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Abstract

We consider the problem of delegating computation, where the delegator doesn’t even know
the input to the function being delegated, and runs in time significantly smaller than the input
length.

For example, consider the setting of memory delegation, where a delegator wishes to delegate
her entire memory to the cloud. The delegator may want the cloud to compute functions on this
memory, and prove that the functions were computed correctly. As another example, consider
the setting of streaming delegation, where a stream of data goes by, and a delegator, who cannot
store this data, delegates this task to the cloud. Later the delegator may ask the cloud to
compute statistics on this streaming data, and prove the correctness of the computation. We note
that in both settings the delegator must keep a (short) certificate of the data being delegated,
in order to later verify the correctness of the computations. Moreover, in the streaming setting,
this certificate should be computed in a streaming manner.

We construct both memory and streaming delegation schemes. We present non-interactive
constructions based on the (standard) delegation scheme of Goldwasswer et. al. [GKR08]. These
schemes allow the delegation of any function computable by an L-uniform circuit of low depth
(the complexity of the delegator depends linearly on the depth). For memory delegation, we
rely on the existence of a polylog PIR scheme, and for streaming, we rely on the existence of a
fully homomorphic encryption scheme.

We also present constructions based on the CS-proofs of Micali. These schemes allow the
delegation of any function in P. However, they are interactive (i.e., consists of 4 messages), or
are non-interactive in the Random Oracle Model.

1 Introduction

The problem of delegating computation considers a scenario where one party, the delegator, wishes
to delegate the computation of a function f to another party, the worker. The challenge is that
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the delegator may not trust the worker, and thus it is desirable to have the worker “prove” that
the computation was done correctly. Obviously, verifying this proof should be easier than doing
the computation.

This concept of “outsourcing” computation received a lot of attention in recent years, partly due
to the increasing interest in cloud computing, where the goal is to outsource all the computational
resources to a (possibly untrusted) “cloud”. There are several reasons why the client (or delegator)
may not trust the cloud, and thus would like to receive proofs for the correctness of the computation.
For example, the cloud may have an incentive to return incorrect answers. Such an incentive may
be a financial one, if the real computation requires a lot of work, whereas computing incorrect
answers requires less work and is unlikely to be detected by the client. Moreover, in some cases,
the applications outsourced to the cloud may be so critical that the delegator wishes to rule out
accidental errors during the computation.

In order to ensure that the worker (or the cloud) performed the computation correctly, we would
like the worker to prove this to the delegator. Of course, it is essential that the time it takes to
verify the proof is significantly smaller than the time needed to actually run the computation. At
the same time, the running time of the worker carrying out the proof should also be reasonable —
comparable to the time it takes to do the computation.

The problem of delegating computation has been studied excessively (see Section 1.2 for an
overview on previous work). However, most previous work on delegation allow the delegator to run
in time polynomial in the input size, as long as this runtime is significantly smaller than the time
it takes to do the computation. For example, when delegating the computation of a function f
that runs in time T and has inputs of size n, typically the desired runtime of the delegator is
poly(n, log T ) and the desired runtime of the worker is poly(T ).

In this work, we want the delegator to run in time that is even smaller than the input size n.
Namely, we don’t allow the delegator even to read the input! At first, this requirement may seem
unreasonable and unachievable. So, let us start by motivating this requirement with two examples.

Memory delegation. Suppose that Alice would like to store all her memory in the cloud. The
size of her memory may be huge (for example, may include all the emails she ever received).
Moreover, suppose she doesn’t trust the cloud. Then, every time she asks the cloud to carry out
some computation (for example, compute how many emails she has received from Bob during the
last year), she would like the answer to be accompanied by a proof that indeed the computation
was done correctly. Note that the input to these delegated functions may be her entire memory,
which can be huge. Therefore, it is highly undesirable that Alice runs in time that is proportional
to this input size. More importantly, Alice doesn’t even hold on to this memory anymore, since
she delegated it to the cloud.

Thus, in a memory delegation scheme, a delegator delegates her entire memory to the cloud,
and then may ask the could to compute functions of this memory, and expects the answers to be
accompanied by a proof. Note that in order to verify the correctness of these proofs, the delegator
must save some short certificate of her memory, say a certificate of size polylog(n), where n is the
memory size. The proofs should be verifiable very efficiently; say, in time polylog(n, T ), where T is
the time it takes to compute the function. Moreover, Alice should be able to update her memory
efficiently.
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Streaming delegation. Suppose that there is some large amount of data that is streaming by,
and suppose that a user, Alice, wishes to save this data, so that later on she will be able to com-
pute statistics on this data. However, Alice’s memory is bounded and she cannot store this data.
Instead, she wishes to delegate this to the cloud. Namely, she asks the cloud to store this streaming
data for her, and then she asks the cloud to perform computation on this data. As in the case of
memory delegation, in order to later verify the correctness of these computations, Alice must save
some short certificate of this streaming data. As opposed to the setting of memory delegation, here
the certificate should be computed (and updated) in a streaming manner.

The settings of memory delegation and streaming delegation are quite similar. In both settings
Alice asks the cloud to store a huge object (either her memory or the streaming data). There are
two main differences between the two: (1) In the setting of streaming delegation, the certificates
and updates must be computed in a streaming manner. Thus, in this sense, constructing streaming
delegation schemes may be harder than constructing memory delegation schemes. Indeed, our
streaming delegation scheme is more complicated than our memory delegation scheme, and proving
soundness in the streaming setting is significantly harder than proving soundness in the memory
setting. (2) In the setting of streaming delegation, the memory is updated by simply adding
elements to it. This is in contrast to the setting of memory delegation, where the memory can be
updated in arbitrary ways, depending on the user’s needs. However, in the memory setting, we
allow the delegator to use the help of the worker when updating her certificate (or secret state),
whereas in the streaming setting we require that the delegator updates her certificate on her own.
The reason for this discrepancy, is that in the memory setting the delegator may not be able to
update her certificate on her own, since she may want to update her memory in involved ways (such
as, erase all emails from Bob). On the other hand, in the streaming setting, it seems essential that
the delegator updates her certificate on her own, since in this setting the data may be streaming
by very quickly, and there may not be enough time for the delegator and worker to interact during
each update.

1.1 Our Results

We construct both memory delegation and streaming delegation schemes. The memory delegation
scheme consists of an offline phase, where the delegator D delegates her memory x ∈ {0, 1}n to a
worker W. This phase is non-interactive, where the delegator sends a single message, which includes
her memory content x to the worker W. The runtime of both the delegator and the worker in the
offline phase is poly(n), where n is the memory size. At the end of this phase, the delegator saves
a short certificate σ of her memory, which she will later use when verifying delegation proofs.

The streaming delegation scheme, on the other hand, doesn’t have such an offline phase. In the
streaming setting, we consider the scenario where at each time unit t a bit xt is being streamed.
The delegator starts with some secret state (or certificate) σ0, and at time unit t+ 1 she uses her
secret state σt and the current bit xt+1 being streamed, to efficiently update her secret state from
σt to σt+1.

In both settings, each time the delegator D wants the worker W to compute a function f(x),
they run a delegation protocol, which we denote by Compute(f). The memory delegation scheme
also has an Update protocol, where the delegator D asks the worker W to update her memory and
to help her update her secret state σ. The latter can be thought of as a delegation request, and
the guarantees (in term of runtime and communication complexity) are similar to the guarantees
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of the Compute protocol.
In the streaming setting, the delegator updates her secret state on her own in time polylog(N),

where N is an upper bound on the length of the stream. Namely, the update function, that takes
as input a certificate σt and a bit xt+1, and outputs a new certificate σt+1, can be computed in
time polylog(N).

We present two memory and streaming delegation protocols. The first are non-interactive
(i.e, Compute(f) consists of two messages, the first sent by the delegator and the second sent by
the worker). They are based on the non-interactive version of the delegation protocol of Gold-
wasser et. al. [GKR08, KR09], denoted by GKR (though are significantly more complicated than
merely running GKR). As in GKR, the efficiency of the delegator depends linearly on the depth
of the circuit being delegated. Our second memory and streaming delegation protocols are interac-
tive (i.e., Compute(f) consists of four messages). These schemes are based on CS-proofs of Micali
[Mic94], and allow for efficient delegation of all functions in P.

In what follows we state our theorems formally. We refer the reader to Section 6 for the formal
definition of a memory delegation scheme, and to Section 8 for the formal definition of a streaming
delegation scheme.

Theorem 1 (Memory Delegation) Assume the existence of a poly-log PIR scheme(as defined
in Definition 5), and assume the existence of a collision resistant hash family. Let F be the class of
all L-uniform poly-size boolean circuits. Then there exists a non-interactive (2-message) memory
delegation scheme mDel, for delegating any function f ∈ F . The delegation scheme, mDel has the
following properties, for security parameter k.

• The scheme has perfect completeness and negligible (reusable) soundness error.

• The delegator and worker are efficient in the offline stage; i.e., both the delegator and the
worker run in time poly(k, n).

• The worker is efficient in the online phase. More specifically, it runs in time poly(k, S)
during each Compute(f) and Update(f) operation, where S is the size of the L-uniform circuit
computing f . The delegator runs in time poly(k, d) during each Compute(f) and Update(f)
operation, where d is the depth1 of the L-uniform circuit computing f .2

In particular, assuming the existence of a poly-logarithmic PIR scheme, and assuming the existence
of a collision resistent hash family, we obtain a memory delegation scheme for L-uniform NC
computations, where the delegator D runs in time poly-logarithmic in the length of the memory.

Theorem 2 (Streaming Delegation) Let k be a security parameter, and let N be a parameter
(an upper bound on the length of the stream). Let F be the class of all L-uniform poly-size boolean
circuits. Assume the existence of a fully-homomorphic encryption scheme secure against poly(N)-
size adversaries. Then there exists a non-interactive (2-message) streaming delegation scheme sDelF
for F with the following properties.

• sDelF has perfect completeness and negligible reusable soundness error.

1We assume that d ≥ logn.
2Thus, for every constant c ∈ N, if we restrict the depth of f to be at most kc, then the delegator is considered

efficient.
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• D updates her secret state in time polylog(N), per data item.

• In the delegation protocol, when delegating a function f ∈ F computable by an L-uniform
circuit of size S and depth d, the delegator D runs in time poly(k, d, logN), and the worker
W runs in time poly(k, logN,S).

In particular, assuming the existence of a fully-homomorphic encryption scheme secure against ad-
versaries of size poly(N), we obtain a streaming delegation scheme for L-uniform NC computations,
where the delegator D runs in time poly-logarithmic in the length of data stream.

Remark. We note that the property we needed from the GKR protocol is that the verifier does
not need to read the entire input in order to verify, but rather only needs to access a single
random point in the low-degree extension of the input. (We refer the reader to Section 3.3 for
the definition and properties of a low-degree extension.) We note that the CS-proof delegation
scheme of Micali [Mic94], for delegating the computation of (uniform) Turing machines, also has
the property that verification can be done by only accessing a few random points in the low-degree
extension of the input, assuming the underlying PCP is a PCP of Proximity [BSGH+05, DR06].

Indeed using this delegation scheme, we get a memory delegation scheme and a streaming
delegation scheme for all of P. Using this scheme, the Compute(f) protocol is interactive (i.e., it is
a 4-message protocol). The runtime of the delegator is polylog(T ) and the runtime of the worker is
poly(T ), where T is the runtime of the Turing machine computing the function f .3 Furthermore,
the memory delegation scheme relies only on the existence of a collision resistant hash family,
without the need of a poly-log PIR scheme.

Theorem 3 (Interactive Memory Delegation) Assume the existence of a collision resistant
hash family. Then there exists a memory delegation scheme mDel, for delegating any function
computable by a polynomial-time Turning machine. The delegation scheme, mDel has the following
properties, for security parameter k.

• The scheme has perfect completeness and negligible (reusable) soundness error.

• The delegator and worker are efficient in the offline stage; i.e., both the delegator and the
worker run in time poly(k, n).

• The worker is efficient in the online phase. More specifically, it runs in time poly(k, T )
during each Compute(f) and Update(f) operation, where T is an upper-bound on the running
time of f . The delegator runs in time poly(k, log T ) during each Compute(f) and Update(f)
operation.

• Both Compute(f) and Update(f) operations consist of 4 message exchanges.

Theorem 4 (Interactive Streaming Delegation) Let k be a security parameter, and let N be
a parameter (an upper bound on the length of the stream). Let F be the class of all functions
computable by a polynomial-time Turning machine. Assume the existence of a fully-homomorphic
encryption scheme secure against poly(N)-size adversaries. Then there exists a streaming delega-
tion scheme sDelF for F with the following properties.

3We assume that T ≥ n.
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• sDelF has perfect completeness and negligible reusable soundness error.

• D updates her secret state in time polylog(N), per data item.

• In the delegation protocol, when delegating a function f ∈ F computable in time T , the dele-
gator D runs in time poly(k, logN, log T ), and the worker W runs in time poly(k, logN,T ).
The delegation protocol consists of 4 message exchanges.

We note that in the Random Oracle Model (ROM) [BR97], the delegation scheme of Micali
is non-interactive. This yields a non-interactive memory delegation scheme and a non-interactive
streaming delegation scheme, for delegating all functions in P, in the ROM.

1.2 Previous Work

Various delegation protocols have been proposed in the literature. Some provide delegation proto-
cols that are sound against any cheating worker, whereas others provide delegation protocols that
are secure only against computationally bounded cheating worker (i.e., arguments as opposed to
proofs). Some of these protocols are interactive, whereas others are non-interactive. We survey
some of these results below, however, we emphasize that in all these solutions, the delegator runs
in time that is (at least) linear in the input size, and thus do not apply to our settings of memory
delegation or streaming delegation.

Interactive proofs. The celebrated IP=PSPACE Theorem [LFKN92, Sha92] yields interactive
proofs for any function f computable in polynomial space, with a verifier (delegator) running in
polynomial time. Thus, the IP=PSPACE protocol can be seen as a delegation protocol for languages
in PSPACE. However, the complexity of the prover (worker) is only bounded by polynomial space
(and hence exponential time). This theorem was refined and scaled down in [FL93] to give verifier
complexity poly(n, s) and prover complexity 2poly(s) for functions f computable in time T and space
s, on inputs of length n. Note that the prover complexity is still super-polynomial in T , even for
computations that run in the smallest possible space, namely s = O(log T ).

The prover complexity was recently improved by Goldwasser et al. [GKR08] to poly(T, 2s), which
is poly(T ) when s = O(log T ). More generally, Goldwasser et al. [GKR08] give interactive proofs for
computations of small depth d (i.e. parallel time). For these, they achieve prover complexity poly(T )
and verifier complexity poly(n, d, log T ). (This implies the result for space-bounded computation
because an algorithm that runs in time T and space s can be converted into one that runs in time
poly(T, 2s) and depth d = O(s2).) However, if we do not restrict to computations of small space or
depth, then we cannot use interactive proofs. Indeed, any language that has an interactive proof
with verifier running time (and hence communication) TV can be decided in space poly(n, TV ).

Interactive arguments. Interactive arguments [BCC88] (aka computationally sound proofs [Mic00])
relax the soundness condition to be computational. Namely, instead of requiring that no prover
strategy whatsoever can convince the verifier of a false statement, we instead require that no com-
putationally feasible prover strategy can convince the verifier of a false statement. In this model,
Kilian [Kil92] and Micali [Mic00] gave constant-round protocols with prover complexity poly(T, k)
and verifier complexity poly(n, k, log T ) (where k is the security parameter), assuming the existence
of collision-resistant hash functions [BG02].
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Toward non-interactive Solutions. This possibility of efficient non-interactive arguments was
suggested by Micali [Mic00], who showed that non-interactive arguments with prover complexity
poly(T, k) and verifier complexity poly(n, k, log T ) are possible in the Random Oracle Model (the
oracle is used to eliminate interaction a la Fiat–Shamir [FS86]). Heuristically, one might hope
that by instantiating the random oracle with an appropriate family of hash functions, we could
obtain a non-interactive solution to delegating computation: first the delegator (or a trusted third
party) chooses and publishes a random hash function from the family, and then, the proofs are
completely non-interactive (just one message from the prover to the verifier). However, the Random
Oracle Heuristic is known to be unsound in general [CGH04] and even in the context of Fiat–
Shamir [Bar01, GK03]. Thus, despite extensive effort, the existence of efficient non-interactive
arguments remains a significant open problem in complexity and cryptography.

There has been some recent progress in reducing the amount of interaction needed. Using a
transformation of Kalai and Raz [KR09], the GKR delegation protocol [GKR08] can be converted
into a 2-message argument (assuming the existence of single-server private-information retrieval
(PIR) schemes). However, like the interactive proofs of [GKR08], this solution applies only to
small-depth computations, as the verifier’s complexity grows linearly with the depth.

Very recently, Gennaro, Gentry, and Parno [GGP10], and the followup work of Chung, Kalai,
and Vadhan [CKV10], gave a 2-message delegation scheme for arbitrary functions. However, these
constructions have an offline phase, where the delegator invests time poly(T, k) and computes a
secret state (T is the time it takes to compute the function, and k is the security parameter). In
the online phase, the delegator’s running time is reduced to poly(n, k, log T ) for an input of length
n, and the worker’s complexity is poly(T, k). Thus, the delegator’s large investment in the offline
phase can be amortized over many executions of the online phase to delegate the computation of
f on many inputs. Their online phase is not completely non-interactive, but rather consists of two
messages. However, in many applications, two messages will be necessary anyway, as the delegator
may need to communicate the input x to the worker.

We remark that one main drawback of these works [GGP10, CKV10] is that soundness is only
guaranteed as long as the adversarial worker does not learn whether the delegator accepted or
rejected the proofs.

In another followup work, Applebaum, Ishai, and Kushilevitz [AIK10] also consider the of-
fline/online setting, but focus on efficient solutions for one-time delegation (i.e., the online phase
can only be executed one time). They also consider the case when the delegation functions are
represented as arithmetic circuits.

PCPs and MIPs. The MIP=NEXP Theorem [BFL91] and its scaled-down version by Babai et
al. [BFLS91] yield multi-prover interactive proofs and probabilistically checkable proofs for time T
computations with a prover running in time poly(T ) and a verifier running in time poly(n, log T ),
exactly as we want. However, using these for delegation require specialized communication models
— either 2 non-communicating provers, or a mechanism for the prover to give the verifier ran-
dom access to a long PCP (of length poly(T )) that cannot be changed by the prover during the
verification.

Streaming Interactive Proofs. Recently, Cormode, Thaler, and Yi [CTY10] considered stream-
ing interactive proofs, which is a strengthening of interactive proofs where the input is given to
the verifier in a streaming manner and the verifier is restricted to have sub-linear (ideally, poly-
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logarithmic) space. They observed that both the GKR protocol [GKR08] and universal argu-
ments [BG02] can be modified to yield efficient streaming interactive proofs/arguments.

Streaming interactive proofs are closely related to streaming delegation. The main difference
is that streaming interactive proofs correspond to one-time streaming delegation, whereas in our
streaming delegation model, the delegator is allowed to delegate as many computations to the
worker as she want. Indeed, the GKR protocol is also the starting point of our construction of
streaming delegation scheme, and the main effort is to make the scheme reusable.

2 Overview of Our Constructions

In what follows we present the high-level overview of our constructions. For more elaborate
overviews, we refer the reader to Section 7.1 for an overview of our memory delegation scheme, and
to Section 9.1 for an overview of our streaming delegation scheme.

2.1 Overview of our Memory Delegation Scheme

The starting point of this work is the observation of Goldwasswer et. al. [GKR08], that their
delegation protocol can be verified very efficiently (in time sub-linear in the input size), if the
delegator has oracle access to the low-degree extension of the input x (we refer the reader to
Section 3.3 for the definition of a low-degree extension). Moreover, as observed by [GKR08], the
delegator needs to access this low-degree extension LDEx at a single point z, which depends only
on the random coin tosses of the delegator.

This observation immediately gives rise to a memory delegation scheme with one-time sound-
ness: The delegator’s secret state will be (z,LDEx(z)). Then, she will use this secret state in order
to verify computation using the GKR protocol. As was argued by Goldwasswer et. al., this indeed
works if the delegator runs the delegation protocol once. However, the soundness crucially relies on
the fact that the delegator’s secret state is indeed secret, and if the delegator uses this state more
than once, then soundness breaks completely.

One idea, following the idea of Gennaro et. al. [GGP10], is to use a fully homomorphic encryption
(FHE) scheme to encrypt all the communication, in order to hide the secret state. This indeed
works if the worker does not learn whether the delegator accepts or rejects his proofs. However,
if the worker does learn the verdict of the delegator, then there are known attacks that break
soundness.

In the streaming setting, we follow this approach, and we succeed in overcoming this problem,
and construct a scheme that is sound even if the worker does learn the verdict of the delegator. We
could follow this approach in the memory delegation setting as well. However, for several reasons,
we choose to take a different approach. First, the approach above relies on the existence of an FHE
scheme, whereas our memory delegation scheme relies on the existence of a poly-logarithmic PIR
scheme (see Definition 5), arguably a more reasonable assumption. Second, the approach above
results with the delegator having a secret state, whereas in our memory delegation scheme, the state
of the delegator is public. Finally, the construction and proof of the memory delegation scheme is
simpler.

In our approach, instead of having (z,LDEx(z)) as the delegator’s secret state, the delegator
keeps a tree-commitment of the entire LDEx as her secret state (see Section 3.5 for the definition of
a tree-commitment). Namely, she chooses a random hash function h from a collision-resistant hash
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family, and keeps (h, Th(LDEx)) as her state. In addition to giving the worker her memory x, she
also gives him the hash function h. We stress that her state is not secret, which makes the proof
of security significantly simpler than that in the streaming setting (where the delegator’s state is
secret).

Very roughly speaking, when the delegator wishes to delegate the computation of a function f ,
they execute Compute(f) by simply running the (non-interactive) delegation protocol GKR(f).
Recall that at the end of the GKR protocol the delegator needs to verify the value of LDEx(r) for a
random r. However, she doesn’t have x, since it was delegated to the prover, and all she has is the
state (h, Th(LDEx)). So, rather than computing the value of LDEx(r) on her own, the worker will
reveal this value, by sending the augmented path in the Merkle tree corresponding to the leaf r.

Unfortunately the high-level description given above is a gross oversimplification of our actual
scheme, and there are several technical issues that complicate matters. We elaborate on these in
Section 2.3.

We mention that when the delegator wishes to update her memory from x to g(x), she needs
to update her secret state from (h, Th(LDEx)) to (h, Th(LDEg(x))).

4 However, she cannot perform
this operation on her own, since she does not have x. Instead she will delegate this computation
to the worker, by requesting a Compute(g′) operation, where g′(x) = Th(LDEg(x)).

2.2 Overview of our Streaming Delegation Scheme

Our streaming delegation scheme is similar to our memory delegation scheme described above, and
the main difference is in the way the certificate is generated and updated, and in the way the worker
reveals the value LDEx(r).

Generating and updating the certificate. Recall that in the memory delegation scheme, the
certificate of the delegator D consists of a tree-commitment to the low-degree extension of her
memory x. Namely, her certificate is (h, Th(LDEx)), where h is a collision resistant hash function.
Note that this certificate cannot be updated in a streaming manner, since any change to x changes
the low-degree extension LDEx almost everywhere.

