 3.5, we extend our positive results regarding the VDF bounded-degree graph model to the
t-removed VDF model, incuring a cost that is exponential in t.

3.1 One-sided error in the VDF model

In contrast to the situation in the standard model (see, e.g., the complexity of general versus one-sided
error testing of cycle-freeness [17]), one-sided error comes at a low cost in the current model. This is
the case since any strong tester in the VDF model can be transformed into a one-sided error tester (for
this model) while maintaining query complexity that only depends on ǫ.

Theorem 3.3 (one-sided error testing reduces to general testing): Let Π be a graph property that can
be tested using q(ǫ) queries in the VDF bounded-degree graph model, where ǫ denotes the proximity
parameter.36 Then, Π has a one-sided error tester of query complexity exp(O(q(ǫ))) in the current
model.

36Recall that by our convention, the query complexity also accounts for invocations of the sampling device.

28

Theorem 3.3 implies that properties that do not have strong testers of one-sided error in the standard
model cannot be strongly tested in the VDF model (see Corollary 3.4).

Proof: We follow the strategy used in the proof of Theorem 3.3. Let T be a (general) VDF tester of
query complexity q(ǫ) for Π. Recall that by Proposition 3.2, we may assume, without loss of generality,
that T does not query the graph on vertices that did not appear as answers to prior queries (or sample
requests). We present a one-sided error tester for Π in the current model. On input parameter ǫ > 0,
and oracle access to a graph G = (V,E) and a sampling device D, the claimed tester operates as follows.

1. The tester takes t = O(q(ǫ)2) samples, denoted v1, ..., vt, from the distribution D. Note that the
vi’s need not be distinct; that is, we may have vi = vj for some i 6= j.

2. Letting s = q(ǫ), for every sequence (i1, ..., is) over [t] and every possible random-pad r of T , the
algorithm invokes T (ǫ) on randomness r and oracle access to G, while providing vij as the jth

sampled vertex (i.e., as an answer to the jth sampling request). That is, T is invoked on input ǫ,
and provided access to G, but its randomness is set to r and the s samples it expects to receive
from the sampling device are set to vi1 , ..., vis .

3. The algorithm accepts if and only if a majority of the invocations performed in Step 2 accept.

Since T only queries vertices that are provided as answers to prior queries, our algorithm queries the
graph on vertices that are at distance at most q(ǫ) − 1 from one of the sampled vertices.37 Hence,
the sample complexity of our algorithm is t = O(q(ǫ)2) and its query complexity is smaller than
t · dq(ǫ) = exp(O(q(ǫ))). The rest of the proof (i.e., showing that this algorithm constitutes a one-sided
error tester for Π in the VDF model) is as in the proof of Theorem 3.3.

Using Theorem 3.3 towards establishing lower bounds in the current model. As noted
above, Theorem 3.3 implies that properties that do not have a one-sided error tester of size-oblivious
complexity in the standard (bounded-degree graph) model cannot be strongly tested in the current
(VDF bounded-degree graph) model.

Corollary 3.4 (lower bounds via reduction from one-sided error testing): Let Π be a graph property
that can be tested using q(ǫ) queries in the VDF bounded-degree graph model, where ǫ denotes the
proximity parameter. Then, Π has a one-sided error tester of query complexity exp(O(q(ǫ))) in the
standard bounded-degree graph model. The claim holds even if the VDF model tester is given the size
of the graph as auxiliary input.

Hence, lower bounds on the complexity of one-sided error testers in the standard bounded-degree
graph model yield lower bounds on testers in the current model. In particular, this implies that testing
cycle-freeness in the current model cannot be performed within complexity that only depends on the
promimity parameter ǫ. Actually, the same holds for testing H-minor freeness for any H that contains
a cycle.

Beyond Corollary 3.4. As in the case of the dense graph model, also in the bounded-degree graph
model strong one-sided error testing in the standard model does not suffice for strong testability in the
VDF version.

37Here, unlike in Steps 1 and 2 of the foregoing algorithm, we use q(ǫ) as an upper bound on the number of queries to
the graph. Indeed, in Step 2, s = s(ǫ) equals the sample complexity of the original tester, whereas in Step 1 t = O(s2).
Hence, the sample complexity of the resulting one-sided error tester is O(s2), whereas its actual query complexity is
O(s2) · dq(ǫ) = exp(O(q(ǫ) + log s)).

29

Proposition 3.5 (on properties that are trivial in the standard model): Suppose that the graph prop-
erty Π of bounded-degree graphs satisfies the following two conditions:

1. For every n, the property Π does not contain the empty n-vertex graph (i.e., a graph with no
edges).

2. There exists a constant c ∈ (0, 1) such that for all sufficiently large n ∈ N and every n-vertex
graph G = ([n], E) there exists an n-vertex graph G′ = ([n], E′) in Π such that the symmetric
difference between E and E′ is at most nc.

Then, Π is not strongly testable in the current VDF model.

Note that properties covered by Proposition 3.5 are trivial to test (with one-sided error) in the standard
(bounded-degree graph) model by making no queries at all if ǫ > n−(1−c) (and querying the neighbor-
hoods of all n ≤ (1/ǫ)1/(1−c) vertices otherwise). The foregoing (contrived) class contains the set of
bounded-degree n-vertex graphs that contain a connected component of size at least

√
n. Anyhow,

Proposition 3.5 establishes the “bounded-degree graph model” part of Theorem 1.2.

Proof Sketch: We follow the strategy used in the proof of Proposition 2.9, while setting n =
(1/dǫ)1/(1−c) and using a bounded-degree graph G = ([n], E) ∈ Π that has at most nc edges. Fix-
ing a set S of n′ = n1−c < n − 2nc isolated vertices in G, we observe that a potential one-sided
error tester of Π must accept when seeing n′ isolated vertices, since this view may occur when testing
G ∈ Π. But this means that this alleged tester (which is not given the size of the graph) must accept the
empty n′-vertex graph, although this graph is 1/dn′-far from Π (under the uniform vertex-distribution).
Contradiction follows, since ǫ = 1/n1−cd = 1/n′d.

The foregoing proof capitalizes on the tester’s obliviousness of the size of the tested graph. The
same holds with respect to the following proof, which uses a natural property for establishing the
“bounded-degree graph model” part of Theorem 1.2.

Proposition 3.6 (on the difficulty of Connectivity in the VDF model): Connectivity is not strongly
testable in the VDF bounded-degree graph model.

Proof: By Theorem 3.3 it suffices to show that Connectivity cannot be strongly tested with one-sided
error in the VDF model. This is shown by observing that an alleged (strong) tester (with one-sided
error for the VDF model) must always accepts when seeing a single connected component, since this
connected component may be the entire graph. On the other hand, consider a graph consisting of such
a connected component along with additional vertices (on top of such a connected component), when
the distribution is concentrated uniformly on the former component (and assigns negligible probability
to all other vertices). Specifically, consider an n-vertex graph with a connected component of size k < n
such that, for positive η ≪ 1/k, each of the vertices of this component is assigned weight (1 − η)/k
(and the rest of the weight (i.e., η) is partitioned arbitrarily among the other n − k vertices). Then,
this graph is 1/2dk-far from being connected, where d is the degree bound, but an alleged tester that
makes q = q(1/2dk) queries accepts it with probability at least 1− q · η ≈ 1, where the approximation
holds provided that η is sufficiently small as a function of k. (Indeed, we capitalized on the fact that
the contribution of each edge to the distance is proportional to the weight of each of its endpoints, and
so it is large even if only one of the endpoints has large weight. We note that the argument holds both
for n = k + 1 and n≫ k.)

3.2 Testing subgraph freeness

Testing subgraph freeness (e.g., triangle-freeness), when the subgraph is not bipartite, is quite a chal-
lenge in the dense graph model. Recall that even testing triangle-freeness (in that model) involves the

30

invocation of the Regularity Lemma. In contrast, we will present a relatively simple tester for the same
properties in the current model (i.e., the bounded-degree graph model). Recall that, for a fixed graph
H, a graph G is called H-free if G contains no subgraph that is isomorphic to H.

We shall focus on the case that H is connected, although the general case can be handled similarly
(yielding similar, but not identical results).38 Let rd(H) denote the radius of H; that is, rd(H) is the
smallest integer r such that there exists a vertex v in H such that all vertices in H are at distance at
most r from v. Such a vertex v is called a center of H, and indeed H may have several centers (e.g.,
consider the case that H is a clique).

Theorem 3.7 (testing subgraph freeness (in the VDF bounded-degree graph model)): Let H = ([t], F)
be a fixed (connected) graph of radius r = rd(H). Then, H-freeness has a (one-sided error) proximity-
oblivious tester of query complexity 2dr+1 and linear detection probability. Furthermore, the time
complexity of this tester is at most (2d)rt.

Proof: The tester presented in [13, Sec. 9.2.1] selects a start vertex, explores is r-neighborhood, and
accept if and only if this subgraph is H-free. In the analysis it is shown that a center of a copy of
H is selected with probability that is linearlly related to the distance of the graph from being H-free,
but this analysis is based on the fact that the cost of omitting an edge is the same for all edges. The
argument could be extended to the case that the cost of omitting an edge is related to the minimum
of the weights of its endpoints, but in our model the cost is related to the sum of these weights. This
leads to the following, somewhat unnatural revision, of the original tester.

Algorithm 3.7.1 (testing H-freeness): On input parameter d, given oracle access to the incidence
function of a graph G = (V,E), which has maximum degree d, and to a vertex-sampling device D, the
algorithm proceeds as follows.

1. Selects a vertex s ∈ V according to D (i.e., s ← D). If s is an isolated vertex, then accept.
Otherwise, set v = s with probability 1/2, and let v be a random neighbor of s ortherwise.

