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UNBIASED BITS FROM SOURCES OF WEAK RANDOMNESS
AND PROBABILISTIC COMMUNICATION COMPLEXITY*

BENNY CHOR} Anp ODED GOLDREICH¥

Abstract. Anew model forweak random physical sources is presented. The new model strictly generalizes
previous models (e.g., the Santha and Vazirani model [27]). The sources considered output strings according
to probability distributions in which no single string is toa probable.

The new model provides a fruitful viewpeint on problems studied previously such as:

» Extracting almost-perfect bits from sources of weak randommness. The question of possibility as well as
the question of efficiency of such extraction schemes are addressed.

» Probabilistic communication complexity. It is shown that most functions have linear communication
complexity in a very strong probabilistic sense.

« Robustness of BPP with respect to sources of weak randomness (generalizing a result of Vazirani
and Vazirani [32], [33D).

Key words. randomness, physical sources, discrete probability distributions, communication complexity,
randomized complexity classes

1. Introduction. The notion of randomness is central to the theory of computation.
Thus, the question of whether and how randomness can be implemented in a computer
is of major importance. Our intention is not to address the metaphysical aspect of the
above question. Rather we assume that there are physical phenomena which appear
to be “somewhat random,” and study the consequences of such an assumption.

In reality, there is a variety of physical sources, the output of which appears to
be unpredictable in some sense (e.g., noise diodes, Geiger counters, etc.). However,
these sources do not seem to be perfect (i.e., they do not output a uniform distribution)}.
This phenomenon is amplified when trying to convert the analogue signal to a digital
one, and in particular when sampling the physical source very frequently.

The main contribution of this paper is in presenting a general model for sources
of weak randomness. This model not only generalizes previous models, but is also
very convenient to manipulate and analyze. The new model provides a new viewpoint
on several problems studied previously, and enables us to obtain interesting new results:

o Extracting almost-perfect bits from sources of weak randomness. It is shown that
almost all functions can be used for extracting many “almost-unbiased” bits from two
independent sources of “weak’ randomness. An explicit function which performs
almost as well is also presented. These results yield an extraction scheme which is
efficient both in terms of output entropy and computational complexity.

o Probabilistic communication complexity. It is shown that most Boolean functions
have linear communication complexity in a very strong probabilistic sense. This resolves
an open problem of Yao [35].

e Robustness of BPP with respect to sources of weak randomness. It is shown
that any probabilistic polynomial-time algorithm can be modified so that it works with
bits supplied by a single source of weak randomness.
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1.1. Previous models. Previous works on extracting unbiased bits from nonperfect
sources have implicitly or explicitly proposed models of “weak randomness.” Von
Neumann’s classic algorithm [ 18] deals with sequences of bits generated by independent
tosses of a single coin with fixed bias. This model is totally memoryless. Blum [6]
models physical sources as finite state Markov chains {with unknown transition prob-
abilities). In this model, it is possible to describe a dependency of the next bit (output
by the source) on the previous ¢ bits (for any fixed ¢).

Santha and Vazirani [27] have further relaxed the restrictions on the physical
source. Their model, hereafter referred to as the SV-model, is the starting point for our
investigations. In the SV-model each bit in the output sequence is “slightly random™
in the sense that it is 0 with probability at least 8 and 1 with probability at least 8,
where 83 is a constant. This allows us to model a probabilistic dependency of the
next bit {output by the source) on all previous bits. However, no bit of the output may
be totally determined by the previous bits. It follows that in the SV-model, every bit
sequence is output with some positive probability. This restriction could be violated
by some “random” physical sources, which are constrained in a way that prevents
certain bit sequences.

1.2. The new model. We introduce and study a general model for physical sources,
hereafter referred to as the model of Probability-Bounded sources { PRB-sources). Loosely
speaking, the probability that a PRB-source will output a particular string is bounded
above by some parameter. This allows the source to be very imperfect, still it may not
concentrate its probability mass on too few strings.

The PRB-model is formalized using two constants I {length parameter) and b
(probability bound). A physical source S is 2 device which outputs an infinite sequence
of bits. We say that S is an (/, b)-source if for every prefix a of the output sequence,
angd every l-bit string B, the conditional probability that the next ! bits output by §
equal 8 is at most 27° (i.e., Pr(g8|a)=27").

The PRB-model is a strict generalization of the SV-model. To see the inclusion,
note that any SV-source with parameter 8 is a (1, log, (1 —8)"")-source. To see that
the inclusion is proper, consider the (2, 1)-source which outputs 11 with probability 3
and 10 with probability ;. Clearly, this source is not an SV-source. Thus, all positive
results (with respect to the PRB-model) presented in this paper apply also to the SV-model,

1.3. Extracting unbiased bits from sources of weak randomness. Algorithms for
extracting unbiased bits from nonperfect sources depend on the underlying source
model. Von Neumann’s algorithm [18] for generating a sequence of unbiased bits by
using a coin with fixed bias, is a well-known classic:

{1) Toss the biased coin twice. Denote the outcome by o7 {HH, HT, TH, TT}.

(2) If o =7 then goto step (1). (Nothing is output.)

(3) If or = HT output 0; If or= TH output 1; Goto step (1).

Elias {11] improved upon von Neumann’s algorithm, showing how to nearly achieve
the entropy of the source. He also considered special types of visible finite Markov
chains. Elias’s algorithm produces perfect bits from such sources.

Blum {6] has considered extracting (perfect) unbiased bits from general finite
Markov chains with unknown structure and transition probabilties. He gave algorithms
which work in linear expected time. Using Elias’s techniques [11], the extracted bits
reach the entropy of the source in the limit.

It seems that as far as extracting perfect unbiased bits is concerned, Blum’s schemes
are optimal. However, as pointed out by Santha and Vazirani [27], for practical purposes
we may lower the standards and settle for “almost’” unbiased bits. Having this goal
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in mind, they further relaxed the restrictions on the physical source and introduced
the SV-model (see § 1.1). Santha and Vazirani showed that a single SV-source cannot
be used to extract almost unbiased bits, while sufficiently many independent SV-sources
can be used for this purpose. Vazirani [29] showed that by applying inner-product
mod 2 to strings of length C;-log, ¢~ output by two independent SV-sources, a bit
with bias =3+ ¢ is produced.

Summarizing the results in [27] and {29], we conclude that the SV-model presents
a sufficient condition for the extraction of almost unbiased bits from two independent
physical sources. We substantially relax this condition.

In this paper we show that almost all functions can be used to extract many
independent unbiased bits from the output of any two independent (I, b)-sources. To
be more specific, let m=3(b—3 —log I'>>0, and consider extraction functions from
I+1 bits to m bits. The m extracted bits are almost unbiased and independent in the
sense that each m-bit string appears with probability at least {1—-1/2™) -2 and at
most (1+1/2™) - 2™™ This is achieved bya 1 — 27%" fraction of all functions from 2/-bit
strings to m-bit strings. Notice that the number of bits we extract from the two sources
is within a constant factor (=1/6) of the information theoretic bound, a feature not
achieved in previous works [27], [29]).

We also prove that, for all b,+b,=1+2+2log, £, all functions corresponding
to 2"-by-2' Hadamard matrices can be used to extract a single bit with bias =+ ¢ from.
any two independent PRB-sources which are (/, b,)- and (I, b,)-distributed, respectively.

A new result contained in this paper, resolves a problem left open in the preliminary
version of this work [9]: an extraction scheme which is efficient both in terms of information
rate and computation complexity. The core of the new method is the discrete logarithm
function, and its analysis is based on the method of trigonometric sums. Recently, this
open problem was resolved independently by Vazirani [31]. His solution is simpler
than ours,

1.4. Probabilistic communication complexity. Vazirani pointed out that “good”
bit-extraction functions have high communication complexity [29]. We establish further
connections between the two notions. We show that functions which can be used for
extracting an almost unbiased bit from two probability-bounded sources have linear
communication complexity in a very strong sense. It follows that almost all functions,
and in particular all functions corresponding to Hadamard matrices, have linear
communication complexity. This resolves Yao’s open problem [35] regarding the
probabilistic communication complexity of random functions and of the set intersection
function. (Related lower bounds on the communication complexity of random functions
were presented independently by Alon, Frankl and R&dl [5] and by Orlitsky and
El-Gamal [20]. Our linear ({2(n)) lower bound on the inner product module 2 function,
improves over Vazirani’s {}(n/log n) bound presented in [29].)

Another contribution in the field of communication complexity is the presentation
of definitions and results for the case that the inputs are taken from probability-bounded
distributions (i.e., distributions in which no string is too likely). This contribution is
in the spirit of Vazirani’s suggestion to analyze the communication complexity with
respect to inputs chosen by an SV-model [29]. However, we feel that probability-
bounded distributions are more natural in the context of communication complexity.
We consider randomized protocols where the objective is to guess the value of the
function with average success probability exceeding ;+ & Both the average length of
a run and the average success probability are taken with respect to the *“best” (for the
protocol) probability-bounded distribution. We show that, even with respect to such
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protocols and distributions, the average communication complexity of almost all
functions is linear in the probability bound b (where no input appears with probability
greater than 27°),

1.5. On the robustness of BPP. The class R [1] and its symmetric version BPP
[13] consist of problems which can be solved with high probability in polynomial time.
The probability is taken over the tosses of an unbiased coin. Umesh Vazirani raised
the question whether BPP problems can be efficiently solved if a {single) SV-source is
producing the coin tosses. Recently, Vazirani and Vazirani have answered this question
affirmatively [32], {33]. In this paper, we generalize their result by showing that BPP
problems can be efficiently solved if a (single) PRB-source is producing the coin tosses.
The underlying principles of our proof originate from Vazirani and Vazirani [32], [33]
and [30].

The main idea of the proof is that while a single PRB-source is useless for producing
a single unbiased bit, it can nevertheless be used for producing polynomially many
bits, most of which are unbiased. Qur key observation is that any function which
extracts almost unbiased bits from any two independent PRB-sources, can be used for
this purpose. Thus, our contribution in explicitly reducing the problem of “‘the robust-
ness of BPP” to the problem of ““extracting almost unbiased bits from two independent
sources.” ’

1.6. Organization. In § 2, we present our basic definitions and results concerning
the extraction of unbiased bits from sources of weak randomness. These results are
the basis for the rest of the paper. Section 2.1 consists of definitions. In § 2.2, we
present impossibility results. In § 2.3, we introduce the notion of flat distributions and
demonstrate its importance. In § 2.4, we show that almost all functions extract unbiased
bits from any two independent PRB-sources, and in § 2.5 we show that functions
corresponding to Hadamard matrices also perform well.

Each of the next three sections is based on § 2 only, and can be read independently
of the others. In § 3, we further study the problem of extracting unbiased bits from
probability-bounded sources. In § 3.1, we analyze extraction schemes with respect to
two efficiency measures: rate and computation complexity. In § 3.2, we present and
analyze the “discrete logarithm” extraction scheme. In § 3.3, we consider extraction
from slightly dependent sources. In § 3.4, we consider various extensions of our model
and results.

In § 4, we present results concerning probabilistic communication complexity. In
§ 4.1, we present old and new definitions of probabilistic communication complexity.
In § 4.2, we prove linear lower bounds on the communication complexity of functions,
and in § 4.3 we present almost-matching upper bounds. In § 4.4, we suggest and
investigate a robust notion of communication complexity.

In § 5, we deal with the robustness of BPP with respect to probability-bounded
sources.