Instead, in the streaming setting, we replace the tree commitment with an “algebraic commit-
ment”, which has the property that it can be updated efficiently when new data items arrive. The
resulting certificate is a random point in the low-degree extension of the stream x; i.e., (z,LDEx(z))
for a random point z. This certificate is efficiently updatable, if we assume some upper-bound N
on the size of the stream, and we take parameters H,F,m of the low-degree extension, such that

|H| = polylog(N), m = θ

(
logN

log logN

)
, |F| = poly(|H|) (1)

(this follows from Proposition 6).
As in the memory delegation scheme, at the end of each delegation protocol, the delegator needs

to verify the value of LDEx(r) at a random point r. In the memory delegation scheme this was done
using a Reveal protocol where the worker reveals the augmented path of the leaf r in the Merkle
tree-commitment of LDEx. In the streaming setting, the Reveal protocol is totally different, since

4Actually, for technical reasons she will need to choose a fresh hash function h′ ← H during each Update. We
discard this technical issue here.
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the delegator cannot compute the tree-commitment of LDEx. Unfortunately, unlike in the memory
delegation scheme, in the streaming setting constructing a reusable and sound reveal protocol is
highly non-trivial.

The Reveal protocol. Our starting point is a basic reveal protocol Reveal1 described in Figure 1.
Note that the soundness of Reveal1 relies on the secrecy of the certificate σ. Namely, assuming
that W does not know the point z, it is not hard to see, by the Schwartz-Zippel Lemma, that an
adversarial worker can cheat with probability at most d/|F|, where d is the (total) degree of LDEx.

Reveal1 protocol: D stores a secret state σ = (z,LDEx(z)), where x ∈ {0, 1}N and z is a random
point in Fm, and wants to learn the value of LDEx(s) from W.

• D sends to W the line `sz that passes through the points s and z. More specifically,
D chooses two random points α1, α2 ← F, and defines `s,z to be the line that satisfies
`s,z(α1) = z and `s,z(α2) = s.

• W returns a univariate polynomial p : F→ F, which is the polynomial LDEx restricted to
the line `s,z (i.e., p = LDEx|`s,z).

• D checks whether p(α1) = LDEx(z), and if so accepts the value p(α2) = LDEx(s). Other-
wise, she rejects.

Figure 1: Reveal1 protocol

However, note that the Reveal1 protocol is not reusable. Suppose that D uses the above reveal
protocol to learn the value of LDEx on two random points s, s′ ∈ Fm. From the two executions, an
adversarial worker W∗ receives two lines `s,z and `s′,z, and can learn the secret point z by taking the
intersection of the two lines. Once W∗ learns z, W∗ can easily cheat by returning any polynomial
p∗ that agrees with LDEx only on point z but disagrees on the remaining points.

As observed by Gennaro et. al. [GGP10], a natural way to protect the secret point z, is to
run the above Reveal protocol under a fully-homomorphic encryption (FHE) scheme. Namely, D
generates a pair of keys (pk, sk) for a FHE (Gen,Enc,Dec,Eval), and sends pk and an encrypted
line ˆ̀

s,z = Encpk(`s,z) to W, who can compute the polynomial p = LDEx|`s,z homomorphically
under the encryption. Indeed, by the semantic security of FHE, an adversarial worker W∗ cannot
learn any information from D’s message ˆ̀

s,z. This indeed makes the protocol reusable provided
that W∗ does not learn the decision bits of D, as proved in [GGP10, CKV10].

However, since the decision bit of D can potentially contain one bit information about the secret
point z, it is not clear that security holds if W∗ learns these decision bits. In fact, for both of the
delegation schemes of [GGP10, CKV10], which use FHE to hide the delegator D’s secret state,
there are known attacks that learn the whole secret state of D bit-by-bit from D’s decision bits.

Fortunately, we are able to show that a variant of the Reveal1 protocol described in Figure 2 is
reusable even if W∗ learns the decision bits of D. The main difference between Reveal1 and Reveal2
is that in Reveal2, the delegator D uses a random two-dimensional affine subspace instead of a line,
and uses an FHE to mask the entire protocol.

We prove that no efficient adversarial W∗ can learn useful information about the secret point
z from the Reveal2 protocol. We note that the proof of the above statement is highly non-trivial,
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Reveal2 protocol: D stores a secret state σ = (z,LDEx(z)), where x ∈ {0, 1}N and z is a random
point in Fm, and wants to learn the value of LDEx(s) from W.

• D does the following.

1. Generate a pair of keys (pk, sk)← Gen(1k) for a fully homomorphic encryption scheme
FHE.

2. Choose a random two-dimensional affine subspace Ss,z ⊂ Fm that contains the points
s and z. More specifically, choose two random points α1, α2 ← F2 and let Ss,z ⊂ Fm be
a random two-dimensional affine subspace that satisfies Ss,z(α1) = z and Ss,z(α2) = s.

3. Send Ŝs,z ← Encpk(Ss,z) and pk to W.

• W homomorphically computes the two-variate polynomial p = LDEx|Ss,z under the FHE
(denote the resulting ciphertext p̂), and sends p̂ to D.

• D decrypts and checks whether p(α1) = LDEx(z), and if so accepts the value p(α2) =
LDEx(s).

Figure 2: Protocol Reveal2

and is one of the main technical difficulties in this work. Informally, the proof first uses Lemma 16,
which claims that the ciphertext Ŝs,z and the decision bit b of D (which depend on the strategy of
W ∗) do not give too much information about Ss,z to W∗. In other words, the random subspace Ss,z
still has high (pseudo-)entropy from the point of view of W∗. Then it uses an information-theoretic
argument to argue that a random point z in a sufficiently random (with high entropy) subspace
Ss,z is statistically close to a random point in Fm, which implies that W∗ does not learn useful
information about z. We refer the reader to Section 4 for the techniques developed in order to
prove the reusable soundness.

The Field Size. Recall that by Schwartz-Zippel Lemma, an adversarial worker can cheat with
probability at most d/|F|, where d is the (total) degree of LDEx. Recall that in our setting of
parameters:

|H| = polylog(N), m = θ

(
logN

log logN

)
, |F| = poly(|H|).

Thus, a cheating worker can cheat (and more importantly, obtain information about the secret z)
with probability d/|F| = O(1/polylog(N)), which is not low enough.

The idea is to reduce the cheating probability to negligible by simply increasing the field size to
be super-polynomial. However, we cannot increase the field size in the GKR protocol, since it will
increase the complexity of the worker. Instead, we use an extension field F̃ of F, of super-polynomial
size, only in the certificate and the Reveal protocol, but run the GKR protocols as before. Namely,

the secret state is σ = (z,LDEF̃,H,m(z)) where z ← F̃m, The GKR protocol is run exactly as before
with the parameters (H,F,m).

11



2.3 Additional Technicalities

The high-level description given above (in Sections 2.1 and 2.2) is a gross oversimplification of our
actual schemes, and there are several technical issues that complicate matters.

Recall that in the overview above, we claimed that Compute(f) merely runs GKR, in addition to
a Reveal protocol which helps the delegator verify the GKR protocol.5 There are several technical
reasons why this actually does not work. In what follows, we explain what are the main technical
problems with this simple idea, and we give the highlevel idea of how to overcome these problems.

1. The first technicality (the easiest one to deal with), is that the GKR delegation scheme does
not have a negligible soundness error. In our setting, especially in the setting of memory del-
egation, it is very important to have negligible soundness. The reason is that if the soundness
is non-negligible, then a cheating worker may cheat in the update procedure of the memory
delegation scheme (which is also being delegated). The problem is that if a worker cheats
even once in an update procedure, all soundness guarantees are mute from that point on. So,
we really need the soundness error to be negligible. In order to reduce the soundness error, we
will run the GKR protocol in parallel u times (for any parameter u such that 1/2u = ngl(k),
where k is the security parameter). We denote the u-fold parallel repetition of GKR by
GKR(u). As a result the worker will need to reveal to u random points in the low-degree
extension: LDEx(r1), . . . ,LDEx(ru).

2. The second technical point is more subtle. In the offline stage, when the delegator computes
the tree commitment Th(LDEx), she needs to choose the parameters H,F,m for the low-degree
extension. The typical choice for these parameters is:

|H| = polylog(n), |F| = poly(|H|), m = O

(
log n

log log n

)
,

where n = |x|. When delegating the computation of a function f , the worker and delegator
run GKR(u)(f) and need to verify LDEx(ri) = vi for random points r1, . . . , ru. However,
here the parameters of the low-degree extension LDEx depend on the depth d of the circuit
computing f . Namely, looking at the parameters given in [GKR08] (see Theorem 8), the
parameters of the low-degree extension are

|H′| = θ(d · log n), m′ = θ

(
log n

log d

)
, |F′| = poly(|H′|).

Therefore, the worker cannot simply execute the Reveal protocols of the memory delegation
or the streaming delegation. In the memory setting, the tree commitment is w.r.t. parameters
H,F,m whereas the delegator needs to verify LDEF′,H′,m′

x (ri) = vi. In the streaming setting,
the secret state of the delegator is (z,LDEF,H,m

x (z)), as opposed to (z,LDEF′,H′,m′
x (z)), thus

the Reveal protocol described in Section 2.2 doesn’t work.

We get around this technical problem by delegating the functions gri(x) , LDEF′,H′,m′
x (ri).

Luckily, these functions can be computed by a poly-size circuit of depth at most log2 n, assum-
ing the delegated function f is of poly-size (see Proposition 6). We delegate the computation

5The Reveal protocol in the memory setting is totally different from the Reveal protocol in the streaming setting.
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of each of these gri using GKR(u) to ensure negligible soundness. Thus, finally the worker
will need to reveal to u2 points in LDEx (u points for each gri).

6

3. The final technical difficulty is that all these algorithms need to run in parallel, since we
want our final delegation schemes to be non-interactive (i.e., to consist of only two messages).
Typically, there is no problem in running several two-message protocols in parallel [BIN97,
CHS05]. However, in our case, the delegator uses a common secret input in these protocols.
Namely, the delegator uses secret randomness r1, . . . , ru ∈ (F′)m′ in the parallel repetition of
the delegation protocol GKR(f) which ends with her needing to verify that LDEF′,H′,m′

x (ri) =
vi for every i ∈ [u]. In addition she uses these same ri’s in the delegation protocols GKR(gri).
Moreover, at the end of each of the GKR(gri) protocols, the delegator needs to verify that
LDEF,H,m

x (zi,j) = wi,j for random points zi,1, . . . , zi,u ∈ Fm. Finally, they also run a reveal
protocol for each zi,j , denoted by Reveal(zi,j).

We note that the protocol GKR(f) (resp. GKR(g)) is not sound if the ri’s (resp. zi,j ’s) are
a priori known to the worker. To ensure that soundness still holds even if we run all these
algorithms in parallel, we mask parts of the delegator’s message using a PIR scheme or an
FHE scheme, and then we claim that the soundness error remains negligible. To this end,
we use our parallel composition lemma (Lemma 24), which roughly states that if a set of
protocols Π1, . . .Πt are executed in parallel, and the verifiers use the same common private
randomness p in all these protocols, then the soundness remains if the messages of the verifiers
hide this common secret randomness p. (We refer the reader to Section 5 for details.)

3 Preliminaries

3.1 Computational Private Information Retrieval (PIR)

Definition 5 Let k be the security parameter and N be the database size. Let QPIR and DPIR be
probabilistic circuits, and let RPIR be a deterministic circuit. We say that PIR = (QPIR,DPIR,RPIR)
is a poly-logarithmic private information retrieval scheme if the following conditions are satisfied:

1. (Size Restriction:) QPIR and RPIR are of size ≤ poly(k, logN), and DPIR is of size ≤
poly(k,N). The output of QPIR and DPIR is of size ≤ poly(k, logN) .

2. (Perfect Correctness:)7 ∀N, ∀k, ∀database x = (x1, x2, . . . , xN ) ∈ {0, 1}N , and ∀i ∈ [N ],

Pr
[
RPIR(k,N, i, (q, s), a) = xi|(q, s)← QPIR(k,N, i), a← DPIR(k, x, q)

]
= 1

3. (User Privacy:) ∀N, ∀k, ∀i, j ∈ [N ], and ∀adversary A of size at most 2k
3
,∣∣Pr[A(k,N, q) = 1|(q, s)← QPIR(k,N, i)]− Pr[A(k,N, q) = 1|(q, s)← QPIR(k,N, j)]

∣∣ ≤ 2−k
3
.

6We note that there are several ways to improve efficiency, such as thinking of (gr1 , . . . , gru) as one function.
However, for the sake of simplicity of exposition, we focus on the simplest (rather than most efficient) solution.

7For simplicity, we only define perfect correctness. However, usually a PIR scheme allows a negligible probability
of error.
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3.2 Fully Homomorphic Encryption

A public-key encryption scheme E = (KeyGen,Enc,Dec) is said to be fully homomorphic if it is
associated with an additional polynomial-time algorithm Eval, that takes as input a public key
pk, a ciphertext x̂ = Encpk(x) and a circuit C, and outputs, a new ciphertext c = Evalpk(x̂, C),
such that Decsk(c) = C(x), where sk is the secret key corresponding to the public key pk. It is
required that the size of c = Evalpk(Encpk(x), C) depends polynomially on the security parameter
and the length of C(x), but is otherwise independent of the size of the circuit C. We also require
that Eval is deterministic, and the the scheme has perfect correctness (i.e. it always holds that
Decsk(Encpk(x)) = x and that Decsk(Evalpk(Encpk(x), C)) = C(x)). For security, we simply require
that E is semantically secure.

In a recent breakthrough, Gentry [Gen09] proposed a fully homomorphic encryption scheme
based on ideal lattices. Following this, Dijk, Gentry, Halevi and Vaikuntanathan [vDGHV10]
proposed an alternative construction based on the extended GCD assumption. In these schemes, the
complexity of the algorithms (KeyGen,Enc,Dec) depends linearly on the depth d of the circuit C,
where d is an upper bound on the depth of the circuit C that are allowed as inputs to Eval. However,
under the additional assumption that these schemes are circular secure (i.e., remain secure even
given an encryption of the secret key), the complexity of these algorithms are independent of C.

Our streaming memory delegation scheme relies on the existence of a fully homomorphic scheme.
For the sake of simplicity, we assume that the FHE scheme has perfect completeness. We note that
the FHE schemes of both [Gen09] and [vDGHV10] indeed have perfect completeness.

3.3 Low Degree Extension

Let H be an extension field of GF[2], and let F be an extension field of H (and in particular, an
extension field of GF[2]), where |F| = poly(|H|).8 We always assume that field operations can be
performed in time that is poly-logarithmic in the field size. Fix an integer m ∈ N. In what follows,
we define the low degree extension of an n-element string (w0, w1, . . . , wn−1) ∈ Fn with respect to
F,H,m, where n ≤ |H|m.

Fix α : Hm → {0, 1, . . . , |H|m − 1} to be any (efficiently computable) one-to-one function. In
this paper, we take α to be the lexicographic order of Hm. We can view (w0, w1, . . . , wn−1) as a
function W : Hm → F, where

W (z) =

{
wα(z) if α(z) < n,

0 otherwise.
(2)

A basic fact is that there exists a unique extension of W into a function W̃ : Fm → F (which
agrees with W on Hm; i.e., W̃ |Hm ≡W ), such that W̃ is an m-variate polynomial of degree at most
|H| − 1 in each variable. Moreover, as is formally stated in the proposition below, the function W̃
can be expressed as

W̃ (t1, . . . , tm) =

n−1∑
i=0

β̃i(t1, . . . , tm) · wi,

8Usually, when doing low degree extensions, F is taken to be an extension field of GF[2], and H is simply a subset
of F (not necessarily a subfield). In this work, following the work of [GKR08], we take H to be a subfield. However,
all that is actually needed is that it is of size 2` for some ` ∈ N.
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where each β̃i : Fm → F is an m-variate polynomial, that depends only on the parameters H,F,
and m (and is independent of w), of size poly(|H|,m) and degree |H| − 1 in each variable.

The function W̃ is called the low degree extension of w = (w0, w1, . . . , wn−1) with respect to
F,H,m, and is denoted by LDEF,H,m

w . We omit the index of F,H,m when the context is clear. Also,
sometimes we use W̃ for simplicity.

Proposition 6 There exists a Turing machine that takes as input an extension field H of GF[2],9

an extension field F of H, and integer m. The machine runs in time poly(|H|,m, log |F|) and
outputs the unique 2m-variate polynomial β̃ : Fm × Fm → F of degree |H| − 1 in each variable
(represented as an arithmetic circuit of degree |H| − 1 in each variable), such that for every w =
(w0, w1, . . . , wn−1) ∈ Fn, where n ≤ |H|m, and for every z ∈ Fm,

W̃ (z) =
∑
p∈Hm

β̃(z, p) ·W (p),

where W : Hm → F is the function corresponding to (w0, w1, . . . , wn−1) as defined in Equation (2),
and W̃ : Fm → F is its low degree extension (i.e., the unique extension of W : Hm → F of degree
at most |H| − 1 in each variable).

Moreover, β̃ can be evaluated in time poly(|H|,m, log |F|). Namely, there exists a Turing ma-
chine that runs in time poly(|H|,m, log |F|) that takes as input parameters H,F,m (as above), and
a pair (z, p) ∈ Fm × Fm, and outputs β̃(z, p). Furthermore, there exists a circuit for evaluating β̃
in the above sense with size poly(|H|,m, log |F|) and depth poly(m, log |F|).

Corollary 7 There exists a Turing machine that takes as input an extension field H of GF[2], an
extension field F of H, an integer m, a sequence w = (w0, w1, . . . , wn−1) ∈ Fn such that n ≤ |H|m,
and a coordinate z ∈ Fm. It runs in time n ·poly(|H|,m, log |F|), and outputs the value W̃ (z), where
W̃ is the unique low-degree extension of w (with respect to H,F,m). Furthermore, there exists a
circuit for the same task with size n · poly(|H|,m, log |F|) and depth poly(m, log |F|).

3.4 Delegation Schemes

In recent years, as cloud computing is gaining popularity, there have been many attempts to
construct efficient delegation schemes. Loosely speaking, a delegation scheme is a protocol between
a delegator D and a worker W, where the delegator asks the worker to do some computation,
and prove that he indeed did the computation correctly. Typically, a delegation scheme is with
respect to a class of functions F , and the requirement is that on input (f, x) where f ∈ F and x
is in the domain of f , the worker outputs f(x), along with a proof (which may be interactive or
non-interactive). The requirement is that the worker runs in time that is polynomial in the size
of f (when representing f as a circuit), and the delegator runs in time that is significantly shorter
than the size of f (as otherwise, it would simply compute f(x) on its own). In this work, we use
the 2-message delegation protocol of [GKR08], which in turn uses a round reduction technique
from [KR09]. The protocol has the following guarantees.

9Throughout this work, when we refer to a machine that takes as input a field, we mean that the machine is given
a short (poly-logarithmic in the field size) description of the field, that permits field operations to be computed in
time that is poly-logarithmic in the field size.
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Theorem 8 [GKR08, KR09] Assume the existence of a poly-logarithmic PIR scheme, as defined
in Definition 5. Let k be the security parameter, and let F be the family of functions computable
by L-space uniform boolean circuits of size S and depth d ≥ logS. Then, there exists a delegation
protocol for F with the following properties.

1. The worker runs in time poly(S, k) and the delegator runs in time n · poly(k, d), where n is
the length of the input.

2. The protocol has perfect completeness and soundness s ≤ 1
2 (can be made arbitrarily small),

where soundness is against any cheating worker of size ≤ 2k
3
.

3. The protocol consists of two messages, with communication complexity d·poly(k, logS). More-
over, the first message sent by the delegator depends only on her random coin tosses, and is
independent of the statement being proved.

4. If the delegator is given oracle access to the low-degree extension of x, rather than being
given the input x itself, then it runs in time poly(k, d), and the protocol still has all the
properties described above, assuming the parameters H,F,m of the low-degree extension satisfy
the following:

|H| = θ(d · log n), m = θ

(
log n

log d

)
, |F| = poly(|H|)

where poly is a large enough polynomial.10 Moreover, the delegator queries the low-degree
extension of x at a single point, which is uniformly random (over his coin tosses).

Throughout this paper, we denote this protocol by GKR.

3.5 Merkle Tree Commitments

Definition 9 Let h : {0, 1}k × {0, 1}k → {0, 1}k be a hash function. A Merkle tree commitment of
a sting x ∈ {0, 1}n w.r.t. h, denoted by Th(x), is a k-bit string, computed as follows: The input x
is partitioned into m = dn/ke blocks x = (B1, . . . , Bm), each block of size k.11 These blocks are
partitioned into pairs (B2i−1, B2i), and the hash function h is applied to each pair, resulting in m/2
blocks. Then, again these m/2 blocks are partitioned into pairs, and the hash function h is applied
to each of these pairs, resulting with m/4 blocks. This is repeated logm times, resulting in a binary
tree of hash values, until one block remains. This block is Th(x).

4 Our Leakage Lemma

In this section, we define some machinery that is needed in order to prove the soundness of our
streaming delegation scheme in Section 9. The main contribution of this section is a leakage
lemma (Lemma 22), which essentially says that given an encryption (pk,Encpk(S)) of a random
2-dimensional subspace S ← Fm×2, and given any additional arbitrary (not necessarily efficient) bit
of leakage b = L(pk,Encpk(S)), then a random vector z ← S is computationally indistinguishable
from a truly random vector u← Fm. We formally state and prove this lemma in Section 4.2.

10The larger poly is, the smaller the soundness becomes.
11For simplicity, we assume that m is a power of 2.
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This lemma plays a central role in analyzing the (reusable) soundness of our streaming delegation
scheme. In this scheme, the delegator has a secret state, and we need to prove that a cheating worker
cannot learn any information about her secret state, even after running several delegation protocols
with the delegator, and learning the bit of whether she accepted or rejected. In the soundness proof,
this verdict bit is thought of as a leakage bit.

In the proof of Lemma 22, which is our main leakage lemma, we use another leakage lemma
(Lemma 16), which is formally stated below and proved in Section 4.1. This leakage lemma roughly
says that conditioning on a short leakage cannot decrease the conditional pseudo-entropy of a
random variable too much.

In order to even state these lemmas formally, we first need to define the notion of conditional
pseudo-entropy. There are several possible notions of conditional pseudo-entropy with subtle differ-
ences. In the following, we present our definition along with discussions on other possible notions.
We start with the information-theoretic notion of min-entropy and conditional min-entropy.

Definition 10 (Min-Entropy) Let X be a distribution over finite support. The min-entropy of
X is defined as

H∞(X) = min
x∈supp(X)

log
1

Pr[X = x]
= − log

(
max

x∈supp(X)
Pr[X = x]

)
.

Definition 11 (Conditional Min-Entropy) Let (X,C) be a joint distribution over finite sup-
port. The (worst-case) conditional min-entropy of X conditioned on C is defined as

H∞(X|C) = min
(x,c)∈supp(X,C)

log
1

Pr[X = x|C = c]
= min

c∈supp(C)
H∞(X|C=c).

