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Abstract

In their seminal paper, Valiant, Skyum, Berkowitz and Rackoff proved that arithmetic circuits
can be balanced [VSBR]. That is, [VSBR] showed that for every arithmetic circuit Φ of size s and
degree r, there exists an arithmetic circuit Ψ of size poly(r, s) and depth O(log(r) log(s)) computing
the same polynomial. In the first part of this paper, we follow the proof of [VSBR] and show
that syntactically multilinear arithmetic circuits can be balanced. That is, we show that if Φ is
syntactically multilinear, then so is Ψ.

Recently, [R04b] proved a super-polynomial separation between multilinear arithmetic formula
and circuit size. In the second part of this paper, we use the result of the first part to simplify the
proof of this separation. That is, we construct a (simpler) polynomial f(x1, . . . , xn) such that

• Every multilinear arithmetic formula computing f is of size nΩ(log(n)).

• There exists a syntactically multilinear arithmetic circuit of size poly(n) and depth O(log2(n))
computing f .

1 Introduction

Arithmetic circuits use sums and products to compute multivariate polynomials. The size of an arithmetic

circuit is the number of operations it uses. The depth of an arithmetic circuit can be thought of as the
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parallel time it takes for the circuit to complete its computation. The degree of an arithmetic circuit

is the maximal degree of a polynomial computed by it. Surprisingly, Valiant, Skyum, Berkowitz and

Rackoff showed that the computation of polynomial-size polynomial-degree arithmetic circuits can be

done in short parallel time using a polynomial number of operations [VSBR]. More precisely, they

showed that for every arithmetic circuit of size s and degree r, there exists an arithmetic circuit of size

poly(r, s) and depth O(log(r) log(s)) computing the same polynomial.

Previously to [VSBR], Hyafil [H] showed that for every polynomial-size polynomial-degree arithmetic

circuit, there exists an arithmetic formula of quasi-polynomial size computing the same polynomial. It

remains an outstanding open problem to decide whether for every polynomial-size polynomial-degree

arithmetic circuit, there exists a polynomial-size arithmetic formula computing the same polynomial.

Recently, [R04b] solved this problem for the multilinear case. [R04b] showed a super-polynomial sepa-

ration between the size of multilinear arithmetic formulas and multilinear arithmetic circuits.

In this paper, we follow the proof of [VSBR] and show that syntactically multilinear computations can

be done in short parallel time using a small number of operations (without violating the syntactical

multilinearity condition). That is, we show that for every syntactically multilinear arithmetic circuit

of size s and degree r, there exists a syntactically multilinear arithmetic circuit of size poly(s) and

depth O(log(r) log(s)) computing the same polynomial. We use this to simplify the proof of the super-

polynomial separation between the size of multilinear formula and circuit size.

1.1 Arithmetic Circuits and Formulas

An arithmetic circuit Φ over the field F and the set of variables X is a directed acyclic graph as follows:

Every vertex v in Φ is either of in-degree 0 or of in-degree 2. Every vertex v of in-degree 0 is labelled by

either a variable in X or a field element in F. Every vertex v of in-degree 2 is labelled by either × or +.

An arithmetic circuit Φ is called an arithmetic formula, if Φ is a directed binary tree (the edges of an

arithmetic formula are directed from the leaves to the root).

The vertices of an arithmetic circuit Φ are also called gates. Every gate of in-degree 0 is called an input

gate. Every gate of in-degree 2 labelled by × is called a product gate. Every gate of in-degree 2 labelled

by + is called a sum gate. Every gate of out-degree 0 is called an output gate. For two gates u and v, if

(u, v) is an edge in Φ, then u is called a son of v. The size of Φ, denoted |Φ|, is the number of gates in

Φ. The depth of the gate v is the maximal length of a directed path reaching v. The depth of Φ is the

maximal depth of a gate in Φ.
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For a gate v, define Φv to be the sub-circuit of Φ rooted at v. That is, the gates of Φv are all the gates

u in Φ such that there exists a directed path from u to v in Φ, and the edges and labels of Φv are the

same edges and labels of Φ (restricted to the set of gates of Φv). We say that a variable x ∈ X occurs

in Φv, if x labels one of the input gates of Φv. Define Xv to be the set of variables that occur in Φv.

An arithmetic circuit computes a polynomial in a natural way. For a gate v in Φ, define Φ̂v ∈ F[X] to

be the polynomial computed by Φv as follows: If v is an input gate labelled by α ∈ F∪X, then Φ̂v = α.

If v is a product gate with sons v1 and v2, then Φ̂v = Φ̂v1 · Φ̂v2 . If v is a sum gate with sons v1 and v2,

then Φ̂v = Φ̂v1 +Φ̂v2 . For a polynomial f ∈ F[X] and a gate v in Φ, we say that v computes f , if f = Φ̂v.

We say that Φ computes f , if one of the output gates of Φ computes f .

For a gate v, define the degree of v to be the total degree of the polynomial Φ̂v. We denote the degree

of v by deg(v). The degree of Φ is the maximal degree of a gate in Φ.

A polynomial f ∈ F[X] is called multilinear, if the degree of each variable in f is at most one. An

arithmetic circuit Φ is called multilinear, if every gate in Φ computes a multilinear polynomial. Φ is

called syntactically multilinear, if every product gate v in Φ with sons v1 and v2 admits Xv1 ∩Xv2 = ∅.