2. Extracting unbiased bits—Part I. In this section we present our basic definitions
and results concerning the extraction of unbiased bits from sources of weak randomness.
These results will be the basis for our more advanced study of the efficiency of extraction
schemes, as well as our results concerning communication complexity and the robust-
ness of BPP. In § 2.1, we define probability bounded sources (distributions) and robust
extraction schemes. In § 2.2, we present impossibility results which will be used later
to demonstrate the optimality of our positive results. In § 2.3, we introduce the notion
of flat distributions and demonstrate its importance. In § 2.4, we use a counting
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argument to prove the existence of good extraction schemes. In § 2.5, we show that
functions corresponding to Hadamard matrices constitute good extraction schemes.

2.1. Definitions. The first two definitions are used to characterize the PRB-sources.

DerinITION 1. Let ! be a positive integer, and b >0 a real number. Let X be a
random variable assuming values in {0, 1} We say that X is (4, b)-distributed if for
every a {0, 1}, the probability that X = a is =275,

DeriNiTION 2. Let X, X,,-+-, X, be a sequence of random variables, each
assuming values in {0,1}. The random variable X, is (I b)-distributed given
Xy, X, if forevery e {0, 1} and Be{0,1}, Pr(X,=B8|X, - X,_,=a)=
27",

An (/, b)- source is an infinite sequence of random variables X, X,, X5 --each
assuming values in {0, 1}' such that for every ¢, the random variable X, is (I b)-
distributed given the values of the variables X, through X, ,." Unless otherwise stated,
all distributions are conditioned on the entire past.

The next definitions will be used in evaluating the quality of the extracted bits.

DEFINITION 3. Let Z be a random variable assuming values in {0, 1}™, Z is said
to be e-robust if for every a {0, 1},

(1-)-27"=PR(Z=a)=(1+&)-27"™

DerFINITION 4. Let X, X,,- -+, X,, be s independent random variables, each
assuming vatues in {0, 1} A function f: {0, 1}7'—{0, 1}™ is said to be s-robust on X s
X;, -, X, if the random variable Z ‘i—‘frf(X,, X5, -, X,) is e-robust.

A function £:{0, 1}*'—{0, 1}™ is said to be e-robust with respect to properties P,
Py, .-+, P if f is e-robust on every s independent random variable X,, X;, - - - , X,
satisfying Py, P,,- - -, P,, respectively.

2.2. Impossibility results. It is no surprise that one probability-bounded source
cannot be used to generate unbiased bits, since probability-bounded sources include
SV-sources for which an impossibility result was shown [27]. Yet, a stronger impossibil-
ity result holds for our model,

THEOREM 1. Let k= 1 be an integer, and £:{0, 1}*'+> {0, 1} be a Boolean Junction.
Then there exists a o< {0, 1} and a sequence of k random variables X, X0, X,
each (1, 1—1)-distributed given the previous ones, such that f(X Xy - - Xy is identically
a.

Proof. The proof is by induction on k. For the base case k=1, assume without
loss of generality, that f attains the value 1 on at least half the inputs. Setting X,’s
probability distribution to be uniform on these inputs and 0 otherwise, f(X,) is
identically 1. By the induction hypothesis, for every a € {0, 1}/, there is a o ¢ {0, 1} such
that the function f,(X,,- -, X.)=f(a, X5, -+, X,) can be made identically o.
Without loss of generality, for at least half the a's, £, can be made identically 1. When
we set X,’s probability distribution to be uniform on these a’s and 0 elsewhere, the
theorem follows. 0O

While a single source cannot be used at all, there is a lower bound on the robustness
of functions applied to the output of two probability-bounded sources. We start with
a combinatorial lemma.

LEMMA 2. Let M be an Lx N Boolean matrix. Then there exists a o< {0, 1} and
an L/16 X N /2 submatrix of M containing at least % - (L/16)(N/2++N/2) o-entries.

Proof. Without loss of generality, at least half the rows contain at least half 1's,
We restrict ourselves to these L/2 rows. Fix any such row, pick N/2 columns at
random, and let P denote the probability that at least T=4(N /2+VN/2) of the

' This definition is somewhat less restrictive than the one sketched in the Introduction.
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corresponding entries are 1’s. Clearly, P is minimized when each of these rows contains
exactly N/2 ones. In that case P is the tail of a hypergeometric distribution, and by
Uhlmann (see [16, Chap. 6, § 5, p. 151]} is bounded below by the corresponding tail
of the binomial distribution. That is,

N2 /N2
p=2"N? ¥ ( I_/ )

i=T

This last expression can be approximated by the normal distribution, and in particular
is bounded below by 1 —®(1)=1-0.8413> . By standard probabilistic arguments,
this implies that there is a choice of N/2 columns and ++ L/2=L/16 rows which have
the desired proportion of 1's. [

THEOREM 3. Let b=1—1, and £:{0, 1}*'—{0, 1} be an arbitrary Boolean function.
Then there exist a a € {0, 1} and two independent random variables X and Y, such that
X is (I 1—4)-distributed Y is (I, b)-distributed, and Pr(f(X, Y)=0) >1i1+27%%).

Proof. View [ as a 2-by-2' Boolean matrix, with the (i, j)th entry specifying f(i, j).
Let L=2"and N =2°"". Applying Lemma 2 to an arbitrary L-by-N submatrix S, there
exist a o and a 2" *-by-2" submatrix §' of S with a fraction (1+27%/%) of «-entries.
Making X flat on the rows of §', and Y flat on its columns, we get the desired result. [

The above argument was based on estimating the probability that the number of
ones in randomly selected columns is at least one standard deviation away from the
mean. One can consider the probability that this number is several standard deviations
away from the mean. This yields a bigger bias but fewer rows, and thus a more
concentrated X. Thus, for every constant v and sufficiently large b, there exists o € {0, 1}
such that Pr (f(X, Y)=o)>3(1+27¢7"3),

When b is very small, the situation is even worse.

THEOREM 4. Let b=log,(1-log,)—1, and f:{0, 1}*'—{0,1} be an arbitrary
Boolean function. Then there exist a o€{0,1} and two independent random (I, b)-
distributed variables X and Y, such that Pr{(f(X, Y)=0)=1.

The statement here is actually a (slightly weaker) version of a known Ramsey
type theorem that every n x n Boolean matrix contains a monochromatic ¢ X ¢ submatrix,
where ¢ ~log, n—log, log, n.

Proof. Consider (arbitrarily) the first r £'2°*! columns in the 2 x 2’ matrix of f.
This defines a 2' x r submatrix. There is an r-bit string which occurs in at least 2 ar
rows of the submatrix. Pick these rows. Let o {0, 1} be a bit which occurs t=r/2
times in each of these rows. Picking the ¢ columns containing o, we get a 2t
submatrix with identical entries . As 2'~">2" and t 2 2°, this submatrix corresponds
to a pair of (I, b)-distributed variables. 0O

2.3. Flat distributions. In this section we introduce the notion of flat distributions.
The importance of this notion stems from two facts. First, as we will shortly show, the
worst behaviour of extraction functions occurs on flat distributions. Second, as demon-
strated through the paper, flat distributions are very easy to deal with.

DEFINITION 5. Let X be a random variable assuming values in {0, 1}, and
S<{0,1}. We say that X is equiprobable on S if for every a, € S,

Pr(X=a)=Pr{X=58).

We say that X is flat on S if X is equiprobable on S and for a g8, Pr(X =ea)=0.
We say that X is (/, b)-flat if X is (}, b)-distributed and there exists some § such that
X is flat on S. .
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For simplicity, we assume throughout this section that 2%, 2% and 2" are integers.
Flat distributions are interesting because the “worst-case behaviour” of a function
occurs on them. Namely,

LeMMA 5. For every function £:{0, 11— {0, 1}™ and every a € {0, 1}"

sup {Pr(f(X,Y)=a)} = max {Pr(f(X, Y)=a)}
X, Y are independent X, Y are independent
X is (1, b)-distributed X is (i, by)-flat
Y is (1, by)-distributed Yis (), by)-flar
and
inf {Pr(fX,Y)=0a)} = min {Pr{f(X, Y)=a)}
X, Y are independenr X, Y are independent
X is (I, by)-distributed Xis (1, by)-flat
Yis (f, by}-distributed Yis (1, bz)-flar

Proof. Denote p;=Pr{(X =i} and ¢;=Pr{Y =j). Let f,(i,j)=1if f(i,j)=« and
0 otherwise. Then

P.(X, Y) = Pr(f(X, Y)=a)
“YPr(X =i Y=0)£.(ij)

5]
=3 pafali))-

The last equality follows from the independence of X and Y. P,(X, Y) is a function
of the variables p;, g;, and it attains a global maximum in the range 0=p,=2"",
0=¢,=2""%,p =Y, ¢ =1. We look for a characterization of this global maximum.
Fixing the probability distribution of X (i.e., fixing the p;’s), P,(X, Y) is a linear
program in the g;’s, subject to the constraints 0= g=2""and ¥ ; 4= 1. (For basic
linear programming terminology consult [22, Chap. 2].) One can verify that every basic
feasible solution has exactly 2" nonzero variables g;, each equals 27 Thus, we have
shown that for every fixed X, flat distributions are among the distributions which
maximize/ minimize the value P, (X, Y}, over all possible choices of (/, b)-distributions
for Y. The same obviously holds for fixed Y. Now let X, Y, be the pair of (I, b,)-
distribution and (1, b,)-distribution where P,(X, Y) attains its maximum. Then both
X, and Y, must be flat. Note that the characterization holds for any function £ 0O

We demonstrate the utility of Lemma 5 by using it to argue that the following
Boolean function f:{0, 1}*x{0, 1}*~{0, 1} (tabulated below) is }-robust with respect
to all pairs of independent (2, 1)-distributed variables.

X\Y | 00 01 10 11
00 0 0 1 1
01 1 0 0 1
10 0 1 0 1
11 1 0 1 0

Using Lemma 3, it suffices to consider the behaviour of the function on all pairs
of independent (2, 1)-flat variables. There are 6°=36 possibilities altogether, each
corresponding to a 2x2 submatrix of this table. It is readily verified that no such
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submatrix contain all 1’s (or all 0’s). Thus, for every pair of independent {2, 1)-
distributed variables, X and Y, we have }=Pr(f(X, Y)=1)=}

24. A counting argument. In this section we show that two independent probabil-
ity-bounded sources can be used to get almost-unbiased bits. In fact we show that
almost all functions can be used for this purpose. To this end, we use the characterization
of the distributions on which the “worst-case behaviour™ of any function occurs (i.e.,
Lemma 5), and apply a counting argument to estimate the fraction of functions which
are good with respect to all flat distributions.

1tis helpful to note that there is a natural correspondence between flat distributions
and the set of strings on which they are concentrated. This suggests the following
no:ation: Let Z be an arbitrary fixed (I, b}-flat variable. We write ze S, if Pr(Z=z) =
27"

In the next lemma we consider two fixed and independent flat variables, and
bound below the fraction of functions which are e-robust for these two specific variables.

Lemma 6. Let X and Y be two independent distributions, such that X is (I, b,)-flat
and Y is (I by)-flat, and 0< &<l The fraction offuncnonsf {0, 1} {0, 1}, which
are e-robust on X and Y, is at least 1 =277 2"

Proof. We say that a function f:{0, 1}*'—{0, 1}"' is e-bad on the string o (a €
{0, 1}™) if

|{(x, )’)e SX );f:’bif(x5 J’)=a}|z[(1 _E) . 2—m, (1+£) . 2_’”]

Let P, . denote the fraction of functions which are £-bad on the string a. To study
P, . we consider the probability space of the functions in f:{0, 1}*'~>{0, 1} taken
with uniform distribution. For each i€ 8y and j € Sy, let the random variables {;; be
defined as follows:

‘ _{1 if f(i,j) = e,
“7 10 otherwise.
Then

1
P,.=Pr (ﬂ—ﬂ,

zi)
2 ieSx,zjeSY (é‘y m) “zm )

Recall the Chernoff Bound [26, Chap. VI, § 4, Thm. 2]: Let {,, {-, ' - -, {, be indepen-
dent random variables with Pr({;=1)=p and Pr ({;=0)}=1--p, where p=1. Then for
all 0<&=p(1—-p) we have

1
Pr(

Letting p=2"", t=2""" and §=2""" ¢, we get

152

& 2r
2‘”(1"”)(1+2p(1—p))

. ‘);1 (:;i—p)‘éa)éZ-exp -

-~ i

P..<exp[—je?2hrt ™)

Switching to base 2 and summing over all possible «’s, the probability that a function
£:{0,1}*—{0,1}™ is e-bad on some a {0, 1}™ is at most

m—g2ab +by-m=2
Z Por,s <2 g=2M1%P2
a0, 1}™

The lemma follows. [
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We are now ready to prove that almost all functions work.