The above worst-case definition may seem too stringent as it requires X to have good min-
entropy conditioned on every possible c ∈ supp(C). Several relaxed definitions have been used.
For example, Renner and Wolf [RW05] defined a smooth version of the above definition, where X
has ε-smooth conditional min-entropy n conditioned on C if (X,C) is ε-close in statistical distance
to a distribution (X ′, C ′) with H∞(X ′|C ′) = n. Such a slackness will be implicitly allowed in
our definition of conditional pseudo-entropy. On the other hand, Dodis, Ostrovsky, Reyzin, and
Smith [DORS08] defined an average-case version of conditional min-entropy, where Havg

∞ (X|C) =
− log(Ec←C [maxx{Pr[X = x|C = c]}]).12

In the computational setting, Hsiao, Lu, and Reyzin [HLR07] defined conditional HILL entropy.
Informally, X has high conditional HILL entropy conditioned on C if there exists a random variable
Y = Y (C) such that (1) (X,C) is computationally indistinguishable from (Y,C), and (2) Y has
high average conditional min-entropy conditioned on C (a la [DORS08]). In this work, we use a
slightly different definition. The only difference between our definition and the [HLR07] definition
is that we use the worse-case version of conditional min-entropy, as opposed to the average-case
version. We work with the worst-case definition since it is more convenient for our application
and makes the analysis simpler. For convenience, we refer to our notion also as conditional HILL
entropy.

12We note that the two notions of [RW05] and [DORS08] are equivalent up to an additive log(1/ε) term. A detailed
discussion can be found in Appendix B of [DORS08].
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Definition 12 (Conditional HILL Entropy) Let (X,C) be a joint distribution over a finite
support, and let n, s ∈ N and ε ∈ (0, 1) be parameters. We say that X conditioned on C
has conditional HILL entropy at least n against circuits of size s with advantage ε, denoted by
HHILL
ε,s (X|C) ≥ n, if there exists a distribution Y = Y (C) jointly distributed with C such that (1)

H∞(Y |C) ≥ n, and (2) (X,C) and (Y,C) are computationally indistinguishable against circuits of
size s with advantage ε.13

In the asymptotic setting where there is a security parameter k, we say HHILL(X|C) ≥ n, if for
every constant c ∈ N, HHILL

k−c,kc(X|C) ≥ n.

Remark 13 Note that in the above definition, we only consider distributions (Y,C) that are
indistinguishable from (X,C), i.e., we do not allow modifying the distribution of C. An alternative
weaker definition is to consider all distributions (X ′, C ′) that are indistinguishable from (X,C). The
two definitions may not be equivalent in general.14 We emphasize that the more stringent definition
seems more relevant for cryptographic applications, since C is often some leakage information on
X learned by an adversary. We further emphasize that we do not claim that our definition is the
“right” one, and we only use it as a tool to prove our main result.

Our goal is to show that if X has high conditional HILL entropy conditioned on C (say,
HHILL(X|C) ≥ n) and B = B(X,C) is an arbitrary, but short (say, one bit) leakage informa-
tion on X, then after further conditioning on B, X still has high conditional HILL entropy (i.e.,
HHILL(X|C,B) ≥ n− t for some small t). When B can be efficiently generated from (X,C), this is
very easy to prove. However, proving this for general B = B(X,C) is not trivial. Indeed, in order
to prove this, we need to further strengthen our definition of conditional HILL entropy.

Definition 14 (Conditional HILL Entropy w.r.t. Samplable Distributions) Let k be a se-
curity parameter. For a finite distribution (X,C), we say HHILL(X|C) ≥ n w.r.t. samplable distri-
butions if there exists a distribution Y = Y (C) such that the following holds.

1. H∞(Y |C) ≥ n.

2. (X,C) and (Y,C) are computationally indistinguishable.

3. There exists a poly(k) time algorithm Smp that on input c ∈ supp(C), outputs a sample
y ← (Y |C=c).

Remark 15 This definition differs from Definition 12 in two ways. First, we require the distri-
butions Y |C=c to be efficiently samplable for every c. Second, we require a single distribution
Y = Y (C) such that (X,C) and (Y,C) are indistinguishable for any poly(k)-size distinguisher;
whereas in Definition 12, we fix the size kc of distinguisher first and require a distribution Y = Y (C)
such that (X,C) and (Y,C) are indistinguishable for kc-size distinguishers.

Lemma 16 Let k be a security parameter and n, `, t be any parameters such that n ≤ poly(k),
` = O(log k), and t = ω(log k). Let (X,C) be a joint distribution over {0, 1}∗ × {0, 1}∗ of poly(k)
length. If HHILL(X|C) ≥ n w.r.t. samplable distributions, then for any distribution B = B(X,C)
over {0, 1}`, we have

HHILL(X|C,B) ≥ n− t.
13Note that the ε slackness is inherent in the above HILL-type definition.
14We note that the two definitions are equivalent when the length of C is short (≤ O(log k)).
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The lemma says that further conditioning on O(log k) bits can only decrease the conditional
HILL entropy by ω(log k). Note that an upper bound of O(log k) on the length of B is necessary,
since the pseudo-entropy of X could be generated from merely ω(log k) bits of real entropy. For
example, X can be the output of a pseudo-random generator (PRG) with sub-exponential stretch,
and B can be the whole seed, if the length limit on B is relaxed. On the other hand, we do not
know whether the samplability assumption on Y (C) is necessary or not. Moreover, we do not know
whether we inherently need ω(log k) entropy loss, or whether one can prove ` = O(log k) entropy
loss.

Before presenting the proof of the lemma, we first compare it with previous results of [DP08,
RTTV08]. Dziembowski and Pietrzak [DP08] (implicitly in Lemma 3), and Reingold, Trevisan,
Tulsiani, and Vadhan [RTTV08] (Theorem 1.3, phrased in a different language of “dense model
theorem”) proved that if HHILL(X) ≥ n and E is an event that occurs with probability p ≥
1/poly(k), then after conditioning on the event E, HHILL(X|E) ≥ n − log(1/p).15 This implies a
special case of our Lemma 16 where C is not present: Suppose HHILL(X) ≥ n and B = B(X) is of
length O(log k), then HHILL(X|B) ≥ n− ω(log k).

In contrast, we consider a more general setting where a (possibly long) prior leakage information
C is presented, which may information-theoretically determine X. Indeed, in our setting, C is an
encryption of X and hence determines X.

4.1 Proof of Lemma 16

4.1.1 Preliminaries

We proceed to present the proof of Lemma 16. The first part of our proof follows the same
line as previous results [DP08, RTTV08], where we convert (conditional) HILL-type entropy to
(conditional) “metric-type” entropy, defined by Barak, Shaltiel, and Wigderson [BSW03]. On the
other hand, the second part of our proof is more involved than previous results. We start by
defining a conditional version of metric entropy.

Conditional Metric Entropy. Loosely speaking, metric entropy is weaker than HILL entropy
and is defined by switching the order of quantifiers in the definition of HILL entropy. Recall that
the HILL definition says that X has HILL entropy n if there exists a random variable Y with
min-entropy n such that every small distinguisher D fails to distinguish between X and Y . In
contrast, the definition of metric entropy requires that for every small distinguisher D, there exists
a random variable Y (which may depend on D) with min-entropy n such that D fails to distinguish
between X and Y .

Definition 17 (Conditional Metric Entropy) Let (X,C) be a joint distribution over a finite
support. Let n, s ∈ N and ε ∈ (0, 1) be parameters. We say X conditioned on C has condi-
tional metric entropy at least n against randomized circuits of size s with advantage ε, denoted by
Hmetric
ε,s (X|C) ≥ n, if for every randomized circuit D of size at most s, there exists a distribution

Y = Y (C) jointly distributed with C such that H∞(Y |C) ≥ n, and

|Pr[D(X,C) = 1]− Pr[D(Y,C) = 1]| ≤ ε.
15This is also pointed out by Fuller and Reyzin [FR11].
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In the asymptotic setting where there is a security parameter k, we say Hmetric(X|C) ≥ n, if it
holds that Hmetric

k−c,kc(X|C) ≥ n for every constant c ∈ N.

We emphasize that, except for the natural generalization to the conditional version, our defini-
tion differs from that of [BSW03] in that we allow the distinguishers to be randomized, as opposed
to deterministic.16 The reason is that, as pointed out by Vadhan [Vad10] and Dziembowski and
Pietrzak [DP08], the result of [BSW03] does not hold when deterministic distinguishers are consid-
ered, and randomized distinguishers should be used instead.17

Lemma 18 (Theorem 5.2 of [BSW03], generalized) Let (X,C) be a joint distribution over
{0, 1}m1×{0, 1}m2, and let ε, δ > 0, s, k ∈ N be parameters. If Hmetric

ε,s (X|C) ≥ n, then HHILL
ε+δ,s′(X|C) ≥

n for s′ = s ·O(δ2/(m1 +m2)).

Lemma 18 is proved in exactly the same way as the proof in [BSW03], where one uses von-
Neuman’s min-max theorem [Neu28] to switch the order of quantifiers. For the sake of completeness,
we give a proof sketch below.
Proof. (sketch) For the sake of contradiction, assume that HHILL

ε+δ,s′(X|C) < n. This means that
for every distribution Y = Y (C) with H∞(Y |C) ≥ n, there exists a size s′ distinguisher D that
distinguishes (X,C) from (Y,C) with advantage ≥ ε + δ. Applying min-max theorem, we obtain
the following statement. There exists a distribution D over size-s′ distinguishers such that for every
Y = Y (C) with H∞(Y |C) ≥ n, we have∣∣∣∣ E

D←D
[D(X,C)]− E

D←D
[D(Y,C)]

∣∣∣∣ ≥ ε+ δ.

Now, it can be shown by standard Chernoff and union bounds that there exists a set S =
{D1, . . . , DO((m1+m2)/δ2)} of circuits in supp(D) such that for every (z, c) ∈ {0, 1}m1 × {0, 1}m2 ,∣∣∣∣ E

D←D
[D(z, c)]− E

Di←S
[Di(z, c)]

∣∣∣∣ ≤ δ/2.
Since this holds point-wise, it follows that for every Y = Y (C) with H∞(Y |C) ≥ n,∣∣∣∣ E

Di←S
[Di(X,C)]− E

Di←S
[Di(Y,C)]

∣∣∣∣ ≥ ε.
We obtain a contradiction by observing that choosing a random circuit Di ← S and outputting
Di(z, c) can be implemented by a size s = s′ ·O((m1 +m2)/δ2) randomized circuit.

As a corollary, the lemma implies that conditional HILL entropy and conditional metric entropy
are equivalent in the asymptotic setting.

Corollary 19 Let k be a security parameter. For every joint distribution (X,C) of polynomially
bounded length |(X,C)| ≤ poly(k), we have HHILL(X|C) = Hmetric(X|C).

16Note that, for HILL-type entropy, randomized distinguishers and deterministic distinguishers are essentially
equivalent, since one can turn a randomized distinguisher to a deterministic one by fixing the “best” coins that
preserves the advantage for distinguishing two distributions. In contrast, for the case of metric entropy, it is unclear
whether randomized distinguishers can be converted into deterministic ones since the distinguisher needs to work for
all distributions.

17[DP08], instead of using randomized distinguishers, use deterministic [0, 1]-valued distinguishers. We choose to
use randomized circuit distinguishers since we find them to be more natural than circuits with [0, 1]-valued output.
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4.1.2 Formal Proof of Lemma 16

Proof. Suppose for contradiction that there exists a distribution B = B(X,C) such that
HHILL(X|C,B) < n− t. By Corollary 19, this implies that Hmetric(X|C,B) < n− t. Namely, there
exists some constant c0 ∈ N and a randomized circuit D of size kc0 such that for every distribution
Z = Z(C,B) with H∞(Z|C,B) ≥ n− t,

|Pr[D(X,C,B) = 1]− Pr[D(Z,C,B) = 1]| > k−c0
def
= ε. (3)

On the other hand, the fact that HHILL(X|C) ≥ n w.r.t. sampleable distributions implies that
there exists a distribution Y = Y (C) such that (1) H∞(Y |C) ≥ n, (2) (X,C) and (Y,C) are
computationally indistinguishable, and (3) there exists a PPT algorithm Smp that on input c ∈
supp(C), outputs a sample y ← (Y |C=c).

For notational convenience, let

pc,b(z) , Pr[D(z, c, b) = 1].

We construct a polynomial-size (randomized) circuit D′ that distinguishes between (X,C) and
(Y,C), as follows. On input (w, c) which comes from either (X,C) or (Y,C), D′ does the following:

1. Use the sampling algorithm Smp to sample s = (4 ·2`/ε) independent samples of yi ← Y |C=c.

2. For every b ∈ {0, 1}`, compute estimators for pc,b(w) and pc,b(yi), denoted by p̃c,b(w) and
p̃c,b(yi), respectively. More specifically, runD(w, c, b) (resp., D(yi, c, b)) with fresh randomness
t , Θ(`(log2 k)(log s)/ε2) times, and let p̃c,b(w) (resp., p̃c,b(yi)) be the average of the outputs.

3. If there exists some b ∈ {0, 1}` such that

p̃c,b(w) ≥ max
yi
{p̃c,b(yi)}+ ε/4,

then output 1. Otherwise, output 0.

Note that D′ can be implemented by a randomized circuit of size poly(k, 2`, 1/ε) = poly(k).
We also note that the parameter t = Θ(`(log2 k)(log s)/ε2) defined in Step 2 is chosen so that, with
overwhelming probability, all estimators have error less than ε/8, i.e.,

|p̃c,b(w)− pc,b(w)| < ε/8, and |p̃c,b(yi)− pc,b(yi)| < ε/8. (4)

This follows from a standard Chernoff bound,18 which says that a single estimator has error less
than ε/8 with probability 1−e−Ω(tε2) = 1−e−Ω(`(log2 k)(log s)). Since there are 2` · (s+1) estimators,
by a union bound, the probability that all estimators have error less than ε/8 is at least

1− e−Ω(`(log2 k)(log s)) · 2` · (s+ 1) ≥ 1− ngl(k).

We proceed to prove the following two claims, which jointly imply that D′ distinguishes between
(X,C) and (Y,C) with advantage ε/4− ngl, and thus completes the proof.

18We use the following basic version of Chernoff bound: Let A1, . . . , An be i.i.d. boolean random variables with
Pr[Ai = 1] = p, and let ε ∈ (0, 1) be a parameter. Then

Pr

[∣∣∣∣( 1

n

∑
Ai

)
− p
∣∣∣∣ ≥ ε] ≤ e−Ω(nε2).
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Claim 20 Pr[D′(Y,C) = 1] ≤ ε/4.

Claim 21 Pr[D′(X,C) = 1] ≥ ε/2− ngl.

Proof of Claim 20. Note that when (w, c)← (Y,C), then w and yi’s are i.i.d. copies of (Y |C=c).
Hence, for every b ∈ {0, 1}`,

Pr[pc,b(w) > max
yi
{pc,b(yi)}] < 1/s.

By a union bound,

Pr[∃b∗ ∈ {0, 1}` s.t. pc,b∗(w) > max
yi
{pc,b∗(yi)}] < 2`/s = ε/4.

Denote by EGood the event that Equation (4) holds; i.e., the event that all estimators have error
less than ε/8. Recall that we chose the parameter so that event EGood holds with overwhelming
probability (i.e., probability 1− ngl(k)). Note that if event EGood holds,

p̃c,b(w) ≥ max
yi
{p̃c,b(yi)}+ ε/4 ⇒ pc,b(w) > max

yi
{pc,b(yi)}

Therefore,

Pr[D′(Y,C) = 1]

= Pr

[
∃b ∈ {0, 1}` s.t. p̃c,b(w) ≥ max

yi
{p̃c,b(yi)}+ ε/4

]
≤ Pr

[(
∃b ∈ {0, 1}` s.t. p̃c,b(w) ≥ max

yi
{p̃c,b(yi)}+ ε/4

)
∧ EGood

]
+ Pr[¬EGood]

≤ Pr

[
∃b ∈ {0, 1}` s.t. pc,b(w) > max

yi
{pc,b(yi)}

]
+ ngl(k)

≤ ε/4 + ngl(k).

Proof of Claim 21. We first argue that we can assume, without loss of generality, that for every
Z with H∞(Z|C,B) ≥ n− t,

Pr[D(X,C,B) = 1]− Pr[D(Z,C,B) = 1] > ε. (5)

The reason is the following: Suppose for the sake of contradiction that there exists some distribution
Z with H∞(Z|C,B) ≥ n− t such that

Pr[D(X,C,B) = 1]− Pr[D(Z,C,B) = 1] > ε,

and yet there exists another distribution Z ′ with H∞(Z ′|C,B) ≥ n− t such that

Pr[D(Z ′, C,B) = 1]− Pr[D(X,C,B) = 1] > ε.

Then one can construct a distribution Z ′′, by taking an appropriate convex combination of Z and
Z ′, such that H∞(Z ′′|C,B) ≥ n− t and Pr[D(X,C,B) = 1] = Pr[D(Z ′′, C,B) = 1], contradicting
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Equation (3).

For every pair (c, b) ∈ supp(C,B), let Hcb be a set of the “heaviest” 2n−t points w that max-
imize pcb(w). Consider the distribution Z+ = Z+(C,B) such that Z+|(C,B)=(c,b) is the uniform
distribution over Hc,b. Note that H∞(Z+|C,B) = n− t. For every (c, b) ∈ supp(C,B), define

p+
c,b , Pr[D(Z+|C=c,B=b, c, b) = 1].

Using these notations, Equation (5) implies that

E
(x,c,b)←(X,C,B)

[pc,b(x)]− E
(c,b)←(C,B)

[p+
c,b] ≥ ε.

By a Markov argument, with probability at least ε/2 over (x, c, b)← (X,C,B),

pc,b(x)− p+
c,b ≥ ε/2.

We next prove that in this case, Pr[D′(x, c) = 1] ≥ 1− ngl(k), which implies that

Pr[D′(X,C) = 1] ≥ (1− ngl(k)) · (ε/2) ≥ ε/2− ngl(k).

Fix any x, c, b such that pc,b(x)− p+
c,b ≥ ε/2. It remains to prove that

Pr[D′(x, c) = 1] ≥ 1− ngl(k).

Note that by definition, pcb(w) ≤ p+
c,b for every w /∈ Hcb. Recall that we choose the parameter so

that with overwhelming probability, all estimators have error at most ε/8. As before, denote by
EGood the event that indeed all estimators have error at most ε/8.

Pr[D′(x, c) = 1]

≥ Pr[p̃cb(x) ≥ max
yi
{p̃cb(yi)}+ ε/4]

≥ Pr[(p̃cb(x) ≥ max
yi
{p̃cb(yi)}+ ε/4) ∧ EGood]− Pr[¬EGood]

≥ Pr[pcb(x) ≥ max
yi
{pcb(yi)}+ ε/2]− ngl(k)

≥ Pr[∀i, yi /∈ Hcb]− ngl(k)

≥ (1− ngl(k))− ngl(k)

≥ 1− ngl(k),

where the second-to-last inequality follows from the fact that |Hcb| = 2n−t and H∞(Y |C=c) ≥ n.

4.2 Main Leakage Lemma

Throughout this section, we consider the following setting. Let k ∈ N be a security parameter. Let
F be a finite field of size q ≥ 2log2 k, and let E = (Gen,Enc,Dec) be any semantic secure public-key
encryption scheme. Let m ≤ poly(k) be a parameter. We define the following random variables.
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1. Let S ∈R Fm×2 be a random m-by-2 matrix representing a random 2-dimensional linear
subspace

{a1v1 + a2v2 : a1, a2 ∈ F},

where v1, v2 are columns of S.

2. Let (pk, sk)← Gen(1k), and let Ŝ = Encpk(S).

3. Let L : {0, 1}∗ → {0, 1} be an arbitrary (randomized, not necessarily efficient) leakage function
that maps (Ŝ, pk) to one bit, and let b = L(Ŝ, pk).

4. Let u← Fm be a random point in Fm, and z be a random point in S. Specifically, z = S ·a =
a1v1 + a2v2 where a = (a1, a2) is a uniformly random vector in F2.

Our goal in this section is to prove the following lemma.

Lemma 22 In the above setting, the distributions (z, Ŝ, pk, b) and (u, Ŝ, pk, b) are computationally
indistinguishable.

The lemma says that computationally, the encryption (Ŝ, pk) together with an arbitrary leak-
age bit b does not leak any information about z. Note that information-theoretically, (Ŝ, pk) does
contain information about z, since we know that z is in S. Also note that when b is not present,
semantic security readily implies that (z, Ŝ, pk) and (u, Ŝ, pk) are computationally indistinguish-
able. However, when the bit b is present, the proof becomes highly non-trivial, and in particular,
our proof makes use of Lemma 16.

Proof. We first consider the distribution (S, Ŝ, pk). By the semantic security, (S, Ŝ, pk) is
computationally indistinguishable from (S′, Ŝ, pk), where S′ is an i.i.d. copy of S. Note that this
implies

HHILL(S|Ŝ, pk) ≥ 2m · log q

w.r.t. sampleable distributions. By Lemma 16,

HHILL(S|Ŝ, pk, b) ≥ (2m · log q)− t,

where we set t = (log q)/4 = ω(log k). Namely, for every constant c ∈ N, there exists a distribution
T = T (Ŝ, pk, b) such that:

1. H∞(T |Ŝ, pk, b) ≥ (2m · log q)− t, and

2. (S, Ŝ, pk, b) and (T, Ŝ, pk, b) are computationally indistinguishable against circuits of size kc

with advantage k−c.

Note that z ← S is efficiently sampleable, say, using a circuit of size m3 = poly(k) . Therefore,
the distributions (zS , S, Ŝ, pk, b) and (zT , T, Ŝ, pk, b), where zS ← S and zT ← T are random points
in S and T respectively, are computationally indistinguishable against circuits of size (kc − m3)
with advantage k−c.

Clearly, we can remove S and T from the distributions while preserving the indistinguishabil-
ity. Namely, the distributions (zS , Ŝ, pk, b) and (zT , Ŝ, pk, b) are computationally indistinguishable
against circuits of size (kc −m3) with advantage k−c.
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We next claim that for any distribution T = T (Ŝ, pk, b) over Fm×2, with

H∞(T |Ŝ, pk, b) ≥ (2m · log q)− t,

the distributions (zT , Ŝ, pk, b) and (u, Ŝ, pk, b) are statistically close (i.e., have distance ngl(k)). This
would imply that (z, Ŝ, pk, b) and (u, Ŝ, pk, b) are computationally indistinguishable against circuits
of size (kc −m3) with advantage k−c + ngl(k). Observing that the above argument holds for all
constants c ∈ N, we conclude that (z, Ŝ, pk, b) and (u, Ŝ, pk, b) are computationally indistinguish-
able, as desired.

Thus, it remains to prove that indeed (zT , Ŝ, pk, b) and (u, Ŝ, pk, b) are statistically close. To
this end, we use Lemma 23 below, which states that if a distribution T over Fm×2 has min-entropy
at least (2m · log q) − t and a = (a1, a2) ← F2, then z = T · a is ε-close to uniform, where
ε ≤ 2m · q−1/4 = ngl(k).

Recall that according to our definition of conditional min-entropy (which is a worse-case def-
inition), H∞(T |Ŝ, pk, b) ≥ (2m · log q) − t implies that H∞(T |(Ŝ,pk,b)=σ) ≥ (2m · log q) − t for

every σ ∈ supp(Ŝ, pk, b). Thus, Lemma 23 implies that conditioned on any (Ŝ, pk, b) = σ, the
random variable zT is ngl(k)-close to uniform. This clearly implies (zT , Ŝ, pk, b) and (u, Ŝ, pk, b) are
statistically close, as desired.

Lemma 23 Let X be a distribution over Fm×2 with H∞(X) ≥ (2m · log q) − (log q)/4, and a =
(a1, a2)← F2. Then (X · a) ∈ Fm is ε-close to uniform with ε ≤ 2m · q−1/4.