2. Conducts a BFS of depth at most r starting from v.

3. Accept if and only if the explored subgraph is H-free.

Step 2 is implemented by querying the incidence function, and so the query complexity of this algorithm
is upper-bounded by d +

∑r
i=0 di · d < 2dr+1. Step 3 can be implemented by checking all possible

mappings of H to the explored graph, and so the time complexity of Algorithm 3.7.1 is upper-bounded
by
(2dr

t

)
· (t!) < (2d)rt.

Algorithm 3.7.1 never rejects a graph that is H-free, since H-freeness is preserved by subgraphs of
the original graph. (Algorithm 3.7.1 can be modified to check induced subgraph freeness, while noting
that this property is preserved by induced subgraphs of the original graph.) It is left to analyze the
detection probability of Algorithm 3.7.1.

Claim 3.7.2 (the detection probability of Algorithm 3.7.1): Algorithm 3.7.1 rejects the graph G with
probability at least δD(G).

Proof: A vertex v ∈ [k] is called detecting if it is a center of a copy of H that resides in G. Letting
Γ(v) denote the set of neighbours of vertex v, we observe that

δD(G) ≤
∑

v is detecting

∑

u∈Γ(v)

(D(v)

d
+
D(u)

d

)

≤
∑

v is detecting

D(v) +

∑

u∈Γ(v)

D(u)

d

38Cf. [13, Exer. 9.3], which refers to the case that D is uniform over V .

31

since omitting all edges incident at detecting vertices makes the graph H-free. On the other hand, in
our algorithm, a BFS is started at (a detecting) vertex v with probability at least

D(v)

2
+
∑

s∈Γ(v)

D(s)

2d .

Combining these two inequalities, the probability that the algorithm rejects is at least

∑

v is detecting

D(v)

2
+
∑

s∈Γ(v)

D(s)

2d

 ≥ δD(G)/2,

and the claim follows.

This completes the proof of the theorem.

3.3 Testing degree regularity

Degree-regularity cannot be strongly tested in the current model, since the tester (which is not given
the number of vertices in the graph) cannot distinguish a graph with an even number of vertices of odd
degree from such a graph that is augmented by an isolated vertex. Hence, for the sake of the current
tester, we augment the VDF model by providing the tester with the parity of the number of vertices in
the graph.39 Under this modification, the following theorem is proved by an adaptation of the result
presented in [13, Sec. 9.2.2].

Theorem 3.8 (testing degree regularity (in the VDF bounded-degree graph model)): Degree regularity
has a (one-sided error) proximity-oblivious tester of (query and) time complexity O(log(d+1)) and linear
detection probability, provided that this tester is also given the parity of the number of vertices in the
tested graph.

Proof: The tester presented in [13, Sec. 9.2.2] selects uniformly two vertices and compares their
degrees. In the analysis it is shown that if the tester rejects a graph with small probability, then the
graph is close to being regular. Specifically, this is shown by relating the fraction of incidences (i.e.,
arguments to the incidence function) that need to be modified to the rejection probability. Noting
that, in the current context, difference incidences have different weight, we need to relate the weight of
modified incidences to the probability that (the degree of) the coreresponding vertices were checked.
Hence, in the following algorithm, the vertex v is not selected according to D, but rather according to
a related probability that enables the aforementioned analysis.

Algorithm 3.8.1 (testing degree regularity): On input parameters d and |V | mod 2, and oracle access
to the incidence function of a graph G = (V,E), which has maximum degree d, and to a vertex-sampling
device D, the algorithm proceeds as follows.

1. Selects u ∈ V arbitrarily (e.g., u← D) and select v by drawing s← D and taking a lazy random
walk of length two from s, where in each step of such a walk we move to each neighbor of the
current vertex with probability 1/2d, and stay in the current vertex otherwise.

2. Determines the degree of u and v.

3. If these degrees are different, then the algorithm rejects.

39Alternatively, we may allow the tester to decide arbitrarily when the graph consists of an even number of odd-degree
vertices and a single isolated vertex.

32

4. If this same degree is odd and |V | is odd, then the algorithm rejects.

Otherwise, the algorithm accepts.

Step 4 is necessary in order to reject graphs that have an odd number of vertices and many odd-degree
vertices (or, rather, the probability assigned to odd-degree vertices is large). Such graphs are not
rejected by Step 3, whereas they are far from being regular (since a regular graph on an odd number of
vertices must have an even degree). Step 2 is implemented by a binary search on the incidence list of
each selected vertex, and so the query (and time) complexity of this algorithm is O(log d). Evidently,
Algorithm 3.7.1 never rejects a regular graph (where non-rejection in Step 4 is justified by noting that
if an n-vertex graph is d′-regular, then d′n is even).

The analysis of Algorithm 3.7.1 is based on generalizing the claim that the “distance” of G to being
regular is upper bounded in terms of the difference between its own degrees, where in the standard
formulation (see [13, Clm. 9.5.1]) the distance and the differerence refer to the case that D is uniform
on V . Here we generalize this local-vs-global claim to arbitrary D.

Claim 3.8.2 (local-vs-global distance to degree regularity): Let d′ < n and d′n/2 be natural numbers,
and let dG(v) ≤ d denote the degree of vertex v in the graph G = ([n], E). Let p(v) denote the probability
that a lazy random walk of length two that starts at s← D reaches v. If

∑
v∈[n]:dG(v)6=d′ p(v) ≤ B, then

δD(G) ≤ 12d2 · B.

Proof: We modify G in three stages, while keeping track of the “cost” of these modifications. In the
first stage we reduce all vertex degrees to at most d′, by scanning all vertices and omitting at most

dG(v)− d′ edges incident at each vertex v ∈ H
def
= {u : dG(u) > d′}. The cost of this modification is at

most
Prv←D[v ∈ H] · (d− d′)/d + Expv←D[|{u ∈ H : {u, v} ∈ E}|]/d, (13)

where the first term in Eq. (13) is due to removing edges from the incidence list of vertices in H, and
the second term is due to effect of these removals at the other endpoint. Letting H ′ denote the set
of neighbors of H in G, we upper bound Eq. (13) by Prv←D[v ∈ H] + Prv←D[v ∈ H ′]. Furthermore,
denoting the resulting graph by G′ and the degree of v in G′ by dG′(v) ≤ d′, we have

Prv←D[dG′(v) < d′] ≤ Prv←D[dG(v) < d′] + Prv←D[v ∈ H ′], (14)

since dG′(v) < d′ ≤ dG(v) only if v neighbors a vertex of H (which means that v ∈ H ′). Actually,

letting L
def
= {v ∈ [n] : dG(v) < d′}, we observe that {v ∈ [n] : dG′(v) < d′} ⊆ L ∪H ′.

In the second stage, we insert an edge between each pair of vertices that are currently non-adjacent
and have both degree smaller than d′. Thus, we obtain a graph G′′ such that {v : dG′′(v) < d′} is a
clique in G′′ (and dG′′(v) ≤ d′ for all v). The cost of this modification is at most Prv←D[dG′(v) < d′].

In the third stage, we iteratively increase the degrees of vertices that have degree less than d′ while
preserving the degrees of all other vertices. Denoting by Γ(v) the current set of neighbours of vertex
v, we distinguish two cases.40

Case 1: There exists a single vertex of degree less than d′. Denoting this vertex by v, we note
that |Γ(v)| ≤ d′ − 2 must hold (since

∑
u∈[n] |Γ(u)| must be even, whereas in this case this sum

equal (n − 1) · d′ + |Γ(v)| = nd′ − (d′ − |Γ(v)|), and by the hypothesis nd′ is even). We shall
show that there exist two vertices u and w such that {u,w} is an edge in the current graph but

40The analysis of these two cases is reproduced, with no significant change, from [13, pp. 171-172]. (Note that [13,
Clm. 9.5.1] is merely a reformulation of [13, Clm. 8.5.1], although the two claims are employed in different settings (which
is the reason for the reformulation).)

33

u,w 6∈ Γ(v) ∪ {v}. Adding the edges {u, v} and {w, v} to the graph, while omitting the edge
{u,w}, we increase |Γ(v)| by two, while preserving the degrees of all other vertices.

We show the existence of two such vertices by recalling that |Γ(v)∪{v}| ≤ d′−1 whereas all other
n − 1 ≥ d′ vertices in the graph have degree d′. Considering an arbitrary vertex u 6∈ Γ(v) ∪ {v},
we note that u has d′ neighbors (since u 6= v), and these neighbors cannot all be in Γ(v) ∪ {v}
(which has size at most d′ − 1). Thus, there exists w ∈ Γ(u) \ (Γ(v) ∪ {v}), and we are done.

Case 2: There exist at least two vertices of degree less than d′. Let v1 and v2 be two vertices
such that |Γ(vi)| ≤ d′ − 1 holds for both i ∈ {1, 2}. Note that {v1, v2} is an edge in the current
graph, since the set of vertices of degree less than d′ constitute a clique. We shall show that there
exists two vertices u1 ∈ [n] \ {v1} and u2 ∈ [n] \ {v2} such that {u1, u2} is an edge in the current
graph but neither {v1, u1} nor {v2, u2} are edges (and so |Γ(u1)| = |Γ(u2)| = d′). Adding the
edges {u1, v1} and {u2, v2} to the graph, while omitting the edge {u1, u2}, we increase |Γ(vi)| by
one (for each i ∈ {1, 2}), while preserving the degrees of all other vertices.

We show the existence of two such vertices by starting with an arbitrary vertex u1 6∈ (Γ(v1) ∪
{v1, v2}). Such a vertex exists since v2 ∈ Γ(v1) and so |Γ(v1)∪{v1, v2}| = |Γ(v1)∪{v1}| ≤ d′ < n.
We now make the following two observations.

• Vertex u1 has d′ neighbors (see above).41 Obviously, v1 6∈ Γ(u1) (since u1 6∈ Γ(v1)).

• The set (Γ(v2) ∪ {v2}) \ {v1} has size at most d′ − 1, since v1 ∈ Γ(v2) and |Γ(v2)| < d′.