THEOREM 7. Let 1 =m = b be an integer, and 0< e =1, Let F be the set of functions
£:{0, 1} —{0, 1}"

{1) Let G, < F the set of functions which are g-robust for any two independent
(1, b)-distributed random variables. If m+2log, e '=b—2—log, (21+1) then

|Gbel —2b
—=>1-2"",
| F|

(2) Let H, < F the set of functions which are e-robust for any two independent
random variables which are (I, b,)-distributed and (I, b,)-distributed, respectively, where
b +b,=2b I[f m+2log, e '=2b—1-5 then

|HbEI
|F|

Eheln 7%

Proof. For part (1), by Lemma 5, f€ G, if and only if it is e-robust for every
two independent (I, b)-flat random variables. By Lemma 6, the fraction of functions
in F which fail on a particular pair of independent (I b}-flat variables is double-
exponentially vanishing (<2™~ —etET Evidently, the fraction of functions which
could fail on seme pair of independent (I, b)-flat variables, is at most the number of
pairs of (I, b)-flat variables times the above fraction. Let N, denote the number of

(1, b)-flat variables. Clearly
! 21-2"
N, = (2[:) < 2_b

232b-m—2

Thus,

G
I b£|21—N2 am—e
F|

Since m+2log, e '=b—2—log, (2I+1), we get 21— 2" 2= _1, and (1) follows.

Part (2): For every fixed b, and b,, the fraction of functions in F which fail on
a particular pair of independent variables which are (I, b,)-flat and (!, b,)-flat resp., is
<2m=#T e multiply this fraction by (22)2=27"", which is an obvious upper
bound on the number of possible pairs of flat variables. We get

H, £ -+t
| b, Izl 22 . pm—e
|F| |

Since m+21log, £ '=2b~1~5, we get 2 '+ m— 322" 2= _2! and (2) follows. O

There is a trade-off between m, the number of extracted bits, and g, the robustness
of these bits. Some cases of special interest are listed below:

(1) Setting m =b—4—1log, (2/+1) and ¢ =3, we convert two independent (I, b)-
sources to a single (m, m —1)-source. Intuitively, this conversion is very efficient in
terms of rate: even if the entropy of the input sources is b units per each block, we
extract a block of =b bits with entropy =b.

(2) Setting m=(b—2—log,(21+1))/3 and £ =2"", we see that most functions
can be used to extract many high-quality bits per each block of the two independent
(1, b)-sources.

(3) Setting m=1 and & =203 71B 22 e see that all but a 272" fraction of
the Boolean functions are s-robust with respect to two independent (I, b)-sources.
This bias is almost optimal: Theorem 3 states that no Boolean function can be

b, — —-m
>1_22 (21-g22¢ 2).

222h—m—2

292b-m-2 [ WU
2 =1 _22 +m—g
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27(6=OUN2_robust with respect to such sources. Theorem 4 asserts that “nothing can
be extracted” if b <log, (I—log, [} —1. ,

(4) Setting m=1 and £=2"'2*"""2 we see that all but a 2% fraction of the
Boolean functions are e-robust for any pair of (I, b,), (I, b,) sources satisfying b, + b, =
2b.

2.5. Hadamard matrices. In § 2.3 we showed that the bias of a Boolean function
£:{0, 1¥'=>{0, 1} with respect to two independent (I, b)-sources, can be estimated by
considering flat distributions only. Viewing f as a 2 x 2/ matrix of 1, this corresponds
to taking all 2° x 2® submatrices of f (not necessarily consecutive), and estimating the
maximum submatrix elements’ sum. While in the previous section we showed that
most functions have a small submatrix sum, this section deals with a specific class of
functions, whose matrices are Hadamard matrices.

A Hadamard matrix is a =1 matrix in which every two distinct rows (columns)
are orthogonal (see [14, Chap. 14] and [17, Chap 2, § 3]). Hadamard matrices are a
subject of rich literature. In particular it is well known that submatrices of any
Hadamard matrix are “‘balanced.” In order to make the paper self-contained, we
present a proof of this fact, following Erdds and Spencer [12, p. 88].

Lemma 8 (J. H. Lindsey). Let H=(h;;) be a t x t Hadamard matrix. Then the sum
of elements in every r X s submatrix of H is af most v's-r- t.

Lindsey’s lemma, as it appears in [12, p. 88], is only a special case of Lemma 8
(although the proof generalizes easily). The lemma as it appears here, with a slightly
different proof, appears in [4].

Proof. Since orthogonality is preserved under any row and column permutation,
it suffices to consider ¥, Z;=l hi;|, the sum of elements in the leftmost/uppermost
rx s submatrix. Let h; denote the ith row of H, and

FoOnes {—5 Zeros

o, o~

-

1,00, -, 0).

—def £

I = (1, 1!
Then by the Cauchy-Schwartz inequality

)

i=1j

£ ho| -

r

i=1 2

1A

s,

|i§rl}-;i 2= v "i‘-‘l ”Ell%:m

and the bound on [Y;_, ¥, k| follows. O

THEOREM 9. Let M be an 2' x2' Hadamard matrix corresponding to the Boolean
function f (i.e., f(i,j) =31+ M,;}). Suppose b, + b, = I+2+2log, £ ", where ¢ <1. Then
the function f is e-robust with respect to any pair of independent random variables X, Y
which are (1, b,)-distributed and (1, b,)}-distributed, respectively.

Proof. By Lemma 5, it suffices to show that every 2 x 2 submatrix has a relatively
small elements’ sum. Substituting in Lemma 8, r =2, 5 =2% and r=2', the submatrix
sum is at most (£/2)-2%%% 0

Since the &, are orthogonal,
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Subsequently Noga Alon proved a more general statement (without using Lemma
5)[3]

Remarks. (1) The case where b,=1—1 will be useful in § 5. We get that any
Hadamard matrix is 2~°*”%robust with respect to any pair of independent random
variables which are (I, { —1)-distributed and (I, b}-distributed, respectively.

{2) Inner-product modulo 2 corresponds to a special form of Hadamard matrices,
known as Sylvester matrices. This provides an alternative proof for Vazirani’s Theorem
[29], for the case 6 >1—+1/2=~0.293 (but not for smaller §’s).

For inner-product modulo 2, Theorem 9 cannot be significantly improved (with
respect to probability bounded sources).

ProPOSITION 10. Letb,+b,=1—4+2log, ™', where ¢ < 1. Then the inner-product
modulo 2 function is not e-robust on some pair of independent, (I b,)-distributed and
{1, b,)-distributed pariables.

Proof. First, consider the case where b, + b, =1 Picking X to be flat on strings of
the form 0'"%{0, 1}* and Y to be flat on {0, 1}*20'~*: the inner product of X and Y is
identically 0. For the case b, + b, > I, repeating exactly the same construction does not
yicld the desired bias. However, we can modify it using Theorem 3. Let A £ b, + b, — 1.
Consider the following family of (/, b;)-distributed variables #. Each variable X € &
is the concatenation of three independent variables X, X;, X5, where X, is uniformly
distributed over {0, 1}""™27* X, is {A+8, A+4)-distributed, and X; has I— b, —4 bits
which are identically 0. Similarly, Y =Y, Y,Y;c & satisfies Y, is identically 0'"%™*,
Y, is (A+8, A+4)-distributed, and Y is uniformly distributed over {0, 1} *"*. For
every pair X ¢ & and Y € %, the inner product of X and Y equals the inner product
of X, and Y,. Since both X, and Y, could be any (5 +8, & +4)-distributed variables,
by Theorem 3 their inner product may have bias >3(1+279/2) = J(1+217h=57472%)
Thus, for £= 2% "%/2) the function is not £-robust. 0

The last proposition demonstrates an inherent lmitation of the inner-product
function with respect to (I, b)-distributions when b =1/2, This limitation need not be
shared by all Hadamard matrices. In fact, a simple construction, known as the Paley
Graph, is conjectured in the combinatorial folklore to have a stronger imbalance (small
submatrix sum) property.

Let p be a prime, and (;‘) be the Legendre symbol of the residue i mod p. The
matrix M with M, ; = (%Y) is “almost” Hadamard (17, p.47],as forany0=a<b=p—1,

5 (ﬂ) . (f_-_fz) .
=0\ P p
Thus, with minor modifications, Theorem 9 applies also to the matrix M.
CoNJECTURE. For any constant 0<Cu <1, there exists a constant 1.5p < ¢, <2u
such that every p* x p* submatrix of M has elements’ sum at most p°, for large enough p.
Remark. By Theorem 3, the constant ¢, must satisfy ¢, > 1.5x.
CoRrOLLARY 11. Let f(i,j)=3. (1+(';%)). Under the Paley Graph conjecture, the

function f is p **-robust with respect to any pair of independent (log, p, u - log, p)-
distributed random variables.

3. Extracting unbiased bits—Part I1. In this section we further investigate the
problem of extracting unbiased bits from probability-bounded sources. In § 3.1, we
introduce two efficiency measures: rate and computation complexity and consider
extraction schemes, arising from our results, with respect to these measures. In § 3.2,
we present and analyze the discrete logarithm extraction scheme (this result did not
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appear in the preliminary version of this paper [9]). In §3.3, we consider extraction
from slightly dependent sources. In § 3.4, we further extend the probability-bounded
model: we consider sources with lower bound on entropy, and sources with varying
block length and probability bound.

3.1. Efficiency considerations. Before going any further, let us discuss the sig-
nificance of the results presented in § 2. A first consequence is that it is possible to
generate a sequence of almost-unbiased and independent bits from the output of two
independent probability-bounded sources. Once the guestion of possibility is resolved,
we are interested in the efficiency of the extraction schemes. We consider two
measures—rate and computational complexity—both with respect to the desired
robustness.

3.1.1. Efficiency measures. In § 2, we have considered functions which operate on
corresponding /-bit blocks of two (I, b)-sources. In order to improve the robustness,
we now consider deterministic algorithms (families of functions) which may use several
blocks from each (I, b)-source at a time. Given a ‘“robustness parameter” n, the
algorithm will output bits with bias in the range 3+ £(n). The number of blocks used
by the algorithm will typically increase with n. Of special interest is the case where
£ '(n) grows faster than any polynomial. In this case the extracted bits are as good
as perfect bits for all “poly (n)-time purposes.” )

In the following definition of an extraction scheme, £(n) denotes the robustness
of the scheme, s{n) denotes the number of bits taken from each source, e(n) denotes
the number of extracted bits, and ¢ denotes the number of (/, b)-sources used.

DerINITION 6. Let £ be a function from integers to the interval (0,1), and s, €
be functions from integers to integers. Let c, [ be integers and b (0=b=1) be real. An
(e(+), s(+), e(*), L b, ¢)-extraction scheme is a family of functions {f.} such that for
every n the following holds:

(1) For every a;, o, * *, . €{0, 11 f(ay, as, - - -, @) €{0, 13,

(2) The function f£,:{0, 11555 £0, 1} is £(n)-robust with respect to any ¢
independent variables X, X,,-*,X., where each of the X.’s is the first s(n) bits
output by some (i, b)-source.