We defer the proof of Lemma 23 to Appendix A.

5 Parallel Composition Lemma

In this section we give soundness guarantees for a protocol Π that executes several protocols
Π1, . . . ,Πt in parallel, where in each Πi = 〈Pi, Vi〉 the verifier Vi uses the same private random-
ness p. Such a parallel composition lemma will be used to prove soundness both of our memory
delegation scheme (in Section 7) and the streaming delegation scheme (in Section 9). For the sake
of simplicity, we focus on 2-message protocols, though our results hold for protocols with arbitrary
number of messages.

Let Π1,Π2, . . . ,Πt be protocols, where each Πi = 〈Pi, Vi〉 is a 2-message protocol (where the first
message is sent by the verifier Vi and the second message is sent by the prover Pi) for proving xi ∈ Li.
Let Π = 〈P, V (p)〉(x1, . . . , xt) be the two-message protocol that runs the protocols Π1, . . . ,Πt in
parallel, where each Πi is run with the input xi, and each verifier Vi uses the same private random
coin tosses p (in addition to some independent private randomness which each Vi may use). V
accepts (x1, . . . , xt) if and only if at least one of the Vi’s accepts xi ∈ Li. Thus, Π(x1, . . . , xt)
should be thought of as a proof that there exists i ∈ [t] such that xi ∈ Li.

We say that a protocol Πi has soundness error si if for every false statement x /∈ Li, and for
every efficient cheating prover P ∗,

Pr
p

[Vi accepts the interaction 〈P ∗, Vi(p)〉(x)] ≤ si,
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where the randomness is over p and over any additional random coins that Vi may use.
In what follows we prove that if in each protocol Πi, the verifier’s messages are computationally

indistinguishable for all different p’s (of length at most poly(k)), then the soundness of all the Πi’s
implies the soundness of Π.

Lemma 24 Let k be the security parameter and t ≤ poly(k). Suppose that a protocol Π consists of
a parallel composition of Π1,Π2, . . . ,Πt of the above form, and suppose that for each i the following
two properties hold:

1. Πi has soundness error si.

2. Let {MVi(xi,p)} be the distribution of Vi’s first message, where xi is the common input of Vi
and Pi, and p is the the common private random coins of V1, . . . , Vt. Then, for all xi, p, p

′ (of
length bounded by poly(k)), the distributions {MVi(xi,p)} and {MVi(xi,p′)} are computationally
indistinguishable.

Then Π has soundness error at most
∑

i∈[t] si + ngl(k).

Proof. Suppose for the sake of contradiction that there exists an efficient (parallel) cheating
prover P ∗ and a false input x = (x1, . . . , xt) (i.e., an input x such that for every i ∈ [t], xi /∈ Li)
such that P ∗ succeeds in convincing the verifier V running Π to accept x with probability

ε >
∑
i∈[t]

si + α(k),

for some non-negligible function α. We argue that there exists a coordinate i ∈ [t] and an efficient
cheating prover P ∗i for the protocol Πi that succeed in convincing Vi to accept the false xi with
probability greater than si + α/t− ngl(k), which contradicts the assumption.

For every i ∈ [t], let Wi be the event that P ∗ successfully cheats on the i’th coordinate in the
protocol Π(x), and define εi , Pr[Wi]. By definition, if P ∗ cheats on Π then at least one Wi holds.
Using the union bound, this implies that

∑
i∈[t] εi ≥ ε.

Now for each i ∈ [t] we define a cheating prover P ∗i for the protocol Πi(xi) with the following
strategy. P ∗i , upon receiving a message MVi(xi,p) from Vi, simulates the interaction between P ∗ and
V by embedding the real message of Vi into the i-th coordinate, and setting the other Vj ’s messages
to be MVj(xj ,0) for j 6= i. Then P ∗i replies what P ∗ does in the i’th coordinate.

Denote the success probability of P ∗i by ε̃i. By the message indistinguishability of {MVj(xj ,0)}
and {MVj(xj ,p)} for j 6= i, we know that ε̃i > εi − ngl(k); otherwise there is a distinguisher that
distinguishes between the distributions {MVk(xk,0)} and {MVk(xk,p)} for some k 6= i (by a standard
hybrid argument).

Thus, ∑
i∈[t]

ε̃i ≥
∑
i∈[t]

εi − t · ngl(k) ≥ ε− ngl(k) ≥
∑
i∈[t]

si + α(k)− ngl(k).

This implies that there exists i such that ε̃i ≥ si +α/t− ngl(k), which contradicts the assumption.

We note that in the streaming delegation and memory delegation schemes, the delegator (veri-
fier) uses an FHE scheme or a PIR scheme to achieve the property that {MVi(xi,p)} and {MVi(xi,p′)}
are computationally indistinguishable. This allows us to make use of Lemma 24.
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6 Memory Delegation Model

In this section, we formally define our memory delegation model. We present our memory delegation
scheme in Section 7.

Definition 25 (Memory Delegation Scheme) Let F ,G be two sets of functions. A memory
delegation scheme for functions in F and updates in G, is an interactive protocol mDelF ,G = 〈D,W〉
between a delegator D and a worker W, of the following form:

1. The scheme mDel consists of two stages: an offline/preprocessing stage and an online stage.
The offline stage is executed only once before the online stage, whereas the online stage can
be executed many times.

2. In the offline stage, both the delegator D and the worker W receive a security parameter 1k

and an input x ∈ {0, 1}n.The worker stores x, and the delegator computes a short (possibly
secret) string σD and stores it for future use.

3. In the online stage, the delegator can interact with the worker via the following two operations.

• A computation operation Compute(f) where both parties take as input a function f ∈ F .
This input is in addition to the inputs that the parties store throughout the delegation
protocol: the security parameter 1k, the current memory content x ∈ {0, 1}n stored only
by the worker W, and the short (possibly secret) string σD stored only by the delegator D.
Then, W proves to D that y = f(x), for some y ∈ {0, 1}∗.
• An update operation Update(g) where both parties take as input a function g : {0, 1}n →
{0, 1}n′ ∈ G. This is in addition to the inputs that the parties store throughout the
delegation protocol: the security parameters 1k, the current memory content x ∈ {0, 1}n
stored only by the worker W, and the short (possibly secret) string σD stored only by the
delegator D. Then W and D interact, where W “helps” D update her secret σD. At the
end of the interaction, if D accepts, she updates her secret to some σ′D and believes that
the stored x has been updated to g(x). Otherwise, she keeps her secret σD (and thinks of
the previous x as unchanged).

At the end of each operation, D sends W a decision bit b ∈ {0, 1} for her acceptance or
rejection.

For a delegation scheme to be meaningful, it needs to have efficiency, completeness and sound-
ness properties, defined below.

Definition 26 (Efficiency) A delegation scheme mDelF ,G has an efficient delegator in the offline
stage if D runs in time poly(k, n) in the offline stage. It has an efficient delegator in the online
stage if D runs in time poly(k) (independent of n) during each operation in the online stage.

A delegation scheme mDelF ,G has an efficient worker if the runtime of W is poly(k, n) during
both the offline stage and during each operation in the online stage, where n is the length of the
delegated memory.

Definition 27 (Completeness) For any sets of functions F ,G, a delegation scheme mDelF ,G =
〈D,W〉 has perfect completeness if for every k, n ∈ N, and for every x ∈ {0, 1}n, the following holds
with probability 1:19 When D and W run the offline stage with input (1k, x), and then run the online

19It has completeness 1− ε if the following holds with probability 1− ε.
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stage polynomially many times with the operations Update(g), for any g ∈ G, and Compute(f), for
any f ∈ F , the delegator D always accepts (i.e., sends W the decision bit 1).

The definition of soundness is more elaborate, and requires defining the following security game.
We emphasize that our soundness definition is reusable in the sense that we require that a (compu-
tationally bounded) cheating worker cannot convince the delegator to accept a wrong statement,
even after interacting with the delegator polynomially many times, and each time learning whether
the delegator accepted or rejected the proof.

One could define security w.r.t. cheating workers of size T (k) for any (possibly super-polynomial)
function T . However, for the sake of simplicity of notation, we define soundness w.r.t. poly-size
cheating workers.

Definition 28 (Reusable Security Game) Let mDelF ,G = 〈D,W〉 be a delegation scheme. For
a security parameter k ∈ N and for a PPT (cheating) worker W∗, the security game GW∗(k) is
defined as follows.

The game starts with the offline stage of mDelF ,G, and is followed by polynomially many rounds
of the online stage.

1. (Initial Phase) W∗(1k) first chooses a parameter n = poly(k) and an input x ∈ {0, 1}n.
Then, D and W∗(1k) run the offline stage on inputs (1k, x).

2. (Learning Phase) At the beginning of each round of the online stage, W∗ can do one of the
following:

(a) Terminate this phase.

(b) Choose a function f ∈ F and interact with D in the online stage with the operation
Compute(f).

(c) Choose a function g ∈ G and interact with D in the online stage with the operation
Update(g).

After each round, if W∗ did not terminate the phase, D sends her decision bit to W∗.

3. (Challenge Phase) If the learning phase is terminated, W∗ chooses a function f ′ ∈ F , and
D and W∗ execute Compute(f ′).

W∗ succeeds in the game GW∗(k) if D accepts a wrong value y′ 6= f ′(x), where x is the latest
updated memory.

Definition 29 (Reusable Soundness) A delegation scheme mDelF ,G = 〈D,W〉 has reusable
soundness error ε if for every k ∈ N and every PPT worker strategy W∗,

Pr[W∗ succeeds in GW∗(k)] ≤ ε(k),

where GW∗(k) is the security game corresponding to mDelF ,G, as defined above. We say that mDelF ,G
is sound if it has a negligible soundness error.
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Remark. We stress that in the soundness definition, we allow the adversary W∗ to learn the
decision bit of the delegator D after each execution of the delegation protocol. This is in contrast
to the two delegation schemes of [GGP10, CKV10], which are only sound if the adversary W∗ does
not learn the decision bit of the delegator D. We elaborate on this point when we discuss the
streaming setting, in Section 8.

In what follows we define the notion of one-time soundness. The reason we need this definition
is that the soundness proof of our memory delegation scheme (in Section 7), consists of two parts.
We first prove that our scheme has one-time soundness, i.e., it is sound assuming the delegation
protocol is executed only once. Then, we argue that the fact that it is one-time sound, implies that
it is also sound from multiple interactions (i.e., has reusable soundness.)

Definition 30 (One-time Security Game and One-time Soundness) Let mDelF ,G = 〈D,W〉
be a delegation scheme. For a security parameter k ∈ N and for a (cheating) worker W∗, the one-
time security game GW∗

1 (k) is defined similarly to the security game in Definition 37, except that
they do not execute the learning phase, and just proceed to the challenge phase directly from the
initial phase.

We say mDelF ,G = 〈D,W〉 has one-time soundness error ε if for every k ∈ N and every
PPT worker strategy W∗,

Pr[W∗ succeeds in GW∗
1 (k)] ≤ ε(k).

We say that mDelF ,G is one-time sound if it has a negligible one-time soundness error.

Theorem 31 (Memory Delegation) Assume the existence of a poly-log PIR scheme (as defined
in Definition 5) and a collision resistant hash function family. Then there exists a non-interactive
(2-message) memory delegation scheme mDel, for delegating any function computable by an L-
uniform poly-size circuit. The delegation scheme, mDel has the following properties, for security
parameter k.

• The scheme has perfect completeness and negligible (reusable) soundness error.

• The delegator and worker are efficient in the offline stage; i.e., both the delegator and the
worker run in time poly(k, n).

• The worker is efficient in the online phase. More specifically, it runs in time poly(k, S)
during each Compute(f) and Update(f) operation, where S is the size of the L-uniform circuit
computing f . The delegator runs in time poly(k, d) during each Compute(f) and Update(f)
operation, where d is the depth of the L-uniform circuit computing f .20

7 Memory Delegation Scheme

In this section, we prove Theorem 31, by constructing a non-interactive memory delegation scheme
with the desired properties.

20Thus, for every constant c ∈ N, if we restrict the depth of f to be at most kc, then the delegator is considered
efficient.
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7.1 Overview of our Memory Delegation Scheme

The initial idea behind our memory delegation scheme, is the observation of Goldwasswer et. al. [GKR08],
that their delegation protocol can be verified very efficiently (in time sub-linear in the input size),
if the delegator has oracle access to the low-degree extension of the input x (we refer the reader to
Section 3.3 for the definition of a low-degree extension). Moreover, as observed by [GKR08], the
delegator needs to access this low-degree extension LDEx at a single point z, which depends only
on the random coin tosses of the delegator.

This observation immediately gives rise to a memory delegation scheme with one-time sound-
ness: The delegator’s secret state will be (z,LDEx(z)). Then, she will use this secret state in order
to verify computation using the GKR protocol. As was argued by Goldwasswer et. al., this indeed
works if the delegator runs the delegation protocol once. However, the soundness crucially relies on
the fact that the delegator’s secret state is indeed secret, and if the delegator uses this state more
than once, then soundness breaks completely.

One idea, following the idea of Gennaro et. al. [GGP10], is to use a fully homomorphic encryption
(FHE) scheme to encrypt all the communication, in order to hide the secret state. This indeed
works if the worker does not learn whether the delegator accepts or rejects his proofs. However,
if the worker does learn the verdict of the delegator, then there are known attacks that break
soundness.

In the streaming setting, we follow this approach, and we succeed in overcoming this problem,
and construct a scheme that is sound even if the worker does learn the verdict of the delegator. We
could follow this approach in the memory delegation setting as well. However, for several reasons,
we choose to take a different approach. First, the approach above relies on the existence of an
FHE scheme, whereas our memory delegation scheme relies on the existence of a poly-logarithmic
PIR scheme, arguably a more reasonable assumption. Second, the approach above results with the
delegator having a secret state, whereas in our memory delegation scheme, the state of the delegator
is public. Finally, the construction and proof of the memory delegation scheme is simpler.

In our approach, instead of having (z,LDEx(z)) as the delegator’s secret state, the delegator
keeps a tree-commitment of the entire LDEx as her secret state (recall the definition of a tree-
commitment in Section 3.5). Namely, she chooses a random hash function h from a collision-
resistant hash family, and keeps (h, Th(LDEx)) as her state. In addition to giving the worker her
memory x, she also gives him the hash function h. Notice that her state is not secret, which makes
the proof of security significantly simpler than that in the streaming setting (where the delegator’s
state is secret).

When the delegator wishes to delegate the computation of a function f , they will execute
Compute(f), by simply running the (non-interactive) delegation protocol GKR(f). Recall that at
the end of the GKR protocol the delegator needs to verify the value of LDEx(r) for a random r.
However, she doesn’t have x, since it was delegated to the prover, and all she has is the state
(h, Th(LDEx)). So, rather than computing the value of LDEx(r) on her own, she will ask the
worker to reveal to this value, by sending the augmented path in the Merkle tree corresponding to
the leaf r.21

When the delegator wishes to update her memory from x to g(x), she will need to update her
secret state from (h, Th(LDEx)) to (h, Th(LDEg(x))). As before, she cannot perform this opera-
tion on her own, and instead she will delegate this computation to the worker, by requesting a

21As we shall see in a few paragraphs, this is an oversimplification, and due to technical reasons, the actual protocol
is more complicated.
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Compute(g′) operation, where g′(x) = Th(LDEg(x)).
Unfortunately the high-level description given above is a gross oversimplification of our scheme,

and there are several technical issues that complicate matters.
The first technicality (the easiest one to deal with), is that the GKR delegation scheme does not

have a negligible soundness error. In our setting, it is very important to have negligible soundness,
since if the soundness is non-negligible, then a cheating worker may cheat in the update procedure
(which is also being delegated). The problem is that if a worker cheats even once in an update
procedure, all soundness guarantees are mute from that point on. So, we really need the soundness
error to be negligible. In order to reduce the soundness error, we will run the GKR protocol in
parallel u times (for any parameter u such that 1/2u = ngl(k)). We denote the u-fold parallel
repetition of GKR by GKR(u). As a result the worker will need to reveal to u augmented paths of
the Merkle tree.

The other technical point is more subtle. In the offline stage, when the delegator computes
the tree commitment Th(LDEx), she needs to choose the parameters H,F,m for the low-degree
extension. The typical choice for these parameters is: |H| = polylog(n), |F| = poly(|H|), and

m = O
(

logn
log logn

)
, where n = |x|. However, when delegating the computation of a function f , the

worker and delegator run GKR(u)(f) and need to verify LDEx(ri) = vi for random points r1, . . . , ru.
However, here the parameters of the low-degree extension LDEx depend on the depth d of the circuit
computing f . Namely, looking at the parameters in Theorem 8, the parameters of the low-degree
extension are

|H′| = θ(d · log n), m′ = θ

(
log n

log d

)
, |F′| = poly(|H′|).

Therefore, the worker cannot simply send the augmented path, since the tree commitment is w.r.t.
parameters H,F,m whereas the delegator needs to verify LDEx(ri) = vi w.r.t. the parameters
H′,F′,m′.

We get around this technical problem by delegating the functions gri(x) , LDEF′,H′,m′
x (ri).

Luckily, Corollary 7 implies that these functions can be computed by a poly-size circuit of depth
logc(n) for some constant c (assuming the delegated function f is of poly-size). Again, we delegate
the computation of each of these gri using GKR(u) to ensure negligible soundness. Thus, finally
the worker will need to reveal the augmented paths of u2 points in LDEx (u points for each gri).

22

The final technical difficulty is that all these algorithms need to run in parallel, since we want
our final memory delegation scheme to be non-interactive (i.e., to consist of only two messages).
Typically, there is no problem in running several two-message protocols in parallel. However, in
our case, the delegator uses a common secret input in these protocols. Namely, the delegator
uses secret randomness r1, . . . , ru ∈ (F′)m′ in the parallel repetition of the delegation protocol
GKR(f) which ends with her needing to verify that LDEF′,H′,m′

x (ri) = vi for every i ∈ [u]. In
addition she uses these same ri’s in the delegation protocols GKR(gri). Moreover, at the end
of each of the GKR(gri) protocols, the delegator needs to verify that LDEF,H,m

x (zi,j) = wi,j for
random points zi,1, . . . , zi,u ∈ Fm. Finally, they also run a reveal protocol for each zi,j , denoted by
Reveal(zi,j), where the worker simply reveals to the augmented path of the leaf zi,j in the Merkle
tree of LDEF,H,m

x .
We note that the protocol GKR(f) (resp. GKR(g)) is not sound if the ri’s (resp. zi,j ’s) are a

priori known to the worker. To ensure that soundness still holds even if we run all these algorithms

22We note that there are several ways to improve efficiency, such as thinking of (gr1 , . . . , gru) as one function.
However, for the sake of simplicity of exposition, we focus on the simplest (rather than most efficient) solution.
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in parallel, we mask parts of the delegator’s message using a PIR scheme, and then we use Lemma 24
to claim that the soundness error remains negligible.

7.2 Formal Description of our Memory Delegation Scheme

Our construction uses the following building blocks

1. A collision resistant hash family H = {Hk}k∈N, where every h ∈ Hk satisfies

h : {0, 1}k × {0, 1}k → {0, 1}k.

2. The delegation scheme GKR = 〈D′,W′〉 from [GKR08, KR09] (see Theorem 8 for the prop-
erties of this delegation scheme). The main property we use here, is that the delegator can
verify proofs by accessing its input x at a single random point in LDEx.

• Parameters. Let k ∈ N be the security parameter, and let n ∈ N be the length of the
(initial) memory being delegated. Let H be an extension field of GF[2], and let m ∈ Z
such that |H| = polylog(n), m = θ

(
logn

log logn

)
, and let F be an extension field of H of size

|F| = poly (|H|).

• Offline Phase. In the offline phase, both the delegator D and the worker W take as input
the security parameter 1k and a string x ∈ {0, 1}n. The worker W simply saves x. The
delegator D does the following.

1. Compute the low-degree extension of x w.r.t. H,F,m, denoted by LDEx : Fm → F (see
Section 3.3 for the definition of a low-degree extension). She interprets LDEx as a vector
in F|F|m .

2. Choose a random collision resistant hash-function h← Hk, and sends h to W.

3. Compute the root of the Merkle tree of LDEx with respect to the hash function h.
Namely, compute σ = Th(LDEx), which is the root of the Merkle tree corresponding to
the hash function h (we refer the reader to Section 3.5 for the definition of a Merkle
tree).

The delegator D saves (h, σ) as a short certificate for x.

• Online-Phase.

– Compute(f). When the delegator D sends the worker W a computation request Compute(f),
they run the following three protocols in parallel.

1. Run the underlying delegation protocol GKR = 〈D′,W′〉 for delegating the compu-
tation of f(x). However, since the soundness of the GKR protocol is only 1/2, we
amplify this soundness by repeating the GKR protocol u times in parallel. Namely,
W and D run GKR(u) which is a u-fold parallel repetition of of the GKR proto-
col, and thus has soundness 1/2u + ngl(k) = ngl(k) (assuming we take u such that
1/2u = ngl(k)).
If D′ rejects, then D rejects. Otherwise, at the end of this protocol the delegator D
needs to verify that LDEx(ri) = vi for some random points r1, . . . , ru. Recall that
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these points depend only on the delegators random coin tosses, and can be efficiently
computed by the delegator D before the protocol execution begins (see Theorem 8).

Recall that the low-degree extension LDEx, is not w.r.t. the parameters H,F,m,
but rather w.r.t. parameters H′,F′,m′ that depend on the depth d of the L-uniform
circuit computing f (see Theorem 8 and the discussion in Section 7.1). Thus, the
delegator cannot verify that

LDEF′,H′,m′
x (ri) = vi

by simply asking the worker to “decommit” to the leaves r1, . . . , ru of the Merkle
tree, by sending their augmented paths (since the tree commitment was on the low-
degree extension of x w.r.t. H,F,m). Instead they will run the following additional
protocol (in parallel).

2. The idea is to run for every i ∈ [u], the delegation protocol GKR(u) = 〈D′,W′〉 for
delegating the functions gri , where

gri(x) = LDEF′,H′,m′
x (ri).

(As in Step 1, we use parallel repetition in order to reduce the soundness error
to ngl(k)). However, note that since these delegation protocols are running in parallel
with the delegation protocol GKR(u) of Step 1, the ri’s (which are part of the
description of gri) must be kept secret, to ensure the soundness of the GKR(u)

protocol of Step 1.
Thus, to ensure the secrecy of the ri’s, instead of running the GKR(u) protocols
of Step 2 “in the clear”, we mask them using a PIR scheme. In what follows, we
explain what a single masked GKR(u) protocol for computing gri looks like, and this
protocol will be repeated in parallel u times (once for each i ∈ [u]).
Recall that in the GKR protocol (and thus in the GKR(u) protocol), the message
sent by the delegator D′ depends only on the parameters (and her random coin
tosses), and is independent of the actual function being delegated (see Theorem 8).
Thus, this message can be sent in the clear, as it reveals no information about the
function gri being delegated (except for its size and depth), and thus reveals no
information about the secret value ri. On the other hand, the message sent by the
worker W′ obviously does depend on gri , and thus on ri. Since the ri’s should be
kept secret, this message will be sent using a PIR scheme.
Namely, the worker W prepares a database DB′ with N ′ , |F′|m′ entries, where the
entry r ∈ (F′)m′ contains the message he would have sent (in the parallel version
GKR(u)) if the delegated function was gr(x) = LDEF′,H′,m′

x (r). The delegator D,
in addition to sending a GKR(u) message, also sends a query q′i ← QPIR(k, ri, N

′).
Then, the worker W answers the PIR query q′i using the database DB′; i.e., he sends
a′i ← DPIR(k,DB′, q′i). Finally, the delegator D retrieves the “worker’s message”
using the Retrieve algorithm RPIR, and accepts this message if and only if (D′)(u)

would have accepted it, and if it is consistent with Step 1; i.e., if the worker proved
that indeed gri(x) = vi, for the same value vi obtained in Step 1.
As before, for every i ∈ [u], to verify the i’th delegation protocol GKR(u) for comput-
ing gri(x) = LDEF′,H′,m′

x (ri), the delegator D′ needs to verify that LDEx(zi,j) = wi,j ,
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for random values zi,1, . . . , zi,u that depend only on the parameters and on the del-
egator’s random coin tosses. However, here LDEx is w.r.t. the parameters H,F,m,
since the function gri is computable by L-uniform circuit of depth polylog(n) (follows
from Corollary 7). In order to verify this, they run the following Reveal protocol u
times per each i ∈ [u], and thus altogether they run the Reveal protocol u2 times.