It follows that Γ(u1) cannot be contained in Γ(v2) ∪ {v2}, since |Γ(u1) \ {v1}| = d′ whereas
|(Γ(v2) ∪ {v2}) \ {v1}| ≤ d′ − 1. Hence, there exists u2 ∈ Γ(u1) \ (Γ(v2) ∪ {v2}).

Thus, in each step of the third stage, we decrease
∑

v∈[n] |d′ − dG′′(v)| by two units, while preserving

both invariances established in the second stage (i.e., {v : dG′′(v) < d′} is a clique and dG′′(v) ≤ d′ for
all v). Furthermore, we only modified the incidences of vertices that reside or neighbor vertices in the
set {v : dG′′(v) < d′} ⊆ {v : dG′(v) < d′}. Letting L′ denote the set of vertices that are at distance
at most 1 from {v : dG′(v) < d′} (in G′ and thus in G), we conclude the cost of the modifications
performed in the third stage is at most Prv←D[v ∈ L′], whereas at the end of this stage we obtain a
d′-regular graph.

Recalling that {v ∈ [n] : dG′(v) < d′} ⊆ L ∪ H ′, we observe that L′ contains vertices that are
at distance at most 2 from {v : dG(v) 6= d′} (in G). Hence, δD(G) ≤ 3 · Prs←D[s ∈ D′′], where
D′′ denotes the latter set. The claim follows, since a lazy random walk of length two that starts
at s reaches a vertex v at distance at most two with probability at least (2d)−2, which implies that
Prs←D[s ∈ D′′] ≥∑v∈[n]:dG(v)6=d′ p(v)/(2d)2.

The lower bound on the rejection probability of Algorithm 3.7.1 follows from Claim 3.8.2. Specifically,
let d′ denote the degree of the first vertex (i.e., u) selected in Step 1 of the algorithm. Then, assuming
that d′|V | is even and d < |V |, the probability that the second vertex selected in Step 1 (i.e., v) has
degree that differs from d′ is at least δD(G)/12d2. Recall that if d′n is odd, then Step 4 rejects, whereas
the case of |V | ≤ d can be analyzed differently.42

Testing whether a graph is Eulerian. Recall that a graph is called Eulerian if all its vertices have
even degree. (Note that we do not require here that the graph be connected.) We can easily test if
a graph is Eulerian by sampling a random vertex (according to D) and determining its degree, but

41This is because u1 6∈ Γ(v1), whereas all vertices of degree lower than d′ are neighbors of v1 (since the vertices of lower
degree form a clique).

42For example, we may observe that if δD(G) > 0, then the probability that two vertices drawn from D have different
degrees is Ω(δD(G)/|V |). Ditto when one of these vertices is chosen arbitrarily.

34

again the analysis is not trivial because we need to preserve the degree bound (and the simplicity)
of the graph. Actually, this is a problem only for odd d, since otherwise we can just pair all vertices
of odd degree and flip the adjacency relation of each of these pairs. However, in case d is odd, we
may have odd vertices of degree d, and these vertices may be nonadjacent (and so we cannot connect
them while maintaining the degree bound). Actually, by proceeding as in the case of even d, we may
reach a situation in which all vertices of odd degree are nonadjacent (and have degree d). Considering
two such vertices, u and v, we observe that their neighbors must have even degree (or else we can
proceed with the aforementioned process). If u neighbors u′ and v neighbors v′, then we omit the edges
{u, u′} and {v, v′} and flip the adjacency relation of the pair (u′, v′) (assuming that u′ 6= v′, and do
nothing otherwise). Observing that we have also modified the incidences of vertices of even degree that
neighbor vertices of odd degree, we need to modify the tester so that it checks not only the degree of
the sampled vertex but also the degree of a random neighbor of the sampled vertex.

3.4 Testing minor-freeness

We first recall that strongly testing cycle-freeness in the VDF (bounded-degree graph) model is not
possible. The same holds for strongly testing H-minor freeness for any H that contains a cycle.43 This
follows by combining Corollary 3.4 with the fact that in the standard VDF (bounded-degree graph)
model these properties have no strong tester with one-sided error tester (see [9, Thm. 6.1]).

Recalling that, for every H that is cycle-free, strongly testing H-minor freeness is possible in the
standard (bounded-degree graph) model with one-sided error tester (see [9, Sec. 7]), we ask whether
this is also possible in the current model. We answer this question positively in two natural extreme
cases: the cases of H of maximum and of minimal diameter (i.e., a path and a star, respectively).
Given that the general case is complex enough in the standard model, we refrain from addressing it
here, leaving it to future research.

Testing that the graph contains no simple k-long path. The existence of a simple k-long path
is equivalent to having a Pk-minor, where Pk denotes the k-long path. A natural proximity oblivious
tester, analyzed in [9, Sec. 7.2], consists of searching for such a path at random. Specifically, in the
standard setting, one may select uniformly a random start vertex, take a random k-step walk from it,
and reject if and only if the walk corresponds to a simple path. This simple solution does not quite
work in the current setting, since the vertex distribution D may be concentrated on vertices that are at
the internal vertices of k-length paths; indeed, consider the case that the graph consists of a collection
of isolated k-long paths.

The source of the problem is a possible imbalance between the (probability) weights of the endpoints
of “violating” edges. Specifically, in the foregoing example all edges are heavy, due to the weight of at
least one of their endpoints, but the k-path can only be detected when starting the search at a leaf,
whereas the leaves may have tiny weight. Nevertheless, a simple variation on the foregoing algorithm
does work.

Algorithm 3.9 (a Pk-minor freeness tester): On oracle access to a graph G = (V,E) and a vertex
sampling device D, the tester proceeds as follows.

1. Obtains a sample from D; that is, v ← D.

2. Select uniformly i ∈ [k];

3. Take two random walks from v, one of length i and the other of length k − i.

43Recall that C3-minor freeness is a special case, which is equivalent to cycle-freeness, where C3 denotes the 3-vertex
cycle.

35

4. Reject if and only if joining these walks yields a simple k-long path.

Clearly, this tester never rejects a Pk-minor free graph, and so it is left to analyze the probability that
this tester rejects graphs that are far from being Pk-minor free.

Claim 3.10 (analysis of Algorithm 3.9): Suppose that G = (V,E) is at distance δ from being Pk-
minor free with respect to the distribution D. Then, Algorithm 3.9 rejects with probability at least
δ/ exp(O(k)), where the O-notation hides a dependence on the degree bound d.

Proof: We follow the strategy used in the proof of [9, Clm. 7.3], but our actual analysis is different.44

We call an edge {u, v} bad if it resides on a simple path of length k. Let ρ denote the total probability,
under D, of bad edges in G, where the probability of an edge {u, v} is (D(u) + D(v))/d, just as it is
(implicitly) in Definition 3.1. Then, on the one hand, we reject G with probability at least ρ/(kdk−1),
since an endpoint of a bad edge {u, v} is selected in Step 1 with probability D(u) + D(v) and the
corresponding path is viewed with probability at least 1/(k · dk). On the other hand, ρ ≥ δ, because
omitting all bad edges from G results in a graph that has no simple k-long paths.

Testing that the graph contains no tree with k leaves. The existence of a tree with (at least)
k leaves is equivalent to having a k-star as a minor, where a k-star, denoted Sk, is a (k + 1)-vertex tree
that has k leaves and a single vertex of degree k, called its center.

A natural tester, used in [9, Sec. 7.3], consists of searching for such a tree at random. Specifically,
in the standard setting, one may select uniformly a random start vertex, start a BFS from it and
suspend the search if either a layer with at least k vertices is found or more than O(k/ǫ) vertices where
encountered (where ǫ > 0 is, as usual, the proximity parameter). In the first case the test rejects,
and in the second case it (tentatively) accepts (where actual acceptance requires O(1/ǫ) trials). This
simple solution does not quite work in the current setting, since the vertex distribution D may be
concentrated on the leaves of isolated k-stars, where here we assume that k ∈ {2, ..., d} (although the
following argument can be extended to general k).

As in the case of simple k-long paths, the source of the problem is a possible imbalance between
the weights of the endpoints of “violating” edges. Specifically, in the foregoing example, all edges of
the k-star are heavy, due to the weight of their leaves, but a k-star may be detected only when starting
the search at its center, which may have tiny weight. We fix the problem by starting the BFS either at
the sampled vertex or at one of its neighbors, selected at random. Also, for k = O(1), we use a slighly
deeper BFS (i.e., Õ(1/ǫ) rather than O(1/ǫ) layers).45

Following [9, Sec. 7.3], the key observation here is that a graph G = (V,E) is Sk-minor free if and
only if for every set S such that the subgraph induced by S is connected it holds that the set S has
less than k neighbors (in V \ S). As shown in the proof of Claim 3.12, this implies that if for every
connected set S of size at most O(ǫ−1 log(k/ǫ)), the set S has less than k neighbors in V \ S, then the
graph is ǫ-close to being Sk-minor free. (This is the case because the (small-cuts) hypothesis allows
for removing a set of edges of total weight at most ǫ · |V | so to partition the graph into connected
components that are each Sk-minor free.)

Algorithm 3.11 (a Sk-minor freeness tester): On input ǫ > 0, and oracle access to a graph G = (V,E)
and a sampling device D, the tester performs the following steps O(1/ǫ) times.

44In particular, recall that the algorithm analyzed in [9, Clm. 7.3] actually fails. In addition, our notion of “badness”
refers to edges rather than to vertices, since otherwise one cannot relate the weight of bad objects to the cost (in terms
of distance) of omitting them from the graph.

45Actually, the hidden dependence of the depth on k is lesser (i.e., it is logarithmic rather than linear), due to our more
refined analysis.

36

1. Obtain a sample from D; that is, v ← D. With probability 1/2, the tester sets s = v, and
otherwise it lets s be a uniformly selected neighbor of v.

2. Perform a BFS starting at s and stopping as soon as either t = 5ǫ−1 ln(k/ǫ) layers were explored
or a layer with at least k vertices was encountered.