The efficiency of an algorithmic scheme should be evaluated with respect to the
resources it uses. In the setting of randomness extraction schemes the resources to be
considered are the amount of «randomness” in the input sources and the deterministic
computation required to effect the extraction. We measure the efficiency with respect
to the randomness resource by the ratio of the entropy entering the extraction scheme
and the entropy leaving it.

DeriniTioN 7. The rate of an ((-}, s{-),e(-), L b, ¢)-extraction scheme is defined
as
def e(n) - Hg
r(n) =———~— >

¢-s(n) - Hy
where Ho, is the entropy of each output bit (Ho~1-— ¢*(n)), and H;=b/lisa lower
bound on the average entropy of each input bit. If there exists a constant r>0 such
that for every n, r(n)> r, then we say that the extraction scheme has constant rate.

For every n, the rate r(n) is the ratio of the input and output entropies to f.. The
entropy of the input is taken by the worst possible one since the extraction scheme
cannot “adapt” to better sources without an explicit guarantee.

DerINITION 8. The computational complexity of an extraction scheme, {f.}, is
defined as the complexity of a family of circuits {C.,} such that for every n, the circuit
C, implements f,.




242 BENNY CHOR AND ODED GOLDREICH

3.1.2. Efficient extraction schemes. We now present several extraction schemes,
which follow immediately from the results presented in § 2, and analyze their perform-
ance with respect to the above efficiency measures. The following is a simple but
important observation used in developing these schemes: for every integer 4> 1, an
(1, b)-source is also a (g- I, g- b)-source.

A rate efficient scheme which is not computationally efficient. One consequence of
Theorem 7 is that for every [ and b and every desired bias £(-), there is a nonuniform
circuit family {C,} which extracts bits at constant rate from any two independent
(1, b)-sources. This is obtained by letting s(n) = (31/b) log, £ '(n), e(n) =log, e '(n),
and using Theorem 7 with respect to two (s(n), (b/1) - s(n))-sources. Since the entropy
per input block is at least b, the rate is =1/6. The size of C, is "% (n) - log, £ (n).

Computationally efficient schemes which do not have constant rate. By Theorem 9,
for every I and b>>1/2 and every desired bias £(-), taking the binary inner product
of I-(b—1/2)"1og, ¢ '(n) bits from two independent (/, b)-sources, a single &(n)-
robust bit is extracted. While this yields an eflicient algorithm, its rate is 1/ 8(log e '(m)).

Under the number theoretic conjecture of § 2.5, efficient algorithms exist for any
I and b. For every desired bias (-}, let p> e %" n) be a prime (where C(p)>>0is
a constant depending on p). Taking log, p bits from each of the two independent
(1, b)-sources, and computing the Legendre symbol of their integer difference modulo
p, we get an e(n)-robust bit. The extracted bit can be computed by an algorithm
running in time polynomial in log, ¢ '(n) (and I/b). :

A direct consequence of Theorem 7 is that for every ! and b > 5+ log, I there exists
a table of size 2% which transforms two independent (I, b)-sources into one (m, m —
27")-source, where m =(b—3-log;[)/3. In other words, we can transform two
independent but very weak sources into one source which is quite good {although it
is far from being “almost perfect”). For every bias £(n), using the inner-product
function on the output of the virtual (m, m—2 ")-source and a third independent
(1, b)-source, we get the desired bias. We conclude that for every 0<b =!and (),
there is a fast algorithm (running in time Of(log, £ *(n)) that on input n and access
to three independent (/, b)-sources, generates £(#n)-robust bits.

The problem of finding an extraction scheme which combines both rate and
computational efficiency was left open in our preliminary report [9]. This was true
even for the SV-model. In the foliowing section we present a solution to that problem.

3.2. An extraction scheme efficient in both measures. In this section we present an
extraction scheme based on kth power residues modulo a prime. The scheme is efficient
both in terms of information rate and computation complexity. This scheme is a
generalization of the Paley graph construction, and was developed through conversa-
tions with L4szl6 Babai. We begin this section by presenting the scheme. We then use
results of Ajtdi, Babai, Hajnal, Komlés, Pudlik, Rodl, Szemerédi and Turan [2] to
show that the scheme has high robustness. To guarantee high information rate, our
scheme uses large values of k, and is related to computing (partial) discrete logarithms
in Z,. We investigate the conditions under which the scheme is efficiently computable,
and show that primes satisfying these conditions can be precomputed in expected
polynomial time, given access to two probability-bounded sources.

DEFINITION 9. Let p be a prime, g a primitive element of Z,, and k>1 an
integer dividing p—1. We define fi:Z,xZ,—{0,1,---,k—1} by [fulx,y)=
(log, (x—y)) mod k, where log, is the discrete logarithm of 7 to base g in Z,

Comments. (1) For ae{0,1,---,k—1}, let R, ={g" " : 0=i=(p—1)/k}. Then
filx, ¥) =@, if and only if x —y =z for some z€ R,.
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(2) By restricting the function to a subset of Z,, the function f; can be viewed as
a function from {0, 1}’ x{0, 1} to {0, 1, - -, k—1}, for I = |log, p|.

(3) The range of f is {0, 1, - -, k—1}. Taking m = |log, k|, the range of f, can
be viewed as {0, 1}™U{L} (in case of 1, the function is undefined). This causes at
most a factor 2 loss in entropy.

To evaluate the robustness of fi, we would like to have upper and lower bounds
on Pr(f(X, Y) = a) for all pairs of independent (I, b,)-distributed, (/, b,}-distributed
sources X, Y. By Lemma 35, it suffices to consider flat distributions. Therefore, we are
interested in bounds on the number of solutions x—y=zforxe A, ye B, zeR,, where
A, Bc Z, are arbitrary subsets of size 2% 2% respectively. Let #(A, B, a) denote this
number. Clear]y, v(A, B, )= v(g "A, g"”B 0), and thus it suffices to consider R,,
the set of kth residues modulo p.

Let we C (C denotes the complex field) be a primitive pth root of unity. Let
ex(J) =T er, w’*, and @, = max, <;=,-, |¢.(j)|. A result of [2] relates v(A, B, a} to the
size of A, B via ®,.

LemMa 12 [2]. Let A, B< Z, be two arbitrary subsets, and « an integer, 0= a =
{p—1)/k. Then

|Al - | B]

v(A, B, o) — =&,v[A[- 1B

The following bound on ®, was given by Ldszl6 Babai (private communication).

LEMMA 13. &, <Vp.

Proof. The proof uses methods of trigonometric sums over finite fields (see [28]).
We start by presenting some definitions and notation. An additive character of Z, is
a mapping ¢:Z,— C satisfying ¢(a+b)=(a) - ¢(b); the unit character sausﬁes
(- )=0.A multlphcanve character of Z, is amapping X Z * C*satisfying y(a- b) =
x{a) - x(b},; the unit character satisfies Xo( )=1 (x(O) =00 unless X = Xo). A Gaussian
sum S(y, ) is defined as erz x(x)dr(x). Tt is well known [28, p. 47, Thm. 3A] that

for x # Xo, ¥ # th, |S(x, ¥)| =V p, while S(xo, ¥} =0.
Let £¢ C be a primitive kth root of unity. For 0=ts k~1, define x,: Z}—C*

by x,(x) = £''%* then y, is a multiplicative character, xo is indeed the unit character
and
(1) xe Ry=>log, x=ki=x.({x)=1,
0#x# Ry=>log,x=kita forsomel=a=k-1
(2) k—1 k—1
=¥ xlx)=T (£%)' =0,

=0 t=0

k—1i
(3) x=0=7Y x(x)=1.

=0

For1=j=p—1, define ¢;: Z,— C by §;{x) = w”, then ; is an additive character # ;.
Using (1), (2) and (3), we get (for all j)

k-1

2 SOt =3 T x(0)9(x)

=0 xcZ,

=2 o Z x(x)+ ¥ o” Z x{x)+ Z x:(0)

xRy 0= xg Rqp

=k ¥ o+l

xeRg
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Using the above-mentioned equalities for Gaussian sums, the last equality implies that
forevery l=j=p—1

. 1 k—1
lee(D=| L @™ =7|-1+ T S(x. )
xe Ry k =0
1 k-1
é;(l-i_ Z |S(Xr, ‘:t’_;)l)
1=0
=-’1;(1+0+(k—1)\/§)
<Vp. 0

Reformulating these bounds in terms of sources and robustness, we get Theorem 14,

TueoreMm 14. Let p(n), k(n), I(n) = |log. p(n)], ficn) be as above, and £(n)> 0.
Suppose b,(n)+ by,(n)=1(n)+142log, e7'(n)+21og, k(n). Then fy(n): Zpimy X Zpiny—
{0,1,- -, k(n)—1} is e(n)-robust for any pair of independent, (1(n), b,(n))-distributed,
(1(n), by(n))-distributed sources.

Proof. Tt suffices to consider flat sources X, Y. Let A< Z,.,, be the set where
Pr(X =a)=1/2"" (similarly for B, Y, b,(n)). Then |A|=2%", |B|=2%'", and for
every ac{0,1,: -, k(n)—1} we have

v(A, B, o)
Pr(f(X, Y)=e)=5G Snm

Combining Lemmas 12 and 13, we have

1 (n) 1 (n)
(1K ) <P ) =<k 5555 )

Substituting p(n) <2'™), b(n)+b,(n) = [(n)+1+2log, £ '(n)+2 log, k(n), the claim
follows. 0O

We now establish some relations between the various quantities above. We denote
by n the security parameter, and parameterize by it the block length, the probability
bounds, the prime p, the divisor of p—1, k and the bias guarantee & (that is, they will
be denoted by I(n), b,(n), by(n), p(n), k(n) and e(n), respectively). Typically, £(n) =
1/ 1" where h(n) = 0 is either a constant (the case of a polynomial bias) or a function
tending to co with n - o (the case of a subpolynomial bias).

The information rate of the scheme is =log k(n)/2 log p(n). Therefore, in order
to guarantee a constant rate, k(n) must be > p(n)" for some constant d, 0 <d < 1. We
will typically use x=d =}. Assuming b,(n)+ b,(n) = 1.75/(n)+1 (an assumption we
will later justify), and substituting log, £ '(n} = h{n) log, n, log, k(n) =d- I(n) in the
equality of the last theorem, we see that I(n)=Z h(n)/(3/8—d)log, n is a necessary
condition for the scheme to produce e(n) = n~ ™M) _robust bits. The case of equality in
the last equation implies that £ '(n) = k(n) =& ~*(n) for s = d =3}, an expression which
relates the size of k(n) to the robustness of bits produced by fi(.-

The computation complexity of the scheme equals the (deterministic) complexity
of finding discrete logarithms modulo k{r) in the field Z,,. We first assume that
p(n), k(n) and g, a primitive element of Z,,,,, are given, and analyze the run time of
the scheme. We then turn to the complexity of the preprocessing stage, in which p(n),
k(n) and g are produced.

Given p(n), k(n} and g, a primitive element of Z,,,, then by essentially trying
all possible candidates, we can compute log, (- ) mod k(n) in time O(k(n) log® (p(n)))
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(see [19]). Thus, if the bias £(n) is required to be just polynomial in n{e(n)= n~ 0wy,
then by employing our scheme with brute-force discrete logarithm subroutine, the
computational complexity is polynomial in n.