3. The delegator and worker run a Reveal protocol u2 times, where the delegator
sends zi,j ∈ Fm and the worker reveals the augmented path of the Merkle tree
corresponding to the leaf zi,j , denoted by aug(zi,j). However, since zi,j needs to
remain secret for the GKR(u) protocols in Step 2 to remain sound, this will be done
using a PIR scheme. Namely, the worker W does the following. He prepares a
database DB of size N , |F|m, where for any z ∈ Fm the z’th entry contains aug(z)
(i..e, the augmented path corresponding to the leaf z in the Merkle tree of LDEx).
The delegator D sends a query qi,j ← QPIR(k, zi,j , N), and the worker W answers
according to his database ai,j ← DPIR(k,DB, qi,j). Finally, the delegator D retrieves
the answer using the retrieving algorithm RPIR, and accepts this answer if and only
if the retrieved string is a valid augmented path of the Merkle tree corresponding to
the leaf zi,j , and if the leaf value is wi,j .

We denote the delegation protocol of Step 1 by

GKR(u) = 〈W′(u),D′(u)(r1, . . . , ru)〉(f).

We denote the masked delegation protocols of Step 2 by

PIR
(
〈W′(u),D′(u)(zi,1, . . . , zi,u)〉(gri)

)
.

We denote the reveal protocols of Step 3 by Reveal(zi,j). Note that the memory x is
implicit in all these notations. We summarize the Compute(f) protocol in Figure 3.

– Update(g). When the delegator D sends the worker W an update request Update(g) for
some g ∈ G, indicating that she wishes to update her memory x to g(x), the worker and
delegator do the following.

1. The delegator D uses the help of the worker W in order to update her short certificate.
Specifically, D chooses a fresh hash function h′ ← Hk, and sends h′ to W. Then, she
delegates to the worker W the computation Compute(g′), where

g′(x) = Th′(LDEg(x)),

where LDEg(x) is w.r.t. H′,F′,m′, where letting n′ , |g(x)|, the field H′ is an

extension field of GF[2] of size |H′| = polylog(n′), m′ = θ
(

logn′

log logn′

)
, and F′ is an

extension field of H′ of size poly(|H′|). If she rejects this proof, then no update is
performed. Otherwise, she updates her short certificate from σ to σ′ , Th′(LDEg(x)).

2. The worker W updates his state from x to g(x).

Note that if the function g is computed by an L-uniform circuit of depth d, then the
function g′ is computable by an L-uniform circuit of depth d+ poly(k) + polylog(n′) ≤
poly(d, k).
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Compute(f):

The delegator D stores a state (h, σ) where σ = Th(LDEF,H,m
x ) and wants to learn the value of

f(x) from the worker W, who stores x ∈ {0, 1}n.

1. D and W run GKR(u) = 〈W′(u),D′(u)(r1, . . . , ru)〉(f).

(a) If D′(u) rejects, then the delegator D outputs “reject”.

(b) At the end of this protocol, the delegator D′ needs to verify that LDEF′,H′,m′
x (ri) = vi

for some values vi.

2. For every i ∈ [u], run PIR(〈W′(u),D′(u)(zi,1, . . . , zi,u)〉(gri)).
(a) The delegator D makes sure that in these protocols the worker still claims that indeed

gri(x) = vi, where gri(x) = LDEF′,H′,m′
x (ri). If this is not the case, then the delegator D

outputs “reject”.

(b) If at any point D′ rejects, then the delegator D outputs “reject”.

(c) In order to verify these protocols, the delegator D needs to verify that LDEF,H,m
x (zi,j) =

wi,j for some values wi,j .

3. For every i, j ∈ [u], run Reveal(zi,j).
If for some i, j ∈ [u], the worker fails in revealing to wi,j , then the delegator D outputs
“reject”.

4. The delegator D outputs “accept”, assuming he didn’t output “reject” at any point.

Figure 3: Compute(f)

7.3 Proof of Theorem 31.

In this section, we prove that the construction above satisfies the properties of Theorem 31. The per-
fect completeness follows immediately from the completeness of the underlying delegation scheme
GKR, the completeness of the PIR scheme, and the completeness of the Reveal protocol. The
efficiency guarantees follow immediately from the efficiency guarantees of GKR and the efficiency
guarantees of the underlying PIR scheme.

The main difficulty is in proving soundness. We shall prove the one-time soundness of our
memory delegation scheme in Lemma 32, and establish the reusable soundness in Lemma 33. At a
very high level,

• the one-time soundness of our scheme follows from the soundness of the GKR protocol, the
security of tree commitments, and the parallel composition lemma (Lemma 24).

• the reusable soundness of our scheme follows from the one-time soundness, since the short
certificate of the delegator is not secret, and the worker can compute this short certificate on
his own.

Lemma 32 The memory delegation scheme constructed in Section 7.2 is one-time sound, i.e., it
has negligible one-time soundness error.
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Proof. Suppose for the sake of contradiction that there exists a PPT worker W∗ and a polyno-
mial q such that for infinitely many k’s

Pr[W∗ succeeds in GW∗
1 (k)] ≥ 1

q(k)
, (6)

where G1 is the one-time soundness game. Recall that in the game G1, the worker W∗(1k) first
chooses a parameter n = poly(k) and a string x ∈ {0, 1}n. Then, D and W∗ run the offline phase,
where D chooses a random hash function h← Hk, computes σ , Th(x), and sends h to W∗. Then,
W∗ chooses a function f ∈ F , and D and W∗ execute Compute(f).

Suppose that W∗ succeeds in proving a false statement f(x) = y′. Namely, W∗ and D run the
protocol Compute(f) and at the end D accepts a wrong statement f(x) = y′.

Recall that the Compute(f) protocol consists of 1 + u+ u2 sub-protocols: an execution of

Π0 = GKR(u) = 〈W′(u),D′(u)(r1, . . . , ru)〉(f),

for every i ∈ [u], an execution of

Πi = PIR
(
〈W′(u),D′(u)(zi,1, . . . , zi,u)〉(gri)

)
,

and for every i, j ∈ [u], an execution of Πi,j = Reveal(zi,j).
Suppose that in the Compute(f) protocol, Π0 reduces verifying that f(x) = y′ to verifying the u

statements
LDEF′,H′,m′

x (ri) = vi,

and each Πi reduces verifying that LDEF′,H′,m′
x (ri) = vi to verifying the u statements

LDEF,H,m
x (zi,j) = wi,j .

We note that for W∗ to succeed in G1, W∗ must successfully “cheat” in at least one of Π0,Πi,
or Πi,j . Namely, one of the following cases holds.

1. Case 1. y′ 6= f(x), and for every i ∈ [u], vi = LDEF′,H′,m′
x (ri).

2. Case 2. There exists i ∈ [u] such that vi 6= LDEF′,H′,m′
x (ri), and for every j ∈ [u], wi,j =

LDEF,H,m
x (zi,j).

3. Case 3. There exists i, j ∈ [u] such that wi,j 6= LDEF,H,m
x (zi,j).

Intuitively, each of the above cases should hold with only negligible probability. This is due to
the soundness property of the GKR protocol and the security of the tree commitments.

We next use Lemma 24 to claim that each of the above cases holds with negligible probability,
even when Π0,Πi, or Πi,j are executed in parallel, contradicting Equation (6).

In order to make use of Lemma 24, we consider a slightly modified version of the protocols
Π0, Πi, and Πi,j , denoted by Π′0, Π′i, and Π′i,j . The messages sent in these protocols are identical
to the ones sent in the original Π0,Πi,Πi,j protocols, and the only difference is in the verification
procedure. Note that the protocols Π0,Πi,Πi,j are interleaved in the sense that the verifier of
Π0 doesn’t actually verify the correctness of Π0, but rather uses the protocols Πi to verify the
correctness of Π0. Similarly, the verifier uses the protocols Πi,j to verify the correctness of Πi.
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Instead, we define Π′0,Π
′
i,Π
′
i,j to be stand-alone protocols (with their own verification procedures)

for recognizing the empty language.
Recall that Π0 = GKR(u) = 〈W′(u),D′(u)(r1, . . . , ru)〉(f) is a u-fold parallel repetition of GKR,

where the delegator delegates the computation of f(x) to the worker. In Π′0, the verifier actually
computes on her own (using x) the correct values of y = f(x) and vi = LDEF′,H′,m′

x (ri) for every
i ∈ [u]23, and the verifier accepts if and only if at the end of GKR(u), the worker convinces the
delegator to accept some incorrect y′ 6= f(x). Note that the the soundness of GKR(u) implies that
Π′0 has negligible soundness error.

Recall that each Πi = PIR(〈W′(u),D′(u)(zi,1, . . . , zi,u)〉(gri)) is a masked u-fold parallel repetition

of GKR, where the delegator delegates the computation of gri(x) = LDEF′,H′,m′
x (ri) to the worker,

and ri is a random point masked by the PIR scheme. In each Π′i, the verifier actually computes
on her own (using x) the correct value vi = LDEF′,H′,m′

x (ri) and the values wi,j = LDEF,H,m
x (zi,j)

for every j ∈ [u], and the verifier accepts if and only if the worker convinces the delegator to
accept some incorrect v′i 6= LDEF′,H′,m′

x (ri). Note that the soundness of GKR(u) implies that Π′i has
negligible soundness error.24

Finally, recall that each Πi,j = Reveal(zi,j) is a masked tree commitment reveal protocol, where
the delegator asks the worker to reveal the value of LDEF,H,m

x (zi,j) by giving a valid augmented
path aug(zi,j) of Th(LDEx), and zi,j is a random point masked by the PIR scheme. In each Π′i,j , the

verifier actually computes on her own (using x) the correct values of wi,j = LDEF,H,m
x (zi,j), and the

verifier accepts iff the worker convinces the delegator to accept some incorrect wi,j 6= LDEF,H,m
x (zi,j).

Note that the security of the tree commitments implies that Π′i,j has negligible soundness error.
In all the protocols Π′0, Π′i, and Π′i,j , we think of x as the common input, and we think of

p =
(
(ri)i∈[u], (zi,j)i,j∈[u]

)
as the common private randomness.

Let Π′ be the corresponding parallel execution of Π′0,Π
′
i, and Π′i,j , where the verifier of Π′

accepts if and only if any one of Π′0,Π
′
i, and Π′i,j accepts. Lemma 24 implies that the fact that

each of the protocols Π′0,Π
′
i, and Π′i,j has negligible soundness error, implies that Π′ has negligible

soundness as well. Recall that whenever W∗ succeed in G1, at least one of the above three cases
holds. Namely, the verifier in Π′0 accepts when Case 1 holds, the verifier in Π′i accepts when Case 2
holds, and and the verifier in Π′i,j accepts when Case 3 holds. Thus,

Pr[W∗ succeeds in GW∗
1 (k)] ≤ Pr[D accepts in Π′] ≤ ngl(k),

contradicting Equation (6).

Lemma 33 The memory delegation scheme constructed in Section 7.2 is sound, i.e., it has negli-
gible reusable soundness error.

Proof. Suppose for the sake of contradiction that there exists a PPT worker W∗ such that

Pr[W∗ succeeds in GW∗(k)] ≥ α(k), (7)

23Note that the verifier in these protocols runs in time poly(|x|), which is too long in our setting, but this is only
in the analysis.

24Note that we didn’t use the soundness of the PIR scheme. Indeed, the PIR scheme is added only in order to later
apply Lemma 24.
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for a non-negligible function α, where G is the reusable soundness game. We construct a PPT

worker W∗1 which succeeds in the one-time security game G
W∗1
1 (k) with non-negligible probability.

Recall that the game G proceeds in three phases, as follows.

• In the initial phase, the worker W∗(1k) first chooses a parameter n = poly(k) and a string x ∈
{0, 1}n. Then, D and W∗ run the offline phase, where D chooses a random hash function
h← Hk, computes σ , Th(x), and sends h to W∗.

• In the learning phase, W∗ and D execute polynomially many Compute(f) and Update(g)
operations, where each f ∈ F and g ∈ G are chosen by W∗. In the Update(g), D chooses
a fresh hash function h′ ← Hk, sends h′ to W∗, and then D and W∗ execute Compute(g′)
where g′(x) = Th′(LDEg(x)). If D accepts, then the memory is updated to x′ = g(x), and if
D rejects, then the memory x remains unchanged.

• In the challenge phase, W∗ chooses f ′ ∈ F , and D and W∗ execute Compute(f ′). W∗ succeeds
if D accepts a wrong value y′ 6= f ′(x), where x is the latest updated memory.

Intuitively, noting that the short certificate of the delegator is public, one-time soundness seems
to immediately imply reusable soundness, since in this case a (one-time) cheating worker W∗1 can
simulate the learning phase of 〈D,W∗〉 on his own. However, this intuition is an oversimplification,
since W∗ may cheat in one of the Update computations, and thus convince the delegator D to update
her certificate to some incorrect value, which allows W∗ to cheat easily in the challenge phase. In
this case, simulating the learning phase does not help W∗1 cheat in the one-time security game G1.

Therefore, instead of simply simulating the entire learning phase, roughly speaking, W∗1 does
the following.

1. Guess the first time that W∗ cheats successfully in either an update or a compute operation
(we refer to this as the first cheating operation).

2. Guess the last valid update operation (that D accepts) before the cheating operation (we refer
to this as the last update operation).

3. Embed the one-time game G1 into the reusable game G, as follows: Simulate 〈D,W∗〉 in G
up to the last update operation, and use the memory at that time to interact with D1 in the
initial phase of G1. Then, continue to simulate 〈D,W∗〉 in G up to the first cheating operation,
and interact with D1 in the challenge phase of G1 by using W∗ in this first cheating operation
in G.

In order to describe W∗1 more formally, we use the following notation. Let L(k) ≤ poly(k) be
an upper bound on the total number of Compute and Update operations that W∗ makes in the
(reusable) game G. We call each such operation in G a round. We refer to the initial phase as
round 0, the learning phase starts at round 1, and the challenge phase is the last round. Denote
by xi the memory content at the end of round i, and let fi be the delegation function of the
Compute(·) operation in round i. Recall that Update(g) is implemented via a compute operation,
so fi is defined for every round.

Using this notation, we define W∗1 more formally, as follows:

1. Choose at random j ← [L] and choose at random i← {0, 1, . . . , j − 1}, where j is a guess for
the first cheating operation of W∗, and i is a guess for the last successful Update operation
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of W∗ before round j. (i = 0 corresponds to the guess that W∗ doesn’t update successfully
the initial input x0 before round j.)

2. Simulate the interaction of 〈D,W∗〉 in the reusable game G up until the end of round i. Denote
by xi the memory at the end of round i in the simulated game G.

3. Start the initial phase of G1, with the memory xi.

4. Upon receiving a hash function h ← Hk from D1 in the offline phase, view this h as chosen
by D in round i of the simulated (reusable game) G, and continue the simulation of G until
the beginning of round j.

5. If at round j, W∗ chooses to perform Compute(fj), then start the challenge phase of G1 with
the function fj , and interact with D1 by simulating W∗ (who supposedly executes Compute(fj)
with D).

We next analyze the success probability of W∗1. To this end, for any j ∈ [L] and any i ∈ {0, 1, . . . , j−
1}, let Wi,j be the event that (1) the first time that W∗ cheats successfully is in round j, and (2)
the last valid update operation (that D accepts) before round j is in round i.

Note that by definition, whenever W∗ succeeds in G, there must exist some such i, j such that
event Wi,j holds. Thus, a simple counting argument, together with Equation (7), implies that there
exists some such i, j such that

Pr[Wi,j ] ≥
α

L2
,

which implies that

Pr[W∗1 succeeds in G
W∗1
1 (k)] ≥ α

L2
,

contradicting Lemma 32, which asserts that the scheme is one-time secure.

8 Streaming Delegation Model

In this section, we formally define our streaming delegation model. We present our streaming
delegation scheme in Section 9.

Definition 34 (Streaming Delegation Scheme) Let F be a class of boolean functions. A stream-
ing delegation scheme sDelF , for a function class F , consists of a streaming generator S and an
interactive protocol 〈D,W〉 between a delegator D and a worker W with the following structure.

1. The scheme sDel starts at time 0, at which all parties receive a security parameter 1k and a
parameter N (in binary) which specifies the maximum length of the data stream. On input
(1k, N), D generates some (possibly secret) state σ0.

2. At each time t ∈ [N ], S generates a data item xt ∈ {0, 1}, which is received by both D and W.
Upon receiving xt, D updates her secret state from σt−1 to σt, and W simply stores xt. Let
xt = xt−1 ◦ xt denote the current received data items, where ◦ represents a concatenation.
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3. At any time t ∈ [N ], D may choose a delegation function f : {0, 1}t → {0, 1} ∈ F and run
the delegation protocol 〈D,W〉 on input (f, t). In addition to the common input (f, t), the
delegator D takes as input her secret state σt, and the worker W takes as input the data
stream xt.25

Remark 1. For the sake of readability, we try to keep the definition of the model as simple as
possible. For example, we assume that data items are bits and delegation functions are boolean
functions, while it is natural to consider non-boolean data items and non-boolean delegation func-
tions. Also, we implicitly assume that D delegates at most one function of the current data stream
at any given time t, while it is natural to allow D to delegate multiple functions at the same time.
Nevertheless, it will be easy to see that our solution presented in Section 9 generalizes to these
extensions readily.

Remark 2. Note that in Definition 34, we require that D updates her fingerprint of the data
stream on her own efficiently (ideally, in time polylog(N); see Definition 35 below). The reason
is that in the streaming setting, the data stream arrives constantly at a high rate. Thus, if the
update function would be delegated at time t, this delegation protocol may not end before time
t + 1. Hence, it may be infeasible and unreliable to ask the worker for his help in updating the
delegator’s fingerprint. We note that this is in contrast to the setting of memory delegation, where
we do allow the update procedure to be delegated (see Section 6 for details).

Definition 35 (Efficiency) A streaming delegation scheme sDelF has an efficient delegator if
the runtime of D each time she updates her (secret) fingerprint is polylog(N), and her runtime
during each execution of the protocol 〈D,W〉(f, t) is poly(k, logN, logS), where S is the size of the
circuit computing f . A streaming delegation scheme sDelF has an efficient worker if the runtime
of W during an execution of 〈D,W〉(f, t) is poly(k, logN,S), where S is the size of the circuit
computing f .

We proceed to define the completeness and soundness of a streaming delegation scheme.

Definition 36 (Completeness) For any function class F , a streaming delegation scheme sDelF
has perfect completeness if for every parameters k,N ∈ N, t ∈ [N ], every function f : {0, 1}t →
{0, 1} ∈ F , and every xt ∈ {0, 1}t generated by S, the following holds with probability 1:26 When D
and W run the delegation protocol 〈D,W〉(f, t), D always accepts and outputs y = f(xt).

The definition of the soundness property is more elaborate, since D and W may run the delega-
tion protocol multiple times with different inputs. We provide the following game-based definition,
where we allow the adversary W∗ to choose the data stream and delegation functions, and W∗ wins
if he convinces D to accept an incorrect function value.

Definition 37 (Streaming Security Game) Let k be a security parameter and N be a param-
eter. Let F be a function class and let sDelF be a delegation scheme for F . The corresponding
streaming security game GW∗(k,N) played by an (adversarial) worker W∗ is defined as follows.

25For simplicity of presentation, we omit the security parameter when it is clear from the context.
26It has completeness 1− ε if the following holds with probability 1− ε.
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1. At time 0, the delegator D, on input (1k, N), generates her secret state σ0.

2. At each time t ∈ [N ], W∗ chooses a data item xt ∈ {0, 1} and sends it to D, who then updates
her secret state to σt. Furthermore, W∗ may choose a function f : {0, 1}t → {0, 1} ∈ F and
run with D the delegation protocol 〈D,W∗〉 on input (f, t).

At the end of each delegation protocol, W∗ learns whether D accepts or rejects.

3. W∗ may terminate the game at any time t ∈ [N ].

W∗ succeeds in the game GW∗(k,N) if there exists a time t such that W∗ chooses to run the
delegation protocol on input (f, t) for some function f ∈ F , and convinces D to accept a wrong
value y 6= f(xt).

Definition 38 (Soundness) Let k be a security parameter, and F a (boolean) function class that
is poly-time computable. A delegation scheme sDelF has soundness error ε if for every worker
strategy W∗ with runtime poly(N), where N = N(k),

Pr[W∗ succeeds in GW∗(k)] ≤ ε(N),

where GW∗(k) is the security game corresponding to sDelF , as defined above. We say that sDelF is
sound if it has a negligible soundness error in the parameter N .

Remark. Note that in the above definition, we refer to k as the security parameter, but require
the soundness to hold against any poly(N)-time adversaries as opposed to standard poly(k)-time
adversaries. This is because the honest worker needs to run in time poly(N) even to evaluate
the delegation function f . One should think of k as the security parameter of the cryptographic
primitives used by D in the delegation scheme, where the primitives are required to be secure
against poly(N)-time adversaries.

Typically, one may assume that k and N are polynomially related. However, in the context of
streaming algorithms, it is common to think of the data stream as having length super-polynomial
in the computational resource of the streaming algorithms. For example, the space complexity of a
streaming algorithm is typically limited to polylog(N), which usually implies the process time per
data item is also polylog(N). We note that a stronger security assumption on the cryptographic
primitives is necessary when the data stream is of length super-polynomial in the computational
power of the delegator.

Remark. Note that, as in the memory delegation model, in the soundness definition, we allow
the adversary W∗ to learn the decision bit of the delegator D after each execution of the delegation
protocol. This is in contrast to the two delegation schemes of [GGP10, CKV10], which are sound
only if the adversary W∗ does not learn the decision bit of the delegator D.

We stress that our streaming delegation scheme (in Section 9) has the property that the state
of the delegator must be secret, in order to ensure soundness.27 The only other delegation schemes
that we are aware of which have this property, are [GGP10, CKV10]. However, these schemes are
sound only if the adversary W∗ does not learn the decision bit of the delegator D. The reason

27This is in contrast to our memory delegation scheme (in Section 7), where the state of the delegator was not
secret.
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why in these schemes the decision bit needs to be kept secret is that the delegator uses her secret
state to verify the worker’s answer, and thus, her decision bit can potentially reveal one bit of
information about her secret state. Indeed, in both schemes of [GGP10, CKV10], if D’s decision
bits are revealed, then there are known attacks to learn the secret state of D bit by bit and break
the soundness of the schemes.