Note that it may happen that the BFS terminates before either of these conditions hold; this can
only happen if s resides in a connected component of size smaller than t · k.

3. If the explored subgraph contains a Sk-minor, then the test rejects.

If none of the foregoing trials rejected, then the tester accepts.

Clearly, Algorithm 3.11 never rejects a Sk-minor free graph, and its query complexity is at most
O(1/ǫ) · t · k · d = Õ(k/ǫ2). Thus, all that is left is to prove the following claim.

Claim 3.12 (analysis of Algorithm 3.11): Suppose that G = (V,E) is ǫ-far from being Sk-minor free
with respect to the distribution D. Then, each of the O(1/ǫ) trials performed by Algorithm 3.11 rejects
with probability at least ǫ/4d.

Proof: We follow the strategy used in the proof of [9, Clm. 7.5], but our actual analysis is more
complex because we have to deal with weights of edges and vertices rather than with their number.

denoted GS ,
We call a vertex v bad if there exists a set S containing v such that (i) all vertices in S are

at distance at most t = 5ǫ−1 ln(k/ǫ) from v, and (ii) the set S has at least k neighbors in G (i.e.,
|{{u,w}∈E : (u,w) ∈ S × (V \ S)}| ≥ k). Letting GS denote the subgraph of G induced by S, note
that Condition (ii) implies that GS contains a Sk-minor, whereas Condition (i) implies that a BFS of
GS started at s is completed after exploring at most t layers.46 Hence, if a bad vertex is chosen in
Step 1 (equiv., serves as a start vertex s for Step 2), then Algorithm 3.11 rejects in Step 3, because
either a t-step BFS of G starting at s reaches a layer with at least k vertices or it reaches all vertices
in the set S (whereas contracting S yields a vertex with at least k neighbors). Denoting the set of bad
vertices by B, we infer that the probability that a trial (performed by Algorithm 3.11) rejects is at
least

ρ
def
=

1

2
· Prs←D[s ∈ B] +

1

2
· 1
d
· Prv←D[∃s ∈ B : {v, s} ∈ E].

We next show that G must be (2d · ρ + (ǫ/2))-close to Sk-minor free, and so ρ > ǫ/4d follows.
Let G(0) denote the graph obtained from G by omitting all the edges that are incident at bad

vertices. Then, the distance (wrt D) of G(0) from G is at most

∑

{u,w}∈E:u∈B

D(u) +D(w)

d
≤ 1

d
·
(
∑

u∈B

|{w : {u,w}∈E}| · D(u) +
∑

w∈V

|{u ∈ B : {u,w}∈E}| · D(w)

)

≤ 1

d
· (d · Prs←D[s ∈ B] + d · Prw←D[∃s ∈ B : {w, s}∈E])

≤ 2d · ρ.

It remains to show that G(0) is ǫ/2-close to being Sk-minor free. The rest of our analysis proceeds in
iterations. We shall construct a sequence of graphs G(0), G(1), G(2), ... such that each G(i) is ǫ/2-close
to G(0) and the last graph in the sequence is Sk-minor free.

If the current graph G(i−1) is Sk-minor free, then we are done. Otherwise, we pick an arbitrary
connected component that contains a Sk-minor, and let h(i) be the heaviest vertex in this component

46Condition (i) also implies that GS is connected.

37

(w.r.t probability weights assigned by D). Since h(i) is not bad, this Sk-minor must contain vertices of
distance greater than t + 1 from h(i) (because, otherwise, contracting all edges in the subgraph that
yields this Sk-minor, except for the k edges incident at the leaves of this Sk-minor, yields a set S that
witnesses the badness of h(i)).

Now, consider as a mental experiment, executing a BFS on G(i−1) starting at the vertex h(i), and
suspending the execution once we reach a layer such that the total weight of all vertices in previous
layers is at least 2/ǫ times larger than the total weight of all vertices in the current and next layers (see
more precise definition below). That is, for j = 0, ..., t, let Lj denote the set of all vertices that are at
distance j from h(i) in G(i−1); indeed, L0 = {h(i)} and |Lj | < k (since otherwise contracting L0, ..., Lj−1

yields a set that witnesses the badness of h(i)). We suspend the BSF at layer j if D(
⋃

j′∈{0,...,j}Lj′) ≥
(2/ǫ)·D(Lj∪Lj+1). Now, assuming that the BFS is not suspended in layer j (equiv., when encountering
layer j + 1), it holds that D(Lj ∪ Lj+1) > (ǫ/2) · D(

⋃
j′∈{0,...,j}Lj′). This implies that

D

⋃

j′∈{0,...,j+1}

Lj′

 >

(
1 +

ǫ

2

)
· D

⋃

j′∈{0,...,j−1}

Lj′

 ≥

(
1 +

ǫ

2

)⌊j/2⌋
· D(L0)

and D(Lj ∪Lj+1) > (ǫ/2) · (1+ (ǫ/2))⌊j/2⌋ · D(L0) follows. Since D(L0) = maxv∈
S

j∈{0,...,t}Lj
{D(v)} and

|Lj | < k, it follows that 2k · D(L0) > (ǫ/2) · (1 + (ǫ/2))⌊j/2⌋ · D(L0), which implies that this imaginary
BFS must be suspended before encountering layer j + 1 such that j < 2 · log1+(ǫ/2)(4k/ǫ) < t. Letting

S(i) =
⋃

j′∈{0,...,j+1}Lj′, note that S(i) ∋ h(i) is connected and contains vertices that are at distance at

most t from h(i). We now obtain G(i) by omitting from G(i−1) the edges of the cut (S(i), V \S(i)), while
observing that the weight of these edges is at most ǫ/2 times the weight of S(i), since upon suspending
the imaginary BFS at layer j we have D(Lj∪Lj+1) ≤ (ǫ/2)·D(

⋃
j′∈{0,...,j}Lj′) = (ǫ/2)·D(S(i)), whereas

the cut edges are a subset of the edges that are incident at Lj ∪ Lj+1. Furthermore, G
(i)

S(i) is Sk-minor

free (and S(i) will not intersect with any future S(i′)).
When the process ends, we have a Sk-minor free graph, G′. During this process, we omitted edges

of total weight at most ǫ/2, and so we conclude that G(0) is ǫ/2-close to G′, which establishes our claim
(that G(0) is ǫ/2-close to being Sk-minor free) and completes the proof.

On testing F -minor freeness, for general forests F : As stated in the beginning of this section,
the strong one-sided error testers known for F -minor freeness in the standard bounded-degree graph
model, when F is an arbitrary forest [9], beg the question of whether such results can be obtained
in the vertex-distribution-free setting. Given the complexity of the original analyses, we refrain from
addressing this question here.

3.5 The t-removed VDF model

In continuation to the discussion in Section 1.4, we now present the t-removed VDF model. Recall that
we envision processes that in addition to selecting a vertex according to some distribution D may also
take walks of length at most t (from any of these selected vertices). In this setting, the importance of
a vertex v is defined as proportional to the sum of the probabilities of all vertices that are at distance
at most t from v. Specifically, fixing a graph G = (V,E) of degree bound d, we let ΓG

t (v) denote the
set of vertices that are at distance at most t from v in the graph G. For a distribution D over V , we

let DG
t (v) =

∑
w∈ΓG

t (v)D(w), and DG
t (v) = DG

t (v)/
∑

u∈V DG
t (u). We define the (t-removed) distance

of a graph G, represented by g : V × [d]→ V ∪ {⊥} to a graph represented by g′ : V × [d]→ V ∪ {⊥}
as

38

δt,D(g, g′)
def
=
∑

v∈V

DG
t (v) · |{i ∈ [d] : g(v, i) 6= g′(v, i)}|/d. (15)

Note that δt,D(g, g′) does not necessarily equal δt,D(g′, g), since DG
t does not necessarily equal DG′

t ,

unless t = 0. Indeed, in the case of t = 0, it holds that DG
t ≡ DG

0 ≡ D and δt,D(g, g′) = δD(g, g′)
follows. Lastly, note that

1 ≤
∑

v∈V

DG
t (v) ≤ max

v∈V
{|ΓG

t (v)|} ≤
t∑

i=0

di < 2 · dt.

For a graph property Π and a graph represented by the incidence function g : V × [d]→ V ∪ {⊥}, we
let δΠ

t,D(g) denote the minimum of δt,D(g, g′) taken over all incidence functions g′ : V × [d]→ V ∪ {⊥}
that represent graphs in Π. (We assume for simplicity that Π contains some graphs with vertex-set V ;
otherwise, one may define δΠ

t,D(g) > 1.) The following definition is identical to Definition 3.1, except

that in the second item δΠ
D(G) is replaced by δΠ

t,D(G).

Definition 3.13 (VDF property testing in the t-removed model): For fixed d, t ∈ N, let Π be a
property of graphs of degree at most d. A VDF tester for the graph property Π (in the t-removed model)
is a probabilistic oracle machine T that is given access to two oracles, an incidence function g : V ×[d]→
V ∪ {⊥} and a device (denoted D) that samples in V according to an arbitrary distribution D, and
satisfies the following two conditions:

1. The tester accepts each G = (V,E) ∈ Π with probability at least 2/3; that is, for every g : V ×[d]→
V ∪ {⊥} representing a graph in Π and every D (and ǫ > 0), it holds that Pr[T g,D(ǫ)=1] ≥ 2/3.

2. Given ǫ > 0 and oracle access to any G and D such that δΠ
t,D(G) > ǫ, the tester rejects with

probability at least 2/3; that is, for every ǫ > 0 and distribution D, if g : V × [d] → V ∪ {⊥}
satisfies δΠ

t,D(g) > ǫ, then it holds that Pr[T g,D(ǫ)=0] ≥ 2/3.

The tester is said to have one-sided error probability if it always accepts graphs in Π; that is, for
every g : V × [d] → V ∪ {⊥} representing a graph in Π (and every D and ǫ > 0), it holds that
Pr[T g,D(ǫ)=1] = 1.