1.2 Background

The model of multilinear arithmetic circuits was first considered in [NW]. It is a restricted model, as

it does not allow the use of high powers of variables during a computation. However, it is a natural

model for computing multilinear polynomials, as the use of high powers of variables in order to compute

multilinear polynomials is often not intuitive. Furthermore, the best known circuits for many multilinear

polynomials are indeed multilinear.

In [R04a] it is shown that every multilinear formula computing the determinant or the permanent of

an n by n matrix is of size nΩ(log(n)). Later [R04b] used the techniques of [R04a] to prove a super-

polynomial separation between multilinear formula and circuit size. Recently, [RSY] showed an Ω(n1+ε)

lower bound (for some ε > 0) for the size of a syntactically multilinear arithmetic circuit (where n is the

number of variables).

1.3 Results

Our first result is a syntactically multilinear version of [VSBR]. We show that for every syntactically

multilinear arithmetic circuit of size s and degree r over the field F and over the set of variables X
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computing the polynomial f , there exists a syntactically multilinear arithmetic circuit of size poly(s)

and depth O(log(r) log(s)) over the field F and over the set of variables X computing f as well (see

Theorem 3.1). Basically, our proof is the same as the proof of [VSBR]. We note that the proof does not

work for the multilinear model (the proof uses syntactical multilinearity).

Our second result is a simpler proof of the following result of [R04b] (see Theorem 4.4): There exists a

multilinear polynomial f(x1, . . . , xn) such that (over every field)

1. Every multilinear arithmetic formula computing f is of size nΩ(log(n)).

2. There exists a syntactically multilinear arithmetic circuit of size poly(n) and depth O(log2(n))

computing f .

To prove this super-polynomial separation between multilinear formula and circuit size, we use the

techniques of [R04a, R04b] and our first result, together with a new construction of f .

1.4 Discussion

Our first result implies that for every syntactically multilinear arithmetic circuit of size poly(n), there

exists a syntactically multilinear arithmetic formula of size nO(log(n)) computing the same polynomial.

Thus, a proof of an nω(log(n)) lower bound for the size of multilinear arithmetic formulas automatically

gives a super-polynomial lower bound for the size of syntactically multilinear arithmetic circuits. So,

no better lower bounds than that of [R04a, R04b] are available without a proof of a super-polynomial

lower bound for the size of syntactically multilinear arithmetic circuits. We also recall a conjecture

from [NW]: Multilinear arithmetic circuits require Ω(n) depth to compute the determinant of an n by

n matrix. A proof of the conjecture automatically gives an exponential lower bound for the size of

syntactically multilinear arithmetic circuits for the determinant.

As mentioned above, the proof of our first result is, basically, the same as the proof of [VSBR]. We will

now discuss the proof of our second result (note that the following statements are not accurate). We find

a polynomial f with properties 1. and 2. above. The proof has two parts:

Proof of property 1. A polynomial is of full rank, if the partial derivative matrix of the polynomial is

of full rank (see Section 4.2.2 for definitions). [R04b] shows that small multilinear arithmetic formulas

can’t compute polynomials of full rank. So, to prove property 1., we show that f is of full rank.

Proof of property 2. We find a multilinear arithmetic circuit of polynomial size and linear depth computing

f . Using our first result, property 2. follows. We note that [R04b] constructed a polynomial of full
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rank that is computed explicitly by a multilinear arithmetic circuit of size poly(n) and depth O(log2(n)).

Much of the complexity of [R04b] comes from the explicitness of the small depth.

2 Preliminaries

In the following G denotes a field, and X = {x1, . . . , xn} denotes a set of variables. G[X] denotes the

ring of polynomials over the field G and over the set of variables X. Arithmetic circuits are denoted by

either Φ or Ψ. For an integer n ∈ N, denote [n] = {1, . . . , n}. For two integers i ∈ N and j ∈ N, denote

[i, j] = {k ∈ N : i ≤ k and k ≤ j} .

We say that a variable occurs in a polynomial f , if the degree of the variable in f is greater than 0.

We denote by V(f) the set of variables that occur in f . We say that a monomial occurs in f , if the

coefficient of the monomial in f is non-zero.

2.1 Homogeneous Arithmetic Circuits

A polynomial f is called homogeneous, if all the monomials that occur in f have the same total degree.

For an integer i ∈ N, we define the homogeneous part of degree i of f to be the restriction of f to the set

of monomials of total degree i. We say that an arithmetic circuit Φ is homogeneous, if for every gate v

in Φ, the polynomial Φ̂v is homogeneous.

The following theorem shows that syntactically multilinear arithmetic circuits can be made homogeneous.

The theorem is well known for general arithmetic circuits (e.g., [NW]). Here we show that the theorem

applies for the syntactically multilinear case as well.

Theorem 2.1. Let Φ be a syntactically multilinear arithmetic circuit of size s and degree r over the

field G and over the set of variables X computing the polynomial f . Then there exists a syntactically

multilinear homogeneous arithmetic circuit Ψ of size O(r2s) and degree r over the field G and over the

set of variables X computing all the homogeneous parts of f .

Proof. For every gate v in Φ and for every i ∈ [0, r], define the pair (v, i) as a gate in Ψ. The gate (v, i)

will compute the homogeneous part of degree i of the polynomial Φ̂v. We will construct Ψ by induction

on the structure of Φ.
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Let v be a gate in Φ.