In order to generate subpolynomially biased bits £(n)=n""", with h(n)- 0},
we need more efficient ways of computing discrete logarithms (modulo k(m))in Zy.,.
There are known algorithms with complexity 20(VI°8P(") 18187 and this run-time
would suit our needs, but unfortunately these algorithms are randomized, so we cannot
use them to {deterministically) evaluate fi,,. Instead, we look for p(n}'s with smooth
k(n), and use an algorithm of Pohlig and Hellman [24] which is sufficiently fast in
such circumstances.

A positive integer z is called y-smooth if all its prime factors are =y. Suppose
p(n) is a prime in the range n"'°8'8" < p(n) = n*>/'*¥'°¢", 5o that k(n) (k(n) |p(n}Y—1)
is n-smooth. Given a primitive element g of Z,(n), the Pohlig and Heliman algorithm
[24] finds log, () mod k(n} in O(n log’ n) deterministic time.

Given I(n), every pair of (I, b;)-distributed, (1, b;)-distributed sources can be
viewed as (I(n), (n) - by/1), (I(n), I(n) - by/1) sources, respectively. Using “nice”
primes as above, we have the following theorem.

THEOREM 15. Suppose p(n) is a prime in the range n
so that k(n)|p(n) =1, p(n)** = k(n)=p(n)"*, and k(n) is n-smooth. Let g€ Zy be
a given primitive element. Furthermore, let I, b, b, satisfy b,+ by=1.751. Then for any-
pair of independent (l, b,)-distributed and (I, b,)-distributed sources, the function
Feim: Zpimy X Zpay—>40,1, - - -, k(n) — 1} produces 1/ n’ foglog /8 _robust bits, with informa-
tion rate at least & and computational complexity O(n log’ n).

We now turn to the preprocessing stage, starting with the question of finding
appropriate primes. Let ¥(x, y) denote the number of positive integers not exceeding
x which are y-smooth. Canfield, Erdés and Pomerance [8] proved the following theorem
concerning ¥(x, y):

THEOREM 16 [8]. For y =log® y, ¥(x, y)=xu , where u=log x/log y.

In particular, for large enough x, ¥(x, y)= xu " Choosing h(n)=2Vloglogn,
y=n and x = n"™", we have that u =log x/log y = h(n). Substituting these quantities
in the last theorem, we conclude that for large enough n, the probability that a randomly
chosen z=n"" will be n-smooth is bounded below by h(n) "=
1/{2+/Toglog n)*/'°8'°8" > [og™'/? n. Obviously, the same lower bound holds for the
probability that a random z has an n-smooth divisor d such that z¥ Yod<zV4
However, for our purposes it is not enough for z to have such divisor, but z+1 must
be a prime as well. Carl Pomerance (private communication) has provided us with an
estimate of the probability of this event.

THEOREM 17. For a randomly chosen n

Vieglogn ép(n) = nlv’loglog n,

—u+eiu)

Vioglog n o= =< nz-\/‘loglog n
- - 3

3 4
,v'l6, zl,/

Pr {z has an n-smooth divisor in the range [ z 1and z+1 is prime) =

log’n’

By choosing random integers in the above range, an appropriate prime pn) with
a large n-smooth divisor k(n) and a generator for Z, can be found in expected
polynomial time, given access to an unbiased independent coin. This is done as follows.
First, we choose p(n) at random, factor p(n)—1 and look for a sufficiently large
n-smooth divisor k(n)}. For factoring gj)(n)—l, we use Dixon’s algorithm [10], that
runs in expected time 201871818 ™ (which is polynomial in n). Next, we verify
that p(n) is a prime, using Pratt’s algorithm [25] (again using Dixon’s algorithm as a
factoring subroutine, and trying to find primitive elements by choosing elements at
random). In case p(n) is indeed a prime, Pratt’s algorithm yields a primitive element
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of Z,(,,. We now substitute the unbiased independent coin used in the preprocessing,
by bits extracted from two probability-bounded sources, using any of the computa-
tionally efficient (but not necessarily rate-efficient} schemes of §3.1.

Finally, in order to satisfy b, + b, > 1.75], we start with four independent (I, bo)-
distributed sources (where the ratio between the constants b, and /, can be arbitrarily
small). Using Theorem 7 and the observation that (for every integer ¢ > 1) an (I, b)-
source is also a (g- I, g- b)-source, we convert every pair of these sources into a single
(1, 0.91)-distributed source (where [=2l(ly/bo) log, (1,/ by)). This conversion is rate
efficient, and its complexity does not depend on &(n).

3.3. Slightly dependent sources. In § 2, we showed how to extract unbiased bits
from the output of two independent probability-bounded sources. A natural question
is whether the independence requirement can be relaxed, and if so, to what extent.
We suggest the following definition and investigate its ramifications.

DerFINITION 10. Let 6 =0. We say that two variables X and Y are 8-dependent
if, for every a, B <10, 1} with Pr{X =a) - Pr (Y = B} #0 the following holds:

- Pr(X=aand Y=2)
“Pr(X=a)-Pr{Y=8)

(1+8)! =(1+8).

Thus, 0-dependence identifies with independence. Also, notice that this is a more
refined measure of dependency than correlation. A different definition of slightly
dependent SV-sources was presented in [29], and does not seem to extend to PRB-
sources. The following lemma can be easily verified.

LemMa 18. Suppose that f is e-robust for any two independent variables satisfying
properties P, and P,, respectively. Then f'is (8 +{1+ 8)&)-robust for any two §-dependent
variables satisfying properties P, and P,, respectively.

Applications to extracting unbiased bits from slightly dependent functions follow
immediately by combining Lemma 18 with Theorems 7, 9 and 15. Lemma 18 may seem
weak at first glance. It only guarantees that, for small 3, the added bias introduced by
the 8-dependency does not exceed 8. However, this result is almost optimal! We will
show that 8-dependency may add an {2(8) term to the bias.

TueorEM 19. Let 0< 8 =4 and f:{0, 1}*'— {0, 1} be an arbitrary Boolean function.
Then at least one of the following two conclusions holds:

(1) There exist a o € {0, 1} and a pair of 5-dependent (I, 1 - 2)-distributed variables
X and Y such that Pr (f(X, Y)=0)=5- (1+58/64).

(2) There exist a o €{0, 1} and a pair of independent (I,1—7—log, &8~ 1)-distributed
variables X and Y such that Pr(f(X, Y)=0)=1.

Proof. Without loss of generality, we assume that |{(i, j) € {0, 1P fG =1}z
1. 22 The function f is represented as a bipartite graph G(V, E}, where V=AUB
(A={a,: ie{0,1}} and B ={b,: j€ {0, 1}'}) is the bipartition and the edge sct Ec Ax B
satisfies

(a,b)eE iif(i,j)=1

Throughout the rest of the proof, we assume that conclusion {2) of the theorem does
not hold: namely, we assume that the function f is ;-robust with respect to any two
independent (I, 1 -7 —log, 8")-distributed variables. The idea of the proof is to show
the existence of a large regular subgraph with relatively high degree. Once this subgraph
is found, the variables are defined 10 be flat on the vertex sets of the subgraph, and
the dependency allowance is used to make the edges of the subgraph *heavy.” Thus,
the probability mass is concentrated more on entries on which the function has value
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1, and the function is biased towards 1 as required in conclusion (1) of the theorem.
The following lemma guarantees the existence of such a subgraph.

LEMMA 20. Let 0<8=4 and G((A, B), E) be a bipartite graph with n vertices
on each side and at least 1n® edges. Suppose that the number of edges in every subgraph
of G, with q 27 8/128 - n vertices on each side, is in the range [g°/3,2q°/3]. Then there
exist m=n/4 and k=m/32 such that G contains a k-regular subgraph with m vertices
on each side.

The proof of Lemma 20 is given in the Appendix. A similar statement was attributed
by the referee to Pyber and Rédel (as yet unpublished). They showed that every graph
with n vertices and Q(n?) edges contains an {(n)-regular subgraph.

Let Go((Ao, By), R) be the regular subgraph guaranteed by Lemma 20. We now
use this regular subgraph to present a pair of 8-dependent probability-bounded sources,
X and Y, which make the function bias. X will be flat on A, and Y will be flat on
By; that is,

[A|™" ifa;€ Ay,
0 otherwise,
lBulvlifbj € B,
0 otherwise.

Pr (X =i) déf{

Pr(Y=j)“=”{

Now consider two cases. If the number of edges in the subgraph induced by A, and
B, is smaller than 3(1—8/64) - g° then we let X and Y be independent and get the
desired bias (towards 0). If the number of edges in the induced subgraph is =i(1-
5/64) - q° then we use the dependency allowance as follows:

(1+8) - Pr(X=i)-Pr(Y=j) if (a;, )€ R,
(1-6/31)-Pr{X =i)-Pr(Y =j) otherwise.

The reader may verify the validity of the above definition, by noting that 1/32 - (1+8) +
3L (1-6/31)=1. It follows that

Pr(X:i,Y=j)°-‘_f’{

1 15 8 5
Pr (f(X, Y)=1);§-(1+s>+(§_58) . (1_5)
1 &
>t
2 128

The theorem follows. 0O

3.4. Variations: entropy, varying length. We conclude our investigation into the
problem of extracting unbiased bits from weak sources of randomness by two remarks.
The first remark concerns the probability bound b, while the second remark concerns
both b and L

We have defined probability-bounded variables as having an upper bound 2%
on the probability for each individual I-bit string. A more “‘natural” but less convenient
definition considers variables with a lower bound on the {information-theoretic)
entropy. Every (I, b)-variable has entropy = b, but the converse does not hold. Neverthe-
less, every source which has nonzero entropy is in fact a probability-bounded source
(a quantitative statement is omitted).

So far, we have considered sources where for some fixed integer I, given the
history, the next [ bits have a particular distribution. A natural question, raised by Jeft
Lagarias, is what happens when the number of next bits is a variable. More precisely,
let 1(+) and b(-) be functions, and consider a source S with the following output
distribution: for every integer n> 0, for every a<{0,1}" and every g €{0,1}/", the
conditional probability that the next I{n) bits output by § equal 8 given that the first
n bit output by S equals a does not exceed 2~ ""). We call this a varying probability-
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bounded source (VPRB-source). Extending Theorems 7 and 4, we get an almost sharp
threshold for the value of b(-) which allows the extraction of almost-unbiased bits
from two VPRB-sources. Such an extraction is possible whenever b(n)>4+log; i(n),
and is impossible whenever b(n)<log, (I(n)—log, I{(n)) - 1.

4. Communication complexity. In this section, we present results concerning prob-
abilistic communication complexity. In § 4.1, we recall the common definitions of
communication complexity, present new definitions and compare them. In § 4.2, we
prove lower bounds on the communication complexity of the functions considered in
§ 2. In § 4.3, we demonstrate the tightness of our results by presenting upper bounds
on the communication complexity of all functions. In § 4.4, we suggest a robust notion
of communication complexity and extend our lower bounds to it.

Consider two interactive parties A and B, such that A knows an input x€ {0, 1}"
and B knows an input y € {0, 1}". The inputs are randomly and independently chosen,
each with uniform probability distribution. Let £:40,1}" x{0, 1}"—{0, 1} be a function
and assume that A and B wish to compute f(x, y). To this end they use a possibly
randomized protocol P. As commonly assumed, the messages sent at each round are
prefix-free. The protocol is terminated by party A and the last bit B sent to A is their
joint guess of the value of f(x,y). A natural question is how many bits should be
exchanged among the party so that their joint guess is significantly better than the a
priori guess. The answer depends on the exact definitions of the notions “number of
bits” and “success probability.”