The definition of a proximity oblivious tester is revised analogously. Definition 3.1 (and its proximity
oblivious version) are obtained when setting t = 0.

Theorem 3.14 (reducing the t-removed model to the VDF model): For every t ∈ N, if a graph
property Π is strongly testable in the VDF bounded-degree graph model, then Π is strongly testable in the
t-removed model. Specifically, if the VDF tester has sample complexity s and query complexity q, then
the t-removed tester has sample complexity s′ and query complexity q′ such that s′(ǫ) = s(ǫ/ exp(t/d))
and q′(ǫ) = q(ǫ/ exp(t)) + t · s′(ǫ). Furthermore, one-sided error is preserved.

A natural question is under whether the overhead of the reduction can be decreased in general, and if
not then which conditions allow for such a decrease.

Proof: Given a VDF tester T , we present the following tester for the t-removed model. On input ǫ
and access to a graph G = (V,E) and sampling device D, we invoke T on input ǫ′ = (d + 1)−t · ǫ (and
access to G), and emulate a sampling device to the following distribution D′.

Distribution D′: A sample of D′ is generated by selecting v ← D, taking a t-step random walk on the
graph G′ obtained by adding self-loops to G, and outputing the last vertex reached in this walk.

39

Hence, for every v ∈ V , it holds that

∑

w∈ΓG
t (v)

(d + 1)−t · D(w) ≤ D′(v) ≤
∑

w∈ΓG
t (v)

D(w).

On the other hand, letting g represent G and g′ represent any other bounded-degree graph over V , we
have

δt,D(g, g′) =
∑

v∈V

DG
t (v)∑

u∈V DG
t (u)

· |{i ∈ [d] : g(v, i) 6= g′(v, i)}|/d

≤
∑

v∈V

∑

w∈ΓG
t (v)

D(w) · |{i ∈ [d] : g(v, i) 6= g′(v, i)}|/d

≤
∑

v∈V

(d + 1)t · D′(v) · |{i ∈ [d] : g(v, i) 6= g′(v, i)}|/d

= (d + 1)t · δD′(g, g′),

where the first inequality is due to
∑

u∈V DG
t (u) ≥ 1 and DG

t (v) =
∑

w∈ΓG
t (v)D(w). Hence, δΠ

t,D(g) > ǫ

implies δΠ
D′(g) > (d+1)−t · ǫ = ǫ′, and the theorem follows since T is emulated w.r.t vertex distribution

D′ (and with proximity parameter ǫ′).

Discussion. Note that the tester establishing Theorem 3.14 takes longer walks that the application
that was envisioned in motivating the t-removed model. This is reminiscent of the fact that canonical
derandomizers (introduced in [27] and reviewed in [12, Sec. 8.3]) are more powerful than the randomized
algorithms that they fool.

4 Secondary models

In this section, we re-examine the reductions and negative results obtained in the prior sections with
a focus on the question of whether or not they rely on the postulate that the tester only accesses the
graph via the sampling device D and the representation of the graph (by either an adjacency predicate
or an incidence function).

Throughout this section, for any finite set S, we denote by U(S) the uniform distribution over S.
The testers we consider here are as defined in the previous sections, except that in addition to oracle
access to a graph G = (V,E) and a (vertex) sampling device D, the tester has access also to a device
that samples U(V). We stress that distances are still measured with respect to D, as defined in the
previous sections. At times, we may also consider providing the tester with |V | as (an additional)
explicit input. Hence, we actually consider three different types of secondary models –

The main secondary models: Here, when testing the graph G = (V,E), the tester is also provided with
a sampling device U(V).

The full-fledged secondary models: Here, when testing the graph G = (V,E), the tester is provided both
with a sampling device U(V) and with the (explicit) auxiliary input |V |.

The weak secondary models: Here, when testing the graph G = (V,E), the tester is provided with the
(explicit) auxiliary input |V |.

We first note that, in all three types of models (just as in the VDF models), we may assume, without
loss of generality, that the tester never queries the graph on a vertex that did not appear in as an
answer to a prior query.

40

More importantly, as stated explicitly in Corollaries 2.4 and 3.4, the reduction of one-sided error
testing to general testing holds in the weak secondary models. In contrast, this reduction does not
hold in the other two types of the secondary models. In particular, there exists properties that can
be strongly tested in the main secondary models although they are not strongly testable with one-sided
error in the corresponding standard models.

In light of our view of the secondary models, which is reflected in the term we chose to name them,
we do not venture into an extensive study of their power. Still, we provide one negative result for the
dense graph model and a couple of positive results for the bounded-degree graph model. In particular,
we show that Connectivity is strongly testable in the weak secondary (bounded-degree graph) model,
although it is not strongly testable in the corresponding VDF model (see Proposition 3.6).

4.1 The Dense Graph Model

In contrast to Theorem 2.3 and Corollary 2.4, we show that properties that are strongly tested in the
main secondary (dense graph) model are not necessarily strongly testable with one-sided error in the
corresponding standard (and VDF) models. We demonstrate this fact by considering the set of graphs
having a clique of density ρ, which is not strongly testable with one-sided error in the standard (dense
graph) model (cf. [15, Sec. 10.1.6]).

Theorem 4.1 (strongly testing ρ-Clique in the main secondary model) For every ρ ∈ (0, 1), the set of
graphs having a clique of density ρ is strongly testable (with poly(1/ǫ) queries) in the main secondary
(dense graph) model.

Needless to say, the asserted tester has two-sided error probability.

Proof Sketch: Recall that ρ-Clique is strongly testable in the standard dense graph model; specifically,
the query complexity of this tester is polynomial in the reciprocal of the proximity parameter, but it
has two-sided error probability. The basic idea is to just use this (standard model) tester while relying
on the fact that if the graph is far from ρ-Clique with respect to an arbitrary vertex distribution, then
it is far from ρ-Clique under the uniform vertex distribution. Specifically, we claim that for every ǫ > 0
and all sufficiently large graphs, if G = (V,E) is ((1 − ρ) · ǫ2/4)-close to ρ-Clique under U(V), then it
is ǫ-close to ρ-Clique under any distribution D (over V).

To prove this claim, let ǫ′ = (1 − ρ) · ǫ2/4 and consider a graph G′ = (V,E′) that is ǫ′-close to G
under the uniform distribution and has a clique of density ρ, denoted C. Fixing a distribution D over

V , let H
def
= {v ∈ V : D(v) > 2

(1−ρ)·ǫ · |V |−1}, and note that |H| < (1−ρ)·ǫ
2 · |V |. Consider a graph

G′′ = (V,E′′) that is obtained by modifying G as follows:

• Make C ′
def
= C \H be a clique in G′′.

The cost of this modification under D is at most ǫ′ · 2
(1−ρ)·ǫ = ǫ/2, since C ′ is a clique in G′ (i.e.,

the modifications of G applied in order to make C ′ a clique are counted in the distance between G
and G′ under U(V)), and C ′ only contains vertices whose weight under D is at most 2/((1−ρ) ·ǫ)
times their weight under U(V).

• Pick the |C ∩H| lightest vertices in V \C and connect each of these vertices to all other vertices.
(Actually, it suffices to connect each of these light vertices to all other light vertices as well as to
C \H.)

The average weight of each of these vertices (under D) is D(V \C)
|V \C| ≤ 1

(1−ρ)·|V | . Hence, the cost of

this modification (under D) is at most |C∩H| · 1
(1−ρ)·|V | ≤

|H|
|V | ·(1−ρ)−1 < (1−ρ)ǫ

2 ·(1−ρ)−1 = ǫ/2.

41

Hence, G′′ contains a clique of size ρ and is ǫ-close to G under the distribution D.
When given proximity parameter ǫ and a sampling device D, the desired tester for the secondary

model is obtained by invoking the tester of the standard model with a proximity parameter set to
(1−ρ) · ǫ2/4 (and recalling that the latter tester uses the size of the vertex-set only in order to generate
uniformly distributed vertices, which we can provide it via U(V)).

Digest. Note that the foregoing tester (establishing Theorem 4.1) does not use the sampling device
D. It uses only the sampling device U(V) (as well as oracle access to the tested graph G = (V,E)).
The analysis is based on the observation that, for this specific property, distance from the property
with respect to an arbitrary distribution can be upper-bounded in terms of the distance with respect
to the uniform distribution. Needless to say, the latter feature is not generic; it is based on the fact
that the graph can be made to satisfy the property without modifying the adjacency relation of any
specific (“adversarially selected”) set of few of its vertices (in particular, the heavy vertices).47

Recall that Corollary 2.4, which is based Theorem 2.3, was used to obtain negative results regarding
testing graph properties in the VDF model (i.e., the model of Definition 2.1). In light of Theorem 4.1,
we can no longer take this road. Turning to the specific negative results in Section 2, we note that a
variant of Proposition 2.10, which uses a smaller edge density bound, holds also in the (full-fledged)
secondary model. Specifically, we have

Proposition 4.2 (on properties of sparse graphs): Suppose that Π is a graph property that satisfies
the following two conditions for some functions f and g such that f(n) ∈ [ω(1), g(n)] and g(n) =
o(f(n) · n)1/2.

1. Π contains an n-vertex graph that contains a clique of size f(n).

2. Π contains no n-vertex graph that contains more than g(n)2 edges.

Then, Π is not strongly testable in the (full-fledged) secondary model.

Recall that Π is strongly testable (with two-sided error) in the standard (dense graph) model.48

Proof Sketch: We consider the following two input-cases (when n is sufficiently large).

1. The n-vertex graph is a graph G = ([n], E) ∈ Π containing an f(n)-vertex clique, and the
distribution D is uniform on the clique vertices.

2. The n-vertex graph G = ([n], E) consists a 2g(n)-vertex clique and n − 2g(n) isolated vertices,
and the distribution D is uniform on the clique vertices.