We didn’t have to deal with this issue in our memory delegation scheme mDel, since the state of
the delegator in mDel is not secret. In contrast, the delegator of our streaming delegation scheme
constructed in Section 9 does hold a secret state, and handling this reusability issue is one of the
main technical challenges of this work. It is for this reason that we need all the machinery that
was developed in Section 4.

In what follows we define the notion of one-time soundness. The reason we need this definition,
is that our soundness proof (for our streaming delegation scheme in Section 9), consists of two parts:
We first prove that our scheme has one-time soundness, i.e., it is sound assuming the delegation
protocol is executed only once. Then, we argue that the one-time soundness implies reusable
soundness.

Definition 39 (One-time Soundness) Let k be a security parameter and let N be a parameter.
Let F be a function class and let sDelF be a delegation scheme for F . The corresponding one-time
streaming security game GW∗

1 (k,N) played by an (adversarial) worker W∗ is defined the same
as GW∗(k,N), except that the game is terminated after the first execution of the delegation protocol
〈D,W∗〉.

We say that sDelF has one-time soundness error ε if for every worker strategy W∗ with
runtime poly(N), where N = N(k),

Pr[W∗ succeeds in GW∗
1 (k,N)] ≤ ε(N).

sDelF is one-time sound if it has a negligible one-time soundness error (in parameter N).

We proceed to state our main theorem for streaming delegation.

Theorem 40 (Streaming Delegation) Let k be a security parameter, and let N be a parameter.
Let F be the class of all L-uniform poly-size boolean circuits. Assume the existence of a fully-
homomorphic encryption scheme secure against poly(N)-size adversaries. Then there exists a non-
interactive (2-message) streaming delegation scheme sDelF for F with the following properties.

• sDelF has perfect completeness and negligible soundness error.

• D updates her secret state in time polylog(N), per data item.

• In the delegation protocol, when delegating a function f ∈ F computable by an L-uniform
circuit of size S and depth d, the delegator D runs in time poly(k, d, logN), and the worker
W runs in time poly(k, S, logN).

In particular, assuming the existence of a fully-homomorphic encryption scheme secure against
adversaries of size poly(N), we obtain a streaming delegation scheme for L-uniform NC computa-
tions, where the delegator D runs in time poly-logarithmic in the length of data stream.

We proceed to present our streaming delegation scheme in the next section.
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9 Streaming Delegation Scheme

In this section, we prove Theorem 40, by constructing a non-interactive streaming delegation scheme
with the desired properties.

9.1 Overview of our Streaming Delegation Scheme

Our streaming delegation scheme is similar to our memory delegation scheme mDel, presented in
Section 7, and the main difference is in the way the certificate is generated and updated, and in
the Reveal protocol of the Compute operation.

Generating and updating the certificate. Recall that in the memory delegation scheme, the
certificate of the delegator D consists of a tree-commitment of the low-degree extension of her
memory x. Namely, her certificate is (h, Th(LDEx)), where h is a collision resistant hash function.
Note that this certificate cannot be updated in a streaming manner, since any change to x changes
the low-degree extension LDEx almost everywhere.

Instead, in the streaming setting, we replace the tree commitment with an “algebraic commit-
ment”, which has the property that it can be updated efficiently when new data items arrive. The
resulting certificate is a random point in the low-degree extension of the stream x; i.e., (z,LDEx(z))
for a random point z. Proposition 6 implies that this certificate is efficiently updatable,if we as-
sume some upper-bound N on the size of the stream, and we take parameters H,F,m such that
Hm = θ(N). The parameters we take are

|H| = polylog(N), m = θ

(
logN

log logN

)
, |F| = poly(|H|). (8)

The Compute operation. The Compute operation of our streaming delegation scheme is very
similar to the Compute operation of the memory delegation scheme mDel, and the main distinction
is in the Reveal protocol. Namely, in Compute(f) the delegator and worker run GKR(u)(f), which
is the u-fold parallel repetition of GKR(f) (the parallel repetition is in order to get negligible
soundness). In order to verify correctness, the delegator needs to verify the value of LDEx(ri) for
random r1, . . . , ru. Recall that this low-degree extension is w.r.t. the parameters H′,F′,m′ given in
Theorem 8. Namely,

|H′| = θ(d · log n), m′ = θ

(
log n

log d

)
, |F′| = poly(|H′|).

where d is the depth of the circuit computing f , and n is the input length (i.e., the current size
of the stream). Also, recall that the certificate of the delegator is of the form (z,LDEx(z)), where
here the low-degree extension is w.r.t. the parameters H,F,m as in Equation (8).

In the memory delegation scheme we overcome this gap by delegating the computation of the
functions gri , which are defined by

gri(x) , LDEF′,H′,m′
x (ri),

using GKR(u) with respect to (H,F,m). In order to verify the correctness of these u protocols, the
delegator needs to verify u2 values LDEF,H,m

x (zi,j), where each zi,j is a random value in Fm.
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Remark. In our setting this approach is too costly since the running time of the worker W during
the delegation protocols of gri is polynomial in N (where N is an upper bound on the stream size),
as opposed to polynomial in n, which is the actual stream size (see Theorem 8). However, it
turns out that with a slight modification, we can ensure that W runs in time poly(k, n, logN)
during these delegation protocols, where k is the security parameter. The idea is the following:
Let m′′ = d logn

log logN e so that n ≤ |H|m′′ ≤ n · polylog(N). The delegator will delegate the functions

gri(xi) by running GKR(u) with respect to (H,F,m′′). Note that the runtime of W during these
protocols is poly(n, k, logN), as desired. At the end of these protocols the delegator needs to verify
u2 values LDEF,H,m′′

x (z′′i,j), where each z′′i,j is a random value in Fm′′ .
We next argue that for every z′′ ∈ Fm′′ ,

LDEF,H,m′′
x (z′′) = LDEF,H,m

x (0m−m
′′
, z′′).

To this end, recall (from Section 3.3) that

LDEF,H,m
x (z) =

∑
p∈Hm

B̃(z, p) · xα(p) (9)

and similarly

LDEF,H,m′′
x (z) =

∑
p∈Hm′′

B̃(z, p) · xα′′(p)

where for every z ∈ Hm (or z ∈ Hm′′ respectively) it holds that B̃(z, p) = 1 if z = p, and B̃(z, p) = 0
otherwise. The functions α : Hm → {0, 1, . . . , N − 1} and α′′ : Hm′′ → {0, 1, . . . , n − 1} are the
lexicographic order, and thus for every p ∈ Hm′′ it holds that α′′(p) = α(0m−m

′′
, p). Therefore, for

every x ∈ {0, 1}n and for every z ∈ Hm′′ ,

LDEF,H,m
x (0m−m

′′
, z) = LDEF,H,m′′

x (z). (10)

This, together with the Schwartz-Zippel lemma, and with the fact that both LDEF,H,m
x and LDEF,H,m′′

x

are polynomials of degree at most |H| − 1 in each variable, implies that for every z ∈ Fm′′ it holds
that

LDEF,H,m
x (0m−m

′′
, z) = LDEF,H,m′′

x (z).

Therefore, it remains to verify the values of LDEF,H,m
x (zi,j), where zi,j , (0m−m

′′
, z′′i,j). In the

memory delegation scheme this was done using the Reveal(zi,j) protocol where the worker reveals
the augmented path of the leaf zi,j in the Merkle tree-commitment of LDEx. Here the Reveal
protocol needs to be totally different, since the delegator cannot compute the tree-commitment of
LDEx.

Unfortunately, unlike in the memory delegation scheme, in the streaming setting constructing
a reusable and sound reveal protocol is highly non-trivial.

The Reveal protocol. Our starting point is a basic reveal protocol Reveal1 described in Figure 4.
Note that the soundness of Reveal1 relies on the secrecy of the certificate σ. Namely, assuming that
W does not know the point z, it is not hard to see, by Schwartz-Zippel Lemma, that an adversarial
worker can cheat with probability at most d/|F|, where d is the (total) degree of LDEx.

However, note that the Reveal1 protocol is not reusable. Suppose that D uses the above reveal
protocol to learn the value of LDEx on two random points s, s′ ∈ Fm. From the two executions, an
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Reveal1 protocol: D stores a secret state σ = (z,LDEx(z)), where x ∈ {0, 1}N and z is a random
point in Fm, and wants to learn the value of LDEx(s) from W.

• D sends to W the line `sz that passes through the points s and z. More specifically,
D chooses two random points α1, α2 ← F, and defines `s,z to be the line that satisfies
`s,z(α1) = z and `s,z(α2) = s.

• W returns a univariate polynomial p : F→ F, which is the polynomial LDEx restricted to
the line `s,z (i.e., p = LDEx|`s,z).

• D checks whether p(α1) = LDEx(z), and if so accepts the value p(α2) = LDEx(s). Other-
wise, she rejects.

Figure 4: Reveal1 protocol

adversarial worker W∗ receives two lines `s,z and `s′,z, and can learn the secret point z by taking the
intersection of the two lines. Once W∗ learns z, W∗ can easily cheat by returning any polynomial
p∗ that agrees with LDEx only on point z but disagrees on the remaining points.

As observed by Gennaro et. al. [GGP10], a natural way to protect the secret point z, is to
run the above Reveal protocol under a fully-homomorphic encryption (FHE) scheme. Namely, D
generates a pair of keys (pk, sk) for a FHE (Gen,Enc,Dec,Eval), and sends pk and an encrypted
line ˆ̀

s,z = Encpk(`s,z) to W, who can compute the polynomial p = LDEx|` homomorphically under
the encryption. Indeed, by the semantic security of FHE, an adversarial worker W∗ cannot learn
any information from D’s message ˆ̀

s,z. This indeed makes the protocol reusable provided that W∗

does not learn the decision bits of D, as proved in [GGP10, CKV10].
However, since the decision bit of D can potentially contain one bit information about the secret

point z, it is not clear that security holds if W∗ learns these decision bits. In fact, for both of the
delegation schemes of [GGP10, CKV10], which use FHE to hide the delegator D’s secret state,
there are known attacks that learn the whole secret state of D bit-by-bit from D’s decision bits.

Fortunately, we are able to show that a variant of the Reveal1 protocol described in Figure 5 is
reusable even if W∗ learns the decision bits of D. The main difference between Reveal1 and Reveal2
is that in Reveal2, the delegator D uses a random two-dimensional affine subspace instead of a line,
and uses an FHE to mask the entire protocol.

Using our techniques developed in Section 4 (and in particular using Lemma 22), we show in
Section 9.3 that no adversarial W∗ can learn useful information about the secret point z from the
Reveal2 protocol. We note that the proof of the above statement is highly non-trivial, and is one
of the main technical difficulties in this work. Informally, the proof first uses Lemma 16, which
claims that the ciphertext Ŝsz and the decision bit b of D (which depend on the strategy of W ∗)
do not give too much information about Ssz to W∗. In other words, the random subspace Ss,z still
has high (pseudo-)entropy from the point of view of W∗. Then it uses an information-theoretic
argument to argue that a random point z in a sufficiently random (with high entropy) subspace
Ss,z is statistically close to a random point in Fm, which implies that W∗ does not learn useful
information about z.

The Field Size. Recall that by Schwartz-Zippel Lemma, an adversarial worker can cheat with
probability at most d/|F|, where d is the (total) degree of LDEx. Recall that in our setting of
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Reveal2 protocol: D stores a secret state σ = (z,LDEx(z)), where x ∈ {0, 1}N and z is a random
point in Fm, and wants to learn the value of LDEx(s) from W.

• D does the following.

1. Generate a pair of keys (pk, sk)← Gen(1k) for a fully homomorphic encryption scheme
FHE.

2. Choose a random two-dimensional affine subspace Ss,z ⊂ Fm that contains the points
s and z. More specifically, choose two random points α1, α2 ← F2 and let Ss,z ⊂ Fm be
a random two-dimensional affine subspace that satisfies Ss,z(α1) = z and Ss,z(α2) = s.

3. Send Ŝs,z ← Encpk(Ss,z) and pk to W.

• W homomorphically computes the two-variate polynomial p = LDEx|Ss,z under the FHE
(denote the resulting ciphertext p̂), and sends p̂ to D.

• D decrypts and checks whether p(α1) = LDEx(z), and if so accepts the value p(α2) =
LDEx(s).

Figure 5: Protocol Reveal2

parameters:

|H| = polylog(N), m = O

(
logN

log logN

)
, |F| = poly(|H|).

Thus, a cheating worker can cheat with probability d/|F| = O(1/polylog(N)), which is not low
enough.

The idea is to reduce the cheating probability to negligible by simply increasing the field size
to be super-polynomial. However, we cannot increase the field size in the GKR protocol, since it
will increase the complexity of the worker. Instead, we use an extension field F̃ of F, of super-
polynomial size, only in the certificate and the Reveal protocol, but run the GKR protocols as

before. Namely, the secret state is σ = (z,LDEF̃,H,m(z)) where z ← F̃m, The GKR protocols
are run exactly as before (one GKR(u) protocol with the parameters (H′,F′,m′), and u GKR(u)

protocols with the parameters (H,F,m′′)). In the Reveal protocol, the worker reveals to a point
LDEF,H,m

x (s) as follows: The delegator sends an encryption of a random two-dimensional subspace
Ss,z ⊂ F̃m, containing the points s and z, and the worker sends an encryption of LDEx|Ss,z . The
delegator verifies correctness exactly as in Reveal2.

Reveal Multiple Points in Parallel. Finally, recall that in memory delegation, the reveal
protocol is executed in parallel u2 times to reveal u2 random points zi,j . However, if all reveal
protocols use the same algebraic commitment (z,LDEx(z)), then proving that z remains secret after
W∗ learns the decision bits of D becomes somewhat tricky.28 Instead, we could use u2 independent
commitments, one for each copy of the Reveal protocol. However, it blows up the size of D’s secret
state as well as her runtime during the update procedure. It also makes the analysis somewhat
more complicated.

28We can make it work, but the analysis becomes more complicated. We decide to avoid this unnecessary compli-
cation.
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Therefore, instead of running multiple copies of the Reveal protocol in parallel, we use a classic
“many-to-one” reduction to reduce the number of points to a single point, so that D only needs to
run a single copy of the Reveal protocol. Briefly, the idea is to let D choose a random degree-u2

curve `, passing through zi,j ∈ Fm for i, j ∈ [u] and passing through an additional random point
s ← F̃m, and send ` to W. More specifically, D will choose u2 + 1 random points α0, αi,j ← F̃ for
i, j ∈ [u], and let ` be the u2-degree polynomial such that `(α0) = s and `(αi,j) = zi,j for every
i, j ∈ [u]. The worker W returns a univariate polynomial p : F̃→ F̃, which is supposed to be LDEx
restricted on the line `. If W is honest, then D learns the values LDEx(zi,j) = p(αi,j) for i, j ∈ [u],
as desired. To verify that W was indeed honest, D and W run the Reveal protocol on the point s,
to reveal to LDEx(s), and D checks whether indeed p(α0) = LDEx(s).

To summarize, our Compute(f) protocol runs the above many-to-one protocol and the Reveal
protocol, in parallel, in order to reveal to {LDEx(zi,j)}i,j∈[u].

9.2 Formal Description of Our Streaming Delegation Scheme

In this section, we give a formal description of our streaming delegation scheme for delegating
L-uniform depth-d circuits. Our construction uses the following building blocks

1. A fully homomorphic encryption scheme E = (Gen,Enc,Dec,Eval) where the semantic secu-
rity holds against poly(N)-time adversaries (with negligible advantage in N).

2. The delegation scheme GKR = 〈D′,W′〉 from [GKR08, KR09] (see Theorem 8 for the prop-
erties of this delegation scheme). The main property we use here, is that the delegator can
verify proofs by accessing its input x at a single random point in LDEx.

• Parameters. Let k be the security parameter, and let N be an upper bound on the length
of the data stream. Let H be an extension field of GF[2] of size |H| = polylog(N), let

m = θ
(

logN
log logN

)
, and let F be an extension field of H of size |F| = poly (|H|). Let F̃ be an

extension field of F of size |F̃| = N logN .

• Generating and updating the secret state.

1. At the initial time t = 0, the delegator D chooses a random point z ← F̃m, and stores
σ0 = (z, 0) as her secret state.

2. At each time t ∈ [N ], when a data item xt ∈ {0, 1} arrives, D updates her secret state
from σt−1 = (z,LDExt−1(z)) to σt = (z,LDExt(z)), by using Proposition 6.29 (Recall
that xt = (x1, . . . , xt) denotes the entire data stream up until time t.)

• Compute(f, t). At any time t ∈ [N ] when the delegator wants the worker to compute
some function f , where f is an L-uniform depth-d circuit, they run the following protocols
in parallel.

29More explicitly, the update is done using the following formula.

LDExt(z) = LDExt−1(z) + xt · LDEet(z),

where et ∈ {0, 1}N denotes the N -bit string with 1 at the t-th bit, and 0 otherwise. Note that LDEet(z) can be
computed in polylog(N) time by interpolation.
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1. Run GKR(u), which is the u-fold parallel repetition of the underlying delegation protocol
GKR, for delegating the computation of f(x), where u is any parameter such that
1/2u = ngl(N). If at any time the GKR delegator rejects, the delegator D rejects.

Let F′,H′,m′ be the parameters used by GKR(u), and recall that at the end of the

protocol, D needs to verify the value of LDEF′,H′,m′
xt at u random points r1, . . . , ru ∈

(F′)m′ , i.e. it needs to check whether LDEF′,H′,m′
xt (ri) = vi for some values vi.

2. For each i ∈ [u], run GKR(u) for delegating the computation in gri(x
t) , LDEF′,H′,m′

xt (ri).

These GKR(u)(gri) protocols are done with respect to (H,F,m′′), wherem′′ = θ
(

log t
log logN

)
.30

Moreover, these protocols are masked using a PIR scheme to keep the secrecy of the ri’s,
which is necessary to ensure the soundness of the GKR(u) protocol of Step 1.

We note that Steps 1 and 2 above are almost identical to Steps 1 and 2 of the Compute(f)
operation of our memory delegation scheme, constructed in Section 7.2, and we refer the
reader to Section 7.2 for a detailed description of the masked GKR(u)(gri) protocols.31

If the GKR delegator rejects at any point, then the delegator D rejects. Otherwise,

in order to verify these protocols, D needs to check that LDEF,H,m′′
xt (z′′i,j) = wi,j for u2

random points z′′i,j ∈ Fm′′ , and some values wi,j ∈ F. However, as was argued above (see

Equation (10)), LDEF,H,m′′
xt (z′′i,j) = LDEF,H,m

xt (zi,j) where zi,j = (0m−m
′′
, z′′i,j). Thus, D

needs to check that LDEF,H,m
xt (zi,j) = wi,j for u2 points zi,j ∈ Fm.

3. Run a many-to-one protocol to reduce computing LDEF,H,m
xt (zi,j) for u2 points zi,j ∈ Fm,

to computing LDEF̃,H,m
xt (s) for a single random point s← F̃m. Note that s is a random

point in the extension field F̃m, as opposed to Fm. As before, the points (zi,j)i,j∈[u] must

be kept secret to ensure the soundness of the GKR(u) protocols of Step 2. We ensure
this secrecy by simply running the protocol under an FHE scheme.

We note that we cannot use a PIR scheme here, since F̃ is of super-poly size, and therefore
the use of a PIR scheme will result with the worker running in super-polynomial time.
Instead we use an FHE scheme, which keeps both the worker and the delegator efficient.

More specifically, the delegator D chooses a random s ← F̃m and computes a canon-
ical representation of the unique degree-u2 curve `~z,s passing through ~z = (zi,j)i,j∈[u]

and s. Then D generates (pk1, sk1)← Gen(1k), computes ˆ̀
~z,s = Encpk1

(`~z,s), and sends

(pk1,
ˆ̀
~z,s) to W. The worker W computes, homomorphically under encryption, a uni-

variate polynomial p1 , LDEF̃,H,m
xt ◦ `~z,s, and returns the resulting ciphertext p̂1 to D,

who decrypts to obtain the polynomial p1.

Let α0, αi,j ∈ F̃ for i, j ∈ [u] be such that `~z,s(α0) = s and `~z,s(αi,j) = zi,j . D checks

whether wi,j = p1(αi,j) (which are supposed to be LDEF,H,m
xt (zi,j)). If not, she rejects.

4. In order to verify that indeed p1 = LDEF̃,H,m
xt ◦ `~z,s, the delegator D checks whether

LDEF̃,H,m
xt (s) = p1(α0), using the Reveal protocol described in Figure 6, and using its

certificate σt = (z,LDEF̃,H,m
xt (z)).

30Recall that since computing gri(·) can be done by a polylog(N)-depth poly-size circuit, this setting of parameters
works for GKR(u).

31We mention that, we can also mask the GKR(u) protocol using an FHE scheme, as opposed to a polylog PIR
scheme, which is what we do in Step 3.
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Note that in the Reveal protocol, we are specific about the representation of the random
affine space Ss,z. This representation will be useful when we apply our main leakage
lemma (Lemma 22), established in Section 4, to prove the reusable soundness of sDel in
Section 9.3.

If D rejects in the Reveal(s) protocol, or if the accepted p2(αs) is not equal to the claimed
value p1(α0), then D rejects.

5. The delegator accepts the interaction if and only if she did not reject in any place above.

Note that the first two steps are (almost) the same as that in our memory delegation scheme
(Section 7.2). As before, we denote the delegation protocol of Step 1 by

GKR(u) = 〈W′(u),D′(u)(r1, . . . , ru)〉(f).

We denote the masked delegation protocols of Step 2 by

PIR
(
〈W′(u),D′(u)(z′′i,1, . . . , z

′′
i,u)〉(gri)

)
.

We denote the masked many-to-one protocol of Step 3 by u2-to-1(~z, s) and the reveal protocol
of Step 4 by Reveal(s). Note that the streaming data xt is implicit in all these notations. We
summarize the Compute(f) protocol in Figure 7.

Remark. We note that our streaming delegation scheme can also be used as a memory delegation
scheme. Recall that the only component that a memory delegation scheme has, and a streaming
delegation scheme does not have, is the Update operation. Also recall that in our memory delegation
scheme, the delegator D delegates the update of her state (from (h, Th(x)) to (h′, Th′(g(x)))) to
the worker W. The same idea can be applied to the streaming delegation scheme as well.32 As
mentioned in Section 7.1, our memory delegation scheme has several advantages over the one that
could be obtained from our streaming delegation scheme.

9.3 Proof of Theorem 40.

In this section, we prove that the construction above satisfies the properties of Theorem 40.
The perfect completeness follows immediately from the completeness of the underlying GKR

delegation scheme, the completeness of the FHE scheme, and the completeness of the Reveal pro-
tocol. The fact that the delegator D can update her secret state in time polylog(N) follows from
Proposition 6. The efficiency guarantees of the Compute protocol follow immediately from the
efficiency guarantees of GKR, the efficiency guarantees of the underlying PIR scheme, and the
efficiency of the u2-to-1 protocol and the Reveal protocol, under FHE.

The main difficulty is in proving soundness. First we observe that the streaming delegation
scheme is one-time sound. This proof is very similar to the proof that our memory delegation scheme
is one-time sound (Lemma 32). However, it is at all not clear how to reduce one-time soundness
to many-time soundness, since the delegator uses the same secret state in all the executions, and
each decision bit of the delegator may leak one bit information about this secret state.