If v is an input gate, then Φ̂v is a homogeneous polynomial. So for all i ∈ [0, r], define

Ψ(v,i) =

{
Φv deg(v) = i

0 deg(v) 6= i.

Otherwise, let v1 and v2 be the two sons of v in Φ.

If v is a product gate, then for every i ∈ [0, r], define

Ψ(v,i) =
∑

j∈[0,i]

Ψ(v1,j) ×Ψ(v2,i−j).

If v is a sum gate, then for every i ∈ [0, r], define

Ψ(v,i) = Ψ(v1,i) + Ψ(v2,i).

It follows by induction that for every gate v in Φ and for every i ∈ [0, r], the gate (v, i) in Ψ computes

the homogeneous part of degree i of Φ̂v. So, Ψ is homogeneous. Furthermore, it follows that

X(v,i) ⊆ Xv,

where X(v,i) is the set of variables that occur in Ψ(v,i), and Xv is the set of variables that occur in Φv.

Since each gate in Φ adds at most O(r2) vertices to Ψ, the size of Ψ is O(r2s). Also the degree of Ψ is

at most r.

Finally, we claim that Ψ is syntactically multilinear. Indeed, let v′ be a product gate in Ψ. So, Ψv′ is of

the form

Ψv′ = Ψ(v1,j) ×Ψ(v2,i−j),

where v1 and v2 are the two sons of a product gate v in Φ, and i, j ∈ [0, r]. Since v is a product gate in

Φ and since Φ is syntactically multilinear, Xv1 ∩ Xv2 = ∅. So, since X(v1,j) ⊆ Xv1 and X(v2,i−j) ⊆ Xv2 ,

we have

X(v1,j) ∩X(v2,i−j) = ∅.
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3 Balancing Arithmetic Circuits

In this section we follow the proof of [VSBR], and show how to balance syntactically multilinear arith-

metic circuits. In particular, we show that poly(n)-size syntactically multilinear arithmetic circuits are

without loss of generality of depth O(log2(n)) (where n is the number of variables).

Theorem 3.1. Let Φ be a syntactically multilinear arithmetic circuit of size s and degree r over the

field G and over the set of variables X = {x1, . . . , xn} computing the polynomial f . Then there exists a

syntactically multilinear arithmetic circuit Ψ of size O(r6s3), of depth O(log(r) log(s)), and of degree r

over the field G and over the set of variables X computing f as well.

We defer the proof of Theorem 3.1 to Section 3.3.

3.1 Preliminaries

In the following Φ denotes a syntactically multilinear arithmetic circuit over the field G and over the set

of variables X = {x1, . . . , xn}. For a gate v in Φ, we denote

fv = Φ̂v ∈ G[X],

the polynomial computed by v in Φ.

3.1.1 Non-redundant Circuits

We say that Φ is non-redundant, if every gate v in Φ admits fv 6= 0.

Claim 3.2. Let Φ be a homogeneous non-redundant arithmetic circuit over the field G and over the set

of variables X. Let v be a sum gate in Φ with sons v1 and v2. Then,

deg(v1) = deg(v2) = deg(v).

Proof. Since Φ is non-redundant, all the polynomials fv, fv1 and fv2 are non-zero. Since Φ is homo-

geneous, all the polynomials fv, fv1 and fv2 are homogeneous. So, since fv = fv1 + fv2 , the claim

follows.
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3.1.2 The Partial Derivative of fv by w

For two gates v and w in Φ such that Xw 6= ∅, we define ∂wfv, the partial derivative of fv by w, as follows:

Substitute the gate w in Φ by a new variable y, and denote by f v the ‘new’ polynomial computed by v.

So, f v is a polynomial in G[y, X]. Since Φ is syntactically multilinear, and since Xw 6= ∅, f v is linear in

y; that is,

f v = hw,v · y + gw,v,

where hw,v and gw,v are polynomials in G[X]. So, fv = hw,v · fw + gw,v, and we define

∂wfv = hw,v

(
=

∂f v

∂y

)
.

We shall use the following properties of ∂wfv.

Claim 3.3. Let Φ be a syntactically multilinear homogeneous non-redundant arithmetic circuit over the

field G and over the set of variables X. Let v and w be two gates in Φ such that Xw 6= ∅ and ∂wfv 6= 0.

Then, ∂wfv is a homogeneous polynomial over the set of variables Xv\Xw of total degree deg(v)−deg(w).

Proof. We will use the following claim, which follows by induction. Let Ψ be a homogeneous arithmetic

circuit, and let Ψ′ be the arithmetic circuit obtained from Ψ by substituting a gate in Ψ by 0. Then,

for every gate u in Ψ′ (u is also a gate in Ψ), the polynomial Ψ̂′
u is either 0 or homogeneous of the same

degree as Ψ̂u.

Since Φ is homogeneous, the polynomials fv and fw are homogenous. Furthermore, since gw,v is the

polynomial computed by v after substituting w by 0, it follows that gw,v is either 0 or homogenous of

degree deg(v). Since Φ is non-redundant, fw 6= 0. So, since ∂wfv · fw = fv − gw,v, and since ∂wfv 6= 0, we

have that ∂wfv is a homogenous polynomial of total degree deg(v)− deg(w).