4.1. Definitions. Let x, y€ {0, 1}". We consider the probability space defined by
the coin tosses of the parties A and B. Let Ip(x, ¥) be the random variable denoting
the number of bits A and B exchange on the pair {x, y), using the protocol P. Let
Lo{x, y) denote the expected vatue of Ip(x, y) and I%(x, y) denote the supremum of
Io(x, ¥). Let sp(x, y) be the random variable denoting the success of P with respect
to f on the pair (x, y); and let Sp s(x, y) denote the expected value of sp f(x, y). That
is, Sp.;(x, y) is the probability that the last bit exchanged by A and B on inputs x and
y equals f(x, y).

The average operator (denoted Ave), and the minimum and maximum operators
(denoted Min and Max, respectively) are defined in the obvious manner. These
operators are used in defining the various measures. For example, Ave (Lp)=

—an T eyeion” Lp(x,y) is the average number of bits exchanged in the protocol P;
Max (Lp) is the expected number of bits on the worst pair of inputs; and Max (k)=
Max, e, U ¥)} is the maximum number of bits taken over all possible executions
and pairs. Two measures for success are Min (Sp ;) (worst pair) and Ave (Sps)
(averaged over all pairs).

Previous definitions. Various definitions of randomized communication complexity
have appeared. We present some of them? (other definitions can be found in [211, [15]
and [29]):

« Yao’s definition of randomized communication complexity [35] (hereby denoted
C.(f)) is thus the infimum of Max (Ip), when taken over all randomized protocols P
satisfying Min (S ) Z3+e.

e Yao’s definition of distributed communication complexity [36] (hereby denoted
D.(f)) is the infimum of Ave (Lp), when taken over all deterministic protocols P
satisfying Ave (Sp,)Z3+e.

2 The role of ¢ in our notation differs from its role in [35], [36], [20]. Here £ denotes the advantage
of the protocol over §, while originally it was used to denote the error probability.
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» Orlitsky and El-Gamal [20] measure the average communication complexity
(hereby denoted C,(f)) as the infimum of Ave (Lp), when taken over all randomized
protocols P satisfying Min {Sp ) Z3+e.

* Paturi and Simon [23] define the unbounded communication complexity (hereby
denoted U(f)) to be the infimum of Max (I%), when taken over all randomized
protocols P satisfying Min (Sp ) > 3.

Our definitions. We say that the protocol P has average e-advantage in guessing
fif Ave (Sp ;) =13+ e. In the following definitions we consider protocols with average
g-advantage.

e We define the average randomized communication complexity of function f
(denoted AX(f)) as the infimum of Ave (L, ), when taken over all randomized protocols
P which have average e-advantage in guessing f

¢ The worst-case randomized communication complexity of function f (denoted
WR(f)) is defined as the infimum of Max (I3), when taken over all randomized
protocols P which have average e-advantage in guessing f.

e The deterministic communication complexities (A”(f) and W2(f)) of the func-
tion f are defined similarly, for deterministic protocols.

Comparison of definitions. For all functions f € F,, the following inequalities are
immediate from the definitions;

ARn=C.n=c(,
AR(f)= AP =D.(NH=WI()).

Yao showed that Ci_,(f)=3Dy ,,(f) [34], [36].

There are, however, functions for which AX(f}« C.(f), D.{f). One such function
is the ordering function g defined by g(x, y) =1 if and only if x =y. Yao showed that
for any fixed £ >0, C.{(g)=Q(log n) [35]. The protocol in which A sends the most
significant bit of x has a j-advantage in guessing g, and thus A54(g)=1 (in fact,
Wia{g)=1). (Paturi and Simon [23] showed that U(g)=2.) The three measures
WE(f), ULf) and C.{f) are not always comparable.

4.2. Lower bounds. We begin this section by stating our lower bounds, and compar-
ing them to recent results of other researchers.

THEOREM 21. Let 0< ¢ =3.

(1) For at least a 1 —27*" fraction of the Boolean functions f € F,,

WE()>n-T7-3log, e,
A 1)>2e - (n~T-3log, e 'n)~1.
(2) For every f € F, representable by a Hadamard matrix, the following holds:
WE()>n-3-3logz 7",
AR(f1>2e-(n—3-3log, e 'n)—1.

In particular, this holds for the inner-product function.

Comparison to other works. Our result implies that for almost all f€ F,, C(fHz=
2e(n—7-3log, e 'n)—1. This is related to a recent independent result of Orlitsky
and El-Gamal [20], who showed that almost all f€ F, have C.(NNz=2e(n—1-log, n).
(Actually, they showed that for all 27" < r =34, almost all functions f with r- 2*" ones
in their table, have C.(f)=2e(n—log, r 'n).)
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Our bound on WR(f) (for almost all f€ F,) is related to a recent independent
result of Alon, Frankl and Rodl[5] who showed that almost all f € F, have U(f)= n 5.
Their result implies that C.(f)>2&e(n— 5).

All three works resoive Yao’s open problem [35]: What is C.(f} for a random
feF,?

4.2.1. Proof of Theorem 21.

PROPOSITION 22. Let 0<8=1. Then AX(f)=(2-8)e" WL ,2(f). (In particular,
Af(f) = Wffz(ﬂ-)

Proof. Consider runs of protocol P which have an e-advantage in guessing f and
average length a. Truncate runs of P that exceed & 'a/(2—8) bits. In the event of a
long run, flip a coin to determine the final guess. Such runs occur with probability
=(2—8)¢, and by guessing at random we lose at most (2 — 8)e/2 of the average success
probability. This yields a protocol with (8/2) - e-advantage, the runs of which are no
more than ¢ 'a/(2— 8) bits long. 0

ProposiTION 23. WR(f)=W2(f).

Proof. For a randomized protocol, the average advantage is a sum over both the
inputs and the coin tosses. There must be at least one sequence of coin tosses which
does at least as well as the average. Using this string, we get a deterministic protocol
with the same length and at least the same average advantage. 0

Notice that both the above argument holds since we are interested in average
advantage; the advantage on individual pairs may decrease. Using Propositions 22 and
23, we may concentrate on studying wW2(h.

THEOREM 24. Let k, n be integers, and 0< ¢ =1. Suppose that for every b+ b, =
2n—k —1+log, &, the Boolean function f:{0, 1} x {0, 1}"+>{0, 1} is e-robust with respect
to any pair of independent random variables X, Y satisfying: X is (n, b, }-distributed and
Y is (n, b,)-distributed. Then

WZ(H=k

Proof. Suppose, towards a contradiction, that P is a deterministic protocol with
average e-advantage in guessing f, such that Max (I})=k Consider all possible
executions of P and assume, without loss of generality, that A and B exchange exactly
k bits on each pair of inputs.

For every v €40, 1}*, denote by C(y) the set of (x, y) pairs on which the communi-
cation of A and B consists of y. Note that by prefix freeness, the parsing of vy is unique.
Let A(y)={x:3yst.(x,y)e C(y)},and B(y)={y: 3xst.(x, y)€ C(y)}. By a cut-and-
paste argument of Yao [35], C(y)=A(y)x B(y).

Denote by last () the last bit exchanged in the communication ¥, and let G(y) =
[(x, y)e C(y): bast (y) = f(x, y)}. since P has e-advantage on f. we have that
Yo |GV = (4+€) - 2°". Let us say that C(y} is smallif |[C(y)| <& 22"~k Since
there are at most 2° rectangles C(y), the number of points in all small rectangles is
at most - 2°" . Thus

- 1 E) . 2n
mlcm‘lxzs_zz,_k_,|om\_(2+2 2
This implies that there exists a y€{0,1}* such that both |IC(y)|ze 2" %" and
|G(y)l= (A+e/2) |C(y)|(ie, C(y)is sufficiently large, and the protocol has nonnegli-
gible advantage on the pairs in it). Fix such a v.

Set X and Y to be two independent random variables, flat on A(y) and B(y),
respectively. Then Pr (f(X, Y)=last(y))Z3 (1+¢). Let b, =log, |A(¥)| and b,=
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log, |B{v)|- Then X is {n, b,)-distributed, Y is (m, b;)-distributed, and b, +b,=
log, (- 2*" ¥ "'Y=2n—k—1+log, & This contradicts the e-robustness of £ [

Theorem 21 {above) is a consequence of combining Theorem 24 (and Propositions
22 and 23) with Theorems 7 and 9 (of §§ 2.4 and 2.5, respectively). The arithmetic
details are as follows.

Part (1): Let 0= ¢ =31 By Theorem 7 (see special case 4), all but at most 22" of
the functions f:{0, 1}*"—{0, 1} are e-robust for any pair of {n, b,), (n, b,) sources
satisfying b, +b,Zn+6+2log, e”'. Setting k=n—7-31og, £ ', these functions f
satisfy the condition of Theorem 24 (being e-robust for sources with b, +b,=2n—k —
1-log, £~"). Thus, these functions f have W2(f) > n—7-3 log, £ ~'. To get the bound
on A®(f), we use Propositions 23 and 22:

Al(f)= max (2-8)e Wi, ja(f)
=(2-2/m)e- W.(f)
>2(n—7-3log, e 'n)—-1.

Part (2): Similarly, by using Theorem 9, and setting k=n—3—3log, ¢ . This
completes the proof of Theorem 21. O

4.3. Upper bounds. The lower bound on AR(f) for almost all f’s is nearly optimal, -
since Orlitsky and El-Gamal showed that most f € F, have C.(f)=2e(n+61log, e™'n)
[20] (recall that AZ(f) = C.(f)). The lower bound on WZX(f) is also nearly optimal,
since we have the following upper bounds.

TueoreM 25. (1) For every feF, and every 27
n+11—2log, e

(2) Forall fe F,, Wilazss(f1=2,

Proof. For part (1), we use the following protocol. Party B sends the n+9—
2log, £~' most significant bits of y to party A. This defines a 2" x2 - (32¢) 2 strip in
f’'s table. By Lemma 2 each such strip contains a 2" *x(32¢) 2 submatrix § with
$+32¢ fraction of identical entries o in it. In addition, party B sends a bit specifying
whether y corresponds to a column in S. Party A replies by o if (x, y} is in S, and by
the outcome of a coin flip otherwise. In this way, we get an average e-advantage.

For part (2), let S be a 2" *x 2" submatrix containing a 1+273""" fraction of
identical entries o in it (Lemma 2 guarantees the existence of §). Party B sends a bit
specifying whether y corresponds to a column in S. Party A replies by o if (x, y) is
in S, and by the outcome of a coin flip otherwise. In this way, we get an average
3 - 2" 2 advantage. 0O

e <y, WON=

4.4. Extension to (n, m)-distributions. In the definitions and results presented
above, we have assumed that the inputs to the protocol are uniformly distributed in
{0,1}". A natural question is what happens if we allow the inputs to be (n, m)-
distributed. In particular, we consider protocols which have advantage with respect to
some (n, m)-distributions, and study the infimum average number of bits they
exchanged under these “advantageous” distributions. We show that most functions in
F,, have ©®(m) complexity, even in this weak measure.

DeriniTion 110 Let D) and D, be two (n, m)-distributions, and let P,(z) be the
probability that D), assigns to z. For any protocol P, a function fe F,, and a metric
M, ; over runs of P, we define the average operator on D, x D,

Avep p,(Mp,)= Y Pix)- Py) - Mps(x, y).

xy«(0,1}"
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Similarly, we define the maximum operator on D, % D,

Maxp, 1, (Mp,)= xesupp(!;n,)i?ésupp(Dl) {Mp 4(x, )},
where supp (D) ={z€{0,1}" P,(z)>0}.