Let h(n) =
√

f(n) · n/g(n) = ω(1). Then, on the one hand, an algorithm that takes s = o(min(f(n), h(n)))
samples (from both D and U([n])) cannot distinguish the two cases, since in both cases D samples the
clique vertices, whereas U([n]) samples vertices that are likely to look isolated (in the subgraph induced
by both samples).49 On the other hand, the first graph is in Π, whereas the second graph is very far
from Π (under the corresponding distribution D).

47The feature does not hold in case of k-Colorability: If the graph contains a k-clique of heavy vertices, then we need
to omit at least one of the edges in this clique.

48On input parameters n and ǫ, if ǫ > (2g(n)/n)2, the tester estimates the edge density using O(1/ǫ2) queries and
decides accordingly (i.e., accepting if and only if the number of edges is estimated to be at most g(n)2). Otherwise (i.e.,
when ǫ ≤ (2g(n)/n)2, which implies that n2 ≤ q(ǫ) for some function q : (0, 1] → N), the tester explores the entire graph
and decides accordingly.

49Denote the s samples obtained from D by v1, ..., vs, and the s samples obtained from U([n]) by u1, ..., us. Then, in
both cases, whp, the samples are distinct and the 2s-vertex subgraph of G induced by these samples consists of an s-clique

and s isolated vertices. Specifically, in the first case Prv←D,u←U([n])[{u, v} ∈ E] is at most |E|
f(n)·n

≤ g(n)2

f(n)·n
= h(n)−2,

whereas in the second case Pru,w←U([n])[{u, w} ∈ E] is approximately (2g(n))2

n2 ≪ 4g(n)2

f(n)·n
.

42

4.2 The Bounded-Degree Graph Model

Again, in contrast to Theorem 3.3 and Corollary 3.4, we show that properties that are strongly tested in
the main secondary (bounded-degree graph) model are not necessarily strongly testable with one-sided
error in the corresponding standard (and VDF) models. We demonstrate this fact by considering the
set of bounded-degree graphs that have relatively many edges, while noting that this set is not strongly
testable with one-sided error in the standard (bounded-degree graph) model.

Theorem 4.3 (strongly testing average degree in the main secondary model) Let d ∈ N denote the
degree bound of the model. For every ρ ∈ (0, 1), the set of graphs of maximal degree d and average
degree at least ρ ·d is strongly testable (with poly(1/ǫ) queries) in the main secondary (bounded-degree
graph) model.

Needless to say, the asserted tester has two-sided error probability.

Proof Sketch: Denoting the foregoing set by Π, note that Π is strongly testable in the standard
bounded-degree graph model; specifically, on proximity parameter ǫ, the tester just samples O(1/ǫ2)
vertices (uniformly at random), checks their degrees, and accepts if and only if their average exceeeds
(ρ − 0.5ǫ) · d. As in the proof of Theorem 4.1, the basic idea is to just use this tester while relying
on the fact that if the graph is far from Π with respect to an arbitrary vertex distribution, then it is
far from Π under the uniform vertex distribution. Specifically, we prove that for every ǫ > 0 and all
sufficiently large graphs, if G = (V,E) is (ǫ/(1 − ρ))-close to Π under U(V), then it is ǫ-close to Π
under any distribution D (over V).

To prove this claim, let ǫ′ = ǫ/(1 − ρ) and suppose that G is ǫ′-close to Π under U(V). That
is, letting dG(v) denote the degee of v ∈ V in G, we have

∑
v∈V dG(v) ≥ (ρ − ǫ′) · d|V |. Fixing a

distribution D over V , let H
def
= {v ∈ V : D(v) > 1

1−ρ · |V |−1}, and note that |H| < (1− ρ) · |V |. Now,

we add at most ǫ′ · d|V |/2 edges to G with both endpoints in V ′
def
= V \H, till obtaining a graph with

average degree at least ρ · d. The cost of this modification is terms of D is at most 1
1−ρ · ǫ′ = ǫ, and

the question is whether this modification can be performed while maintaining the degree bound (of
d). As a sanity check towards a positive answer, note that the desired sum of degrees is ρ · d|V | and
this quantity is upper-bounded by the degree allowance for V ′, which is d|V ′|, where the upper bound
hold since |V ′| > ρ · |V |. A full affirmative answer requires showing that we can increase the degrees of
individual vertices in V ′ (upto d) without using parallel edges. This can achived by a greedy strategy
that matches non-adajecv vertices of degree at most d−1 (while noting that this process may continue
as long as there are at least d + 1 vertices of degree at most d− 1.)50

The rest of this section. In light of Theorem 4.3, we can not use negative results regarding one-
sided error testing in the standard model towards deriving negative results for the secondary model.
We also note that the other negative results of Section 3 do not seem to extend to the current model.
In fact, in the rest of this section, we present strong testers (in the weak and main secondary models)
for two natural properties that are not strongly testable in the VDF model (of Section 3).

4.2.1 Testing connectivity

In contrast to Proposition 3.6, which asserts that Connectivity is not strongly testable in the VDF
bounded-degree graph model, we show that this property is strongly testable in either the weak or the

50Hence, we can actually reach a sum of degrees that is (|V ′| − (d + 1)) · d rather than |V ′| · d. The argument can be
completed by using 1 − ρ − o(1) instead of 1 − ρ (in the definition of ǫ′ and H), so that |V ′| > (ρ + o(1)) · |V | (which
implies d|V ′| − (d + 1)d > ρ · |V |). Alternatively, we can afford first introducing O(d2) parallel edges, and later eliminate
them (i.e., to eliminate an edge between u and v, we omit an edge {u′, v′} such that u′ (resp., v′) is not connected to u
(resp., v), and add the edges {u, u′} and {v, v′}).

43

main secondary model. Specifically, it suffices to augment the tester (of the VDF model) by either
providing it with a device that samples uniformly the vertex-set of the tested graph or giving it the
size of that set. Actually, these augmentations are needed only when the size of the vertex-set exceeds
O(1/ǫ). We start by assuming that the vertex-set is of size ω(1/ǫ) (and refer to the complementary
case at the end of the proof of Theorem 4.5).

The tester for Connectivity in the standard bounded-degree graph model is based on the fact
that graphs that have few connected components are close to being connected (see [13, Prop. 9.7]).
Hence, if a graph is far from being connected, then it must have many small connected components.
In the current setting numbers should be replaced by probability weights; that is, we shall show that
if a graph is far from being connected, then the probability weight of its small connected components
must be large, where the probability weight of a set of vertices is the sum of the probabilities assigned
to the vertices in the set.

Proposition 4.4 (distance from connectivity versus number of connected components): For a graph
G = ([n], E) of maximum degree d ≥ 2, let S denote the set of vertices of G that reside in connected
components of size at most k. Then, δD(G) ≤ 2 · Prv←D[v ∈ S] + O(1/k).

Proof: Ignoring (for a moment) the fact that we should maintain the degree bound, the basic idea is
to connect the m connected components by m − 1 edges. If all connected components are large (i.e.,
larger than k), then we can pick the lightest vertices in each of them to serve as the “connection ports”
(so that the cost of these modifications is at most O(1/k)). As for the small connected components,
we bound the cost of modifying their incidences by their total weight. The degree bound can be
maintained by observing that the problematic case is when all relatively light vertices in a connnected
compenent have degree d, but in this case we omit two of these edges and obtain a situation that allows
the foregoing process. Details follow.

We say that a small connected component is unsaturated if it contains at least two vertices of degree
at most d − 1 (or a vertex of degree at most d − 2). Note that connected components of size at most
d are unsaturated. Furthermore, any other (small) connected component can be made unsaturated by
omitting an edge that does not disconnect it (i.e., an edge that does not reside on a fixed spanning
tree).51 The cost of this omission is at most the weight of the connected component.

Dealing with large (i.e., larger than k) connected components requires more care. We say that
a vertex is (relatively) light if its probability (under D) is at most ten times the average probability
of vertices in this connected component. Note that at least 90% of the vertices in each connected
component are light. We say that a connected component is unsaturated if it contains at least two
light vertices of degree at most d− 1. (Note that if d = 2, then a connected component can be made
unsaturated by possibly omitting its lightest edge.) Focusing on that case of d ≥ 3 and fixing an
arbitrary spanning tree of each connected component, we observe that if the component is saturated
then it contains an non-tree edge that connects two light vertices.52 Omitting this edge, we make
the component unsaturated at a cost of O(p/k), where p is the probability weight of the connected
component.

Now, that all connected components are unsaturated, and we can connect them by adding edges
(while preserving the degree bound). Specifically, we connect these components by ordering them
arbitrarily, and connecting each pair of consecutive components by a single edge (using relatively light
vertices of degree lower than d). The cost of this modification is the sum of the probability-weight of
the small components and O(1/k), where the latter term accounts for the large components.

51Such an edge must exist in a saturated connected component of size s > d, since the average degree in such a
component is at least (s−1)·d

s
> d − 1 ≥ 2 if d ≥ 3, where the case of d = 2 is even more immediate.

52Assuming towards the contradiction that an s-vertex connected component is saturated but has no non-tree edges
that connect light vertices, we reach contradiction by considering the number of non-tree edges that connect light and
non-0light vertices. On the one hand, looking at the light side, the number of such edges is at least 0.9s·d−(s−1) > 0.5s·d.
On the one hand, looking at the non-light side, the number of such edges is at most 0.1s · d.

44

A straightforward tester and improving it. Proposition 4.4 implies that if a graph that is ǫ-far
from being connected (i.e., δD(G) > ǫ), then, with probability Ω(ǫ), a vertex selected from D resides in
a connected component of size O(1/ǫ). Hence, selecting at random O(1/ǫ) vertices and conducting a
“truncated BFS” from each of them (so that the BFS is suspended once more than O(1/ǫ) vertices
are encountered) yields a tester for Connectivity. The time (and query) complexity of this tester
is O(1/ǫ2), but using “Levin’s economical work investment strategy” (see [13, Sec. 8.2.4]), we can do
better.

Theorem 4.5 (testing connectivity (in the secondary bounded-degree graph model)): Connectivity
has a (one-sided error) tester of time (and query) complexity Õ(1/ǫ) in the (either weak or main)
secondary bounded-degree graph model.