Let x ∈ X be a variable that occurs in ∂wfv. By the definition of ∂wfv, there exists a product gate u

in Φ with sons u1 and u2 such that (without loss of generality) x ∈ Xu1 and w is in Φu2 . Note that

Xw ⊆ Xu2 . Since Φ is syntactically multilinear, Xu1 ∩ Xu2 = ∅. So, the set of variables that occur in

∂wfv and Xw are disjoint.

Claim 3.4. Let Φ be a syntactically multilinear homogeneous non-redundant arithmetic circuit over the

field G and over the set of variables X. Let v and w be two gates in Φ such that Xw 6= ∅, and

deg(v) < 2 deg(w).
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Assume that v is a product gate with sons v1 and v2 such that deg(v1) ≥ deg(v2). Then,

∂wfv = fv2 · ∂wfv1 .

Proof. Since v is a product gate, deg(v) = deg(v1) + deg(v2). So, since deg(v) < 2 deg(w), we have

deg(v2) < deg(w), which implies (by Claim 3.3) that ∂wfv2 = 0. So, by the rules of partial derivatives,

∂wfv = fv1 · ∂wfv2 + fv2 · ∂wfv1 = fv2 · ∂wfv1 .

3.2 Representing fv and ∂wfv Differently

In this section we prove two claims that are the main tool in the proof of Theorem 3.1.

For an integer m ∈ N, denote by Gm the set of product gates t in Φ with sons t1 and t2 such that

m < deg(t) and deg(t1) ≤ m and deg(t2) ≤ m.

For a gate v, the following claim shows how to represent fv as a function of the gates in Gm (for the

appropriate m).

Claim 3.5. Let Φ be a syntactically multilinear homogeneous non-redundant arithmetic circuit over the

field G and over the set of variables X. Let m > 0 be an integer, and let v be a gate in Φ such that

m < deg(v) ≤ 2m. Then,

fv =
∑

t∈Gm

ft · ∂tfv

(since m > 0, every t ∈ Gm admits Xt 6= ∅).

Proof. Since m < deg(v), there is a directed path from Gm to v in Φ. We prove the claim by induction

on the length of the longest directed path from Gm to v. Let v1 and v2 be the two sons of v in Φ.

Induction Base: Assume that v ∈ Gm. Thus, deg(v1) ≤ m and deg(v2) ≤ m. So, every t ∈ Gm

different than v is not in Φv, which implies ∂tfv = 0. Hence, since ∂vfv = 1,

fv = fv · 1 +
∑

t∈Gm:t6=v

ft · 0 =
∑

t∈Gm

ft · ∂tfv.
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Induction Step: Consider the following two cases:

Case one: Assume that v is a sum gate. By Claim 3.2,

deg(v1) = deg(v2) = deg(v).

So, by induction,

fv1 =
∑

t∈Gm

ft · ∂tfv1 and fv2 =
∑

t∈Gm

ft · ∂tfv2 .

Hence, by the rules of partial derivatives,

fv = fv1 + fv2 =
∑

t∈Gm

ft · (∂tfv1 + ∂tfv2) =
∑

t∈Gm

ft · ∂tfv.

Case two: Assume that v is a product gate, and assume without loss of generality that deg(v1) ≥ deg(v2).

Since v 6∈ Gm, we have m < deg(v1) ≤ 2m. So, by induction,

fv1 =
∑

t∈Gm

ft · ∂tfv1 .

For all gates t ∈ Gm, we have deg(v) ≤ 2m < 2 deg(t). So, using Claim 3.4,

fv = fv1 · fv2 =
∑

t∈Gm

ft · (fv2 · ∂tfv1) =
∑

t∈Gm

ft · ∂tfv.

For a gate v in Φ, the following claim shows how to represent ∂wfv as a function of the gates in Gm (for

the appropriate choice of w and m).

Claim 3.6. Let Φ be a syntactically multilinear homogeneous non-redundant arithmetic circuit over the

field G and over the set of variables X. Let m > 0 be an integer, and let v and w be two gates in Φ such

that Xw 6= ∅ and deg(w) ≤ m < deg(v) < 2 deg(w). Then,

∂wfv =
∑

t∈Gm

∂wft · ∂tfv

(since m > 0, every t ∈ Gm admits Xt 6= ∅).
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Proof. Since m < deg(v), there is a directed path from Gm to v in Φ. We prove the claim by induction

on the length of the longest directed path from Gm to v. Let v1 and v2 be the two sons of v in Φ.

Induction Base: Assume that v ∈ Gm. Thus, deg(v1) ≤ m and deg(v2) ≤ m. So, every gate t in Gm

different than v is not in Φv, which implies ∂tfv = 0. Hence, since ∂vfv = 1,

∂wfv = ∂wfv · 1 +
∑

t∈Gm:t6=v

∂wft · 0 =
∑

t∈Gm

∂wft · ∂tfv.

Induction Step: Consider the following two cases:

Case one: Assume that v is a sum gate. By Claim 3.2,

deg(v1) = deg(v2) = deg(v).

So, by induction,

∂wfv1 =
∑

t∈Gm

∂wft · ∂tfv1 and ∂wfv2 =
∑

t∈Gm

∂wft · ∂tfv2 .

Hence, using the rules of partial derivatives,

∂wfv = ∂wfv1 + ∂wfv2 =
∑

t∈Gm

∂wft · (∂tfv1 + ∂tfv2) =
∑

t∈Gm

∂wft · ∂tfv.

Case two: Assume that v is a product gate, and assume without loss of generality that deg(v1) ≥ deg(v2).