We say that the protocol P has D, x D,-average e-advantage in guessing f if
Avep b, (Spr)Eite

» We define the average randomized communication (n, m)-complexity of function
f (denoted (n, m)-AR(f)) as the infimum of Avep p, (Lp), when taken over all
(n, m)-distributions D,, D, and all randomized protocols P which have DX
D,-average e-advantage in guessing f

e The worst-case randomized communication (n, m)-complexity of function f
(denoted (n, m)-W2(f)) is defined as the infimum of Maxp, p, (1%), when taken over
all (n, m)-distributions D,, D, and all randomized protocols P which have D;X
D,-average £-advantage in guessing f.

e The deterministic communication (n, m)-complexities of the function f are defined
similarly, for deterministic protocols.

The key to dealing with (n, m)-complexities, is the fact that they are minimized
on flat distributions (the proof is analogous to Lemma 5}. Using the proof techniques
of Theorem 21, the problem reduces to the existence of large submatrices with significant
advantage inside the submatrix specified by the pair of flat distributions. We get the
following.

THEOREM 26. Let 0<g =3}.

(1) For at least a 1-2"2" fraction of the Boolean functions f € F,,

(n,m)-WR(f)>m-7-3log, £,
(n, m)-AR(f)>2e- (m—-7-31og; e 'm)—1.
(2) For every f € F, representable by a Hadamard matrix, the following holds:
(n,m)-WR(f)>2m—-n-3-3log, e,
(n, m)-AR(f)>2¢-2m—n—-3-3log £ 'm)—1.
In particular, this holds for the inner-product function.

5. On the robustness of BPP. The class R [1] and its symmetric version BPP [13]
consist of problems which can be solved with high probability in polynomial time,
with the use of an unbiased coin. Recently, Vazirani and Vazirani {32] showed that
all BPP problems can be efficiently solved even if a single SV-source is producing the
coin tosses. In this section, we generalize their result by showing that BPP problems
can be efficiently solved if a (single) PRB-source is producing the coin tosses.

The main idea of the proof is that any function which is robust with respect to
two independent PRB-sources, can be used to produce polynomially many bits such
that almost all of them are unbiased. Repeating this process m times, we get poly (m)
strings of length m each. Most of these strings are almost uniformly distributed, and
thus the fraction of these strings which hit the witness set W< {0, 1}™ is close to the
density of W. If W’s density is large enough (say, =0.8) then with probability bounded
away from 0.5 (e.g., =0.55), the majority of the generated strings hit W. This argument
needs careful formalization, which is carried out below. The final observation is that
there are explicit and efficiently computable functions which are appropriate for the
above procedure (e.g., the inner-product or the Paley graph functions).

The key technical lemma used in the proof is the following.

JU—
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LEmMa 27. Let 0<e<1 be a real and f:{0, 1¥ x{0, 1}'={0, 1} be a Boolean
function. Define f;:1{0, 1} {0, 1} by f;(j} =f(4, j) for every i, j& {0, 1}'. Suppose that the
f is e-robust with respect to any two independent random variables which are (I,1—
1)-distributed and (1, b)-distributed, respectively. Then for every (I, b)-distributed Y, all
but V& fraction of the fs are 4e-robust on Y.

The reader may find it convenient to picture the two-argument Boolean function
£:{0, 1}’ x{o0, 1}'+—{0, 1} as a table where the (i, j)-entry corresponds to S, 7). The
lemma can be stated (informally) as follows: if a function can be used for extracting
almost unbiased bits from the output of any two independent PRB-sources, then most of
its “rows” can be used for extracting an almost unbiased bit from a single PRB-source.
The identity of these “good” rows depends on the specific PRB-source, but for each
source most of the rows will work. The proof is by contradiction, showing that if the
conclusion of the lemma is violated, then it is possible to find a pair of probability
bounded sources which falsify the robustness of f. While the proof of this lemma is
rather simple, it seems much harder to prove a similar statement based merely on
robustness with respect to SV-sources.

Proof. Let Y be an arbitrary (1 b)-distributed random variable. This defines a
probability space on the entries of the rows. We will show that the number of rows
which are biased too much towards 1 is small (rows with high 0 bias are treated
identically). Let B denote the set of these rows, that is,

B=1{i: Pr(f{Y)=1)>31+4/e)},
and let k denote the size of B.

We first show that k =2'"". Assume, on the contrary, that k> 27! We will reach
a contradiction by defining an (I, I— 1)-distributed source X, to be flat on B. Then
Pr(f(X,,Y)=1)=k"' Y Pr{f(Y)=1)

ieB

>%- (1+4vE)

>%-(1+e).

Now that we know k= 2!7' we define an (I,1— 1)-distributed source X to be flat on
{0, 1} - B. Applying the ¢-robustness of f to the pair (X,, Y), where X, is the uniform
source, we have o o ' .
1 o .
= Y Pr(fi(Y)=1)=Pr(f(Xo, Y}=1)
2" ic{0a) .
< 1 (1+¢)
- £).
2
In order to bound k from above, we first derive an upper bound on Pr (f(X,, ¥Y)=1}:
1
Pr(f(X,, Y)=1)=m—- L, Pr(f(Y)=1
2=k icion)-s
Er‘e(ﬂ o Pr (f(Y)=1) —YienPr (f(Y)=1)
2'—k
L2 Gate) -k ((1+4Ve))

21—k
1( 2‘s~k-4JE)
=\ )

2k
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Applying the e-robustness of f to the pair (X;, ¥) we get
Pr(f(X,, Y)=1>31-¢).
Combining the upper and lower bounds on Pr (f(X,, Y)=1), we have
1(l +-2ri_—4)‘£) 21(1 —€).
2 2'-k 2

By a simple manipulation, k=We -2 follows. O

With Lemma 27 at our disposal, we can use a single source to generaie many
strings, most of which are almost unbiased. These strings are generated one bit at a
time (i.e., in step t, the tth bit of all strings is generated). In the BPP application, the
generated strings are tested for membership in a witness set W. A careful probabilistic
analysis shows that if W is dense enough, then there is a fairly large probability that
the majority of these strings will hit W.

PROPOSITION 28. (1) Let m be an integer, and W< {0,1}" be an arbitrary set.
Denote by p the density of W (ie, p ='\W|/2™), and let q 1 -p

(2) Let I be an integer, and 0<<b < L Let 0< ¢ <) andf:{0,1} x{0, 1} —{0, 1} be
a Boolean function. Suppose that fis e-robust with respect to any two independent random
variables which are (1L 1— 1)-distributed and (I, b)-distributed, respectively.

(3) Let Y, Y3, ", Y,, be a sequence of arbitrary random variables assuming
values in {0,1} such that for every 1=<t=m the variable Y, is (], b)-distributed given
Y,, Y, ., Y, Let Y denote the concatenation of the Y.'s.

(4) For every ic{0, 1}, let f:{0,1}—{0, 1} be defined as in Lemma 27 (ie,
() =f(, j) for every i, j € {0,1}). Let h(Y) be a random variable assuming values in
{0,1}™, such that h(Y) is the concatenation of the random variables (Y1),
flYa), - fi( V).

Then the probability that a majority of the h.(Y)'s miss W, does not exceed 2g+8mve.
That is,
Pr(|({h(Y): i€{0, 1}'}N w)|=2'"")=2g+8mVe.

5.1. Proof of Proposition 28. Convention. Throughout the proof, the probability
space is the Cartesian product of Y (of item (3) above) with an (m, m)-distributed
random variable Z. The random variable Y = Y, Y, - - Y,, assumes values in {0, 1}™",
and Z=2Z,2," - » Z, is uniformly distributed in {0, 1} independently of Y. A value
which Y may assume will be denoted by o =@ ;" "+ &, where o, €10, 1}. A value
which Z may assume will be denoted by B=P518:""" Bm: where B, € {0, 1}. We will
also use the notation Y;=YY¥; -- Y, and a;=a,a; - o, 10 denote the prefix
consisting of first t elements of Y and a, respectively.

DeriniTIONS. (1) For every i€ {0, 1Y, 0=1=m, we define a Boolean function
£..:10, 1} x {0, 1} —{0, 1} as follows:

0 lffu(al)f:(cﬁ) v '.fr'(at)ﬁ!+lﬁr+2 o BmeEW,

1 otherwise.

gi.l (as ﬁ) = {
(2) Forevery i€ {0,1},0=t=m wedefinea Boolean function 7, : {0, 1} —{0, 1}
as follows: '

{0 - 2We=Pr(fi( Y =1 Yi=a)) =14+2Ve,
Th‘,:(a = .
1 otherwise.

Explanation. Letting a assume values in {0, 1}"™ according to the random variable
Y, and B assume values in {0, 1} according to the uniform distribution Z, the two
functions above induce two random variables & (Y, Z) and 7,(Y). These random

om o e T ST ST

g g e T T T
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variables correspond to hybrids of the (I, b)-source and truly unbiased, independent
coin tosses. The random variable &.(Y, Z) equals 0 (“a success”) when a hybrid
element, generated by applying the function f; to the first ¢ blocks output by the source
Y and letting the rest be truly random, hits the set W. The random variable 7, ,(Y)
equals 0 (“a good bit”) if, given the first ¢ blocks of the source, the bit generated by
applying f, to the (1+1)st block is almost unbiased.

Elementary observations.
Fact 1. For every i €{0, 1}, we have

Pr{£o(Y, Z)=0)=p.

Proof. Immediate by the definition of &4(Y, Z) and |[W|= p2™. O
Fact 2.

s Y exp (nu(Y)=2mye.

ic{0,1} r=0
Proof. By Lemma 27, for every 0=t <m and every a €{0, 1}™7, we have

Z , Th‘,t(a) = 21\/—8_-

ic{0,1}
Thus, for every 0=1=m— 1,

) ni,:( Y)= 2'Ve.
ieto,1}’

The sum of m such expressions {for the m values of t) is thus bounded above by
2'mve, and so is the expected value. Changing the order of summation, we get the
claimed bound. O

The next fact formulates the intuition that, when the (1+1)st bit produced in the
ith row is almost unbiased, then the (t+1)th hybrid of this row has almost the same
success probability as the fth hybrid to hit W.

FacT 3. For every i€{0,1} and 0= t<m, we have

Pr (fi,m—l( Y, Z) =0| “Ti,r(Y) =0)z=Pr (l.ft,:(Y, Z) =0| Th,r(Y) =0)_2\/E-

Proof. Consider an arbitrary a {0, 1} soch that n{a)=0. Let r=
Pr(j",—(Y,H)-——llY::a:)—%. Then !r|=2Ve. Let s=Pr{£,(Y,Z)=0|Y=al), so=
Pr(£,(Y,2)=0|Y,=a}, Z.,=0) and s, =Pr{&AY,Z)=0|Y\=a|,Zu;=1). By
definition s = 3so+3s,. Then

Pr(&, (Y, Z)=0|Yi=aD=G-r)" Sot+(GtT) - 5
=g-r(sp—51)
zs-2/e.

Averaging over all such a’s, Fact 3 follows. O

Probability calculation. The next fact is crucial to our proof. It expresses the
{unconditional) success probability of the (t+1)st hybrid of the ith row, in terms of
the tth hybrids of this row. The difference between the (¢+1)st and fth hybrids is
bounded by the sum of a small error probability (=2V€), introduced by runs in which
the (+1)st bit is almost unbiased, and the probability that the (r+ 1)st bit is biased.

Fact 4. For every i€ (0,1} and 0=t<m, we have

Pr(&, (Y, Z)=0)=Pr{£&.(Y, Z) =0)-2ve -2 Prin, (Y)=1).
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Proof. By following manipulation, using Fact 3 (when passing from the first line
to the second line), and the inequality Pr (A} B)z Pr (A)—Pr (B) (passing from the
third line to the fourth line), we have

Pr(&, (Y, Z)=0)2Pr(£,.:(Y,Z)=0{n,(Y)=0) Pr(n,(¥Y)=0)
2 (Pr(£.(Y,Z2)=0|9,,(Y)=0)-2Ve) - (1-Pr (5, (Y)=1))
zPr(£(Y,Z)=0|n,(Y)=0)-2Ve—Pr(n(Y)=1)
2 Pr{£ (Y, 2)=0)-2VE—2" Pr(n,(Y)=1). 0
This yields an upper bound on the probability that the ith row does not hit W, when

being generated from the blocks of the (I, b)-source using the function f..
FAacT 5. For every i €{0, 1}

Exp (§n(Y, Z))Sq+2Vem+2 T Exp (ni (V).