Proof: A closer look at the proof of Proposition 4.4 reveals that the contribution of the connected
component C to the distance δD(G) is O(Prs←D[s ∈ C]/|C|). (Indeed, denoting by S the set of vertices
that reside in connected components of size at most k, we upper-bounded δD(G) by O(Prs←D[s ∈
S]) + O(1/k).) Towards a more refined analysis, for every i = 1, ..., ℓ

def
= log(1/ǫ) + O(1), we denote by

Si ⊆ [n] the set of vertices that reside in connected components of size at least 2i−1 and at most 2i− 1.
Letting R = V \⋃i∈[ℓ] Si, we have

δD(G) ≤
∑

i∈[ℓ]

O(Prs←D[s ∈ Si]/2
i−1) + O(Prs←D[s ∈ R]/2ℓ). (16)

Hence, if δD(G) > ǫ, then there exists i ∈ [ℓ] such that O(Prs←D[s ∈ Si]/2
i−1) > ǫ/2ℓ, and it follows

that Prs←D[s ∈ Si] = Ω(2iǫ/ℓ). This leads to the following tester, where we assume that |V | > 2ℓ.

Algorithm 4.5.1 (tester for the case of |V | > 2ℓ): For i = 1, ..., ℓ, the tester perform the following
steps:

1. Sample O(2−iℓ/ǫ) vertices from the distribution D.

2. For each of these vertices, denoted v, perform a (BFS or DFS) search starting at v, suspending
the execution if 2i vertices were encountered in this search (or if the search scanned the entire
connected component).

3. If any of these searches detected a connected component of size at most 2i, then the tester rejects.

(Here we rely on 2ℓ < |V |.)

If none of these searches caused rejection (i.e., none detected a connected component that is smaller
than |V |), then the tester accepts.

Note that any linear-time search can be used in Step 2, and in such a case the overall time complexity
of the tester is

∑
i∈[ℓ] O(2−iℓ/ǫ) ·O(2i) = O(ℓ2/ǫ).

By its construction (and the assumption 2ℓ < |V |), the foregoing tester always accepts a connected
graph. On the other hand, any graph that is ǫ-far from being connected is rejected with high probability,
because there exists an i ∈ [ℓ] such that Prs←D[s ∈ Si] = Ω(2iǫ/ℓ), which implies that a vertex residing
in a connected component of size at most 2i is selected, w.h.p., in Step 1 (of iteration i), fully explore
in Step 2, and causing rejection in Step 3.

We stress that the foregoing analysis presumes that |V | > 2ℓ = O(1/ǫ). To handle the case of
|V | = O(1/ǫ), we use one of the two possible augmentations provided by the secondary models. First,
assuming that the tester gets |V | as an auxiliary input, we let it invoke the foregoing tester (i.e.,
Algorithm 4.5.1) if |V | > 2ℓ, and start a search from an arbitrary vertex (obtained by sampling D)

45

otherwise (i.e., if |V | ≤ 2ℓ = O(1/ǫ)). In the latter case, the tester accepts if and only if the search
encountered |V | vertices. Hence, we obtained a tester in the weak secondary model.

Next, we turn to the main secondary model (in which the tester is also provided with a device
sampling U(V), but not with the value of |V |). In this case, the tester invokes Algorithm 4.5.1 (whose
analysis presumes V > 2ℓ) in parallel to invoking the following algorithm:

Algorithm 4.5.2 (tester for the case of |V | ≤ 2ℓ = O(1/ǫ)):

1. Start a search at an arbitrary vertex (obtained by sampling either D or U(V)), suspending the
execution if more than 2ℓ vertices were encountered in this search (or if the search scanned the
entire connected component). If the search encountered more than 2ℓ vertices, then halt and
accept.

2. Select uniformly at random m = O(1/ǫ) vertices (by sampling U(V)) and accept if and only if all
these vertices reside in the subgraph scanned in Step 1.

The combined tester accepts if and only if both Algorithm 4.5.1 and Algorithm 4.5.2 accept. The anal-
ysis is completed by observing that if G = (V,E) is not connected and |V | ≤ 2ℓ, then Algorithm 4.5.2
rejects with probability at least 1 − (1 − |V |−1)m ≥ 1 − (1 − 2−ℓ)m > 2/3, provided m = O(2ℓ) is
sufficiently large.

On testing k-connectivity: The strong one-sided error testers known for k-edge-connectivity and
k-vertex-connectivity in the standard bounded-degree graph model (see [17] and [32], resp), beg the
question of whether Theorem 4.5 can be extended to these properties. Given the complexity of the
original analyses, we refrain from addressing this question here.

4.2.2 Testing whether a graph is connected and Eulerian

In the standard setting, one can reduce testing whether a graph is connected and Eulerian to testing
that it has each of these properties separately. This relied on the fact that if a graph is ǫ-close to each
of the properties, then it is O(ǫ)-close to their intersection (cf., [13, Exer. 9.5]). Unfortunately, this
fact does not hold in the current setting: A graph can be connected and very close to being Eulerian,
but far from any connected Eulerian graph.53 Fortunately, the specific testers we have used “interact”
better that generic testers for the two properties. Specifically, the tester for Eulerian graphs outlined
at the end of Section 3.3 is based on the observation that if odd degree vertices and their neighbors are
assigned total probability ǫ, then the graph is O(ǫ)-close to be Eulerian. Likewise, the tester asserted
for Connectivity in Theorem 4.5 is based on the fact that if for every i ∈ [log(1/ǫ) + O(1)] the total
probability weight of vertices that reside in connected components of size ≈ 2i is O(2iǫ/ log(1/ǫ)),
then the graph is O(ǫ)-close to a connected graph. We adapt the proof of the latter fact so that the
transformation preserves the Eulerian property.

Theorem 4.6 (testing the set of connected Eulerian graphs (in the secondary bounded-degree graph
model)): The set of connected and Eulerian graphs has a (one-sided error) tester of time (and query)
complexity Õ(1/ǫ) in the (either weak or main) secondary bounded-degree graph model.

53For example, let d be odd, and consider the n-vertex graph G that consists of n′
def
= n/d cliques, each of size d, that

are connected by a cycle of n′ vertex-disjoint edges such that the endpoints of these edge have weight η = o(1/n) each
whereas each other vertex in the graph has weight (1 − 2n′η)/n. That is, we designate two distinct vertices of weight η
in each d-clique, and connect the first designated vertex of the ith clique to the second designated vertex of the i − 1st

clique. Then, G is connected and (2ηn/d2)-close (i.e., o(1/d2)-close) to being Eulerian, since we can make it Eulerian by
omitting the n′ light edges. On the other hand, G is Ω(1/d2)-far from the intersection of both properties, because it is
necessary to change the incidence relation of at least one heavy vertex in each clique in order to make G Eulerian and
connected. (Since d is odd, vertices in the modified graph must have degree at most d − 1, whereas keeping the edges of
a d-clique leaves no “vacancy” for connecting this clique to any other vertex.)

46

We note that this property is not strongly testable in the VDF secondary bounded-degree graph model.
This fact can be proved by mimicking the argument used in the proof of Proposition 3.6.

Proof Sketch: Again, we focus on the case of |V | = ω(1/ǫ), handling the complementary case as in
the proof of Theorem 4.5 (where here we also check that the connected component is Eulerian, in case
this connected component was fully explored).

The tester (for the case of |V | = ω(1/ǫ)) consists of running both the aforementioned testers (on
proximity parameter ǫ′ = ǫ/O(1)) and accepting if both accept. Clearly, this tester always accepts
connected graphs that are Eulerian, and so we focus on showing that graphs that are accepted with
high probability are close to having this property.

Indeed, suppose that G is accepted with high probability. Then, its odd degree vertices and their
neighbors are assigned total probability at most ǫ′, since the degrees of these vertices are checked by the
Eulerian tester (which selects O(1/ǫ′) vertices according to D and checks their degrees and the degrees
of their neighbors). In that case, by the analysis outlined at the end of Section 3.3, G is O(ǫ′)-close to an
Eulerian graph G′, which satisfies the same degree bound as G. Looking at the connected components
of G′, we pick in each component an edge with the lightest weight (equiv., weight of its endpoints)
and omit it from G′, observing that this omission does not disconnect the component (because this
edge resides on an Eulerian cycle). The cost of each such modification is charged to the connected
component (of G′) if it was also a connected component in G, and to a vertex in this component that
had odd degree in G otherwise. As in the proof of Theorem 4.5, the resulting graph G′′ is O(ǫ′)-close to
G′. Note that, in the resulting graph G′′, the endpoints of these light edges are of odd degree (and they
are the only vertices of odd degree in G′′). Finally, we make G′′ connected by adding edges between
the light vertices as in the proof of Proposition 4.4, while observing that these vertices now become of
even degree. Hence, G′′ is O(ǫ′)-close to being connected and Eulerian, and the same holds for G′ and
G.

5 Future directions

5.1 More about strong testability

Propositions 2.9 and 3.5, which establish the two parts of Theorem 1.2, are proved by using properties
that are trivial to test in the standard models. The impossibility of strongly testing these properties
in the VDF models relies on the fact that the tester does not know the size of the graph. This raises
the question of what happens if we either provide the VDF tester with the size of the graph (which is
not compatible with the settings that we envision) or restrict the standard-model testers in a similar
manner (as done in [5]). Recall that the first option was adopted in Proposition 2.11, which provides
an alternative proof of the “dense graph” model part of Theorem 1.2. Here we focus on the second
option.

We recall that Alon and Shapira [5] defined “oblivious testers” as strong testers (operating in
the standard dense graph model) that obtain a uniformly distributed sample of vertices, query the
corresponding vertex pairs, and decide according to the (unlabelled) subgraph that they see. The
point is that both the size of the sample and the final decision are independent of the size of the graph.
We call such testers size-oblivious and observe that this definition is a special case of Definition 2.1
in which the sample complexity is a predetermined function of ǫ and the sampling device samples
the vertex-set uniformly (i.e., D = U(V)). We stress that this notion of size-oblivious tester is also
applicable to the bounded-degree graph model, by restricting Definition 3.1 in an analogous manner.