Since v 6∈ Gm, we have m < deg(v1) < 2 deg(w). So, by induction,

∂wfv1 =
∑

t∈Gm

∂wft · ∂tfv1 .

Note that deg(v) < 2 deg(w), and for all gates t ∈ Gm, we have deg(v) < 2m < 2 deg(t). So, using

Claim 3.4,

∂wfv = fv2 · ∂wfv1 =
∑

t∈Gm

∂wft · (fv2 · ∂tfv1) =
∑

t∈Gm

∂wft · ∂tfv.
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3.3 Proof of Theorem 3.1

First, we assume without loss of generality that s ≥ n. Second, using Theorem 2.1, we assume without

loss of generality that Φ is a homogeneous arithmetic circuit of size s′ = O(r2s). Third, we assume

without loss of generality that Φ is non-redundant (otherwise, we can make Φ smaller). Note that Φ

‘remains’ syntactically multilinear.

To prove the theorem we construct Ψ. The construction is done in steps. For an integer i ≥ 0, at the

i’th step we have the following

1. We compute all polynomials fv, for gates v in Φ such that 2i−1 < deg(v) ≤ 2i. To compute fv we

add O(s′) gates, and we increase the depth by O(log(s′)).

2. We compute all polynomials ∂wfv, for gates v and w in Φ such that Xw 6= 0,

2i−1 < deg(v)− deg(w) ≤ 2i and deg(v) < 2 deg(w).

To compute ∂wfv we add O(s′) gates, and we increase the depth by O(log(s′)).

3. All the product gates added ‘multiply’ disjoint sets of variables; that is, every product gate u in Ψ

with sons u1 and u2 admits Xu1 ∩Xu2 = ∅.

Before describing the construction we show why it completes the proof. Since the degree of Φ is r, the

total degree of f is at most r. So, we can end the process in O(log(r)) steps. Since in each step we

increase the depth by at most O(log(s′)), the depth of Ψ is O(log(r) log(s)) (note that r ≤ n ≤ s).

Since for each gate v in Φ, we add O(s′) gates to compute fv, and since for each pair of gates v and w

(with the appropriate properties), we add O(s′) gates to compute ∂wfv, it follows that the size of Ψ is

O(s′3) = O(r6s3). Finally, by 3., Ψ is syntactically multilinear.

The Construction of Ψ

We use the following conventions: Gates in Φ are denoted by v, t and w. For a gate v, we denote by v′

the gate in Ψ computing fv. For two gates v and w in Φ such that Xw 6= ∅ and deg(v) < 2 deg(w), we

denote by (w, v) the gate in Ψ computing ∂wfv.

Throughout the process we maintain the following two properties:

A For every gate v in Φ,

Xv′ ⊆ Xv,

where Xv′ is the set of variables that occur in Ψv′ , and Xv is the set of variables that occur in Φv.
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B For every two gates v and w in Φ such that Xw 6= ∅ and deg(v) < 2 deg(w),

X(w,v) ⊆ Xv \Xw,

where X(w,v) is the set of variables that occur in Ψ(w,v), Xv is the set of variables that occur in Φv,

and Xw is the set of variables that occur in Φw.

Step 0: For every gate v in Φ such that deg(v) ≤ 1, the polynomial fv is linear. So, since s′ ≥ n, we

can compute fv with an arithmetic circuit of size O(s′) and depth O(log(s′)). Furthermore, we can have

Xv′ ⊆ Xv (property A).

For every two gates v and w in Φ such that Xw 6= ∅ and deg(v) − deg(w) ≤ 1, using Claim 3.3, we

have that ∂wfv is linear. So, we can compute ∂wfv with an arithmetic circuit of size O(s′) and depth

O(log(s′)). Furthermore, by Claim 3.3, the set of variables that occur in ∂wfv is a subset of Xv \Xw, so

we can have X(w,v) ⊆ Xv \Xw (property B).

Step i+1: Assume that we already computed all polynomials fv, for gates v such that deg(v) ≤ 2i, and

all polynomials ∂wfv, for gates v and w such that Xw 6= ∅, deg(v)− deg(w) ≤ 2i and deg(v) ≤ 2 deg(w).

Furthermore, assume that properties A and B hold so far.

Recall that for an integer m ∈ N, we defined Gm to be the set of product gates t in Φ with sons t1 and

t2 such that

m < deg(t) and deg(t1) ≤ m and deg(t2) ≤ m.

The i + 1 step is done in two parts:

First part: computing fv.

Let v be a gate of degree 2i < deg(v) ≤ 2i+1, and denote

m = 2i.

Recall that if a gate t is not in Φv, then ∂tfv = 0. Thus, by Claim 3.5,

fv =
∑
t∈T

ft · ∂tfv =
∑
t∈T

ft1 · ft2 · ∂tfv,

where T is the set of gates t ∈ Gm with sons t1 and t2 such that t is in Φv.

Let t ∈ T be a gate with sons t1 and t2. Thus, m < deg(t) ≤ 2m, deg(t1) ≤ m and deg(t2) ≤ m. So,

deg(v) − deg(t) ≤ 2i+1 − 2i = 2i and deg(v) ≤ 2i+1 < 2 deg(t). Therefore, ft1 , ft2 and ∂tfv are already
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computed. Thus, to compute fv (using the polynomials computed so far) we add O(s′) gates, and we

increase the depth by at most O(log(s′)).