32We note that to ensure that D’s secret state is kept secret from the worker W after the Update operation, we
would need to run the Compute operation (for updating D’ secret state) under FHE.
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Reveal(s):

The delegator D stores a secret algebraic commitment σt = (z,LDEF̃,H,m
xt (z)) and wants to learn

the value of LDEF̃,H,m
xt (s) from the worker W, who stores x ∈ {0, 1}N .

• D does the following.

1. Choose a random two-dimensional affine subspace Ss,z ⊂ F̃m that contains the points
s and z.

2. Let X = Ss,z − s , {v − s : v ∈ Ss,z}. Namely, X is a random two-dimensional
subspace that contains the point z − s.

3. Choose a random representation for X, by choosing two random points x1, x2 ← X,
and represent X as a matrix in F̃m×2 where the first column is x1 and the second
column is x2.

Thus, every point a ∈ Ss,z is represented by a = X · α+ s for some α ∈ F̃2.

4. Generate a pair of keys (pk2, sk2)← Gen(1k) and compute an encryption

Ŝs,z , (X̂, ŝ) = (Encpk2
(X),Encpk2

(s)).

5. Send (pk2, Ŝs,z) to W.

• W homomorphically computes the two-variate polynomial p2 = LDEx◦Ss,z under the FHE
(denote the resulting ciphertext p̂2), and sends p̂2 to D.

• D decrypts p̂2 to obtain p2. Let αs, αz ∈ F̃2 be such that Ss,z(αs) = s and Ss,z(αz) = z. D

checks whether p2(αz) = LDEF̃,H,m
xt (z). If so, D accepts the value LDEF̃,H,m

xt (s) = p2(αs).
Otherwise, D rejects.

Figure 6: Formal description of the Reveal protocol.

Soundness: high-level intuition. Intuitively, we would like to prove that in our construction,
the decision bit of the delegator does not reveal any information about her secret state z, and thus
this secret is “reusable”, and hence the protocol is many-time sound.

Recall that in our Compute protocol, the delegator D uses her secret state z only in the Reveal
protocol, where she sends the worker an encryption of a random two-dimensional affine subspace Ss,z
that contains z. Intuitively, the idea is to use our main leakage lemma (Lemma 22 in section 4)
to argue that in the Reveal protocol, any one-bit leakage about the subspace Ss,z does not reveal
information about z (i.e., z looks totally random from the worker’s view). While it is indeed true
that any bit of leakage about Ss,z does not reveal any information about z, note that the decision
of the delegator in the Reveal protocol does depend on the actual point z, and not just on the
subspace Ss,z (as she checks the value of p2(αz)).

One way of going around this, is by considering another delegator D̃, which is a “somewhat
cautious” delegator, in the sense that she does not check the validity of the polynomial p2 at the
specific point αz, as this depends on her secret point z. Instead, D̃ is an inefficient delegator that
holds the entire stream x ∈ {0, 1}t, and checks that p2 = LDEx ◦ Ss,z. The point is that D̃ does
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Compute(f, t):

The delegator D stores a secret state σt = (z,LDEF̃,H,m
x (z)) and wants to learn the value of f(x)

from the worker W, who stores x ∈ {0, 1}N .

1. D and W run GKR(u) = 〈W′(u),D′(u)(r1, . . . , ru)〉(f).

(a) If D′(u) rejects, then the delegator D outputs “reject”.

(b) At the end of this protocol, the delegator D′ needs to verify that LDEF′,H′,m′
x (ri) = vi

for some values vi.

2. For every i ∈ [u], run PIR(〈W′(u),D′(u)(z′′i,1, . . . , z
′′
i,u)〉(gri)) with parameters (H,F,m′′)

where m′′ = θ
(

log t
log logN

)
.

(a) The delegator D makes sure that in these protocols the worker still claims that in-
deed gri(x) = vi, where gri(x) = LDEF′,H′,m′

x (ri). If this is not the case, then the
delegator D outputs “reject”.

(b) If at any point D′ rejects, then the delegator D outputs “reject”.

(c) In order to verify these protocols, the delegator D needs to verify that
LDEF,H,m′′

x (z′′i,j) = wi,j for some values wi,j , which is equivalent to verifying that

LDEF,H,m
x (zi,j) = wi,j where zi,j = (0m−m

′′
, z′′i,j) ∈ Fm (see Equation (10)).

3. Run u2-to-1(~z, s) where ~z = (zi,j).

Recall that in this protocol, D sends W a message (pk1,
ˆ̀
~z,s), where `~z,s is a canonical

representation of the u2-degree curve that passes through the points zi,j and the point s;
namely, `~z,s(αi,j) = zi,j and `~z,s(α0) = s, for some αi,j , α0 ∈ F̃. Then, W sends p̂1, where

supposedly, p1 = LDEF̃,H,m
xt ◦ `~z,s

The delegator D verifies that p1(αi,j) = wi,j for every i, j ∈ [u]. If this is not the case,
then the delegator D outputs “reject”.

4. The delegator D verifies that LDEF̃,H,m
x (s) = p1(α0) by running Reveal(s).

If D rejects in the Reveal(s) protocol, or if p1(α0) 6= p2(αs) (where p2 and αs are defined
in the Reveal(s) protocol in Figure 6), then D rejects.

5. The delegator D outputs “accept”, assuming she didn’t output “reject” at any point.

Figure 7: Compute(f)
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not use the actual point z, but only the random subspace Ss,z.
Now we can try to use our main leakage lemma (Lemma 22) to claim that each execution of

Compute does not reveal any information about the delegator’s secret state z, and thus she can
safely use this secret state again. It still remains to argue that if a cheating worker could cheat
when talking to a “somewhat cautious” delegator, then he could also cheat when talking to the real
delegator. The idea here is to use the Schwartz-Zippel lemma (with a computationally hidden z).

Towards our formal proof. In our formal proof, we take another route. We define a “cautious”
delegator (as opposed to a “somewhat cautious”) to be one that each time uses a fresh new secret
state z′. As above, our cautious delegator is inefficient, and has the entire stream x ∈ {0, 1}t. The
many-time soundness of this cautious scheme follows immediately from its one-time soundness.

Next, we consider a sequence of N hybrid games, G0, . . . ,GN , where in Gt the delegator is
cautious during the first t Compute protocols, and runs the protocol of the original delegator D
from the t + 1’st execution onwards. Note that G0 is the real soundness game (with the real
delegator D), as defined in Definition 37, whereas GN is the soundness game with the cautious
delegator D̃. Thus, if there exists a cheating worker W ∗ that cheats in the original game G0, by
a standard hybrid argument, there must exist two games Gt−1 and Gt where there is a noticeable
gap between the success probability of W ∗ in Gt−1 and its success probability in Gt.

The idea is to use this fact to contradict our main leakage lemma (Lemma 22), as follows.
Simulate the first t− 1 Compute operations. Note that in both Gt−1 and in Gt the delegator uses a
fresh secret state in these executions. Then, in the t’th Compute operation, use the subspace given
by the leakage lemma.

Recall that the leakage lemma claims that it is hard to distinguish between (x,Encpk(X), pk, b)
and (u,Encpk(X), pk, b), where x ← X and u ← F̃m. So, the idea is to use pk,Encpk(X) in the
Reveal(s) protocol. Then continue the simulation of the rest of the Compute operations using the
secret state w+ s, where w is either a random element in X or a random element in F̃m. However,
as was noted above, we cannot use the leakage lemma, since the original delegator actually used the
secret point to check the validity of the polynomial p2 sent by the worker. This, slightly complicates
matters.

We define our “cautious” delegator to be really cautious, so that not only does he use a fresh
secret state z′ for each round, but he also checks the validity of the polynomial p2 sent by the
worker, by actually checking that p2 ≡ LDEx ◦ Ss,z′ (as opposed to checking its validity at a single
point). Then, assuming we have a gap between Gt−1 and Gt, we consider another hybrid game
between these two games, which we denote by G∗. This game is similar to the game Gt−1, in the
sense that the delegator uses the real secret state z in the t’th round, but it differs from Gt−1 in
that it checks the validity of p2 by checking that p2 = LDEx ◦ Ss,z.

We use the Schwartz-Zippel lemma to prove that Gt−1 and G∗ are statistically indistinguishable,
and we use our main leakage lemma (Lemma 22) to prove that G∗ and Gt are computationally
indistinguishable. The latter is done by contradiction. If there exists a distinguisher between the
games G∗ and Gt, then we construct a distinguisher that distinguishes between the distributions
given the leakage lemma. This is done by simply embedding the input given by the leakage lemma
in the t’th round of the Reveal protocol.

Remark 41 We remark that the security reduction is inherently non-uniform, due to the use of the
machinery developed in Section 4. Specifically, the proof of Lemma 16 uses the equivalence of HILL
and Metric entropy, which only holds in the non-uniform setting. Therefore, the cryptographic
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primitives that we rely on need to be secure against non-uniform adversaries. In contrast, the
security proof of our memory delegation scheme in Section 7 is uniform.

In what follows we formally define the notion of a cautious delegator (or a cautious stream-
ing delegation scheme), followed by a formal proof of the (reusable) soundness of our streaming
delegation scheme.

Cautious Streaming Delegation Scheme ˜sDel = 〈W, D̃〉. For the purpose of our analysis,
we consider a variant of sDel, called cautious streaming delegation scheme, which we denote by

˜sDel = 〈W, D̃〉. In ˜sDel the worker is exactly the same as the worker in sDel, but the delegator is
“cautious.”

More specifically, in ˜sDel, the delegator D̃, instead of maintaining a secret state σt = (z,LDEx(z)),
she stores the entire data stream xt ∈ {0, 1}t. Recall that in the original sDel scheme, during the
Compute protocol, the delegator uses her secret state σt only in the Reveal protocol. In ˜sDel,
the Compute protocol is exactly as in sDel, except for the following modification to the Reveal(s)
protocol.

• D̃ generates her message in the same way as D, except that D̃ chooses a random two-
dimensional affine subspace Ss ⊂ F̃m containing s, instead of choosing a random affine space
Ss,z ⊂ F̃m containing both s and z.

• To verify the polynomial p2 returned by W (after decryption), D̃ computes LDEx ◦ Ss on her
own and checks if p2 = LDEx ◦ Ss, instead of checking its consistency with LDEx ◦ Ss on a
single point.

In other words, D̃ is doubly-cautious in the Reveal protocol: First, D̃ doesn’t reuse the same
secret point z, but rather chooses the affine subspace at random, with the only restriction that it
contains s. Second, she checks whether the polynomial p2 returned by W is correct, instead of only
checking if p2 is correct on a random point z.33 Our analysis proceeds in the following two steps.

• We first show, that ˜sDel has negligible one-time soundness error, which immediately implies
the (reusable) soundness of ˜sDel, since these executions are totally independent, as D̃ does
not use a secret state.

The proof is very similar to the proof of the one-time soundness of our memory delegation
scheme (Lemma 32).

• Let G and G̃ be the (reusable) security games of sDel and ˜sDel, respectively. We shall show,
that the main-leakage lemma (Lemma 22), together with a hybrid argument, implies that no
poly(N)-size worker W∗ succeeds with noticeably higher probability in G than in G̃. In other
words, there is no need to be cautious!

Lemma 42 The streaming delegation scheme sDel constructed in Section 9.2 is one-time sound,
i.e., it has negligible one-time soundness error.

The proof of this lemma is essentially the same as the proof of Lemma 32, and is omitted.

33Note that D̃ runs in time poly(N), which is not efficient in our setting, but this is only for the sake of the analysis.
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Lemma 43 The streaming delegation scheme sDel constructed in Section 9.2 is sound, i.e., it has
negligible soundness error.

Proof. Suppose for the sake of contradiction that there exists a poly(N)-size worker W∗ such
that

Pr[W∗ succeeds in GW∗(k,N)] ≥ ε(N), (11)

for some noticeable ε(N). Lemma 42 implies that ˜sDel has negligible soundness error. Namely

Pr[W∗ succeeds in G̃W∗(k,N)] ≤ ngl(N). (12)

From Equation (11) and (12), we derive a contradiction to Lemma 22, using the following hybrid
argument. Consider the following hybrid games Gt for every t ∈ {0, . . . , N}.

• Hybrid Game Gt: The reusable security game for the streaming delegation scheme with a
hybrid delegator Dt, who is cautious until (and including) time t, and behaves as the original
delegator D after time t. More precisely, for every time t′ ≤ t, the hybrid delegator Dt stores
the whole data stream xt′ and behaves as the cautious delegator D̃. At the beginning of time
t + 1, the hybrid delegator Dt generates a secret state σt+1 = (z,LDExt+1(z)) by choosing
a random z ← F̃m and computing LDExt+1(z). Then, for every time t′ ≥ t + 1, the hybrid
delegator Dt behaves as the original delegator D.

By definition, the hybrid games G0 and GN are simply G and G̃, respectively. By a standard
hybrid argument, Equations (11) and (12) imply that there exists some t ∈ [N ] such that

Pr[W∗ succeeds in GW∗
t−1]− Pr[W∗ succeeds in GW∗

t ] ≥ ε/N − ngl(N). (13)

Note that the only difference between Gt−1 and Gt is at time t, where Dt−1 behaves as the
original delegator D, but Dt is still cautious. More precisely, at time t, the two delegators behave
differently in the Reveal(s) protocol (if executed), as follows.

• Dt−1 sends (Ŝs,z, pk) = (X̂, ŝ, pk) to W∗, where Ss,z is a random 2-dimensional affine space
containing s and z, and X ∈ F̃m×2 is a random representation of the two-dimensional subspace
Ss,z − s , {v− x : v ∈ Ss,z}. Let αz ∈ F̃2 be such that z = X ·αz + s. Then Dt−1 checks that
p2(αz) = LDExt(z), where p2 is the polynomial sent by W∗ (after decryption).

• Dt sends (Ŝs, pk) = (X̂, ŝ, pk) to W∗, where X ∈ F̃m×2 is a random two-dimensional subspace,
and S = X + s. Then Dt checks that p2 = LDExt ◦ Ss, where p2 is the polynomial sent by
W∗ (after decryption).

Note that Dt−1 continues to use z as her secret state after time t. Also note that in both cases,
X ∈ F̃m×2 is a random representation of a random 2-dimensional linear subspace, so X is statisti-
cally close to a uniformly random m-by-2 matrix (with statistical distance O(1/|F̃|) = ngl(N)).

Looking ahead, we want to use the noticeable gap between the success probability of W∗ in Gt−1

and Gt (in Equation (13)) to contradict Lemma 22. To this end, we construct a distinguisher A
that distinguishes distributions (x, X̂, pk, b)← D1 and (u, X̂, pk, b)← D2, where

• X ← F̃m×2 is a random m-by-2 matrix.
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• pk is a public key generated by (pk, sk)← Gen(1k), and X̂ ← Encpk(X).

• b = L(X̂, pk) is a leakage bit, where L : {0, 1}∗ → {0, 1} is a leakage function, to be specified
later.

• x← X and u← F̃m.

To this end, the distinguisher A, upon receiving (w, X̂, pk, b), distributed according to D1 or
D2, tries to simulate the game Gt−1 or Gt, respectively, by embedding the received distribution
(w, X̂, pk, b) in the game. At a high level, we let A embed the distribution in the Reveal protocol
at time t (if executed), where (X̂, pk) is (part of) the delegator’s message, and b is the decision bit
indicating whether the delegator accepts or rejects in the Reveal protocol. However, note that (the
original) D and (the cautious) D̃ decide whether to accept in the Reveal protocol in a different way,
and in particular, D’s decision depends on the secret point z.

Therefore, in addition to Gt−1 and Gt, we consider an intermediate hybrid game G∗, which is a
hybrid of Gt−1 and Gt: It is the same as Gt−1 and Gt except in the t’th protocol, where the delegator
D∗ sends the same message as Dt−1 (which is less cautious since she uses z), but decide whether to
accept in the same way as Dt (which is cautious). Namely,

• D∗ sends (Ŝs,z, pk) = (X̂, ŝ, pk) to W∗, where Ss,z is a random 2-dimensional affine space
containing s and z, and X ∈ F̃m×2 is a random representation of Ss,z − s. Then D∗ checks
the polynomial p2 returned by W∗ (after decryption) by checking whether p2 = LDExt ◦ Ss,z.

Note that both Dt−1 and D∗ continue to use z in their secret state after time t.
We first argue that the hybrid games Gt−1 and G∗ are statistically close. Recall that the only

difference between them is in the Reveal(s) protocol at time t, where Dt−1 (resp., D∗) checks
the polynomial p2 sent by W∗ (after decryption) by checking whether p2(αz) = LDExt(z) (resp.,
p2 = LDExt ◦Ss,z). Note that Dt−1 and D∗, being cautious before time t, use the (random) point z
for the very first time at time t, so we can think of z as being generated from z ← Ss,z after they
send the message (Ŝs,z, pk).34 It follows by the Schwartz-Zipple lemma that

Pr[ Dt−1 and D∗ make a different decision ]

≤ Pr[(p2 6= LDExt ◦ Ss,z) ∧ (p2(αz) = LDExt(z))]

≤ O(d/|F̃|) ≤ ngl(N),

where d = polylog(N) is the total degree of LDExt . Since this is the only difference between Gt−1

and G∗, the statistical distance of the two hybrid is ngl(N).
Now, since Gt−1 and G∗ are statistically close, Equation (13) implies

Pr[W∗ succeeds in (G∗)W
∗
]− Pr[W∗ succeeds in GW∗

t ] ≥ (ε/N)− ngl. (14)

This time, we are able to use the noticeable gap between the success probability of W∗ in G∗ and
Gt in Equation (14), to contradict Lemma 22.

Let us take a close look at the difference between G∗ and Gt. Again, the only difference is in
the Reveal(s) protocol at time t, where D∗ (resp., Dt) sends (Ŝs,z, pk) (resp., (Ŝs, pk)) to W∗. Note,

34More precisely, first choosing a random z ← F̃m and then choosing a random Ss,z containing z (and s) is equivalent
to first choosing a random S containing s, and then choosing z ← S.

55



however, that the distribution of both Ss,z and Ss are actually the same, both being a random
2-dimensional affine space containing s. The real difference is that, after time t, D̃t−1 (resp., Dt)
uses z ← Ss,z (resp., z ← F̃m), in her secret state. Noting that this is exactly the difference between
(z, X̂, pk, b) ← D1 and (u, X̂, pk, b) ← D2, we are ready to define the distinguisher A, as follows,
from which the choice of leakage bit b = L(X̂, pk) would become clear.

On input (w, X̂, pk, b), distributed either according to D1 or according to D2, the distinguisher A
does the following.

1. Simulate the interaction between W∗ and D̃ until the end of time t− 1.

2. At time t, if there is a Compute execution, then simulate the Compute operation as follows.

• Simulate for both parties all (sub-)protocols except the Reveal(s) protocol. This includes
choosing s ∈ F̃m.

• For the Reveal(s) protocol, simulate the delegator’s message by (X̂, ŝ, pk), where (X̂, pk)
is part of its input, and ŝ ← Encpk(s). Then simulate W∗’s message. Finally, use the
bit b (which is part of A’s input) as the decision bit of the delegator. (Note that A does
not have a secret key sk and cannot compute the delegator’s decision bit efficiently.)

3. Compute σt = (w + s,LDExt(w + s)) and continue to simulate the interaction between W∗

and D after time t using σt as D’s secret state.

4. Output 1 if and only if W∗ ever cheats successfully during the interaction.

We define the leakage function L(X̂, pk) to be the decision of D∗ and Dt in the Reveal(s) protocol
at time t, if executed, and 0 otherwise. More precisely, let S = X + s; L(X̂, pk) = 1 if and only if
p2 = LDExt ◦ S. Note that L is a randomized function, which uses its randomness to simulate the
game until the end of time t, and determine the decision of the delegator in the Reveal(s) protocol.
Also note that the secret key sk is missing from (X̂, pk, r), so L cannot be computed in poly(N)
time.

Note that when (z, X̂, pk, b) ← D1, the distinguisher A perfectly simulates G∗, and when
(u, X̂, pk, b)← D2, the distinguisher A perfectly simulates Gt. Therefore, Equation (14) implies

Pr[A(z, X̂, pk, b) = 1]− Pr[A(u, X̂, pk, b) = 1] ≥ ε/N − ngl(N),

contradicting Lemma 22. This completes the proof.

10 Interactive Delegation of Any (Efficient) Computation

In this section, we construct memory and streaming delegation schemes based on universal argu-
ments of Barak and Goldreich [BG02]. This allows the delegator to delegate computation for all of
P rather than NC, at the price that the Compute(f) protocol becomes interactive with 4 message
exchanges.

Recall that when we constructed our memory and streaming delegation schemes in Sections 7
and 9, the key property we need from the GKR protocol is that the verifier does not need to
read the entire input, but rather only needs to access a few random points in the low-degree
extension of the input. The main observation is that, the same property also holds for universal
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arguments, when the underlying PCP is substituted by an efficient PCP of Proximity (PCPP), a
notion introduced by Ben-Sasson, Goldreich, Harsha, Sudan, and Vadhan [BSGH+05] and Dinur
and Reingold [DR06]. (We remark that this observation has been made independently by Cormode,
Thaler, and Yi [CTY10] in the context of “streaming interactive proofs.”) Therefore, we can
use universal arguments with PCPP to construct memory and streaming delegation schemes for
any (efficient) computation. In fact, the construction becomes simpler. Moreover, for memory
delegation, we can avoid the use of poly-log PIR schemes, and only require the existence of collision-
resistant hash functions.

Formally, we obtain the following theorems. For the sake of simplicity, we state the theorems
for delegating computation of polynomial time Turing machines. The theorems extend readily to
non-uniform Turing machines, where the running time of the delegator and the worker in both the
offline and the online stage depends polynomially on the length of the non-uniform advice.

Theorem 44 (Interactive Memory Delegation) Let k be a security parameter, and let F be
the class of all functions computable by polynomial time Turning machines. Assume the existence
of collision-resistance hash functions. Then there exists a memory delegation scheme sDelF for F
with the following properties.

• The scheme has perfect completeness and negligible (reusable) soundness error.

• The delegator and worker are efficient in the offline stage; i.e., both the delegator and the
worker run in time poly(k, n), where n is the size of the memory.

• The worker is efficient in the online stage. More specifically, it runs in time poly(k, T (n))
during each Compute(f) and Update(f) operation, where T (n) is a time bound of the delega-
tion function f on inputs of length n. The delegator runs in time poly(k, log T ) during each
Compute(f) and Update(f) operation.

• Both Compute(f) and Update(f) consist of 4 message exchanges.

Theorem 45 (Interactive Streaming Delegation) Let k be a security parameter, and let N
be a parameter bounding the maximum length of the stream. Let F be the class of all functions
computable by polynomial time Turning machines. Assume the existence of a fully-homomorphic
encryption scheme secure against poly(N)-size adversaries. Then there exists a streaming delega-
tion scheme sDelF for F with the following properties.

• sDelF has perfect completeness and negligible (reusable) soundness error.

• D updates her secret state in time polylog(N), per data item.

• In the delegation protocol, when delegating a function f ∈ F computable in time T (n), the dele-
gator D runs in time poly(k, logN, log T ), and the worker W runs in time poly(k, logN,T (n)),
where n is the length of the stream.

• The delegation protocol Compute(f) consists of 4 message exchanges.