Alon and Shapira provided a characterization of the class of graph properties that have size-oblivious
one-sided error testers (in the standard dense graph model) [5, Thm. 2]. A natural question that arises
is whether the same class is also strongly testable in the VDF dense graph model.

47

Open Problem 5.1 (size-oblivious testing in the standard model vs strong testing in the VDF model):
Is it the case that any graph property that has a size-oblivious one-sided error tester in the standard
dense graph model (resp., bounded-degree graph model) is also strongly testable in the VDF version of
the dense graph model (resp., bounded-degree graph model)?

Note that the converse is obvious; that is, any strong tester in the VDF model can be converted into one
with one-sided error (see Theorem 1.1), whereas the latter tester is size-oblivious (and has one-sided
error in the standard model). On the other hand, a positive resolution of Problem 5.1 would establish
the main results of Theorems 1.3 and 1.4, with the exception that the complexity bounds may be worse.
(This is the case because the properties listed in Theorems 1.3 and 1.4 are known to have size-oblivious
testers of one-sided error in the standard model (see [15, 3] and [17, 9], resp.).) A positive resolution
of Problem 5.1 would also resolve the following problem, which appears easier to resolve.

Open Problem 5.2 (additional strong testers in the VDF bounded-degree graph model): Obtain
strong testers in the VDF bounded-degree graph model for the following classes of sets.

(general tree-minor-freedom): For every fixed forest F , the set of F -minor free graphs.

(high connectivity of connected components): For any fixed k > 1, the set of graphs such that each of
their connected components is k-edge (resp. k-vertex) connected.

Alternaively, prove that some of these properties do not have strong testers in the VDF bounded-degree
graph model.

Recall that the cases of F being either a simple path or a star were established in Theorem 1.4. On
the other hand, the negative result of Proposition 3.6 does not seem to extend to k-connectivity of
connected graphs, since the argument is based on the need and infeasibility of deciding whether or
not the explored subgraph is the entire graph. Also recall that the sets listed in Problem 5.2 are
known to have size-oblivious testers with one-sided error in the standard bounded-degree graph model
(see [17, 32] and [9], resp).

5.2 Beyond strong testability

In this work, we have focused on (VDF) testers having query complexity that only depends on the
proximity parameter. Nevertheless, it makes sense to also study (VDF) testers that have complexity
that depends on the vertex-distribution.

In the standard graph testing models, the complexity of the tester is measured in terms of the
proximity parameter ǫ > 0 and the size of the graph (e.g., the number of vertices). In the current
(VDF) models, it makes little sense to refer to the size of the graph as a yardstick of complexity,
since the vertex-distribution D may be concentrated on a relatively small part of the graph. Instead,
here it is natural to relate the complexity to label-invariant parameters of the distribution D, were a
parameter is called label-invariant if it remains intact when relabeling the vertices (cf. [13, Sec. 11.1.3]);
that is, if, for every distribution D over {0, 1}∗ and every bijection π of {0, 1}∗ to itself, it holds that
the value of the parameter on D equals its value on π ◦ D (i.e., the distribution applied by sampling
v ← D and outputting π(v)). In other words, a label-invariant parameter of distributions is a function
of the histogram of the distribution, where the histogram of D is the set of pairs (p, i) ∈ (0, 1]×N such
that D assigns probability p > 0 to i > 0 different elements. Examples include the support-size of D
(i.e., |{v : D(v) > 0}|), the collision probability of D (i.e.,

∑
v:D(v)>0D(v)2), the entropy of D (i.e.,

Expv←D[log2(1/D(v))]), and the min-entropy of D (i.e., minv:D(v)>0{log2(1/D(v)})).
While the study of the standard dense graph model has focused on strong testers, the study of

the standard bounded-degree graph model also yielded appealing testers that are not strong. An

48

archetypical example is the tester of Bipartiteness, which has complexity poly(1/ǫ) · √n, where n
denotes the number of vertices. An interesting open problem is to present a Bipartite tester for the
VDF bounded-degree graph model. One may hope for complexity poly(1/ǫ) · √s, where s is the size
of the support of D. Actually, some notion of “effective support size” (cf., [8]), may be more adequate
here.

Acknowledgements

I am grateful to Dana Ron for several helpful discussion concerning both the conceptual and technical
aspects of this work.

References

[1] N. Alon. Testing subgraphs of large graphs. Random Structures and Algorithms, Vol. 21,
pages 359–370, 2002.

[2] N. Alon, J. Balogh, P. Keevash, and B. Sudakov. The Number of Edge Colorings with No
Monochromatic Cliques. Journal of the London Mathematical Society, Vol. 70 (2), pages
273–288, 2006.

[3] N. Alon, E. Fischer, M. Krivelevich and M. Szegedy. Efficient Testing of Large Graphs.
Combinatorica, Vol. 20, pages 451–476, 2000.

[4] N. Alon and J. Fox. Easily testable graph properties. Combinatorics, Probability and Com-
puting, Vol. 24 (4), pages 646–657, 2015.

[5] N. Alon and A. Shapira. A Characterization of the (natural) Graph Properties Testable with
One-Sided Error. SIAM Journal on Computing, Vol. 37 (6), pages 1703–1727, 2008.

[6] M. Balcan, E. Blais, A. Blum, and L. Yang. Active property testing. In 53rd FOCS, pages
21–30, 2012.

[7] I. Benjamini, O. Schramm, and A. Shapira. Every Minor-Closed Property of Sparse Graphs
is Testable. In 40th STOC, pages 393–402, 2008.

[8] E. Blais, C.L. Canonne, and T. Gur. Distribution Testing Lower Bounds via Reductions from
Communication Complexity. In 32nd Computational Complexity Conference, pages 28:1–
28:40, 2017.

[9] A. Czumaj, O. Goldreich, D. Ron, C. Seshadhri, A. Shapira, and C. Sohler. Finding cycles
and trees in sublinear time. RS&A, Vol. 45(2), pages 139–184, 2014.

[10] I. Dinur, O. Goldreich, and T. Gur. Every set in P is strongly testable under a suitable
encoding. ECCC, TR18-050, 2018.

[11] J. Fox. A new proof of the graph removal lemma. Ann. of Math, Vol. 174 (1), pages 561–579,
2011.

[12] O. Goldreich. Computational Complexity: A Conceptual Perspective. Cambridge University
Press, 2008.

[13] O. Goldreich. Introduction to Property Testing. Cambridge University Press, 2017.

49

[14] O. Goldreich. Flexible models for testing graph properties. ECCC, TR18-104, 2018.

[15] O. Goldreich, S. Goldwasser, and D. Ron. Property testing and its connection to learning and
approximation. Journal of the ACM, pages 653–750, July 1998.

[16] O. Goldreich, M. Krivelevich, I. Newman, and E. Rozenberg. Hierarchy Theorems for Property
Testing. Computational Complexity, Vol. 21 (1), pages 129–192, 2012.

[17] O. Goldreich and D. Ron. Property Testing in Bounded Degree Graphs. Algorithmica,
Vol. 32 (2), pages 302–343, 2002.

[18] O. Goldreich and D. Ron. A Sublinear Bipartitness Tester for Bounded Degree Graphs.
Combinatorica, Vol. 19 (3), pages 335–373, 1999.

[19] O. Goldreich and D. Ron. On Proximity Oblivious Testing. SIAM J. on Comp., Vol. 40,
No. 2, pages 534–566, 2011. Extended abstract in 41st STOC, 2009.

[20] O. Goldreich and D. Ron. On Sample-Based Testers. TOCT, Vol. 8 (2), 2016.

[21] O. Goldreich and L. Trevisan. Three theorems regarding testing graph properties. Random
Structures and Algorithms, Vol. 23 (1), pages 23–57, August 2003.

[22] O. Goldreich and L. Trevisan. Errata to [21]. Manuscript, August 2005. Available from
http://www.wisdom.weizmann.ac.il/∼oded/p ttt.html

[23] T. Kaufman, M. Krivelevich, and D. Ron. Tight Bounds for Testing Bipartiteness in General
Graphs. SIAM Journal on Computing, Vol. 33 (6), pages 1441–1483, 2004.

[24] J. Komlos and M. Simonovits. Szemeredi’s regularity lemma and its applications in graph
theory. Paul Erdos is 80, Proceedings of Colloquia of the Bolyai Mathematical Society 2,
pages 295–352, 1993. See also DIMACS Tech. Rep. 96-10, 1996.

[25] W. Mader. Homomorphiesätze für graphen. Mathematische Annalen, Vol. 178, pages 154–168,
1968.

[26] Y. Nakar and D. Ron. On the Testability of Graph Partition Properties. In Proc. of RAN-
DOM’18, pages 53:1–53:13, 2018.

[27] N. Nisan and A. Wigderson. Hardness vs Randomness. JCSS, Vol. 49, No. 2, pages 149–167,
1994. Preliminary version in 29th FOCS, 1988.

[28] M. Parnas and D. Ron. Testing the diameter of graphs. Random Structures and Algorithms,
Vol. 20 (2), pages 165–183, 2002.

[29] O. Pikhurko. An Analytic Approach to Stability. Discrete Math., Vol. 310, pages 2951–2964,
2010.

[30] R. Rubinfeld and M. Sudan. Robust characterization of polynomials with applications to
program testing. SIAM Journal on Computing, 25(2), pages 252–271, 1996.

[31] E. Szemeŕedi. Regular partitions of graphs. In Proceedings, Colloque Inter. CNRS, pages
399–401, 1978.

[32] Y. Yoshida and H. Ito. Property Testing on k-Vertex-Connectivity of Graphs. Algorithmica,
Vol. 62 (3), pages 701–712, 2012.

50