We will now show that property A still holds. Indeed, recall that

Xt′1
⊆ Xt1 and Xt′2

⊆ Xt2 and X(t,v) ⊆ Xv \Xt.

Since t is in Φv,

Xt1 ∪Xt2 = Xt ⊆ Xv.

Thus,

Xv′ =
⋃
t∈T

Xt′1
∪Xt′2

∪X(t,v) ⊆ Xv (property A).

Finally, we claim that every product gate added ‘multiplies’ disjoint sets of variables. Indeed, a product

gate added is of the form ft1 · ft2 · ∂tfv, where t ∈ T is product a gate with sons t1 and t2. Since Φ is

syntactically multilinear, Xt1 ∩Xt2 = ∅. So,

Xt′1
∩Xt′2

= ∅ and X(t,v) ∩ (Xt′1
∪Xt′2

) = ∅.

Second part: computing ∂wfv.

Let v and w be two gates in Φ such that Xw 6= ∅,

2i < deg(v)− deg(w) ≤ 2i+1 and deg(v) < 2 deg(w).

Now, denote

m = 2i + deg(w).

Thus, deg(w) ≤ m < deg(v) < 2 deg(w). Recall that if a gate t is not in Φv, then ∂tfv = 0. Also, by

Claim 3.3, if a gate t admits deg(t) > deg(v), then ∂tfv = 0. Hence, by Claim 3.6,

∂wfv =
∑
t∈T

∂wft · ∂tfv,

where T is the set of gates t ∈ Gm such that t is in Φv and deg(t) ≤ deg(v). For a gate t ∈ T , we have

deg(t) ≤ deg(v) < 2 deg(w). Hence, using Claim 3.4, we have

∂wfv =
∑
t∈T

ft2 · ∂wft1 · ∂tfv,
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where for all t ∈ T , we denote its sons by t1 and t2, where (without loss of generality) w is in Φt1 ,

deg(w) ≤ deg(t1) and deg(t1) ≥ deg(t2).

Let t ∈ T be a gate with sons t1 and t2. We will now show that all the polynomials ft2 , ∂wft1 and ∂tfv

are already computed (including the first part of the i + 1 step).

Since

deg(v) ≤ 2i+1 + deg(w) ≤ 2i+1 + deg(t1) = 2i+1 + deg(t)− deg(t2),

we have

deg(t2) ≤ 2i+1 + deg(t)− deg(v) ≤ 2i+1.

So, ft2 is already computed (including in the first part of the i + 1 step).

Since deg(t1) ≤ m = 2i + deg(w), we have deg(t1)− deg(w) ≤ 2i. So, since deg(t1) ≤ deg(t) ≤ deg(v) <

2 deg(w), the polynomial ∂wft1 is already computed.

Since deg(t) > m = 2i + deg(w), we have

deg(v)− deg(t) < deg(v)− 2i − deg(w) ≤ 2i+1 − 2i = 2i.

So, since

deg(v) ≤ 2i+1 + deg(w) ≤ 2(2i + deg(w)) < 2 deg(t),

the polynomial ∂tfv is already computed.

Thus, to compute ∂wfv (using the polynomials computed so far) we add O(s′) gates, and we increase the

depth by O(log(s′)).

We will now show that property B still holds. Let t ∈ T be a gate with sons t1 and t2. Recall that

Xt′2
⊆ Xt2 and X(w,t1) ⊆ Xt1 \Xw and X(t,v) ⊆ Xv \Xt.

Since Φ is syntactically multilinear,

Xt1 ∩Xt2 = ∅.

Since t is in Φv,

Xt1 ∪Xt2 = Xt ⊆ Xv.

Since w is in Φt1 ,

Xw ⊆ Xt1 .

15



So,

X(w,v) =
⋃
t∈T

Xt′2
∪X(w,t1) ∪X(t,v) ⊆ Xv \Xw (property B).

Finally, we claim that every product gate added ‘multiplies’ disjoint sets of variables. Indeed, a product

gate added in the second part is of the form ft2 · ∂wft1 · ∂tfv, where t ∈ T is a gate with sons t1 and t2.

Thus,

Xt′2
∩X(w,t1) = ∅ and (Xt′2

∪X(w,t1)) ∩X(t,v) = ∅.

4 Separation Between Multilinear Formula and Circuit Size

In this section we show a super-polynomial separation between multilinear arithmetic formula and circuit

size. More specifically, we give an explicit polynomial f(x1, . . . , xn) such that

1. Every multilinear arithmetic formula computing f is of size nΩ(log(n)).

2. There exists a syntactically multilinear arithmetic circuit of O(log2(n))-depth and poly(n)-size

computing f .

Such a separation was already proved in [R04b]. We use the fact that syntactically multilinear arithmetic

circuits can be balanced in order to simplify the construction of f , and the proof.

4.1 The Definition of f

Let n ∈ N be an integer. Let X = {x1, . . . , x2n} and W = {ωi,`,j}i,`,j∈[2n] be two sets of variables. Recall

that for two integers i ∈ N and j ∈ N, we denote [i, j] = {k ∈ N : i ≤ k and k ≤ j} . We call [i, j] an

interval. We call |[i, j]| the length of the interval [i, j]. Note that for j < i, the interval [i, j] = ∅ is of

even length. Denote by Xi,j the set of variables xm, where m ∈ [i, j]. Denote by Wi,j the set of variables

wi′,`,j′ , where i′, `, j′ ∈ [i, j].