Proof. Follows by combining Fact 1 with repeated use of Fact 4, and using the
fact that for any 0-1 random variable V, Exp (V)=Pr(V=1). U

Conclusion. We now bound the probability that the majority of rows produce
elements which do not hit the set W.
FacT 6.

Pr( Y O &nlY, Z)zz"l) §2q+éJEm.
iclo,1}

Proof. Applying the Markov inequality (the sum of the (Y, Z)), using Fact 5
(when passing from the first line to the second line) and Fact 2 (when passing from
the second line to the third line), we have

EXP (E.‘E{o 1 gi,m( Ys Z))
21—1

Pr( Y EmlY,2) 22"‘) =

i«{0,1}

A (2"' (g +2\f3‘m)+2 ) 'mil Exp(n;,( Y)))

i€{0,1} 1=0
=2+ em+4-Vem
=2g+8/em. O
Since £, (Y, Z) =1 is just a fancy way of writing ’;( Y)e W, we get
Pr(|({h(Y):ie{0, 1}}NW)|=2""")=2q+8Vem,
and Proposition 28 follows. 0

52. The transformation of BPP algorithms. It will be convenient to consider
randomized algorithms as deterministic algorithms with an auxiliary random input.
The performance of such an algorithm (on input x) will be evaluated with respect to
the distribution of the auxiliary random input (denoted y). The issue of the robustness
of the class BPP is then stated as follows: can a BPP algorithm be converted to a
polynomial-time algorithm which has an advantage bounded away from 5 even when its
random input is generated by a single probability-bounded source?

DeriniTION. The class (I, b)-BPP consists of all decision problems D: {0, 1}*—
{0, 1} for which there exists polynomials P, Q and an algorithm A4:{0, 1% {0, 1}*—
{0, 1} such that for every (1, b)-source Y the following holds:
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(1) On each input of length n, algorithm A runs at most P(n) steps, and then
stops, outputting a single bit.

(2) Let xc{0,1}™ be an input and let y € {0, 1} be the auxiliary random input
generated by the (I, b)-source Y. Then

Pr(A(x, y)= D{(x)) =23+ Q (n).

Clearly, (I, I)-BPP is just a fancy way of writing BPP. Theorem 29 states that so is
(1, b)-BPP.
THEOREM 29. For every integer | and real 0< b=,

(1, b)-BPP = BPP.

Proof. Let D be a decision problem in BPP, and A, be a randomized polynomial-
time algorithm for D. Let P(n) be the number of random bits used by the algorithm
A, on inputs of length n. Without loss of generality, we may assume that for every
input x € {0, 1}, the witness set W(x) for x (i.e,, the y’s satisfying Ay{(x, y} = D{x})
contains p = 0.8 of the strings in {0, 1},

Given [ and b, let =(n) Z(160- P(n))2, B(n) £ 3+2log, ¢ '(n), and
L{n) &f [IB(n)/b]. By Theorem 9, every function corresponding to a Hadamard matrix
is £(n)-robust with respect to any pair of independent random variables X, ¥ which
are (L(n), L(n)—1)-distributed and (L{n)}, B(n))-distributed, respectively. Further-
more, some of these families of functions, such as the inner-product module 2 or the
quadratic residuocity modulo a prime (the Paley Graph function), can be computed
by poly (n)-time algorithms. Let f be one of these functions. Let F be an algorithm
that on inputs n and i, je {0, 1}, outputs f(i, j).

By Proposition 28, we can vse a single (L(n), B(n))-source to efficiently generate
2 strings such that for every x € {0, 1}", the majority of these strings hit the witness
set W(x), with probability greater than 1 —2¢ —8P(n)ve(n)=0.55(g = 0.2). We remind
the reader that the (I, b}-source can be used as an (L{n), B(n))-source. Consider the
following Algorithm A for deciding membership in DD (with a two-sided error bounded
above by 0.45).

1. Algorithm A

2. INPUT« X

:  Let n=|x|, and m = P(n).

3. AUXILIARY INPUT: ¥ € {0, 1} generated by an arbitrary (/, b)-source.

s Let y=y,y:- - - ¥, where each y, € {0, 1}%7,

4. For every i€{0, 1}*'™ and 1=j = m, compute f(i, y,), by invoking F(n, i, y,).

; For every ie{0,1}*", let w, denote the concatenation
S ) - fG ya) - - - (G ym).

5. For every i€ {0, 1}*™, compute v; def Ag(x, wy).

6. If Y, onum 0, =27 then d <0 else d « 1.

7. ourpuT: d.

By the above discussion, Pr (A(x, y) = D(x))=0.55. The running time of A{x, y)
is polynomial in 25" = n®", and in the running time of Ay(x, -) and F(|x|, -, ). The
theorem follows. [

Remarks. (1) Algorithm A above is identical to the algorithm used in [32], [30],
except that the auxiliary input is generated by a PRB-source instead of an SV-source.
The difference is in the analysis of the success probability of this algorithm. Vazirani
and Vazirani rely on properties of a particular function {(inner-product modulo 2} to
show that the different runs of A, use auxiliary inputs related in a “good way.” We
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reduce the existence of “good runs” of A, to the robustness of the function with respect
to two independent sources.

{2) Clearly, the same algorithm also works for the class R. It produces one-sided
error, since for x £ D the original algorithm A, never errs.

(3} Proposition 28 can be viewed as proving a method for using a single PRB
source to distinguish “high-density” sets from “low-density” sets. That is, given
K ={0,1}* so that either |K|z p2* or |K| = g2* determine which of the two cases
occurs, With success probability about 1 -24.

This viewpoint is helpful in solving the following additive approximation problem:
for any &, >0, and any set S< {0,1}™, find an additive (3, ¢) approximation of the
density of S, denoted o, using a single probability-bounded source (when we have an
oracle for deciding membership in $). By an additive (3, & )-approximation we mean
that with probability Z1—¢, jo~ al=38 where a is the approximated values and
0 &f 18]|/2™ is the true density. To get this approximation, we first transform the problem
of additive approximation into 2/8 problems of the form “P: is o€
[-6/2,j-8/2+8]7 where 0=j=(2-28)/8 (notice that every pair of consecutive
intervals overlaps by 8/2). By sampling k=0(5 2log(8)™") points in {0,1}", and
counting the number of times § is hit, every P, has a corresponding witness set
5;< {0, 117k It is easy to see that for at most two consecutive j’s in the above range,
S; has more than (1—&8)2* points, while all other j’s (except possibly another
consecutive j) has fewer than £82" points. Now we use the ideas above to try and hit
all §;’s by strings generated from a single probability-bounded source. With probability
>1—g, we get positive answers only for j’sina 8 neighbourhood of g. In case we get
positive answers for several P;’s, we choose the median j, and estimate g as being in
the middle of the jth interval.

Appendix: Proof of Lemma 20.

LEMMA 20. Let 0<<8=4 and G((A, B), E) be a bipartite graph with n vertices on
each side and at least 3n® edges. Suppose that the number of edges in every subgraph of
G, with ¢ £ 8/128 - n vertices on each side, is in the range [q°/3,2q"/3). Then there
exist m=n/4 and k=m/32 such that G contains a k-regular subgraph with m vertices
on each side.

Proof. Qur proof is constructive. The construction proceeds in two phases. First,
we use brute force to find a subgraph G’ of G, which has mzn/4 vertices on each
side, average degree =(—56/128) - m, and minimum degree =m/8. Next we apply
Hall’s Theorem to find a spanning k-regular subgraph of the latter.

The subgraph G' is found by applying the following procedure.

1. procedure 1: FIND LARGE SUBGRAPH G’
A vertex a € A in a bipartite graph G((A, B), E) is called bad if its degree
is <i-|B|.

]

2. iNnpUT< G(V, E)

. Step 1—Omitting bad vertices from both sides

3. G'«G

4. While both sides of G'(V', E") contain bad vertices do begin

: Let L (resp. R) be the set of bad vertices in the left (resp. right) side of
5. B < min {|L], |R]};

6. Omit B vertices of L and B vertices of R from G".

; The resulting graph is referred to as G

7. end,
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. Step 2—Omitting bad vertices from the remaining side
. Let L (resp. R) be the set of bad vertices in the left (resp. right) side of G'.
[By the above, either L or R is empty. Wlog let R =]
8. Omit all remaining bad vertices (i.e., L) from the graph.
9. Omit, from the right side of the remaining graph, |L| vertices of minimum
degree.
10. return G,

Throughout the execution of Step (1) of the above procedure, we only omit vertices
with degree not exceeding half the current average degree. Thus, at the end of Step
(2) average degree in the remaining graph is no less than half the number of vertices
in one side of the graph.

Let 2¢ denote the number of vertices omitted in Step (1). Then the number of
edges deleted in Step (1) is at most

n
t-—+t-(n—1).
2 (n—1)

(We charge deleted edges with a bad leftpoint to vertices omitted from the left side
of the graph, while charging all other deleted edges to the vertices omitted from the
right.) Using the above upper bound on |E — E’|, we get

2
n
%§|E|=|E—E’|+|E'|§t-z+r- (n—1)+(n—1)’

which yields t=3- n.

Now we claim that in Step (2), L could not be too big. If [L|=38/128 - , where
r is the number of vertices in the right side of G’ after Step (1), we reach contradiction
by considering the subgraph induced on G’ by all the vertices of the right side and
the vertices in L. {This subgraph has at most 1 of all possible edges, contradicting the
Lemma’s hypothesis.) It is easy to see that after Step (2) the number of vertices on
each side of the graph, denoted m, is =(1-38/128)n/3> n/4. Also, the minimum
degree in the remaining graph is =r/4-35" r/128=m/8, and the average degree is
=(-5/(32:4) - m.

The second phase of our construction consists of finding a spanning k-regular
graph of G,= G'. This is done by applying the following procedure.

1. procedure 2: FIND SPANNING Kk-REGULAR SUBGRAPH
2. INPUT < Gy((Ag, Bo), Eo)

3. R«

4. Fori=1 to k do begin

5 Find a perfect matching M, in G,_,.
6. R« RUM,.

7 Omit M, from G,_,, resulting in G.,.
8. end,

9. return R.

We now show that Procedure 2 does not fail. Assume on the contrary that in some
iteration i+1=k a perfect matching is not found. Namely, G, does not contain a
perfect matching. By Hall’s Theorem [7, §5.2, p.72], the left side of G; (i.e., Ao)
contains a set of vertices A’ such that the neighbourhood of A’ (denoted B') has
cardinality smaller than |A’|. Since the residual degree of G; is =m/8—1i, we get

1A’1>|B’|2§—k.
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Consider the neighbourhood of a node in B,— B’ (such a node does exist since
{B'| <|A'| =|By}). This neighbourhood has cardinality =m/8 — k and does not intersect
with A’. We conclude that

|BO—B'|>|A0~A'1§§—I<.

It should be noted that there are no edges in G; between A’ and B,— B'. Thus, G, (or
G for this matter} contain at most i - min {{A’|,|B,— B'|} edges between A’ and B,— B'.
This is at most one-third of {A’| - { B, — B'| (since i < k = m/32 and min {|A'|, | B,— B} =
m/8—k=3m/32), which contradicts the lemma’s hypothesis. 0
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