In Section 10.1, we present some necessary preliminaries, where we briefly review how to con-
struct a (standard) delegation scheme using universal arguments and define PCP of Proximity. We
then present a (standard) delegation scheme with the key property we need in Section 10.2. Finally,
we construct the memory and streaming delegation schemes described in Theorem 44 and 45 in
Sections 10.3 and 10.4, respectively.
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10.1 Preliminaries

10.1.1 Universal Arguments

In this section, we briefly review how to delegate computation using universal arguments [BG02],
as presented implicitly in [CKV10, Section 9].

Let k be the security parameter. To delegate the computation of a uniform function f (specified
by a Turing machine M with a time bound T ) on input x ∈ {0, 1}n,35 the delegator D sends f, x to
the worker W, who returns the answer y = f(x) to D. Then they engage in a universal argument,
where W proves to D that indeed y = f(x). More specifically, W proves to D that (M,x, y, T ) is in
the following language Luni.

Luni , {(M,x, y, T ) : M is a Turing machine s.t. M(x) outputs y in ≤ T steps}.

In more detail, in the universal argument, the prover commits to a PCP proof π using a tree
commitment Th(π) with the hash function h ← H chosen by the verifier. Then the verifier plays
the role of a PCP verifier, with the prover answering her PCP queries by revealing the corresponding
bits πi’s in the commitment Th(π).

The universal argument consists of 4 message exchanges, so the delegation protocol as described
above requires 6 message exchanges. However, as argued in [CKV10], the first two message ex-
changes can be parallelized with the first two messages of the universal argument, which yields a
4-message delegation protocol.

Clearly, the complexity of the delegation scheme depends on the complexity of the universal
argument, which depends on the underlying PCPs. We note that the delegator needs to run in
time Ω(n) since the verification of the underlying PCP proof π using standard PCPs (as opposed
to PCPs of proximity) depends on the whole input (M,x, y, T ).

In the following theorem, we state the delegation scheme obtained by using the universal argu-
ment of [BG02].

Theorem 46 ([BG02]) 36 Let k be the security parameter. Let n denote the input length, and
let T be a time bound such that T ≥ n ≥ k. Let F be the family of boolean functions computable
by time T Turing machines. Assume the existence of collision resistant hash functions secure
against poly(T )-time adversaries. Then, there exists a delegation protocol for F with the following
properties.

1. The protocol has perfect completeness and negligible soundness error.

2. The worker runs in time poly(T ), and the delegator runs in time poly(n, log T ).

3. The protocol consists of four messages, with communication complexity poly(k, log T ). More-
over, the protocol is public-coin.

10.1.2 PCPs of Proximity

In this section, we present necessary preliminaries on PCPs of proximity and state the PCPP
theorem of [BSGH+05].

35Assume that T ≥ n.
36The theorem statement slightly differs from the one given in [BG02] and is tailored to our application.
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Definition 47 (Pair-language) A pair-language L is simply a subset of the set of string pairs
L ⊆ {0, 1}∗ × {0, 1}∗. For every a ∈ {0, 1}∗, we denote La = {b ∈ {0, 1}∗ : (a, b) ∈ L}. We usually
denote ` = |a| and K = |b|.

The reader can think of a as a Turing machine M , and b as an input encoding, and (a, b) ∈ L
iff M accepts the input encoded by b within some time bound.

Definition 48 (PCPP verifier [BSGH+05]) Let r, q : N → N and t : N × N → N. An (r, q, t)-
PCPP verifier V is a probabilistic oracle machine with the following structure.

• V receives as input a string a ∈ {0, 1}∗ and a number K ∈ N (in binary), and has oracle
access to two strings b ∈ {0, 1}K , and π ∈ {0, 1}∗.

• V uses at most r(|a| + K) coins, makes at most q(|a| + K) non-adaptive queries to the two
oracles (in total), runs in at most t(|a|,K) time, and outputs a verdict bit, indicating her
acceptance/rejection.

The parameters r, q, t are the randomness, query, and time complexity of V , respectively.

The reader can think of r, q, t as being sub-linear.

Definition 49 (PCPP for Pair-language [BSGH+05]) Let r, q : N → N, t : N × N → N, and
ε, δ : N → [0, 1]. A pair-language L ⊆ {0, 1}∗ × {0, 1}∗ is in PCPPε,δ[r, q, t] if there exists an
(r, q, t)-PCPP verifier V with the following properties.

• (Completeness) If (a, b) ∈ L, then there exists a PCPP proof π ∈ {0, 1}∗ such that
V b,π(a, |b|) accepts with probability 1.

• (Soundness) If (a, b) is such that b is δ(|a| + |b|)-far from La ∩ {0, 1}|b|,37 then for every
π ∈ {0, 1}∗, it holds that

Pr[V b,π(a, |b|) = 1] ≤ ε.

The parameter δ is called the proximity parameter.

Theorem 50 (Efficient PCPP for Pair-language (Theorem 2.5 of [BSGH+05])) Let T : N→
N be a non-decreasing function, and let L = {(a, b)} be a pair-language. If L can be decided in time
T ,38 then L ∈ PCPP1/2,δ[r, q, t] with

• proximity parameter δ = 1/polylog(T ),

• randomness complexity r = log2 T +O(log log T ),

• query complexity q = polylog(T ), and

• verification time complexity t(`,K) = poly(`, logK, log T ), where ` , |a|,K , |b|, and T =
T (`+K).

37A string b is δ-far from a set S ⊂ {0, 1}|b| if for every b′ ∈ S, the relative Hamming distance ∆(b, b′) ≥ δ, where
the relative Hamming distance is defined by ∆(b, b′) , |{i : bi 6= b′i}|/|b|.

38L can be decided in time T if there exists a Turing machine M such that for every input (a, b) ∈ {0, 1}∗×{0, 1}∗,
M(a, b) = 1 iff (a, b) ∈ L, and M(a, b) runs in time T (|a|+ |b|).
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Furthermore, the PCPP proof π for inputs in L (that makes V accepts) can be computed in time
poly(T ), and has length at most q · 2r = T · polylog(T ).

We mention that the result of [BSGH+05] holds for languages decidable in non-deterministic
time T , but we are only interested in deterministic languages for the purpose of delegating com-
putations. We also mention that [BSGH+05] does not discuss the complexity of constructing the
PCPP proof, but the efficiency follows by a close inspection of their construction [Vad10].

We note that the soundness error 1/2 can be reduced to 1/2u by running V with independent
coins u times. This blows up the randomness, query, and time complexity of V by a (multiplicative)
factor of u (but does not increase the proof length).

10.2 Delegation Scheme using Universal Arguments with PCPP

In this section, we present a 4-message (standard) delegation scheme for any (efficient) computation,
that possesses the same key property we need from the GKR protocol for memory and streaming
delegation. Namely, the delegation protocol can be verified very efficiently (in sub-linear time in
the input size), if the delegator has oracle access to the low-degree extension of the input x.

The starting point is the 4-message delegation scheme using universal argument [BG02] pre-
sented in Section 10.1.1. Recall that the delegator runs in time Ω(n) since the verification of the
underlying PCP proof π depends on the whole input (M,x, y, T ). To make the delegator run in
sub-linear time in n, we substitute the underlying PCP for the language Luni by the efficient PCPP
of [BSGH+05] from Theorem 50 for the following pair-language.

Luni−pair , {((M,y, T ),LDEF,H,m
x ) : M is a Turing machine s.t. M(x) outputs y in ≤ T steps},

where the low-degree extension LDEF,H,m
x is a Reed-Muller code of x ∈ {0, 1}n with

|H| = log n, m = θ

(
log n

log log n

)
, |F| = log2 n.

Since in Section 10.1.2, a language L is always defined to contain bit strings, we think of the
codeword LDEF,H,m

x as a bit string, parsing every field element in F as log |F| bits. Thus, the length
of the codeword is |F|m · log |F| = Õ(n2). The parameters H,F,m are chosen so that the codewords
have sufficient relative Hamming distance to each other, for establishing the soundness property
(we discuss this later).

Note that there exists a Turing machine M that on input ((M,y, T ), x̃), decides whether
((M,y, T ), x̃) ∈ Luni−pair in time poly(n, T ) as follows: check if x̃ is a valid codeword (i.e., x̃ = LDEx
for some x), decode x̃ to obtain x, simulate M(x) for T steps, and check if M outputs y. Hence,
Theorem 50 implies the existence of a PCPP system Πpcpp for Luni−pair such that on instance
((M,y, T ),LDEx), the PCPP verifier V LDEx,π(M,y, T ; |LDEx|) runs in time polylog(T ).

Therefore, when the underlying PCP of the delegation scheme in Section 10.1.1 is replaced
by this PCPP system Πpcpp,

39 and when the delegator D is given oracle access to the low-degree
extension LDEx of x, D runs in time poly(k, log T ), and makes at most polylog(T ) queries to the
oracle LDEx. Furthermore, the queries to LDEx depend only on D’s coin tosses. On the other
hand, the worker W runs in time poly(k, T ), since the PCPP proof π can be computed in time
poly(T ). For the sake of completeness, a formal description of the modified protocol can be found
in Figure 8.

39Namely, to prove f(x) = y, instead of proving (M,x, y, T ) ∈ Luni using PCP, the worker W proves to D that
((M,y, T ),LDEx) ∈ Luni−pair using universal argument with PCPPs.
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Del = 〈D,W〉:
D delegates the computation of a uniform function f , specified by a Turing machine M and a
time bound T , on input x ∈ {0, 1}n to W.

• D has (M,T ) and x as the input.

1. D sends (M,T ) and x to W.

2. W computes and sends y = M(x) to D.

3. W and D engage in a universal argument with PCPP, where W proves to D that
((M,y, T ),LDEx) ∈ Luni−pair.

• D sends a collision-resistant hash function h← H to W.

• W computes a PCPP proof π of the statement ((M,y, T ),Enc(x)) ∈ Luni−pair, and
sends the tree commitment Th(π) to D.

• D runs the PCPP verifier V to generate a PCPP query q and sends it to W.

• W reveals the bits πi’s queried by q from the commitment Th(π) to D.

• D checks if πi’s are revealed validly, and runs the PCPP verifier
V LDEx,π(M,y, T ; |LDEx|).

4. D accepts y = f(x) if D accepts in the universal argument.

Figure 8: A (standard) delegation protocol Del for any (efficient) computation.

We briefly check the completeness and soundness of Del. The completeness follows by the
completeness of the PCPP. For the soundness, note that to convince the delegator D of an incorrect
answer y 6= f(x), an adversarial worker W∗ needs to make D accept ((M,y, T ),LDEx) /∈ Luni−pair

in the universal argument. Note that by the choice of parameters F,H,m and Schwartz-Zippel
Lemma, the relative Hamming distance between any two codewords LDEx,LDEx′ is at least

F−m · |H|
|F|

· 1

log |F|
= Ω

(
1

log log n

)
≥ 1

polylog(T )
.

Hence, the soundness property of the PCPP implies that for every ((M,y, T ),LDEx) /∈ Luni−pair

and for every π ∈ {0, 1}∗,

Pr[V LDEx,π(M,y, T ; |LDEx|) = 1] ≤ 1/2.

Since the soundness of the universal argument follows by the security of collision-resistance hash
functions and the soundness of the underlying PCP / PCPP, the delegator D would accept y 6=
f(x) with probability at most 1/2 + ngl. Namely, the delegation protocol has soundness error
1/2 + ngl. The soundness error can be reduced to negligible if the soundness of the underlying
PCPP is negligible, which as mentioned, can be achieved by repeating the PCPP verifier with fresh
randomness u times for some u satisfying 1/2u ≤ ngl.
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As in Section 10.1.1, the protocol Del, as defined in Figure 8, consists of 6 message exchanges.
However, note that the first message of D in the universal argument does not depend on the
statement ((M,y, T ),LDEx), and hence the worker’s first message can be delayed to be sent together
with the first prover’s message of the universal argument, which yields a 4-message delegation
protocol.

We summarize the properties of Del in the following theorem.

Theorem 51 (Interactive Delegation Scheme for Any (Efficient) Computation) Let k be
the security parameter. Let n denote the input length, and let T be a time bound such that
T ≥ n ≥ k. Let F be the family of boolean functions computable by time T Turing machines.
Assume the existence of collision resistant hash functions secure against poly(T )-time adversaries.
Then, there exists a delegation protocol for F with the following properties.

1. The protocol has perfect completeness and negligible soundness error.

2. The worker runs in time poly(T ), and the delegator runs in time poly(n, log T ).

3. The protocol consists of four messages, with communication complexity poly(k, log T ). More-
over, the protocol is public-coin.

4. If the delegator is given oracle access to the low-degree extension of x, rather than being
given the input x itself, and if the worker is given x as an input, then she runs in time
poly(k, log T ), and the protocol still has all the properties described above, for the following
choice of parameters H,F,m of the low-degree extension.

|H| = log n, m = θ

(
log n

log logn

)
, |F| = log2 n.

Moreover, the delegator queries the low-degree extension of x at polylog(T ) points, depending
only on her coin tosses.

Remark 52 We remark that the parameters F,H,m are chosen so that LDEx is a Reed-Muller
code with good rate and minimum distance. Let N > n be a parameter. We can also set F,H,m
by

|H| = logN, m =

⌈
log n

log logN

⌉
, |F| = log2N,

Then LDEx has length at most poly(n, logN) and (relative) minimum distance at least Ω(1/ log logN).
One can verify that the delegation scheme in Figure 8 is also sound with this setting of parameters
(provided that T ≥ logN , which can be assumed without loss of generality by padding dummy
steps), and the runtime of the delegator and the work are poly(k, logN, log T ) and poly(k, logN,T ),
respectively. This will be useful for our streaming delegation scheme presented in Section 10.4.

10.3 Memory Delegation Scheme Based on Theorem 51

In this section, we outline how to construct the memory delegation scheme (Theorem 44) using
the above delegation scheme (Theorem 51). Let x ∈ {0, 1}n be the memory being delegated. We
observe that the delegator in Theorem 51 is efficient (poly(k, log T )) if she is given the oracle access
to the low-degree extension of x with respect to some parameters |F| = log2 n, |H| = log n, and
m = θ(log n/ log log n). Thus, we can use similar techniques to the once in Section 7.2 where the
delegator can verify points on the low-degree extension oracle using a tree commitment.
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The Construction.

• Offline Phase. The delegator chooses parameters F,H,m with |F| = log2 n, |H| = log n,
and m = θ(log n/ log log n), and a random function h from a collision resistant hash family
H. Then the delegator computes the root of the Merkle tree of LDEF,H,m

x , namely σ =
Th(LDEF,H,m

x ), and saves (h, σ) as a short certificate of x.

• Online Plase.

– Compute(f): The worker and the delegator run the delegation scheme given by Theorem
51. In order to verify, the delegator needs to access poly log T points in LDEF,H,m

x , and she
can achieve this task by asking the worker to reveal the augmented paths corresponding
to the Merkle tree. She accepts if and only if all the openings are accepted, and their
corresponding values together with the answers to the PCPP queries are accepted in the
verification of the delegation scheme.

– Update(g): The delegator chooses a fresh collision resistant hash function h′ ← H, then
the delegator and the worker run Compute(Th′(LDEg(x))). Note that Th′(LDEg(x)) is
polynomial time computable (in x) given g. Finally, the worker replaces the memory x
with g(x).

Putting it together, we obtain Theorem 44. The proof is very similar to the proof of Theorem 31
in Section 7.3, and therefore is omitted. In what follows, we give a very high level overview of the
proof.

Proof Overview of Theorem 44.

• The completeness follows from those of the delegation scheme from Theorem 51 and the tree
commitment. The soundness can be proved in a similar way to the proof in Section 7.3.

• Both parties are efficient in the offline stage, i.e. run in time poly(k, n) since the computation
of the root of the Merkle tree takes poly(k, |F|m) = poly(k, n) time.

• In the online phase during each Compute(f) operation, the worker runs in time poly(k, T ),
and the delegator runs in time poly(k, log T ), where T is the running time of f . This follows
from the efficiency of the delegation scheme from Theorem 51 and from the fact that only
poly log T leaves of the tree commitment need to be revealed.

• The protocol has 4 message exchanges, by running the delegation scheme from Theorem 51
and the Reveal protocols in parallel. Specifically, in the first two messages, the delegator sends
a random hash function and the worker uses it to commit to a PCPP proof. Then in the third
message, the delegator queries both the PCPP proof and points on the low degree extension
of the memory. The worker answers the corresponding queries in the fourth message. An
illustration of the protocol can be found in Figure 9.

10.4 Streaming Delegation Scheme Based on Theorem 51

In this section, we outline the construction of our streaming delegation scheme. Let N be the
bound of the stream, and we choose the following parameters: F̃,F,H,m such that |F| = log2N ,
|H| = logN , m = θ(logN/ log logN), and |F̃| = N logN where F̃ is an extension field of F.
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W D
hUA←−−−−−−−−−−−−−−

ThUA
(πpcpp)−−−−−−−−−−−−−−→

qπ, qLDE←−−−−−−−−−−−−−−
ansπ, ansLDE−−−−−−−−−−−−−−→

Figure 9: Compute(f) protocol of our interactive memory delegation scheme: hUA is a collision
resistant hash function chosen by the delegator in the universal argument. ThUA

(πpcpp) is the tree
commitment of the PCPP proof πpcpp. qπ and qLDE denote the queries that the delegator makes
to the PCPP proof and the Reed-Muller encoding LDEx of the input x, respectively. ansπ and
ansLDE denote the corresponding answers together with the corresponding augmented paths.

The Construction.

• Generating and updating the secret state. At time 0, the delegator keeps a secret
σ0 = (z, 0), where z ← F̃m. At each time t ∈ [N ], when a data item xt ∈ {0, 1} arrives, the

delegator updates her secret state from σt−1 = (z,LDEF̃,H,m
xt−1 (z)) to σt = (z,LDEF̃,H,m

xt (z)), by
using Proposition 6. (Recall that xt = (x1, . . . , xt) denotes the entire data stream up until
time t.)

• Compute(f, t). At any time t, when the delegator wants to execute Compute(f, t), both parties
run the delegation scheme from Theorem 51 with a modified parameter setting

|H| = logN, m′′ =

⌈
log n

log logN

⌉
, |F| = log2N

as stated in Remark 52. Here in order to verify, the delegator needs to verify the value

of LDEF,H,m′′
xt on a few points z′′i ∈ Fm′′ . As argued in Section 9.1 (see Equation (10)),

LDEF,H,m′′
xt (z′′i ) = LDEF,H,m

xt (zi) where zi = (0m−m
′′
, zi). Hence, the delegator can instead

verify the values LDEF,H,m
xt (zi), which can be done by using a many-to-one protocol together

with a Reveal protocol in exactly the same way as in Section 9.2 (see Steps 3 and 4 in
Figure 7).

This gives us a streaming delegation scheme satisfying Theorem 45. As in Section 10.3, the
proof is very similar to the proof of Theorem 40 in Section 9, and is therefore omitted.

Proof Overview of Theorem 45.

• The completeness follows from that of the delegation scheme from Theorem 51, the many-
to-one protocol, and the Reveal protocol of the algebraic commitments (see Section 9 for
details). The soundness can be proved in a similar way to the proof in Section 9.3.

• The delegator runs in time polylogN to update her secret per data item.

• The worker runs in time poly(k, logN,T ) for the delegation of a time T computable function,
and the delegator runs in time poly(k, logN, log T ). This follows from the efficiency of the
underlying delegation scheme from Theorem 51, the many-to-one protocol, and the Reveal
protocol of the algebraic commitments.
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• The protocol has 4 message exchanges, by running the the delegation scheme from Theorem
51, the many-to-one protocol, and the Reveal protocol in parallel, in a similar way to that of
the memory delegation scheme described in Section 10.3. An illustration of the protocol can
be found in Figure 10.

W D
hUA←−−−−−−−−−−−−−−

ThUA
(πpcpp)−−−−−−−−−−−−−−→

qπ, qLDE−−−−−−−−−−−−−−→ many-to-one
Reveal(s)ansπ, ansLDE−−−−−−−−−−−−−−→

(z, s)

Figure 10: Compute(f) protocol of our interactive streaming delegation scheme, where qLDE = z =
{zi} is the queries that the delegator makes to the Reed-Muller encoding LDEx of the input x. In
parallel to the universal argument, the delegator and the worker run a many-to-one protocol and
a Reveal protocol in the same way as in Section 9.2 (see Steps 3 and 4 in Figure 7) to verify the
values of LDEx on points z.
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A Proof of Lemma 23

Lemma 53 (Lemma 23 restated) Let F be a finite field of size q, and let m ∈ N be a parameter.
Let X be a distribution over Fm×2 with H∞(X) ≥ (2m · log q)− (log q)/4, and a = (a1, a2) ← F2.
Then (X · a) ∈ Fm is ε-close to uniform with ε ≤ 2m · q−1/4.
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Let x1, . . . , xm ∈ F2 denote the m rows of X, and let H be the following hash function family

H = {ha : F2 → F s.t. ha(x) = a1x1 + a2x2 ∀a ∈ F2}.

In the above notation, X · a = (ha(x
1), . . . , ha(x

m)). Loosely speaking, Lemma 23 holds for the
following reasons:

• All rows of X have high min-entropy. Note that there are only (log q)/4 bits of entropy
missing from X, so intuitively, all rows xi of X have at least 2 log q− (log q)/4 bits of entropy.

• H is a 2-universal hash function family. By Leftover Hash Lemma (Lemma 57 below), ha ← H
can extract randomness from all rows xi of X.

We proceed to present necessary preliminaries for proving Lemma 23.

Definition 54 (Block Source) Let X = (X1, . . . , Xm) be a distribution, and let ` ∈ N be a
parameter. We say that X is a block `-source if for every i ∈ [m] and every (x1, . . . , xi−1) ∈
supp(X1, . . . , Xi−1), H∞(Xi|(X1,...,Xi−1)=(x1,...,xi−1)) ≥ `.

The following lemma says that if X = (X1, . . . , Xm) has sufficiently high min-entropy, then X
is (statistically close to) a block source.

Lemma 55 (see, e.g., [Vad10]) Let X = (X1, . . . , Xm) be a distribution over {0, 1}m×n. Let
∆ ∈ N and ε ∈ (0, 1) be parameters. If H∞(X) ≥ mn−∆, then X is (mε)-close to a block k-source
with k = n−∆− log(1/ε).

Definition 56 (2-universal) A hash function family H = {h : {0, 1}n1 → {0, 1}n2} is 2-universal
if for every x 6= x′ ∈ {0, 1}n1,

Pr
h←H

[h(x) = h(x′)] ≤ 1/2n2 .

It is easy to verify that the hash function family H = {ha : F2 → F} defined above is 2-universal.

Lemma 57 (Leftorver Hash Lemma (see, e.g., [Vad10])) Let H = {h : {0, 1}n1 → {0, 1}n2}
be a 2-universal family of hash functions. Let k ∈ N and ε > 0 be parameters such that n2 ≤
k − 2 log(1/ε). For any distribution X with H∞(X) ≥ k, the distribution (h, h(X)) is ε-close to
uniform in statistical distance.

Moreover, if X = (X1, . . . , Xm) is a block k-source, then the distribution (h, h(X1), . . . , h(Xm))
is (mε)-close to uniform.

Lemma 23 follows readily by Lemma 55 and 57.
Proof. (of Lemma 23) Let ε = q−1/4, and k = 1.5 log q. By Lemma 55, X = (x1, . . . , xm) is
mε-close to a block k-source. By Lemma 57, X · a = (ha(x

1), . . . , ha(x
m)) is (mε + mε)-close to

uniform.
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