For every interval [i, j] ⊆ [2n] of even length, we define a polynomial fi,j ∈ F[X,W ] inductively as follows:

If the length of [i, j] is 0, then define

fi,j = 1.
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If the length of [i, j] is greater than 0, then define

fi,j = (1 + xixj)fi+1,j−1 +
∑

`

ωi,`,jfi,`f`+1,j,

where the sum is over ` ∈ [i + 1, j − 2] such that the interval [i, `] is of even length (so, the length of

[` + 1, j] is even as well). Since the lengths of the intervals [i, `] and [` + 1, j] are even and smaller than

the length of [i, j], both fi,` and f`+1,j are already defined. Similarly, fi+1,j−1 is already defined.

Finally, we define

f = f1,2n.

Let [i, j] ⊆ [2n] be an interval of even length. Recall that V(fi,j) is the set of X and W variables that

occur in fi,j. By induction, we have

V(fi,j) ⊆ Xi,j ∪Wi,j. (4.1)

So, by the definition of f , there exists a syntactically multilinear arithmetic circuit of size poly(n)

computing f . In particular, f is multilinear. Additionally, since the number of variables in f is O(n3),

the degree of f is O(n3). We note that it will be useful to think of f also as a polynomial in G[X], where

G = F(W) is the field of rational functions over the field F and over the set of variables W .

4.2 Preliminaries

4.2.1 Partitions of the Set of Variables

Let X = {x1, . . . , x2n}, Y = {y1, . . . , yn} and Z = {z1, . . . , zn} be three sets of variables. We call a

one-to-one mapping A : X → Y ∪ Z a partition of X to Y and Z. When X, Y and Z are clear, we call

A a partition. For a polynomial g ∈ G[X], we denote by gA the polynomial g, after substituting each

x ∈ X by A(x) ∈ Y ∪ Z. So, gA ∈ G[Y, Z].

4.2.2 The Partial Derivative Matrix

Let Y = {y1, . . . , yn} and Z = {z1, . . . , zn} be two sets of variables. Let g ∈ G[Y, Z] be a multilinear

polynomial over the field G and the two sets of variables Y and Z. A monomial whose coefficient is 1

is called a monic monomial. Define Mg, the partial derivative matrix of g, as follows: for p a monic

multilinear monomial in Y and q a monic multilinear monomial in Z, define Mg(p, q) to be the coefficient
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of the monomial p · q in g. Thus, the rows of Mg correspond to monic multilinear monomials in Y , and

the columns of Mg correspond to monic multilinear monomials in Z. The size of Mg is 2n × 2n.

We say that the polynomial g is of full rank, if for every partition A of X = {x1, . . . , x2n} to Y and Z,

the rank of MgA is full.

[R04a, R04b] proved the following theorem, which shows that a polynomial-size multilinear formula

can’t compute a polynomial of full rank.

Theorem 4.1. Let Φ be a multilinear arithmetic formula over the field G and over the set of variables

X = {x1, . . . , x2n} computing a polynomial g. If g is of full rank, then

|Φ| ≥ nΩ(log(n)).

Having Theorem 4.1 in mind, to prove a super-polynomial separation between multilinear formula and

circuit size, it is enough to find a full rank polynomial that is computed by a polynomial-size multilinear

arithmetic circuit.

4.3 f is of Full Rank

In this section we prove that f is of full rank.

Theorem 4.2. Let n ∈ N be an integer. Let X = {x1, . . . , x2n} and W = {ωi,`,j}i,`,j∈[2n] be two sets of

variables. Let G = F(W) be the field of rational functions over the field F and over the set of variables

W. Let f ∈ G[X] be the polynomial defined in Section 4.1. Then f is of full rank (over the field G).

To prove Theorem 4.2 we shall need some definitions, and Lemma 4.3. Recall that a partition A of

X = {x1, . . . , x2n} to Y = {y1, . . . , yn} and Z = {z1, . . . , zn} is a one-to-one mapping from X to Y ∪ Z.

For a partition A and an interval [i, j] ⊆ [2n], define

Di,j(A) = |A(Xi,j) ∩ Y | − |A(Xi,j) ∩ Z| .

We say that the interval [i, j] is balanced on A, if Di,j(A) = 0.

The following lemma shows that for every interval [i, j] ⊆ [2n] that is balanced on A, the polynomial fA
i,j

is of full rank.
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Lemma 4.3. Let n ∈ N be an integer. Let X = {x1, . . . , x2n}, W = {ωi,`,j}i,`,j∈[2n], Y = {y1, . . . , yn}
and Z = {z1, . . . , zn} be four sets of variables. Let A be a partition of X to Y and Z. Let G = F(W)

be the field of rational functions over the field F and over the set of variables W. Let m ∈ [0, n] and let

[i, j] ⊆ [2n] be an interval of length 2m that is balanced on A. Let fi,j ∈ G[X] be the polynomial defined

in Section 4.1. Then

Rank(MfA
i,j

) = 2m,

where the rank is over the field G.

Proof of Theorem 4.2. Let A be a partition of X to Y = {y1, . . . , yn} and Z = {z1, . . . , zn}. Thus, the

interval [1, 2n] is balanced on A. So, by Lemma 4.3, the partial derivative matrix of fA is of full rank.

