Contemplating the recently announced 1-local expanders of Viola and Wigderson (ECCC, TR16-129, 2016), one may observe that weaker constructs are well know. For example, one may easily obtain a 4-regular $N$-vertex graph with spectral gap that is $\Omega(1/\log^2 N)$, and similarly a $O(1)$-regular $N$-vertex graph with spectral gap $1/\tildeO(\log N)$. Starting from a generic candidate for a 1-local expander, we formulate a natural problem regarding coordinated random walks (CRW) on the corresponding relocation graph (which has size that is logarithmic in the size of the candidate 1-local graph), and observe that