4.3.1 Proof of Lemma 4.3

The proof is by induction on m.

Induction Base: If m = 0, then fi,j = 1, which implies

Rank(MfA
i,j

) = 1 = 2m.

Induction Step: Assume that m > 0 and that the lemma holds for every interval of length smaller

than 2m. Consider the following two cases:

Case one: For every ` ∈ [i + 1, j − 2] such that the interval [i, `] is of even length, we have Di,`(A) 6= 0.

Note that if an interval is balanced on A, then the interval is of even length. Thus, for every ` ∈ [i+1, j−1],

we have Di,`(A) 6= 0.

Assume without loss of generality that Di,i(A) = 1 (the case Di,i(A) = −1 is similar). For every

` ∈ [i + 1, j − 1], we have

Di,`(A)−Di,`+1(A) ∈ {1,−1} .

So for all ` ∈ [i + 1, j − 1], we have Di,`(A) > 0. Hence, since Di,j(A) = 0, we have Dj,j(A) = −1.

Therefore, the interval [i + 1, j − 1] is balanced on A. Thus, by induction,

Rank(MfA
i+1,j−1

) = 2m−1.

Since Di,i = 1 and Dj,j = −1,

Rank(M1+A(xi)A(xj)) = 2.
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Since, by (4.1), both xi and xj do not occur in fi+1,j−1,

M(1+A(xi)A(xj))fA
i+1,j−1

= M1+A(xi)A(xj) ⊗MfA
i+1,j−1

, (4.2)

where we think of M(1+A(xi)A(xj))fA
i+1,j−1

as a 2m × 2m matrix, we think of M1+A(xi)A(xj) as a 2× 2 matrix,

we think of MfA
i+1,j−1

as a 2m−1 × 2m−1 matrix, and ⊗ denotes tensor product of matrices. Therefore,

Rank(M(1+A(xi)A(xj))fA
i+1,j−1

) = Rank(M1+A(xi)A(xj)) · Rank(MfA
i+1,j−1

) = 2m.

Recall that by (4.1), for all ` ∈ [i+1, j−1], the variable ωi,`,j does not occur in fi+1,j−1. Thus, substituting

ωi,`,j = 0, for all ` ∈ [i + 1, j − 1], in fA
i,j, we have

fA
i,j

∣∣∣
ωi,`,j=0 ∀`∈[i+1,j−1]

= (1 + A(xi)A(xj))f
A
i+1,j−1,

which implies

Rank(MfA
i,j

) ≥ Rank(M(1+A(xi)A(xj))fA
i+1,j−1

).

Therefore, since Rank(MfA
i,j

) ≤ 2m,

Rank(MfA
i,j

) = 2m.

Case two: There exists `′ ∈ [i + 1, j − 2] such that the interval [i, `′] is of even length and Di,`′(A) = 0.

The interval [`′ + 1, j] is of even length as well. Furthermore,

D`′+1,j(A) = Di,j(A)−Di,`′(A) = 0.

So, by induction,

Rank(MfA
i,`′

) = 2|[i,`
′]|/2 and Rank(MfA

`′+1,j
) = 2|[`

′+1,j]|/2.

By (4.1), similarly to (4.2), we have

MfA
i,`′f

A
`′+1,j

= MfA
i,`′
⊗MfA

`′+1,j
.

So, since |[i, `′]|+ |[`′ + 1, j]| = 2m,

Rank(MfA
i,`′f

A
`′+1,j

) = Rank(MfA
i,`′

) · Rank(MfA
`′+1,j

) = 2m.

Write fA
i,j as

fA
i,j = ωi,`′,jf

A
i,`′f

A
`′+1,j +

(
(1 + A(xi)A(xj))f

A
i+1,j−1 +

∑
` 6=`′

ωi,`,jf
A
i,`f

A
`+1,j

)
︸ ︷︷ ︸

f ′

,
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where, by (4.1), the variable ωi,`′,j does not occur in f ′. So,

Rank(MfA
i,j

) ≥ Rank(MfA
i,`′f

A
`′+1,j

).

Therefore, since Rank(MfA
i,j

) ≤ 2m,

Rank(MfA
i,j

) = 2m.

4.4 Proof of Separation

In this section we prove the following theorem.

Theorem 4.4. Let n ∈ N be an integer. Let X = {x1, . . . , x2n} and W = {ωi,`,j}i,`,j∈[2n] be two sets of

variables. Let f be the polynomial over the field F and the two sets of variables X and W defined in

Section 4.1. Then

1. Let Φ be a multilinear arithmetic formula over the field F and the two sets of variables X and W
computing f . Then

|Φ| ≥ nΩ(log(n)).

2. There exists a syntactically multilinear arithmetic circuit over the field F and the two sets of vari-

ables X and W of depth O(log2(n)) and of size poly(n) computing f .

Proof. We prove the two properties separately.

1. Denote by G = F(W) the field of rational functions over the field F and the set of variables W .

We think of Φ as an arithmetic formula over the field G and over the set of variables X. By

Theorem 4.2, it follows that f is of full rank. So, by Theorem 4.1,

|Φ| ≥ nΩ(log(n)).

2. The definition of f gives a syntactically multilinear arithmetic circuit of size poly(n) computing f

(recall that the degree of f is O(n3)). So, by Theorem 3.1, there exists a syntactically multilinear

arithmetic circuit of depth O(log2(n)) and size poly(n) computing f .
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